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CHAPTER 1
ABOUT THIS MANUAL

The 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3A: System Programming
Guide, Part 1 (order number 253668) and the I1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3B: System Programming Guide, Part 2 (order number 253669) are part of a
set that describes the architecture and programming environment of all IA-32 Intel Architecture
processors. The other volumes in this set are:

® |A-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(order number 253665).

® |A-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B: Instruction
Set Reference (order numbers 253666 and 253667).

The 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, describes the basic
architecture and programming environment of an 1A-32 processor. The 1A-32 Intel® Architec-
ture Software Developer’s Manual, Volumes 2A & 2B, describe the instruction set of the
processor and the opcode structure. These volumes apply to application programmers and to
programmers who write operating systems or executives. The 1A-32 Intel® Architecture Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support environ-
ment of an 1A-32 processor and 1A-32 processor compatibility information. These volumes
target operating-system and BIOS designers. In addition, 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 3B, addresses the programming environment for classes of soft-
ware that host operating systems.

1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes mformatlon pertaining primarily to the most recent 1A-32 processors,
WhICh mclude the Pentium® processors, the P6 family processors, the Pentium 4 processors, the
Intel® Xeon® processors, the Pentium M processors, the Pentium D processors, and the Pentium
processor Extreme Edition. The P6 family processors are those 1A-32 processors based on the
P6 family microarchitecture, which include the Pentium Pro, Pentium 11, and Pentium Il proces-
sors. The Pentium 4, Intel Xeon, Pentlum D processors, and Pentium processor Extreme
Editions are based on the Intel NetBurst® microarchitecture.
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1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the 1A-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an 1A-32
processor and the mechanisms provided in the 1A-32 architecture to support operating systems
and executives, including the system-oriented registers and data structures and the system-
oriented instructions. The steps necessary for switching between real-address and protected
modes are also identified.

Chapter 3— Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging. The chapter explains how they can be
used to implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the 1A-32 architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the 1A-32 architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each
IA-32 exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes mechanisms the 1A-32 architecture provides to
support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and Hyper-Threading Tech-
nology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes the
programming interface to the local APIC and gives an overview of the interface between the
local APIC and the 1/0 APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an 1A-32
processor after reset initialization. This chapter also explains how to set up an 1A-32 processor
for real-address mode operation and protected- mode operation, and how to switch between
modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the 1A-32 architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. Information on using the new cache control and memory streaming instructions
introduced with the Pentium 111, Pentium 4, and Intel Xeon processors is also given.

Chapter 11 — Intel® MMX ™ Technology System Programming. Describes those aspects of
the Intel® MMX™ technology that must be handled and considered at the system programming
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level, including: task switching, exception handling, and compatibility with existing system
environments.

Chapter 12 — SSE, SSE2 and SSE3 System Programming. Describes those aspects of
SSE/SSE2/SSE3 extensions that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments.

Chapter 13 — Power and Thermal Management. Describes the 1A-32 architecture’s power
and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check architecture.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the
IA-32 architecture.

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 17 — 1A-32 Architecture Compatibility. Describes architectural compatibility
among the 1A-32 processors, which include the Intel 286, Intel386™, Intel486™, Pentium, P6
family, Pentium 4, and Intel Xeon processors. The differences among the 32-bit 1A-32 proces-
sors are also described throughout the three volumes of the 1A-32 Software Developer’s
Manual, as relevant to particular features of the architecture. This chapter provides a collection
of all the relevant compatibility information for all 1A-32 processors and also describes the basic
differences with respect to the 16-bit IA-32 processors (the Intel 8086 and Intel 286 processors).

Chapter 18 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the 1A-32 architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 19 — Introduction to Virtual-Machine Extensions. Describes the basic elements of
virtual machine architecture and the virtual-machine extensions of 1A-32 Intel Architecture..

Chapter 20 — Virtual-Machine Control Structures. Describes components that manage
VMX operation. These include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 21— VMX Non-Root Operation. Describes the operation of a VMX non-root oper-
ation. Processor operation in VMX non-root mode can be restricted programmatically such that
certain operations, events or conditions can cause the processor to transfer control from the guest
(running in VMX non-root mode) to the monitor software (running in VMX root mode).

Chapter 22 — VM Entries. Describes VM-entries. VM-entry transitions the processor from
the VMM running in VMX root-mode to a VM running in VMX non-root mode. VM-Entry is
performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 23 — VM Exits. Describes VM-exits. Certain events, operations or situations while
the processor is in VMX non-root operation may cause VM-exit transitions. In addition VM-
exits can also occur on failed VM-entries.

Chapter 24 — System Management. Describes the 1A-32 architecture’s system management
mode (SMM) facilities.
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Chapter 25 — Virtual-Machine Monitoring Programming Considerations. Describes
programming considerations for VMMs. VMMs manage virtual machines (VMs).

Chapter 26 — Virtualization of System Resources. Describes the virtualization of the system
resources. These include: debugging facilities, address translation, physical memory, and micro-
code update facilities.

Chapter 27 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes
what a VMM must consider when handling exceptions, interrupts, error conditions, and transi-
tions between activity states.

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium
processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the Pentium
processors, the P6 family processors, and the Pentium 4 and Intel Xeon processors and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of how to use
of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINTO and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of how to inter-
pret the error codes for a machine-check error that occurred on a P6 family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for messages
transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability MSRs.
Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encod-
ings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix | — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a
VM-Exit. Examples of exit reasons include, but are not limited to: software interrupts, processor
exceptions, software traps, NMls, external interrupts, and triple faults.

Appendix J — VM Instruction Error Numbers. Describes the VM-instruction error codes
generated by failed VM instruction executions (that have a valid working-VMCS pointer).

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.
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131 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.

® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in 1A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.
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Data Structure
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Figure 1-1. Bit and Byte Order

1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of the 1A-32 assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:
® Alabel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.
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1.34 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set:0,1,2,3,4,5,6,7,8,9,A,B,C,D, E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6  Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by
checking control register bits, and by reading model-specific registers. We are moving toward a
single syntax to represent this type of information. See Figure 1-2.
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CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSR[bit 9] =1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output
Model-Specific Register Values

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below:

#PF (fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
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be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP (0)

1.4 RELATED LITERATURE

Literature related to 1A-32 processors is listed on-line at this link:
http://developer.intel.com/design/processor/
Some of the documents listed at this web site can be viewed on-line; others can be ordered. The

literature available is listed by Intel processor and then by the following literature types: appli-
cations notes, data sheets, manuals, papers, and specification updates.

See also:

® the data sheet for a particular Intel 1A-32 processor

® the specification update for a particular Intel |A-32 processor

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618
® |A-32 Intel® Architecture Optimization Reference Manual, Order Number 248966
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

1A-32 architecture (beginning with the Intel386 processor family) provides extensive support
for operating-system and system-development software. This support offers multiple modes of
operation, which include:

® Real mode, protected mode, virtual 8086 mode, and system management mode. These are
sometimes referred to as legacy modes.

® |A-32e mode (added by Intel® Extended Memory 64 Technology). I1A-32e mode operates
in one of two sub-modes: 64-bit mode or compatibility mode.

The 1A-32 system-level architecture and includes features to assist in the following operations:
®* Memory management

® Protection of software modules

®  Multitasking

® Exception and interrupt handling

®  Multiprocessing

® Cache management

® Hardware resource and power management

® Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system
registers that are used to set up and control the processor at the system level and gives a brief
overview of the processor’s system-level (operating system) instructions.

Many features of the 1A-32 system-level architectural are used only by system programmers.
However, application programmers may need to read this chapter and the following chapters in
order to create a reliable and secure environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of
the 1A-32 architecture. 1A-32e mode operation, as it differs from protected mode operation, is
also described.

All 1A-32 processors enter real-address mode following a power-up or reset (see Chapter 9,
“Processor Management and Initialization™). Software then initiates the switch from real-
address mode to protected mode. If 1A-32e mode operation is desired, software also initiates a
switch from protected mode to 1A-32e mode.
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2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

IA-32 system-level architecture consists of a set of registers, data structures, and instructions
designed to support basic system-level operations such as memory management, interrupt and
exception handling, task management, and control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit
modes. System registers and data structures that apply to IA-32e mode are shown in Figure 2-2.
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Figure 2-1. |1A-32 System-Level Registers and Data Structures
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Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode
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2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global
descriptor table (GDT) or an optional local descriptor table (LDT) as shown in Figure 2-1. These
tables contain entries called segment descriptors. Segment descriptors provide the base address
of segments well as access rights, type, and usage information.

Each segment descriptor has an associated segment selector. A segment selector provides the
software that uses it with an index into the GDT or LDT (the offset of its associated segment
descriptor), a global/local flag (determines whether the selector points to the GDT or the LDT),
and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment
selector provides access to the segment descriptor for the segment (in the GDT or LDT). From
the segment descriptor, the processor obtains the base address of the segment in the linear
address space. The offset then provides the location of the byte relative to the base address. This
mechanism can be used to access any valid code, data, or stack segment, provided the segment
is accessible from the current privilege level (CPL) at which the processor is operating. The CPL
is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a
segment selector, and the dotted arrows indicate a physical address. For simplicity, many of the
segment selectors are shown as direct pointers to a segment. However, the actual path from a
segment selector to its associated segment is always through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT is contained in the LDT register (LDTR).

2111 Global and Local Descriptor Tables in IA-32 Mode

GDTR and LDTR registers are expanded to 64-bit wide in both 1A-32e sub-modes (64-bit mode
and compatibility mode). For more information: see Section 3.5.2, “Segment Descriptor Tables
in 1A-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses,
(16-byte LDT descriptors hold a 64-bit base address and various attributes). In compatibility
mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or
procedure, the architecture defines two system segments: the task-state segment (TSS) and the
LDT. The GDT is not considered a segment because it is not accessed by means of a segment
selector and segment descriptor. TSSs and LDTs have segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates,
trap gates, and task gates). These provide protected gateways to system procedures and handlers
that may operate at a different privilege level than application programs and most procedures.
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For example, a CALL to a call gate can provide access to a procedure in a code segment that is
at the same or a numerically lower privilege level (more privileged) than the current code
segment. To access a procedure through a call gate, the calling procedure! supplies the selector
for the call gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment pointed to by
the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for
the destination code segment and an offset into that code segment from the call gate. If the call
requires a change in privilege level, the processor also switches to the stack for the targeted priv-
ilege level. The segment selector for the new stack is obtained from the TSS for the currently
running task. Gates also facilitate transitions between 16-bit and 32-bit code segments, and vice
versa.

2.1.21 Gates in 1A-32e Mode

In 1A-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit
base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not
supported in 1A-32e mode. On privilege level changes, stack segment selectors are not read from
the TSS. Instead, they are set to NULL.

2.1.3  Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes
the state of general-purpose registers, segment registers, the EFLAGS register, the EIP register,
and segment selectors with stack pointers for three stack segments (one stack for each privilege
level). The TSS also includes the segment selector for the LDT associated with the task and the
page-table base address.

All program execution in protected mode happens within the context of a task (called the current
task). The segment selector for the TSS for the current task is stored in the task register. The
simplest method for switching to a task is to make a call or jump to the new task. Here, the
segment selector for the TSS of the new task is given in the CALL or JMP instruction. In
switching tasks, the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4

Loads the state of the new task from the new TSS into the general-purpose registers, the
segment registers, the LDTR, control register CR3 (page-table base address), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine).
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A task can also be accessed through a task gate. A task gate is similar to a call gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in 1A-32e mode. However, TSSs continue to exist.
The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

® Offset address of the 10-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in 1A-32e mode. See also: Section 6.7,
“Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt
descriptor table (IDT). The IDT stores a collection of gate descriptors that provide access to
interrupt and exception handlers. Like the GDT, the IDT is not a segment. The linear address for
the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt
or exception handler, the processor first receives an interrupt vector (interrupt number) from
internal hardware, an external interrupt controller, or from software by means of an INT, INTO,
INT 3, or BOUND instruction. The interrupt vector provides an index into the IDT. If the
selected gate descriptor is an interrupt gate or a trap gate, the associated handler procedure is
accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task
gate, the handler is accessed through a task switch.

2141 Interrupt and Exception Handling 1A-32e Mode

In 1A-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit base addresses.
This is true for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used: all code, data, stack, and system segments (including the GDT
and IDT) can be paged with only the most recently accessed pages being held in physical
memory.
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The location of pages (sometimes called page frames) in physical memory is contained in two
types of system data structures: page directories and page tables. Both structures reside in phys-
ical memory (see Figure 2-1).

The base physical address of the page directory is contained in control register CR3. An entry
in a page directory contains the physical address of the base of a page table, access rights and
memory management information. An entry in a page table contains the physical address of a
page frame, access rights and memory management information.

To use this paging mechanism, a linear address is broken into three parts. The parts provide sepa-
rate offsets into the page directory, the page table, and the page frame. A system can have a
single page directory or several. For example, each task can have its own page directory.

2151 Memory Management in IA-32e Mode

In 1A-32e mode, physical memory pages are managed by a set of system data structures. In
compatibility mode and 64-bit mode, four levels of system data structures are used. These
include:

® The page map level 4 (PML4) — An entry in a PML4 table contains the physical address
of the base of a page directory pointer table, access rights, and memory management infor-
mation. The base physical address of the PML4 is stored in CR3.

® Aset of page directory pointers — An entry in a page directory pointer table contains the
physical address of the base of a page directory table, access rights, and memory
management information.

® Sets of page directories — An entry in a page directory table contains the physical
address of the base of a page table, access rights, and memory management information.

® Sets of page tables — An entry in a page table contains the physical address of a page
frame, access rights, and memory management information.

2.1.6  System Registers

To assist in initializing the processor and controlling system operations, the system architecture
provides system flags in the EFLAGS register and several system registers:

® The system flags and IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. See also: Section 2.3, “System
Flags and Fields in the EFLAGS Register.”

® The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. Other flags in these registers are used to indicate
support for specific processor capabilities within the operating system or executive. See
also: Section 2.5, “Control Registers.”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. See also: Chapter 18, “Debugging and
Performance Monitoring.”
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® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. See also: Section 2.4, “Memory-Management Registers.”

® The task register contains the linear address and size of the TSS for the current task. See
also: Section 2.4, “Memory-Management Registers.”

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-
system or executive procedures (that is, code running at privilege level 0). These registers
control items such as the debug extensions, the performance-monitoring counters, the machine-
check architecture, and the memory type ranges (MTRRS).

The number and function of these registers varies among different members of the 1A-32
processor families. See also: Section 9.4, “Model-Specific Registers (MSRs),” and Appendix B,
“Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by application
programs. Systems can be designed, however, where all programs and procedures run at the
most privileged level (privilege level 0). In such a case, application programs would be allowed
to modify the system registers.

2.1.6.1 System Registers in 1A-32e Mode

In 1A-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are
expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS
register. CR0O-CR4 are expanded to 64 bits. CR8 becomes available. CR8 provides read-write
access to the task priority register (TPR) so that the operating system can control the priority
classes of external interrupts.

In 64-bit mode, debug registers DRO-DRY7 are 64 bits. In compatibility mode, address-matching
in DRO-DR3 is also done at 64-bit granularity.

On systems that support 1A-32e mode, the extended feature enable register (IA32_EFER) is
available. This model-specific register controls activation of 1A-32e mode and other 1A-32¢
mode operations. In addition, there are several model-specific registers that govern 1A-32e
mode instructions:

® 1A32_KernelGSbase — Used by SWAPGS instruction.

® JA32_LSTAR — Used by SYSCALL instruction.

® JA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® |JA32 STAR_CS — Used by SYSCALL and SYSRET instruction.
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2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system archi-
tecture provides the following additional resources:

® QOperating system instructions (see also: Section 2.6, “System Instruction Summary™).
® Performance-monitoring counters (not shown in Figure 2-1).
® |nternal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor
events such as the number of instructions decoded, the number of interrupts received, or the
number of cache loads. See also: Section 18, “Debugging and Performance Monitoring.”

The processor provides several internal caches and buffers. The caches are used to store both
data and instructions. The buffers are used to store things like decoded addresses to system and
application segments and write operations waiting to be performed. See also: Chapter 10,
“Memory Cache Control.”

2.2 MODES OF OPERATION

The 1A-32 architecture supports four operating modes and one quasi-operating mode:

® Protected mode — This is the native operating mode of the processor. It provides a rich
set of architectural features, flexibility, high performance and backward compatibility to
existing software base.

® Real-address mode — This operating mode provides the programming environment of
the Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

® System management mode (SMM) — SMM is a standard architectural feature in all
I1A-32 processors, beginning with the Intel386 SL processor. This mode provides an
operating system or executive with a transparent mechanism for implementing power
management and OEM differentiation features. SMM is entered through activation of an
external system interrupt pin (SMI#), which generates a system management interrupt
(SMI). In SMM, the processor switches to a separate address space while saving the
context of the currently running program or task. SMM-specific code may then be
executed transparently. Upon returning from SMM, the processor is placed back into its
state prior to the SMI.

® Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor execute 8086 software in a
protected, multitasking environment.

®* |A-32e mode — In 1A-32e mode, the processor supports two sub-modes: compatibility
mode and 64-bit mode. 64-bit mode provides 64-bit linear addressing and support for
physical address space larger than 64 GBytes. Compatibility mode allows most legacy
protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves among these operating modes.
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Figure 2-3. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in
control register CRO then controls whether the processor is operating in real-address or protected
mode. See also: Section 9.9, “Mode Switching.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from an interrupt or exception handler.
See also: Section 15.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA.LMA[bit 10]) determines whether the processor is operating
in 1A-32e mode. When running in 1A-32e mode, 64-bit or compatibility sub-mode operation is
determined by CS.L bit of the code segment. The processor enters into 1A-32e mode from
protected mode by enabling paging and setting the LME bit (IA32_EFER.LME[bit 8]). See also:
Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-
address, protected, virtual-8086, or 1A-32e modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.

Vol. 3A 2-11



SYSTEM ARCHITECTURE OVERVIEW

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control 1/0, maskable hardware inter-
rupts, debugging, task switching, and the virtual-8086 mode (see Figure 2-4). Only privileged
code (typically operating system or executive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-
step mode. In single-step mode, the processor generates a debug exception after each
instruction. This allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPFD, or IRET.

31 222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

AVIVIAlvlrl - In] © [olo|i|t]s|z| [l |e|.|c

Reserved (set to 0) FI’FICMFOTP,:,:,:F,:,:oFoFlF
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level

IF — Interrupt Enable Flag
TF — Trap Flag
D Reserved

Figure 2-4. System Flags in the EFLAGS Register

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hard-
ware interrupt requests (see also: Section 5.3.2, “Maskable Hardware Interrupts”). The
flag is set to respond to maskable hardware interrupts; cleared to inhibit maskable hard-
ware interrupts. The IF flag does not affect the generation of exceptions or
nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI,
STI, POPF, POPFD, and IRET.

IOPL  I/O privilege level field (bits 12 and 13) — Indicates the /O privilege level (IOPL)
of the currently running program or task. The CPL of the currently running program
or task must be less than or equal to the IOPL to access the I/0 address space. This
field can only be modified by the POPF and IRET instructions when operating at a
CPL of 0.
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The IOPL is also one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when virtual mode extensions are
in effect (when CR4.VME = 1). See also: Chapter 13, “Input/Output,” in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The
processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies this flag on returns from a task initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD
instructions; however, changing to the state of this flag can generate unexpected excep-
tions in application programs.

See also: Section 6.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint condi-
tions. When set, this flag temporarily disables debug exceptions (#DB) from being
generated for instruction breakpoints (although other exception conditions can
cause an exception to be generated). When clear, instruction breakpoints will
generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following
a debug exception that was caused by an instruction breakpoint condition. Here, debug
software must set this flag in the EFLAGS image on the stack just prior to returning to
the interrupted program with IRETD (to prevent the instruction breakpoint from
causing another debug exception). The processor then automatically clears this flag
after the instruction returned to has been successfully executed, enabling instruction
breakpoint faults again.

See also: Section 18.3.1.1, “Instruction-Breakpoint Exception Condition.”

Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to
protected mode.

See also: Section 15.2.1, “Enabling Virtual-8086 Mode.”

Alignment check (bit 18) — Set this flag and the AM flag in control register CRO to
enable alignment checking of memory references; clear the AC flag and/or the AM flag
to disable alignment checking. An alignment-check exception is generated when refer-
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level 0, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with processors which require all data to be aligned. The align-
ment-check exception can also be used by interpreters to flag some pointers as special
by misaligning the pointer. This eliminates overhead of checking each pointer and only
handles the special pointer when used.
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VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used
in conjunction with the VIP flag. The processor only recognizes the VIF flag when
either the VME flag or the PVI flag in control register CR4 is set and the IOPL is less
than 3. (The VME flag enables the virtual-8086 mode extensions; the PV1 flag enables
the protected-mode virtual interrupts.)

See also: Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and Section 15.4,
“Protected-Mode Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunction
with the VIF flag. The processor reads this flag but never modifies it. The processor
only recognizes the VIP flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and Section 15.4,
“Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System
flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-4.

In 1A-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode
is not supported (attempts to set the bit are ignored). Also, the processor will not set the NT bit.
The processor does, however, allow software to set the NT bit (note that an IRET causes a
general protection fault in 1A-32e mode if the NT bit is set).

In 1A-32e mode, the SYSCALL/SYSRET instructions have a programmable method of speci-
fying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

24 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(see Figure 2-5). Special instructions are provided for loading and storing these registers.
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System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
5 0 Attributes
Reg;itstla(r Seg. Sel. 32(64)-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-5. Memory Management Registers

2.4.1  Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in 1A-32e mode)
and the 16-bit table limit for the GDT. The base address specifies the linear address of byte 0 of
the GDT; the table limit specifies the number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up
or reset of the processor, the base address is set to the default value of 0 and the limit is set to
OFFFFH. A new base address must be loaded into the GDTR as part of the processor initializa-
tion process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode;
64 bits in |A-32e mode), segment limit, and descriptor attributes for the LDT. The base address
specifies the linear address of byte 0 of the LDT segment; the segment limit specifies the number
of bytes in the segment. See also: Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR: the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the
default value of 0 and the limit is set to OFFFFH.
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2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in 1A-32e mode)
and 16-bit table limit for the IDT. The base address specifies the linear address of byte 0 of the
IDT; the table limit specifies the number of bytes in the table. The LIDT and SIDT instructions
load and store the IDTR register, respectively. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH. The base address and limit
in the register can then be changed as part of the processor initialization process.

See also: Section 5.10, “Interrupt Descriptor Table (IDT).”

2.4.4  Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64
bits in 1A-32e mode), segment limit, and descriptor attributes for the TSS of the current task.
The selector references the TSS descriptor in the GDT. The base address specifies the linear
address of byte 0 of the TSS; the segment limit specifies the number of bytes in the TSS. See
also: Section 6.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task register. On power up or reset of the processor, the base address is set to the default
value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector
and descriptor for the TSS for the new task. The contents of the task register are not automati-
cally saved prior to writing the new TSS information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine operating mode
of the processor and the characteristics of the currently executing task. These registers are 32
bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used
to manipulate the register bits. Operand-size prefixes for these instructions are ignored. The
following is also true:

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing a nonzero
value to any of the upper 32 bits results in a general-protection exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

® The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within
the linear-address or physical-address limitations of the implementation.

® Register CR8 is available in 64-bit mode only.
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The control registers are summarized below, and each architecturally defined control field in
these control registers are described individually. In Figure 2-6, the width of the register in
64-bit mode is indicated in parenthesis (except for CRO).

CR0O — Contains system control flags that control operating mode and states of the
processor.

CR1 — Reserved.
CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

CR3 — Contains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page-directory base register (PDBR). Only
the most-significant bits (less the lower 12 bits) of the base address are specified; the lower
12 bits of the address are assumed to be 0. The page directory must thus be aligned to a
page (4-KByte) boundary. The PCD and PWT flags control caching of the page directory
in the processor’s internal data caches (they do not control TLB caching of page-directory
information).

When using the physical address extension, the CR3 register contains the base address of
the page-directory-pointer table In 1A-32e mode, the CR3 register contains the base
address of the PMLA4 table.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism.”

CR4 — Contains a group of flags that enable several architectural extensions, and indicate
operating system or executive support for specific processor capabilities. The control
registers can be read and loaded (or modified) using the move-to-or-from-control-registers
forms of the MOV instruction. In protected mode, the MOV instructions allow the control
registers to be read or loaded (at privilege level 0 only). This restriction means that
application programs or operating-system procedures (running at privilege levels 1, 2, or
3) are prevented from reading or loading the control registers.

CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the
priority threshold value that operating systems use to control the priority class of external
interrupts allowed to interrupt the processor. This register is available only in 64-bit mode.
However, interrupt filtering continues to apply in compatibility mode.
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31(63) 10 987 6543210
PIP|M[P|P|ITIPIV
Reserved (set to 0) C|G|C|A[S|2|S|V M| CR4
E|E|E|E|E|T|D|I|E
OSXMMEXCPTQ
OSFXSR
31(63) 12 11 5432 0
PlP
. CR3
- clw
Page-Directory Base olT (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
313029 28 1918 17 16 15 6543210
PlC|N Al (w N[E|T|E|M|P
G|D|W M| |P E|T|s|m|p|e| CRO
|:| Reserved

Figure 2-6. Control Registers

When loading a control register, reserved bits should always be set to the values previously read.
The flags in control registers are:

PG

CD

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear.
When paging is disabled, all linear addresses are treated as physical addresses. The PG
flag has no effect if the PE flag (bit O of register CRO) is not also set; setting the PG
flag when the PE flag is clear causes a general-protection exception (#GP). See also:
Section 3.6, “Paging (Virtual Memory) Overview.”

On 1A-32 processors that support Intel® EM64T, enabling and disabling 1A-32e mode
operation also requires modifying CRO.PG.

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of
memory locations for the whole of physical memory in the processor’s internal (and
external) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 10-5. To prevent the processor from accessing and updating its caches, the CD
flag must be set and the caches must be invalidated so that no cache hits can occur.

See also: Section 10.5.3, “Preventing Caching,” and Section 10.5, “Cache Control.”
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Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-
back (for Pentium 4, Intel Xeon, P6 family, and Pentium processors) or write-through
(for Intel486 processors) is enabled for writes that hit the cache and invalidation cycles
are enabled. See Table 10-5 for detailed information about the affect of the NW flag on
caching for other settings of the CD and NW flags.

Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAGS register is set, CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

Write Protect (bit 16 of CR0) — Inhibits supervisor-level procedures from writing
into user-level read-only pages when set; allows supervisor-level procedures to write
into user-level read-only pages when clear. This flag facilitates implementation of the
copy-on-write method of creating a new process (forking) used by operating systems
such as UNIX*,

Numeric Error (bit 5 of CRO) — Enables the native (internal) mechanism for
reporting x87 FPU errors when set; enables the PC-style x87 FPU error reporting
mechanism when clear. When the NE flag is clear and the IGNNE# input is asserted,
x87 FPU errors are ignored. When the NE flag is clear and the IGNNE# input is deas-
serted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to
generate an external interrupt and to stop instruction execution immediately before
executing the next waiting floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the
FERR# pin emulates the ERROR# pin of the Intel 287 and Intel 387 DX math copro-
cessors). The NE flag, IGNNE# pin, and FERR# pin are used with external logic to
implement PC-style error reporting.

See also: “Software Exception Handling” in Chapter 8, “Programming with the x87
FPU,” and Appendix A, “Eflags Cross-Reference,” in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 1.

Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family,
and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family processors, this
flag is hardcoded to 1. In the Intel386 and Intel486 processors, this flag indicates
support of Intel 387 DX math coprocessor instructions when set.

Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/
SSE3 context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3
instruction is actually executed by the new task. The processor sets this flag on every
task switch and tests it when executing x87 FPU/MMX/SSE/SSE2/SSE3 instructions.

e [fthe TS flag is set and the EM flag (bit 2 of CROQ) is clear, a device-not-available
exception (#NM) is raised prior to the execution of any x87 FPU/MMX/SSE/
SSE2/SSE3 instruction; with the exception of PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, MOVNTI, and CLFLUSH. See the paragraph below for the
special case of the WAIT/FWAIT instructions.
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e [fthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM

exception is not raised prior to the execution of an x87 FPU WAIT/FWAIT
instruction.

e |f the EM flag is set, the setting of the TS flag has no affect on the execution of

x87 FPU/MMX/SSE/SSE2/SSE3 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 FPU instruc-
tion based on the settings of the TS, EM, and MP flags. Table 11-1 and 12-1 show the
actions taken when the processor encounters an MMX/SSE/SSE2/SSE3 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and
MXCSR registers on a task switch. Instead, it sets the TS flag, which causes the
processor to raise an #NM exception whenever it encounters an x87 FPU/MMX/SSE
/SSE2/SSE3 instruction in the instruction stream for the new task (with the exception
of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS
instruction) and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never
encounters an x87 FPU/MMX/SSE/SSE2/SSE3 instruction; the x87 FPU/MMX/SSE/SSE2/
SSE3 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.
1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or

external x87 FPU when set; indicates an x87 FPU is present when clear. This flag also
affects the execution of MMX/SSE/SSE2/SSES3 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-
available exception (#NM). This flag must be set when the processor does not have an
internal x87 FPU or is not connected to an external math coprocessor. Setting this flag
forces all floating-point instructions to be handled by software emulation. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
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FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-
opcode exception (#UD) to be generated (see Table 11-1). Thus, if an 1A-32 processor
incorporates MMX technology, the EM flag must be set to 0 to enable execution of
MMX instructions.

Similarly for SSE/SSE2/SSE3 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3 instructions causes an invalid opcode exception (#UD) to be gener-
ated (see Table 12-1). If an 1A-32 processor incorporates the SSE/SSE2/SSE3 exten-
sions, the EM flag must be set to O to enable execution of these extensions.
SSE/SSE2/SSE3 instructions not affected by the EM flag include: PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH.

Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is also set.
If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 9-2
shows the recommended setting of this flag, depending on the 1A-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
MP, EM, and TS flags.

Protection Enable (bit 0 of CRO) — Enables protected mode when set; enables real-
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

Page-level Cache Disable (bit 4 of CR3) — Controls caching of the current page
directory. When the PCD flag is set, caching of the page-directory is prevented; when
the flag is clear, the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this flag if
paging is not used (the PG flag in register CRO is clear) or the CD (cache disable) flag
in CRO is set.

See also: Chapter 10, “Memory Cache Control” (for more about the use of the PCD
flag) and Section 3.7.6, “Page-Directory and Page-Table Entries” (for a description of
a companion PCD flag in page-directory and page-table entries).

Page-level Writes Transparent (bit 3 of CR3) — Controls the write-through or write-
back caching policy of the current page directory. When the PWT flag is set, write-
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only internal caches (both L1 and L2, when present). The processor ignores
this flag if paging is not used (the PG flag in register CRO is clear) or the CD (cache
disable) flag in CRO is set.

See also: Section 10.5, “Cache Control” (for more information about the use of this
flag), and Section 3.7.6, “Page-Directory and Page-Table Entries” (for a description of
a companion PCD flag in the page-directory and page-table entries).
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VME

PVI

TSD

DE

PSE

PAE

MCE

PGE

Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use of the virtual mode extensions can improve the performance of virtual-8086 appli-
cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter-
rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environments.

See also: Section 15.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for
a virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear.

See also: Section 15.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruc-
tion to procedures running at privilege level 0 when set; allows RDTSC instruction to
be executed at any privilege level when clear.

Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DR5 for compatibility with software
written to run on earlier |A-32 processors.

See also: Section 18.2.2, “Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages when set; restricts
pages to 4 KBytes when clear.

See also: Section 3.6.1, “Paging Options.”

Physical Address Extension (bit 5 of CR4) — When set, enables paging mechanism
to reference greater-or-equal-than-36-bit physical addresses. When clear, restricts
physical addresses to 32 bits. PAE must be enabled to enable IA-32e mode operation.
Enabling and disabling 1A-32e mode operation also requires modifying CR4.PAE.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging
Mechanism.”

Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception
when set; disables the machine-check exception when clear.

See also: Chapter 14, “Machine-Check Architecture.”

Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.)
Enables the global page feature when set; disables the global page feature when clear.
The global page feature allows frequently used or shared pages to be marked as global
to all users (done with the global flag, bit 8, in a page-directory or page-table entry).
Global pages are not flushed from the translation-lookaside buffer (TLB) on a task
switch or a write to register CR3.
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When enabling the global page feature, paging must be enabled (by setting the PG flag
in control register CR0) before the PGE flag is set. Reversing this sequence may affect
program correctness, and processor performance will be impacted.

See also: Section 3.12, “Translation Lookaside Buffers (TLBSs).”

Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of
the RDPMC instruction for programs or procedures running at any protection level
when set; RDPMC instruction can be executed only at protection level 0 when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of
CR4) — When set, this flag: (1) indicates to software that the operating system
supports the use of the FXSAVE and FXRSTOR instructions, (2) enables the FXSAVE
and FXRSTOR instructions to save and restore the contents of the XMM and MXCSR
registers along with the contents of the x87 FPU and MMX registers, and (3) enables
the processor to execute SSE/SSE2/SSE3 instructions, with the exception of the
PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the
contents of the x87 FPU and MMX instructions, but they may not save and restore the
contents of the XMM and MXCSR registers. Also, the processor will generate an
invalid opcode exception (#UD) if it attempts to execute any SSE/SSE2/SSE3 instruc-
tion, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, and CLFLUSH. The operating system or executive must explicitly set this
flag.

NOTE

CPUID feature flags FXSR, SSE, SSE?2, and SSE3 indicate availability
of the FXSAVE/FXRESTOR instructions, SSE extensions, SSE2
extensions, and SSE3 extensions respectively. The OSFXSR bit
provides operating system software with a means of enabling these
features and indicating that the operating system supports the features.

OSXMMEXCPT

TPL

Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10
of CR4) — When set, indicates that the operating system supports the handling of
unmasked SIMD floating-point exceptions through an exception handler that is invoked
when a SIMD floating-point exception (#XF) is generated. SIMD floating-point excep-
tions are only generated by SSE/SSE2/SSE3 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the
processor will generate an invalid opcode exception (#UD) whenever it detects an
unmasked SIMD floating-point exception.

Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding
to the highest-priority interrupt to be blocked. A value of 0 means all interrupts are
enabled. This field is available in 64-bit mode. A value of 15 means all interrupts will
be disabled.
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2.5.1 CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can be qual-
ified with the CPUID instruction to determine if they are implemented on the processor before
they are used.

The CR8 register is available on processors that support Intel EM64T. Support for Intel EM64T
can determined using CPUID.

2.6 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing
the cache, managing interrupts, or setting up the debug registers. Many of these instructions can
be executed only by operating-system or executive procedures (that is, procedures running at
privilege level 0). Others can be executed at any privilege level and are thus available to appli-
cation programs.

Table 2-2 lists the system instructions and indicates whether they are available and useful for
application programs. These instructions are described in Chapter 3 and Chapter 4 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B.

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yesh 5 No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
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Useful to Protected from

Instruction Description Application? Application?
MOV DRn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR® Read Model-Specific Registers No Yes
WRMSR? Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC? Read Time-Stamp Counter Yes Yes?
NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application

programs running at a CPL of 3.
3. These instructions were introduced into the 1A-32 Architecture with the Pentium processor.

4. This instruction was introduced into the 1A-32 Architecture with the Pentium Pro processor and the

2.6.1

Pentium processor with MMX technology.

. This instruction is not supported in 64-bit mode.

Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
data into and storing data from the register:

LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory
into the GDTR register.

SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR
register into memory.

LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into
the IDTR register.

SIDT (Load IDTR Register — Stores the IDT base address and limit from the IDTR
register into memory.

LLDT (Load LDT Register) — Loads the LDT segment selector and segment descriptor
from memory into the LDTR. (The segment selector operand can also be located in a
general-purpose register.)
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® SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR register
into memory or a general-purpose register.

® | TR (Load Task Register) — Loads segment selector and segment descriptor for a TSS
from memory into the task register. (The segment selector operand can also be located in a
general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task TSS from
the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits 0 through 15 of control register CRO. These instructions are provided for compat-
ibility with the 16-bit Intel 286 processor. Programs written to run on 32-bit 1A-32 processors
should not use these instructions. Instead, they should access the control register CRO using the
MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-avail-
able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the x87
FPU context has been saved, preventing further #NM exceptions. See Section 2.5, “Control
Registers,” for more information on the TS flag.

The control registers (CR0O, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruc-
tion. The instruction loads a control register from a general-purpose register or stores the content
of a control register in a general-purpose register.

2.6.2  Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment
descriptors to determine if access to their associated segments is allowed. These instructions
duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the program or procedure that supplied the segment selector. See
Section 4.10.4, “Checking Caller Access Privileges (ARPL Instruction),” for a detailed expla-
nation of the function and use of this instruction. Note that ARPL is not supported in 64-bit
mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads access rights information from the segment’s segment descriptor into a general-purpose
register. Software can then examine the access rights to determine if the segment type is compat-
ible with its intended use. See Section 4.10.1, “Checking Access Rights (LAR Instruction),” for
a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment’s segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. See Section 4.10.3, “Checking That the Pointer
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Offset Is Within Limits (LSL Instruction),” for a detailed explanation of the function and use of
this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at a given CPL. See Section 4.10.2, “Checking
Read/Write Rights (VERR and VERW Instructions),” for a detailed explanation of the function
and use of this instruction.

2.6.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DRO-DRY). The MOV instruction allows setup data to be loaded to and stored from these
registers.

On processors that support Intel EM64T, debug registers DRO-DR?7 are 64 bits. In 32-bit modes
and compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return
the lower 32 bits. In 64-bit mode, the upper 32 bits of DR6-DR?7 are reserved and must be written
with zeros. Writing one to any of the upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-
size prefixes are ignored). All 64 bits of DRO-DR3 are writable by software. However,
MOV DRn instructions do not check that addresses written to DR0O-DR3 are in the limits of the
implementation. Address matching is supported only on valid addresses generated by the
processor implementation.

2.6.4 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and sends a signal to the external caches indicating that
they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, WBINVD signals
external caches to write back modified data and invalidate their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified page.

2.6.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI
or SMI, which are normally enabled), a debug exception, the BINIT# signal, the INIT# signal,
or the RESET# signal is received. The processor generates a special bus cycle to indicate that
the halt mode has been entered.
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Hardware may respond to this signal in a number of ways. An indicator light on the front panel
may be turned on. An NMI interrupt for recording diagnostic information may be generated.
Reset initialization may be invoked (note that the BINIT# pin was introduced with the Pentium
Pro processor). If any non-wake events are pending during shutdown, they will be handled after
the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. This mechanism is used to allow reliable communications between processors
in multiprocessor systems, as described below:

® |n the Pentium processor and earlier 1A-32 processors, the LOCK prefix causes the
processor to assert the LOCK# signal during the instruction. This always causes an explicit
bus lock to occur.

® In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled
with either a cache lock or bus lock. If a memory access is cacheable and affects only a
single cache line, a cache lock is invoked and the system bus and the actual memory
location in system memory are not locked during the operation. Here, other Pentium 4,
Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is
not cacheable and/or it crosses a cache line boundary, the processor’s LOCK# signal is
asserted and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6 Reading Performance-Monitoring and Time-Stamp
Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instructions allow application programs to read the processor’s performance-monitoring and
time-stamp counters, respectively. Pentium 4 and Intel Xeon processors have eighteen 40-bit
performance-monitoring counters; P6 family processors have two 40-bit counters.

Use these counters to record either the occurrence or duration of events. Events that can be
monitored are model specific; they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different
events. Use the system instruction WRMSR to set up values in the one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the
PerfEvtSell MSR (for the P6 family processors). The RDPMC instruction loads the current
count from the selected counter into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter will increment ~9.5 x 101 times per year when
the processor is operating at a clock rate of 3GHz. At this clock frequency, it would take
over 190 years for the counter to wrap around. The RDTSC instruction loads the current
count of the time-stamp counter into the EDX:EAX registers.
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See Section 18.10, “Performance Monitoring Overview,” and Section 18.9, “Time-Stamp
Counter,” for more information about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the 1A-32 architecture with the Pentium processor.
The RDPMC instruction was introduced into the IA-32 architecture with the Pentium Pro
processor and the Pentium processor with MMX technology. Earlier Pentium processors have
two performance-monitoring counters, but they can be read only with the RDMSR instruction,
and only at privilege level 0.

2.6.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp
counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit
mode for Pentium 4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The
current count of the performance-monitoring counter is stored in EDX:EAX (or
RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.6.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions allow a processor’s 64-bit model-specific registers (MSRs) to be read and written,
respectively. The MSR to be read or written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes
the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR were intro-
duced into the 1A-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.
2.6.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the
index is 32 bits; it is specified using ECX.
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the 1A-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 4, “Protection” (for a description of the processor’s protection mechanism)
and Chapter 15, “8086 Emulation” (for a description of memory addressing protection in real-
address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmen-
tation and paging. Segmentation provides a mechanism of isolating individual code, data, and
stack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering with one another. Paging provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be
used. There is no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-
program (or single-task) systems, multitasking systems, or multiple-processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addressable memory space (called the linear address space) into smaller protected address
spaces called segments. Segments can be used to hold the code, data, and stack for a program
or to hold system data structures (such as a TSS or LDT). If more than one program (or task) is
running on a processor, each program can be assigned its own set of segments. The processor
then enforces the boundaries between these segments and insures that one program does not
interfere with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations that may be
performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a
byte in a particular segment, a logical address (also called a far pointer) must be provided. A
logical address consists of a segment selector and an offset. The segment selector is a unique
identifier for a segment. Among other things it provides an offset into a descriptor table (such
as the global descriptor table, GDT) to a data structure called a segment descriptor. Each
segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment
in the linear address space (called the base address of the segment). The offset part of the logical
address is added to the base address for the segment to locate a byte within the segment. The
base address plus the offset thus forms a linear address in the processor’s linear address space.
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Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (typically 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location.
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If the page being accessed is not currently in physical memory, the processor interrupts execu-
tion of the program (by generating a page-fault exception). The operating system or executive
then reads the page into physical memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programs written for 16-bit 1A-32 processors can be paged (transparently) when
they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the 1A-32 architecture can be used to implement a
wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multi-segmented models that employ segmentation
to create a robust operating environment in which multiple programs and tasks can be executed
reliably.

The following sections give several examples of how segmentation can be employed in a system
to improve memory management performance and reliability.

3.21 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
system and application programs have access to a continuous, unsegmented address space. To
the greatest extent possible, this basic flat model hides the segmentation mechanism of the archi-
tecture from both the system designer and the application programmer.

To implement a basic flat memory model with the 1A-32 architecture, at least two segment
descriptors must be created, one for referencing a code segment and one for referencing a data
segment (see Figure 3-2). Both of these segments, however, are mapped to the entire linear
address space: that is, both segment descriptors have the same base address value of 0 and the
same segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
physical memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at FFFF_FFFOH. RAM
(DRAM) is placed at the bottom of the address space because the initial base address for the DS
data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
include only the range of addresses for which physical memory actually exists (see Figure 3-3).
A general-protection exception (#GP) is then generated on any attempt to access nonexistent
memory. This model provides a minimum level of hardware protection against some kinds of
program bugs.
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Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level 0 for the supervisor. Usually these segments all
overlay each other and start at address O in the linear address space. This flat segmentation
model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica-
tions from each other. Similar designs are used by several popular multitasking operating
systems.
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3.2.3 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.
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Registers Descriptors (or Physical Memory)
IE - Access | Limit
Base Address Stack
Access | Limit

SS

\i

Base Address

Access | Limit
DS >
Base Address Code
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Data
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Access | Limit
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Access | Limit
Base Address

Access | Limit
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Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.
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3.2.4  Segmentation in IA-32e Mode

In 1A-32e mode, the effects of segmentation depend on whether the processor is running in
compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it
does using legacy 16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit
linear-address space. The processor treats the segment base of CS, DS, ES, SS as zero, creating
a linear address that is equal to the effective address. The FS and GS segments are exceptions.
These segment registers (which hold the segment base) can be used as an additional base regis-
ters in linear address calculations. They facilitate addressing local data and certain operating
system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4.
The processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mapped
to pages in the physical address space. The paging mechanism offers several page-level protec-
tion facilities that can be used with or instead of the segment-protection facilities. For example,
it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the 1A-32 architecture provides a normal physical address space of 4 GBytes
(2%2bytes). This is the address space that the processor can address on its address bus. This
address space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped 1/0. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the 1A-32 architecture also supports an extension of the
physical address space to 2%¢ bytes (64 GBytes); with a maximum physical address of
FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium IlI
processors).

See Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9,
“36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for more information about
36-bit physical addressing.
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3.3.1 Physical Address Space for Processors with Intel® EM64T

On processors that support Intel EM64T (CPUID.80000001.EDX[29] = 1), the size of physical
address range is implementation-specific and indicated by CPUID.80000001H. The physical
address size supported by a given implementation is available to 1A-32e mode and enhanced
legacy PAE paging.

See also: Section 3.8.1, “Enhanced Legacy PAE Paging”.

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space

paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(see Figure 3-5). The segment selector identifies the segment the byte is located in and the offset
specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor’s linear address space. Like the physical address space, the linear
address space is a flat (unsegmented), 2%2-byte address space, with addresses ranging from 0 to
FFFFFFFFH. The linear address space contains all the segments and system tables defined for
a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.
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Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address.

See also: Section 3.6, “Paging (Virtual Memory) Overview”.

3.4.1 Logical Address Translation in IA-32e Mode

In 1A-32e mode, the processor uses the steps described above to translate a logical address to a
linear address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of
32 bits. The linear address format is also 64 bits wide and is subject to the canonical form
requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit
code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).
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Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. See Section 4.5,
“Privilege Levels”, for a description of the relationship of the RPL to the CPL
of the executing program (or task) and the descriptor privilege level (DPL) of
the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.3 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
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can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn, INTO and
INT3 instructions. These instructions change the contents of the CS register (and
sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.
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3.44 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit,
and attribute) in segment descriptor registers are ignored. Some forms of segment load instruc-
tions are also invalid (for example, LDS, POP ES). Address calculations that reference the ES,
DS, or SS segments are treated as if the segment base is zero.

The processor checks that all linear-address references are in canonical form instead of
performing limit checks. Mode switching does not change the contents of the segment registers
or the associated descriptor registers. These registers are also not changed during 64-bit mode
execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MQOV to
Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the system descriptor
table (GDT or LDT) and is loaded in the hidden portion of the segment descriptor register. The
descriptor-register base, limit, and attribute fields are all loaded. However, the contents of the
data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are
used in the linear address calculation: (FS or GS).base + index + displacement. FS.base and
GS.base are then expanded to the full linear-address size supported by the implementation. The
resulting effective address calculation can wrap across positive and negative addresses; the
resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked
for a runtime limit nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and
POP Sreg) into FS and GS load a standard 32-bit base value in the hidden portion of the segment
descriptor register. The base address bits above the standard 32 bits are cleared to 0 to allow
consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs
in order to load all address bits supported by a 64-bit implementation. Software with CPL =0
(privileged software) can load all supported linear-address bits into FS.base or GS.base using
WRMSR. Addresses written into the 64-bit FS.base and GS.base registers must be in canonical
form. A WRMSR instruction that attempts to write a non-canonical address to those registers
causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior
regardless of the value loaded into the upper 32 linear-address bits of the hidden descriptor
register base field. Compatibility mode ignores the upper 32 bits when calculating an effective
address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges
the kernel data structure pointer from the 1A32_KernelGShase MSR with the GS base register.
The kernel can then use the GS prefix on normal memory references to access the kernel data
structures. An attempt to write a non-canonical value (using WRMSR) to the
1A32_KernelGSBase MSR causes a #GP fault.

Vol. 3A 3-11



PROTECTED-MODE MEMORY MANAGEMENT

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all

types of segment descriptors.

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limit |P| p |S| Type Base 23:16 4
B| |L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field
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Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

« If the granularity flag is clear, the segment size can range from 1 byte to
1 MByte, in byte increments.

« If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.5.1, “Code- and Data-Segment Descriptor Types”, for more information
about segment types. For expand-up segments, the offset in a logical address
can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP). For expand-down segments, the
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segment limit has the reverse function; the offset can range from the segment
limit to FFFFFFFFH or FFFFH, depending on the setting of the B flag. Offsets
less than the segment limit generate general-protection exceptions. Decreasing
the value in the segment limit field for an expand-down segment allocates new
memory at the bottom of the segment's address space, rather than at the top.
IA-32 architecture stacks always grow downwards, making this mechanism
convenient for expandable stacks.

Base address fields

Type field

Defines the location of byte 0 of the segment within the 4-GByte linear address
space. The processor puts together the three base address fields to form a single
32-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programs to
maximize performance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (see Figure 4-1). See Section
3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how
this field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can range from
0 to 3, with 0 being the most privileged level. The DPL is used to control access
to the segment. See Section 4.5, “Privilege Levels”, for a description of the
relationship of the DPL to the CPL of the executing code segment and the RPL
of a segment selector.

P (segment-present) flag

Indicates whether the segment is present in memory (set) or not present (clear).
If this flag is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this flag to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this flag is clear, the operating system or executive is free
to use the locations marked “Available” to store its own data, such as informa-
tion regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag

Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a stack
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segment. (This flag should always be set to 1 for 32-bit code and data segments
and to 0 for 16-bit code and data segments.)

Executable code segment. The flag is called the D flag and it indicates the
default length for effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
operands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
operands are assumed.

The instruction prefix 66H can be used to select an operand size other than
the default, and the prefix 67H can be used select an address size other than
the default.

Stack segment (data segment pointed to by the SS register). The flag is
called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH
(64 KBytes).

31 16 15 14 13 12 11 8 7 0
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag

Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-
larity flag is set, a limit of O results in valid offsets from 0 to 4095.
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L (64-bit code segment) flag

In 1A-32e mode, bit 21 of the second doubleword of the segment descriptor
indicates whether a code segment contains native 64-bit code. A value of 1
indicates instructions in this code segment are executed in 64-bit mode. A
value of O indicates the instructions in this code segment are executed in
compatibility mode. If L-bit is set, then D-bit must be cleared. When not in
IA-32e mode or for non-code segments, bit 21 is reserved and should always
be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use
by system software.

3451 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read-
only or read/write segments, depending on the setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
. Type
Decimal 11 10 9 8
E w A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed
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Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a nonwritable data segment generates a general-protection exception
(#GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment is intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register, assuming that the type of memory that contains
the segment descriptor supports processor writes. The bit remains set until explicitly cleared.
This bit can be used both for virtual memory management and for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-
privileged conforming segment allows execution to continue at the current privilege level. A
transfer into a nonconforming segment at a different privilege level results in a general-protec-
tion exception (#GP), unless a call gate or task gate is used (see Section 4.8.1, “Direct Calls or
Jumps to Code Segments”, for more information on conforming and nonconforming code
segments). System utilities that do not access protected facilities and handlers for some types of
exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Util-
ities that need to be protected from less privileged programs and procedures should be placed in
nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged
(numerically higher privilege level) code segment, regardless of whether the
target segment is a conforming or nonconforming code segment. Attempting
such an execution transfer will result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged
programs or procedures (code executing at numerically high privilege levels). Unlike code
segments, however, data segments can be accessed by more privileged programs or procedures
(code executing at numerically lower privilege levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an
indefinite loop if software or the processor attempts to update (write to) the ROM-based
segment descriptors. To prevent this problem, set the accessed bits for all segment descriptors
placed in a ROM. Also, remove operating-system or executive code that attempts to modify
segment descriptors located in ROM.
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SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

Local descriptor-table (LDT) segment descriptor.
Task-state segment (TSS) descriptor.

Call-gate descriptor.

Interrupt-gate descriptor.

Trap-gate descriptor.

Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-
tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descrip-
tors. Note that system descriptors in 1A-32e mode are 16 bytes instead of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 10 9 8 32-Bit Mode IA-32e Mode
0 0 0 0 0 Reserved Upper 8 byte of an 16-byte
descriptor
1 0 0 0 1 16-bit TSS (Available) Reserved
2 0 0 1 0 LDT LDT
3 0 0 1 1 16-bit TSS (Busy) Reserved
4 0 1 0 0 16-bit Call Gate Reserved
5 0 1 0 1 | Task Gate Reserved
6 0 1 1 0 16-bit Interrupt Gate Reserved
7 0 1 1 1 16-bit Trap Gate Reserved
8 1 0 0 0 Reserved Reserved
9 1 0 0 1 | 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 Reserved Reserved
1 1 0 1 1 | 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 | 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 | Reserved Reserved
14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 6.2.2, “TSS Descriptor”
(for more information on the system-segment descriptors); see Section 4.8.3, “Call Gates”,
Section 5.11, “IDT Descriptors”, and Section 6.2.5, “Task-Gate Descriptor” (for more infor-
mation on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriPtors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (2 3) 8-byte descriptors. There are two
kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
| ] ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables
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Each system must have one GDT defined, which may be used for all programs and tasks in the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base
linear address and limit of the GDT must be loaded into the GDTR register (see Section 2.4,
“Memory-Management Registers”). The base addresses of the GDT should be aligned on an
eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an
integral multiple of eight (that is, 8N — 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5, “System Descriptor Types”, information
on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4, “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is stored in memory (see top diagram in Figure 3-11). To avoid alignment check faults in user
mode (privilege level 3), the pseudo-descriptor should be located at an odd word address (that
is, address MOD 4 is equal to 2). This causes the processor to store an aligned word, followed
by an aligned doubleword. User-mode programs normally do not store pseudo-descriptors, but
the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register
using the SIDT instruction. When storing the LDTR or task register (using the SLTR or STR
instruction, respectively), the pseudo-descriptor should be located at a doubleword address (that
is, address MOD 4 is equal to 0).

47 16 15 0
| 32-bit Base Address ’ Limit |

79 16 15 0
| 64-bit Base Address ‘ Limit |

Figure 3-11. Pseudo-Descriptor Formats
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3.5.2  Segment Descriptor Tables in I1A-32e Mode

In 1A-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An
entry in the segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes
(occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding
pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 4.8.3.1, “lA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 5.14.1, “64-Bit Mode IDT”)
— LDT and TSS descriptors (see Section 6.2.3, “TSS Descriptor in 64-bit mode”).

3.6 PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, 1A-32 architecture permits linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is referred to as virtual memory or demand-paged virtual memory.

When paging is used, the processor divides the linear address space into fixed-size pages (of
4 KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into physical memory and/or
disk storage. When a program (or task) references a logical address in memory, the processor
translates the address into a linear address and then uses its paging mechanism to translate the
linear address into a corresponding physical address.

If the page containing the linear address is not currently in physical memory, the processor
generates a page-fault exception (#PF). The exception handler for the page-fault exception typi-
cally directs the operating system or executive to load the page from disk storage into physical
memory (perhaps writing a different page from physical memory out to disk in the process).
When the page has been loaded in physical memory, a return from the exception handler causes
the instruction that generated the exception to be restarted. The information that the processor
uses to map linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed size.
If segmentation is the only form of address translation used, a data structure present in physical
memory will have all of its parts in memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current
page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when
the TLBs do not contain a page-table entry, which typically happens when a page has not been
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accessed for a long time. See Section 3.12, “Translation Lookaside Buffers (TLBs)”, for more
information on the TLBs.

3.6.1 Paging Options
Paging is controlled by three flags in the processor’s control registers:

® PG (paging) flag. Bit 31 of CRO (available in all 1A-32 processors beginning with the
Intel386 processor).

® PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium processor).

® PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the Pentium Pro
processors).

The PG flag enables the page-translation mechanism. The operating system or executive usually
sets this flag during processor initialization. The PG flag must be set if the processor’s page-
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag
is set). When the PSE flag is clear, the more common page length of 4 KBytes is used. See
Section 3.7.2, “Linear Address Translation (4-MByte Pages)”, Section 3.8.3, “Linear Address
Translation With PAE Enabled (2-MByte Pages)”, and Section 3.9, “36-Bit Physical Addressing
Using the PSE-36 Paging Mechanism” for more information about the use of the PSE flag.

The PAE flag provides a method of extending physical addresses to 36 bits. This physical
address extension can only be used when paging is enabled. It relies on an additional page direc-
tory pointer table that is used along with page directories and page tables to reference physical
addresses above FFFFFFFFH. See Section 3.8, “36-Bit Physical Addressing Using the PAE
Paging Mechanism”, for more information about extending physical addresses using the PAE
flag.

When PAE is enabled and for processors that support Intel EM64T, the PAE mechanism is
enhanced to support more than 36 bits of physical addressing (if the processor’s implementation
supports more than 36 bits of physical addressing). This applies to 1A-32e mode address trans-
lation (see Section 3.10, “PAE-Enabled Paging in 1A-32e Mode”) and enhanced legacy PAE-
enabled address translation (see Section 3.8.1, “Enhanced Legacy PAE Paging”).

The 36-bit page size extension (PSE-36) feature provides an alternate method of extending
physical addressing to 36 bits. This paging mechanism uses the page size extension mode
(enabled with the PSE flag) and modified page directory entries to reference physical addresses
above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the EDX register when the CPUID
instruction is executed with a source operand of 1) indicates the availability of this addressing
mechanism. See Section 3.9, “36-Bit Physical Addressing Using the PSE-36 Paging Mecha-
nism”, for more information about the PSE-36 physical address extension and page size exten-
sion mechanism.
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3.6.2 Page Tables and Directories in the Absence of Intel EM64T

The information that the processor uses to translate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

® Page directory — An array of 32-bit page-directory entries (PDES) contained in a
4-KByte page. Up to 1024 page-directory entries can be held in a page directory.

® Page table — An array of 32-bit page-table entries (PTESs) contained in a 4-KByte page.
Up to 1024 page-table entries can be held in a page table. (Page tables are not used for
2-MByte or 4-MByte pages. These page sizes are mapped directly from one or more page-
directory entries.)

® Page — A 4-KByte, 2-MByte, or 4-MByte flat address space.

® Page-Directory-Pointer Table — An array of four 64-bit entries, each of which points to
a page directory. This data structure is only used when the physical address extension is
enabled (see Section 3.8, “36-Bit Physical Addressing Using the PAE Paging
Mechanism”).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte pages only when
extended (36-bit) physical addressing is being used.

Table 3-3 shows the page size and physical address size obtained from various settings of the
paging control flags and the PSE-36 CPUID feature flag. Each page-directory entry contains a
PS (page size) flag that specifies whether the entry points to a page table whose entries in turn
point to 4-KByte pages (PS set to 0) or whether the page-directory entry points directly to a
4-MByte (PSE and PS set to 1) or 2-MByte page (PAE and PS set to 1).

3.7 PAGE TRANSLATION USING 32-BIT PHYSICAL
ADDRESSING

The following sections describe the 1A-32 architecture’s page translation mechanism when using

32-bit physical addresses and a maximum physical address space of 4 GBytes. The 32-bit phys-

ical addressing described applies to 1A-32 processors that do not support Intel EM64T or when
the following situations are all true:

® The processor supports Intel EM64T but 1A-32e mode is not active.
® PAE or PSE mechanism is not active.

Section 3.8, “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9,
“36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” describe extensions to this
page translation mechanism to support 36-bit physical addresses and a maximum physical
address space of 64 GBytes.
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Table 3-3. Page Sizes and Physical Address Sizes

PG Flag, | PAEFlag, | PSEFlag, | PSFlag, | PSE-36 CPUID Physical Address
CRO CR4 CR4 PDE Feature Flag Page Size Size
0 X X X X — Paging Disabled
1 0 0 X X 4 KBytes 32 Bits
1 0 1 0 X 4 KBytes 32 Bits
1 0 1 1 0 4 MBytes 32 Bits
1 0 1 1 1 4 MBytes 36 Bits
1 1 X 0 X 4 KBytes 36 Bits
1 1 X 1 X 2 MBytes 36 Bits

3.7.1 Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220
pages, which spans a linear address space of 2% bytes (4 GBytes).

Linear Address
31 22 21 12 11 0

Directory Table Offset |

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory

Y

Page-Table Entry

20

Directory Entry >

L
>
L
>
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE * 1024 PTE = 220 pages

Figure 3-12. Linear Address Translation (4-KByte Pages)
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To select the various table entries, the linear address is divided into three sections:

® Page-directory entry — Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry — Bits 12 through 21 of the linear address provide an offset to an entry
in the selected page table. This entry provides the base physical address of a page in
physical memory.

® Page offset — Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.7.2 Linear Address Translation (4-MByte Pages)

Figure 3-13 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.

Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry 0 >

1024 PDE = 1024 Pages

L
y
L
>
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-13. Linear Address Translation (4-MByte Pages)

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections:

® Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.
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NOTE

(For the Pentium processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. See Section 10.9, “Invalidating the Translation Lookaside
Buffers (TLBs)”, for information on how to invalidate the TLBs.

3.7.3 Mixing 4-KByte and 4-MByte Pages

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system
performance.

The processor maintains 4-MByte page entries and 4-KByte page entries in separate TLBs. So,
placing often used code such as the kernel in a large page, frees up 4-KByte-page TLB entries
for application programs and tasks.

3.74 Memory Aliasing

The IA-32 architecture permits memory aliasing by allowing two page-directory entries to point
to acommon page-table entry. Software that needs to implement memory aliasing in this manner
must manage the consistency of the accessed and dirty bits in the page-directory and page-table
entries. Allowing the accessed and dirty bits for the two page-directory entries to become incon-
sistent may lead to a processor deadlock.

3.7.5 Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page directory base register or PDBR). (See Figure 2-6 and Section 2.5, “Control Registers”, for
more information on the PDBR.) If paging is to be used, the PDBR must be loaded as part of the
processor initialization process (prior to enabling paging). The PDBR can then be changed
either explicitly by loading a new value in CR3 with a MOV instruction or implicitly as part of
a task switch. (See Section 6.2.1, “Task-State Segment (TSS)”, for a description of how the
contents of the CR3 register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may be not-
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.
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3.7.6 Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-15 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages) — Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
) P|P|UIR

Page-Table Base Address Avail |G|Plola|c|w|/|/]|P
s D|T|s|wW

Available for system programmer’s use J
Global page (Ignored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page-Table Entry (4-KByte Page)

31 1211 9876543210
. P P|P|U[R

Page Base Address Avail |G|A|ID|A|C|W|/]|I]|P
T D|T|S|wW

Available for system programmer’s use J
Global Page

Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses
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(Page-directory entries for 4-KByte page tables) — Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages) — Specifies the physical address
of the first byte of a 4-MByte page. Only bits 22 through 31 of this field are
used (and bits 12 through 21 are reserved and must be set to 0, for 1A-32
processors through the Pentium Il processor). The base address bits are inter-
preted as the 10 most-significant bits of the physical address, which forces
4-MByte pages to be aligned on 4-MByte boundaries.

Page-Directory Entry (4-MByte Page)

31 22 21 131211 9876543210
P P[P|U|R

Page Base Address Reserved Al Avail. |[G|P|D|A|C|w|/|/]|P
T D|T|S|W

Available for system programmer’s use
Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

s
Page Table Attribute Inder

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system gener-
ally needs to carry out the following operations:

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other flags, such as the dirty and accessed flags, may also
be set at this time.
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3. Invalidate the current page-table entry in the TLB (see Section 3.12,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program (or
task).

Read/write (R/W) flag, bit 1

Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.
This flag interacts with the U/S flag and the WP flag in register CRO. See
Section 4.11, “Page-Level Protection”, and Table 4-3 for a detailed discussion
of the use of these flags.

User/supervisor (U/S) flag, bit 2

Specifies the user-supervisor privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag is
clear, the page is assigned the supervisor privilege level; when the flag is set,
the page is assigned the user privilege level. This flag interacts with the R/W
flag and the WP flag in register CRO. See Section 4.11, “Page-Level Protec-
tion”, and Table 4-3 for a detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3

Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
the CD (cache disable) flag in CRO is set. See Section 10.5, “Cache Control”,
for more information about the use of this flag. See Section 2.5, “Control
Registers”, for a description of a companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4

Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
disabled for pages that contain memory-mapped I/O ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumes it is set) if the CD (cache disable) flag in CRO is set. See Chapter 10,
“Memory Cache Control”, for more information about the use of this flag. See
Section 2.5, “Control Registers”, for a description of a companion PCD flag in
control register CR3.

Accessed (A) flag, bit 5
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This flag is a “sticky” flag, meaning that once set, the processor does not
implicitly clear it. Only software can clear this flag. The accessed and dirty
flags are provided for use by memory management software to manage the
transfer of pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be
exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being used for
page table structures, the setting of the bit may or may not result in an imme-
diate change to the executing code stream.

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries that point to page tables.) Memory management soft-
ware typically clears this flag when a page is initially loaded into physical
memory. The processor then sets this flag the first time a page is accessed for
a write operation.

This flag is “sticky,” meaning that once set, the processor does not implicitly
clear it. Only software can clear this flag. The dirty and accessed flags are
provided for use by memory management software to manage the transfer of
pages and page tables into and out of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be
exposed to the processor’s Self-Modifying Code detection logic. If the
processor is executing code from the same memory area that is being used for
page table structures, the setting of the bit may or may not result in an imme-
diate change to the executing code stream.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages
Determines the page size. When this flag is clear, the page size is 4 KBytes and
the page-directory entry points to a page table. When the flag is set, the page
size is 4 MBytes for normal 32-bit addressing (and 2 MBytes if extended phys-
ical addressing is enabled) and the page-directory entry points to a page. If the
page-directory entry points to a page table, all the pages associated with that
page table will be 4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte pages and
bit 12 in page-directory entries for 4-MByte pages
(Introduced in the Pentium 111 processor) — Selects PAT entry. For processors
that support the page attribute table (PAT), this flag is used along with the
PCD and PWT flags to select an entry in the PAT, which in turn selects the
memory type for the page (see Section 10.12, “Page Attribute Table (PAT)”).
For processors that do not support the PAT, this bit is reserved and should be
setto 0.

Global (G) flag, bit 8
(Introduced in the Pentium Pro processor) — Indicates a global page when set.
When a page is marked global and the page global enable (PGE) flag in register
CRA4 is set, the page-table or page-directory entry for the page is not invalidated
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in the TLB when register CR3 is loaded or a task switch occurs. This flag is
provided to prevent frequently used pages (such as pages that contain kernel or
other operating system or executive code) from being flushed from the TLB.
Only software can set or clear this flag. For page-directory entries that point to
page tables, this flag is ignored and the global characteristics of a page are set
in the page-table entries. See Section 3.12, “Translation Lookaside Buffers
(TLBs)”, for more information about the use of this flag. (This bit is reserved
in Pentium and earlier 1A-32 processors.)

Reserved and available-to-software bits
For all 1A-32 processors. Bits 9, 10, and 11 are available for use by software.
(When the present bit is clear, bits 1 through 31 are available to software, see
Figure 3-16.) In a page-directory entry that points to a page table, bit 6 is
reserved and should be set to 0. When the PSE and PAE flags in control register
CRA4 are set, the processor generates a page fault if reserved bits are not set to 0.

For Pentium Il and earlier processors. Bit 7 in a page-table entry is reserved and
should be set to 0. For a page-directory entry for a 4-MByte page, bits 12
through 21 are reserved and must be set to 0.

For Pentium Il and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.

3.7.7 Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (see Figure 3-16).

31 0

Available to Operating System or Executive ‘ 0‘

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.8 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING
MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were introduced into the
IA-32 architecture in the Pentium Pro processors. Implementation of this feature in an 1A-32
processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register when the source
operand for the CPUID instruction is 2). The physical address extension (PAE) flag in register
CRA4 enables the PAE mechanism and extends physical addresses from 32 bits to 36 bits. Here,
the processor provides 4 additional address line pins to accommodate the additional address bits.
To use this option, the following flags must be set:

® PG flag (bit 31) in control register CRO—Enables paging
® PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.
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When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or
a page table that in turn points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

® The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

® A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

® The 20-bit page-directory base address field in register CR3 (PDBR) is replaced with a
27-bit page-directory-pointer-table base address field. The updated field provides the 27
most-significant bits of the physical address of the first byte of the page-directory pointer
table (forcing the table to be located on a 32-byte boundary).

Since CR3 now contains the page-directory-pointer-table base address, it can be referred to
as the page-directory-pointer-table register (PDPTR). See Figure 3-17.

® Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.

31 0
. . plp
Page-Directory-Pointer-Table Base Address cD: \4/ 0|0|0

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

3.8.1 Enhanced Legacy PAE Paging

On processors that support Intel EM64T, the page directory pointer entry supports physical
address size of the underlying implementation (reported by CPUID.80000008H). Legacy PAE
enabled paging (see Section 3.8.2, “Linear Address Translation With PAE Enabled (4-KByte
Pages)” and Section 3.8.3, “Linear Address Translation With PAE Enabled (2-MByte Pages)”
can address physical memory greater than 64-GByte if the implementation’s physical address
size is greater than 36 bits and if the processor supports Intel EM64T.

3.8.2 Linear Address Translation With PAE Enabled (4-KByte
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hierarchy when

mapping linear addresses to 4-KByte pages when the PAE paging mechanism enabled. This

paging method can be used to address up to 22° pages, which spans a linear address space of 232
bytes (4 GBytes).
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To select the various table entries, the linear address is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

® Page offset—Bits 0 through 11 provide an offset to a physical address in the page.

Linear Address
31 30 29 21 20 12 11 0

Directory Pointer »| ‘ Directory Table Offset

‘ 12 4-KByte Page

Page Table Physical Address

Page Directory 9
9 Page-Table Entry >

Y

»| Directory Entry

Page-Directory-
Pointer Table

—> | Dir. Pointer Entry
-

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

*

32
CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary

Figure 3-18. Linear Address Translation With PAE Enabled (4-KByte Pages)

3.8.3 Linear Address Translation With PAE Enabled (2-MByte
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be used to map

linear addresses to 2-MByte pages when the PAE paging mechanism enabled. This paging

method can be used to map up to 2048 pages (4 page-directory-pointer-table entries times 512
page-directory entries) into a 4-GByte linear address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) flag in a
page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag in control register
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CR4 has no affect on the page size when PAE is enabled.) With the PS flag set, the linear address
is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page.

® Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

Linear Address
31 30 29 21 20 0

Directory :
Pointer —>| ‘ Directory Offset

21 2-MByte Page

Page Directory Physical Address

Page-Directory-
Pointer Table

2
| Directory Entry 3 >
»| Dir. Pointer Entry ——>»
—>
30% 4 PDPTE = 512 PDE = 2048 Pages

CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With PAE Enabled (2-MByte Pages)

3.8.4  Accessing the Full Extended Physical Address Space
With the Extended Page-Table Structure
The page-table structure described in the previous two sections allows up to 4 GBytes of

the 64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

® Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

® Change entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.
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3.8.5 Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and

page-table entries when 4-KByte pages and 36-bit extended physical addresses are being

used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory

entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func-

tions of the flags in these entries are the same as described in Section 3.7.6, “Page-Directory and
Page-Table Entries”. The major differences in these entries are as follows:

® A page-directory-pointer-table entry is added.

® The size of the entries are increased from 32 bits to 64 bits.

® The maximum number of entries in a page directory or page table is 512.
® The base physical address field in each entry is extended to 24 bits.

NOTE

Older 1A-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. More recent 1A-32 processors may
cache page-directory-pointer table entries.
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Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) ﬁgﬁf

31 1211 9 8 543210

Page-Directory Base Address Avail | Reserved E:F; \Zv Res.|P

Page-Directory Entry (4-KByte Page Table)

63 36 35 32
Base
Reserved (set to 0) Adar.

31 1211 9876543210
PIP[UIR

Page-Table Base Address Avail [o|o|0|A|C|W|/|/]|P
D|T|S|W

Page-Table Entry (4-KByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
P P|PlUIR

Page Base Address Avail |G|A|D|A|C|W|/|1|P
T D|T|S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled
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Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) igﬁf_

31 1211 98 543210

Page Directory Base Address Avail. | Reserved (E \Zv Res.| P

Page-Directory Entry (2-MByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 21 20 131211 9876543210
P . P[P[U[R

Page Base Address | Reserved (setto 0) |A| Avail. |[G|1|D|A|C[W|/|/|P
T D|T|s|W

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries
for 2-MByte Pages with PAE Enabled

The base physical address in an entry specifies the following, depending on the type of entry:

® Page-directory-pointer-table entry — the physical address of the first byte of a
4-KByte page directory.

® Page-directory entry — the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

® Page-table entry — the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KByte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 or 1. If the
present flag is clear, the remaining bits in the page-directory-pointer-table entry are available to
the operating system. If the present flag is set, the fields of the page-directory-pointer-table entry
are defined in Figures 3-20 for 4-KByte pages and Figures 3-21 for 2-MByte pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.

3-36 Vol. 3A



PROTECTED-MODE MEMORY MANAGEMENT

Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present flag is clear, bits 1 through 63 are available to software.) All bits
in Figure 3-14 that are marked reserved or 0 should be set to 0 by software and not accessed by
software. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and it generates a general-protection exception (#GP) if reserved bits in a page-directory-
pointer-table entry are not set to 0.

3.9 36-BIT PHYSICAL ADDRESSING USING THE PSE-36
PAGING MECHANISM

The PSE-36 paging mechanism provides an alternate method (from the PAE mechanism) of
extending physical memory addressing to 36 bits. This mechanism uses the page size extension
(PSE) mode and a modified page-directory table to map 4-MByte pages into a 64-GByte phys-
ical address space. As with the PAE mechanism, the processor provides 4 additional address line
pins to accommodate the additional address bits.

The PSE-36 mechanism was introduced into the 1A-32 architecture with the Pentium Il proces-
sors. The availability of this feature is indicated with the PSE-36 feature bit (bit 17 of the EDX
register when the CPUID instruction is executed with a source operand of 1).

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-36 paging
mechanism:

® PSE-36 CPUID feature flag — When set, it indicates the availability of the PSE-36
paging mechanism on the 1A-32 processor on which the CPUID instruction is executed.

®* PG flag (bit 31) in register CRO — Set to 1 to enable paging.

® PAE flag (bit 5) in control register CR4 — Clear to 0 to disable the PAE paging
mechanism.

® PSE flag (bit 4) in control register CR4 and the PS flag in PDE — Set to 1 to enable the
page size extension for 4-MByte pages.

® Or the PSE flag (bit 4) in control register CR4 — Set to 1 and the PS flag (bit 7) in
PDE— Set to 0 to enable 4-KByte pages with 32-bit addressing (below 4 GBytes).

Figure 3-22 shows how the expanded page directory entry can be used to map a 32-bit linear
address to a 36-bit physical address. Here, the linear address is divided into two sections:

® Page directory entry — Bits 22 through 35 provide an offset to an entry in the page
directory. The selected entry provides the 14 most significant bits of a 36-bit address,
which locates the base physical address of a 4-MByte page.

® Page offset — Bits 0 through 21 provides an offset to a physical address in the page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical address
space.
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Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry 12 >

1024 PDE = 1024 Pages

L.
?
L
y o
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-22. Linear Address Translation (4-MByte Pages)

Figure 3-23 shows the format for the page-directory entries when 4-MByte pages and 36-bit
physical addresses are being used. Section 3.7.6, “Page-Directory and Page-Table Entries”
describes the functions of the flags and fields in bits 0 through 11.

Page-Directory Entry (4-MByte Page)

31 22 21 1716 131211 9876543210
Page Base Address P PIPIUIR

~ Reserved Al Avail. |[c|P|p|alc|w|/|/|P
(Bits 22 Through 31) T S D|T|s|w

Page Base Address (Bits 32 Through 35) J
Page Attribute Table Index
Available for system programmer’s use
Global page
Page size (must be set to 1)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Figure 3-23. Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses
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3.10 PAE-ENABLED PAGING IN IA-32E MODE

Intel EM64T 64-bit extensions expand physical address extension (PAE) paging structures to
potentially support mapping a 64-bit linear address to a 52-bit physical address. In the first
implementation of Intel EM64T, PAE paging structures support translation of a 48-bit linear
address into a 40-bit physical address.

When IA-32e mode is enabled, linear address to physical address translation is different than in
PAE-enabled protected mode. Address translation from a linear address to a physical address
uses up to four levels of paging data structures. A new page mapping table, the page map level
4 table (PMLA4 table), is added on top of the page director pointer table.

Prior to activating 1A-32e mode, PAE must be enabled by setting CR4.PAE = 1. PAE expands
the size of page-directory entries (PDE) and page-table entries (PTE) from 32 bits to 64 bits.
This change is made to support physical-address sizes of greater than 32 bits. An attempt to acti-
vate 1A-32e mode prior to enabling PAE results in a general-protection exception, #GP.

PMLA4 tables are used in page translation only in 1A-32e mode. They are not used when 1A-32e
mode is disabled, whether or not PAE is enabled. The existing page-directory pointer table is
expanded to 512 eight-byte entries from four entries. As a result, nine bits of the linear address
are used to index into a PDP table rather than two bits. The size of the page-directory entry
(PDE) table and page-table entry (PTE) table remains 512 eight-byte entries, each indexed by
nine linear-address bits. The total of linear-address index bits into the collection of paging data
structures (PML4 + PDP + PDE + PTE + page offset) becomes 48. The method for translating
the high-order 16 linear-address bits into a physical address is currently reserved.

The PS flag in the page directory entry (PDE.PS) selects between 4-KByte and 2-MByte page
sizes. Because PDE.PS is used to control large page selection, the CR4.PSE bit is ignored.

3.10.1 IA-32e Mode Linear Address Translation (4-KByte Pages)

Figure 3-24 shows the PML4, page-directory-pointer, page-directory, and page-table hierarchy
when mapping linear addresses to 4-KByte pages in 1A-32e mode. This paging method can be
used to address up to 236 pages, which spans a linear address space of 2% bytes.

To select the various table entries, linear addresses are divided into five sections:

® PMLA4-table entry — Bits 47:39 provide an offset to an entry in the PML4 table. The
selected entry provides the base physical address of a page directory pointer table.

® Page-directory-pointer-table entry — Bits 38:30 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory table.

® Page-directory entry — Bits 29:21 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry — Bits 20:12 provide an offset to an entry in the selected page table.
This entry provides the base physical address of a page in physical memory.

® Page offset — Bits 11:0 provide an offset to a physical address in the page.
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Linear Address

63 4847 39 38 3029 2120 12 11 0
| Sign Extended | PML4 | Directory Ptr | Directory | Table | Offset
‘ 9 9
9 12 4-KByte Page

Physical Addr

—»r Page-Table Entry 7L>
28

Page-Directory- Directory Entry}—
Pointer Table Page Table

j Page-Directory

‘> Dir. Pointer Entry

A

512 PML4 *512 PDPTE * 512 PDE * 512 PTE = 2% Pages

Y

PML4 Entry

1

40
CR3 (PML4)

NOTES:
1. 40 bits aligned onto a 4-KByte boundary

Figure 3-24. |A-32e Mode Paging Structures (4-KByte Pages)

3.10.2 IA-32e Mode Linear Address Translation (2-MByte Pages)

Figure 3-25 shows the PML4 table, page-directory-pointer, and page-directory hierarchy when
mapping linear addresses to 2-MByte pages in 1A-32e mode. This method can be used to address
up to 22’ pages, which spans a linear address space of 28 bytes.

The 2-MByte page size is selected by setting the page size (PS) flag in a page-directory entry
(see Figure 3-14). The PSE flag in control register CR4 has no affect on the page size when PAE
is enabled. With the PS flag set, a linear address is divided into four sections:

® PMLA4-table entry — Bits 47:39 provide an offset to an entry in the PML4 table. The
selected entry provides the base physical address of a page directory pointer table.

® Page-directory-pointer-table entry — Bits 38:30 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.
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® Page-directory entry — Bits 29:21 provide an offset to an entry in the page directory. The
selected entry provides the base physical address of a 2-MByte page.

® Page offset — Bits 20:0 provides an offset to a physical address in the page.

Linear Address
63 48 47 39 38 3029 2120 0
| Sign Extended ‘ PML4 ‘ Directory Ptr | Directory Offset

‘ 9 21

9

2-MByte Page

Physical Addr

\

Page-Directory- Directory Entry
Pointer Table 19

T Page-Directory
> Dir. Pointer Entry

A

512 PML4 *512 PDPTE * 512 PDE = 2?7 Pages

»| PML4 Entry

—

1

40
CR3 (PML4)

NOTE:
1. 40 bits aligned onto a 4-KByte boundary

Figure 3-25. IA-32e Mode Paging Structures (2-MByte pages)

3.10.3 Enhanced Paging Data Structures

Figure 3-26 shows the format for the PML4 table, page-directory-pointer table, page-direc-
tory and page-table entries when 4-KByte pages are used in 1A-32e mode. Figure 3-27
shows the format for the PMLA4 table, the page-directory-pointer table and page-directory
entries when 2-MByte pages are used in |A-32e mode.

Except for the PML4 table, these enhanced formats of page-directory-pointer table, page-
directory, and page-table entries are also used in enhanced legacy PAE-enabled paging on
processors that supports Intel EM64T (see Section 3.8.1, “Enhanced Legacy PAE Paging”).
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Page-Map-Level-4-Table Entry

6362 51 39 32
E

i Base
é Avail Reserved (set to 0) Adar.

31 1211 98 6543210
plP[ulr

PML4 Base Address Avail | Rsvd. |A[C|W|/|/]|P
D|T|s|w

Page-Directory-Pointer-Table Entry

63 62 51 39 32
E

Avail Base
)é val Reserved (set to 0) Addr.

31 1211 98 6543210
) P[P|U[R

Page-Directory Base Address Avail | Rsvd | AlC|W|/|/]|P
D|T|S|W

Page-Directory Entry (4-KByte Page Table)

63 62 51 39 32
E
Avail Base
é vai Reserved (set to 0) Addr.
31 1211 9876543210
PIP|U|R
Page-Table Base Address Avail 0o |A|lCW|/]|/|P
D|T|s|W

Page-Table Entry (4-KByte Page)

63 62 51 39 32
E
i Base
>B< Avail Reserved (set to 0) Adds
31 1211 9876543210
P P|P|U[R
Page Base Address Avail |G|A|D|A|C|W|/|/|P
T D|T|S|W

Figure 3-26. Format of Paging Structure Entries for 4-KByte Pages in 1A-32e Mode

Except for bit 63, functions of the flags in these entries are as described in Section 3.7.6, “Page-
Directory and Page-Table Entries”. The differences are:

A PMLA4 table entry and a page-directory-pointer-table entry are added.
Entries are increased from 32 bits to 64 bits.
The maximum number of entries in a page directory, page table, or PML4 table is 512.

The P, R/W, U/S, PWT, PCD, and A flags are implemented uniformly across all four
levels.
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® The base physical address field in each entry is extended to 28 bits if the processor’s
implementation supports a 40-bit physical address.

® Bits 62:52 are available for use by system programmers.

® Bit 63 is the execute-disable bit if the execute-disable bit feature is supported in the
processor. If the feature is not supported, bit 63 is reserved. The functionality of the
execute disable bit is described in Section 4.11, “Page-Level Protection”. It requires both
PAE and enhanced paging data structures. Note that the execute disable bit can provide
page protection in 32-bit PAE mode and 1A-32e mode.

Page-Map-Level-4-Table Entry

63 62 51 39 32
E

) Base
>B< Avail Reserved (set to 0) Addr

31 1211 9 8 6 543210
PlPlU|R

PML4 Base Address Avail | Rsvd. |A(C|W| /| /]|P
D|T|s|w

Page-Directory-Pointer-Table Entry

63 62 51 39 32
E

' Base
é Avail Reserved (set to 0) Addr

31 1211 9 8 6543210
) PIP[U|R

Page-Directory Base Address Avail | Rsvd | AlC(W|/|/|P
D|T|S|W

Page-Directory Entry (2-MByte Page)

63 62 52 51 39 32
E ] Page Base
X Avail Reserved (set to 0) Adgr,
31 21 20 131211 9876 543210
p PlPlU|R
Page Base Address | Reserved (set to 0) /}r Avail |G|1|D|A g W/ |/|P
T|s|w

Figure 3-27. Format of Paging Structure Entries for 2-MByte Pages in 1A-32e Mode

3.10.3.1 Reserved Bit Checking

On processors supporting Intel EM64T and/or supporting the execute disable bit, the processor
will enforce reserved bit checking on paging mode specific bits.

Table 3-4 shows the reserved bits that are checked on IA-32 processors that support Intel
EMG64T and when execute disable bit is either disabled or not supported. The 32-bit mode
behavior in Table 3-4 also applies to 1A-32 processors that the support execute-disable bit but
not Intel EM64T.
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If the execute disable bit is enabled in an 1A-32 processor, the reserved bits in paging data struc-

tures for legacy 32-bit mode and 64-bit mode are shown in Table 3-5.

Table 3-4. Reserved Bit Checking When Execute Disable Bit is Disabled

Mode Paging Mode Paging Structure Check Bits
32-bit 4-KByte pages (PAE = 0, PSE = 0) | PDE and PT No reserved bits checked
4-MByte page (PAE =0, PSE=1) | PDE Bit [21]
4-KByte page (PAE =0, PSE=1) | PDE No reserved bits checked
4-KByte and 4-MByte page (PAE = | PTE No reserved bits checked
0, PSE=1)
4-KByte and 2-MByte pages (PAE | PDP table entry Bits [63:40] & [8:5] & [2:1]
=1, PSE = x)
2-MByte page (PAE = 1, PSE =x) PDE Bits [63:40] & [20:13]
4-KByte pages (PAE =1, PSE =x) | PDE Bits [63:40]
4-KByte and 2-MByte pages (PAE | PTE Bits [63:40]
=1, PSE = x)
64-bit 4-KByte and 2-MByte pages (PAE | PML4E Bit [63], bits [51:40]
=1, PSE = x)
4-KByte and 2-MByte pages (PAE | PDPTE Bit [63], bits [51:40]
=1, PSE = x)
2-MByte page (PAE =1, PSE = x) PDE, 2-MByte page | Bit [63], bits [51:40] & [20:13]
4-KByte pages (PAE =1, PSE = x) | PDE, 4-KByte page | Bit [63], bits [51:40]
4-KByte and 2-MByte pages (PAE | PTE Bit [63], bits [51:40]
=1,PSE =x)
Table 3-5. Reserved Bit Checking When Execute Disable Bit is Enabled
Mode Paging Mode Paging Structure Check Bits
32-bit (;JS—KByte pages (PAE =0, PSE = PDE and PT No reserved bits checked
4-MByte page (PAE =0, PSE =1) | PDE Bit [21]
4-KByte page (PAE =0, PSE=1) | PDE No reserved bits checked
4-KByte and 4-MByte page (PAE= | PTE No reserved bits checked

0, PSE=1)

4-KByte and 2-MByte pages (PAE
=1, PSE =x)

PDP table entry

Bits [63:40] & [8:5] & [2:1]

=1, PSE =)

2-MByte page (PAE =1, PSE =x) | PDE Bits [63:40] & [20:13]
4-KByte pages (PAE = 1, PSE = x) | PDE Bits [63:40]
4-KByte and 2-MByte pages (PAE | PTE Bits [63:40]
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Table 3-5. Reserved Bit Checking When Execute Disable Bit is Enabled (Contd.)

Mode Paging Mode Paging Structure Check Bits

64-bit 4-KByte and 2-MByte pages (PAE | PML4E Bit [63], bits [51:40]
=1,PSE=x)
4-KByte and 2-MByte pages (PAE | PDPTE Bit [63], bits [51:40]
=1,PSE=X)

2-MByte page (PAE = 1, PSE = x) | PDE, 2-MByte page Bit [63], bits [51:40] & [20:13]

4-KByte pages (PAE =1, PSE = x) | PDE, 4-KByte page Bit [63], bits [51:40]

4-KByte and 2-MByte pages (PAE | PTE Bit [63], bits [51:40]
=1,PSE=x)

NOTE:
X = Bit does not impact behavior.

3.11 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the 1A-32 architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The 1A-32 architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware is to give each segment its own page table, as shown in Figure 3-28. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.
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Page Frames

LDT Page Directory Page s >
PTE —
PTE >
PTE -
Seg. Descript.[—> PDE 4|—>
Seg. Descript.[—> PDE >
PTE | =

PTE —‘

Figure 3-28. Memory Management Convention That Assigns a Page Table
to Each Segment

3.12 TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The P6 family and Pentium processors have
separate TLBs for the data and instruction caches. Also, the P6 family processors maintain sepa-
rate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to deter-
mine the sizes of the TLBs provided in the P6 family and Pentium processors.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the translation infor-
mation for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only, operating system or executive procedures running at priv-
ilege level of 0 can invalidate TLBs or selected TLB entries. Whenever a page-directory or
page-table entry is changed (including when the present flag is set to zero), the operating-system
must immediately invalidate the corresponding entry in the TLB so that it can be updated the
next time the entry is referenced.

All of the (non-global) TLBs are automatically invalidated any time the CR3 register is loaded
(unless the G flag for a page or page-table entry is set, as describe later in this section). The CR3
register can be loaded in either of two ways:

® Explicitly, using the MOV instruction, for example:
MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.
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* Implicitly by executing a task switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
Normally, this instruction invalidates only an individual TLB entry; however, in some cases, it
may invalidate more than the selected entry and may even invalidate all of the TLBs. This
instruction ignores the setting of the G flag in a page-directory or page-table entry (see following
paragraph).

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in register CR4
and the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequently used pages from being automatically invalidated in the TLBs on a task switch or a
load of register CR3. (See Section 3.7.6, “Page-Directory and Page-Table Entries”, for more
information about the global flag.) When the processor loads a page-directory or page-table
entry for a global page into a TLB, the entry will remain in the TLB indefinitely. The only ways
to deterministically invalidate global page entries are as follows:

® Clear the PGE flag; this will invalidate the TLBs.

® Execute the INVLPG instruction to invalidate individual page-directory or page-table
entries in the TLBs.

For additional information about invalidation of the TLBs, see Section 10.9, “Invalidating the
Translation Lookaside Buffers (TLBs)".
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CHAPTER 4
PROTECTION

In protected mode, the IA-32 architecture provides a protection mechanism that operates at both
the segment level and the page level. This protection mechanism provides the ability to limit
access to certain segments or pages based on privilege levels (four privilege levels for segments
and two privilege levels for pages). For example, critical operating-system code and data can be
protected by placing them in more privileged segments than those that contain applications
code. The processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local-
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it
satisfies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla-
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

® Limit checks.

®  Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, “Interrupt and
Exception Handling,” for an explanation of the exception mechanism. This chapter describes the
protection mechanism and the violations which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See
Chapter 15, “8086 Emulation,” for information on protection in real-address and virtual-8086
mode.

4.1 ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enables the segment-protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment-protection mechanism

Vol. 3A 4-1



PROTECTION

that is based on privilege levels can essentially be disabled while still in protected mode by
assigning a privilege level of 0 (most privileged) to all segment selectors and segment descrip-
tors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag
in register CRO). Here again there is no mode bit for turning off page-level protection once
paging is enabled. However, page-level protection can be disabled by performing the following
operations:

® Clear the WP flag in control register CRO.

® Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data
structures to control access to segments and pages:

® Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for a system segment or a code or data segment.

® Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.)
Determines the type of code, data, or system segment.

® Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 of the
second doubleword of a segment descriptor.) Determines the size of the segment, along
with the G flag and E flag (for data segments).

® G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size
of the segment, along with the limit field and E flag (for data segments).

®* E flag— (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the
size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a
segment descriptor.) Determines the privilege level of the segment.

® Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies
the requested privilege level of a segment selector.

® Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates
the privilege level of the currently executing program or procedure. The term current
privilege level (CPL) refers to the setting of this field.

® User/supervisor (U/S) flag — (Bit 2 of a page-directory or page-table entry.) Determines
the type of page: user or supervisor.
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®* Read/write (R/W) flag — (Bit 1 of a page-directory or page-table entry.) Determines the
type of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and system-
segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field in a segment
selector (or the CS register); and Figure 3-14 shows the location of the U/S and R/W flags in the
page-directory and page-table entries.

Data-Segment Descriptor

31 242322212019 16 1514 13 12 11 8 7 0
A imi D Type
Base 31:24 G|B|0O|V 1"6”1'% Pl P P Base 23:16 4
L : L |10 ‘ E ’W‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322212019 16 1514 1312 11 8 7 0
A i D Type
Base 31:24 G|D|0O|V ll‘énl'é Pl P P Base 23:16 4
L : L o[1|1 ‘ c ’ R ‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
Base 31:24 G 0 Limit | B 0| Type Base 23:16 4
’ 19:16 L )
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer's G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

|:| Reserved

Figure 4-1. Descriptor Fields Used for Protection
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Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli-
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.

42.1 Code Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calculations, the
segment base is treated as zero. Some code-segment (CS) descriptor content (the base address
and limit fields) is ignored; the remaining fields function normally (except for the readable bit
in the type field).

Code segment descriptors and selectors are needed in 1A-32e mode to establish the processor’s
operating mode and execution privilege-level. The usage is as follows:

® ]A-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the
64-bit (L) flag and is used to select between 64-bit mode and compatibility mode when
1A-32e mode is active (IA32_EFER.LMA = 1). See Figure 4-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compatibility mode.
In this case, CS.D selects the default size for data and addresses. If CS.D = 0, the
default data and address size is 16 bits. If CS.D = 1, the default data and address size is
32 bits.

— If CS.L =1 and IA-32e mode is active, the only valid setting is CS.D = 0. This setting
indicates a default operand size of 32 bits and a default address size of 64 bits. The
CS.L=1and CS.D =1 bit combination is reserved for future use and a #GP fault will
be generated on an attempt to use a code segment with these bits set in 1A-32e mode.

® In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in
legacy 32-bit mode).
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Code-Segment Descriptor

31 242322212019 1615141312 11 8 7 0

GDLC P E Type 4
L L 1‘C‘R‘A

[iN

31 0

A Accessed

AVL Available to Sys. Programmer’s G Granularity
C Conforming R Readable
D Default P Present

DPL Descriptor Privilege Level
L 64-Bit Flag

Figure 4-2. Descriptor Fields with Flags used in I1A-32e Mode

4.3 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (see Figure 4-1). For data segments, the limit also depends on the
E (expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The
E flag is one of the bits in the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
212 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH
(4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset
(address) are not checked against the limit; for example, note that if the segment limit is 0,
offsets O through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last
address that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of the segment. The processor causes a general-protection exception any time an attempt is made
to access the following addresses in a segment:

® A byte at an offset greater than the effective limit

®* A word at an offset greater than the (effective-limit — 1)

®* A doubleword at an offset greater than the (effective-limit — 3)
®* A quadword at an offset greater than the (effective-limit — 7)
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For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the effective limit specifies the last address that is not allowed to be accessed
within the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the
B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, “Segment
Descriptor Tables,” for more information on the GDT and LDT limit fields; see Section 5.10,
“Interrupt Descriptor Table (IDT),” for more information on the IDT limit field; and see Section
6.2.4, “Task Register,” for more information on the TSS segment limit field.

43.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or data segments.
However, the processor does check descriptor-table limits.

4.4 TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.

® The type field.

The processor uses this information to detect programming errors that result in an attempt to use
a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field
provides 4 additional bits for use in defining various types of code, data, and system descriptors.
Table 3-1 shows the encoding of the type field for code and data descriptors; Table 3-2 shows
the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed (this list is not exhaustive):
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When a segment selector is loaded into a segment register — Certain segment registers
can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
When a segment selector is loaded into the LDTR or task register — For example:
— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

When instructions access segments whose descriptors are already loaded into
segment registers — Certain segments can be used by instructions only in certain
predefined ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

When an instruction operand contains a segment selector — Certain instructions can
access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or jump to
another code segment, a call or jump through a gate, or a task switch) by checking the
type field in the segment (or gate) descriptor pointed to by the segment (or gate)
selector given as an operand in the CALL or JMP instruction. If the descriptor type is
for a code segment or call gate, a call or jump to another code segment is indicated; if
the descriptor type is for a TSS or task gate, a task switch is indicated.
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— On a call or jump through a call gate (or on an interrupt- or exception-handler call
through a trap or interrupt gate), the processor automatically checks that the segment
descriptor being pointed to by the gate is for a code segment.

— On acall or jump to a new task through a task gate (or on an interrupt- or exception-
handler call to a new task through a task gate), the processor automatically checks that
the segment descriptor being pointed to by the task gate is for a TSS.

— Onacall or jump to a new task by a direct reference to a TSS, the processor automati-
cally checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks
that the previous task link field in the current TSS points to a TSS.

4.4.1  Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) into the CS
or SS segment register generates a general-protection exception (#GP). A null segment selector
can be loaded into the DS, ES, FS, or GS register, but any attempt to access a segment through
one of these registers when it is loaded with a null segment selector results in a #GP exception
being generated. Loading unused data-segment registers with a null segment selector is a useful
method of detecting accesses to unused segment registers and/or preventing unwanted accesses
to data segments.

44.1.1 NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors.
The processor does not cause a #GP fault when an attempt is made to access memory where the
referenced segment register has a NULL segment selector.

45 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-3 shows how these levels of privilege
can be interpreted as rings of protection.

The center (reserved for the most privileged code, data, and stacks) is used for the segments
containing the critical software, usually the kernel of an operating system. Outer rings are used
for less critical software. (Systems that use only 2 of the 4 possible privilege levels should use
levels 0 and 3.)
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Figure 4-3. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

Current privilege level (CPL) — The CPL is the privilege level of the currently
executing program or task. It is stored in bits 0 and 1 of the CS and SS segment registers.
Normally, the CPL is equal to the privilege level of the code segment from which instruc-
tions are being fetched. The processor changes the CPL when program control is
transferred to a code segment with a different privilege level. The CPL is treated slightly
differently when accessing conforming code segments. Conforming code segments can be
accessed from any privilege level that is equal to or numerically greater (less privileged)
than the DPL of the conforming code segment. Also, the CPL is not changed when the
processor accesses a conforming code segment that has a different privilege level than the
CPL.

Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate.
It is stored in the DPL field of the segment or gate descriptor for the segment or gate.
When the currently executing code segment attempts to access a segment or gate, the DPL
of the segment or gate is compared to the CPL and RPL of the segment or gate selector (as
described later in this section). The DPL is interpreted differently, depending on the type of
segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a
program or task can have to be allowed to access the segment. For example, if the DPL
of a data segment is 1, only programs running at a CPL of O or 1 can access the
segment.
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— Nonconforming code segment (without using a call gate) — The DPL indicates the
privilege level that a program or task must be at to access the segment. For example, if
the DPL of a nonconforming code segment is 0, only programs running at a CPL of 0
can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the call gate.
(This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment accessed through a
call gate — The DPL indicates the numerically lowest privilege level that a program
or task can have to be allowed to access the segment. For example, if the DPL of a
conforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
segment.

— TSS — The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the TSS. (This is the
same access rule as for a data segment.)

® Requested privilege level (RPL) — The RPL is an override privilege level that is
assigned to segment selectors. It is stored in bits 0 and 1 of the segment selector. The
processor checks the RPL along with the CPL to determine if access to a segment is
allowed. Even if the program or task requesting access to a segment has sufficient privilege
to access the segment, access is denied if the RPL is not of sufficient privilege level. That
is, if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides
the CPL, and vice versa. The RPL can be used to insure that privileged code does not
access a segment on behalf of an application program unless the program itself has access
privileges for that segment. See Section 4.10.4, “Checking Caller Access Privileges
(ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.
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4.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA
SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded
into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).
(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions.) Before the processor loads a segment selector into a segment register, it performs a priv-
ilege check (see Figure 4-4) by comparing the privilege levels of the currently running program
or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is
numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-protection
fault is generated and the segment register is not loaded.

CS Register

CPL

Segment Selector
For Data Segment

RPL

Y

Data-Segment Descriptor »| Privilege
Check

Y

DPL

Figure 4-4. Privilege Check for Data Access

Figure 4-5 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector
E1, because the CPL of code segment A and the RPL of segment selector E1 are equal to
the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment B and the RPL of segment selector E2 are both
numerically lower than (more privileged) than the DPL of data segment E. A code segment
B procedure can also access data segment E using segment selector E1.

3. The procedure in code segment C is not able to access data segment E using segment
selector E3 (dotted line), because the CPL of code segment C and the RPL of segment
selector E3 are both numerically greater than (less privileged) than the DPL of data
segment E. Even if a code segment C procedure were to use segment selector E1 or E2,
such that the RPL would be acceptable, it still could not access data segment E because its
CPL is not privileged enough.
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4. The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
of segment selector E3 (which the code segment D procedure is using to access data
segment E) is numerically greater than the DPL of data segment E, so access is not
allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Segmant C|__[ Segment Sel.E3 '
egmentC| | SegmentSel.E3 | _ _ _ _ . |
CPL=3 RPL=3 | !
Lowest Privilege J :
|
Code I
l. E1 > Data
M\””‘\— Segment s?qu:Z ~ | Segment E :
S >|DPL=2 |
|
|
Segr%gﬁt Bl__| Segment Sel. E2 :
RPL=1
CPL=1 I
|
|
Code
Segment D
CPL=0

m Highest Privilege

Figure 4-5. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
as its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for a data-
segment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will
provide protection against deliberate, direct attempts to violate privilege-level security for the
data segment. To prevent these types of privilege-level-check violations, a program or procedure
can check access privileges whenever it receives a data-segment selector from another proce-
dure (see Section 4.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).
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4.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible:

® Load a data-segment register with a segment selector for a nonconforming, readable, code
segment.

® |Load a data-segment register with a segment selector for a conforming, readable, code
segment.

® Use a code-segment override prefix (CS) to read a readable, code segment whose selector
is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a stack segment. Here all privilege levels related to the stack segment must match the CPL; that
is, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and performs various limit, type, and privilege checks. If these checks are successful, the CS
register is loaded, program control is transferred to the new code segment, and program execu-
tion begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT,
INT n, and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions,
interrupts, and the IRET instruction are special cases discussed in Chapter 5, “Interrupt and
Exception Handling.” This chapter discusses only the JMP, CALL, RET, SYSENTER, and
SYSEXIT instructions.
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A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment selector for
the target code segment.

® The target operand points to a TSS, which contains the segment selector for the target code
segment.

® The target operand points to a task gate, which points to a TSS, which in turn contains the
segment selector for the target code segment.

The following sections describe first two types of references. See Section 6.3, “Task Switching,”
for information on transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and
returns from operating system or executive procedures. These instructions are discussed briefly
in Section 4.8.7, “Performing Fast Calls to System Procedures with the SYSENTER and
SYSEXIT Instructions.”

48.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the
current code segment, so privilege-level checks are not performed. The far forms of the IMP,
CALL, and RET instructions transfer control to other code segments, so the processor does
perform privilege-level checks.

When transferring program control to another code segment without going through a call gate,
the processor examines four kinds of privilege level and type information (see Figure 4-6):

® The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code
segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL

Destination Code
Segment Descriptor

Privilege
Check

YYYY

DPL| |C

Figure 4-6. Privilege Check for Control Transfer Without Using a Gate

4-14 Vol. 3A




PROTECTION

The DPL of the segment descriptor for the destination code segment that contains the
called procedure.

The RPL of the segment selector of the destination code segment.

The conforming (C) flag in the segment descriptor for the destination code segment, which
determines whether the segment is a conforming (C flag is set) or nonconforming (C flag is
clear) code segment. See Section 3.4.5.1, “Code- and Data-Segment Descriptor Types,” for
more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C flag, as described in the following sections.

481.1 Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure must be equal
to the DPL of the destination code segment; otherwise, the processor generates a general-protec-
tion exception (#GP). For example in Figure 4-7:

Code segment C is a nonconforming code segment. A procedure in code segment A can
call a procedure in code segment C (using segment selector C1) because they are at the
same privilege level (CPL of code segment A is equal to the DPL of code segment C).

A procedure in code segment B cannot call a procedure in code segment C (using segment
selector C2 or C1) because the two code segments are at different privilege levels.
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Figure 4-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

The RPL of the segment selector that points to a nonconforming code segment has a limited
effect on the privilege check. The RPL must be numerically less than or equal to the CPL of the
calling procedure for a successful control transfer to occur. So, in the example in Figure 4-7, the
RPLs of segment selectors C1 and C2 could legally be set to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the
privilege level field is not changed; that is, it remains at the CPL (which is the privilege level of
the calling procedure). This is true, even if the RPL of the segment selector is different from the
CPL.

4.8.1.2 Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be numeri-
cally equal to or greater than (less privileged) the DPL of the destination code segment; the
processor generates a general-protection exception (#GP) only if the CPL is less than the DPL.
(The segment selector RPL for the destination code segment is not checked if the segment is a
conforming code segment.)
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In the example in Figure 4-7, code segment D is a conforming code segment. Therefore, calling
procedures in both code segment A and B can access code segment D (using either segment
selector D1 or D2, respectively), because they both have CPLs that are greater than or equal to
the DPL of the conforming code segment. For conforming code segments, the DPL repre-
sents the numerically lowest privilege level that a calling procedure may be at to success-
fully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But
since RPLs are not checked when accessing conforming code segments, the two segment selec-
tors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change,
even if the DPL of the destination code segment is less than the CPL. This situation is the only
one where the CPL may be different from the DPL of the current code segment. Also, since the
CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers,
which support applications but do not require access to protected system facilities. These
modules are part of the operating system or executive software, but they can be executed at
numerically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
calling code segment when switching to a conforming code segment prevents an application
program from accessing nonconforming code segments while at the privilege level (DPL) of a
conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred
only to code segments at the same level of privilege, unless the transfer is carried out through a
call gate, as described in the following sections.

4.8.2  Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor
provides special set of descriptors called gate descriptors. There are four kinds of gate
descriptors:

® Call gates
¢ Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 6, “Task Management”. Trap
and interrupt gates are special kinds of call gates used for calling exception and interrupt
handlers. The are described in Chapter 5, “Interrupt and Exception Handling.” This chapter is
concerned only with call gates.
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4.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels.
They are typically used only in operating systems or executives that use the privilege-level
protection mechanism. Call gates are also useful for transferring program control between 16-bit
and 32-bit code segments, as described in Section 16.4, “Transferring Control Among Mixed-
Size Code Segments.”

Figure 4-8 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the
GDT or inan LDT, but not in the interrupt descriptor table (IDT). It performs six functions:

® It specifies the code segment to be accessed.
® |t defines an entry point for a procedure in the specified code segment.
® |t specifies the privilege level required for a caller trying to access the procedure.

31 161514 1312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 lz’:%rgr??. 4
L |of1 ‘ 1 ’ 0 ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-8. Call-Gate Descriptor

® If a stack switch occurs, it specifies the number of optional parameters to be copied
between stacks.

® |t defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit
pushes and 32-bit gates force 32-bit pushes.

® |t specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed. The offset
field specifies the entry point in the code segment. This entry point is generally to the first
instruction of a specific procedure. The DPL field indicates the privilege level of the call gate,
which in turn is the privilege level required to access the selected procedure through the gate.
The P flag indicates whether the call-gate descriptor is valid. (The presence of the code segment
to which the gate points is indicated by the P flag in the code segment’s descriptor.) The param-
eter count field indicates the number of parameters to copy from the calling procedures stack to
the new stack if a stack switch occurs (see Section 4.8.5, “Stack Switching”). The parameter
count specifies the number of words for 16-bit call gates and doublewords for 32-bit call gates.
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Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present
(#NP) exception is generated when a program attempts to access the descriptor. The operating
system can use the P flag for special purposes. For example, it could be used to track the number
of times the gate is used. Here, the P flag is initially set to 0 causing a trap to the not-present
exception handler. The exception handler then increments a counter and sets the P flag to 1, so
that on returning from the handler, the gate descriptor will be valid.

4.8.3.1 IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP);
64-bit extensions double the size of 32-bit mode call gates in order to store 64-bit instruction
pointers (RIP). See Figure 4-9:

® The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to
legacy 32-bit mode call gates. The parameter-copy-count field has been removed.

® Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-
protection exception (#GP) is generated if software attempts to use a call gate with a target
offset that is not in canonical form.

® 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit
descriptors. A type field, used for consistency checking, is defined in bits 12:8 of the 64-bit
descriptor’s highest dword (cleared to zero). A general-protection exception (#GP) results
if an attempt is made to access the upper half of a 64-bit mode descriptor as a 32-bit mode
descriptor.

31 131211109 8 7 0
Type
Reserved Reserved 16
0 ‘ 0‘ o‘ 0 ‘ 0
31 0
Offset in Segment 63:31 8
31 1615141312 11 8 7 0
D Type
Offset in Segment 31:16 Pl P P 0 4
L |of1 ‘ 1 ’ 0 ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-9. Call-Gate Descriptor in IA-32e Mode
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® Target code segments referenced by a 64-bit call gate must be 64-bit code segments
(CS.L =1, CS.D = 0). If not, the reference generates a general-protection exception, #GP
(CS selector).

® Only 64-bit mode call gates can be referenced in 1A-32e mode (64-bit mode and compati-
bility mode). The legacy 32-bit mode call gate type (OCH) is redefined in 1A-32e mode as
a 64-bit call-gate type; no 32-bit call-gate type exists in 1A-32e mode.

® |f a far call references a 16-bit call gate type (04H) in 1A-32 mode, a general-protection
exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those taken in 32-bit
mode, with the following exceptions:

® Stack pushes are made in eight-byte increments.
® A 64-bit RIP is pushed onto the stack.
® Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit calls must
be performed with a 64-bit operand-size return to process the stack correctly).

4.8.4  Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
instruction. The segment selector from this pointer identifies the call gate (see Figure 4-10); the
offset from the pointer is required, but not used or checked by the processor. (The offset can be
set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment descriptor for the destination code segment. (This segment descriptor can be
in the GDT or the LDT.) It then combines the base address from the code-segment descriptor
with the offset from the call gate to form the linear address of the procedure entry point in the
code segment.

As shown in Figure 4-11, four different privilege levels are used to check the validity of a
program control transfer through a call gate:

® The CPL (current privilege level).

® The RPL (requestor's privilege level) of the call gate’s selector.

® The DPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also
checked.
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Figure 4-10. Call-Gate Mechanism
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Figure 4-11. Privilege Check for Control Transfer with Call Gate
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The privilege checking rules are different depending on whether the control transfer was initi-
ated with a CALL or a JMP instruction, as shown in Table 4-1.
Table 4-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules

CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL < CPL

JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from
which a calling procedure can access the call gate; that is, to access a call gate, the CPL of a
calling procedure must be equal to or less than the DPL of the call gate. For example, in
Figure 4-15, call gate A has a DPL of 3. So calling procedures at all CPLs (0 through 3) can
access this call gate, which includes calling procedures in code segments A, B, and C. Call gate
B has a DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which
includes calling procedures in code segments B and C. The dotted line shows that a calling
procedure in code segment A cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling
procedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in Figure 4-15, a calling procedure in code segment C can access call gate B using gate selector
B2 or B1, but it could not use gate selector B3 to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor
then checks the DPL of the code-segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and JMP instructions. Only CALL instruc-
tions can use call gates to transfer program control to more privileged (numerically lower priv-
ilege level) nonconforming code segments; that is, to nonconforming code segments with a DPL
less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both
transfer program control to a more privileged conforming code segment; that is, to a conforming
code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) nonconforming desti-
nation code segment, the CPL is lowered to the DPL of the destination code segment and a stack
switch occurs (see Section 4.8.5, “Stack Switching”). If a call or jump is made to a more privi-
leged conforming destination code segment, the CPL is not changed and no stack switch occurs.
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Figure 4-12. Example of Accessing Call Gates At Various Privilege Levels

Call gates allow a single code segment to have procedures that can be accessed at different priv-
ilege levels. For example, an operating system located in a code segment may have some
services which are intended to be used by both the operating system and application software
(such as procedures for handling character 1/0O). Call gates for these procedures can be set up
that allow access at all privilege levels (0 through 3). More privileged call gates (with DPLs of
0 or 1) can then be set up for other operating system services that are intended to be used only
by the operating system (such as procedures that initialize device drivers).

4.8.5  Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming
code segment (that is, when the DPL of the nonconforming destination code segment is less than
the CPL), the processor automatically switches to the stack for the destination code segment’s
privilege level. This stack switching is carried out to prevent more privileged procedures from
crashing due to insufficient stack space. It also prevents less privileged procedures from inter-
fering (by accident or intent) with more privileged procedures through a shared stack.
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Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and
one for each of the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used
[3 and 0], then only two stacks must be defined.) Each of these stacks is located in a separate
segment and is identified with a segment selector and an offset into the stack segment (a stack
pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP registers, respectively, when privilege-level-3 code is being executed and is automatically
stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
task (see Figure 6-2). Each of these pointers consists of a segment selector and a stack pointer
(loaded into the ESP register). These initial pointers are strictly read-only values. The processor
does not change them while the task is running. They are used only to create new stacks when
calls are made to more privileged levels (numerically lower privilege levels). These stacks are
disposed of when a return is made from the called procedure. The next time the procedure is
called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program control from a
procedure running ata CPL of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the
privilege levels to be used and for loading initial pointers for these stacks into the TSS. Each
stack must be read/write accessible (as specified in the type field of its segment descriptor) and
must contain enough space (as specified in the limit field) to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.

® The EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.

The stack will need to require enough space to contain many frames of these items, because
procedures often call other procedures, and an operating system may support nesting of multiple
interrupts. Each stack should be large enough to allow for the worst case nesting scenario at its
privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create
at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor
performs the following steps to switch stacks and begin execution of the called procedure at a
new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from the
current TSS. Any limit violations detected while reading the stack-segment selector, stack
pointer, or stack-segment descriptor cause an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an
invalid TSS (#TS) exception if violations are detected.
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4. Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 4-13).

7. Copies the number of parameter specified in the parameter count field of the call gate from
the calling procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new stack.

9. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively, and begins execution of the called
procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in the 1A-32
Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on a far call through
a call gate.

Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter 3  |[<— ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <— ESP

Figure 4-13. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the
processor should copy from the calling procedure’s stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
access parameters in the old stack space. The size of the data items passed to the called proce-
dure depends on the call gate size, as described in Section 4.8.3, “Call Gates.”
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4.8.5.1 Stack Switching in 64-bit Mode

Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch
changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a
new SS (stack segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP
from the TSS. The new SS is forced to NULL and the SS selector’s RPL field is forced to the
new CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INTn,
interrupts and exceptions). The old SS and RSP are saved on the new stack.

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS register. See
Table 4-2.

Table 4-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change

32-bit Mode IA-32e mode
Old SS Selector +12 +24 | Old SS Selector
Old ESP +8 +16 | Old RSP
CS Selector +4 +g | Old CS Selector
EIP o | EsP RSP o |RIP
< 4 Bytes > < 8 Bytes >

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return
are eight-bytes wide and change the RSP by eight. The mode does not support the automatic
parameter-copy feature found in 32-bit mode. The call-gate count field is ignored. Software can
access the old stack, if necessary, by referencing the old stack-segment selector and stack pointer
saved on the new process stack.

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the target mode
is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with a NULL selector. If
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. On the
subsequent RETF, the NULL SS on the stack acts as a flag to tell the processor not to load a new
SS descriptor.

4.8.6 Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level,
and a far return to a different privilege level. This instruction is intended to execute returns from
procedures that were called with a CALL instruction. It does not support returns from a JMP
instruction, because the JMP instruction does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the
processor performs only a limit check. When the processor pops the return instruction pointer
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from the stack into the EIP register, it checks that the pointer does not exceed the limit of the
current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the
code segment being returned to and a return instruction pointer from the stack. Under normal
conditions, these pointers should be valid, because they were pushed on the stack by the CALL
instruction. However, the processor performs privilege checks to detect situations where the
current procedure might have altered the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less priv-
ileged level (that is, the DPL of the return code segment is numerically greater than the CPL).
The processor uses the RPL field from the CS register value saved for the calling procedure (see
Figure 4-13) to determine if a return to a numerically higher privilege level is required. If the
RPL is numerically greater (less privileged) than the CPL, a return across privilege levels
occurs.

The processor performs the following steps when performing a far return to a calling procedure
(see Figures 6-2 and 6-4 in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of the stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level
change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and
privilege level checks are performed on the code-segment descriptor and RPL of the code-
segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a
privilege level change.) Adds the parameter count (in bytes obtained from the RET
instruction) to the current ESP register value (after popping the CS and EIP values), to step
past the parameters on the called procedure’s stack. The resulting value in the ESP register
points to the saved SS and ESP values for the calling procedure’s stack. (Note that the byte
count in the RET instruction must be chosen to match the parameter count in the call gate
that the calling procedure referenced when it made the original call multiplied by the size
of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the
saved SS and ESP values and switches back to the calling procedure’s stack. The SS and
ESP values for the called procedure’s stack are discarded. Any limit violations detected
while loading the stack-segment selector or stack pointer cause a general-protection
exception (#GP) to be generated. The new stack-segment descriptor is also checked for
type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in
bytes obtained from the RET instruction) to the current ESP register value, to step past the
parameters on the calling procedure’s stack. The resulting ESP value is not checked against
the limit of the stack segment. If the ESP value is beyond the limit, that fact is not
recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS segment registers. If any of these registers refer to segments whose DPL is less than the
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new CPL (excluding conforming code segments), the segment register is loaded with a null
segment selector.

See the description of the RET instruction in Chapter 3, Instruction Set Reference, of the I1A-32
Intel Architecture Software Developer’s Manual, Volume 2, for a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on a far return.

4.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture in the

Pentium 11 processors for the purpose of providing a fast (low overhead) mechanism for calling

operating system or executive procedures. SYSENTER is intended for use by user code running

at privilege level 3 to access operating system or executive procedures running at privilege level

0. SYSEXIT is intended for use by privilege level 0 operating system or executive procedures

for fast returns to privilege level 3 user code. SYSENTER can be executed from privilege levels
3,2, 1, or 0; SYSEXIT can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not consti-
tute a call/return pair. This is because SYSENTER does not save any state information for use
by SYSEXIT on areturn.

The target instruction and stack pointer for these instructions are not specified through instruc-
tion operands. Instead, they are specified through parameters entered in MSRs and general-
purpose registers.

For SYSENTER, target fields are generated using the following sources:

® Target code segment — Reads this from IA32_SYSENTER_CS.

® Target instruction — Reads this from IA32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value in 1A32_SYSENTER_CS.
® Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:

® Target code segment — Computed by adding 16 to the value in the
IA32_SYSENTER_CS.

® Target instruction — Reads this from EDX.
® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
® Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because they force
the processor into a predefined privilege level 0 state when SYSENTER is executed and into a
predefined privilege level 3 state when SYSEXIT is executed. By forcing predefined and consis-
tent processor states, the number of privilege checks ordinarily required to perform a far call to
another privilege levels are greatly reduced. Also, by predefining the target context state in
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MSRs and general-purpose registers eliminates all memory accesses except when fetching the
target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be
saved explicitly by the calling procedure or be predefined through programming conventions.

48.7.1 SYSENTER and SYSEXIT Instructions in I1A-32e Mode

For processors supporting Intel EM64T, the SYSENTER and SYSEXIT instructions are
enhanced to allow fast system calls from user code running at privilege level 3 (in compatibility
mode or 64-bit mode) to 64-bit executive procedures running at privilege level O.
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 64-bit
addresses. If 1A-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are
used. If 64-bit mode is active, addresses stored in IA32 SYSENTER_EIP and
I1A32_SYSENTER_ESP must be canonical. Note that, in 64-bit mode, IA32_SYSENTER_CS
must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

® Target code segment — Reads non-NULL selector from 1A32_SYSENTER_CS.

®* New CS attributes — CS base = 0, CS limit = FFFFFFFFH.

® Target instruction — Reads 64-bit canonical address from 1A32_SYSENTER_EIP.
® Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
® Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

®* New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the
following fields are generated and bits set:

® Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
® New CS attributes — L-bit = 1 (go to 64-bit mode).

® Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.

® Stack pointer — Update RSP using 64-bit canonical address in RCX.
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When SYSEXIT transfers control to compatibility mode user code when the operand size
attribute is 32 bits, the following fields are generated and bits set:

® Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
® New CS attributes — L-bit = 0 (go to compatibility mode).

® Target instruction — Fetch the target instruction from 32-bit address in EDX.

® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Update ESP from 32-bit address in ECX.

4.8.8 Fast System Calls in 64-bit Mode

The SYSCALL and SYSRET instructions are designed for operating systems that use a flat
memory model (segmentation is not used). The instructions, along with SYSENTER and
SYSEXIT, are suited for 1A-32e mode operation. SYSCALL and SYSRET, however, are not
supported in compatibility mode. Use CPUID to check if SYSCALL and SYSRET are available
(CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access operating
system or executive procedures running at privilege level 0. SYSRET is intended for use by
privilege level 0 operating system or executive procedures for fast returns to privilege level 3
user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The
clearing of bits in RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and
restore the RFLAGS register.

For SYSCALL, the processor saves the RIP of the instruction in RCX and gets the privilege
level O target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from 1A32_STAR[47:32].
® Target instruction — Reads a 64-bit canonical address from 1A32_LSTAR.
® Stack segment — Computed by adding 8 to the value in 1A32_STAR[47:32].

® System flags — The processor uses a mask derived from 1A32_FMASK to perform a
logical-AND operation with the lower 32-bits of RFLAGS. The result is saved into R11.
The mask is the complement of the value supplied by privileged executives using the
1A32_FMASK MSR.
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When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the
privilege level 3 target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from 1A32_STAR[63:48] + 16.
® Target instruction — Copies the value in RCX into RIP.

® Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the
processor gets the privilege level 3 target instruction and stack pointer from:

® Target code segment — Reads a non-NULL selector from 1A32_STAR[63:48].
® Target instruction — Copies the value in ECX into EIP.

® Stack segment — IA32_STAR[63:48] + 8.

® EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the
selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and attribute values
forced by the instructions).

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical form. If
an address is not canonical, an exception is generated (#GP).

See Figure 4-14 for the layout of IA32_STAR, IA32_LSTAR and 1A32_FMASK.

63 3231 0

Reserved SYSCALL EFLAGS Mask

IA32_FMASK
63 0

Target RIP for 64-bit Mode Calling Program

IA32_LSTAR

63 48 47 3231 0

SYSRET CS and SS | SYSCALL CS and SS Reserved

IA32_STAR

Figure 4-14. MSRs Used by SYSCALL and SYSRET
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4.9 PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions™) are protected from use by
application programs. The privileged instructions control system functions (such as the loading
of system registers). They can be executed only when the CPL is 0 (most privileged). If one of
these instructions is executed when the CPL is not 0, a general-protection exception (#GP) is
generated. The following system instructions are privileged instructions:

® |LGDT — Load GDT register.

® LLDT — Load LDT register.

® LTR — Load task register.

® LIDT — Load IDT register.

® MOV (control registers) — Load and store control registers.
® LMSW — Load machine status word.

® CLTS — Clear task-switched flag in register CRO.

® MOV (debug registers) — Load and store debug registers.
® INVD — Invalidate cache, without writeback.

®*  WBINVD — Invalidate cache, with writeback.

® INVLPG —lInvalidate TLB entry.

® HLT— Halt processor.

® RDMSR — Read Model-Specific Registers.

®  WRMSR —Write Model-Specific Registers.

® RDPMC — Read Performance-Monitoring Counter.

® RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of 1A-32
processors (see Section 17.12., “New Instructions In the Pentium and Later IA-32 Processors™).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and
RDTSC instructions, respectively, to be executed at any CPL.

4.10 POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection
between segments and maintain isolation between privilege levels. Pointer validation consists
of the following checks:

1. Checking access rights to determine if the segment type is compatible with its use.
2. Checking read/write rights.
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3. Checking if the pointer offset exceeds the segment limit.
4. Checking if the supplier of the pointer is allowed to access the segment.
5. Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu-
tion. Software must explicitly request the fourth check by issuing an ARPL instruction. The fifth
check (offset alignment) is performed automatically at privilege level 3 if alignment checking is
turned on. Offset alignment does not affect isolation of privilege levels.

4.10.1 Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check
on the segment descriptor pointed to by the far pointer. This check is performed to determine if
type and privilege level (DPL) of the segment descriptor are compatible with the operation to be
performed. For example, when making a far call in protected mode, the segment-descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then, if the call is to a nonconforming code segment, the DPL of the code segment must be equal
to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to
the DPL. If type or privilege level are found to be incompatible, the appropriate exception is
generated.

To prevent type incompatibility exceptions from being generated, software can check the access
rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc-
tion specifies the segment selector for the segment descriptor whose access rights are to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS
segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment
descriptor into the destination register (masked by the value 00FXFFOOH, where X
indicates that the corresponding 4 bits are undefined) and sets the ZF flag in the EFLAGS
register. If the segment selector is not visible at the current privilege level or is an invalid
type for the LAR instruction, the instruction does not modify the destination register and
clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access
rights information.
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4.10.2 Checking Read/Write Rights (VERR and VERW
Instructions)

When the processor accesses any code or data segment it checks the read/write privileges
assigned to the segment to verify that the intended read or write operation is allowed. Software
can check read/write rights using the VERR (verify for reading) and VERW (verify for writing)
instructions. Both these instructions specify the segment selector for the segment being checked.
The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the
VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the
CPL and readable; the VERW sets the ZF flag if the segment is visible and writable. (Code
segments are never writable.) The ZF flag is cleared if any of these checks fail.

4.10.3 Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the offset is

within the limit of the segment. Software can perform this limit check using the LSL (load

segment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment

selector for the segment descriptor whose limit is to be checked and a destination register. The
instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equal to the DPL).
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5. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled
according to the setting of the G flag in the segment descriptor) into the destination register
and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the
current privilege level or is an invalid type for the LSL instruction, the instruction does not
modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset
of a pointer.

4.10.4 Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privi-
lege level of a calling procedure (the calling procedure’s CPL) to a called procedure. The called
procedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
“weaken” the privilege level of the called procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application
programs from accessing data located in more privileged segments. When an operating-system
procedure (the called procedure) receives a segment selector from an application program (the
calling procedure), it sets the segment selector’s RPL to the privilege level of the calling proce-
dure. Then, when the operating system uses the segment selector to access its associated
segment, the processor performs privilege checks using the calling procedure’s privilege level
(stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operating-
system procedure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the segment.

Figure 4-15 shows an example of how the processor uses the RPL field. In this example, an
application program (located in code segment A) possesses a segment selector (segment selector
D1) that points to a privileged data structure (that is, a data structure located in a data segment
D at privilege level 0).

The application program cannot access data segment D, because it does not have sufficient priv-
ilege, but the operating system (located in code segment C) can. So, in an attempt to access data
segment D, the application program executes a call to the operating system and passes segment
selector D1 to the operating system as a parameter on the stack. Before passing the segment
selector, the (well behaved) application program sets the RPL of the segment selector to its
current privilege level (which in this example is 3). If the operating system attempts to access
data segment D using segment selector D1, the processor compares the CPL (which is now 0
following the call), the RPL of segment selector D1, and the DPL of data segment D (which is
0). Since the RPL is greater than the DPL, access to data segment D is denied. The processor’s
protection mechanism thus protects data segment D from access by the operating system,
because application program’s privilege level (represented by the RPL of segment selector B) is
greater than the DPL of data segment D.
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Figure 4-15. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of the segment selector to 3, the application program
sets the RPL to 0 (segment selector D2). The operating system can now access data segment D,
because its CPL and the RPL of segment selector D2 are both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to any value,
it can potentially use a procedure operating at a numerically lower privilege level to access a
protected data structure. This ability to lower the RPL of a segment selector breaches the
processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, oper-
ating-system procedures (executing at numerically lower privilege-levels) that receive segment
selectors from numerically higher privilege-level procedures need to test the RPL of the segment
selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to match that of another segment selector.

The example in Figure 4-15 demonstrates how the ARPL instruction is intended to be used.
When the operating-system receives segment selector D2 from the application program, it uses
the ARPL instruction to compare the RPL of the segment selector with the privilege level of the
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application program (represented by the code-segment selector pushed onto the stack). If the
RPL is less than application program’s privilege level, the ARPL instruction changes the RPL
of the segment selector to match the privilege level of the application program (segment
selector D1). Using this instruction thus prevents a procedure running at a numerically higher
privilege level from accessing numerically lower privilege-level (more privileged) segments by
lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program’s code segment. This segment selector
is stored on the stack as part of the call to the operating system. The operating system can copy
the segment selector from the stack into a register for use as an operand for the ARPL
instruction.

4.10.5 Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the CRO register and the AC flag in the EFLAGS register. Unaligned memory references
generate alignment exceptions (#AC). The processor does not generate alignment exceptions
when operating at privilege level 0, 1, or 2. See Table 5-7 for a description of the alignment
requirements when alignment checking is enabled.

411 PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used with the flat memory model, it allows supervisor code and data (the operating system or
executive) to be protected from user code and data (application programs). It also allows pages
containing code to be write protected. When the segment- and page-level protection are
combined, page-level read/write protection allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory reference is
checked to verify that protection checks are satisfied. All checks are made before the memory
cycle is started, and any violation prevents the cycle from starting and results in a page-fault
exception being generated. Because checks are performed in parallel with address translation,
there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See
Chapter 5, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the page-fault
exception mechanism. This chapter describes the protection violations which lead to page-
fault exceptions.
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4.11.1 Page-Protection Flags

Protection information for pages is contained in two flags in a page-directory or page-table entry
(see Figure 3-14): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection
checks are applied to both first- and second-level page tables (that is, page directories and page
tables).

4.11.2 Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
levels:

®  Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive,
other system software (such as device drivers), and protected system data (such as page
tables).

®  User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of
3, itis in user mode. When the processor is in supervisor mode, it can access all pages; when in
user mode, it can access only user-level pages. (Note that the WP flag in control register CRO
modifies the supervisor permissions, as described in Section 4.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must be set up for
at least two segment-based privilege levels: level 0 for supervisor code and data segments and
level 3 for user code and data segments. (In this model, the stacks are placed in the data
segments.) To minimize the use of segments, a flat memory model can be used (see Section 3.2.1,
“Basic Flat Model™).

Here, the user and supervisor code and data segments all begin at address zero in the linear
address space and overlay each other. With this arrangement, operating-system code (running at
the supervisor level) and application code (running at the user level) can execute as if there are
no segments. Protection between operating-system and application code and data is provided by
the processor’s page-level protection mechanism.

4.11.3 Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flag is 0).

® Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initialization), all pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
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read/write accessible. User-mode pages which are read/write or read-only are readable; super-
visor-mode pages are neither readable nor writable from user mode. A page-fault exception is
generated on any attempt to violate the protection rules.

The P6 family, Pentium, and Intel486 processors allow user-mode pages to be write-protected
against supervisor-mode access. Setting the WP flag in register CRO to 1 enables supervisor-
mode sensitivity to user-mode, write protected pages. Supervisor pages which are read-only are
not writable from any privilege level, regardless of WP setting. This supervisor write-protect
feature is useful for implementing a “copy-on-write” strategy used by some operating systems,
such as UNIX*, for task creation (also called forking or spawning). When a new task is created,
it is possible to copy the entire address space of the parent task. This gives the child task a
complete, duplicate set of the parent's segments and pages. An alternative copy-on-write
strategy saves memory space and time by mapping the child's segments and pages to the same
segments and pages used by the parent task. A private copy of a page gets created only when
one of the tasks writes to the page. By using the WP flag and marking the shared pages as read-
only, the supervisor can detect an attempt to write to a user-level page, and can copy the page at
that time.

4.11.4 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the
protection for a page in both its page-directory and the page-table entries. Table 4-3 shows the
protection provided by the possible combinations of protection attributes when the WP flag is
clear.

4.11.5 Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

®  Access to segment descriptors in the GDT, LDT, or IDT.

® Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in
exception or interrupt handler, when a change of privilege level occurs.

4.12 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
generated by segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, a code
segment is by definition not writable. If a code segment is paged, setting the R/W flag for the
pages to read-write does not make the pages writable. Attempts to write into the pages will be
blocked by segment-level protection checks.
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Page-level protection can be used to enhance segment-level protection. For example, if a large
read-write data segment is paged, the page-protection mechanism can be used to write-protect
individual pages.

Table 4-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If CRO.WP =1, access type is determined by the R/W flags of the page-directory and page-table entries.
IF CRO.WP = 0, supervisor privilege permits read-write access.

413 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT

In addition to page-level protection offered by the U/S and R/W flags, enhanced PAE-enabled
paging structures (see Section 3.10.3, “Enhanced Paging Data Structures™) provide the execute-
disable bit. This bit offers additional protection for data pages.

An 1A-32 processor with the execute disable bit capability can prevent data pages from being
used by malicious software to execute code. This capability is provided in:

®  32-bit protected mode with PAE enabled.
® |A-32e mode.

4-40 Vol. 3A



PROTECTION

While the execute disable bit capability does not introduce new instructions, it does require
operating systems to use a PAE-enabled environment and establish a page-granular protection
policy for memory pages.

If the execute disable bit of a memory page is set, that page can be used only as data. An
attempt to execute code from a memory page with the execute-disable bit set causes a page-
fault exception.

The page sizes and physical address sizes supported by execute disable bit capability are shown
in Table 4-4. Existing page-level protection mechanisms (see Section 4.11, “Page-Level Protec-
tion™) continue to apply to memory pages independent of the execute-disable bit setting.

Table 4-4. Page Sizes and Physical Address Sizes Supported by
Execute-Disable Bit Capability

PG Flag, | PAE Flag, PS Flag, CPUID Feature

CRO CR4 PDE Flag ECX[IA-32¢e] | Page Size Physical Address Size
1 1 0 0 4 KBytes Implementation specific
1 1 1 0 2 MBytes Implementation specific
1 1 0 1 4 KBytes 40 Bits
1 1 1 1 2 MBytes 40 Bits

4.13.1 Detecting and Enabling the Execute-Disable Bit Capability

Detect the presence of the execute disable bit capability using the CPUID instruction.
CPUID.80000001H. EDX[bit 20] = 1 indicates the bit is available.

If the bit is available and PAE is enabled, enable the execute disable bit capability by setting the
IA32_EFER.NXE[bit 11] = 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or
29]=1.

If the execute disable bit capability is not available, a write to IA32_EFER.NXE produces a #GP
exception. See Table 4-5.

Table 4-5. Extended Feature Enable MSR (IA32_EFER)

63:12 11 10 9 8 7:1 0

Reserved | Execute- IA-32e mode | Reserved | IA-32e mode Reserved | SysCallenable
disable bit active (LMA) enable (LME) (SCE)
enable (NXE)

4.13.2 Execute-Disable Bit Page Protection

The execute-disable bit in paging structures enhances page protection for data pages. Memory
pages that contain data cannot be used to execute code if IA32_EFER.NXE =1 and the execute-
disable bit of the memory page is set. Table 4-6 lists the valid usage of a page in relation to the
value of execute-disable bit (bit 63) of the corresponding entry in each level of the paging struc-
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tures. Execute-disable bit protection can be activated using the execute-disable bit at any level
of the paging structure, irrespective of the corresponding entry in other levels. When execute-
disable-bit protection is not activated, the page can be used as code or data.

Table 4-6. IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage
PML4 PDP PDE PTE

Bit63=1 |* * * Data

* Bit63=1 * * Data

* * Bit63=1 * Data

* * * Bit63=1 Data
Bit63=0 |Bit63=0 Bit63=0 Bit63=0 Data/Code
NOTE:

* Value not checked.

In legacy PAE-enabled mode, Table 4-7 and Table 4-8 show the effect of setting the execute-
disable bit for code and data pages.

Table 4-7. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage
PDE PTE

Bit63=1 * Data

* Bit63=1 Data
Bit63=0 Bit63=0 Data/Code
NOTE:

* Value not checked.

Table 4-8. Legacy PAE-Enabled 2-MByte Page Level Protection
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE
Bit63=1 Data
Bit63=0 Data/Code
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4.13.3 Reserved Bit Checking

The processor enforces reserved bit checking in paging data structure entries. The bits being
checked varies with paging mode and may vary with the size of physical address space.

Table 4-9 shows the reserved bits that are checked when the execute disable bit capability is
enabled (CR4.PAE=1 and IA32_EFER.NXE =1). Table 4-9 and Table 4-10 show the
following paging modes:

®* Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, CR4.PSE = 0).
® PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
® PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

In legacy PAE-enabled paging, some processors may only support a 36-bit (or 32-bit) physical
address size; in such cases reserved bit checking still applies to bits 39:36 (or bits 39:32). See
the table note.

Table 4-9. IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capability Enabled

Mode Paging Mode Check Bits

32-hit 4-KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit [21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:40] & [8:5] & [2:1]1
PAE - PDE, 2-MByte page Bits [62:40] & [20:13]*
PAE - PDE, 4-KByte page Bits [62:40]*
PAE - PTE Bits [62:40]"

64-bit PML4E Bits [51:40]
PDPTE Bits [51:40]
PDE, 2-MByte page Bits [51:40] & [20:13]
PDE, 4-KByte page Bits [51:40]
PTE Bits [51:40]

NOTE:

1. Reserved bit checking also applies to bits 39:36 for processors that support only 36-bits of physical
address. For processor that support only 32 bits of physical address, reserved bit checking also applies
to bits 39:32.

If execute disable bit capability is not enabled or not available, reserved bit checking in 64-bit
mode includes bit 63 and additional bits. This and reserved bit checking for legacy 32-bit paging
modes are shown in Table 4-10.
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Table 4-10. Reserved Bit Checking WIith Execute-Disable Bit Capability Not Enabled

Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE) No reserved bits checked
PSE36 - PDE, 4-MByte page Bit [21]
PSE36 - PDE, 4-KByte page No reserved bits checked
PSE36 - PTE No reserved bits checked
PAE - PDP table entry Bits [63:40] & [8:5] & [2:1]1
PAE - PDE, 2-MByte page Bits [63:40] & [20:13]*
PAE - PDE, 4-KByte page Bits [63:40]1
PAE - PTE Bits [63:40]"

64-bit PML4E Bit [63], bits [51:40]
PDPTE Bit [63], bits [51:40]
PDE, 2-MByte page Bit [63], bits [51:40] & [20:13]
PDE, 4-KByte page Bit [63], bits [51:40]
PTE Bit [63], bits [51:40]

NOTES:

1. Reserved bit checking also applies to bits 39:36 for processors that support only 36-bits of physical
address. For processor that support only 32 bits of physical address, reserved bit checking also applies
to bits 39:32.

4.13.4 Exception Handling

When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for a page
fault to occur include the same conditions that apply to an 1A-32 processor without execute
disable bit capability plus the following new condition: an instruction fetch to a linear address
that translates to physical address in a memory page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any instruc-
tion fetch, including (but not limited to): near branches, far branches, CALL/RET/INT/IRET
execution, sequential instruction fetches, and task switches. The execute-disable bit in the page
translation mechanism is checked only when:

* |A32_EFER.NXE = 1.

® The instruction translation look-aside buffer (ITLB) is loaded with a page that is not
already present in the ITLB.
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CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the processor’s interrupt and exception-handling mechanism when oper-
ating in protected mode. Most of the information provided here also applies to interrupt and
exception mechanisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 15, “8086 Emulation,” describes information specific to interrupt and exception mech-
anisms in real-address and virtual-8086 mode. Section 5.14, “Exception and Interrupt Handling
in 64-bit Mode,” describes information specific to interrupt and exception mechanisms in
1A-32e mode and 64-bit sub-mode.

5.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the
system, the processor, or within the currently executing program or task that requires the atten-
tion of a processor. They typically result in a forced transfer of execution from the currently
running program or task to a special software routine or task called an interrupt handler or an
exception handler. The action taken by a processor in response to an interrupt or exception is
referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from
hardware. System hardware uses interrupts to handle events external to the processor, such as
requests to service peripheral devices. Software can also generate interrupts by executing the
INT n instruction.

Exceptions occur when the processor detects an error condition while executing an instruction,
such as division by zero. The processor detects a variety of error conditions including protection
violations, page faults, and internal machine faults. The machine-check architecture of the
Pentium 4, Intel Xeon, P6 family, and Pentium processors also permits a machine-check excep-
tion to be generated when internal hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running procedure or
task is suspended while the processor executes an interrupt or exception handler. When execu-
tion of the handler is complete, the processor resumes execution of the interrupted procedure or
task. The resumption of the interrupted procedure or task happens without loss of program conti-
nuity, unless recovery from an exception was not possible or an interrupt caused the currently
running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. A description of the exceptions and the conditions that cause them to
be generated is given at the end of this chapter.
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5.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each 1A-32 architecture-defined exception and
each interrupt condition that requires special handling by the processor is assigned a unique
identification number, called a vector. The processor uses the vector assigned to an exception or
interrupt as an index into the interrupt descriptor table (IDT). The table provides the entry point
to an exception or interrupt handler (see Section 5.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vectors in the range O through 31 are
reserved by the 1A-32 architecture for architecture-defined exceptions and interrupts. Not all of
the vectors in this range have a currently defined function. The unassigned vectors in this range
are reserved. Do not use the reserved vectors.

The vectors in the range 32 to 255 are designated as user-defined interrupts and are not reserved
by the IA-32 architecture. These interrupts are generally assigned to external 1/0 devices to
enable those devices to send interrupts to the processor through one of the external hardware
interrupt mechanisms (see Section 5.3, “Sources of Interrupts”).

Table 5-1 shows vector assignments for architecturally defined exceptions and for the NMI
interrupt. This table gives the exception type (see Section 5.5, “Exception Classifications”) and
indicates whether an error code is saved on the stack for the exception. The source of each
predefined exception and the NMI interrupt is also given.

5.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.

® Software-generated interrupts.

5.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The
primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the
LINT[1:0] pins, which are connected to the local APIC (see Chapter 8, “Advanced Program-
mable Interrupt Controller (APIC)”). When the local APIC is enabled, the LINT[1:0] pins can
be programmed through the APIC’s local vector table (LVT) to be associated with any of the
processor’s exception or interrupt vectors.

When the local APIC is disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The
processor reads from the system bus the interrupt vector number provided by an external inter-
rupt controller, such as an 8259A (see Section 5.2, “Exception and Interrupt Vectors™). Asserting
the NMI pin signals a non-maskable interrupt (NMI), which is assigned to interrupt vector 2.
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Table 5-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- | Description Type Error | Source
No. monic Code
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB RESERVED Fault/ No For Intel use only.
Trap
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Fault No UD2 instruction or reserved
Opcode) opcode.!
7 #NM Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can generate
(zero) | an’exception, an NMI, or an
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes ISta((j:k operations and SS register
oads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Fault No x87 FPU floating-point or
Error (Math Fault WAIT/FWAIT instruction.
17 #AC Alignment Check Fault EKZes ) Any data reference in memory.3
ero
18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.*
19 #XF SIMD Floating-Point Fault No SSE/SSE2/SSE3 floating-point
Exception instructions®
20-31 — Intel reserved. Do not use.
32-255 | — User Defined (Non- Interrupt External interrupt or INT n
reserved) Interrupts instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.

2. 1A-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium Il processor.
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The processor’s local APIC is normally connected to a system-based 1/0O APIC. Here, external
interrupts received at the 1/0 APIC’s pins can be directed to the local APIC through the system
bus (Pentium 4 and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium
processors). The I/O APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also send inter-
rupts to one another by means of the system bus (Pentium 4 and Intel Xeon processors) or the
APIC serial bus (P6 family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors
that do not contain an on-chip local APIC. These processors have dedicated NMI and INTR
pins. With these processors, external interrupts are typically generated by a system-based inter-
rupt controller (8259A), with the interrupts being signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However,
these interrupts are not handled by the interrupt and exception mechanism described in this
chapter. These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins.
The pins are included on a particular 1A-32 processor is implementation dependent. The func-
tions of these pins are described in the data books for the individual processors. The SMI# pin
is described in Chapter 24, “System Management.”

5.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through
the local APIC is called a maskable hardware interrupt. Maskable hardware interrupts that can
be delivered through the INTR pin include all 1A-32 architecture defined interrupt vectors from
0 through 255; those that can be delivered through the local APIC include interrupt vectors 16
through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a
group (see Section 5.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts
0 through 15 are delivered through the local APIC, the APIC indicates the receipt of an illegal
vector.

5.3.3  Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by supplying an
interrupt vector number as an operand. For example, the INT 35 instruction forces an implicit
call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the
processor’s predefined NMI vector is used, however, the response of the processor will not be
the same as it would be from an NMI interrupt generated in the normal manner. If vector number
2 (the NMI vector) is used in this instruction, the NMI interrupt handler is called, but the
processor’s NMI-handling hardware is not activated.

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in
the EFLAGS register.
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5.4 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
®  Processor-detected program-error exceptions.

® Software-generated exceptions.

® Machine-check exceptions.

54.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the
execution in an application program or the operating system or executive. The IA-32 architec-
ture defines a vector number for each processor-detectable exception. Exceptions are classified
as faults, traps, and aborts (see Section 5.5, “Exception Classifications”).

5.4.2  Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software.
These instructions allow checks for exception conditions to be performed at points in the
instruction stream. For example, INT 3 causes a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation. If
INT n provides a vector for one of the |A-32 architecture exceptions, the processor generates an
interrupt to the correct vector (to access the exception handler) but does not push an error code
on the stack. This is true even if the associated hardware-generated exception normally produces
an error code. The exception handler will still attempt to pop an error code from the stack while
handling the exception. Because no error code was pushed, the handler will pop off and discard
the EIP instead (in place of the missing error code). This sends the return to the wrong location.

5.4.3 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mech-
anisms for checking the operation of the internal chip hardware and bus transactions. These
implementation dependent. When a machine-check error is detected, the processor signals a
machine-check exception (vector 18) and returns an error code.

See Chapter 5, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 14, “Machine-
Check Architecture,” for more information about the machine-check mechanism.

5.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and
whether the instruction that caused the exception can be restarted without loss of program or task
continuity.
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®* Faults — A fault is an exception that can generally be corrected and that, once corrected,
allows the program to be restarted with no loss of continuity. When a fault is reported, the
processor restores the machine state to the state prior to the beginning of execution of the
faulting instruction. The return address (saved contents of the CS and EIP registers) for the
fault handler points to the faulting instruction, rather than to the instruction following the
faulting instruction.

® Traps — A trap is an exception that is reported immediately following the execution of the
trapping instruction. Traps allow execution of a program or task to be continued without
loss of program continuity. The return address for the trap handler points to the instruction
to be executed after the trapping instruction.

® Aborts — An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow a restart of the program or task that
caused the exception. Aborts are used to report severe errors, such as hardware errors and
inconsistent or illegal values in system tables.

NOTE

One exception subset normally reported as a fault is not restartable. Such
exceptions result in loss of some processor state. For example, executing a
POPAD instruction where the stack frame crosses over the end of the stack
segment causes a fault to be reported. In this situation, the exception handler
sees that the instruction pointer (CS:EIP) has been restored as if the POPAD
instruction had not been executed. However, internal processor state (the
general-purpose registers) will have been modified. Such cases are
considered programming errors. An application causing this class of
exceptions should be terminated by the operating system.

5.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or an interrupt,
all exceptions (except aborts) are guaranteed to report exceptions on an instruction boundary.
All interrupts are guaranteed to be taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an
exception) points to the faulting instruction. So, when a program or task is restarted following
the handling of a fault, the faulting instruction is restarted (re-executed). Restarting the faulting
instruction is commonly used to handle exceptions that are generated when access to an operand
is blocked. The most common example of this type of fault is a page-fault exception (#PF) that
occurs when a program or task references an operand located on a page that is not in memory.
When a page-fault exception occurs, the exception handler can load the page into memory and
resume execution of the program or task by restarting the faulting instruction. To insure that the
restart is handled transparently to the currently executing program or task, the processor saves
the necessary registers and stack pointers to allow a restart to the state prior to the execution of
the faulting instruction.
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For trap-class exceptions, the return instruction pointer points to the instruction following the
trapping instruction. If a trap is detected during an instruction which transfers execution, the
return instruction pointer reflects the transfer. For example, if a trap is detected while executing
a JMP instruction, the return instruction pointer points to the destination of the JMP instruction,
not to the next address past the JMP instruction. All trap exceptions allow program or task restart
with no loss of continuity. For example, the overflow exception is a trap exception. Here, the
return instruction pointer points to the instruction following the INTO instruction that tested
EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow condi-
tion. Upon return from the trap handler, program or task execution continues at the instruction
following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort
handlers are designed to collect diagnostic information about the state of the processor when the
abort exception occurred and then shut down the application and system as gracefully as
possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of conti-
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executed at the instruction boundary where the processor took the interrupt. If the instruction
just executed has a repeat prefix, the interrupt is taken at the end of the current iteration with the
registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the
taking of interrupts by the processor. Interrupts are taken at instruction boundaries located
during the retirement phase of instruction execution; so they are always taken in the “in-order”
instruction stream. See Chapter 2, “IA-32 Intel® Architecture,” in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for more information about the P6 family processors’
microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of
prefetching and preliminary decoding. With these processors as well, exceptions and interrupts
are not signaled until actual “in-order” execution of the instructions. For a given code sample,
the signaling of exceptions occurs uniformly when the code is executed on any family of 1A-32
processors (except where new exceptions or new opcodes have been defined).
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5.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
® External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4 and Intel Xeon processors)
or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it imme-
diately by calling the NMI handler pointed to by interrupt vector number 2. The processor also
invokes certain hardware conditions to insure that no other interrupts, including NMI interrupts,
are received until the NMI handler has completed executing (see Section 5.7.1, “Handling
Multiple NMIs™).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF
flag in the EFLAGS register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke
the NMI interrupt handler; however, this interrupt will not truly be an NMl interrupt. A true NMI
interrupt that activates the processor’s NMI-handling hardware can only be delivered through
one of the mechanisms listed above.

5.7.1 Handling Multiple NMls

While an NMI interrupt handler is executing, the processor disables additional calls to the NMI
handler until the next IRET instruction is executed. This blocking of subsequent NMls prevents
stacking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessed through an interrupt gate to disable maskable hardware interrupts (see Section 5.8.1,
“Masking Maskable Hardware Interrupts”). If the NMI handler is a virtual-8086 task with an
IOPL of less than 3, an IRET instruction issued from the handler generates a general-protection
exception (see Section 15.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked
before the general-protection exception handler is invoked.

5.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor
and of the IF and RF flags in the EFLAGS register, as described in the following sections.
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5.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 5.3.2, “Maskable Hardware Inter-
rupts”). When the IF flag is clear, the processor inhibits interrupts delivered to the INTR pin or
through the local APIC from generating an internal interrupt request; when the IF flag is set,
interrupts delivered to the INTR or through the local APIC pin are processed as normal external
interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery
mode NMI messages delivered through the local APIC, nor does it affect processor generated
exceptions. As with the other flags in the EFLAGS register, the processor clears the IF flag in
response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and
exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF
flag is set, an interrupt for any of the vectors from 0 through 32 can be delivered to the processor
through the INTR pin and any of the vectors from 16 through 32 can be delivered through the
local APIC. The processor will then generate an interrupt and call the interrupt or exception
handler pointed to by the vector number. So for example, it is possible to invoke the page-fault
handler through the INTR pin (by means of vector 14); however, this is not a true page-fault
exception. It is an interrupt. As with the INT n instruction (see Section 5.4.2, “Software-Gener-
ated Exceptions”), when an interrupt is generated through the INTR pin to an exception vector,
the processor does not push an error code on the stack, so the exception handler may not operate
correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-
enable flag) instructions, respectively. These instructions may be executed only if the CPL is
equal to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executed when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions
is modified slightly when the virtual mode extension is enabled by setting the VME flag in
control register CR4: see Section 15.3, “Interrupt and Exception Handling in Virtual-8086
Mode.” Behavior is also impacted by the PVI flag: see Section 15.4, “Protected-Mode Virtual
Interrupts.”

The IF flag is also affected by the following operations:

® The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified flags back into the
EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

® When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared,
which disables maskable hardware interrupts. (If an interrupt is handled through a trap
gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3,
“Instruction Set Reference, A-M,” in the IA-32 Intel® Architecture Software Developer’s
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Manual, Volume 2A, for a detailed description of the operations these instructions are allowed
to perform on the IF flag.

5.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruc-
tion-breakpoint conditions (see the description of the RF flag in Section 2.3, “System Flags and
Fields in the EFLAGS Register™).

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when
clear, instruction breakpoints will generate debug exceptions. The primary function of the RF
flag is to prevent the processor from going into a debug exception loop on an instruction-break-
point. See Section 18.3.1.1, “Instruction-Breakpoint Exception Condition,” for more informa-
tion on the use of this flag.

5.8.3 Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. If the
LSS instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-2 shows the priority among classes of exception
and interrupt sources.
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Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI)
6 Maskable Hardware Interrupts 1
7 Code Breakpoint Fault
8 Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault
9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available
10 (Lowest) Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- x87 FPU Floating-point exception
- SIMD floating-point exception
NOTE:

1. The Intel4g86™ processor and earlier processors group nonmaskable and maskable interrupts in the
same priority class.

While priority among these classes listed in Table 5-2 is consistent throughout the architecture,
exceptions within each class are implementation-dependent and may vary from processor to
processor. The processor first services a pending exception or interrupt from the class which has
the highest priority, transferring execution to the first instruction of the handler. Lower priority
exceptions are discarded; lower priority interrupts are held pending. Discarded exceptions are
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re-generated when the interrupt handler returns execution to the point in the program or task
where the exceptions and/or interrupts occurred.

5.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
in the IDT should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cache line fills. The limit value is expressed in bytes and is added to the base address
to get the address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N — 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is 0. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can
be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP) is generated.

NOTE

Because interrupts are delivered to the processor core only once, an
incorrectly configured IDT could result in incomplete interrupt handling
and/or the blocking of interrupt delivery. |A-32 architecture rules need to be
followed for setting up IDTR base/limit/access fields and each field in the
gate descriptors. This includes implicit referencing of the destination code
segment through the GDT or LDT and accessing the stack.
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IDTR Register
47 16 15 0

IDT Base Address | IDT Limit

l Interrupt

Descriptor Table (IDT
@ > p (IDT)

Gate for

Interrupt #n (n-1)*8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

B — e Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

5.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® |Interrupt-gate descriptor

®* Trap-gate descriptor

Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The
format of a task gate used in an IDT is the same as that of a task gate used in the GDT oran LDT
(see Section 6.2.5, “Task-Gate Descriptor”). The task gate contains the segment selector for a
TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 4.8.3, “Call Gates”). They
contain a far pointer (segment selector and offset) that the processor uses to transfer program
execution to a handler procedure in an exception- or interrupt-handler code segment. These gates
differ in the way the processor handles the IF flag in the EFLAGS register (see Section 5.12.1.2,
“Flag Usage By Exception- or Interrupt-Handler Procedure”).
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Task Gate
31 16 15 14 13 12 8 7 0
D
Pl P|0O010 1 4
L
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 PP |0OD110|0O00O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |0OD111{0O00O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
D Size of gate: 1 = 32 bits; 0 = 16 bits
|:| Reserved

Figure 5-2. IDT Gate Descriptors

5.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate (see Section 4.8.2, “Gate Descriptors,”
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through Section 4.8.6, “Returning from a Called Procedure”). If index points to a task gate, the
processor executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 6.3, “Task Switching”).

5.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (see Figure 5-3). The segment selector for the gate
points to a segment descriptor for an executable code segment in either the GDT or the current
LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt-
handling procedure.

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt > Interrupt or *’( +)—>

Vector Trap Gate

Y

Segment Selector

GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 5-3. Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:

® |f the handler procedure is going to be executed at a numerically lower privilege level, a
stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are
obtained from the TSS for the currently executing task. On this new stack, the
processor pushes the stack segment selector and stack pointer of the interrupted
procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on
the new stack (see Figures 5-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the
EIP value.

® If the handler procedure is going to be executed at the same privilege level as the
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the
current stack (see Figures 5-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after
the EIP value.
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Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code |<«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler’s Stack

Stack
<«——ESP Before
Transfer to Handler sSS
ESP
EFLAGS
CS
EIP

ESP After——> Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The 10PL field of the EFLAGS register is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
See Chapter 3, “Instruction Set Reference, A-M,” of the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedure’s stack on the return.

5.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that
used for ordinary procedure calls when called through a call gate (see Section 4.8.4, “Accessing
a Code Segment Through a Call Gate”). The processor does not permit transfer of execution to
an exception- or interrupt-handler procedure in a less privileged code segment (numerically
greater privilege level) than the CPL.
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An attempt to violate this rule results in a general-protection exception (#GP). The protection
mechanism for exception- and interrupt-handler procedures is different in the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
calls to exception and interrupt handlers.

® The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt
is generated with an INT n, INT 3, or INTO instruction. Here, the CPL must be less than or
equal to the DPL of the gate. This restriction prevents application programs or procedures
running at privilege level 3 from using a software interrupt to access critical exception
handlers, such as the page-fault handler, providing that those handlers are placed in more
privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege
rules effectively impose restrictions on the privilege levels at which exception and interrupt-
handling procedures can run. Either of the following techniques can be used to avoid privilege-
level violations.

® The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). If the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level 0. This
handler would always run, regardless of the CPL that the interrupted program or task is
running at.

5.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, RF, and NT flags in the EFLAGS register, after they are saved on the stack.)
Clearing the TF flag prevents instruction tracing from affecting interrupt response. A subsequent
IRET instruction restores the TF (and VM, RF, and NT) flags to the values in the saved contents
of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles
the IF flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce-
dure through an interrupt gate, the processor clears the IF flag to prevent other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF flag
to its value in the saved contents of the EFLAGS register on the stack. Accessing a handler
procedure through a trap gate does not affect the IF flag.
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5.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch
results. Handling an exception or interrupt with a separate task offers several advantages:

® The entire context of the interrupted program or task is saved automatically.

® A new TSS permits the handler to use a new privilege level 0 stack when handling the
exception or interrupt. If an exception or interrupt occurs when the current privilege level 0
stack is corrupted, accessing the handler through a task gate can prevent a system crash by
providing the handler with a new privilege level 0 stack.

® The handler can be further isolated from other tasks by giving it a separate address space.
This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine
state that must be saved on a task switch makes it slower than using an interrupt gate, resulting
in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A switch to the
handler task is handled in the same manner as an ordinary task switch (see Section 6.3, “Task
Switching™). The link back to the interrupted task is stored in the previous task link field of the
handler task’s TSS. If an exception caused an error code to be generated, this error code is copied
to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually
two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating
system) and the hardware scheduler (part of the processor's interrupt mechanism). The software
scheduler needs to accommodate interrupt tasks that may be dispatched when interrupts are
enabled.

NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task
must disable interrupts between the time it completes handling the interrupt
and the time it executes the IRET instruction. This action prevents another
interrupt from occurring while the interrupt task’s TSS is still marked busy,
which would cause a general-protection (#GP) exception.
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TSS for Interrupt-
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Figure 5-5. Interrupt Task Switch
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5.13 ERROR CODE

When an exception condition is related to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of a Tl flag and RPL field, the error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that an event external to the
program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the
error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refers to a descriptor in the GDT or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the Tl
flag indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

31 3

—XxXm| o

—Oo— |+

Reserved Segment Selector Index

Figure 5-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(that is, all bits in the lower word are clear). A null error code indicates that the error was not
caused by a reference to a specific segment or that a null segment descriptor was referenced in
an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt
14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler, so the handler must remove the error code before
executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is hormally produced
for those exceptions.
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5.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE

In 64-bit mode, interrupt and exception handling is similar to what has been described for non-
64-bit modes. The following are the exceptions:

® Allinterrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI
handler).

® The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero
extended stores.

® The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this
push is conditional and based on a change in current privilege level (CPL).

® The new SS is set to NULL if there is a change in CPL.
® |IRET behavior changes.
® There is a new interrupt stack-switch mechanism.

® The alignment of interrupt stack frame is different.

5.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer
(RIP). The 64-bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine
to be located anywhere in the linear-address space. See Figure 5-7.

Interrupt/Trap Gate

31 0
Reserved 12
31 0
Offset 63..32 8
31 16 1514 1312 11 8 7 54 2 0
Offset 31..16 P B 0| TYPE 0 0 O|o|o]| IST |4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 5-7. 64-Bit IDT Gate Descriptors
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In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight
bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not identical to legacy 32-bit
interrupt gates. The type field (bits 11:8 in bytes 7:4) is described in Table 3-2. The Interrupt
Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack switching mechanisms
described in Section 5.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of the
target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is
generated if software attempts to reference an interrupt gate with a target RIP that is not in
canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment
(CS.L =1, CS.D = 0). If the target is not a 64-bit code segment, a general-protection exception
(#GP) is generated with the IDT vector number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in 1A-32e mode (64-bit mode and compat-
ibility mode). Legacy 32-bit interrupt or trap gate types (OEH or OFH) are redefined in 1A-32¢
mode as 64-bit interrupt and trap gate types. No 32-bit interrupt or trap gate type exists in |A-32¢
mode. If a reference is made to a 16-bit interrupt or trap gate (06H or 07H), a general-protection
exception (#GP(0)) is generated.

5.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-
stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of inter-
rupt stack-frame pushes is fixed at eight bytes. This is because only 64-bit mode gates can be
referenced. 64-bit mode also pushes SS:RSP unconditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a
consistent interrupt-stackframe size across all interrupts. Interrupt service-routine entry points
that handle interrupts generated by the INTn instruction or external INTR# signal can push an
additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes
a stack frame to be pushed. This causes the stack frame and succeeding pushes done by an inter-
rupt handler to be at arbitrary alignments. In 1A-32e mode, the RSP is aligned to a 16-byte
boundary before pushing the stack frame. The stack frame itself is aligned on a 16-byte
boundary when the interrupt handler is called. The processor can arbitrarily realign the new RSP
on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary
before interrupts are re-enabled. This allows the stack to be formatted for optimal storage of
16-byte XMM registers, which enables the interrupt handler to use faster 16-byte aligned loads
and stores (MOVAPS rather than MOV UPS) to save and restore XMM registers.

Although the RSP alignment is always performed when LMA =1, it is only of consequence for
the kernel-mode case where there is no stack switch or IST used. For a stack switch or IST, the
OS would have presumably put suitably aligned RSP values in the TSS.
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5.14.3 IRET in IA-32e Mode

In 1A-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this
requirement. The stack is formatted in such a way that for actions where IRET is required, the
8-byte IRET operand size works correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop
eight byte items off the stack. This is accomplished by preceding the IRET with a 64-bit
operand-size prefix. The size of the pop is determined by the address size of the instruction. The
SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in
64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only if there is a CPL
change. This allows legacy applications to execute properly in compatibility mode when using
the IRET instruction. 64-bit interrupt service routines that exit with an IRET unconditionally
pop SS:RSP off of the interrupt stack frame, even if the target code segment is running in 64-bit
mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

In 1A-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode
is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded with a NULL selector. As
part of the stack switch mechanism, an interrupt or exception sets the new SS to NULL, instead
of fetching a new SS selector from the TSS and loading the corresponding descriptor from the
GDT or LDT. The new SS selector is set to NULL in order to properly handle returns from
subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is
pushed on the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to
tell the processor not to load a new SS descriptor.

5.14.4 Stack Switching in IA-32e Mode

The legacy 1A-32 architecture provides a mechanism to automatically switch stack frames in
response to an interrupt. The 64-bit extensions implement a modified version of the legacy
stack-switching mechanism and an alternative stack-switching mechanism called the interrupt
stack table (IST).

In legacy modes, the legacy 1A-32 stack-switch mechanism is unchanged. In 1A-32e mode, the
legacy stack-switch mechanism is modified. When stacks are switched as part of a 64-bit mode
privilege-level change (resulting from an interrupt), a new SS descriptor is not loaded. 1A-32¢
mode loads only an inner-level RSP from the TSS. The new SS selector is forced to NULL and
the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (CALLF, INT, interrupts and exceptions). The old SS and RSP are saved on
the new stack (Figure 5-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.
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In summary, a stack switch in 1A-32e mode works like the legacy stack switch, except that a new
SS selector is not loaded from the TSS. Instead, the new SS is forced to NULL.

+20

+16

+12
+8
+4

Legacy Mode

Handler’s Stack

SS

ESP

EFLAGS

CS

EIP

Error Code

Stack Usage with

Privilege-Level Change

-«— Stack Pointer After
Transfer to Handler

—

I1A-32e Mode

Handler’s Stack

SS

ESP

EFLAGS

CS

EIP

Error Code

+40
+32
+24
+16
+8

5.14.5

Figure 5-8. IA-32e Mode Stack Usage After Privilege Level Change

Interrupt Stack Table

In 1A-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to
the modified legacy stack-switching mechanism described above. This mechanism uncondition-
ally switches stacks when it is enabled. It can be enabled on an individual interrupt-vector basis
using a field in the IDT entry. This means that some interrupt vectors can use the modified
legacy mechanism and others can use the IST mechanism.

The IST mechanism is only available in 1A-32e mode. It is part of the 64-bit mode TSS. The
motivation for the IST mechanism is to provide a method for specific interrupts (such as NMI,
double-fault, and machine-check) to always execute on a known good stack. In legacy mode,
interrupts can use the task-switch mechanism to set up a known-good stack by accessing the
interrupt service routine through a task gate located in the IDT. However, the legacy task-switch
mechanism is not supported in 1A-32e mode.
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The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced
by an interrupt-gate descriptor in the interrupt-descriptor table (IDT); see Figure 5-7. The gate
descriptor contains a 3-bit IST index field that provides an offset into the IST section of the TSS.
Using the IST mechanism, the processor loads the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field
is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack.
Interrupt processing then proceeds as normal. If the IST index is zero, the modified legacy stack-
switching mechanism described above is used.

5.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are
arranged in the order of vector numbers. The information contained in these sections are as
follows:

® Exception Class — Indicates whether the exception class is a fault, trap, or abort type.
Some exceptions can be either a fault or trap type, depending on when the error condition
is detected. (This section is not applicable to interrupts.)

® Description — Gives a general description of the purpose of the exception or interrupt
type. It also describes how the processor handles the exception or interrupt.

® Exception Error Code — Indicates whether an error code is saved for the exception. If
one is saved, the contents of the error code are described. (This section is not applicable to
interrupts.)

® Saved Instruction Pointer — Describes which instruction the saved (or return)
instruction pointer points to. It also indicates whether the pointer can be used to restart a
faulting instruction.

® Program State Change — Describes the effects of the exception or interrupt on the state
of the currently running program or task and the possibilities of restarting the program or
task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)
Exception Class  Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be repre-
sented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs
before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class  Trap or Fault. The exception handler can distinguish between traps or
faults by examining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the
exception is a fault or a trap depends on the condition (see Table 5-3). See Chapter 18, “Debug-
ging and Performance Monitoring,” for detailed information about the debug exceptions.

Table 5-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
1/0O read or write breakpoint Trap
General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition
caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction
that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the excep-
tion occurs before the faulting instruction is executed. The program can resume normal execu-
tion upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction
or task switch being executed is allowed to complete before the exception is generated.
However, the new state of the program is not corrupted and execution of the program can
continue reliably.
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Interrupt 2—NMI Interrupt
Exception Class  Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin
or through an NMI request set by the 1/0 APIC to the local APIC. This interrupt causes the NMI
interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of
CS and EIP registers point to the next instruction to be executed at the point the interrupt is
taken. See Section 5.5, “Exception Classifications,” for more information about when the
processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
generated. A program or task can thus be restarted upon returning from an interrupt handler
without loss of continuity, provided the interrupt handler saves the state of the processor before
handling the interrupt and restores the processor’s state prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)
Exception Class  Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be
generated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT 3 instruction. (The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode.) The operating system or a debugging tool can use a data segment mapped to the same
physical address space as the code segment to place an INT 3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set
breakpoints with the debug registers. (See Section 18.3.2, “Breakpoint Exception (#BP)—Inter-
rupt Vector 3,” for information about the breakpoint exception.) If more breakpoints are needed
beyond what the debug registers allow, the INT 3 instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT n instruction with
an operand of 3. The action of this instruction (INT 3) is slightly different than that of the INT 3
instruction (see “INTn/INTO/INT3—Call to Interrupt Procedure” in Chapter 3, “Instruction Set
Reference, A-M,” in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of
the program is essentially unchanged because the INT 3 instruction does not affect any register
or memory locations. The debugger can thus resume the suspended program by replacing the
INT 3 instruction that caused the breakpoint with the original opcode and decrementing the
saved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)
Exception Class  Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over-
flow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. These instructions set the OF and CF flags in the EFLAGS register to indicate signed
overflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag can be tested directly or the INTO instruction can be used. The benefit of using the
INTO instruction is that if the overflow exception is detected, an exception handler can be called
automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the
program is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The program can thus resume normal execution upon returning from the
overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)
Exception Class  Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executed. The BOUND instruction checks that a signed array index is within the upper and
lower bounds of an array located in memory. If the array index is not within the bounds of the
array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for
the BOUND instruction are not modified. Returning from the BOUND-range-exceeded excep-
tion handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class  Fault.

Description

Indicates that the processor did one of the following things:

Attempted to execute an invalid or reserved opcode.

Attempted to execute an instruction with an operand type that is invalid for its accompa-
nying opcode; for example, the source operand for a LES instruction is not a memory
location.

Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an 1A-32 processor that
does not support the MMX technology or SSE/SSE2/SSE3 extensions, respectively.
CPUID feature flags MMX (bit 23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0)
indicate support for these extensions.

Attempted to execute an MMX instruction or SSE/SSE2/SSE3 SIMD instruction (with the
exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH instructions) when the EM flag in control register CRO is set (1).

Attempted to execute an SSE/SE2/SSE3 instruction when the OSFXSR bit in control
register CR4 is clear (0). Note this does not include the following SSE/SSE2/SSE3 instruc-
tions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh, SFENCE, LFENCE,
MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW,
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW,
PSADBW, PSHUFW, PADDQ, and PSUBQ.

Attempted to execute an SSE/SSE2/SSE3 instruction on an 1A-32 processor that causes a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is
clear (0).

Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction pointer still
points at the UD2 instruction.

Detected a LOCK prefix that precedes an instruction that may not be locked or one that
may be locked but the destination operand is not a memory location.

Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

Attempted to execute the RSM instruction when not in SMM mode.

In the Pentium 4, Intel Xeon, and P6 family processors, this exception is not generated until an
attempt is made to retire the result of executing an invalid instruction; that is, decoding and spec-
ulatively attempting to execute an invalid opcode does not generate this exception. Likewise, in
the Pentium processor and earlier 1A-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 5.5, “Exception
Classifications,” for general rules for taking of interrupts and exceptions.)
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The opcodes D6 and F1 are undefined opcodes that are reserved by the 1A-32 architecture.
These opcodes, even though undefined, do not generate an invalid opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
instruction is not executed.
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Interrupt 7—Device Not Available Exception (#¥NM)
Exception Class  Fault.

Description
Indicates one of the following things:
The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in control
register CRO was set (1). See the paragraph below for the special case of the WAIT/FWAIT
instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register
CRO were set, regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the
exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CR0O was set and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A
device-not-available exception is then generated each time an x87 FPU floating-point instruc-
tion is encountered, allowing an exception handler to call floating-point instruction emulation
routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87
floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the
x87 FPU, XMM, and MXCSR registers were not saved. When the TS flag is set and the EM flag
is clear, the processor generates a device-not-available exception each time an x87 floating-
point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception of the instruc-
tions listed above). The exception handler can then save the context of the x87 FPU, XMM, and
MXCSR registers before it executes the instruction. See Section 2.5, “Control Registers,” for
more information about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or
FWAIT instructions should generate a device-not-available exception. It extends the function of
the TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save the context of the x87 FPU before the WAIT or FWAIT instruction is executed. The MP
flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For programs
running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the
Intel 487 SX coprocessors, the MP flag should always be set; for programs running on the
Intel486 SX processor, the MP flag should be clear.

Exception Error Code

None.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the
WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc-
tion that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed
to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the
context of the x87 FPU, clear the TS flag, and continue execution at the interrupted floating-
point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)
Exception Class  Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for
a prior exception. Normally, when the processor detects another exception while trying to call
an exception handler, the two exceptions can be handled serially. If, however, the processor
cannot handle them serially, it signals the double-fault exception. To determine when two faults
need to be signalled as a double fault, the processor divides the exceptions into three classes:
benign exceptions, contributory exceptions, and page faults (see Table 5-4).

Table 5-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-5 shows the various combinations of exception classes that cause a double fault to be
generated. A double-fault exception falls in the abort class of exceptions. The program or task
cannot be restarted or resumed. The double-fault handler can be used to collect diagnostic infor-
mation about the state of the machine and/or, when possible, to shut the application and/or
system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this
behavior is outside the domain of Table 5-5. Any further faults generated while the processor is
attempting to transfer control to the appropriate fault handler could still lead to a double-fault
sequence.
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Table 5-5. Conditions for Generating a Double Fault

Second Exception

First Exception

Benign

Contributory

Page Fault

Benign

Contributory

Page Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions

Handle Exceptions
Serially

Generate a Double Fault

Generate a Double Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double Fault

Serially

If another exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of an HLT instruc-
tion. In this mode, the processor stops executing instructions until an NMI interrupt, SMI inter-
rupt, hardware reset, or INIT# is received. The processor generates a special bus cycle to
indicate that it has entered shutdown mode. Software designers may need to be aware of the
response of hardware when it goes into shutdown mode. For example, hardware may turn on an
indicator light on the front panel, generate an NMI interrupt to record diagnostic information,
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are
pending during shutdown, they will be handled after an wake event from shutdown is processed
(for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hardware reset can restart the processor. Likewise, if the shutdown occurs while executing in
SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the double-fault exception handler is to
collect all possible context information for use in diagnostics and then close the application
and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted,
the handler cannot be invoked and the processor must be reset.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class  Abort. (Intel reserved; do not use. Recent 1A-32 processors do not
generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a
page or segment violation while transferring the middle portion of an Intel 387 math copro-
cessor operand. The P6 family, Pentium, and Intel486 processors do not generate this exception;
instead, this condition is detected with a general protection exception (#GP), interrupt 13.
Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program
or task cannot be resumed or restarted. The only available action of the exception handler is to
save the instruction pointer and reinitialize the x87 FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class  Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task
switch or during the execution of instructions that use information from a TSS. Table 5-6 shows
the conditions that cause an invalid TSS exception to be generated.

Table 5-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH
for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor indicates
an inactive task.

TSS segment selector index

During an IRET task switch, an attempt to load the backlink limit faults.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor which is
not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS descriptor is not writable.

TSS segment selector index

Stores to the old TSS encounter a fault condition.

TSS segment selector index

The old TSS descriptor is not writable for a jump or IRET task switch.

TSS segment selector index

The new TSS backlink is not writable for a call or exception task switch.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the new
TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index

LDT or LDT not present.

Stack segment selector index

The stack segment selector exceeds descriptor table limit.

Stack segment selector index

The stack segment selector is NULL.

Stack segment selector index

The stack segment descriptor is a non-data segment.

Stack segment selector index

The stack segment is not writable.

Stack segment selector index

The stack segment DPL != CPL.

Stack segment selector index

The stack segment selector RPL != CPL.
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Table 5-6. Invalid TSS Conditions (Contd.)

Error Code Index

Invalid Condition

Code segment selector index

The code segment selector exceeds descriptor table limit.

Code segment selector index

The code segment selector is NULL.

Code segment selector index

The code segment descriptor is not a code segment type.

Code segment selector index

The nonconforming code segment DPL != CPL.

Code segment selector index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL >
DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL >
DPL.

TSS segment selector index

The TSS segment selector is NULL for LTR.

TSS segment selector index

The TSS segment selector has the Tl bit set for LTR.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

TSS segment selector index

The TSS segment descriptor is an available 286 TSS type in IA-32e
mode.

TSS segment selector index

The TSS segment upper descriptor is not the correct type.

TSS segment selector index

The TSS segment descriptor contains a non-canonical base.

TSS segment selector index

There is a limit violation in attempting to load SS selector or ESP from a
TSS on a call or exception which changes privilege levels in legacy
mode.

TSS segment selector index

There is a limit violation or canonical fault in attempting to load RSP or
IST from a TSS on a call or exception which changes privilege levels in
IA-32e mode.

This exception can generated either in the context of the original task or in the context of the
new task (see Section 6.3, “Task Switching”). Until the processor has completely verified the
presence of the new TSS, the exception is generated in the context of the original task. Once the
existence of the new TSS is verified, the task switch is considered complete. Any invalid-TSS
conditions detected after this point are handled in the context of the new task. (A task switch is
considered complete when the task register is loaded with the segment selector for the new TSS
and, if the switch is due to a procedure call or interrupt, the previous task link field of the new

TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside
the faulting TSS context is not recommended because the processor state may not be consistent.

Vol. 3A 5-41



INTERRUPT AND EXCEPTION HANDLING

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception was caused by an event external to the currently running program (for example, if
an external interrupt handler using a task gate attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved
contents of CS and EIP registers point to the instruction that invoked the task switch. If the
exception condition was detected after the task switch was carried out, the saved contents of CS
and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition
than causes the fault. See Section 6.3, “Task Switching,” for more information on the task switch
process and the possible recovery actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-
to-new-task point. If it occurs before the commit point, no program state change occurs. If it
occurs after the commit point (when the segment descriptor information for the new segment
selectors have been loaded in the segment registers), the processor will load all the state infor-
mation from the new TSS before it generates the exception. During a task switch, the processor
first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers
are loaded but not checked for validity and therefore may not be usable for referencing memory.
The invalid TSS handler should not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. The exception handler
should load all segment registers before trying to resume the new task; otherwise, general-
protection exceptions (#GP) may result later under conditions that make diagnosis more difficult.
The Intel recommended way of dealing situation is to use a task for the invalid TSS exception
handler. The task switch back to the interrupted task from the invalid-TSS exception-handler task
will then cause the processor to check the registers as it loads them from the TSS.
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Interrupt 11—Segment Not Present (#NP)
Exception Class  Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate
this exception during any of the following operations:

* While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present
segment while loading the SS register causes a stack fault exception (#SS) to be
generated.] This situation can occur while performing a task switch.

® While attempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT while loading the LDTR during a task switch operation causes an invalid-TSS
exception (#TS) to be generated.

®* When executing the LTR instruction and the TSS is marked not present.

® While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is
otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. If the exception handler loads the segment and returns, the inter-
rupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (because gates do not correspond to segments). The operating system may use the
present flag for gate descriptors to trigger exceptions of special significance to the operating
system.

A contributory exception or page fault that subsequently referenced a not-present segment
would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the exception resulted from either:

® anexternal event (NMI or INTR) that caused an interrupt, which subsequently referenced a
not-present segment

® abenign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for
an interrupt being serviced references a not-present gate. Such an event could be generated by
an INT instruction or a hardware interrupt.
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Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the
exception. If the exception occurred while loading segment descriptors for the segment selectors
inanew TSS, the CS and EIP registers point to the first instruction in the new task. If the excep-
tion occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that invoked the access (for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES,
FS, GS, or LDTR), a program-state change does accompany the exception because the register
is not loaded. Recovery from this exception is possible by simply loading the missing segment
into memory and setting the present flag in the segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state
change does not accompany the exception. Recovery from this exception is possible merely by
setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3, “Task Switching”). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The segment-not-present exception handler
should not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how
to handle this situation.)
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Interrupt 12—Stack Fault Exception (#SS)
Exception Class  Fault.

Description
Indicates that one of the following stack related conditions was detected:

® A limit violation is detected during an operation that refers to the SS register. Operations
that can cause a limit violation include stack-oriented instructions such as POP, PUSH,
CALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,
SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space for allocating local variables.

®* A not-present stack segment is detected when attempting to load the SS register. This
violation can occur during the execution of a task switch, a CALL instruction to a different
privilege level, a return to a different privilege level, an LSS instruction, or a MOV or POP
instruction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
case of a limit violation) or loading the missing stack segment into memory (in the case of a not-
present violation.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during
an inter-privilege-level call, the error code contains a segment selector for the segment that
caused the exception. Here, the exception handler can test the present flag in the segment
descriptor pointed to by the segment selector to determine the cause of the exception. For a
normal limit violation (on a stack segment already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. However, when the exception results from attempting to load a not-present stack
segment during a task switch, the CS and EIP registers point to the first instruction of the new
task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
instruction that generated the fault is not executed. Here, the instruction can be restarted after
the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see
Section 6.3, “Task Switching”). Here, the processor loads all the state information from the new
TSS (without performing any additional limit, present, or type checks) before it generates the
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exception. The stack fault handler should thus not rely on being able to use the segment selectors
found in the CS, SS, DS, ES, FS, and GS registers without causing another exception. The
exception handler should check all segment registers before trying to resume the new task;
otherwise, general protection faults may result later under conditions that are more difficult to
diagnose. (See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)
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Interrupt 13—General Protection Exception (#GP)

Exception Class  Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-
protection violations.” The conditions that cause this exception to be generated comprise all the
protection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
segment-not-present, stack-fault, or page-fault exceptions). The following conditions cause
general-protection exceptions to be generated:

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

Exceeding the segment limit when referencing a descriptor table (except during a task
switch or a stack switch).

Transferring execution to a segment that is not executable.
Writing to a code segment or a read-only data segment.
Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless the
selector comes from a TSS during a task switch, in which case an invalid-TSS exception
occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code
segment.

Loading the SS register with the segment selector of an executable segment or a null
segment selector.

Loading the CS register with a segment selector for a data segment or a null segment
selector.

Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

Switching to a busy task during a call or jump to a TSS.

Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the
current LDT. TSS descriptors can only reside in the GDT. This condition causes a #TS
exception during an IRET task switch.

Violating any of the privilege rules described in Chapter 4, “Protection.”

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).
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® Loading the CRO register with a set NW flag and a clear CD flag.

® Referencing an entry in the IDT (following an interrupt or exception) that is not an
interrupt, trap, or task gate.

® Attempting to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler’s code segment DPL is greater than 0.

® Attempting to write a 1 into a reserved bit of CR4.

® Attempting to execute a privileged instruction when the CPL is not equal to 0 (see
Section 4.9, “Privileged Instructions,” for a list of privileged instructions).

®  Writing to a reserved bit in an MSR.
® Accessing a gate that contains a null segment selector.

® Executing the INT n instruction when the CPL is greater than the DPL of the referenced
interrupt, trap, or task gate.

® The segment selector in a call, interrupt, or trap gate does not point to a code segment.

® The segment selector operand in the LLDT instruction is a local type (Tl flag is set) or
does not point to a segment descriptor of the LDT type.

® The segment selector operand in the LTR instruction is local or points to a TSS that is not
available.

® The target code-segment selector for a call, jump, or return is null.

® |f the PAE and/or PSE flag in control register CR4 is set and the processor detects any
reserved bits in a page-directory-pointer-table entry set to 1. These bits are checked during
a write to control registers CR0, CR3, or CR4 that causes a reloading of the page-
directory-pointer-table entry.

® Attempting to write a non-zero value into the reserved bits of the MXCSR register.

® Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory
location that is not aligned on a 16-byte boundary when the instruction requires 16-byte
alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the exception
occurs while attempting to call an interrupt handler, the interrupted program can be restartable,
but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was
detected while loading a segment descriptor, the error code contains a segment selector to or IDT
vector number for the descriptor; otherwise, the error code is 0. The source of the selector in an
error code may be any of the following:

® Anoperand of the instruction.
® A selector from a gate which is the operand of the instruction.
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® A selector from a TSS involved in a task switch.
® IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because
the invalid instruction or operation is not executed. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and restart the program or
task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (see Section 6.3, “Task Switching™). If it occurs before the commit
point, no program state change occurs. If it occurs after the commit point, the processor will load
all the state information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The general-protection exception handler should
thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how
to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:

® If the memory address is in a non-canonical form.

® |f a segment descriptor memory address is in hon-canonical form.

® If the target offset in a destination operand of a call or jmp is in a non-canonical form.
® If a code segment or 64-bit call gate overlaps non-canonical space.

® |f the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the
L-bit set and the D-bit clear.

® If the EFLAGS.NT bitis setin IRET.
® |f the stack segment selector of IRET is null when going back to compatibility mode.
® If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

® If anull stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3
and 64-bit mode.

® |f the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.

® |f the segment descriptor pointed to by the segment selector in the destination operand is a
code segment and it has both the D-bit and the L-bit set.
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® |f the segment descriptor from a 64-bit call gate is in non-canonical space.

® |f the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-
gate.

® |f the upper type field of a 64-bit call gate is not 0x0.
® If an attempt is made to load a null selector in the SS register in compatibility mode.
® If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.

® [fanattempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode
where RPL is not equal to CPL.

® If an attempt is made to clear CRO.PG while 1A-32e mode is enabled.
® [fan attempt is made to set a reserved bit in CR3, CR4 or CRS8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class  Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected
one of the following conditions while using the page-translation mechanism to translate a linear
address to a physical address:

The P (present) flag in a page-directory or page-table entry needed for the address
translation is clear, indicating that a page table or the page containing the operand is not
present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (that is, a
procedure running in user mode attempts to access a supervisor-mode page).

Code running in user mode attempts to write to a read-only page. In the Intel486 and later
processors, if the WP flag is set in CRO, the page fault will also be triggered by code
running in supervisor mode that tries to write to a read-only user-mode page.

An instruction fetch to a linear address that translates to a physical address in a memory
page with the execute-disable bit set (for an 1A-32 processor whose enhanced paging
structures support the execute disable bit, see Section 3.10, “PAE-Enabled Paging in 1A-32e
Mode™).

One or more reserved bits in page directory entry are set to 1. See description below of
RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the program or
task without any loss of program continuity. It can also restart the program or task after a privi-
lege violation, but the problem that caused the privilege violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of informa-
tion to aid in diagnosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different from that
for other exceptions (see Figure 5-9). The error code tells the exception handler four
things:

— The P flag indicates whether the exception was due to a not-present page (0) or to
either an access rights violation or the use of a reserved bit (1).

— The WI/R flag indicates whether the memory access that caused the exception was a
read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.
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— The RSVD flag indicates that the processor detected 1s in reserved bits of the page
directory, when the PSE or PAE flags in control register CR4 are set to 1. (The PSE
flag is only available in the Pentium 4, Intel Xeon, P6 family, and Pentium processors,
and the PAE flag is only available on the Pentium 4, Intel Xeon, and P6 family
processors. In earlier 1A-32 processor, the bit position of the RSVD flag is reserved.)

— The I/D flag indicates whether the exception was caused by an instruction fetch. This
flag is reserved if the processor does not support execute-disable bit or execute disable
bit feature is not enabled (see Section 3.10).

31
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Reserved

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

u/s 0 The access causing the fault originated when the processor
was executing in supervisor mode.
1 The access causing the fault originated when the processor
was executing in user mode.

RSVD O The fault was not caused by reserved bit violation.

1 The fault was caused by reserved bits set to 1 in a page directory.
I/ID 0 The fault was not caused by an instruction fetch.

1 The fault was caused by an instruction fetch.

Figure 5-9. Page-Fault Error Code

® The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address that generated the exception. The page-fault handler can use this address to
locate the corresponding page directory and page-table entries. Another page fault can
potentially occur during execution of the page-fault handler; the handler should save the
contents of the CR2 register before a second page fault can occur.! If a page fault is caused
by a page-level protection violation, the access flag in the page-directory entry is set when
the fault occurs. The behavior of 1A-32 processors regarding the access flag in the corre-
sponding page-table entry is model specific and not architecturally defined.

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier
page fault is being delivered, the faulting linear address of the second fault will overwrite the contents of
CR2 (replacing the previous address). These updates to CR2 occur even if the page fault results in a
double fault or occurs during the delivery of a double fault.
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Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. If the page-fault exception occurred during a task switch, the CS and EIP registers
may point to the first instruction of the new task (as described in the following “Program State
Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep-
tion handler has corrected the violation (for example, loaded the missing page into memory),
execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change,
as follows. During a task switch, a page-fault exception can occur during any of following
operations:

®  While writing the state of the original task into the TSS of that task.

® While reading the GDT to locate the TSS descriptor of the new task.

® While reading the TSS of the new task.

® While reading segment descriptors associated with segment selectors from the new task.

® While reading the LDT of the new task to verify the segment registers stored in the new
TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer
refers to the first instruction of the new task, not to the instruction which caused the task switch
(or the last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from
the new TSS (without performing any additional limit, present, or type checks) before it gener-
ates the exception. The page-fault handler should thus not rely on being able to use the segment
selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in
this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack
switch does not cause the processor to use an invalid stack pointer (SS:ESP). Software written
for 16-bit IA-32 processors often use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop
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When executing this code on one of the 32-bit 1A-32 processors, it is possible to get a page fault,
general-protection fault (#GP), or alignment check fault (#AC) after the segment selector has
been loaded into the SS register but before the ESP register has been loaded. At this point, the
two parts of the stack pointer (SS and ESP) are inconsistent. The new stack segment is being
used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a
well defined stack (that is, the handler is a task or a more privileged procedure). However, if the
exception handler is called at the same privilege level and from the same task, the processor will
attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the
faulting task (with trap or interrupt gates), software executing at the same privilege level as the
exception handler should initialize a new stack by using the LSS instruction rather than a pair
of MOV instructions, as described earlier in this note. When the exception handler is running at
privilege level 0 (the normal case), the problem is limited to procedures or tasks that run at priv-
ilege level 0, typically the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)
Exception Class  Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CRO
must be set for an interrupt 16 (floating-point error exception) to be generated. (See Section 2.5,
“Control Registers,” for a detailed description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XF) are signaled through interrupt 19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-
point error conditions:

® Invalid operation (#1)
— Stack overflow or underflow (#1S)
— Invalid arithmetic operation (#1A)

® Divide-by-zero (#2)

® Denormalized operand (#D)

®  Numeric overflow (#0)

®  Numeric underflow (#U)

® Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception
type, the x87 FPU provides a flag in the x87 FPU status register and a mask bit in the x87 FPU
control register. If the x87 FPU detects a floating-point error and the mask bit for the exception
type is set, the x87 FPU handles the exception automatically by generating a predefined (default)
response and continuing program execution. The default responses have been designed to
provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87 FPU does
the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point
exception (#MF).
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Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU
checks for pending x87 FPU floating-point exceptions (as described in step 2 above). Pending
x87 FPU floating-point exceptions are ignored for “non-waiting” x87 FPU instructions, which
include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, FNSTENYV, and FNSAVE
instructions. Pending x87 FPU exceptions are also ignored when executing the state manage-
ment instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-
point-error exception handler can determine the error condition that caused the exception from
the settings of the flags in the x87 FPU status word. See “Software Exception Handling” in
Chapter 8, “Programming with the x87 FPU,” in the 1A-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruc-
tion that was about to be executed when the floating-point-error exception was generated. This
is not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the x87 FPU instruction pointer register. See “x87 FPU
Instruction and Operand (Data) Pointers” in Chapter 8, “Programming with the x87 FPU,” in the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for more information about
information the FPU saves for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because
the handling of the exception is delayed until the next waiting x87 FPU floating-point or
WAIT/FWAIT instruction following the faulting instruction. The x87 FPU, however, saves
sufficient information about the error condition to allow recovery from the error and re-execu-
tion of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87
FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in front of a
dependent instruction to force a pending x87 FPU floating-point exception to be handled before
the dependent instruction is executed. See “x87 FPU Exception Synchronization” in Chapter 8,
“Programming with the x87 FPU,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information about synchronization of x87 floating-point-error
exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class  Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking
was enabled. Alignment checks are only carried out in data (or stack) accesses (not in code
fetches or system segment accesses). An example of an alignment-check violation is a word
stored at an odd byte address, or a doubleword stored at an address that is not an integer multiple
of 4. Table 5-7 lists the alignment requirements various data types recognized by the processor.

Table 5-7. Alighment Requirements by Data Type

Data Type

Address Must Be Divisible By

Word

Doubleword

Single-precision floating-point (32-bits)
Double-precision floating-point (64-bits)

Double extended-precision floating-point (80-bits)
Quadword

Double quadword

Segment Selector

32-bit Far Pointer

48-bit Far Pointer

32-bit Pointer

GDTR, IDTR, LDTR, or Task Register Contents
FSTENV/FLDENV Save Area

FSAVE/FRSTOR Save Area

Bit String

0 o o0 » b DN

o \CEE \N]

4
4 or 2, depending on operand size

4 or 2, depending on operand size

2 or 4 depending on the operand-size attribute.

Note that the alignment check exception (#AC) is generated only for data types that must be
aligned on word, doubleword, and quadword boundaries. A general-protection exception (#GP)
is generated 128-bit data types that are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:

®* AM flag in CRO register is set.
® AC flag in the EFLAGS register is set.

® The CPL is 3 (protected mode or virtual-8086 mode).
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Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user
mode). Memory references that default to privilege level 0, such as segment descriptor loads, do
not generate alignment-check exceptions, even when caused by a memory reference made from
privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
level 3 can generate an alignment-check exception. Although application programs do not
normally store these registers, the fault can be avoided by aligning the information stored on an
even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure, the first
byte of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC)
is enabled when executing these instructions (and CPL is 3), a misaligned memory operand can
cause either an alignment-check exception or a general-protection exception (#GP) depending
on the 1A-32 processor implementation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2
State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3, “Instruc-
tion Set Reference, A-M,” in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 2A).

The MOVUPS and MOVUPD instructions perform 128-bit unaligned loads or stores. They do
not generate general-protection exceptions (#GP) when operands are not aligned on a 16-byte
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) are generated
when instructions are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause align-
ment-check faults. These instructions are rarely needed by application programs.
Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is not executed.
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Interrupt 18—Machine-Check Exception (#MC)
Exception Class  Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external
agent detected a bus error. The machine-check exception is model-specific, available only on
the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The implementation of the
machine-check exception is different between the Pentium 4, Intel Xeon, P6 family, and
Pentium processors, and these implementations may not be compatible with future 1A-32
processors. (Use the CPUID instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the
BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family processors and the
BUSCHKH# pin on the Pentium processor. When one of these pins is enabled, asserting the pin
causes error information to be loaded into machine-check registers and a machine-check excep-
tion is generated.

The machine-check exception and machine-check architecture are discussed in detail in
Chapter 14, “Machine-Check Architecture.” Also, see the data books for the individual proces-
sors for processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check
state registers are directly associated with the error that caused the machine-check exception to
be generated (see Section 14.3.1.3, “IA32_MCG_STATUS MSR,” and Section 14.3.2.5,
“lA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved
contents of CS and EIP registers are directly associated with the error that caused the machine-
check exception to be generated; if the flag is clear, the saved instruction pointer may not be
associated with the error (see Section 14.3.1.3, “1A32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the
error.
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Program State Change
The machine-check mechanism is enabled by setting the MCE flag in control register CR4.

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change
always accompanies a machine-check exception, and an abort class exception is generated. For
abort exceptions, information about the exception can be collected from the machine-check
MSRs, but the program cannot generally be restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear),
a machine-check exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XF)
Exception Class  Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The
appropriate status flag in the MXCSR register must be set and the particular exception
unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/
SSE2/SSE3 SIMD floating-point instruction:

® Invalid operation (#1)

® Divide-by-zero (#2)

® Denormal operand (#D)

®  Numeric overflow (#0)

®  Numeric underflow (#U)

® Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation
exceptions; that is, they are detected before any arithmetic operation occurs. The numeric under-
flow, numeric overflow, and inexact result exceptions are post-computational exceptions.

See "SIMD Floating-Point Exceptions"”, in Chapter 11, “Programming with Streaming SIMD
Extensions 2 (SSE3),” of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1,
for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:

® It handles the exception automatically by producing the most reasonable result and
allowing program execution to continue undisturbed. This is the response to masked
exceptions.

® |t generates a SIMD floating-point exception, which in turn invokes a software exception
handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask
bit in the MXCSR register. If an exception is masked (the corresponding mask bit in the MXCSR
register is set), the processor takes an appropriate automatic default action and continues with
the computation. If the exception is unmasked (the corresponding mask bit is clear) and the
operating system supports SIMD floating-point exceptions (the OSXMMEXCPT flag in control
register CR4 is set), a software exception handler is invoked through a SIMD floating-point
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the
operating system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.

Vol. 3A 5-61



INTERRUPT AND EXCEPTION HANDLING

Note that because SIMD floating-point exceptions are precise and occur immediately, the situ-
ation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, or another
SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point
exceptions were masked (causing the corresponding exception flag to be set) and the SIMD
floating-point exception was subsequently unmasked, then no exception is generated when the
exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up
of two or four sub-operands), multiple SIMD floating-point exception conditions may be
detected. If no more than one exception condition is detected for one or more sets of sub-oper-
ands, the exception flags are set for each exception condition detected. For example, an invalid
exception detected for one sub-operand will not prevent the reporting of a divide-by-zero excep-
tion for another sub-operand. However, when two or more exceptions conditions are generated
for one sub-operand, only one exception condition is reported, according to the precedences
shown in Table 5-8. This exception precedence sometimes results in the higher priority excep-
tion condition being reported and the lower priority exception conditions being ignored.

Table 5-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum,
minimum, or certain compare and convert operations).

2 QNaN operand?.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exception?.

4 Denormal operand exceptionz.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact

result exception?.

6 (Lowest) Inexact result exception.

NOTES:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower pri-
ority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-by-zero- excep-
tion.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

Exception Error Code

None.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was
executed when the SIMD floating-point exception was generated. This is the faulting instruction
in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the
handling of the exception is immediate unless the particular exception is masked. The available
state information is often sufficient to allow recovery from the error and re-execution of the
faulting instruction if needed.
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Interrupts 32 to 255—User Defined Interrupts
Exception Class  Not applicable.

Description
Indicates that the processor did one of the following things:

® Executed an INT n instruction where the instruction operand is one of the vector numbers
from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the local APIC when the
interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n
instruction or instruction following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or
the INTR signal. The INT n instruction generates the interrupt within the instruction stream.
When the processor receives an INTR signal, it commits all state changes for all previous
instructions before it responds to the interrupt; so, program execution can resume upon returning
from the interrupt handler.
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CHAPTER 6
TASK MANAGEMENT

This chapter describes the 1A-32 architecture’s task management facilities. These facilities are
only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit
tasks and the 16-bit TSS structure, see Section 6.6, “16-Bit Task-State Segment (TSS).” For
information specific to task management in 64-bit mode, see Section 6.7, “Task Management in
64-bit Mode.”

6.1 TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep-
tion handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
all processor execution takes place from within a task. Even simple systems must define at least
one task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1 Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(see Figure 6-1). If an operating system or executive uses the processor’s privilege-level protec-
tion mechanism, the task execution space also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS are loaded into the task register (see Section 2.4.4, “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.
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Figure 6-1. Structure of a Task

6.1.2 Task State

The following items define the state of the currently executing task:

® The task’s current execution space, defined by the segment selectors in the segment
registers (CS, DS, SS, ES, FS, and GS).

® The state of the general-purpose registers.

® The state of the EFLAGS register.

® The state of the EIP register.

® The state of control register CR3.

® The state of the task register.

® The state of the LDTR register.

® The I/O map base address and I/0O map (contained in the TSS).

® Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
® Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.
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6.1.3 Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:
® Aexplicit call to a task with the CALL instruction.

® A explicit jump to a task with the JMP instruction.

* Animplicit call (by the processor) to an interrupt-handler task.

* Animplicit call to an exception-handler task.

® A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
set.

All of these methods for dispatching a task identify the task to be dispatched with a segment
selector that points to a task gate or the TSS for the task. When dispatching a task with a CALL
or JMP instruction, the selector in the instruction may select the TSS directly or a task gate that
holds the selector for the TSS. When dispatching a task to handle an interrupt or exception, the
IDT entry for the interrupt or exception must contain a task gate that holds the selector for the
interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently running task
and the dispatched task. During a task switch, the execution environment of the currently
executing task (called the task’s state or context) is saved in its TSS and execution of the task is
suspended. The context for the dispatched task is then loaded into the processor and execution
of that task begins with the instruction pointed to by the newly loaded EIP register. If the task
has not been run since the system was last initialized, the EIP will point to the first instruction
of the task’s code; otherwise, it will point to the next instruction after the last instruction that the
task executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task),
the TSS segment selector for the calling task is stored in the TSS of the called task to provide a
link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
performs a task switch to handle the interrupt or exception and automatically switches back to
the interrupted task upon returning from the interrupt-handler task or exception-handler task.
This mechanism can also handle interrupts that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CR3) also is reloaded on a task switch, allowing each task to have its own set of page
tables. These protection facilities help isolate tasks and prevent them from interfering with one
another.

If protection mechanisms are not used, the processor provides no protection between tasks. This
is true even with operating systems that use multiple privilege levels for protection. A task
running at privilege level 3 that uses the same LDT and page tables as other privilege-level-3
tasks can access code and corrupt data and the stack of other tasks.
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Use of task management facilities for handling multitasking applications is optional. Multi-
tasking can be handled in software, with each software defined task executed in the context of
a single 1A-32 architecture task.

6.2 TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
® Task-state segment (TSS).

® Task-gate descriptor.

® TSS descriptor.

® Task register.

® NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1  Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the
task-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. The fields of a TSS are divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 6.6, “16-Bit Task-
State Segment (TSS).” For information about 64-bit mode task structures, see Section 6.7, “Task
Management in 64-bit Mode.”
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I/0 Map Base Address Reserved T| 100
Reserved LDT Segment Selector 96
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EBP 60
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EBX 52
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EAX 40
EFLAGS 36
EIP 32
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Reserved ‘ Previous Task Link

l:l Reserved bits. Set to 0.

Figure 6-2. 32-Bit Task-State Segment (TSS)

The processor updates dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:

® General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI,
and EDI registers prior to the task switch.

® Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS
registers prior to the task switch.
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EFLAGS register field — State of the EFAGS register prior to the task switch.
EIP (instruction pointer) field — State of the EIP register prior to the task switch.

Previous task link field — Contains the segment selector for the TSS of the previous task
(updated on a task switch that was initiated by a call, interrupt, or exception). This field
(which is sometimes called the back link field) permits a task switch back to the previous
task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up
when a task is created. The following are static fields:

LDT segment selector field — Contains the segment selector for the task's LDT.

CR3 control register field — Contains the base physical address of the page directory to
be used by the task. Control register CR3 is also known as the page-directory base register
(PDBR).

Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a
logical address made up of the segment selector for the stack segment (SS0, SS1, and SS2)
and an offset into the stack (ESPO, ESP1, and ESP2). Note that the values in these fields
are static for a particular task; whereas, the SS and ESP values will change if stack
switching occurs within the task.

T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise
a debug exception when a task switch to this task occurs (see Section 18.3.1.5, “Task-
Switch Exception Condition”).

1/0 map base address field — Contains a 16-bit offset from the base of the TSS to the 1/0
permission bit map and interrupt redirection bitmap. When present, these maps are stored
in the TSS at higher addresses. The 1/0 map base address points to the beginning of the 1/0
permission bit map and the end of the interrupt redirection bit map. See Chapter 13,
“Input/Output,” in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1,
for more information about the 1/O permission bit map. See Section 15.3, “Interrupt and
Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt
redirection bit map.

If paging is used:

Avoid placing a page boundary in the part of the TSS that the processor reads during a task
switch (the first 104 bytes). The processor may not correctly perform address translations
if a boundary occurs in this area. During a task switch, the processor reads and writes into
the first 104 bytes of each TSS (using contiguous physical addresses beginning with the
physical address of the first byte of the TSS). So, after TSS access begins, if part of the 104
bytes is not physically contiguous, the processor will access incorrect information without
generating a page-fault exception.

Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor
table entries for each all should be marked as read/write.

Task switches are carried out faster if the pages containing these structures are present in
memory before the task switch is initiated.
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6.2.2 TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its Tl flag set (which indicates the
current LDT) causes a general-protection exception (#GP) to be generated during CALLs and
JMPs; it causes an invalid TSS exception (#TS) during IRETs. A general-protection exception
is also generated if an attempt is made to load a segment selector for a TSS into a segment
register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or suspended. A type field with a value of 1001B indicates an inactive task; a value of
1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to detect
an attempt to call a task whose execution has been interrupted. To insure that there is only one
busy flag is associated with a task, each TSS should have only one TSS descriptor that points
to it.

TSS Descriptor

31 242322 212019 1615141312 11 8 7 0
Base 31:24 Glo|o|v :Il_sl)n}.lé Pl P P Base 23:16 4
L : L |o]1 ‘ 0 ‘ B ‘ 1
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT  Segment Limit
P Segment Present

TYPE Segment Type

Figure 6-3. TSS Descriptor
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The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.5, “Segment Descriptors™). When the
G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field must have a value equal to or
greater than 67H, one byte less than the minimum size of a TSS. Attempting to switch to a task
whose TSS descriptor has a limit less than 67H generates an invalid-TSS exception (#TS). A
larger limit is required if an 1/O permission bit map is included or if the operating system stores
additional data. The processor does not check for a limit greater than 67H on a task switch;
however, it does check when accessing the 1/0 permission bit map or interrupt redirection bit
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged
software can perform task switching. However, in multitasking applications, DPLs for some
TSS descriptors may be set to 3 to allow task switching at the application (or user) privilege
level.

6.2.3  TSS Descriptor in 64-bit mode

In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a
64-bit TSS is described in Section 6.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 6-4 ). This expansion also
applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the encoding information for
the segment type field.
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TSS (or LDT) Descriptor

31 1312 8 7 0
Reserved 0 Reserved 12
31 0
Base Address 63:32 8
31 242322 212019 16151413 12 11 8 7 0
A imi D Type
Base 31:24 Glofo|y| Hmit lp| p » Base 23:16 4
19:16
L L |o
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT  Segment Limit
P Segment Present

TYPE Segment Type

Figure 6-4. Format of TSS and LDT Descriptors in 64-bit Mode

6.2.4  Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see
Figure 2-5). This information is copied from the TSS descriptor in the GDT for the current task.
Figure 6-5 shows the path the processor uses to access the TSS (using the information in the task
register).

The task register has a visible part (that can be read and changed by software) and an invisible
part (maintained by the processor and is inaccessible by software). The segment selector in the
visible portion points to a TSS descriptor in the GDT. The processor uses the invisible portion
of the task register to cache the segment descriptor for the TSS. Caching these values in a
register makes execution of the task more efficient. The LTR (load task register) and STR (store
task register) instructions load and read the visible portion of the task register:
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The LTR instruction loads a segment selector (source operand) into the task register that points
to a TSS descriptor in the GDT. It then loads the invisible portion of the task register with infor-
mation from the TSS descriptor. LTR is a privileged instruction that may be executed only when
the CPL is 0. It’s used during system initialization to put an initial value in the task register.
Afterwards, the contents of the task register are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory. This instruction can be executed by code running at any
privilege level in order to identify the currently running task. However, it is normally used only
by operating system software.

On power up or reset of the processor, segment selector and base address are set to the default
value of 0; the limit is set to FFFFH.

TSS 4—@<—

A
Visible Part Invisible Part
Task Sel —
Register elector Base Address Segment Limit
A
GDT
> TSS Descriptor

Figure 6-5. Task Register

6-10 Vol. 3A



TASK MANAGEMENT

6.2.5  Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task (see Figure 6-6). It can
be placed in the GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate
descriptor points to a TSS descriptor in the GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch.
When a program or procedure makes a call or jump to a task through a task gate, the CPL and
the RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
of the task-gate descriptor. Note that when a task gate is used, the DPL of the destination TSS
descriptor is not used.

31 1615141312 11 8 7 0
D Type
Reserved Pl p P Reserved 4
olo ‘ 1 |o ‘ 1
31 16 15 0
TSS Segment Selector Reserved 0

DPL Descriptor Privilege Level
P Segment Present
TYPE Segment Type

Figure 6-6. Task-Gate Descriptor

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
structures satisfy the following needs:

Need for a task to have only one busy flag — Because the busy flag for a task is stored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however,
be several task gates that reference the same TSS descriptor.

Need to provide selective access to tasks — Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor's DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for a task in the GDT (which usually has a DPL of 0) may be allowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

Need for an interrupt or exception to be handled by an independent task — Task gates
may also reside in the IDT, which allows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.
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Figure 6-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the
IDT can all point to the same task.

LDT GDT TSS
Task Gate
Task Gate > TSS Descriptor

IDT

Task Gate

Figure 6-7. Task Gates Referencing the Same Task

6.3 TASK SWITCHING

The processor transfers execution to another task in one of four cases:

® The current program, task, or procedure executes a JMP or CALL instruction to a TSS
descriptor in the GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
descriptor in the GDT or the current LDT.

® Aninterrupt or exception vector points to a task-gate descriptor in the IDT.
® The current task executes an IRET when the NT flag in the EFLAGS register is set.
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JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for
redirecting a program. The referencing of a TSS descriptor or a task gate (when calling or
jumping to a task) or the state of the NT flag (when executing an IRET instruction) determines
whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1.

Obtains the TSS segment selector for the new task as the operand of the JMP or CALL
instruction, from a task gate, or from the previous task link field (for a task switch initiated
with an IRET instruction).

Checks that the current (old) task is allowed to switch to the new task. Data-access
privilege rules apply to JMP and CALL instructions. The CPL of the current (old) task and
the RPL of the segment selector for the new task must be less than or equal to the DPL of
the TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
interrupts generated by the INT n instruction), and the IRET instruction are permitted to
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT n instruction, the DPL is checked.

Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H).

Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
return).

Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
switch are paged into system memory.

If the task switch was initiated with a JMP or IRET instruction, the processor clears the
busy (B) flag in the current (old) task’s TSS descriptor; if initiated with a CALL
instruction, an exception, or an interrupt: the busy (B) flag is left set. (See Table 6-2.)

If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instruction, an exception, or an interrupt, the NT flag is left unchanged in the saved
EFLAGS image.

Saves the state of the current (old) task in the current task’s TSS. The processor finds the
base address of the current TSS in the task register and then copies the states of the
following registers into the current TSS: all the general-purpose registers, segment
selectors from the segment registers, the temporarily saved image of the EFLAGS register,
and the instruction pointer register (EIP).

If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the
processor will set the NT flag in the EFLAGS loaded from the new task. If initiated with an
IRET instruction or JMP instruction, the NT flag will reflect the state of NT in the
EFLAGS loaded from the new task (see Table 6-2).
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10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an interrupt, the processor sets the busy (B) flag in the new task’s TSS descriptor; if
initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR
(control register CR3), the EFLAGS registers, the EIP register, the general-purpose
registers, and the segment selectors. Note that a fault during the load of this state may
corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. Any errors
associated with this loading and qualification occur in the context of the new task.

NOTES

If all checks and saves have been carried out successfully, the processor
commits to the task switch. If an unrecoverable error occurs in steps 1
through 11, the processor does not complete the task switch and insures that
the processor is returned to its state prior to the execution of the instruction
that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may be
corrupted, but an attempt will be made to handle the error in the prior
execution environment. If an unrecoverable error occurs after the commit
point (in step 13), the processor completes the task switch (without
performing additional access and segment availability checks) and generates
the appropriate exception prior to beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish
the task switch itself before allowing the processor to begin executing the
new task. See Chapter 5, “Interrupt 10—Invalid TSS Exception (#TS),” for
more information about the affect of exceptions on a task when they occur
after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.
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When switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CS register, which is loaded from the TSS. Because tasks are isolated by their sepa-
rate address spaces and TSSs and because privilege rules control access to a TSS, software does
not need to perform explicit privilege checks on a task switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the checks in the table is the order used in the P6
family processors. The exact order is model specific and may be different for other 1A-32
processors.) Exception handlers designed to handle these exceptions may be subject to recursive
calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 6-1. Exception Conditions Checked During a Task Switch

Error Code
Condition Checked Exception?! Reference?
Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table. #TS (for IRET)
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a | #GP (for IMP, CALL, Task’s back-link TSS
call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated by #TS (for IRET) New Task’'s TSS
an IRET instruction).
TSS segment limit greater than or equal to 108 (for 32- | #TS New Task’s TSS
bit TSS) or 44 (for 16-bit TSS).
Registers are loaded from the values in the TSS.
LDT segment selector of new task is valid 3. #TS New Task’'s LDT
Code segment DPL matches segment selector RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SF New Stack Segment
Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task’s LDT
CS segment selector is valid 2. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment
DS, ES, FS, and GS segments are readable. #TS New Data Segment
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Table 6-1. Exception Conditions Checked During a Task Switch (Contd.)

Error Code
Condition Checked Exception? Reference?
DS, ES, FS, and GS segments are present in memory. | #NP New Data Segment
DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments).
NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table's segment limit, and refers to a compatible type of descriptor (for example, a segment selector
in the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time a task switch occurs.
System software uses the TS flag to coordinate the actions of floating-point unit when gener-
ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. See Section 2.5,
“Control Registers”, for a detailed description of the function and use of the TS flag.

6.4 TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink) and the NT flag in the
EFLAGS register are used to return execution to the previous task. EFLAGS.NT = 1 indicates
that the currently executing task is nested within the execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor
copies the segment selector for the current TSS to the previous task link field of the TSS for the
new task; it then sets EFLAGS.NT = 1. If software uses an IRET instruction to suspend the new
task, the processor checks for EFLAGS.NT = 1; it then uses the value in the previous task link
field to return to the previous task. See Figures 6-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link
field is not used and EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when
nesting is not desired.
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Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS
NT=1
NT=0 NT=1 NT=1
Previous Previous Previous
Task Link Task Link Task Link Task Register

N N

Figure 6-8. Nested Tasks

Table 6-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task

link field, and TS flag (in control register CRO) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a
program to set the NT flag and execute an IRET instruction. This might randomly invoke the
task specified in the previous link field of the current task's TSS. To keep such spurious task
switches from succeeding, the operating system should initialize the previous task link field in

every TSS that it creates

to 0.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag,
Previous Task Link Field, and TS Flag

Flag or Field

Effect of IMP
instruction

Effect of CALL
Instruction or
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new
task.

Busy flag of old task.

NT flag of new task.

NT flag of old task.

Previous task link field of
new task.

Previous task link field of
old task.

TS flag in control
register CRO.

Flag is set. Must have
been clear before.

Flag is cleared.

Set to value from TSS of
new task.

No change.

No change.

No change.

Flag is set.

Flag is set. Must have
been clear before.

No change. Flag is
currently set.

Flag is set.

No change.

Loaded with selector
for old task’s TSS.

No change.

Flag is set.

No change. Must have
been set.

Flag is cleared.

Set to value from TSS of
new task.

Flag is cleared.

No change.

No change.

Flag is set.
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6.4.1 Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current state of the task
to be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
switching and a subsequent loss of task state information. The processor manages the busy flag
as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being
generated by a CALL instruction, an interrupt, or an exception), the busy flag for the
current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception),
the processor generates a general-protection exception (#GP) if the busy flag of the new
task is already set. If the task switch is initiated with an IRET instruction, the exception is
not raised because the processor expects the busy flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the
task code) or by an IRET instruction in the task code, the processor clears the busy flag,
returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or
to any task in a nested chain of tasks. The chain of nested suspended tasks may grow to any
length, due to multiple calls, interrupts, or exceptions. The busy flag prevents a task from being
invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a
LOCK protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two processors from invoking the same task at the same time. See Section 7.1.2.1, “Automatic
Locking,” for more information about setting the busy flag in a multiprocessor applications.

6.4.2 Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that
suspended the task to be removed). It is assumed that the pre-empting task is the next task
(newer task) in the chain from the task to be removed. Change the previous task link field
to point to the TSS of the next oldest task in the chain or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
chain. If more than one task is being removed from the chain, the busy flag for each task
being remove must be cleared.

4. Enable interrupts.
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In a multiprocessing system, additional synchronization and serialization operations must be
added to this procedure to insure that the TSS and its segment descriptor are both locked when
the previous task link field is changed and the busy flag is cleared.

6.5 TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments
include the code, data, stack, and system segments referenced in the TSS and any other segments
accessed by the task code. The segments are mapped into the processor’s linear address space,
which is in turn mapped into the processor’s physical address space (either directly or through
paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow
specific tasks to communicate with or control each other, without dropping the protection
barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own
set of page tables for mapping linear addresses to physical addresses. Or, several tasks can share
the same set of page tables.

6.5.1 Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in one of two ways:

® One linear-to-physical address space mapping is shared among all tasks. — When
paging is not enabled, this is the only choice. Without paging, all linear addresses map to
the same physical addresses. When paging is enabled, this form of linear-to-physical
address space mapping is obtained by using one page directory for all tasks. The linear
address space may exceed the available physical space if demand-paged virtual memory is
supported.

® Each task has its own linear address space that is mapped to the physical address
space. — This form of mapping is accomplished by using a different page directory for
each task. Because the PDBR (control register CR3) is loaded on task switches, each task
may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
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that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-9 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS o Page
Task A
PTE — Page
PTE >
PDBR > PDE > PTE 7 Task A
PDE [ Page
Shared PT >
Shared
- Page
PTE e
< PTE Shared
Task B TSS T Page
Task B
o Page
PDBR > PDE — PTE —
PDE > PTE Task B
T Page

Figure 6-9. Overlapping Linear-to-Physical Mappings

6.5.2  Task Logical Address Space

To allow the sharing of data among tasks, use the following techniques to create shared logical-
to-physical address-space mappings for data segments:

® Through the segment descriptors in the GDT — All tasks must have access to the
segment descriptors in the GDT. If some segment descriptors in the GDT point to segments
in the linear-address space that are mapped into an area of the physical-address space
common to all tasks, then all tasks can share the data and code in those segments.

® Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in
their TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.
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Through segment descriptors in distinct LDTs that are mapped to common addresses
in linear address space — If this common area of the linear address space is mapped to
the same area of the physical address space for each task, these segment descriptors permit
the tasks to share segments. Such segment descriptors are commonly called aliases. This
method of sharing is even more selective than those listed above, because, other segment
descriptors in the LDTs may point to independent linear addresses which are not shared.

16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit 1A-32 processors also recognize a 16-bit TSS format like the one used in Intel 286
processors (see Figure 6-10). This format is supported for compatibility with software written
to run on earlier 1A-32 processors.

The following information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.

The 16-bit TSS does not contain a field for the base address of the page directory, which is
loaded into control register CR3. A separate set of page tables for each task is not
supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
previous task is used.

The 1/O base address is not included in the 16-bit TSS. None of the functions of the 1/O
map are supported.

When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP register are lost.

When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of the registers are modified and not maintained.
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6.7 TASK MANAGEMENT IN 64-BIT MODE

In 64-bit mode, task structure and task state are similar to those in protected mode. However, the
task switching mechanism available in protected mode is not supported in 64-bit mode. Task
management and switching must be performed by software. The processor issues a general-
protection exception (#GP) if the following is attempted in 64-bit mode:

® Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
® AnIRET with EFLAGS.NT (nested task) set to 1.

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment
(TSS) must exist. Figure 6-11 shows the format of a 64-bit TSS. The TSS holds information
important to 64-bit mode and that is not directly related to the task-switch mechanism. This
information includes:

® RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels
0-2.

® |STn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.

® |/O map base address — The 16-bit offset to the 1/O permission bit map from the 64-bit
TSS base.

The operating system must create at least one 64-bit TSS after activating 1A-32e mode. It must
execute the LTR instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit
TSS responsible for both 64-bit-mode programs and compatibility-mode programs.
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31 15 0
I/0 Map Base Address Reserved 100

Reserved 96
Reserved 92
IST7 (upper 32 bits) 88
IST7 (lower 32 bits) 84
IST6 (upper 32 bits) 80
IST6 (lower 32 bits) 76
ISTS (upper 32 bits) 72
IST5 (lower 32 bits) 68
IST4 (upper 32 hits) 64
IST4 (lower 32 bits) 60
IST3 (upper 32 hits) 56
IST3 (lower 32 bits) 52
IST2 (upper 32 bits) 48
IST2 (lower 32 bits) 44
IST1 (upper 32 hits) 40
IST1 (lower 32 bits) 36
Reserved 32
Reserved 28
RSP2 (upper 32 bits) 24
RSP2 (lower 32 bits) 20
RSP1 (upper 32 bits) 16
RSP1 (lower 32 bits) 12
RSPO (upper 32 bits) 8
RSPO (lower 32 bits)
Reserved

|:| Reserved bits. Set to 0.

Figure 6-11. 64-Bit TSS Format
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CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The IA-32 architecture provides several mechanisms for managing and improving the perfor-
mance of multiple processors connected to the same system bus. These mechanisms include:

Bus locking and/or cache coherency management for performing atomic operations on
system memory.

Serializing instructions. These instructions apply only to the Pentium 4, Intel Xeon, P6
family, and Pentium processors.

An advance programmable interrupt controller (APIC) located on the processor chip (see
Chapter 8, “Advanced Programmable Interrupt Controller (APIC)”). The APIC archi-
tecture was introduced into the 1A-32 processors with the Pentium processor.

A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly coupled to the
processor. For the Pentium and Intel486 processors, pins are provided to support an
external L2 cache.

A third-level cache (level 3, L3). For the Intel Xeon processors, the L3 cache is included in
the processor package and is tightly coupled to the processor.

Hyper-Threading Technology, an extension to the 1A-32 architecture that enables a single
processor core to execute two or more threads of execution concurrently (see Section 7.6,
“Hyper-Threading and Multi-Core Technology™).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems.
However, they can also be used in applications where a 1A-32 processor and a special-purpose
processor (such as a communications, graphics, or video processor) share the system bus.

The goals of these multiprocessing mechanisms are:

To maintain system memory coherency — When two or more processors are attempting
simultaneously to access the same address in system memory, some communication
mechanism or memory access protocol must be available to promote data coherency and,
in some instances, to allow one processor to temporarily lock a memory location.

To maintain cache consistency — When one processor accesses data cached on another
processor, it must not receive incorrect data. If it modifies data, all other processors that
access that data must receive the modified data.

To allow predictable ordering of writes to memory — In some circumstances, it is
important that memory writes be observed externally in precisely the same order as
programmed.
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® To distribute interrupt handling among a group of processors — When several processors
are operating in a system in parallel, it is useful to have a centralized mechanism for
receiving interrupts and distributing them to available processors for servicing.

® To increase system performance by exploiting the multi-threaded and multi-process nature
of contemporary operating systems and applications.

The 1A-32 architecture’s caching mechanism and cache consistency are discussed in Chapter 10,
“Memory Cache Control.” The APIC architecture is described in Chapter 8, “Advanced
Programmable Interrupt Controller (APIC).” Bus and memory locking, serializing instructions,
memory ordering, and Hyper-Threading Technology are discussed in the following sections.

7.1 LOCKED ATOMIC OPERATIONS

The 32-bit 1A-32 processors support locked atomic operations on locations in system memory.
These operations are typically used to manage shared data structures (such as semaphores,
segment descriptors, system segments, or page tables) in which two or more processors may try
simultaneously to modify the same field or flag. The processor uses three interdependent mech-
anisms for carrying out locked atomic operations:

® Guaranteed atomic operations
® Bus locking, using the LOCK# signal and the LOCK instruction prefix

® Cache coherency protocols that insure that atomic operations can be carried out on cached
data structures (cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and
P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory transactions
(such as reading or writing a byte in system memory) are always guaranteed to be handled atom-
ically. That is, once started, the processor guarantees that the operation will be completed before
another processor or bus agent is allowed access to the memory location. The processor also
supports bus locking for performing selected memory operations (such as a read-modify-write
operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in
a processor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s
caches without asserting the bus lock. Here the processor’s cache coherency protocols insure
that other processors that are caching the same memory locations are managed properly while
atomic operations are performed on cached memory locations.

NOTE

Where there are contested lock accesses, software may need to implement
algorithms that ensure fair access to resources in order to prevent lock
starvation. The hardware provides no resource that guarantees fairness to
participating agents. It is the responsibility of software to manage the fairness
of semaphores and exclusive locking functions.
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The mechanisms for handling locked atomic operations have evolved as the complexity of 1A-32
processors has evolved. As such, more recent 1A-32 processors (such as the Pentium 4, Intel
Xeon, and P6 family processors) provide a more refined locking mechanism than earlier 1A-32
processors. These are described in the following sections.

7.1.1  Guaranteed Atomic Operations

The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors guarantee that the
following basic memory operations will always be carried out atomically:

® Reading or writing a byte
® Reading or writing a word aligned on a 16-bit boundary
® Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium 4, Intel Xeon, and P6 family, and Pentium processors guarantee that the following
additional memory operations will always be carried out atomically:

® Reading or writing a quadword aligned on a 64-bit boundary
® 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors guarantee that the following additional memory operation will always
be carried out atomically:

® Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a 32-byte cache
line

Accesses to cacheable memory that are split across bus widths, cache lines, and page boundaries
are not guaranteed to be atomic by the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486
processors. The Pentium 4, Intel Xeon, and P6 family processors provide bus control signals that
permit external memory subsystems to make split accesses atomic; however, nonaligned data
accesses will seriously impact the performance of the processor and should be avoided.

7.1.2 Bus Locking

1A-32 processors provide a LOCK# signal that is asserted automatically during certain critical
memory operations to lock the system bus. While this output signal is asserted, requests from
other processors or bus agents for control of the bus are blocked. Software can specify other
occasions when the LOCK semantics are to be followed by prepending the LOCK prefix to an
instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will
result in the assertion of the LOCKH# signal. It is the responsibility of the hardware designer to
make the LOCK# signal available in system hardware to control memory accesses among
processors.
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For the Pentium 4, Intel Xeon, and P6 family processors, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted; instead, locking
is only applied to the processor’s caches (see Section 7.1.4, “Effects of a LOCK Operation on
Internal Processor Caches”).

7.1.2.1 Automatic Locking

The operations on which the processor automatically follows the LOCK semantics are as
follows:

When executing an XCHG instruction that references memory.

When setting the B (busy) flag of a TSS descriptor — The processor tests and sets the
busy flag in the type field of the TSS descriptor when switching to a task. To insure that
two processors do not switch to the same task simultaneously, the processor follows the
LOCK semantics while testing and setting this flag.

When updating segment descriptors — When loading a segment descriptor, the
processor will set the accessed flag in the segment descriptor if the flag is clear. During this
operation, the processor follows the LOCK semantics so that the descriptor will not be
modified by another processor while it is being updated. For this action to be effective,
operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is not-present, and specify a value for the type field that indicates that the
descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several
memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is valid and present.

The Intel386 processor always updates the accessed flag in the segment descriptor,
whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486
processors only update this flag if it is not already set.

When updating page-directory and page-table entries — When updating page-directory
and page-table entries, the processor uses locked cycles to set the accessed and dirty flag in
the page-directory and page-table entries.

Acknowledging interrupts — After an interrupt request, an interrupt controller may use
the data bus to send the interrupt vector for the interrupt to the processor. The processor
follows the LOCK semantics during this time to ensure that no other data appears on the
data bus when the interrupt vector is being transmitted.
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7.1.2.2 Software Controlled Bus Locking

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instructions when they are used to modify a memory location. An invalid-opcode exception
(#UD) is generated when the LOCK prefix is used with any other instruction or when no write
operation is made to memory (that is, when the destination operand is in a register).

® The bit test and modify instructions (BTS, BTR, and BTC).
® The exchange instructions (XADD, CMPXCHG, and CMPXCHGS8B).
® The LOCK prefix is automatically assumed for XCHG instruction.

® The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

® The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple
processors) using identical addresses and operand lengths. For example, if one processor
accesses a semaphore using a word access, other processors should not access the semaphore
using a byte access. Do not use semaphores on the WC memory type.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics are followed for as many bus cycles as necessary to update the entire operand.
However, it is recommend that locked accesses be aligned on their natural boundaries for better
system performance:

® Any boundary for an 8-bit access (locked or otherwise).
® 16-bit boundary for locked word accesses.

®  32-bit boundary for locked doubleword accesses.

®  64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all externally
visible events. Only instruction fetch and page table accesses can pass locked instructions.
Locked instructions can be used to synchronize data written by one processor and read by
another processor.

For the P6 family processors, locked operations serialize all outstanding load and store opera-
tions (that is, wait for them to complete). This rule is also true for the Pentium 4 and Intel Xeon
processors, with one exception. Load operations that reference weakly ordered memory types
(such as the WC memory type) may not be serialized.
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Locked instructions should not be used to insure that data written can be fetched as instructions.

NOTE

The locked instructions for the current versions of the Pentium 4, Intel Xeon,
P6 family, Pentium, and Intel486 processors allow data written to be fetched
as instructions. However, Intel recommends that developers who require the
use of self-modifying code use a different synchronizing mechanism,
described in the following sections.

7.1.3 Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with the intent of
executing that data as code is called self-modifying code. 1A-32 processors exhibit model-
specific behavior when executing self-modified code, depending upon how far ahead of the
current execution pointer the code has been modified. As processor architectures become
more complex and start to speculatively execute code ahead of the retirement point (as in the
Pentium 4, Intel Xeon, and P6 family processors), the rules regarding which code should
execute, pre- or post-modification, become blurred. To write self-modifying code and ensure
that it is compliant with current and future versions of the 1A-32 architecture, one of the
following two coding options must be chosen:

(* OPTION 1 %)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The use of one of these options is not required for programs intended to run on the Pentium or
Intel486 processors, but are recommended to insure compatibility with the Pentium 4, Intel
Xeon, and P6 family processors.)

It should be noted that self-modifying code will execute at a lower level of performance than
non-self-modifying or normal code. The degree of the performance deterioration will depend
upon the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a second
processor with the intent of having the second processor execute that data as code is called
cross-modifying code. As with self-modifying code, IA-32 processors exhibit model-specific
behavior when executing cross-modifying code, depending upon how far ahead of the executing
processors current execution pointer the code has been modified.
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To write cross-modifying code and insure that it is compliant with current and future versions
of the 1A-32 architecture, the following processor synchronization algorithm must be imple-
mented:

(* Action of Modifying Processor *)

Memory_Flag < 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag < 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag = 1)

Wait for code to update;
ELIHW;

Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 processor,
but is recommended to insure compatibility with the Pentium 4, Intel Xeon, P6 family, and
Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance
than non-cross-modifying (normal) code, depending upon the frequency of modification and
specific characteristics of the code.

7.1.4 Effects of a LOCK Operation on Internal Processor
Caches

For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during
a LOCK operation, even if the area of memory being locked is cached in the processor.

For the Pentium 4, Intel Xeon, and P6 family processors, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK operation as
write-back memory and is completely contained in a cache line, the processor may not assert the
LOCK# signal on the bus. Instead, it will modify the memory location internally and allow it’s
cache coherency mechanism to insure that the operation is carried out atomically. This operation
is called “cache locking.” The cache coherency mechanism automatically prevents two or more
processors that have cached the same area of memory from simultaneously modifying data in
that area.

7.2 MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and
writes (stores) through the system bus to system memory. The 1A-32 architecture supports
several memory ordering models depending on the implementation of the architecture. For
example, the Intel386 processor enforces program ordering (generally referred to as strong
ordering), where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.
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To allow optimizing of instruction execution, the 1A-32 architecture allows departures from
strong-ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family
processors. These processor-ordering variations allow performance enhancing operations such
as allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase
instruction execution speeds, while maintaining memory coherency, even in multiple-processor
systems.

The following sections describe the memory ordering models used by the Intel486 and Pentium
processors, and by the Pentium 4, Intel Xeon, and P6 family processors.

7.2.1  Memory Ordering in the Intel® Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; however,
they operate as strongly-ordered processors under most circumstances. Reads and writes always
appear in programmed order at the system bus—except for the following situation where
processor ordering is exhibited. Read misses are permitted to go ahead of buffered writes on the
system bus when all the buffered writes are cache hits and, therefore, are not directed to the same
address being accessed by the read miss.

In the case of 1/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4,
Intel Xeon, and P6 family processors) should not depend on the relatively strong ordering of
the Pentium or Intel486 processors. Instead, it should insure that accesses to shared variables
that are intended to control concurrent execution among processors are explicitly required to
obey program ordering through the use of appropriate locking or serializing operations (see
Section 7.2.4, “Strengthening or Weakening the Memory Ordering Model”).

7.2.2  Memory Ordering Pentium 4, Intel® Xeon®, and P6 Family
Processors

The Pentium 4, Intel Xeon, and P6 family processors also use a processor-ordered memory
ordering model that can be further defined as “write ordered with store-buffer forwarding.” This
model can be characterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the following
ordering rules apply:

1. Reads can be carried out speculatively and in any order.
2. Reads can pass buffered writes, but the processor is self-consistent.

3. Writes to memory are always carried out in program order, with the exception of writes
executed with the CLFLUSH instruction and streaming stores (writes) executed with the
non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD).
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4. Writes can be buffered.

Writes are not performed speculatively; they are only performed for instructions that have
actually been retired.

6. Data from buffered writes can be forwarded to waiting reads within the processor.

7. Reads or writes cannot pass (be carried out ahead of) 1/0 instructions, locked instructions,
or serializing instructions.

8. Reads cannot pass LFENCE and MFENCE instructions.
9. Writes cannot pass SFENCE and MFENCE instructions.

The second rule allows a read to pass a write. However, if the write is to the same memory loca-
tion as the read, the processor’s internal “snooping” mechanism will detect the conflict and
update the cached read before the processor executes the instruction that uses the value.

The sixth rule constitutes an exception to an otherwise write ordered model. Note that the term
“write ordered with store-buffer forwarding” (introduced at the beginning of this section) refers
to the combined effects of rules 2 and 6.

In a multiple-processor system, the following ordering rules apply:
® Individual processors use the same ordering rules as in a single-processor system.
® Writes by a single processor are observed in the same order by all processors.

®  Writes from the individual processors on the system bus are NOT ordered with respect to
each other.

The latter rule can be clarified by the example in Figure 7-1. Consider three processors in a
system and each processor performs three writes, one to each of three defined locations (A, B,
and C). Individually, the processors perform the writes in the same program order, but because
of bus arbitration and other memory access mechanisms, the order that the three processors write
the individual memory locations can differ each time the respective code sequences are executed
on the processors. The final values in location A, B, and C would possibly vary on each execu-
tion of the write sequence.

The processor-ordering model described in this section is virtually identical to that used by the
Pentium and Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6
family processors are:

®  Added support for speculative reads.
® Store-buffer forwarding, when a read passes a write to the same memory location.

® Qut of order store from long string store and string move operations (see Section 7.2.3,
“Out-of-Order Stores For String Operations in Pentium 4, Intel Xeon, and P6 Family
Processors,” below).
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Order of Writes From Individual Processors

Processor #1 Processor #2 Processor #3
Each proceszor Write A.1 Write A.2 Write A.3
is gfuarant(-:‘_tte to Write B.1 Write B.2 Write B.3
periorm writes in Write C.1 Write C.2 Write C.3

program order.

Example of order of actual writes
from all processors to memory

Writes are in order Write A.1 —

with respect to Write B.1

individual processes. Write A.2 Writes from all
Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occur in a
Write C.2 particular order.
Write B.3
Write C.3—

Figure 7-1. Example of Write Ordering in Multiple-Processor Systems

7.2.3  Out-of-Order Stores For String Operations in Pentium 4,

Intel Xeon, and P6 Family Processors

The Pentium 4, Intel Xeon, and P6 family processors modify the processors operation during the
string store operations (initiated with the MOVS and STOS instructions) to maximize perfor-
mance. Once the “fast string” operations initial conditions are met (as described below), the
processor will essentially operate on, from an external perspective, the string in a cache line by
cache line mode. This results in the processor looping on issuing a cache-line read for the source
address and an invalidation on the external bus for the destination address, knowing that all
bytes in the destination cache line will be modified, for the length of the string. In this mode
interrupts will only be accepted by the processor on cache line boundaries. It is possible in this
mode that the destination line invalidations, and therefore stores, will be issued on the external
bus out of order.

Code dependent upon sequential store ordering should not use the string operations for the entire
data structure to be stored. Data and semaphores should be separated. Order dependent code
should use a discrete semaphore uniquely stored to after any string operations to allow correctly
ordered data to be seen by all processors.

Initial conditions for “fast string” operations:
¢ EDI and ESI must be 8-byte aligned for the Pentium Ill processor. EDI must be 8-byte
aligned for the Pentium 4 processor.

® String operation must be performed in ascending address order.
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® The initial operation counter (ECX) must be equal to or greater than 64.

® Source and destination must not overlap by less than a cache line (64 bytes, Pentium 4 and
Intel Xeon processors; 32 bytes P6 family and Pentium processors).

® The memory type for both source and destination addresses must be either WB or WC.

7.2.4  Strengthening or Weakening the Memory Ordering Model

The 1A-32 architecture provides several mechanisms for strengthening or weakening the
memory ordering model to handle special programming situations. These mechanisms include:

® The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions
force stronger ordering on the processor.

® The SFENCE instruction (introduced to the IA-32 architecture in the Pentium IlI
processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 4 and
Intel Xeon processors) provide memory ordering and serialization capability for specific
types of memory operations.

®* The memory type range registers (MTRRS) can be used to strengthen or weaken memory
ordering for specific area of physical memory (see Section 10.11, “Memory Type Range
Registers (MTRRs)”). MTRRs are available only in the Pentium 4, Intel Xeon, and P6
family processors.

® The page attribute table (PAT) can be used to strengthen memory ordering for a specific
page or group of pages (see Section 10.12, “Page Attribute Table (PAT)”). The PAT is
available only in the Pentium 4, Intel Xeon, and Pentium Il processors.

These mechanisms can be used as follows.

Memory mapped devices and other 1/O devices on the bus are often sensitive to the order of
writes to their I/O buffers. 1/0 instructions can be used to (the IN and OUT instructions) impose
strong write ordering on such accesses as follows. Prior to executing an 1/O instruction, the
processor waits for all previous instructions in the program to complete and for all buffered
writes to drain to memory. Only instruction fetch and page tables walks can pass 1/O instruc-
tions. Execution of subsequent instructions do not begin until the processor determines that the
1/0 instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong
memory-ordering model. Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carried out atomically. Locking operations typically operate like 1/0 operations in that they wait
for all previous instructions to complete and for all buffered writes to drain to memory (see
Section 7.1.2, “Bus Locking”).
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Program synchronization can also be carried out with serializing instructions (see Section 7.4).
These instructions are typically used at critical procedure or task boundaries to force completion
of all previous instructions before a jump to a new section of code or a context switch occurs.
Like the 1/0 and locking instructions, the processor waits until all previous instructions have
been completed and all buffered writes have been drained to memory before executing the seri-
alizing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of
insuring load and store memory ordering between routines that produce weakly-ordered results
and routines that consume that data. The functions of these instructions are as follows:

® SFENCE — Serializes all store (write) operations that occurred prior to the SFENCE
instruction in the program instruction stream, but does not affect load operations.

® LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store operations.

® MFENCE — Serializes all store and load operations that occurred prior to the MFENCE
instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method
of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for
specified areas of physical memory. The following are two examples of how memory types set
up with MTRRs can be used strengthen or weaken memory ordering for the Pentium 4, Intel
Xeon, and P6 family processors:

® The strong uncached (UC) memory type forces a strong-ordering model on memory
accesses. Here, all reads and writes to the UC memory region appear on the bus and out-of-
order or speculative accesses are not performed. This memory type can be applied to an
address range dedicated to memory mapped 1/0 devices to force strong memory ordering.

® For areas of memory where weak ordering is acceptable, the write back (WB) memory
type can be chosen. Here, reads can be performed speculatively and writes can be buffered
and combined. For this type of memory, cache locking is performed on atomic (locked)
operations that do not split across cache lines, which helps to reduce the performance
penalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock the bus during the entire read-modify-write operation. With the WB memory
type, the XCHG instruction locks the cache instead of the bus if the memory access is
contained within a cache line.

The PAT was introduced in the Pentium 11l processor to enhance the caching characteristics that
can be assigned to pages or groups of pages. The PAT mechanism typically used to strengthen
caching characteristics at the page level with respect to the caching characteristics established
by the MTRRs. Table 10-7 shows the interaction of the PAT with the MTRRs.
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It is recommended that software written to run on Pentium 4, Intel Xeon, and P6 family proces-
sors assume the processor-ordering model or a weaker memory-ordering model. The Pentium 4,
Intel Xeon, and P6 family processors do not implement a strong memory-ordering model, except
when using the UC memory type. Despite the fact that Pentium 4, Intel Xeon, and P6 family
processors support processor ordering, Intel does not guarantee that future processors will
support this model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (application
program interfaces) based on 1/O, locking, and/or serializing instructions be used to synchronize
access to shared areas of memory in multiple-processor systems. Also, software should not
depend on processor ordering in situations where the system hardware does not support this
memory-ordering model.

7.3 PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY
ENTRY CHANGES TO MULTIPLE PROCESSORS

In a multiprocessor system, when one processor changes a page table or page directory entry,
the changes must also be propagated to all the other processors. This process is commonly
referred to as “TLB shootdown.” The propagation of changes to page table or page directory
entries can be done using memory-based semaphores and/or interprocessor interrupts (IPI)
between processors. For example, a simple but algorithmic correct TLB shootdown sequence
for a IA-32 processor is as follows:

1. Begin barrier — Stop all but one processor; that is, cause all but one to HALT or stop in a
spin loop.

2. Let the active processor change the necessary PTEs and/or PDEs.
3. Letall processors invalidate the PTEs and PDEs modified in their TLBs.
4. End barrier — Resume all processors; resume general processing.

Alternate, performance-optimized, TLB shootdown algorithms may be developed; however,
care must be taken by the developers to ensure that either of the following conditions are met:

¢ Different TLB mappings are not used on different processors during the update process.

® The operating system is prepared to deal with the case where processors are using the stale
mapping during the update process.
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7.4  SERIALIZING INSTRUCTIONS

The 1A-32 architecture defines several serializing instructions. These instructions force the
processor to complete all modifications to flags, registers, and memory by previous instructions
and to drain all buffered writes to memory before the next instruction is fetched and executed.
For example, when a MOV to control register instruction is used to load a new value into control
register CRO to enable protected mode, the processor must perform a serializing operation
before it enters protected mode. This serializing operation insures that all operations that were
started while the processor was in real-address mode are completed before the switch to
protected mode is made.

The concept of serializing instructions was introduced into the 1A-32 architecture with the
Pentium processor to support parallel instruction execution. Serializing instructions have no
meaning for the Intel486 and earlier processors that do not implement parallel instruction execu-
tion.

It is important to note that executing of serializing instructions on Pentium 4, Intel Xeon, and P6
family processors constrain speculative execution because the results of speculatively executed
instructions are discarded. The following instructions are serializing instructions:

® Privileged serializing instructions — MOV (to control register, with the exception of
MOV CR8'), MOV (to debug register), WRMSR, INVD, INVLPG, WBINVD, LGDT,
LLDT, LIDT, and LTR.

® Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory transac-
tions are completed (including writes stored in its store buffer) before it executes the next
instruction. Nothing can pass a serializing instruction and a serializing instruction cannot pass
any other instruction (read, write, instruction fetch, or 1/0). For example, CPUID can be
executed at any privilege level to serialize instruction execution with no effect on program flow,
except that the EAX, EBX, ECX, and EDX registers are modified.

The following instructions are memory ordering instructions, not serializing instructions. These
drain the data memory subsystem. They do not effect the instruction execution stream:

® Non-privileged memory ordering instructions — SFENCE, LFENCE, and MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the
serialization of memory loads and stores (see Section 7.2.4, “Strengthening or Weakening the
Memory Ordering Model”).

The following additional information is worth noting regarding serializing instructions:

® The processor does not writeback the contents of modified data in its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINVD instruction will seriously reduce system
performance.

1. MOV CR8 is not defined architecturally as a serializing instruction.
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When an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CRO0), the instruction should be followed by a jump instruction. The
target instruction of the jump instruction is fetched with the new setting of the PG flag (that
is, paging is enabled or disabled), but the jump instruction itself is fetched with the
previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require the
jump operation following the move to register CRO (because any use of the MOV
instruction in a Pentium 4, Intel Xeon, or P6 family processor to write to CRO is
completely serializing). However, to maintain backwards and forward compatibility with
code written to run on other IA-32 processors, it is recommended that the jump operation
be performed.

Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the translation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following instruc-
tions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, see Section 10.9, “Invalidating the Translation Lookaside
Buffers (TLBs)”.)

The Pentium 4, Intel Xeon, P6 family, and Pentium processors use branch-prediction
techniques to improve performance by prefetching the destination of a branch instruction
before the branch instruction is executed. Consequently, instruction execution is not deter-
ministically serialized when a branch instruction is executed.

MULTIPLE-PROCESSOR (MP) INITIALIZATION

The 1A-32 architecture (beginning with the P6 family processors) defines a multiple-processor
(MP) initialization protocol called the Multiprocessor Specification Version 1.4. This specifica-
tion defines the boot protocol to be used by IA-32 processors in multiple-processor systems.
(Here, multiple processors is defined as two or more processors.) The MP initialization
protocol has the following important features:

It supports controlled booting of multiple processors without requiring dedicated system
hardware.

It allows hardware to initiate the booting of a system without the need for a dedicated
signal or a predefined boot processor.

It allows all 1A-32 processors to be booted in the same manner, including those supporting
Hyper-Threading Technology.

The mechanism for carrying out the MP initialization protocol differs depending on the 1A-32
processor family, as follows:

For P6 family processors — The selection of the BSP and APs (see Section 7.5.1, “BSP
and AP Processors™) is handled through arbitration on the APIC bus, using BIPI and FIPI
messages. See Appendix C, “MP Initialization For P6 Family Processors,” for a complete
discussion of MP initialization for P6 family processors.
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® Intel Xeon processors with family, model, and stepping IDs up to FO9H — The
selection of the BSP and APs (see Section 7.5.1, “BSP and AP Processors”) is handled
through arbitration on the system bus, using BIPI and FIPI messages (see Section 7.5.3,
“MP Initialization Protocol Algorithm for Intel Xeon Processors”).

® Intel Xeon processors with family, model, and stepping IDs of FOAH and beyond —
The selection of the BSP and APs is handled through a special system bus cycle, without
using BIPI and FIPI message arbitration (see Section 7.5.3, “MP Initialization Protocol
Algorithm for Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when the
CPUID instruction is executed with a value of 1 in the EAX register.

75.1 BSP and AP Processors

The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP)
and the application processors (APs). Following a power-up or RESET of an MP system, system
hardware dynamically selects one of the processors on the system bus as the BSP. The remaining
processors are designated as APS.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE MSR (see
Figure 8-5) of the BSP, indicating that it is the BSP. This flag is cleared for all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up
system-wide data structures, and starts and initializes the APs. When the BSP and APs are
initialized, the BSP then begins executing the operating-system initialization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a
startup signal (a SIPI message) from the BSP processor. Upon receiving a SIPI message, an AP
executes the BIOS AP configuration code, which ends with the AP being placed in halt state.

In 1A-32 processors supporting Hyper-Threading Technology, the MP initialization protocol
treats each of the logical processors on the system bus as a separate processor (with a unique
APIC ID). During boot-up, one of the logical processors is selected as the BSP and the
remainder of the logical processors are designated as APs.

7.5.2 MP Initialization Protocol Requirements and Restrictions
for Intel Xeon Processors

The MP initialization protocol imposes the following requirements and restrictions on the
system:

® The MP protocol is executed only after a power-up or RESET. If the MP protocol has
completed and a BSP is chosen, subsequent INITs (either to a specific processor or system
wide) do not cause the MP protocol to be repeated. Instead, each logical processor
examines its BSP flag (in the 1A32_APIC_BASE MSR) to determine whether it should
execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an
AP).
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All devices in the system that are capable of delivering interrupts to the processors must be
inhibited from doing so for the duration of the MP initialization protocol. The time during
which interrupts must be inhibited includes the window between when the BSP issues an
INIT-SIPI-SIPI sequence to an AP and when the AP responds to the last SIPI in the
sequence.

7.5.3 MP Initialization Protocol Algorithm for

Intel Xeon Processors

Following a power-up or RESET of an MP system, the Intel Xeon processors in the system
execute the MP initialization protocol algorithm to initialize each of the logical processors on
the system bus. In the course of executing this algorithm, the following boot-up and initializa-
tion operations are carried out:

1.

Each logical processor on the system bus is assigned a unique 8-bit APIC ID, based on
system topology (see Section 7.5.5, “Identifying Logical Processors in an MP System”).
This ID is written into the local APIC ID register for each processor.

Each logical processor is assigned a unique arbitration priority based on its APIC ID.

Each logical processor executes its internal BIST simultaneously with the other logical
processors on the system bus.

Upon completion of the BIST, the logical processors use a hardware-defined selection
mechanism to select the BSP and the APs from the available logical processors on the
system bus. The BSP selection mechanism differs depending on the family, model, and
stepping I1Ds of the processors, as follows:

— Family, model, and stepping 1Ds of FOAH and onwards:

* The logical processors begin monitoring the BNR# signal, which is toggling.
When the BNR# pin stops toggling, each processor attempts to issue a NOP
special cycle on the system bus.

* The logical processor with the highest arbitration priority succeeds in issuing a
NOP special cycle and is nominated the BSP. This processor sets the BSP flag in
its IA32_APIC_BASE MSR, then fetches and begins executing BIOS boot-strap
code, beginning at the reset vector (physical address FFFF FFFOH).

* The remaining logical processors (that failed in issuing a NOP special cycle) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

— Family, model, and stepping IDs up to FO9H:

* Each processor broadcasts a BIPI to “all including self.” The first processor that
broadcasts a BIPI (and thus receives its own BIPI vector), selects itself as the BSP
and sets the BSP flag in its 1A32_APIC_BASE MSR. (See Appendix C.1,
“Overview of the MP Initialization Process For P6 Family Processors,” for a
description of the BIPI, FIPI, and SIPI messages.)
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* The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter a “wait-
for-SIPI state.”

* The newly established BSP broadcasts an FIPI message to “all including self,”
which the BSP and APs treat as an end of MP initialization signal. Only the
processor with its BSP flag set responds to the FIPI message. It responds by
fetching and executing the BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFFOH).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its
initial APIC ID to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then
broadcasts a SIPI message to all the APs in the system. Here, the SIPI message contains a
vector to the BIOS AP initialization code (at 000VVO000H, where VV is the vector
contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS
initialization semaphore. The first AP to the semaphore begins executing the initialization
code. (See Section 7.5.4, “MP Initialization Example,” for semaphore implementation
details.) As part of the AP initialization procedure, the AP adds its APIC ID number to the
ACPI and MP tables as appropriate and increments the processor counter by 1. At the
completion of the initialization procedure, the AP executes a CLI instruction and halts
itself.

8. When each of the APs has gained access to the semaphore and executed the AP initial-
ization code, the BSP establishes a count for the number of processors connected to the
system bus, completes executing the BIOS boot-strap code, and then begins executing
operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain
in the halted state. In this state they will respond only to INITs, NMIs, and SMIs. They will
also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for
multiple Intel Xeon processors operating in an MP configuration.

Appendix B, “Model-Specific Registers (MSRs),” describes how to program the LINT[0:1] pins
of the processor’s local APICs after an MP configuration has been completed.

7.5.4  MP Initialization Example

The following example illustrates the use of the MP initialization protocol to initialize 1A-32
processors in an MP system after the BSP and APs have been established. This code runs on
IA-32 processors that use MP initialization protocol. This includes P6 Family processors,
Pentium 4 processors and Intel Xeon processors (with or without Intel® Hyper-Threading Tech-
nology support).
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The following constants and data definitions are used in the accompanying code examples. They
are based on the addresses of the APIC registers as defined in Table 8-1.

ICR_LOW EQU OFEE00300H
SVR EQU OFEE000FOH
APIC_ID EQU OFEE00020H
LVT3 EQU OFEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?

COUNT EQU 00H
VACANT EQU 00H

7.5.4.1 Typical BSP Initialization Sequence

After the BSP and APs have been selected (by means of a hardware protocol, see Section 7.5.3,
“MP Initialization Protocol Algorithm for Intel Xeon Processors™), the BSP begins executing
BI1OS boot-strap code (POST) at the normal 1A-32 architecture starting address (FFFF FFFOH).
The boot-strap code typically performs the following operations:

1.

2
3
4,
5

10.

Initializes memory.

Loads the microcode update into the processor.
Initializes the MTRRs.

Enables the caches.

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the BSP is “Genuinelntel.”

Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of
memory.

Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

Determine the BSP’s APIC ID from the local APIC ID register (default is 0):

MOV ESI, APIC_ID ; Address of local APIC ID register
MOV EAX, [ESI]

AND EAX, OFFO00000H ; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX ; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system configuration
space in RAM.

Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-KByte page in the real-address mode address
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11.

12.

13.

14.

15.

space (1-MByte space). For example, a vector of OBDH specifies a start-up memory
address of 000BD0O0OH.

Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR ; Address of SVR

MOV EAX, [ESI]

OR EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX

Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error
handler.

MOV ESI, LVT3

MOV EAX, [ESI]

AND EAX, FFFFFFOOH ; Clear out previous vector.

OR EAX, 000000xxH : Xx is the 8-bit vector the APIC error handler.
MQV [ESI], EAX

Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to
determine the order in which they execute BIOS AP initialization code.

Performs the following operation to set up the BSP to detect the presence of APs in the
system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP BIOS
initialization code, the AP will increment the COUNT variable to indicate its presence.
When the timer expires, the BSP checks the value of the COUNT variable. If the timer
expires and the COUNT variable has not been incremented, no APs are present or
some error has occurred.

Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize
them:

MOV ESI, ICR_LOW : Load address of ICR low dword into ESI.

MOV EAX, 000C4500H ; Load ICR encoding for broadcast INIT IPI
; to all APs into EAX.

MOV [ESI], EAX ; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH ; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.
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16. Waits for the timer interrupt.
17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system diagnostics
as appropriate.

7.5.4.2 Typical AP Initialization Sequence

When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector
encoded in the SIPI. The AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is
attained, initialization continues.

Loads the microcode update into the processor.
Initializes the MTRRs (using the same mapping that was used for the BSP).
Enables the cache.

a &~ DN

Executes the CPUID instruction with a value of OH in the EAX register, then reads the
EBX, ECX, and EDX registers to determine if the AP is “Genuinelntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the
values in the EAX, ECX, and EDX registers in a system configuration space in RAM for
use later.

7. Switches to protected mode and insures that the APIC address space is mapped to the
strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and
ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up
the LVT3 (error LVT) for error handling (as described in steps 9 and 10 in Section 7.5.4.1,
“Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a
different SMBASE address.)

11. Increments the COUNT variable by 1.
12. Releases the semaphore.

13. Executes the CLI and HLT instructions.
14. Waits for an INIT IPL.
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7.5.5 Identifying Logical Processors in an MP System

After the BIOS has completed the MP initialization protocol, each logical processor can be
uniquely identified by its local APIC ID. Software can access these APIC IDs in either of the
following ways:

® Read APIC ID for a local APIC — Code running on a logical processor can execute a
MOV instruction to read the processor’s local APIC ID register (see Section 8.4.6, “Local
APIC ID”). This is the ID to use for directing physical destination mode interrupts to the
processor.

® Read ACPI or MP table — As part of the MP initialization protocol, the BIOS creates an
ACPI table and an MP table. These tables are defined in the Multiprocessor Specification
Version 1.4 and provide software with a list of the processors in the system and their local
APIC IDs. The format of the ACPI table is derived from the ACPI specification, which is
an industry standard power management and platform configuration specification for MP
systems.

® Read Initial APIC ID — An APIC ID is assigned to a logical processor during power up
and is called the initial APIC ID. This is the APIC ID reported by CPUID.1:ECX[31:24]
and may be different from the current value read from the local APIC. Use the initial APIC
ID to determine the topological relationship between logical processors.

Bits in the initial APIC ID can be interpreted using several bit masks. Each bit mask can be
used to extract an identifier to represent a hierarchical level of the multi-threading resource
topology in an MP system (See Section 7.10.1, “Hierarchical Mapping of Shared
Resources™). The initial APIC ID may consist of up to four bit-fields. In a non-clustered
MP system, the field consists of up to three bit fields.

Figure 7-2 shows APIC ID bit fields in earlier single-core processors. For Intel Xeon processors,
the APIC ID assigned to a logical processor during power-up and initialization is 8 bits. Bits 2:1
form a 2-bit physical package identifier (which can also be thought of as a socket identifier). In
systems that configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is
used in the Intel Xeon processor MP to identify the two logical processors within the package
(see Section 7.10.2, “Identifying Logical Processors in an MP System™). For Intel Xeon proces-
sors that do not support Intel Hyper-Threading Technology, bit 0 is always set to 0; for Intel
Xeon processors supporting Hyper-Threading Technology, bit 0 performs the same function as
it does for Intel Xeon processor MP.

See Section 7.10.1, “Hierarchical Mapping of Shared Resources” for a complete description of
the topological relationships between logical processors and bit field locations within an initial
APIC ID across 1A-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor and platform
hardware capabilities. Determine these at runtime. When initial APIC IDs are assigned to logical
processors, the value of APIC ID assigned to a logical processor will respect the bit-field bound-
aries corresponding core, physical package, etc. Additional examples of the bit fields in the
initial APIC ID of multi-threading capable systems are shown in Section 7.10.
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APIC ID Format for Intel Xeon Processors that
do not Support Hyper-Threading Technology

7 5 4 3 2 1 0
Reserved 0
Cluster

Processor ID

APIC ID Format for P6 Family Processors
7 4 3 2 1 0

Reserved

Cluster
Processor ID

Figure 7-2. Interpretation of APIC ID in Early MP Systems

For P6 family processors, the APIC ID that is assigned to a processor during power-up and
initialization is 4 bits (see Figure 7-2). Here, bits 0 and 1 form a 2-bit processor (or socket) iden-
tifier and bits 2 and 3 form a 2-bit cluster ID.

7.6 HYPER-THREADING AND MULTI-CORE TECHNOLOGY

Hyper-Threading Technology and multi-core technology are extensions to 1A-32 architecture
that enable a single physical processor to execute two or more separate code streams (called
threads) concurrently. In Hyper-Threading Technology, a single processor core provides two
logical processors that share execution resources (see Section 7.8, “Intel® Hyper-Threading
Technology Architecture”). In multi-core technology, a physical processor package provides
two or more processor cores. Both configurations require chipsets and a BIOS that support the
technologies.

Software should not rely on 1A-32 processor names to determine whether a processor supports
Hyper-Threading Technology or multi-core technology. Use the CPUID instruction to deter-
mine processor capability (see Section 7.7.2, “Initializing Dual-Core IA-32 Processors”).
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7.7 DETECTING HARDWARE MULTI-THREADING SUPPORT
AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading support in a phys-
ical processor. The following can be interpreted:

® Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — Indicates when set
that the physical package is capable of supporting Hyper-Threading Technology and/or
multiple cores.

® | ogical processors per Package (CPUID.1:EBX[23:16]) — Indicates the maximum
number of logical processors in a physical package. This represents the hardware
capability as the processor has been manufactured.?

® Cores per Package3 (CPUID.4:EAX[31:26] + 1) — The maximum number of cores in a
physical package is indicated by one plus the decimal value represented in
CPUID.4:EAX[31:26].

The CPUID feature flag may indicate support for hardware multi-threading when only one
logical processor available in the package. In this case, the decimal value represented by bits 16
through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system software may be
less than the value of “logical processors per package”. Similarly, the number of cores enabled
by system software may be less than the value of “cores per package”.

7.7.1 Initializing IA-32 Processors
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains 1A-32 processors that support Hyper-
Threading Technology is the same as for conventional MP systems (see Section 7.5, “Multiple-
Processor (MP) Initialization™). One logical processor in the system is selected as the BSP and
other processors (or logical processors) are designated as APs. The initialization process is iden-
tical to that described in Section 7.5.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors,” and Section 7.5.4, “MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in the local
APIC ID register for each logical processor. If two or more processors supporting Hyper-
Threading Technology are present, each logical processor on the system bus is assigned a unique
ID (see Section 7.10.2, “Identifying Logical Processors in an MP System”). Once logical
processors have APIC IDs, software communicates with them by sending APIC IPI messages.

2. Operating system and BIOS may implement features that reduce the number of logical processors avail-
able in a platform to applications at runtime to less than the number of physical packages times the num-
ber of hardware-capable logical processors per package.

3. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If CPUID
leaf 4 is not available at runtime, software should handle the situation as if there is only one core per pack-
age.
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7.7.2 Initializing Dual-Core 1A-32 Processors

The initialization process for an MP system that contains dual-core 1A-32 processors is the same
as for conventional MP systems (see Section 7.5, “Multiple-Processor (MP) Initialization™). A
logical processor in one core is selected as the BSP; other logical processors are designated as
APs.

During initialization, each logical processor is assigned an APIC ID. Once logical processors
have APIC IDs, software may communicate with them by sending APIC IPI messages.

7.7.3 Executing Multiple Threads on an IA-32 Processor
Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor (BSP)
executes operating system code. Other logical processors are placed in the halt state. To execute
a code stream (thread) on a halted logical processor, the operating system issues an interpro-
cessor interrupt (IPI) addressed to the halted logical processor. In response to the IPI, the
processor wakes up and begins executing the thread identified by the interrupt vector received
as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system can use
conventional symmetric multiprocessing (SMP) techniques. For example, the operating-system
can use a time-slice or load balancing mechanism to periodically interrupt each of the active
logical processors. Upon interrupting a logical processor, the operating system checks its run
queue for a thread waiting to be executed and dispatches the thread to the interrupted logical
processor.

7.7.4 Handling Interrupts on an IA-32 Processor
Supporting Hardware Multi-Threading
Interrupts are handled on 1A-32 processors supporting Hyper-Threading Technology as they

are on conventional MP systems. External interrupts are received by the 1/0 APIC, which
distributes them as interrupt messages to specific logical processors (see Figure 7-3).

Logical processors can also send IPIs to other logical processors by writing to the ICR register
of its local APIC (see Section 8.6, “Issuing Interprocessor Interrupts”). This also applies to dual-
core 1A-32 processors.
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Figure 7-3. Local APICs and I/O APIC in MP System Supporting HT Technology

7.8 INTEL® HYPER-THREADING TECHNOLOGY
ARCHITECTURE

Figure 7-4 shows a generalized view of an |A-32 processor supporting Hyper-Threading Tech-
nology, using the Intel Xeon processor MP as an example. This implementation of the Hyper-
Threading Technology consists of two logical processors (each represented by a separate 1A-32
architectural state) which share the processor’s execution engine and the bus interface. Each
logical processor also has its own advanced programmable interrupt controller (APIC).
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Figure 7-4. IA-32 Processor with Two Logical Processors Supporting HT Technology

7.8.1  State of the Logical Processors

The following features are part of the architectural state of logical processors within 1A-32
processors supporting Hyper-Threading Technology. The features can be subdivided into three
groups:

® Duplicated for each logical processor

® Shared by logical processors in a physical processor

® Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

® General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
® Segment registers (CS, DS, SS, ES, FS, and GS)

® EFLAGS and EIP registers. Note that the CS and EIP registers for each logical processor
point to the instruction stream for the thread being executed by the logical processor.

® x87 FPU registers (STO through ST7, status word, control word, tag word, data operand
pointer, and instruction pointer)

®  MMX registers (MMO through MM7)
®  XMM registers (XMMO through XMM7) and the MXCSR register

® Control registers (CR0O, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register)
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® Debug registers (DRO, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs

® Machine check global status (IA32_MCG_STATUS) and machine check capability
(IA32_MCG_CAP) MSRs

® Thermal clock modulation and ACPI Power management control MSRs
® Time stamp counter MSRs

® Most of the other MSR registers, including the page attribute table (PAT). See the
exceptions below.

® Local APIC registers.

® Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), control
register, IA32_EFER on processors that support Intel EM64T.

The following features are shared by logical processors:

®* |A32_MISC_ENABLE MSR (MSR address 1A0H)

® Memory type range registers (MTRRS)

Whether the following features are shared or duplicated is implementation-specific:

® Machine check architecture (MCA) MSRs (except for the 1A32_MCG_STATUS and
I1A32_MCG_CAP MSRs)

® Performance monitoring control and counter MSRs

7.8.2  APIC Functionality

When a processor supporting Hyper-Threading Technology support is initialized, each logical
processor is assigned a local APIC ID (see Table 8-1). The local APIC ID serves as an ID for
the logical processor and is stored in the logical processor’s APIC ID register. If two or more
IA-32 processors supporting Hyper-Threading Technology are present in a dual processor (DP)
or MP system, each logical processor on the system bus is assigned a unique local APIC ID (see
Section 7.10.2, “Identifying Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPI)
messaging facility. Setup and programming for APICs is identical in processors that support and
do not support Intel Hyper-Threading Technology. See Chapter 8, “Advanced Programmable
Interrupt Controller (APIC),” for a detailed discussion.

7.8.3 Memory Type Range Registers (MTRR)

MTRRs in a processor supporting Hyper-Threading Technology are shared by logical proces-
sors. When one logical processor updates the setting of the MTRRs, settings are automatically
shared with the other logical processors in the same physical package.

IA-32 architecture requires that all MP systems based on 1A-32 processors (this includes logical
processors) MUST use an identical MTRR memory map. This gives software a consistent view
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of memory, independent of the processor on which it is running. See Section 10.11, “Memory
Type Range Registers (MTRRs),” for information on setting up MTRRs.

7.8.4 Page Attribute Table (PAT)

Each logical processor has its own PAT MSR (IA32_CR_PAT). However, as described in
Section 10.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the same for all
processors in a system, including the logical processors.

7.8.5 Machine Check Architecture

In the HT Technology context, all of the machine check architecture (MCA) MSRs (except for
the 1A32_MCG_STATUS and I1A32_MCG_CAP MSRs) are duplicated for each logical
processor. This permits logical processors to initialize, configure, query, and handle machine-
check exceptions simultaneously within the same physical processor. The design is compatible
with machine check exception handlers that follow the guidelines given in Chapter 14,
“Machine-Check Architecture.”

The 1A32_MCG_STATUS MSR is duplicated for each logical processor so that its machine
check in progress bit field (MCIP) can be used to detect recursion on the part of MCA handlers.
In addition, the MSR allows each logical processor to determine that a machine-check exception
is in progress independent of the actions of another logical processor in the same physical
package.

Because the logical processors within a physical package are tightly coupled with respect to
shared hardware resources, both logical processors are notified of machine check errors that
occur within a given physical processor. If machine-check exceptions are enabled when a fatal
error is reported, all the logical processors within a physical package are dispatched to the
machine-check exception handler. If machine-check exceptions are disabled, the logical proces-
sors enter the shutdown state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set
for each logical processor.

7.8.6 Debug Registers and Extensions

Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, DR7)
and its own debug control MSR. These can be set to control and record debug information for
each logical processor independently. Each logical processor also has its own last branch records
(LBR) stack.

7.8.7 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between the logical proces-
sors within the physical processor. As a result, software must manage the use of these resources.
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The performance counter interrupts, events, and precise event monitoring support can be set up
and allocated on a per thread (per logical processor) basis.

See Section 18.14, “Performance Monitoring and Hyper-Threading Technology,” for a discus-
sion of performance monitoring in the Intel Xeon processor MP.

7.8.8 IA32_MISC_ENABLE MSR

The 1A32_MISC_ENABLE MSR (MSR address 1A0H) is shared between the logical proces-
sors in an 1A-32 processor supporting Hyper-Threading Technology. Thus the architectural
features that this register controls are set the same for all the logical processors in the same phys-
ical package.

7.8.9 Memory Ordering

The logical processors in an 1A-32 processor supporting Hyper-Threading Technology obey the
same rules for memory ordering as 1A-32 processors without HT Technology (see Section 7.2,
“Memory Ordering™). Each logical processor uses a processor-ordered memory model that can
be further defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory ordering model to handle special programming situations apply
to each logical processor.

7.8.10 Serializing Instructions

As a general rule, when a logical processor in an 1A-32 processor supporting Hyper-Threading
Technology executes a serializing instruction, only that logical processor is affected by the oper-
ation. An exception to this rule is the execution of the WBINVD, INVD, and WRMSR instruc-
tions; and the MOV CR instruction when the state of the CD flag in control register CRO is
modified. Here, both logical processors are serialized.

7.8.11 MICROCODE UPDATE Resources

In an 1A-32 processor supporting Hyper-Threading Technology, the microcode update facilities
are shared between the logical processors; either logical processor can initiate an update. Each
logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address
8BH). When a logical processor performs an update for the physical processor, the
IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical infor-
mation. If logical processors initiate an update simultaneously, the processor core provides the
necessary synchronization needed to insure that only one update is performed at a time.

Operating system microcode update drivers that adhere to Intel’s guidelines do not need to be
modified to run on an 1A-32 processor supporting Hyper-Threading Technology.
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7.8.12 Self Modifying Code

1A-32 processors supporting Hyper-Threading Technology support self-modifying code, where
data writes modify instructions cached or currently in flight. They also support cross-modifying
code, where on an MP system writes generated by one processor modify instructions cached or
currently in flight on another. See Section 7.1.3, “Handling Self- and Cross-Modifying Code,”
for a description of the requirements for self- and cross-modifying code in an 1A-32 processor.

7.8.13 Implementation-Specific HT Technology Facilities

The following non-architectural facilities are implementation-specific in 1A-32 processors
supporting Hyper-Threading Technology:

® Caches

® Translation lookaside buffers (TLBs)

®  Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

7.8.13.1 Processor Caches

For the Intel Xeon processor MP, the caches are shared. Any cache manipulation instruction that
is executed on one logical processor has a global effect on the cache hierarchy of the physical
processor. Note the following:

®* WBINVD instruction — The entire cache hierarchy is invalidated after modified data is
written back to memory. All logical processors are stopped from executing until after the
write-back and invalidate operation is completed. A special bus cycle is sent to all caching
agents.

® INVD instruction — The entire cache hierarchy is invalidated without writing back
modified data to memory. All logical processors are stopped from executing until after the
invalidate operation is completed. A special bus cycle is sent to all caching agents.

® CLFLUSH instruction — The specified cache line is invalidated from the cache
hierarchy after any modified data is written back to memory and a bus cycle is sent to all
caching agents, regardless of which logical processor caused the cache line to be filled.

® CD flag in control register CRO — Each logical processor has its own CRO control
register, and thus its own CD flag in CRO. The CD flags for the two logical processors are
ORed together, such that when any logical processor sets its CD flag, the entire cache is
nominally disabled.

7.8.13.2 Processor Translation Lookaside Buffers (TLBsS)

In an Intel Xeon processor MP, data cache TLBs are shared. The instruction cache TLB is dupli-
cated in each logical processor.
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Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the
translation. This tag applies even for translations that are marked global using the page global
feature for memory paging.

When a logical processor performs a TLB invalidation operation, only the TLB entries that are
tagged for that logical processor are flushed. This protocol applies to all TLB invalidation oper-
ations, including writes to control registers CR3 and CR4 and uses of the INVLPG instruction.

7.8.13.3 Thermal Monitor

In an Intel Xeon processor MP, logical processors share the catastrophic shutdown detector and
the automatic thermal monitoring mechanism (see Section 13.4, “Thermal Monitoring and
Protection”). Sharing results in the following behavior:

® |f the processor’s core temperature rises above the preset catastrophic shutdown temper-
ature, the processor core halts execution, which causes both logical processors to stop
execution.

® When the processor’s core temperature rises above the preset automatic thermal monitor
trip temperature, the clock speed of the processor core is automatically modulated, which
effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or disabled on
a logical processor basis. Typically, if software controlled clock modulation is going to be used,
the feature must be enabled for all the logical processors within a physical processor and the
modulation duty cycle must be set to the same value for each logical processor. If the duty cycle
values differ between the logical processors, the processor clock will be modulated at the highest
duty cycle selected.

7.8.13.4 External Signal Compatibility

This section describes the constraints on external signals received through the pins of an Intel
Xeon processor MP and how these signals are shared between its logical processors.

® STPCLK# — A single STPCLK# pin is provided on the physical package of the Intel
Xeon processor MP. External control logic uses this pin for power management within the
system. When the STPCLK# signal is asserted, the processor core transitions to the stop-
grant state, where instruction execution is halted but the processor core continues to
respond to snoop transactions. Regardless of whether the logical processors are active or
halted when the STPCLK# signal is asserted, execution is stopped on both logical
processors and neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together.
As a result this signal affects all the logical processors within the system simultaneously.

® LINTO and LINT1 pins — An Intel Xeon processor MP has only one set of LINTO and
LINT1 pins, which are shared between the logical processors. When one of these pins is
asserted, both logical processors respond unless the pin has been masked in the APIC local
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vector tables for one or both of the logical processors.

Typically in MP systems, the LINTO and LINT1 pins are not used to deliver interrupts to
the logical processors. Instead all interrupts are delivered to the local processors through
the 1/0 APIC.

®*  A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for compati-
bility with the Intel 286 processor. Asserting this pin causes bit 20 of the physical address
to be masked (forced to zero) for all external bus memory accesses. The Intel Xeon
processor MP provides one A20M# pin, which affects the operation of both logical
processors within the physical processor. This configuration is compatible with the 1A-32
architecture.

7.9 DUAL-CORE ARCHITECTURE

This section describes the architecture of dual-core 1A-32 processors. The discussion is appli-
cable to the Intel Pentium processor Extreme Edition and Pentium D and Dual-core Intel Xeon
processor. Features vary across different microarchitectures and are detectable using CPUID.

In general, each processor core has dedicated microarchitectural resources identical to a single-
processor implementation of the underlying microarchitecture without hardware multi-
threading capability. Each logical processor in a dual-core 1A-32 processor (whether supporting
Hyper-Threading Technology or not) has its own APIC functionality, PAT, machine check archi-
tecture, debug registers and extensions. Each logical processor handles serialization instructions
or self-modifying code on its own. Memory order is handled the same way as in Hyper-
Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is shared by
one or more processor cores or by all logical processors in the physical package) depends on the
processor implementation. Software must use the deterministic cache parameter leaf of CPUID
instruction to discover the cache-sharing topology between the logical processors in a multi-
threading environment.

7.9.1 Logical Processor Support

The topological composition of processor cores and logical processors in a multi-core 1A-32
architecture processor can be discovered using CPUID. Within each processor core, one or more
logical processors may be available.

System software must follow the requirement MP initialization sequences (see Section 7.5,
“Multiple-Processor (MP) Initialization”) to recognize and enable logical processors. At
runtime, software can enumerate those logical processors enabled by system software to identify
the topological relationships between these logical processors. (See Section 7.10.4, “Identifying
Topological Relationships in a MP System”).
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7.9.2 Memory Type Range Registers (MTRR)

MTRR is shared between two logical processors sharing a processor core if the physical
processor supports Hyper-Threading Technology. MTRR is not shared between logical proces-
sors located in different cores or different physical packages.

IA-32 architecture requires that all MP systems based on 1A-32 processors (this includes logical
processors) use an identical MTRR memory map. This gives software a consistent view of
memory, independent of the processor on which it is running.

See Section 10.11, “Memory Type Range Registers (MTRRS).”

7.9.3 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between two logical
processors sharing a processor core if the physical package supports Hyper-Threading Tech-
nology. They are not shared between logical processors in different cores or different physical
packages. As a result, software must manage the use of these resources, based on the topology
of performance monitoring resources. Performance counter interrupts, events, and precise event
monitoring support can be set up and allocated on a per thread (per logical processor) basis.

See Section 18.14, “Performance Monitoring and Hyper-Threading Technology.”

7.9.4 |A32_MISC_ENABLE MSR

The 1A32_MISC_ENABLE MSR (MSR address 1A0H) is shared between two logical proces-
sors sharing a processor core if the physical package supports Hyper-Threading Technology.
The MSR is not shared between logical processors in different cores or different physical pack-
ages. This means that the architectural features that this register controls are set the same for the
logical processors in the same core.

7.9.5 MICROCODE UPDATE Resources

Microcode update facilities are shared between two logical processors sharing a processor core
if the physical package supports Hyper-Threading Technology. They are not shared between
logical processors in different cores or different physical packages. Either logical processor that
has access to the microcode update facility can initiate an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR
address 8BH). When a logical processor performs an update for the physical processor, the
IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical infor-
mation. If logical processors initiate an update simultaneously, the processor core provides the
synchronization needed to ensure that only one update is performed at a time.
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7.10 PROGRAMMING CONSIDERATIONS FOR HARDWARE
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are physically
shared at some level of the hardware topology. In the multi-processor systems, typically bus and
memory sub-systems are physically shared between multiple sockets. Within a hardware multi-
threading capable processors, certain resources are provided for each processor core, while other
resources may be provided for each logical processors (see Section 7.8, “Intel® Hyper-
Threading Technology Architecture,” and Section 7.9, “Dual-Core Architecture™).

From a software programming perspective, control transfer of processor operation is managed
at the granularity of logical processor (operating systems dispatch a runnable task by allocating
an available logical processor on the platform). To manage the topology of shared resources in
a multi-threading environment, it is useful for software to understand and manage resources that
may be shared by more than one logical processors. This can be facilitated by mapping several
levels of hierarchical labels to the initial APIC_ID of each logical processor to identify the
topology of shared resources.

7.10.1 Hierarchical Mapping of Shared Resources

The initial APIC_ID value associated with each logical processor in a multi-processor system is
unique (see Section 7.7, “Detecting Hardware Multi-Threading Support and Topology”). This
8-bit value can be decomposed into sub-fields, where each sub-field corresponds a hierarchical
level of the topological mapping of hardware resources.

The decomposition of an initial APIC_ID may consist of 4 sub fields, matching 4 levels of hier-
archy:

® Cluster — Some multi-threading environments consists of multiple clusters of multi-
processor systems. The CLUSTER _ID sub-field distinguishes different clusters. For non-
clustered systems, CLUSTER_ID is usually 0.

® Package — A multi-processor system consists of two or more sockets, each mates with a
physical processor package. The PACKAGE_ID sub-field distinguishes different physical
packages within a cluster.

® Core — A physical processor package consists of one or more processor cores. The
CORE_ID sub-field distinguishes processor cores in a package. For a single-core
processor, the width of this bit field is 0.

® SMT — A processor core provides one or more logical processors sharing execution
resources. The SMT _ID sub-field distinguishes logical processors in a core. The width of
this bit field is non-zero if a processor core provides more than one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the 8-bit APIC_ID field (see Figure 7-5).
The width of each sub-field depends on hardware and software configurations. Field widths can
be determined at runtime using the algorithm discussed below (Example 7-1 through Example
7-3). Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypothetical
MP system.
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The value of valid APIC_IDs need not be contiguous across package boundary or core bound-
aries.

7 0

Reserved

Cluster ID Q

Package ID

Core ID
SMT ID

Figure 7-5. Generalized Four level Interpretation of the initial APIC ID

7.10.2 Identifying Logical Processors in an MP System

For any 1A-32 processor, system hardware establishes an initial APIC ID that is unique for each
logical processor following power-up or RESET (see Section 7.7.1). Each logical processor on
the system is allocated an initial APIC ID. BIOS may implement features that tell the OS to
support less than the total number of logical processors on the system bus. Those logical proces-
sors that are not available to applications at runtime are halted during the OS boot process. As a
result, the number valid local APIC_IDs that can be queried by affinitizing-current-thread-
context (See Example 7-3) is limited to the number of logical processors enabled at runtime by
the OS hoot process.

Table 7-1 shows the APIC IDs that are initially reported for logical processors in a system with
four MP-type Intel Xeon processors (a total of 8 logical processors, each physical package has
one processor core and supports Hyper-Threading Technology). Of the two logical processors
within a Intel Xeon processor MP, logical processor 0 is designated the primary logical
processor and logical processor 1 as the secondary logical processor.

TO|| T1 TO|| T1 TO|| T1 TO|| T1 SMT_ID
Core 0 Corel Core 0 Corel Core ID
Package 0 Package 1 Package ID

Figure 7-6. Topological Relationships between Hierarchical IDs in a Hypothetical MP
Platform
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Table 7-1. Initial APIC IDs for the Logical Processors in a System that has Four MP-Type
Intel Xeon Processors Supporting Hyper-Threading Technology 1

Initial APIC ID of Logical Package ID Core ID SMT ID
Processor
OH OH OH OH
1H OH OH 1H
2H 1H OH OH
3H 1H OH 1H
4H 2H OH OH
5H 2H OH 1H
6H 3H OH OH
7H 3H OH 1H
NOTE:

1. Because information on the number of processor cores in a physical package was not available in early
single-core processors supporting Hyper-Threading Technology, the core ID can be treated as 0.

Table 7-2 shows the initial APIC IDs for a hypothetical situation with a dual processor system.
Each physical package providing two processor cores, and each processor core also supporting
Hyper-Threading Technology.

Table 7-2. Initial APIC IDs for the Logical Processors in a System that has Two Physical
Processors Supporting Dual-Core and Hyper-Threading Technology

Initial APIC ID of a Logical Package ID Core ID SMT ID
Processor
OH OH OH OH
1H OH OH 1H
2H OH 1H OH
3H OH 1H 1H
4H 1H OH OH
5H 1H OH 1H
6H 1H 1H OH
7H 1H 1H 1H
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7.10.3 Algorithm for Three-Level Mappings of APIC_ID

Software can gather the initial APIC_IDs for each logical processor supported by the operating
system at runtime? and extract identifiers corresponding to the three levels of sharing topology
(package, core, and SMT). The algorithms below focus on a non-clustered MP system for
simplicity. They do not assume initial APIC_IDs are contiguous or that all logical processors on
the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical values in
CPUID.1:EBX][23:16]), CPUID.4:EAX[31:26], and CPUID.4:EAX[25:14]. The algorithms
below assume the target system has symmetry across physical package boundaries with respect
to the number of logical processors per package, number of cores per package, and cache
topology within a package.

The extraction algorithm (for three-level mappings of an initial APIC_ID) uses the following
support routines (Example 7-1):

1. Detect capability for hardware multi-threading support in the processor.

2. ldentify the maximum number of logical processors in a physical processor package. This
is used to determine the topological relationship between logical processors and the
physical package.

3. Identify the maximum number of processor cores in a physical processor package. This is
used to determine the topological relationship between processor cores and the physical
package.

Extract the initial APIC ID for the logical processor where the current thread is executing.
Calculate a mask from the maximum count that the bit field can represent.
Use full 8-bit ID and mask to extract sub-field IDs.

Example 7-1 Support Routines for Detecting Hardware Multi-Threading and
Identifying the Relationships Between Package, Core and Logical
Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

/I Returns a non-zero value if CPUID reports the presence of hardware multi-threading
/I support in the physical package where the current logical processor is located.

/I This does not guarrantee BIOS or OS will enable all logical processors in the physical
/I package and make them available to applications.
/I Returns zero if hardware multi-threading is not present.

#define HWMT_BIT 0x10000000

4. As noted in Section 7.7 and Section 7.10.2, the number of logical processors supported by the OS at
runtime may be less than the total number logical processors available in the platform hardware.
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unsigned int HWMT Supported(void)
{

try { // verify cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

}
except (EXCEPTION_EXECUTE_HANDLER) {

return O ; // CPUID is not supported; So HW Multi-threading capability is not present
}

/I Check to see if this a Genuine Intel Processor

if (vendor string EQ Genuinelntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}

return O;

}

2. Find the Max number of logical processors per physical processor package.

#define NUM_LOGICAL_BITS 0xO00FF0000
/l EBX[23:16] indicates the max number of logical processors per package.

/I Returns the max number of logical processors per physical processor package;
/l the actual number of logical processors per package enabled by OS may be less.
/I Software should not assume the value of (cpuid.1.ebx[23:16]) must be power of 2.

unsigned char MaxLPPerPackage(void)

{

if (HWMTSupported()) return 1;

execute cpuid with eax = 1

store returned value of ebx

return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);
}

3. Find the max number of processor cores per physical processor package.

/l Returns the max number of processor cores per physical processor package;
/l the actual number of processor cores per package that are enabled may be less.
/I Software should not assume the value of (cpuid.4.eax[31:26] +1) must be power of 2.

unsigned MaxCoresPerPackage(void)
{
if (HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ /I we can retrieve multi-core topology info using leaf 4
execute cpuid with eax =4, ecx =0
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store returned value of eax
return (unsigned ) ((reg_eax >> 26) +1);

}

else // must be a single-core processor
return 1;

}

4. Extract the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // EBX[31:24] initial APIC ID

/I Returns the 8-bit unique initial APIC ID for the processor ruuning the code.

/I Software can use OS services to affinitize the current thread to each logical processor

// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned char GetInitAPIC_ID (void)

{

unsigned int reg_ebx = 0;

execute cpuid with eax = 1

store returned value of ebx

return (unsigned char) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;
}

5. Find the width of a bit-field mask from the maximum count of the bit-field.

/I Returns the mask bit width of a bit field from the maximum count that bit field can represent.
/I This algorithm does not assume ‘Max_Count’ to have a value equal to power of 2.

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;
__asm{

mov eax, cnt

mov ecx, 0

mov mask_width, ecx

dec eax

bsr cx, ax

jz next

inc cx

mov mask_width, ecx

next:

mov eax, mask_width

return mask_width;
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6. Extract a sub ID given a full ID, maximum sub ID value and shift count.

/I Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSublD(unsigned char Full_ID, unsigned char MaxSublDvalue, unsigned
char Shift_Count)

{

MaskWidth = FindMaskWidth(MaxSublDValue);

MaskBits = ((uchar) (0xff << Shift_Count)) ” ((uchar) (Oxff << Shift_Count + MaskWidth)) ;
SublID = Full_ID & MaskBits;

Return SublD;

Software must not assume local APIC_ID values in an MP system are consecutive. Non-consec-
utive local APIC_IDs may be the result of hardware configurations or debug features imple-
mented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using the
support routines illustrated in Example 7-1. The appropriate bit mask and shift value to construct
the appropriate bit mask for each level must be determined dynamically at runtime.

7.10.4

Identifying Topological Relationships in a MP System

To detect the number of physical packages, processor cores, or other topological relationships
in a MP system, the following procedures are recommended:

® Extract the three-level identifiers from the APIC ID of each logical processor enabled by
system software. The sequence is as follows (See the pseudo code shown in Example 7-2
and support routines shown in Example 7-1):

The extraction start from the right-most bit field, corresponding to SMT_ID, the
innermost hierarchy in a three-level topology (See Figure 7-6). For the right-most
bit field, the shift value of the working mask is zero. The width of the bit field is
determined dynamically using the maximum number of logical processor per core,
which can be derived from information provided from CPUID.

To extract the next bit-field, the shift value of the working mask is determined
from the width of the bit mask of the previous step. The width of the bit field is
determined dynamically using the maximum number of cores per package.

To extract the remaining bit-field, the shift value of the working mask is
determined from the maximum number of logical processor per package. So the
remaining bits in the APIC ID (excluding those bits already extracted in the two
previous steps) are extracted as the third identifier. This applies to a non-clustered
MP system, or if there is no need to distinguish between PACKAGE_ID and
CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID,
PACKAGE_ID can be extracted using an algorithm similar to the extraction of
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CORE_ID, assuming the number of physical packages in each node of a clustered
system is symmetric.

® Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into arrays
for each enabled logical processor. This is shown in Example 7-3a.

® To detect the number of physical packages: use PACKAGE_ID to identify those logical
processors that reside in the same physical package. This is shown in Example 7-3b. This
example also depicts a technique to construct a mask to represent the logical processors
that reside in the same package.

®  To detect the number of processor cores: use CORE_ID to identify those logical processors
that reside in the same core. This is shown in Example 7-3. This example also depicts a
technique to construct a mask to represent the logical processors that reside in the same
core.

In Example 7-2, the numerical ID value can be obtained from the value extracted with the mask
by shifting it right by shift count. Algorithms below do not shift the value. The assumption is
that the SubID values can be compared for equivalence without the need to shift.

Example 7-2 Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
/I Determine MaxLPPerCore available in hardware

I/l This algorithm assumes there is symmetry across core boundary, i.e. each core within a
package has the same number of logical processors

MaxLPPerCore = MaxLPPerPackage()/MaxCoresPerPackage();

/I Extract SMT_ID first, this is the innermost of the three levels

I/ bit mask width is determined from MaxLPPerCore topological info.
/I shift size is 0, corresponding to the right-most bit-field

SMT_ID = GetSublD(local_APIC_ID, MaxLPPerCore, 0);

/I Extract CORE_ID:
// bit width is determined from maximum number of cores per package possible in hardware
I/ shift count is determined by maximum logical processors per core in hardware

CORE_ID = GetSubID(InitAPIC_ID, MaxCoresPerPackage(), FindMaskWidth(
MaxLPPerCore) );

/I Extract PACKAGE_ID:

Il Assume single cluster.

/I Shift out the mask width for maximum logical processors per package
PackagelDMask = ((uchar) (0xff << FindMaskWidth(MaxLPPerPackage()));
PACKAGE_ID = InitAPIC_ID & PackagelDMask;

7-42 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT

Example 7-3 Compute the Number of Packages, Cores, and Processor Relationships
in a MP System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

/IThe BIOS and/or OS may limit the number of logical processors available to applications
/I after system boot. The below algorithm will compute topology for the processors visible
/I to the thread that is computing it.

I/l Extract the 3-levels of IDs on every processor

/I SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
obtain it.

/I ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
using OS specific APIs.

/I Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every
started processor

ThreadAffinityMask = 1;
ProcessorNum = 0;
while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
/I Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){
Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

InitAPIC_ID = GetInitAPIC_ID();

Extract the Package, Core and SMT ID as explained in three level extraction
algorithm

PackagelD[ProcessorNUM] = PACKAGE_ID;
CorelD[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

ThreadAffinityMask <<= 1;
}

NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system
and construct, for each package, a multi-bit mask corresponging to those logical processors
residing in the same package.

/I Compute the number of packages by counting the number of processors
/l with uniqgue PACKAGE_IDs in the PackagelD array.
/I Compute the mask of processors in each package.

PackagelDBucket is an array of unigue PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.

PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID

Vol. 3A 7-43



MULTIPLE-PROCESSOR MANAGEMENT

The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.

/I Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackagelDBucket[0] = PackagelD[0];
ProcessorMask = 1;
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {
ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {
/I we may be comparing bit-fields of logical processors residing in different
/l packages, the code below assume package symmetry
If (PackagelD[ProcessorNum] == PackagelDBucket[i]) {
PackageProcessorMask([i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration
}
}
if (i ==PackageNum) {
/IPACKAGE_ID did not match any bucket, start new bucket
PackagelDBucket[i] = PackagelD[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}

// PackageNum has the number of Packages started in OS
/I PackageProcessorMask[] array has the processor set of each package

¢) Using the list of CORE_ID to count the number of cores in a MP system and construct, for
each core, a multi-bit mask corresponging to those logical processors residing in the same
core.

Processors in the same core can be determined by bucketing the processors with the same
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and
CORE ID because they have not been shifted right.

The algorithm below assumes there is symmetry across package boundary if more than one
socket is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum =1;
CorelDBucket[0] = PackagelD[0] | CorelDI[O0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {
ProcessorMask << =1,
For (i=0; i < CoreNum; i++) {
/l we may be comparing bit-fields of logical processors residing in different
/I packages, the code below assume package symmetry
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If ((PackagelD[ProcessorNum] | CorelD[ProcessorNum]) == CorelDBucket][i]) {
CoreProcessorMask([i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration
}
}
if (i == CoreNum) {
//Did not match any bucket, start new bucket
CorelDBucket[i] = PackagelD[ProcessorNum] | CorelD[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum-++;
}
}

/I CoreNum has the number of cores started in the OS
/I CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be computed from set
operations of the PackageProcessorMask[] and CoreProcessorMask[].

The algorithm shown above can be applied to earlier generations of single-core IA-32 proces-
sors that support Hyper-Threading Technology and in the situation that the deterministic cache
parameter leaf is not supported. This is handled by ensuring MaxCoresPerPackage() return 1 in
those situations.

7.11 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS

During execution of an 1A-32 processor supporting Hyper-Threading Technology with each
logical processor actively executing a thread, logical processors use shared processor resources
(cache lines, TLB entries, and bus accesses) on an as-needed basis. When one logical processor
is idle (no work to do) or blocked (on a lock or semaphore), additional management of the core
execution engine resource can be accomplished by using the HLT (halt), PAUSE, or the
MONITOR/MWAIT instructions.

7.11.1 HLT Instruction

The HLT instruction stops the execution of the logical processor on which it is executed and
places it in a halted state until further notice (see the description of the HLT instruction in
Chapter 3, “Instruction Set Reference, A-M,” of the 1A-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 2A). When a logical processor is halted, active logical processors
continue to have full access to the shared resources within the physical package. Here shared
resources that were being used by the halted logical processor become available to active logical
processors, allowing them to execute at greater efficiency. When the halted logical processor
resumes execution, shared resources are again shared among all active logical processors. (See
Section 7.11.6.3, “Halt Idle Logical Processors,” for more information about using the HLT
instruction with 1A-32 processors supporting Hyper-Threading Technology.)
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7.11.2 PAUSE Instruction

The PAUSE instruction improves the performance of 1A-32 processors supporting Hyper-
Threading Technology when executing “spin-wait loops” and other routines where one thread
is accessing a shared lock or semaphore in a tight polling loop. When executing a spin-wait loop,
the processor can suffer a severe performance penalty when exiting the loop because it detects
a possible memory order violation and flushes the core processor’s pipeline. The PAUSE
instruction provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation and prevent the pipeline flush. In
addition, the PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming
execution resources excessively. (See Section 7.11.6.1, “Use the PAUSE Instruction in Spin-
Wait Loops,” for more information about using the PAUSE instruction with 1A-32 processors
supporting Hyper-Threading Technology.)

7.11.3 Detecting Support MONITOR/MWAIT Instruction

Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to help
multithreaded software improve thread synchronization. In the initial implementation,
MONITOR and MWAIT are available to software at ring 0. The instructions are conditionally
available at levels greater than 0. Use the following steps to detect the availability of MONITOR
and MWAIT:

* Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).

® |If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception handler
and trap for an exception. If an exception occurs, MONITOR and MWAIT are not
supported at a privilege level greater than 0. See Example 7-4.

Example 7-4 Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {
_asm{
XOr ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}
/I Use monitor
} except (UNWIND) {
/I if we get here, MONITOR/MWAIT is not supported
MONITOR_MWAIT_works = FALSE;

}
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7.11.4 MONITOR/MWAIT Instruction

Operating systems usually implement idle loops to handle thread synchronization. In a typical
idle-loop scenario, there could be several “busy loops” and they would use a set of memory loca-
tions. An impacted processor waits in a loop and poll a memory location to determine if there is
available work to execute. The posting of work is typically a write to memory (the work-queue
of the waiting processor). The time for initiating a work request and getting it scheduled is on
the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution resources), use of the
HLT instruction in an OS idle loop is desirable but has implications. Executing the HLT instruc-
tion on aidle logical processor puts the targeted processor in a non-execution state. This requires
another processor (when posting work for the halted logical processor) to wake up the halted
processor using an inter-processor interrupt. The posting and servicing of such an interrupt
introduces a delay in the servicing of new work requests.

In a shared memory configuration, exits from busy loops usually occur because of a state change
applicable to a specific memory location; such a change tends to be triggered by writes to the
memory location by another agent (typically a processor).

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient partitioning
and un-partitioning of shared resources among logical processors sharing physical resources.
MONITOR sets up an effective address range that is monitored for write-to-memory activities;
MWAIT places the processor in an optimized state (this may vary between different implemen-
tations) until a write to the monitored address range occurs.

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor hardware
can be either armed (by executing the MONITOR instruction) or triggered (due to a variety of
events, including a store to the monitored memory region). If upon execution of MWAIT,
monitor hardware is in a triggered state: MWAIT behaves as a NOP and execution continues at
the next instruction in the execution stream. The state of monitor hardware is not architecturally
visible except through the behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a processor that
executed MWAIT to wake up. These include events that would lead to voluntary or involuntary
context switches, such as:

® External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
® Faults, Aborts (including Machine Check)

® Architectural TLB invalidations including writes to CRO, CR3, CR4 and certain MSR
writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the
monitor)

® \oluntary transitions due to fast system call and far calls (occurring prior to issuing
MWAIT but after setting the monitor)

Vol. 3A  7-47



MULTIPLE-PROCESSOR MANAGEMENT

Power management related events (such as Thermal Monitor 2 or chipset driven STPCLK#
assertion) will not cause the monitor event pending flag to be cleared. Faults will not cause the
monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between MONITOR/MWAIT in the
instruction flow. Note that execution of MWAIT does not re-arm the monitor hardware. This
means that MONITOR/MWAIT need to be executed in a loop. Also note that exits from the
MWAIT state could be due to a condition other than a write to the triggering address; software
should explicitly check the triggering data location to determine if the write occurred. Software
should also check the value of the triggering address following the execution of the monitor
instruction (and prior to the execution of the MWAIT instruction). This check is to identify any
writes to the triggering address that occurred during the course of MONITOR execution.

The address range provided to the MONITOR instruction must be of write-back caching type.
Only write-back memory type stores to the monitored address range will trigger the monitor
hardware. If the address range is not in memory of write-back type, the address monitor hard-
ware may not be set up properly or the monitor hardware may not be armed. Software is also
responsible for ensuring that

® Writes that are not intended to cause the exit of a busy loop do not write to a location
within the address region being monitored by the monitor hardware,

® Writes intended to cause the exit of a busy loop are written to locations within the
monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due to a write
to the intended data location). These have negative performance implications. It might be neces-
sary for software to use padding to prevent false wakeups. CPUID provides a mechanism for
determining the size data locations for monitoring as well as a mechanism for determining the
size of a the pad.

7.11.5 Monitor/Mwait Address Range Determination

To use the MONITOR/MWAIT instructions, software should know the length of the region
monitored by the MONITOR/MWAIT instructions and the size of the coherence line size for
cache-snoop traffic in a multiprocessor system. This information can be queried using the
CPUID monitor leaf function (EAX = 05H). You will need the smallest and largest monitor line
size:

® To avoid missed wake-ups: make sure that the data structure used to monitor writes fits
within the smallest monitor line-size. Otherwise, the processor may not wake up after a
write intended to trigger an exit from MWAIT.

® To avoid false wake-ups; use the largest monitor line size to pad the data structure used to
monitor writes. Software must make sure that beyond the data structure, no unrelated data
variable exists in the triggering area for MWAIT. A pad may be needed to avoid this
situation.
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These above two values bear no relationship to cache line size in the system and software should
not make any assumptions to that effect. Within a single-cluster system, the two parameters
should default to be the same (the size of the monitor triggering area is the same as the system
coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically allocate
structures with appropriate padding. If static data structures must be used by an OS, attempt to
adapt the data structure and use a dynamically allocated data buffer for thread synchronization.
When the latter technique is not possible, consider not using MONITOR/MWAIT when using
static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered systems: inter-
action between processors, chipsets, and the BIOS is required (system coherence line size may
depend on the chipset used in the system; the size could be different from the processor’s
monitor triggering area). The BIOS is responsible to set the correct value for system coherence
line size using the IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative
magnitude of the size of the monitor triggering area versus the value written into the
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be reported
as the Smallest Monitor Line Size. The larger of the parameters will be reported as the Largest
Monitor Line Size.

7.11.6 Required Operating System Support

This section describes changes that must be made to an operating system to run on 1A-32 proces-
sors supporting Hyper-Threading Technology. It also describes optimizations that can help an
operating system make more efficient use of the logical processors sharing execution resources.
The required changes and suggested optimizations are representative of the types of modifica-
tions that appear in Windows XP and Linux kernel 2.4.0 operating systems for A-32 processors
supporting Hyper-Threading Technology. Additional optimizations for 1A-32 processors
supporting Hyper-Threading Technology are described in the 1A-32 Intel® Architecture Optimi-
zation Reference Manual.

7.11.6.1 Use the PAUSE Instruction in Spin-Wait Loops

Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel
Xeon, Pentium 4 processors and dual-core processors.

Software routines that use spin-wait loops include multiprocessor synchronization primitives
(spin-locks, semaphores, and mutex variables) and idle loops. Such routines keep the processor
core busy executing a load-compare-branch loop while a thread waits for a resource to become
available. Including a PAUSE instruction in such a loop greatly improves efficiency (see
Section 7.11.2, “PAUSE Instruction™). The following routine gives an example of a spin-wait
loop that uses a PAUSE instruction:

Spin_Lock:

CMP lockvar, 0;Check if lock is free
JE Get_Lock
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PAUSE ; Short delay
JMP Spin_Lock
Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ; Try to get lock
CMP EAX, 0 ; Test if successful
JNE Spin_Lock
Critical_Section:
<critical section code>
MOV lockvar, 0

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of
the synchronization variable. This technique is recommended when writing spin-wait loops.

In 1A-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is
treated as a NOP instruction.

7.11.6.2 Potential Usage of MONITOR/MWAIT in CO Idle Loops

An operating system may implement different handlers for different idle states. A typical OS
idle loop on an ACPI-compatible OS is shown in Example 7-5:

Example 7-5 A Typical OS Idle Loop

/I WorkQueue is a memory location indicating there is a thread

/l ready to run. A non-zero value for WorkQueue is assumed to

/l indicate the presence of work to be scheduled on the processor.
/I The idle loop is entered with interrupts disabled.

WHILE (1) {

IF (WorkQueue) THEN {

/I Schedule work at WorkQueue.
} ELSE({
/I No work to do - wait in appropriate C-state handler depending
/l on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler

I/l shown below

}

}
}

/I C1 handler uses a Halt instruction
VOID C1Handler()
{ STI

HLT

}
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The MONITOR and MWAIT instructions may be considered for use in the CO idle state loops, if
MONITOR and MWAIT are supported.

Example 7-6 An OS Idle Loop with MONITOR/MWAIT in the CO Idle Loop

Il WorkQueue is a memory location indicating there is a thread

/I ready to run. A non-zero value for WorkQueue is assumed to

// indicate the presence of work to be scheduled on the processor.

/I The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups

/I The idle loop is entered with interrupts disabled.

WHILE (1) {

IF (WorkQueue) THEN {

/I Schedule work at WorkQueue.
} ELSE({

/I No work to do - wait in appropriate C-state handler depending
/l on Idle time accumulated.

IF (IdleTime >= IdleTimeThreshhold) THEN {
/I Call appropriate C1, C2, C3 state handler, C1
/I handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue
/I LinearAddress,
/I ECX, EDX =0
IF (WorkQueue != 0) THEN {
MWAIT

}

}
}

/I C1 handler uses a Halt instruction.

VOID C1Handler()
{ SsTI
HLT

}

7.11.6.3 Halt Idle Logical Processors

If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that
processor by means of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that continuously
checks the run queue for runnable software tasks. Logical processors that execute idle loops
consume a significant amount of core’s execution resources that might otherwise be used by the
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other logical processors in the physical package. For this reason, halting idle logical processors
optimizes the performance.® If all logical processors within a physical package are halted, the
processor will enter a power-saving state.

7.11.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops

An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 idle
loop. An example is shown in Example 7-7:

Example 7-7 An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

/I WorkQueue is a memory location indicating there is a thread
[/l ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
/I The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
/I The idle loop is entered with interrupts disabled.
WHILE (1) {
IF (WorkQueue) THEN {
/I Schedule work at WorkQueue
} ELSE({
/I No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
/I Call appropriate C1, C2, C3 state handler, C1
/Il handler shown below
}
}
}

/I C1 handler uses a Halt instruction
VOID C1Handler()

{
MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,
Il ECX,EDX =0
IF (WorkQueue != 0) THEN {
STI
MWAIT I EAX, ECX =0
}
}

5. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating
systems should evaluate the performance trade-offs for their operating system.
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7.11.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical processors
for execution can affect the overall efficiency of a system. The following guidelines are recom-
mended for scheduling threads for execution.

® Dispatch threads to one logical processor per processor core before dispatching threads to
the other logical processor sharing execution resources in the same processor core.

®* Inan MP system with two or more physical packages, distribute threads out over all the
physical processors, rather than concentrate them in one or two physical processors.

® Use processor affinity to assign a thread to a specific processor core or package, depending
on the cache-sharing topology. The practice increases the chance that the processor’s
caches will contain some of the thread’s code and data when it is dispatched for execution
after being suspended.

7.11.6.6 Eliminate Execution-Based Timing Loops

Intel discourages the use of timing loops that depend on a processor’s execution speed to
measure time. There are several reasons:

® Timing loops cause problems when they are calibrated on a 1A-32 processor running at one
clock speed and then executed on a processor running at another clock speed.

® Routines for calibrating execution-based timing loops produce unpredictable results when
run on an 1A-32 processor supporting Hyper-Threading Technology. This is due to the
sharing of execution resources between the logical processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism for the loop
that does not depend on the execution speed of the logical processors in the system. The
following sources are generally available:

® A high resolution system timer (for example, an Intel 8254).

® A high resolution timer within the processor (such as, the local APIC timer or the time-
stamp counter).

For additional information, see the 1A-32 Intel® Architecture Optimization Reference Manual.

7.11.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of
Memory

When software uses locks or semaphores to synchronize processes, threads, or other code
sections; Intel recommends that only one lock or semaphore be present within a cache line. In
an Intel Xeon processor MP (which have 128-byte wide cache lines), following this recommen-
dation means that each lock or semaphore should be contained in a 128-byte block of memory
that begins on a 128-byte boundary. The practice minimizes the bus traffic required to service
locks.
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CHAPTER 8
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections
as the local APIC, was introduced into the 1A-32 processors with the Pentium processor (see
Section 17.26., “Advanced Programmable Interrupt Controller (APIC)”) and is included in the
P6 family, Pentium 4 and Intel Xeon processors (see Section 8.4.2, “Presence of the Local
APIC™). The local APIC performs two primary functions for the processor:

® Iltreceives interrupts from the processor’s interrupt pins, from internal sources and from an
external 1/0 APIC (or other external interrupt controller). It sends these to the processor
core for handling.

® In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI)
messages to and from other 1A-32 processors on the system bus. IPI messages can be used
to distribute interrupts among the processors in the system or to execute system wide
functions (such as, booting up processors or distributing work among a group of
processors).

The external 1/0 APIC is part of Intel’s system chip set. Its primary function is to receive
external interrupt events from the system and its associated 1/O devices and relay them to the
local APIC as interrupt messages. In MP systems, the 1/0 APIC also provides a mechanism for
distributing external interrupts to the local APICs of selected processors or groups of processors
on the system bus.

This chapter provides a description of the local APIC and its programming interface. It also
provides an overview of the interface between the local APIC and the 1/0 APIC. Contact Intel
for detailed information about the 1/0 APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses
the interrupt and exception handling mechanism described in Chapter 5, “Interrupt and Excep-
tion Handling.” See Section 5.1, “Interrupt and Exception Overview,” for an introduction to
interrupt and exception handling in the 1A-32 architecture.

8.1 LOCAL AND I/O APIC OVERVIEW

Each local APIC consists of a set of APIC registers (see Table 8-1) and associated hardware that
control the delivery of interrupts to the processor core and the generation of IPI messages. The
APIC registers are memory mapped and can be read and written to using the MOV instruction.

Vol. 3A 8-1



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Local APICs can receive interrupts from the following sources:

® | ocally connected 1/O devices — These interrupts originate as an edge or level asserted
by an 1/0 device that is connected directly to the processor’s local interrupt pins (LINTO
and LINT1). The 1/0 devices may also be connected to an 8259-type interrupt controller
that is in turn connected to the processor through one of the local interrupt pins.

® Externally connected 1/O devices — These interrupts originate as an edge or level
asserted by an /O device that is connected to the interrupt input pins of an 1/0 APIC.
Interrupts are sent as I/O interrupt messages from the 1/0O APIC to one or more of the
processors in the system.

® Inter-processor interrupts (IPIs) — An IA-32 processor can use the IPI mechanism to
interrupt another processor or group of processors on the system bus. IPIs are used for
software self-interrupts, interrupt forwarding, or preemptive scheduling.

® APIC timer generated interrupts — The local APIC timer can be programmed to send a
local interrupt to its associated processor when a programmed count is reached (see
Section 8.5.4, “APIC Timer”).

® Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon
processors provide the ability to send an interrupt to its associated processor when a
performance-monitoring counter overflows (see Section 18.13.6.9, “Generating an
Interrupt on Overflow™).

® Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to
send an interrupt to themselves when the internal thermal sensor has been tripped (see
Section 13.4.2, “Thermal Monitor”).

® APIC internal error interrupts — When an error condition is recognized within the local
APIC (such as an attempt to access an unimplemented register), the APIC can be
programmed to send an interrupt to its associated processor (see Section 8.5.3, “Error
Handling™).

Of these interrupt sources: the processor’s LINTO and LINT1 pins, the APIC timer, the perfor-
mance-monitoring counters, the thermal sensor, and the internal APIC error detector are
referred to as local interrupt sources. Upon receiving a signal from a local interrupt source,
the local APIC delivers the interrupt to the processor core using an interrupt delivery protocol
that has been set up through a group of APIC registers called the local vector table or LVT (see
Section 8.5.1, “Local Vector Table™). A separate entry is provided in the local vector table for
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for
each source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry
in the local vector table can be set up to deliver an interrupt with vector number 2 (NMI inter-
rupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected
I/0O devices and IPIs) through its IPI message handling facilities.

A processor can generate IP1s by programming the interrupt command register (ICR) in its local
APIC (see Section 8.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR
causes an IPl message to be generated and issued on the system bus (for Pentium 4 and Intel
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Xeon processors) or on the APIC bus (for Pentium and P6 family processors). See Section 8.2,
“System Bus Vs. APIC Bus.”

IPIs can be sent to other 1A-32 processors in the system or to the originating processor (self-
interrupts). When the target processor receives an IPl message, its local APIC handles the
message automatically (using information included in the message such as vector number and
trigger mode). See Section 8.6, “Issuing Interprocessor Interrupts,” for a detailed explanation of
the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the 1/0
APIC (see Figure 8-1). The I/O APIC is responsible for receiving interrupts generated by system
hardware and 1/O devices and forwarding them to the local APIC as interrupt messages.

Pentium 4 and Pentium and P6
Intel Xeon Processors Family Processors
Processor Core Processor Core
Local APIC Local APIC
A Interrupt Local A Interrupt Local
v Messages Interrupts Messages Interrupts
-l — -
Interrupt | System Bus 3-Wire APIC Bus
Messages
Bridge /O APIC [ External
< Interrupts
- y TCI > System Chip Set
Y
/O APIC [ External
- Interrupts
System Chip Set

Figure 8-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

Individual pins on the I/0O APIC can be programmed to generate a specific interrupt vector when
asserted. The 1/0 APIC also has a “virtual wire mode” that allows it to communicate with a stan-
dard 8259A-style external interrupt controller. Note that the local APIC can be disabled (see
Section 8.4.3, “Enabling or Disabling the Local APIC”). This allows an associated processor
core to receive interrupts directly from an 8259A interrupt controller.

Both the local APIC and the I/0 APIC are designed to operate in MP systems (see Figures 8-2
and 8-3). Each local APIC handles interrupts from the 1/0 APIC, IPIs from processors on the
system bus, and self-generated interrupts. Interrupts can also be delivered to the individual
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processors through the local interrupt pins; however, this mechanism is commonly not used in

MP systems.
Processor #1 Processor #2 Processor #3 Processor #3
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
A A
Interrupt A|P| Interrupt A Pl Interrupt\ AIPI Interrupt“ AIPI
Messages' \ S Messages Yy S Messages' ' s Messages' s
- T\ .
Interrupt Processor System Bus
Messages
Y
Bridge
A
PCI
- \i - >
\
/O APIC [ External
< Interrupts

System Chip Set

Figure 8-2. Local APICs and I/0O APIC When Intel Xeon Processors Are Used in Multiple-
Processor Systems

Processor #3 Processor #4

Processor #1 Processor #2
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
A
InterruptA AIPIs Interrupt‘ A IPIs Interrupt“ A IPIs Interrupt‘\ AIPIs
Messages Messages Messages Messages
Yy YY Yy /
Interrupt A 3-wire APIC Bus
Messages
Y
External >
Interrupts > I/ APIC

System Chip Set

Figure 8-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-
Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a
specific vector number) and special-purpose interrupts to processors on the system bus. For
example, a local APIC can use an IPI to forward a fixed interrupt to another processor for
servicing. Special-purpose IPIs (including NMI, INIT, SMI and SIPI IPIs) allow one or more
processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel
Xeon, and P6 family processors. In these sections, the terms “local APIC” and “I/O APIC” refer
to local and 1/0 APICs used with the P6 family processors and to local and 1/0O xAPICs used
with the Pentium 4 and Intel Xeon processors (see Section 8.3, “the Intel® 82489DX External
APIC, The APIC, and the XAPIC”).

8.2 SYSTEM BUS VS. APIC BUS

For the P6 family and Pentium processors, the I/0 APIC and local APICs communicate through
the 3-wire inter-APIC bus (see Figure 8-3). Local APICs also use the APIC bus to send and
receive IPIs. The APIC bus and its messages are invisible to software and are not classed as
architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the 1/0 APIC and local APICs (using
the XAPIC architecture) communicate through the system bus (see Figure 8-2). The 1/0 APIC
sends interrupt requests to the processors on the system bus through bridge hardware that is part
of the Intel chip set. The bridge hardware generates the interrupt messages that go to the local
APICs. IPIs between local APICs are transmitted directly on the system bus.

8.3 THE INTEL® 82489DX EXTERNAL APIC,
THE APIC, AND THE XAPIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel®
82489DX external APIC. See Section 17.26.1, “Software Visible Differences Between the
Local APIC and the 82489DX.”

The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the XAPIC archi-
tecture) is an extension of the APIC architecture found in the P6 family processors. The primary
difference between the APIC and XAPIC architectures is that with the xAPIC architecture, the
local APICs and the I/O APIC communicate through the system bus. With the APIC architec-
ture, they communication through the APIC bus (see Section 8.2, “System Bus Vs. APIC Bus”).
Also, some APIC architectural features have been extended and/or modified in the XAPIC archi-
tecture. These extensions and modifications are noted in the following sections.

8.4 LOCAL APIC

The following sections describe the architecture of the local APIC and how to detect it, identify
it, and determine its status. Descriptions of how to program the local APIC are given in Section
8.5.1, “Local Vector Table,” and Section 8.6.1, “Interrupt Command Register (ICR).”
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8.4.1 The Local APIC Block Diagram

Figure 8-4 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. APIC registers are memory-mapped to a 4-KByte
region of the processor’s physical address space with an initial starting address of FEEOO000OH.
For correct APIC operation, this address space must be mapped to an area of memory that has
been designated as strong uncacheable (UC). See Section 10.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for 1A-32 processors on the system bus are
initially mapped to the same 4-KByte region of the physical address space. Software has the
option of changing initial mapping to a different 4-KByte region for all the local APICs or of
mapping the APIC registers for each local APIC to its own 4-KByte region. Section 8.4.5,
“Relocating the Local APIC Registers,” describes how to relocate the base address for APIC
registers.

NOTE

For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all
memory accesses to addresses within the 4-KByte APIC register space
internally and no external bus cycles are produced. For the Pentium
processors with an on-chip APIC, bus cycles are produced for accesses to the
APIC register space. Thus, for software intended to run on Pentium
processors, system software should explicitly not map the APIC register
space to regular system memory. Doing so can result in an invalid opcode
exception (#UD) being generated or unpredictable execution.
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DATA/ADDR
A
Version Register |—»| >| EOIRegister
Timer < »-| Task Priority Register
Current Count
Register #
Initial C t - 5| Processor Priority
nitial Coun - Register INTA From
Register A CPU
Divide Configuration Y v Core
Register o INTR To
Prioritizer EXTINT  CPU
Local Vector Table » Core
S Timer N T 777777777 K
I In-Service Register (ISR) |
LINTO/L—>] Local ! !
Interrupts 0,1 N Interrupt Request Register (IRR) !
perf. Mon. Performance o : :
Internal —>| o i i
I(nterrupt) Monitoring Countersl | Trigger Mode Register (TMR) |
! A A !
Thermal 2 LR ____ a
Sensor Thermal Sensor Vec[3:0] Register
(Internal & TMR Bit Select
Interrupt
PY) | Error Arb. ID Vector
o Register* Decode
Error Status - Local Acceptance
Register Interrupts Logic
Dest. Mode
& Vector
To
APIC ID . Plrotocoll  —> cpPu
Register ranslation Logic :\[I\ll\l/l'll' Core
Logical Destination Y SMi
Register T Interrupt Command
Destination Format - 71 Register (ICR)
Register Y
Spurious Vector Processor System Bus®
Register

1. Introduced in P6 family processors.
2. Introduced in the Pentium 4 and Intel Xeon processors.

3. Three-wire APIC bus in P6 family and Pentium processors.
4. Not implemented in Pentium 4 and Intel Xeon processors.

Figure 8-4. Local APIC Structure
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Table 8-1 shows how the APIC registers are mapped into the 4-KByte APIC register space.
Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All
32-hit registers should be accessed using 128-bit aligned 32-bit loads or stores. Some processors
may support loads and stores of less than 32 bits to some of the APIC registers. This is model
specific behavior and is not guaranteed to work on all processors. Wider registers (64-bit or 256-
bit) must be accessed using multiple 32-bit loads or stores, with the first access being 128-bit
aligned. If a LOCK prefix is used with a MOV instruction that accesses the APIC address space,
the prefix is ignored. The locking operation does not take place. All the registers listed in Table
8-1 are described in the following sections.

The local APIC registers listed in Table 8-1 are not MSRs. The only MSR associated with the
programming of the local APIC is the IA32_APIC_BASE MSR (see Section 8.4.3, “Enabling
or Disabling the Local APIC”).

Table 8-1. Local APIC Register Address Map

Address Register Name Software Read/Write

FEEO 0000H Reserved

FEEO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/Write.

FEEO 0030H Local APIC Version Register Read Only.

FEEO 0040H Reserved

FEEO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FEEO 0080H Task Priority Register (TPR) Read/Write.

FEEO 0090H Arbitration Priority Registerl (APR) Read Only.

FEEO O0AOH Processor Priority Register (PPR) Read Only.

FEEO 00BOH EOI Register Write Only.

FEEO 00COH Reserved

FEEO 00DOH Logical Destination Register Read/Write.

FEEO OOEOH Destination Format Register Bits 0-27 Read only; bits 28-31
Read/Write.

FEEO O0FOH Spurious Interrupt Vector Register Bits 0-8 Read/Write; bits 9-31
Read Only.

FEEO 0100H through In-Service Register (ISR) Read Only.

FEEO 0170H

FEEO 0180H through Trigger Mode Register (TMR) Read Only.

FEEO 01FOH

FEEO 0200H through Interrupt Request Register (IRR) Read Only.

FEEO 0270H

FEEO 0280H Error Status Register Read Only.
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Table 8-1. Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write

FEEO 0290H through Reserved

FEEO 02FOH

FEEO 0300H Interrupt Command Register (ICR) [0-31] | Read/Write.

FEEO 0310H Interrupt Command Register (ICR) [32-63] | Read/Write.

FEEO 0320H LVT Timer Register Read/Write.

FEEO 0330H LVT Thermal Sensor Register2 Read/Write.

FEEO 0340H LVT_Performance Monitoring Counters Read/Write.
Reqister

FEEO 0350H LVT LINTO Register Read/Write.

FEEO 0360H LVT LINT1 Register Read/Write.

FEEO 0370H LVT Error Register Read/Write.

FEEO 0380H Initial Count Register (for Timer) Read/Write.

FEEO 0390H Current Count Register (for Timer) Read Only.

FEEO 03A0H through Reserved

FEEO 03DOH

FEEO O3EOH Divide Configuration Register (for Timer) Read/Write.

FEEO 03FOH Reserved

NOTES:

1. Not supported in the Pentium 4 and Intel Xeon processors.

2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function
are implementation dependent and may not be present in future 1A-32 processors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implemen-
tation dependent and may not be present in future 1A-32 processors.

8.4.2 Presence of the Local APIC

Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can
be detected using the CPUID instruction. When the CPUID instruction is executed with a source
operand of 1 in the EAX register, bit 9 of the CPUID feature flags returned in the EDX register
indicates the presence (set) or absence (clear) of a local APIC.
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8.4.3

Enabling or Disabling the Local APIC

The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address
1BH; see Figure 8-5):

When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an
1A-32 processor without an on-chip APIC. The CPUID feature flag for the APIC (see
Section 8.4.2, “Presence of the Local APIC”) is also set to 0.

When 1A32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC
bus cannot be generally re-enabled until a system hardware reset. The 3-wire bus
looses track of arbitration that would be necessary for complete re-enabling. Certain
APIC functionality can be enabled (for example: performance and thermal monitoring
interrupt generation).

For processors that use Front Side Bus (FSB) delivery of interrupts, software may
disable or enable the APIC by setting and resetting 1A32_APIC_BASE[11]. A
hardware reset is not required to re-start APIC functionality.

When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost
and the APIC may return to the state described in Section 8.4.7.1, “Local APIC State
After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see
Figure 8-23):

If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any
time by clearing the APIC software enable/disable flag in the spurious-interrupt vector
register (see Figure 8-23). The state of the local APIC when in this software-disabled
state is described in Section 8.4.7.2, “Local APIC State After It Has Been Software
Disabled.”

When the local APIC is in the software-disabled state, it can be re-enabled at any time
by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during
power-up or RESET to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being
delivered to the processor from selected local interrupt sources (the LINTO and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and/or the internal APIC
error detector).

8-10 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.4.4 Local APIC Status and Location

The status and location of the local APIC are contained in the 1A32_APIC_BASE MSR (see
Figure 8-5). MSR bit functions are described below:

® BSP flag, bit 8 — Indicates if the processor is the bootstrap processor (BSP). See Section
7.5, “Multiple-Processor (MP) Initialization.” Following a power-up or RESET, this flag is
set to 1 for the processor selected as the BSP and set to 0 for the remaining processors
(APs).

®* APIC Global Enable flag, bit 11 — Enables or disables the local APIC (see Section 8.4.3,
“Enabling or Disabling the Local APIC”). This flag is available in the Pentium 4, Intel
Xeon, and P6 family processors. It is not guaranteed to be available or available at the
same location in future 1A-32 processors.

®* APIC Base field, bits 12 through 35 — Specifies the base address of the APIC registers.
This 24-bit value is extended by 12 bits at the low end to form the base address. This
automatically aligns the address on a 4-KByte boundary. Following a power-up or RESET,
the field is set to FEEO 0000H.

® Bits 0 through 7, bits 9 and 10, and bits 36 through 63 in the IA32_APIC_BASE MSR are
reserved.

63 36 35 12111098 7 0

Reserved APIC Base

APIC Base—Base physical address Q

APIC global enable/disable
BSP—Processor is BSP

I:l Reserved

Figure 8-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

8.4.5 Relocating the Local APIC Registers

The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC
registers to be relocated from FEEOOOOOH to another physical address by modifying the value
in the 24-bit base address field of the 1A32_APIC_BASE MSR. This extension of the APIC
architecture is provided to help resolve conflicts with memory maps of existing systems and to
allow individual processors in an MP system to map their APIC registers to different locations
in physical memory.
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8.4.6 Local APIC ID

At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus
(for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 family and Pentium
processors). The hardware assigned APIC ID is based on system topology and includes
encoding for socket position and cluster information (see Figure 7-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating
system. Some processors permit software to modify the APIC ID. However, the ability of soft-
ware to modify the APIC ID is processor model specific. Because of this, operating system soft-
ware should avoid writing to the local APIC ID register. The value returned by bits 31-24 of the
EBX register (when the CPUID instruction is executed with a source operand value of 1 in the
EAX register) is always the Initial APIC ID (determined by the platform initialization). This is
true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins
All# and A12# and pins BRO# through BR3# (for the Pentium 4, Intel Xeon, and P& family
processors) and pins BEO# through BE3# (for the Pentium processor). The APIC ID latched
from these pins is stored in the APIC ID field of the local APIC ID register (see Figure 8-6), and
is used as the Initial APIC ID for the processor.

31 24 23 0

APIC ID* Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

* For the P6 family and Pentium processors,
bits 28-31 are reserved. For Pentium 4
and Xeon processors, 21-31 are reserved.

Figure 8-6. Local APIC ID Register

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register
is 4 bits. Encodings OH through EH can be used to uniquely identify 15 different processors
connected to the APIC bus. For the Pentium 4 and Intel Xeon processors, the XAPIC specifica-
tion extends the local APIC ID field to 8 bits. These can be used to identify up to 255 processors
in the system.

8.4.7 Local APIC State

The following sections describe the state of the local APIC and its registers following a power-
up or RESET, after the local APIC has been software disabled, following an INIT reset, and
following an INIT-deassert message.
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8.4.7.1 Local APIC State After Power-Up or Reset

Following a power-up or RESET of the processor, the state of local APIC and its registers are
as follows:

The following registers are reset to all 0s:
* IRR, ISR, TMR, ICR, LDR, and TPR
* Timer initial count and timer current count registers
¢ Divide configuration register
The DFR register is reset to all 1s.
The LVT register is reset to 0s except for the mask bits; these are set to 1s.
The local APIC version register is not affected.

The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors
only). The Arb ID register is set to the value in the APIC ID register.

The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0,
software disables the local APIC.

If the processor is the only processor in the system or it is the BSP in an MP system (see
Section 7.5.1, “BSP and AP Processors™); the local APIC will respond normally to INIT
and NMI messages, to INIT# signals and to STPCLK# signals. If the processor is in an MP
system and has been designated as an AP; the local APIC will respond the same as for the
BSP. In addition, it will respond to SIPI messages. For P6 family processors only, an AP
will not respond to a STPCLK# signal.

8.4.7.2 Local APIC State After It Has Been Software Disabled

When the APIC software enable/disable flag in the spurious interrupt vector register has been
explicitly cleared (as opposed to being cleared during a power up or RESET), the local APIC is
temporarily disabled (see Section 8.4.3, “Enabling or Disabling the Local APIC”). The opera-
tion and response of a local APIC while in this software-disabled state is as follows:

The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.

Pending interrupts in the IRR and ISR registers are held and require masking or handling
by the CPU.

The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs
through the IPI mechanism and the ICR register if sending interrupts through this
mechanism is not desired.

The reception or transmission of any IPIs that are in progress when the local APIC is
disabled are completed before the local APIC enters the software-disabled state.

The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.

(For Pentium and P6 family processors) The local APIC continues to listen to all bus
messages in order to keep its arbitration ID synchronized with the rest of the system.
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8.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:

® By asserting the processor’s INIT# pin.

® By sending the processor an INIT IPI (an IP1 with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by begin-
ning the initialization process of the processor core and the local APIC. The state of the local
APIC following an INIT reset is the same as it is after a power-up or hardware RESET, except
that the APIC ID and arbitration ID registers are not affected. This state is also referred to at the
“wait-for-SIP1” state (see also: Section 7.5.2, “MP Initialization Protocol Requirements and
Restrictions for Intel Xeon Processors™).

8.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI

Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-disassert IPI
has no affect on the state of the APIC, other than to reload the arbitration ID register with the
value in the APIC ID register.

8.4.8 Local APIC Version Register

The local APIC contains a hardwired version register. Software can use this register to identify
the APIC version (see Figure 8-7). In addition, the register specifies the number of entries in the
local vector table (LVT) for a specific implementation.

The fields in the local APIC version register are as follows:

Version The version numbers of the local APIC:

1XH Local APIC. For Pentium 4 and Intel Xeon proces-
sors, 14H is returned.

0XH 82489DX external APIC.
20H through FFHReserved.

Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel
Xeon processors (which have 6 LVT entries), the value returned in the
Max LVT field is 5; for the P6 family processors (which have 5 LVT
entries), the value returned is 4; for the Pentium processor (which has
4 LVT entries), the value returned is 3.

8-14 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

31 24 23 16 15 87 0

Max. LVT
Entry

Value after reset: 000N 00VVH
V = Version, N = # of LVT entries minus 1
Address: FEEO 0030H

Reserved Reserved Version

Figure 8-7. Local APIC Version Register

8.5 HANDLING LOCAL INTERRUPTS

The following sections describe facilities that are provided in the local APIC for handling local
interrupts. These include: the processor’s LINTO and LINT1 pins, the APIC timer, the perfor-
mance-monitoring counters, the thermal sensor, and the internal APIC error detector. Local
interrupt handling facilities include: the LVT, the error status register (ESR), the divide config-
uration register (DCR), and the initial count and current count registers.

851 Local Vector Table

The local vector table (LVT) allows software to specify the manner in which the local interrupts
are delivered to the processor core. It consists of the following five 32-bit APIC registers (see
Figure 8-8), one for each local interrupt:

® LVT Timer Register (FEEO 0320H) — Specifies interrupt delivery when the APIC timer
signals an interrupt (see Section 8.5.4, “APIC Timer”).

® LVT Thermal Monitor Register (FEEO 0330H) — Specifies interrupt delivery when the
thermal sensor generates an interrupt (see Section 13.4.2, “Thermal Monitor”). This LVT
entry is implementation specific, not architectural. If implemented, it will always be at
base address FEEO 0330H.

® LVT Performance Counter Register (FEEO 0340H) — Specifies interrupt delivery
when a performance counter generates an interrupt on overflow (see Section 18.13.6.9,
“Generating an Interrupt on Overflow”). This LVT entry is implementation specific, not
architectural. If implemented, it is not guaranteed to be at base address FEEQ 0340H.

® LVT LINTO Register (FEEO 0350H) — Specifies interrupt delivery when an interrupt is
signaled at the LINTO pin.

® LVT LINT1 Register (FEEO 0360H) — Specifies interrupt delivery when an interrupt is
signaled at the LINT1 pin.

® VT Error Register (FEEO 0370H) — Specifies interrupt delivery when the APIC
detects an internal error (see Section 8.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6
processors and are also present in the Pentium 4 and Intel Xeon processors. The LVT thermal
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monitor register and its associated interrupt were introduced in the Pentium 4 and Intel Xeon

(APIC)

processors.
As shown in Figures 8-8, some of these fields and flags are not available (and reserved) for some
entries.
31 18 17 16 15 1312 11 8 7 0
Timer Vector
Timer Mode T A A Address: FEEOQ 0320H
0: One-shot Value after Reset: 0001 0000H
1- Periodic Delivery Status
0: Idle
1: Send Pending
Mask '
0: Not Masked
1: Masked
Interrupt Input Delivery Mode
Pin Polarity 000: Fixed
010: SMI
100: NMI
Remote 111: ExtINT
IRR 101: INIT
All other combinations
are Reserved
Trigger Mode
0: Edge
1: Level
31 17y Yy Yy Y y 1110|87 0
LINTO Vector
LINT1 Vector
Error Vector
Performance
Mon. Counters Vector
Thermal
Sensor Vector
16 15 14 13 12
l:l Reserved Address: FEEO 0350H
Address: FEEO 0360H
Address: FEEO 0370H
T (Pentium 4 and Intel Xeon processors.) When a Address: FEEO 0340H
performance monitoring counters interrupt is generated, Address: FEEO 0330H
the mask bit for its associated LVT entry is set. Value After Reset: 0001 0000H

Figure 8-8. Local Vector Table
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The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Delivery Mode Specifies the type of interrupt to be sent to the processor. Some
delivery modes will only operate as intended when used in conjunc-
tion with a specific trigger mode. The allowable delivery modes are
as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core
through the processor’s local SMI signal path.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The
vector information is ignored.

101 (INIT) Delivers an INIT request to the processor core,
which causes the processor to perform an INIT.
When using this delivery mode, the vector field
should be set to O0H for future compatibility.

111 (ExtINT)  Causes the processor to respond to the interrupt as
if the interrupt originated in an externally connect-
ed (8259A-compatible) interrupt controller. A
special INTA bus cycle corresponding to ExtINT,
is routed to the external controller. The external
controller is expected to supply the vector infor-
mation. The APIC architecture supports only one
ExtINT source in a system, usually contained in
the compatibility bridge.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt
source, or the previous interrupt from this source
was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has
been delivered to the processor core, but has not
yet been accepted (see Section 8.5.5, “Local Inter-
rupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active
high or (1) active low.
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Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the
local APIC accepts the interrupt for servicing and is reset when an
EOI command is received from the processor. The meaning of this
flag is undefined for edge-triggered interrupts and other delivery
modes.

Trigger Mode Selects the trigger mode for the local LINTO and LINTL1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used when the
delivery mode is Fixed. When the delivery mode is NMI, SMI, or
INIT, the trigger mode is always edge sensitive. When the delivery
mode is ExtINT, the trigger mode is always level sensitive. The timer
and error interrupts are always treated as edge sensitive.

If the local APIC is not used in conjunction with an 1/0 APIC and
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and P6
family processors will always use level-sensitive triggering, regard-
less if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits
reception of the interrupt. When the local APIC handles a perfor-
mance-monitoring counters interrupt, it automatically sets the mask
flag in the corresponding LVT entry. This flag will remain set until
software clears it.

Timer Mode Selects the timer mode: (0) one-shot and (1) periodic (see Section
8.5.4, “APIC Timer”).

8.5.2  Valid Interrupt Vectors

The 1A-32 architecture defines 256 vector numbers, ranging from 0 through 255 (see Section 5.2,
“Exception and Interrupt Vectors”). Local and 1/0O APICs support 240 of these vectors (in the
range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the
APIC indicates an illegal vector in its Error Status Register (see Section 8.5.3, “Error
Handling”). The 1A-32 architecture reserves vectors 16 through 31 for predefined interrupts,
exceptions, and Intel-reserved encodings (see Table 5-1). However, the local APIC does not
treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed
(bits 8-11 equal 0), the APIC may signal an illegal vector error, without regard to whether the
mask bit is set or whether an interrupt is actually seen on the input.
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8.5.3 Error Handling

The local APIC provides an error status register (ESR) that it uses to record errors that it detects
when handling interrupts (see Figure 8-9). An APIC error interrupt is generated when the local
APIC sets one of the error bits in the ESR. The LVT error register allows selection of the inter-
rupt vector to be delivered to the processor core when APIC error is detected. The LVT error
register also provides a means of masking an APIC error interrupt.

The functions of the ESR are listed in Table 8-2.

Table 8-2. ESR Flags

FLAG Function

Send Checksum Error (P6 family and Pentium processors only) Set when the local APIC detects
a checksum error for a message that it sent on the APIC bus.

Receive Checksum Error (P6 family and Pentium processors only) Set when the local APIC detects
a checksum error for a message that it received on the APIC bus.

Send Accept Error (P6 family and Pentium processors only) Set when the local APIC detects
that a message it sent was not accepted by any APIC on the APIC bus.

Receive Accept Error (P6 family and Pentium processors only) Set when the local APIC detects
that the message it received was not accepted by any APIC on the APIC
bus, including itself.

Send lllegal Vector Set when the local APIC detects an illegal vector in the message that it is
sending.
Receive lllegal Vector Set when the local APIC detects an illegal vector in the message it

received, including an illegal vector code in the local vector table
interrupts or in a self-interrupt.

lllegal Reg. Address (Pentium 4, Intel Xeon, and P6 family processors only) Set when the
processor is trying to access a register that is not implemented in the
processors’ local APIC register address space; that is, within the address
range of the APIC register base address (specified in the
IA32_APIC_BASE MSR) plus 4K Bytes.
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31 876543210

Reserved

lllegal Register Address!
Received lllegal Vector
Send lllegal Vector
Reserved
Receive Accept Error?
Send Accept Error?
Receive Checksum Error
Send Checksum Error?

2

Address: FEEOQ 0280H
Value after reset: OH

NOTES:
1. Only used in the Pentium 4, Intel Xeon, and P6 family
processors; reserved in the Pentium processor.

2. Only used in the P6 family and Pentium processors;
reserved in the Pentium 4 and Intel Xeon processors.

Figure 8-9. Error Status Register (ESR)

The ESR is a write/read register. A write (of any value) to the ESR must be done just prior to
reading the ESR to update the register. This initial write causes the ESR contents to be updated
with the latest error status. Back-to-back writes clear the ESR register.

After an error bit is set in the register, it remains set until the register is cleared. Setting the mask
bit for the LVT error register prevents errors from being recorded in the ESR; however, the state
of the ESR before the mask bit was set is maintained.

8.5.4  APIC Timer

The local APIC unit contains a 32-bit programmable timer that is available to software to time
events or operations. This timer is set up by programming four registers: the divide configura-
tion register (see Figure 8-10), the initial-count and current-count registers (see Figure 8-11),
and the LVT timer register (see Figure 8-8).
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31 4 3210

Reserved 0

pddress: FEEO 03E0H Divide Value (bits 0, 1 and 3) 4\_|_‘

Value after reset: OH A
000: Divide by 2

001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 8-10. Divide Configuration Register

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H
Value after reset: OH

Figure 8-11. Initial Count and Current Count Registers

The time base for the timer is derived from the processor’s bus clock, divided by the value spec-
ified in the divide configuration register.

The timer can be configured through the timer LV T entry for one-shot or periodic operation. In
one-shot mode, the timer is started by programming its initial-count register. The initial count
value is then copied into the current-count register and count-down begins. After the timer
reaches zero, an timer interrupt is generated and the timer remains at its O value until repro-
grammed.

In periodic mode, the current-count register is automatically reloaded from the initial-count
register when the count reaches 0 and a timer interrupt is generated, and the count-down is
repeated. If during the count-down process the initial-count register is set, counting will restart,
using the new initial-count value. The initial-count register is a read-write register; the current-
count register is read only.

The LVT timer register determines the vector number that is delivered to the processor with the
timer interrupt that is generated when the timer count reaches zero. The mask flag in the LVT
timer register can be used to mask the timer interrupt.

Vol. 3A 8-21



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

8.5.5 Local Interrupt Acceptance

When a local interrupt is sent to the processor core, it is subject to the acceptance criteria spec-
ified in the interrupt acceptance flow chart in Figure 8-17. If the interrupt is accepted, it is logged
into the IRR register and handled by the processor according to its priority (see Section 8.8.4,
“Interrupt Acceptance for Fixed Interrupts™). If the interrupt is not accepted, it is sent back to
the local APIC and retried.

8.6 ISSUING INTERPROCESSOR INTERRUPTS

The following sections describe the local APIC facilities that are provided for issuing interpro-
cessor interrupts (IPIs) from software. The primary local APIC facility for issuing IPIs is the
interrupt command register (ICR). The ICR can be used for the following functions:

® To send an interrupt to another processor.

® To allow a processor to forward an interrupt that it received but did not service to another
processor for servicing.

® To direct the processor to interrupt itself (perform a self interrupt).
® To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through
the system bus (for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and
Pentium processors). The ability for a processor to send a lowest priority IPI is model specific
and should be avoided by BIOS and operating system software.

8.6.1 Interrupt Command Register (ICR)

The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that
allows software running on the processor to specify and send interprocessor interrupts (IPIs) to
other A-32 processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and
the destination processor or processors. (All fields of the ICR are read-write by software with
the exception of the delivery status field, which is read-only.) The act of writing to the low
doubleword of the ICR causes the IPI to be sent.
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63 56 55 32
Destination Field Reserved
31 2019181716 151413121110 8 7 0
Reserved Vector
Destination Shorthand Delivery Mode
00: No Shorthand 000: Fixed
01: Self ) 001: Lowest Priority!
10: All Including Self 010: SMI
11: All Excluding Self 011: Reserved
100: NMI
101: INIT
110: Start Up
l:l Reserved 111: Reserved
Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
Address: FEEO 0300H (0 - 31) 0 = De-assert
FEEO 0310H (32 - 63) 1= Assert

Value after Reset: OH

Trigger Mode
0: Edge
1: Level

NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

Figure 8-12. Interrupt Command Register (ICR)

The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.

Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI
message type field.

000 (Fixed) Delivers the interrupt specified in the vector field
to the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors specified in
the destination field. The ability for a processor to
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010 (SMI)

011 (Reserved)
100 (NMI)

101 (INIT)

send a lowest priority IPI is model specific and
should be avoided by BIOS and operating system
software.

Delivers an SMI interrupt to the target processor
or processors. The vector field must be pro-
grammed to 00H for future compatibility.

Delivers an NMI interrupt to the target processor
or processors. The vector information is ignored.

Delivers an INIT request to the target processor or
processors, which causes them to perform an
INIT. As a result of this IPI message, all the target
processors perform an INIT. The vector field must
be programmed to O0H for future compatibility.

101 (INIT Level De-assert)

110 (Start-Up)

(Not supported in the Pentium 4 and Intel Xeon
processors.) Sends a synchronization message to
all the local APICs in the system to set their arbi-
tration 1Ds (stored in their Arb ID registers) to the
values of their APIC IDs (see Section 8.7, “Sys-
tem and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger
mode flag to 1. This IPI is sent to all processors,
regardless of the value in the destination field or
the destination shorthand field; however, software
should specify the “all including self” shorthand.

Sends a special “start-up” IPI (called a SIPI) to the
target processor or processors. The vector typical-
ly points to a start-up routine that is part of the
BIOS boot-strap code (see Section 7.5, “Multiple-
Processor (MP) Initialization™). IPIs sent with this
delivery mode are not automatically retried if the
source APIC is unable to deliver it. It is up to the
software to determine if the SIP1 was not success-
fully delivered and to reissue the SIPI if necessary.



Destination Mode

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Selects either physical (0) or logical (1) destination mode (see
Section 8.6.2, “Determining IPI Destination™).

Delivery Status (Read Only)

Level

Trigger Mode

Destination Shorthand

Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local
APIC, or the previous IPI sent from this local
APIC was delivered and accepted by the target
Processor or processors.

1 (Send Pending)
Indicates that the last IP1 sent from this local APIC
has not yet been accepted by the target processor
Or Processors.

For the INIT level de-assert delivery mode this flag must be set to 0;
for all other delivery modes it must be set to 1. (This flag has no
meaning in Pentium 4 and Intel Xeon processors, and will always be
issued asa 1.)

Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It is ignored for all other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 0.)

Indicates whether a shorthand notation is used to specify the destina-
tion of the interrupt and, if so, which shorthand is used. Destination
shorthands are used in place of the 8-bit destination field, and can be
sent by software using a single write to the low doubleword of the
ICR. Shorthands are defined for the following cases: software self
interrupt, IPIs to all processors in the system including the sender,
IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination
of the IPI. This destination shorthand allows soft-
ware to interrupt the processor on which it is exe-
cuting. An APIC implementation is free to deliver
the self-interrupt message internally or to issue the
message to the bus and “snoop” it as with any other
IPI message.

10: (All Including Self)
The IP1 is sent to all processors in the system in-
cluding the processor sending the IPI. The APIC
will broadcast an IP1 message with the destination
field set to FH for Pentium and P6 family proces-
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Destination

sors and to FFH for Pentium 4 and Intel Xeon pro-
Cessors.

11: (All Excluding Self)

The IPI is sent to all processors in a system with
the exception of the processor sending the IPI. The
APIC broadcasts a message with the physical des-
tination mode and destination field set to OxFH for
Pentium and P6 family processors and to OxFFH
for Pentium 4 and Intel Xeon processors. Support
for this destination shorthand in conjunction with
the lowest-priority delivery mode is model specif-
ic. For Pentium 4 and Intel Xeon processors, when
this shorthand is used together with lowest priority
delivery mode, the IPI may be redirected back to
the issuing processor.

Specifies the target processor or processors. This field is only used
when the destination shorthand field is set to 00B. If the destination
mode is set to physical, then bits 56 through 59 contain the APIC ID
of the target processor for Pentium and P6 family processors and bits
56 through 63 contain the APIC ID of the target processor the for
Pentium 4 and Intel Xeon processors. If the destination mode is set
to logical, the interpretation of the 8-bit destination field depends on
the settings of the DFR and LDR registers of the local APICs in all
the processors in the system (see Section 8.6.2, “Determining IPI

Destination”).

Not all combinations of options for the ICR are valid. Table 8-3 shows the valid combinations
for the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-4 shows the valid
combinations for the fields in the ICR for the P6 family processors. Also note that the lower half
of the ICR may not be preserved over transitions to the deepest C-States.

Table 8-3. Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local XAPIC Interrupt Command Register
Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge | All Modes? Physical or Logical
No Shorthand Invalid® | Level All Modes Physical or Logical
Self Valid Edge | Fixed x3
Self Invalid® | Level | Fixed X
Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
All Including Self | Valid Edge Fixed X
All Including Self Invalid® | Level Fixed X
All Including Self | Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up | X
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Table 8-3. Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register (Contd.)

Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
All Excluding Self | Valid Edge Fixed, Lowest Priority>™* NMI, INIT, SMI, | X
Start-Up
All Excluding Self Invalid? | Level FIxed, Lowest Priority4, NMI, INIT, SMI, X
Start-Up

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.

2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and
issue the interrupt as an edge triggered interrupt.

3. X means the setting is ignored.

4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be
redirected back to the issuing APIC, which is essentially the same as the “all including self” destination

mode.
Table 8-4. Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register
Destination Valid/ Trigger
Shorthand Invalid Mode Delivery Mode Destination Mode
No Shorthand Valid Edge All Modes? Physical or Logical
No Shorthand Valid? Level Fixed, Lowest Priority®, NMI Physical or Logical
No Shorthand Valid® Level INIT Physical or Logical
Self Valid Edge Fixed x4
Self 1 Level Fixed X
Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All including Self Valid Edge Fixed X
All including Self Valid? Level Fixed
All including Self Invalid® X Lowest Priority, NMI, INIT, SMI, | X
Start-Up
All excluding Self Valid Edge All Modes? X
All excluding Self | Valid? Level Fixed, Lowest Priority?, NMI X
All excluding Self Invalid® Level SMI, Start-Up X
All excluding Self | Valid® Level INIT X
X Invalid® Level SMI, Start-Up X

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when
level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the level bit set to

0. For all other messages the level bit must be set to 1.
4. X means the setting is ignored.
5. The behavior of the APIC is undefined.
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8.6.2 Determining IPI Destination

The destination of an IPI can be one, all, or a subset (group) of the processors on the system bus.
The sender of the IPI specifies the destination of an IPI with the following APIC registers and
fields within the registers:

® ICR Register — The following fields in the ICR register are used to specify the
destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the
destination processor; in logical destination mode, used to specify a message
destination address (MDA\) that can be used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding
self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority
arbitration mechanism be used to select a destination processor from a specified group
of processors. The ability of a processor to send a lowest priority IPI is model specific
and should be avoided by BIOS and operating system software.

® | ocal destination register (LDR) — Used in conjunction with the logical destination
mode and MDA to select the destination processors.

® Destination format register (DFR) — Used in conjunction with the logical destination
mode and MDA s to select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination
mode used: physical, logical, broadcast/self, or lowest-priority delivery mode. These destination
modes are described in the following sections.

8.6.2.1 Physical Destination Mode

In physical destination mode, the destination processor is specified by its local APIC ID (see
Section 8.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors, either a single desti-
nation (local APIC IDs 00H through FEH) or a broadcast to all APICs (the APIC ID is FFH)
may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest
priority delivery mode is not supported in physical destination mode and must not be configured
by software. Also, for any non-broadcast IPI or 1/0O subsystem initiated interrupt with lowest
priority delivery mode, software must ensure that APICs defined in the interrupt address are
present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destina-
tion mode with a local APIC ID of OH through OEH, allowing up to 15 local APICs to be
addressed on the APIC bus. A broadcast to all local APICs is specified with OFH.
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NOTE

The number of local APICs that can be addressed on the system bus may be
restricted by hardware.

8.6.2.2 Logical Destination Mode

In logical destination mode, IPI destination is specified using an 8-bit message destination
address (MDA), which is entered in the destination field of the ICR. Upon receiving an IPI
message that was sent using logical destination mode, a local APIC compares the MDA in the
message with the values in its LDR and DFR to determine if it should accept and handle the IPI.
For both configurations of logical destination mode, when combined with lowest priority
delivery mode, software is responsible for ensuring that all of the local APICs included in or
addressed by the IPI or I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 8-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC
ID field in this register is used to create an identifier that can be compared with the MDA.

NOTE

The logical APIC ID should not be confused with the local APIC ID that is
contained in the local APIC ID register.

31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 8-13. Logical Destination Register (LDR)

Figure 8-14 shows the layout of the destination format register (DFR). The 4-bit model field in
this register selects one of two models (flat or cluster) that can be used to interpret the MDA
when using logical destination mode.

31 28 0

Model Reserved (All 1s)

\— Flat model: 1111B

Cluster model: 0000B

Address: OFEEO O0EOH
Value after reset: FFFF FFFFH

Figure 8-14. Destination Format Register (DFR)
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The interpretation of MDA for the two models is described in the following paragraphs.

1.

Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111.
Here, a unique logical APIC ID can be established for up to 8 local APICs by setting a
different bit in the logical APIC ID field of the LDR for each local APIC. A group of local
APICs can then be selected by setting one or more bits in the MDA.

Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true
condition is detected, the local APIC accepts the IPI message. A broadcast to all APICs is
achieved by setting the MDA to 1s.

Cluster Model — This model is selected by programming DFR bits 28 through 31 to
0000. This model supports two basic destination schemes: flat cluster and hierarchical
cluster.

The flat cluster destination model is only supported for P6 family and Pentium processors.
Using this model, all APICs are assumed to be connected through the APIC bus. Bits 28
through 31 of the MDA contains the encoded address of the destination cluster and bits 24
through 27 identify up to four local APICs within the cluster (each bit is assigned to one
local APIC in the cluster, as in the flat connection model). To identify one or more local
APICs, bits 28 through 31 of the MDA are compared with bits 28 through 31 of the LDR
to determine if a local APIC is part of the cluster. Bits 24 through 27 of the MDA are
compared with Bits 24 through 27 of the LDR to identify a local APICs within the cluster.

Sets of processors within a cluster can be specified by writing the target cluster address in
bits 28 through 31 of the MDA and setting selected bits in bits 24 through 27 of the MDA,
corresponding to the chosen members of the cluster. In this mode, 15 clusters (with cluster
addresses of 0 through 14) each having 4 local APICs can be specified in the message.
For the P6 and Pentium processor’s local APICs, however, the APIC arbitration 1D
supports only 15 APIC agents. Therefore, the total number of processors and their local
APICs supported in this mode is limited to 15. Broadcast to all local APICs is achieved
by setting all destination bits to one. This guarantees a match on all clusters and selects all
APICs in each cluster. A broadcast IPI or 1/0 subsystem broadcast interrupt with lowest
priority delivery mode is not supported in cluster mode and must not be configured by
software.

The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6
family, or Pentium processors. With this model, a hierarchical network can be created by
connecting different flat clusters via independent system or APIC buses. This scheme
requires a cluster manager within each cluster, which is responsible for handling message
passing between system or APIC buses. One cluster contains up to 4 agents. Thus 15
cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note
that hierarchical APIC networks requires a special cluster manager device, which is not
part of the local or the 1/0O APIC units.
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8.6.2.3 Broadcast/Self Delivery Mode

The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of
broadcasting the IPI to all the processors on the system bus and/or back to itself (see Section
8.6.1, “Interrupt Command Register (ICR)”). Three destination shorthands are supported: self,
all excluding self, and all including self. The destination mode is ignored when a destination
shorthand is used.

8.6.2.4 Lowest Priority Delivery Mode

With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors
on the system bus, using the logical or shorthand destination mechanism for selecting the
processor. The selected processors then arbitrate with one another over the system bus or the
APIC bus, with the lowest-priority processor accepting the IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from
the I/0 APIC agents in the system and directs interrupts to the processors on the system bus.
When using the lowest priority delivery mode, the chipset chooses a target processor to receive
the interrupt out of the set of possible targets. The Pentium 4 processor provides a special bus
cycle on the system bus that informs the chipset of the current task priority for each logical
processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbi-
tration is contained in the arbitration priority register (APR) in each local APIC. Figure 8-15
shows the layout of the APR.

31 87 43 0
Reserved
Arbitration Priorin
Address: FEEO 0090H Arbitration Priority Sub-Class

Value after reset: OH

Figure 8-15. Arbitration Priority Register (APR)

The APR value is computed as follows:

IF (TPR[7:4] > IRRV[7:4]) AND (TPR[7:4] > ISRV([7:4])
THEN
APR[7:0] < TPR[7:0]
ELSE
APR[7:4] < max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] < 0.
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Here, the TPR value is the task priority value in the TPR (see Figure 8-18), the IRRV value is
the vector number for the highest priority bit that is set in the IRR (see Figure 8-20) or 00H (if
no IRR bit is set), and the ISRV value is the vector number for the highest priority bit that is set
in the ISR (see Figure 8-20). Following arbitration among the destination processors, the
processor with the lowest value in its APR handles the IPI and the other processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may
accept the interrupt, regardless of its priority. A processor is said to be the focus of an interrupt
if it is currently servicing that interrupt or if it has a pending request for that interrupt. For Intel
Xeon processors, the concept of a focus processor is not supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the
TPR information saved in the chipset will potentially cause the interrupt to be always delivered
to the same processor from the logical set. This behavior is functionally backward compatible
with the P6 family processor but may result in unexpected performance implications.

8.6.3 IPI Delivery and Acceptance

When the low double-word of the ICR is written to, the local APIC creates an IPI message from
the information contained in the ICR and sends the message out on the system bus (Pentium 4
and Intel Xeon processors) or the APIC bus (P6 family and Pentium processors). The manner in
which these IPIs are handled after being issues in described in Section 8.8, “Handling Interrupts.”

8.7 SYSTEM AND APIC BUS ARBITRATION

When several local APICs and the 1/0 APIC are sending IPI and interrupt messages on the
system bus (or APIC bus), the order in which the messages are sent and handled is determined
through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and 1/0 APICs use the arbitration mech-
anism defined for the system bus to determine the order in which IPIs are handled. This mech-
anism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and 1/0 APICs use an APIC-based arbitra-
tion mechanism to determine the order in which IPIs are handled. Here, each local APIC is given
an arbitration priority of from 0 to 15, which the I/O APIC uses during arbitration to determine
which local APIC should be given access to the APIC bus. The local APIC with the highest arbi-
tration priority always wins bus access. Upon completion of an arbitration round, the winning
local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbi-
tration ID (Arb ID) register. During reset, this register is initialized to the APIC ID number
(stored in the local APIC ID register). The INIT level-deassert IPI, which is issued with and ICR
command, can be used to resynchronize the arbitration priorities of the local APICs by resetting
Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and Intel Xeon
processors do not implement the Arb ID register.)
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Section 8.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium
Processors),” describes the APIC bus arbitration protocols and bus message formats, while
Section 8.6.1, “Interrupt Command Register (ICR),” describes the INIT level de-assert IPI
message.

Note that except for the SIPI IPI (see Section 8.6.1, “Interrupt Command Register (ICR)”), all
bus messages that fail to be delivered to their specified destination or destinations are automat-
ically retried. Software should avoid situations in which IPIs are sent to disabled or nonexistent
local APICs, causing the messages to be resent repeatedly.

8.8 HANDLING INTERRUPTS

When a local APIC receives an interrupt from a local source, an interrupt message from an 1/0
APIC, or and IPI, the manner in which it handles the message depends on processor implemen-
tation, as described in the following sections.

8.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, inter-
rupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 8-16). If it is the specified
destination, it accepts the message; if it is not, it discards the message.

Wait to Receive
Bus Message

Belon
Discard No to 9
Message

Accept
Message

Destination?,

Figure 8-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel
Xeon Processors)

2. If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the
processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC sets the
appropriate bit in the IRR.
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4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5,
“Signaling Interrupt Servicing Completion™). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been
completed. (A write to the EOI register must not be included in the handler routine for an
NMI, SMI, INIT, ExtINT, or SIPI.)

8.8.2 Interrupt Handling with the P6 Family and Pentium
Processors

With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt
messages, and IPIs it receives as follows (see Figure 8-17).
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Wait to Receive

Bus Message
Discard
Message
Yes Accept
Message
Lowest
Priority
P6 Family
Processor Specific
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Set Status Is Interrupt Accept |
<« to Retry Slot Available? Message |
Is Status No Yes Discard |
a Retry? | Message |
‘ L - - - - - — — — 4
No Accept
Message
Is
Set Status No Yes )
e l«—————————— Interrupt Slot Arbitrate
to Retry Available?
No /A:\Yes Accept
Winner? Message

1.

Figure 8-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

(IPIs only) It examines the IPI message to determines if it is the specified destination for
the IPI as described in Section 8.6.2, “Determining IPI Destination.” If it is the specified
destination, it continues its acceptance procedure; if it is not the destination, it discards the
IPI message. When the message specifies lowest-priority delivery mode, the local APIC
will arbitrate with the other processors that were designated on recipients of the IPI
message (see Section 8.6.2.4, “Lowest Priority Delivery Mode”).

If the local APIC determines that it is the designated destination for the interrupt and if the
interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the
MP protocol IPI messages (BIPI, FIPI, and SIPI), the interrupt is sent directly to the
processor core for handling.
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3. If the local APIC determines that it is the designated destination for the interrupt but the
interrupt request is not one of the interrupts given in step 2, the local APIC looks for an
open slot in one of its two pending interrupt queues contained in the IRR and ISR registers
(see Figure 8-20). If a slot is available (see Section 8.8.4, “Interrupt Acceptance for Fixed
Interrupts™), places the interrupt in the slot. If a slot is not available, it rejects the interrupt
request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC dispatches them
to the processor one at a time, based on their priority and the current task and processor
priorities in the TPR and PPR (see Section 8.8.3.1, “Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the
completion of the handler routine is indicated with an instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC (see Section 8.8.5,
“Signaling Interrupt Servicing Completion™). The act of writing to the EOI register causes
the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A
write to the EOI register must not be included in the handler routine for an NMI, SMI,
INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local
APIC and processor in greater detail.

8.8.3 Interrupt, Task, and Processor Priority

For interrupts that are delivered to the processor through the local APIC, each interrupt has an
implied priority based on its vector number. The local APIC uses this priority to determine when
to service the interrupt relative to the other activities of the processor, including the servicing of
other interrupts.

For interrupt vectors in the range of 16 to 255, the interrupt priority is determined using the
following relationship:

priority = vector / 16

Here the quotient is rounded down to the nearest integer value to determine the priority, with 1
being the lowest priority and 15 is the highest. Because vectors 0 through 31 are reserved for
dedicated uses by the 1A-32 architecture, the priorities of user defined interrupts range from 2
to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt priority class)
encompasses 16 vectors. Prioritizing interrupts within a priority level is determined by the
vector number. The higher the vector number, the higher the priority within that priority level.
In determining the priority of a vector and ranking of vectors within a priority group, the vector
number is often divided into two parts, with the high 4 bits of the vector indicating its priority
and the low 4 bit indicating its ranking within the priority group.
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8.8.3.1 Task and Processor Priorities

The local APIC also defines a task priority and a processor priority that it uses in determining
the order in which interrupts should be handled. The task priority is a software selected value
between 0 and 15 (see Figure 8-18) that is written into the task priority register (TPR). The TPR
is a read/write register.

31 87 43 0
Reserved
Task Priorily4
Address: FEEO 0080H Task Priority Sub-Class
Value after reset: OH

Figure 8-18. Task Priority Register (TPR)

NOTE

In this discussion, the term “task” refers to a software defined task, process,
thread, program, or routine that is dispatched to run on the processor by the
operating system. It does not refer an 1A-32 architecture defined task as
described in Chapter 6, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. The
processor will service only those interrupts that have a priority higher than that specified in the
TPR. If software sets the task priority in the TPR to 0, the processor will handle all interrupts; it
is it set to 15, all interrupts are inhibited from being handled, except those delivered with the
NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery mode. This mechanism enables
the operating system to temporarily block specific interrupts (generally low priority interrupts)
from disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the local processor
(see Section 8.6.2.4, “Lowest Priority Delivery Mode™).

The processor priority is set by the processor, also to value between 0 and 15 (see Figure 8-19)
that is written into the processor priority register (PPR). The PPR is a read only register. The
processor priority represents the current priority at which the processor is executing. It is used
to determine whether a pending interrupt can be dispensed to the processor.
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31 87 43 0
Reserved
Processor PriorityJ
Address: FEEO 00AOH Processor Priority Sub-Class
Value after reset: OH

Figure 8-19. Processor Priority Register (PPR)

Its value in the PPR is computed as follows:

IF TPR[7:4] > ISRV[7:4]
THEN
PPR[7:0] <~ TPR[7:0]
ELSE
PPR[7:4] < ISRV[7:4]
PPR[3:0] < 0

Here, the ISRV value is the vector number of the highest priority ISR bit that is set, or 00H if no
ISR bit is set. Essentially, the processor priority is set to either to the highest priority pending
interrupt in the ISR or to the current task priority, whichever is higher.

8.8.4  Interrupt Acceptance for Fixed Interrupts

The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending regis-
ters: the interrupt request register (IRR) or in-service register (ISR). These two 256-bit read-only
registers are shown in Figure 8-20. The 256 bits in these registers represent the 256 possible
vectors; vectors 0 through 15 are reserved by the APIC (see also: Section 8.5.2, “Valid Interrupt
\ectors”).

NOTE

All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert
delivery mode bypass the IRR and ISR registers and are sent directly to the
processor core for servicing.

8-38 Vol. 3A



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

255 16 15 0

Reserved IRR

Reserved ISR

Reserved TMR

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FEEO 0170H
TMR FEEO 0180H - FEEO 01FOH
Value after reset: OH

Figure 8-20. IRR, ISR and TMR Registers

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched
to the processor for servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR
that corresponds the vector of the accepted interrupt. When the processor core is ready to handle
the next interrupt, the local APIC clears the highest priority IRR bit that is set and sets the corre-
sponding ISR bit. The vector for the highest priority bit set in the ISR is then dispatched to the
processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send additional
fixed interrupts by setting bits in the IRR. When the interrupt service routine issues a write to
the EOI register (see Section 8.8.5, “Signaling Interrupt Servicing Completion”), the local APIC
responds by clearing the highest priority ISR bit that is set. It then repeats the process of clearing
the highest priority bit in the IRR and setting the corresponding bit in the ISR. The processor
core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the
bit for the vector both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon
processors, the IRR and ISR can queue two interrupts for each interrupt vector: one in the IRR
and one in the ISR. Any additional interrupts issued for the same interrupt vector are collapsed
into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than
two interrupts per priority level, and will reject other interrupts that are received within the same
priority level.

If the local APIC receives an interrupt with a priority higher than that of the interrupt currently
in serviced, and interrupts are enabled in the processor core, the local APIC dispatches the
higher priority interrupt to the processor immediately (without waiting for a write to the EOI
register). The currently executing interrupt handler is then interrupted so the higher-priority
interrupt can be handled. When the handling of the higher-priority interrupt has been completed,
the servicing of the interrupted interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 8-20).
Upon acceptance of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-
triggered interrupts and set for level-triggered interrupts. If a TMR bit is set when an EOI cycle
for its corresponding interrupt vector is generated, an EOl message is sent to all I/0O APICs.
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8.8.5 Signaling Interrupt Servicing Completion

For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-
Deassert delivery mode, the interrupt handler must include a write to the end-of-interrupt (EOI)
register (see Figure 8-21). This write must occur at the end of the handler routine, sometime
before the IRET instruction. This action indicates that the servicing of the current interrupt is
complete and the local APIC can issue the next interrupt from the ISR.

31 0

Address: OFEEO 00BOH
Value after reset: OH

Figure 8-21. EOI Register

Upon receiving and EOI, the APIC clears the highest priority bit in the ISR and dispatches the
next highest priority interrupt to the processor. If the terminated interrupt was a level-triggered
interrupt, the local APIC also sends an end-of-interrupt message to all 1/O APICs.

For future compatibility, the software is requested to issue the end-of-interrupt command by
writing a value of OH into the EOI register.

8.8.6  Task Priority in I1A-32e Mode

In IA-32e mode, operating systems can manage the 16 priority classes of external interrupts (see
Section 8.8.3, “Interrupt, Task, and Processor Priority”) explicitly using the task priority register
(TPR). Operating systems can use the TPR to temporarily block specific (low-priority) inter-
rupts from interrupting a high-priority task. This is done by loading TPR with a value corre-
sponding to the highest-priority interrupt that is to be blocked. For example:

® Loading TPR with a value of 8(01000B) blocks all interrupts with a priority of 8 or less
while allowing all interrupts with a priority of nine or more to be recognized.

® Loading the TPR with zero enables all external interrupts.
® Loading TPR with 0 (01111B) disables all external interrupts.

The TPR (shown in Figure 8-18) is cleared to 0 on reset. In 64-bit mode, software can read and
write the TPR using an alternate interface, MOV CR8 instruction. The new priority level is
established when the MOV CR8 instruction completes execution. Software does not need to
force serialization after loading the TPR using MOV CRS8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege
level greater than O cannot read or write the TPR. An attempt to do so results in a general-protec-
tion exception, #GP(0). The TPR is abstracted from the interrupt controller (IC), which priori-
tizes and manages external interrupt delivery to the processor. The IC can be an external device,
such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or identical to
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the TPR. The IC, however, is considered implementation-dependent with the under-lying
priority mechanisms subject to change. The CR8, by contrast, is part of the Intel EM64T archi-
tecture. Software can depend on this definition remaining unchanged.

Figure 8-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are
reserved and must be written with zeros. Failure to do this results in a general-protection excep-
tion, #GP(0).

63 4 3 0

Reserved

Value after reset: OH

Figure 8-22. CR8 Register

8.8.6.1 Interaction of Task Priorities between CR8 and APIC

The first implementation of Intel EM64T includes a local advanced programmable interrupt
controller (APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects
of the local APIC affect the operation of the architecturally defined task priority register and the
programming interface using CR8.

Notable CR8 and APIC interactions are:
® The processor powers up with the local APIC enabled.

® The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected
into the APIC Task Priority Register.

® APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a
64-bit value which is the value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating
software should implement either direct APIC TPR updates or CR8 style TPR updates but not
mix them. Software can use a serializing instruction (for example, CPUID) to serialize updates
between MOV CR8 and stores to the APIC.

8.9 SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal
to the level of the interrupt for which the processor INTR signal is currently being asserted. If
at the time the INTA cycle is issued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will deliver a spurious-interrupt vector. Dispensing
the spurious-interrupt vector does not affect the ISR, so the handler for this vector should return
without an EOI.
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The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector
register (see Figure 8-23). The functions of the fields in this register are as follows:

Spurious Vector

APIC Software
Enable/Disable

Focus Processor
Checking

Determines the vector number to be delivered to the processor when
the local APIC generates a spurious vector.

(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this
field are programmable by software.

(P6 family and Pentium processors). Bits 4 through 7 of the this field
are programmable by software, and bits 0 through 3 are hardwired to
logical ones. Software writes to bits 0 through 3 have no effect.

Allows software to temporarily enable (1) or disable (0) the local
APIC (see Section 8.4.3, “Enabling or Disabling the Local APIC™).

Determines if focus processor checking is enabled (0) or disabled (1)
when using the lowest-priority delivery mode. In Pentium 4 and Intel
Xeon processors, this bit is reserved and should be cleared to 0.

NOTE

Do not program an LVT or IOAPIC RTE with a spurious vector even if you
set the mask bit. A spurious vector ISR does not do an EOI. If for some
reason an interrupt is generated by an LVT or RTE entry, the bit in the in-
service register will be left set for the spurious vector. This will mask all
interrrupts at the same or lower priority

31

10 9 8 7 0

Reserved

Focus Processor Checking1J
0: Enabled

1. Disabled

APIC Software Enable/Disable
0: APIC Disabled

1: APIC Enabled

Spurious Vector?

Address: FEEO 00FOH
Value after reset: 0000 00FFH

1. Not supported in Pentium 4 and Intel Xeon processors.

2. For the P6 family and Pentium processors, bits 0 through 3
of the spurious vector are hardwired to 1.
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8.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and 1/0 APICs on the
system bus, using the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and 1/0 APICs on the
serial APIC bus, as follows. Because only one message can be sent at a time on the APIC bus,
the 1/0 APIC and local APICs employ a “rotating priority” arbitration protocol to gain permis-
sion to send a message on the APIC bus. One or more APICs may start sending their messages
simultaneously. At the beginning of every message, each APIC presents the type of the message
it is sending and its current arbitration priority on the APIC bus. This information is used for
arbitration. After each arbitration cycle (within an arbitration round), only the potential winners
keep driving the bus. By the time all arbitration cycles are completed, there will be only one
APIC left driving the bus. Once a winner is selected, it is granted exclusive use of the bus, and
will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a priority of 0 (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,
but did not send a message, adopts the previous winner’s arbitration priority, increments by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues
a special End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its
sender’s arbitration priority, unless more than one APIC issues an EOl message simultaneously.
In the latter case, the APICs sending the EOI messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 8.6.2.4, “Lowest Priority
Delivery Mode”) and multiple APICs are currently executing at the lowest priority (the value in
the APR register), the arbitration priorities (unique values in the Arb ID register) are used to
break ties. All 8 bits of the APR are used for the lowest priority arbitration.

8.10.1 Bus Message Formats

See Appendix F, “APIC Bus Message Formats,” for a description of bus message formats used
to transmit messages on the serial APIC bus.

8.11 MESSAGE SIGNALLED INTERRUPTS

The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message
signalled interrupts. Intel processors and chipsets with this capability currently include the
Pentium 4 and Intel Xeon processors. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI
devices to request service by writing a system-specified message to a system-
specified address (PCI DWORD memory write transaction). The transaction
address specifies the message destination while the transaction data specifies
the message. System software is expected to initialize the message
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destination and message during device configuration, allocating one or more
non-shared messages to each MSI capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and
configure MSI capable PCI devices. Among other fields, this structure contains a Message Data
Register and a Message Address Register. To request service, the PCI device function writes the
contents of the Message Data Register to the address contained in the Message Address Register

(and the Message Upper Address register for 64-bit message addresses).

Section 8.11.1 and Section 8.11.2 provide layout details for the Message Address Register and
the Message Data Register. The operation issued by the device is a PCI write command to the
Message Address Register with the Message Data Register contents. The operation follows

semantic rules as defined for PCI write operations and is a DWORD operation.

8.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 8-24.

31

20 19 12 11

4

OFEEH

Destination 1D

Reserved

RH

DM

XX

Figure 8-24. Layout of the MSI Message Address Register

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (OFEEH). This value
locates interrupts at the 1-MByte area with a base address of 4G — 18M. All accesses to this
region are directed as interrupt messages. Care must to be taken to ensure that no other

device claims the region as 1/0 space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s
target processor(s). The destination ID corresponds to bits 63:56 of the I/O APIC
Redirection Table Entry if the IOAPIC is used to dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message should be
directed to the processor with the lowest interrupt priority among processors that can

receive the interrupt.

*  When RH is 0, the interrupt is directed to the processor listed in the Destination ID

field.

* When RH is 1 and the physical destination mode is used, the Destination 1D field
must not be set to OxFF; it must point to a processor that is present and enabled to

receive the interrupt.
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* When RH is 1 and the logical destination mode is active in a system using a flat
addressing model, the Destination 1D field must be set so that bits set to 1 identify
processors that are present and enabled to receive the interrupt.

* IfRHissetto 1and the logical destination mode is active in a system using cluster
addressing model, then Destination ID field must not be set to OxFF; the
processors identified with this field must be present and enabled to receive the
interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be
interpreted as logical or physical APIC ID for delivery of the lowest priority interrupt. If
RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the
processor in the system that has the matching APIC ID is considered for delivery of that
interrupt (this means no re-direction). If RH is 1 and DM is 1, the Destination ID Field is
interpreted as in logical destination mode and the redirection is limited to only those
processors that are part of the logical group of processors based on the processor’s logical
APIC ID and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical Destination
Register in each local APIC. The details are similar to those described in Section 8.6.2,
“Determining IPI Destination.” If RH is 0, then the DM bit is ignored and the message is
sent ahead independent of whether the physical or logical destination mode is used.

8.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 8-25.
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63 32
Reserved
31 16 15 14 13 11 10 8 7 0
Reserved Reserved Vector
Trigger Mode Delivery Mode
0 - Edge 000 - Fixed
1- Level 001 - Lowest Priority
010 - SMI
Level for Trigger Mode = 0 011 - Reserved
X - Don't care 001 - NMmI
Level for Trigger Mode = 1 101 - INIT
0 - Deassert 110 - Reserved
1 - Assert 111 - ExtINT

Figure 8-25. Layout of the MSI Message Data Register

Reserved fields are not assumed to be any value. Software must preserve their contents on
writes. Other fields in the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values
range from 010H to OFEH. Software must guarantee that the field is not programmed with
vector O0OH to OFH.

2. Delivery Mode — This 3-hbit field specifies how the interrupt receipt is handled. Delivery
Modes operate only in conjunction with specified Trigger Modes. Correct Trigger Modes
must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination.
The Trigger Mode for fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the
lowest priority of all agents listed in the destination field. The trigger mode can be
edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only.
For systems that rely on SMI semantics, the vector field is ignored but must be
programmed to all zeroes for future compatibility.
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d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The
vector information is ignored. NMI is an edge triggered interrupt regardless of the
Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The
vector information is ignored. INIT is an edge triggered interrupt regardless of the
Trigger Mode Setting.

f.  111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination
field (as an interrupt that originated from an 8259A compatible interrupt controller).
The vector is supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt.

Level — Edge triggered interrupt messages are always interpreted as assert messages. For
edge triggered interrupts this field is not used. For level triggered interrupts, this bit
reflects the state of the interrupt input.

Trigger Mode — This field indicates the signal type that will trigger a message.
a. 0— Indicates edge sensitive.

b. 1 — Indicates level sensitive.
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CHAPTER 9
PROCESSOR MANAGEMENT AND
INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
initializing the processor. The subjects covered include: processor initialization, x87 FPU
initialization, processor configuration, feature determination, mode switching, the MSRs (in the
Pentium, P6 family, Pentium 4, and Intel Xeon processors), and the MTRRs (in the P6 family,
Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, each processor on the system bus
performs a hardware initialization of the processor (known as a hardware reset) and an optional
built-in self-test (BIST). A hardware reset sets each processor’s registers to a known state and
places the processor in real-address mode. It also invalidates the internal caches, translation
lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, the action taken
depends on the processor family:

® Pentium 4 and Intel Xeon processors — All the processors on the system bus (including
a single processor in a uniprocessor system) execute the multiple processor (MP) initial-
ization protocol. The processor that is selected through this protocol as the bootstrap
processor (BSP) then immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. The application (non-BSP)
processors (APs) go into a Wait For Startup IP1 (SIPI) state while the BSP is executing
initialization code. See Section 7.5, “Multiple-Processor (MP) Initialization,” for more
details. Note that in a uniprocessor system, the single Pentium 4 or Intel Xeon processor
automatically becomes the BSP.

® P6 family processors — The action taken is the same as for the Pentium 4 and Intel Xeon
processors (as described in the previous paragraph).

® Pentium processors — In either a single- or dual- processor system, a single Pentium
processor is always pre-designated as the primary processor. Following a reset, the primary
processor behaves as follows in both single- and dual-processor systems. Using the dual-
processor (DP) ready initialization protocol, the primary processor immediately starts
executing software-initialization code in the current code segment beginning at the offset
in the EIP register. The secondary processor (if there is one) goes into a halt state.

® Intel486 processor — The primary processor (or single processor in a uniprocessor
system) immediately starts executing software-initialization code in the current code
segment beginning at the offset in the EIP register. (The Intel486 does not automatically
execute a DP or MP initialization protocol to determine which processor is the primary
processor.)
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The software-initialization code performs all system-specific initialization of the BSP or
primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or
secondary) processor to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor
begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initial-
ization code can then be executed to perform operations such as setting the precision of the x87
FPU and the exception masks. No special initialization of the x87 FPU is required to switch
operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference is that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state
are left unchanged (although, the TLBs and BTB are invalidated as with a hardware reset). An
INIT provides a method for switching from protected to real-address mode while maintaining
the contents of the internal caches.

9.1.1 Processor State After Reset

Table 9-1 shows the state of the flags and other registers followi