
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 2B:
Instruction Set Reference, M-Z

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual
consists of seven volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-L, Order Number 253666; Instruction Set
Reference M-Z, Order Number 253667; Instruction Set Reference, Order
Number 326018; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number 253669;
System Programming Guide, Part 3, Order Number 326019. Refer to all
seven volumes when evaluating your design needs.

Order Number: 253667-040US
October 2011

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.htm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2011 Intel Corporation
ii Vol. 2B

CHAPTER 4
INSTRUCTION SET REFERENCE, M-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate
control byte is common to these four string text processing instructions of SSE4.2.
This section describes the common operations.

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.
However, the meanings of the flags have been overloaded from their typical mean-
ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:
• Source data format — Byte/word data element granularity, signed or unsigned

elements
Vol. 2B 4-1

INSTRUCTION SET REFERENCE, M-Z
• Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

• Polarity — Specifies intermediate processing to be performed on the interme-
diate result

• Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

Table 4-1. Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.
4-2 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

Table 4-2. Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.

Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”
Vol. 2B 4-3

INSTRUCTION SET REFERENCE, M-Z
See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in
Table 4-3.

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

Table 4-3. Aggregation Operation

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])
4-4 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

Table 4-4. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

Table 4-5. Ouput Selection

Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in
IntRes2.

Table 4-6. Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of
XMM0 with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMM0. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.
Vol. 2B 4-5

INSTRUCTION SET REFERENCE, M-Z
4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 4-7.

Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm1
byte/ word

xmm2/
m128
byte/word

Imm8[3:2] =
00b
(equal any)

Imm8[3:2] =
01b
(ranges)

Imm8[3:2] =
10b
(equal each)

Imm8[3:2] = 11b
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force
4-6 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
4.1.7 Summary of Im8 Control byte

Table 4-8. Summary of Imm8 Control Byte

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s compliment).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding
input element validity).

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding
input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.
Vol. 2B 4-7

INSTRUCTION SET REFERENCE, M-Z
4.1.8 Diagram Comparison and Aggregation Process

4.2 INSTRUCTIONS (M-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions
(M-Z). See also: Chapter 3, “Instruction Set Reference, A-L,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 4-1. Operation of PCMPSTRx and PCMPESTRx
4-8 Vol. 2B

INSTRUCTION SET REFERENCE, M-Z
MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit
memory location. The mask operand (second operand) selects which bytes from the
source operand are written to memory. The source and mask operands are XMM
registers. The memory location specified by the effective address in the DI/EDI/RDI
register (the default segment register is DS, but this may be overridden with a
segment-override prefix). The memory location does not need to be aligned on a
natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.

The MASKMOVDQU instruction generates a non-temporal hint to the processor to
minimize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVDQU instructions if multiple

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from
xmm1 to memory location
using the byte mask in
xmm2. The default memory
location is specified by
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1.ModRM.MOD = 011B required
Vol. 2B 4-9MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, M-Z
processors might use different memory types to read/write the destination memory
locations.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory.
• Signaling of breakpoints (code or data) is not guaranteed; different processor

implementations may signal or not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be

signaled (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of

associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.

The MASKMOVDQU instruction can be used to improve performance of algorithms
that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a
read for ownership; doing so generates unnecessary bandwidth since data is to be
written directly using the byte-mask without allocating old data prior to the store.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1)
THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L= 1

If VEX.vvvv != 1111B.
4-10 Vol. 2B MASKMOVDQU—Store Selected Bytes of Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory
location. The mask operand (second operand) selects which bytes from the source
operand are written to memory. The source and mask operands are MMX technology
registers. The memory location specified by the effective address in the DI/EDI/RDI
register (the default segment register is DS, but this may be overridden with a
segment-override prefix). The memory location does not need to be aligned on a
natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to mini-
mize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consis-
tency model, a fencing operation implemented with the SFENCE or MFENCE instruc-
tion should be used in conjunction with MASKMOVQ instructions if multiple
processors might use different memory types to read/write the destination memory
locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is,
the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s
[valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory.
• Transition from x87 FPU to MMX technology state will occur.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F F7 /r MASKMOVQ mm1,
mm2

RM Valid Valid Selectively write bytes from
mm1 to memory location
using the byte mask in mm2.
The default memory
location is specified by
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-11MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, M-Z
• Exceptions associated with addressing memory and page faults may still be
signaled (implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation
dependent).

• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (that is, is
reserved) and is implementation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that
need to merge data on a byte-by-byte basis. It should not cause a read for owner-
ship; doing so generates unnecessary bandwidth since data is to be written directly
using the byte-mask without allocating old data prior to the store.
In 64-bit mode, the memory address is specified by DS:RDI.

Operation

IF (MASK[7] = 1)
THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1)
THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1)
THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-12 Vol. 2B MASKMOVQ—Store Selected Bytes of Quadword

INSTRUCTION SET REFERENCE, M-Z
MAXPD—Return Maximum Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the maximum
value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5F /r

MAXPD xmm1, xmm2/m128

RM V/V SSE2 Return the maximum
double-precision floating-
point values between
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5F /r

VMAXPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Return the maximum
double-precision floating-
point values between xmm2
and xmm3/mem.

VEX.NDS.256.66.0F.WIG 5F /r

VMAXPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the maximum
packed double-precision
floating-point values
between ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-13MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MAXPD (128-bit Legacy SSE version)
DEST[63:0]  MAX(DEST[63:0], SRC[63:0])
DEST[127:64]  MAX(DEST[127:64], SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMAXPD (VEX.128 encoded version)
DEST[63:0]  MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MAX(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128]  0

VMAXPD (VEX.256 encoded version)
DEST[63:0]  MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128]  MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192]  MAX(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPD: __m128d _mm_max_pd(__m128d a, __m128d b);

VMAXPD: __m256d _mm256_max_pd (__m256d a, __m256d b);
4-14 Vol. 2B MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-15MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the maximum value
for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5F /r

MAXPS xmm1, xmm2/m128

RM V/V SSE Return the maximum single-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5F /r

VMAXPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the maximum single-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 5F /r

VMAXPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the maximum single
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-16 Vol. 2B MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MAXPS (128-bit Legacy SSE version)
DEST[31:0]  MAX(DEST[31:0], SRC[31:0])
DEST[63:32]  MAX(DEST[63:32], SRC[63:32])
DEST[95:64]  MAX(DEST[95:64], SRC[95:64])
DEST[127:96]  MAX(DEST[127:96], SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMAXPS (VEX.128 encoded version)
DEST[31:0]  MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MAX(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128]  0

VMAXPS (VEX.256 encoded version)
DEST[31:0]  MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128]  MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160]  MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192]  MAX(SRC1[223:192], SRC2[223:192])
Vol. 2B 4-17MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:224]  MAX(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPS: __m128 _mm_max_ps (__m128 a, __m128 b);

VMAXPS: __m256 _mm256_max_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
4-18 Vol. 2B MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand
and second the source operand, and returns the maximum value to the low quad-
word of the destination operand. The second source operand can be an XMM register
or a 64-bit memory location. The first source and destination operands are XMM
registers. When the second source operand is a memory operand, only 64 bits are
accessed. The high quadword of the destination operand is copied from the same bits
of first source operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN of either source operand be
returned, the action of MAXSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5F /r

MAXSD xmm1, xmm2/m64

RM V/V SSE2 Return the maximum scalar
double-precision floating-
point value between
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5F /r

VMAXSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the maximum scalar
double-precision floating-
point value between
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-19MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MAXSD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VMAXSD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MAXSD: __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-20 Vol. 2B MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand
and the second source operand, and returns the maximum value to the low double-
word of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN from either source operand be
returned, the action of MAXSS can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5F /r

MAXSS xmm1, xmm2/m32

RM V/V SSE Return the maximum scalar
single-precision floating-
point value between
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5F /r

VMAXSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Return the maximum scalar
single-precision floating-
point value between
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-21MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MAXSS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMAXSS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_max_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-22 Vol. 2B MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory
instructions that were issued prior the MFENCE instruction. This serializing operation
guarantees that every load and store instruction that precedes the MFENCE instruc-
tion in program order becomes globally visible before any load or store instruction
that follows the MFENCE instruction.1 The MFENCE instruction is ordered with respect
to all load and store instructions, other MFENCE instructions, any LFENCE and
SFENCE instructions, and any serializing instructions (such as the CPUID instruc-
tion). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, speculative reads, write-combining,
and write-collapsing. The degree to which a consumer of data recognizes or knows
that the data is weakly ordered varies among applications and may be unknown to
the producer of this data. The MFENCE instruction provides a performance-efficient
way of ensuring load and store ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruc-
tion.Processors are free to fetch and cache data speculatively from regions of system
memory that use the WB, WC, and WT memory types. This speculative fetching can
occur at any time and is not tied to instruction execution. Thus, it is not ordered with
respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store
operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its
destination register is determined.
Vol. 2B 4-23MFENCE—Memory Fence

INSTRUCTION SET REFERENCE, M-Z
Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
4-24 Vol. 2B MFENCE—Memory Fence

INSTRUCTION SET REFERENCE, M-Z
MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the minimum
value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 5D /r

MINPD xmm1, xmm2/m128

RM V/V SSE2 Return the minimum double-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 5D /r

VMINPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum double-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 5D /r

VMINPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum packed
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-25MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MINPD (128-bit Legacy SSE version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128] (Unmodified)

VMINPD (VEX.128 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[VLMAX-1:128]  0

VMINPD (VEX.256 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128]  MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192]  MIN(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MINPD: __m128d _mm_min_pd(__m128d a, __m128d b);

VMINPD: __m256d _mm256_min_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.
4-26 Vol. 2B MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-27MINPD—Return Minimum Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the minimum value
for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5D /r

MINPS xmm1, xmm2/m128

RM V/V SSE Return the minimum single-
precision floating-point
values between
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 5D /r

VMINPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum single-
precision floating-point
values between xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 5D /r

VMINPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum single
double-precision floating-
point values between ymm2
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-28 Vol. 2B MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MINPS (128-bit Legacy SSE version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128] (Unmodified)

VMINPS (VEX.128 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[VLMAX-1:128]  0

VMINPS (VEX.256 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32]  MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64]  MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96]  MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128]  MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160]  MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192]  MIN(SRC1[223:192], SRC2[223:192])
Vol. 2B 4-29MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:224]  MIN(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MINPS: __m128d _mm_min_ps(__m128d a, __m128d b);

VMINPS: __m256 _mm256_min_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 2.
4-30 Vol. 2B MINPS—Return Minimum Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand
and the second source operand, and returns the minimum value to the low quadword
of the destination operand. When the source operand is a memory operand, only the
64 bits are accessed. The high quadword of the destination operand is copied from
the same bits in the first source operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN source operand (from either the
first or second source) be returned, the action of MINSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 5D /r

MINSD xmm1, xmm2/m64

RM V/V SSE2 Return the minimum scalar
double-precision floating-
point value between
xmm2/mem64 and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5D /r

VMINSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the minimum scalar
double precision floating-
point value between
xmm3/mem64 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-31MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MINSD (128-bit Legacy SSE version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[VLMAX-1:64] (Unmodified)

MINSD (VEX.128 encoded version)
DEST[63:0]  MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MINSD: __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-32 Vol. 2B MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand
and the second source operand and returns the minimum value to the low double-
word of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second operand is an SNaN, that SNaN
is returned unchanged to the destination (that is, a QNaN version of the SNaN is not
returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN in either source operand be
returned, the action of MINSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 5D /r

MINSS xmm1, xmm2/m32

RM V/V SSE Return the minimum scalar
single-precision floating-
point value between
xmm2/mem32 and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5D /r

VMINSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Return the minimum scalar
single precision floating-
point value between
xmm3/mem32 and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-33MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST  SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST  SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST  SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST  SRC1;
ELSE DEST  SRC2;

FI;
}

MINSS (128-bit Legacy SSE version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VMINSS (VEX.128 encoded version)
DEST[31:0]  MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MINSS: __m128d _mm_min_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions
See Exceptions Type 3.
4-34 Vol. 2B MINSS—Return Minimum Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address spec-
ified in EAX (the address range that the monitoring hardware checks for store opera-
tions can be determined by using CPUID). A store to an address within the specified
address range triggers the monitoring hardware. The state of monitor hardware is
used by MWAIT.

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default,
the DS segment is used to create a linear address that is monitored. Segment over-
rides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the
architectural behavior of the instruction. For the Pentium 4 processor (family 15,
model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by
the processor; undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back
memory will correctly trigger the monitoring hardware. Additional information on
determining what address range to use in order to prevent false wake-ups is
described in Chapter 8, “Multiple-Processor Management” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other
memory transactions. The instruction is subject to the permission checking and faults
associated with a byte load. Like a load, MONITOR sets the A-bit but not the D-bit in
page tables.

The MONITOR CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the
availability of MONITOR and MWAIT in the processor. When set, MONITOR may be

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address
range to be monitored by
hardware and activates the
monitor. The address range
should be a write-back
memory caching type. The
address is DS:EAX (DS:RAX
in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-35MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
executed only at privilege level 0 (use at any other privilege level results in an
invalid-opcode exception). The operating system or system BIOS may disable this
instruction by using the IA32_MISC_ENABLE MSR; disabling MONITOR clears the
CPUID feature flag and causes execution to generate an illegal opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of
EAX (RAX in 64-bit mode) as an effective address and puts the monitor hardware in
armed state. Always use memory of the write-back caching type. A store to the spec-
ified address range will trigger the monitor hardware. The content of ECX and EDX
are used to communicate other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR: void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None

Protected Mode Exceptions
#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment

limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If the CS, DS, ES, FS, or GS register is used to access memory

and the value in EAX is outside of the effective address space
from 0 to FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX
is outside of the effective address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.
4-36 Vol. 2B MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS

segment is in a non-canonical form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX
is in a non-canonical form.

#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
Vol. 2B 4-37MONITOR—Set Up Monitor Address

INSTRUCTION SET REFERENCE, M-Z
MOV—Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV
r8***,r/m8***

RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to
r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit
segment register to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment
register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of
r/m64 to segment register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to
AL.

REX.W + A0 MOV AL,moffs8* FD Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to
AX.

A1 MOV
EAX,moffs32*

FD Valid Valid Move doubleword at
(seg:offset) to EAX.

REX.W + A1 MOV
RAX,moffs64*

FD Valid N.E. Move quadword at (offset)
to RAX.

A2 MOV moffs8,AL TD Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV
moffs32*,EAX

TD Valid Valid Move EAX to (seg:offset).
4-38 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + A3 MOV
moffs64*,RAX

TD Valid N.E. Move RAX to (offset).

B0+ rb MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 MOV r/m8***,
imm8

MI Valid N.E. Move imm8 to r/m8.

C7 /0 MOV r/m16,
imm16

MI Valid Valid Move imm16 to r/m16.

C7 /0 MOV r/m32,
imm32

MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 MOV r/m64,
imm32

MI Valid N.E. Move imm32 sign extended
to 64-bits to r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the

segment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute
of the instruction determines the size of the offset, either 16, 32 or 64 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction
(see the following “Description” section for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix
is used: AH, BH, CH, DH.
Vol. 2B 4-39MOV—Move

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination
operand). The source operand can be an immediate value, general-purpose register,
segment register, or memory location; the destination register can be a general-
purpose register, segment register, or memory location. Both operands must be the
same size, which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so
results in an invalid opcode exception (#UD). To load the CS register, use the far JMP,
CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor infor-
mation associated with that segment selector to be loaded into the hidden (shadow)
part of the segment register. While loading this information, the segment selector
and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and
GS registers without causing a protection exception. However, any subsequent
attempt to reference a segment whose corresponding segment register is loaded
with a NULL value causes a general protection exception (#GP) and no memory
reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the
execution of the next instruction. This operation allows a stack pointer to be loaded
into the ESP register with the next instruction (MOV ESP, stack-pointer value)
before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a
general-purpose register, the 32-bit IA-32 processors do not require the use of the
16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most
assemblers will insert it if the standard form of the instruction is used (for example,
MOV DS, AX). The processor will execute this instruction correctly, but it will usually

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA
4-40 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
require an extra clock. With most assemblers, using the instruction form MOV DS,
EAX will avoid this unneeded 66H prefix. When the processor executes the instruc-
tion with a 32-bit general-purpose register, it assumes that the 16 least-significant
bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of
the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6
family processors, the two high-order bytes are filled with zeros; for earlier 32-bit
IA-32 processors, the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor to which it points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that load the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
Vol. 2B 4-41MOV—Move

INSTRUCTION SET REFERENCE, M-Z
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.
4-42 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment
selector when CPL = 3.
If an attempt is made to load SS register with NULL segment
selector when CPL < 3 and CPL ≠ RPL.
Vol. 2B 4-43MOV—Move

INSTRUCTION SET REFERENCE, M-Z
#GP(selector) If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is
a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is

marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
4-44 Vol. 2B MOV—Move

INSTRUCTION SET REFERENCE, M-Z
MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register.
The operand size for these instructions is always 32 bits in non-64-bit modes,
regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a
detailed description of the flags and fields in the control registers.) This instruction
can be executed only when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the
control registers is loaded or read. The 2 bits in the mod field are ignored. The r/m
field specifies the general-purpose register loaded or read. Attempts to reference
CR1, CR5, CR6, CR7, and CR9–CR15 result in undefined opcode (#UD) exceptions.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 20/r

MOV r32, CR0–CR7

MR N.E. Valid Move control register to
r32.

0F 20/r

MOV r64, CR0–CR7

MR Valid N.E. Move extended control
register to r64.

REX.R + 0F 20 /0

MOV r64, CR8

MR Valid N.E. Move extended CR8 to
r64.1

0F 22 /r

MOV CR0–CR7, r32

RM N.E. Valid Move r32 to control
register.

0F 22 /r

MOV CR0–CR7, r64

RM Valid N.E. Move r64 to extended
control register.

REX.R + 0F 22 /0

MOV CR8, r64

RM Valid N.E. Move r64 to extended
CR8.1

NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-45MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to
change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0
and CR3 remain clear after any load of those registers; attempts to set them have no
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after
any load of CR0; attempts to clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the
TLBs and the paging-structure caches. See Section 4.10.4.1, “Operations that Inval-
idate TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A for details.

The following side effects are implementation-specific for the Pentium 4, Intel Xeon,
and P6 processor family: when modifying PE or PG in register CR0, or PSE or PAE in
register CR4, all TLB entries are flushed, including global entries. Software should not
depend on this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix
must be used to access CR8. Use of REX.B permits access to additional registers (R8-
R15). Use of the REX.W prefix or 66H prefix is ignored. Use of the REX.R prefix to
specify a register other than CR8 causes an invalid-opcode exception. See the
summary chart at the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether
the instruction invalidates entries in the TLBs and the paging-structure caches (see
Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
The instruction does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
4-46 Vol. 2B MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the
PDPT to be loaded into the processor.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write 1 to CR4.PCIDE.
If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31] while
CR4.PCIDE = 1.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while
CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31].
Vol. 2B 4-47MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.
If the REX.R prefix is used to specify a register other than CR8.
4-48 Vol. 2B MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, M-Z
MOV—Move to/from Debug Registers

Instruction Operand Encoding

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or
DR7) to a general-purpose register or vice versa. The operand size for these instruc-
tions is always 32 bits in non-64-bit modes, regardless of the operand-size attribute.
(See Section 17.2, “Debug Registers”, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for a detailed description of the flags and fields
in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions
operate on debug registers in a manner that is compatible with Intel386 and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7, respec-
tively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in
an undefined opcode (#UD) exception. (The CR4 register was added to the IA-32
Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are ignored. The r/m field
specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B
prefix permits access to additional registers (R8–R15). Use of the REX.W or 66H
prefix is ignored. Use of the REX.R prefix causes an invalid-opcode exception. See
the summary chart at the beginning of this section for encoding data and limits.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 21/r

MOV r32, DR0–DR7

MR N.E. Valid Move debug register to r32.

0F 21/r

MOV r64, DR0–DR7

MR Valid N.E. Move extended debug
register to r64.

0F 23 /r

MOV DR0–DR7, r32

RM N.E. Valid Move r32 to debug register.

0F 23 /r

MOV DR0–DR7, r64

RM Valid N.E. Move r64 to extended
debug register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-49MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction

is executed involving DR4 or DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction

is executed involving DR4 or DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-

8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any of bits 63:32 in DR6.
If an attempt is made to write a 1 to any of bits 63:32 in DR7.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.
If the LOCK prefix is used.
If the REX.R prefix is used.
4-50 Vol. 2B MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
Vol. 2B 4-51MOV—Move to/from Debug Registers

INSTRUCTION SET REFERENCE, M-Z
MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Moves 2 or 4 double-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 28 /r

MOVAPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point
values from xmm2/m128 to
xmm1.

66 0F 29 /r

MOVAPD xmm2/m128, xmm1

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 28 /r

VMOVAPD xmm1, xmm2/m128

RM V/V AVX Move aligned packed
double-precision floating-
point values from
xmm2/mem to xmm1.

VEX.128.66.0F.WIG 29 /r

VMOVAPD xmm2/m128, xmm1

MR V/V AVX Move aligned packed
double-precision floating-
point values from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 28 /r

VMOVAPD ymm1, ymm2/m256

RM V/V AVX Move aligned packed
double-precision floating-
point values from
ymm2/mem to ymm1.

VEX.256.66.0F.WIG 29 /r

VMOVAPD ymm2/m256, ymm1

MR V/V AVX Move aligned packed
double-precision floating-
point values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-52 Vol. 2B MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated.

To move double-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPD instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
128-bit versions:
Moves 128 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register desti-
nation are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers. When the source or destination operand is a memory operand,
the operand must be aligned on a 32-byte boundary or a general-protection excep-
tion (#GP) will be generated. To move single-precision floating-point values to and
from unaligned memory locations, use the VMOVUPD instruction.

Operation

MOVAPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPD (128-bit store-form version)
DEST[127:0]  SRC[127:0]

VMOVAPD (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
Vol. 2B 4-53MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

VMOVAPD (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPD: __m128d _mm_load_pd (double const * p);

MOVAPD: _mm_store_pd(double * p, __m128d a);

VMOVAPD: __m256d _mm256_load_pd (double const * p);

VMOVAPD: _mm256_store_pd(double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-54 Vol. 2B MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 4 or8 single-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 28 /r

MOVAPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point
values from xmm2/m128 to
xmm1.

0F 29 /r

MOVAPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.0F.WIG 28 /r

VMOVAPS xmm1, xmm2/m128

RM V/V AVX Move aligned packed single-
precision floating-point
values from xmm2/mem to
xmm1.

VEX.128.0F.WIG 29 /r

VMOVAPS xmm2/m128, xmm1

MR V/V AVX Move aligned packed single-
precision floating-point
values from xmm1 to
xmm2/mem.

VEX.256.0F.WIG 28 /r

VMOVAPS ymm1, ymm2/m256

RM V/V AVX Move aligned packed single-
precision floating-point
values from ymm2/mem to
ymm1.

VEX.256.0F.WIG 29 /r

VMOVAPS ymm2/m256, ymm1

MR V/V AVX Move aligned packed single-
precision floating-point
values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-55MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated.

To move single-precision floating-point values to and from unaligned memory loca-
tions, use the (V)MOVUPS instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.

Operation

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPS (128-bit store form)
DEST[127:0]  SRC[127:0]

VMOVAPS (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVAPS (VEX.256 encoded version)
4-56 Vol. 2B MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPS: __m128 _mm_load_ps (float const * p);

MOVAPS: _mm_store_ps(float * p, __m128 a);

VMOVAPS: __m256 _mm256_load_ps (float const * p);

VMOVAPS: _mm256_store_ps(float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-57MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source
operand) and store the result in the first operand (destination operand). The source
operand can be a general-purpose register, or memory location; the destination
register can be a general-purpose register, or a memory location; however, both
operands can not be registers, and only one operand can be a memory location. Both
operands must be the same size, which can be a word, a doubleword or quadword.

The MOVBE instruction is provided for swapping the bytes on a read from memory or
on a write to memory; thus providing support for converting little-endian values to
big-endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

TEMP ← SRC

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 F0 /r MOVBE r16, m16 RM Valid Valid Reverse byte order in m16
and move to r16

0F 38 F0 /r MOVBE r32, m32 RM Valid Valid Reverse byte order in m32
and move to r32

REX.W + 0F 38
F0 /r

MOVBE r64, m64 RM Valid N.E. Reverse byte order in m64
and move to r64.

0F 38 F1 /r MOVBE m16, r16 MR Valid Valid Reverse byte order in r16
and move to m16

0F 38 F1 /r MOVBE m32, r32 MR Valid Valid Reverse byte order in r32
and move to m32

REX.W + 0F 38
F1 /r

MOVBE m64, r64 MR Valid N.E. Reverse byte order in r64
and move to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-58 Vol. 2B MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
IF (OperandSize = 16)
THEN

DEST[7:0] ← TEMP[15:8];
DEST[15:8] ← TEMP[7:0];

ELES IF (OperandSize = 32)
DEST[7:0] ← TEMP[31:24];
DEST[15:8] ← TEMP[23:16];
DEST[23:16] ← TEMP[15:8];
DEST[31:23] ← TEMP[7:0];

ELSE IF (OperandSize = 64)
DEST[7:0] ← TEMP[63:56];
DEST[15:8] ← TEMP[55:48];
DEST[23:16] ← TEMP[47:40];
DEST[31:24] ← TEMP[39:32];
DEST[39:32] ← TEMP[31:24];
DEST[47:40] ← TEMP[23:16];
DEST[55:48] ← TEMP[15:8];
DEST[63:56] ← TEMP[7:0];

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2B 4-59MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
#SS If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .
If the LOCK prefix is used.
If REP (F3H) prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit
20] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0 .

If the LOCK prefix is used.
If REP (F3H) prefix is used.
4-60 Vol. 2B MOVBE—Move Data After Swapping Bytes

INSTRUCTION SET REFERENCE, M-Z
MOVD/MOVQ—Move Doubleword/Move Quadword

Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V SSE2 Move doubleword from
r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64
to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V SSE2 Move doubleword from mm
to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. SSE2 Move quadword from mm to
r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from
r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64
to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from
r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64
to xmm.

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from
xmm register to r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm
register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from
xmm1 register to r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1
register to r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-61MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
operand (first operand). The source and destination operands can be general-
purpose registers, MMX technology registers, XMM registers, or 32-bit memory loca-
tions. This instruction can be used to move a doubleword to and from the low double-
word of an MMX technology register and a general-purpose register or a 32-bit
memory location, or to and from the low doubleword of an XMM register and a
general-purpose register or a 32-bit memory location. The instruction cannot be
used to transfer data between MMX technology registers, between XMM registers,
between general-purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is
written to the low doubleword of the register, and the register is zero-extended to 64
bits. When the destination operand is an XMM register, the source operand is written
to the low doubleword of the register, and the register is zero-extended to 128 bits.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

MOVD (when destination operand is MMX technology register)
DEST[31:0] ← SRC;
DEST[63:32] ← 00000000H;

MOVD (when destination operand is XMM register)
DEST[31:0] ← SRC;
DEST[127:32] ← 000000000000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVD (when source operand is MMX technology or XMM register)
DEST ← SRC[31:0];

VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32]  0

MOVQ (when destination operand is XMM register)
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;
DEST[VLMAX-1:128] (Unmodified)

MOVQ (when destination operand is r/m64)
DEST[63:0] ← SRC[63:0];

MOVQ (when source operand is XMM register or r/m64)
DEST ← SRC[63:0];
4-62 Vol. 2B MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD: __m64 _mm_cvtsi32_si64 (int i)

MOVD: int _mm_cvtsi64_si32 (__m64m)

MOVD: __m128i _mm_cvtsi32_si128 (int a)

MOVD: int _mm_cvtsi128_si32 (__m128i a)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-63MOVD/MOVQ—Move Doubleword/Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDDUP—Move One Double-FP and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 8 bytes of data
at memory location m64 are loaded. When the register-register form of this opera-
tion is used, the lower half of the 128-bit source register is duplicated and copied into
the 128-bit destination register. See Figure 4-2.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 12 /r

MOVDDUP xmm1, xmm2/m64

RM V/V SSE3 Move one double-precision
floating-point value from
the lower 64-bit operand in
xmm2/m64 to xmm1 and
duplicate.

VEX.128.F2.0F.WIG 12 /r

VMOVDDUP xmm1, xmm2/m64

RM V/V AVX Move double-precision
floating-point values from
xmm2/mem and duplicate
into xmm1.

VEX.256.F2.0F.WIG 12 /r

VMOVDDUP ymm1, ymm2/m256

RM V/V AVX Move even index double-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-64 Vol. 2B MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

IF (Source = m64)
THEN

(* Load instruction *)
xmm1[63:0] = m64;
xmm1[127:64] = m64;

ELSE
(* Move instruction *)
xmm1[63:0] = xmm2[63:0];
xmm1[127:64] = xmm2[63:0];

FI;

MOVDDUP (128-bit Legacy SSE version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVDDUP (VEX.128 encoded version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]

Figure 4-2. MOVDDUP—Move One Double-FP and Duplicate
Vol. 2B 4-65MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

VMOVDDUP (VEX.256 encoded version)
DEST[63:0]  SRC[63:0]
DEST[127:64]  SRC[63:0]
DEST[191:128]  SRC[191:128]
DEST[255:192]  SRC[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDDUP: __m128d _mm_movedup_pd(__m128d a)

MOVDDUP: __m128d _mm_loaddup_pd(double const * dp)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
4-66 Vol. 2B MOVDDUP—Move One Double-FP and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVDQA—Move Aligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 6F /r

MOVDQA xmm1, xmm2/m128

RM V/V SSE2 Move aligned double
quadword from
xmm2/m128 to xmm1.

66 0F 7F /r

MOVDQA xmm2/m128, xmm1

MR V/V SSE2 Move aligned double
quadword from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 6F /r

VMOVDQA xmm1, xmm2/m128

RM V/V AVX Move aligned packed integer
values from xmm2/mem to
xmm1.

VEX.128.66.0F.WIG 7F /r

VMOVDQA xmm2/m128, xmm1

MR V/V AVX Move aligned packed integer
values from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 6F /r

VMOVDQA ymm1, ymm2/m256

RM V/V AVX Move aligned packed integer
values from ymm2/mem to
ymm1.

VEX.256.66.0F.WIG 7F /r

VMOVDQA ymm2/m256, ymm1

MR V/V AVX Move aligned packed integer
values from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-67MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.
When the source or destination operand is a memory operand, the operand must be
aligned on a 32-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVDQA (128-bit load- and register- form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)
(* #GP if SRC or DEST unaligned memory operand *)

(V)MOVDQA (128-bit store forms)
DEST[127:0]  SRC[127:0]

VMOVDQA (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVDQA (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQA: __m128i _mm_load_si128 (__m128i *p)

MOVDQA: void _mm_store_si128 (__m128i *p, __m128i a)

VMOVDQA: __m256i _mm256_load_si256 (__m256i * p);

VMOVDQA: _mm256_store_si256(_m256i *p, __m256i a);
4-68 Vol. 2B MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-69MOVDQA—Move Aligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDQU—Move Unaligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move a double quadword to or from memory locations that are known to be
aligned on 16-byte boundaries, use the MOVDQA instruction.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 6F /r

MOVDQU xmm1, xmm2/m128

RM V/V SSE2 Move unaligned double
quadword from
xmm2/m128 to xmm1.

F3 0F 7F /r

MOVDQU xmm2/m128, xmm1

MR V/V SSE2 Move unaligned double
quadword from xmm1 to
xmm2/m128.

VEX.128.F3.0F.WIG 6F /r

VMOVDQU xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
integer values from
xmm2/mem to xmm1.

VEX.128.F3.0F.WIG 7F /r

VMOVDQU xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
integer values from xmm1
to xmm2/mem.

VEX.256.F3.0F.WIG 6F /r

VMOVDQU ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
integer values from
ymm2/mem to ymm1.

VEX.256.F3.0F.WIG 7F /r

VMOVDQU ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
integer values from ymm1
to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-70 Vol. 2B MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
When the source or destination operand is a memory operand, the operand may be
unaligned to any alignment without causing a general-protection exception (#GP) to
be generated
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register
are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVDQU load and register copy (128-bit Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVDQU 128-bit store-form versions
DEST[127:0]  SRC[127:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVDQU (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
Vol. 2B 4-71MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

MOVDQU: void _mm_storeu_si128 (__m128i *p, __m128i a)

MOVDQU: __m128i _mm_loadu_si128 (__m128i *p)

VMOVDQU: __m256i _mm256_loadu_si256 (__m256i * p);

VMOVDQU: _mm256_storeu_si256(_m256i *p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-72 Vol. 2B MOVDQU—Move Unaligned Double Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is an XMM register and the destina-
tion operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q: __m64 _mm_movepi64_pi64 (__m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F D6 MOVDQ2Q mm,
xmm

RM Valid Valid Move low quadword from
xmm to mmx register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-73MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-74 Vol. 2B MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

INSTRUCTION SET REFERENCE, M-Z
MOVHLPS— Move Packed Single-Precision Floating-Point Values High
to Low

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the high quadword of
the second XMM argument (second operand) to the low quadword of the first XMM
register (first argument). The high quadword of the destination operand is left
unchanged. Bits (VLMAX-1:64) of the corresponding YMM destination register are
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the high quadword of
the third XMM argument (third operand) to the low quadword of the destination (first
operand). Copies the high quadword from the second XMM argument (second
operand) to the high quadword of the destination (first operand). Bits (VLMAX-
1:128) of the destination YMM register are zeroed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 12 /r

MOVHLPS xmm1, xmm2

RM V/V SSE3 Move two packed single-
precision floating-point
values from high quadword
of xmm2 to low quadword
of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point
values from high quadword
of xmm3 and low quadword
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-75MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

INSTRUCTION SET REFERENCE, M-Z
Operation

MOVHLPS (128-bit two-argument form)
DEST[63:0]  SRC[127:64]
DEST[VLMAX-1:64] (Unmodified)

VMOVHLPS (128-bit three-argument form)
DEST[63:0]  SRC2[127:64]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
4-76 Vol. 2B MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

INSTRUCTION SET REFERENCE, M-Z
MOVHPD—Move High Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the high 64-bits of the destination XMM register. The lower
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 16 /r

MOVHPD xmm, m64

RM V/V SSE2 Move double-precision
floating-point value from
m64 to high quadword of
xmm.

66 0F 17 /r

MOVHPD m64, xmm

MR V/V SSE2 Move double-precision
floating-point value from
high quadword of xmm to
m64.

VEX.NDS.128.66.0F.WIG 16 /r

VMOVHPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision
floating-point value from
m64 and the low quadword
of xmm1.

VEX128.66.0F.WIG 17/r

VMOVHPD m64, xmm1

MR V/V AVX Move double-precision
floating-point values from
high quadword of xmm1 to
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-77MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores a double-precision floating-point value from the high 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as
the existing 66 0F 17 store. For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPD (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPD (VEX.128 encoded load)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VMOVHPD (store)
DEST[63:0]  SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPD: __m128d _mm_loadh_pd (__m128d a, double *p)

MOVHPD: void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
4-78 Vol. 2B MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVHPS—Move High Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the high 64-bits of the destination XMM register.
The lower 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two single-precision floating-point values from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 16 /r

MOVHPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point
values from m64 to high
quadword of xmm.

0F 17 /r

MOVHPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point
values from high quadword
of xmm to m64.

VEX.NDS.128.0F.WIG 16 /r

VMOVHPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point
values from m64 and the
low quadword of xmm1.

VEX.128.0F.WIG 17/r

VMOVHPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point
values from high quadword
of xmm1to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-79MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.
128-bit store:
Stores two packed single-precision floating-point values from the high 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior
as the existing 0F 17 store. For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruc-
tion version, VEX.vvvv is reserved and must be 1111b otherwise instruction will
#UD.
If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVHPS (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVHPS (VEX.128 encoded load)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VMOVHPS (store)
DEST[63:0]  SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPS: __m128d _mm_loadh_pi (__m128d a, __m64 *p)

MOVHPS: void _mm_storeh_pi (__m64 *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.
4-80 Vol. 2B MOVHPS—Move High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to
High

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the low quadword of
the second XMM argument (second operand) to the high quadword of the first XMM
register (first argument). The low quadword of the destination operand is left
unchanged. The upper 128 bits of the corresponding YMM destination register are
unmodified.
128-bit three-argument form
Moves two packed single-precision floating-point values from the low quadword of
the third XMM argument (third operand) to the high quadword of the destination
(first operand). Copies the low quadword from the second XMM argument (second
operand) to the low quadword of the destination (first operand). The upper 128-bits
of the destination YMM register are zeroed.
If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 16 /r

MOVLHPS xmm1, xmm2

RM V/V SSE Move two packed single-
precision floating-point
values from low quadword
of xmm2 to high quadword
of xmm1.

VEX.NDS.128.0F.WIG 16 /r

VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-
precision floating-point
values from low quadword
of xmm3 and low quadword
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-81MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High

INSTRUCTION SET REFERENCE, M-Z
Operation

MOVLHPS (128-bit two-argument form)
DEST[63:0] (Unmodified)
DEST[127:64]  SRC[63:0]
DEST[VLMAX-1:128] (Unmodified)

VMOVLHPS (128-bit three-argument form)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L= 1.
4-82 Vol. 2B MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High

INSTRUCTION SET REFERENCE, M-Z
MOVLPD—Move Low Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the low 64-bits of the destination XMM register. The upper
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand), merges it with the upper 64-bits of the first source XMM
register (second operand), and stores it in the low 128-bits of the destination XMM

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 12 /r

MOVLPD xmm, m64

RM V/V SSE2 Move double-precision
floating-point value from
m64 to low quadword of
xmm register.

66 0F 13 /r

MOVLPD m64, xmm

MR V/V SSE2 Move double-precision
floating-point nvalue from
low quadword of xmm
register to m64.

VEX.NDS.128.66.0F.WIG 12 /r

VMOVLPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision
floating-point value from
m64 and the high quadword
of xmm1.

VEX.128.66.0F.WIG 13/r

VMOVLPD m64, xmm1

MR V/V AVX Move double-precision
floating-point values from
low quadword of xmm1 to
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-83MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
register (first operand). The upper 128-bits of the destination YMM register are
zeroed.
128-bit store:
Stores a double-precision floating-point value from the low 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as
the existing 66 0F 13 store. For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPD (128-bit Legacy SSE load)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPD (VEX.128 encoded load)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVLPD (store)
DEST[63:0]  SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPD: __m128d _mm_loadl_pd (__m128d a, double *p)

MOVLPD: void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-84 Vol. 2B MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVLPS—Move Low Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the low 64-bits of the destination XMM register.
The upper 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded load:
Loads two packed single-precision floating-point values from the source 64-bit
memory operand (third operand), merges them with the upper 64-bits of the first
source XMM register (second operand), and stores them in the low 128-bits of the

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 12 /r

MOVLPS xmm, m64

RM V/V SSE Move two packed single-
precision floating-point
values from m64 to low
quadword of xmm.

0F 13 /r

MOVLPS m64, xmm

MR V/V SSE Move two packed single-
precision floating-point
values from low quadword
of xmm to m64.

VEX.NDS.128.0F.WIG 12 /r

VMOVLPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-
precision floating-point
values from m64 and the
high quadword of xmm1.

VEX.128.0F.WIG 13/r

VMOVLPS m64, xmm1

MR V/V AVX Move two packed single-
precision floating-point
values from low quadword
of xmm1 to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-85MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
destination XMM register (first operand). The upper 128-bits of the destination YMM
register are zeroed.
128-bit store:
Loads two packed single-precision floating-point values from the low 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the
existing 0F 13 store. For VMOVLPS (store) (VEX.128.0F 13 /r) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation

MOVLPS (128-bit Legacy SSE load)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMOVLPS (VEX.128 encoded load)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVLPS (store)
DEST[63:0]  SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS: __m128 _mm_loadl_pi (__m128 a, __m64 *p)

MOVLPS: void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-86 Vol. 2B MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign
Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double-precision floating-point values in the
source operand (second operand), formats them into a 2-bit mask, and stores the
mask in the destination operand (first operand). The source operand is an XMM
register, and the destination operand is a general-purpose register. The mask is
stored in the 2 low-order bits of the destination operand. Zero-extend the upper bits
of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.
128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from
xmm and store in reg. The
upper bits of r32 or r64 are
filled with zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from
xmm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from
ymm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-87MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
(V)MOVMSKPD (128-bit versions)
DEST[0]  SRC[63]
DEST[1]  SRC[127]
IF DEST = r32

THEN DEST[31:2]  0;
ELSE DEST[63:2]  0;

FI

VMOVMSKPD (VEX.256 encoded version)
DEST[0]  SRC[63]
DEST[1]  SRC[127]
DEST[2]  SRC[191]
DEST[3]  SRC[255]
IF DEST = r32

THEN DEST[31:4]  0;
ELSE DEST[63:4]  0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD: int _mm_movemask_pd (__m128d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
4-88 Vol. 2B MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

Instruction Operand Encoding1

Description

Extracts the sign bits from the packed single-precision floating-point values in the
source operand (second operand), formats them into a 4- or 8-bit mask, and stores
the mask in the destination operand (first operand). The source operand is an XMM
or YMM register, and the destination operand is a general-purpose register. The mask
is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the
destination operand beyond the mask are filled with zeros.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.

128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 50 /r

MOVMSKPS reg, xmm

RM V/V SSE Extract 4-bit sign mask from
xmm and store in reg. The
upper bits of r32 or r64 are
filled with zeros.

VEX.128.0F.WIG 50 /r

VMOVMSKPS reg, xmm2

RM V/V AVX Extract 4-bit sign mask from
xmm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

VEX.256.0F.WIG 50 /r

VMOVMSKPS reg, ymm2

RM V/V AVX Extract 8-bit sign mask from
ymm2 and store in reg. The
upper bits of r32 or r64 are
zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

1. ModRM.MOD = 011B required
Vol. 2B 4-89MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
Operation

DEST[0] ← SRC[31];
DEST[1] ← SRC[63];
DEST[2] ← SRC[95];
DEST[3] ← SRC[127];

IF DEST = r32
THEN DEST[31:4] ← ZeroExtend;
ELSE DEST[63:4] ← ZeroExtend;

FI;

(V)MOVMSKPS (128-bit version)
DEST[0]  SRC[31]
DEST[1]  SRC[63]
DEST[2]  SRC[95]
DEST[3]  SRC[127]
IF DEST = r32

THEN DEST[31:4]  0;
ELSE DEST[63:4]  0;

FI

VMOVMSKPS (VEX.256 encoded version)
DEST[0]  SRC[31]
DEST[1]  SRC[63]
DEST[2]  SRC[95]
DEST[3]  SRC[127]
DEST[4]  SRC[159]
DEST[5]  SRC[191]
DEST[6]  SRC[223]
DEST[7]  SRC[255]
IF DEST = r32

THEN DEST[31:8]  0;
ELSE DEST[63:8]  0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_movemask_ps(__m128 a)

int _mm256_movemask_ps(__m256 a)

SIMD Floating-Point Exceptions

None.
4-90 Vol. 2B MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-91MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

INSTRUCTION SET REFERENCE, M-Z
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding

Description

MOVNTDQA loads a double quadword from the source operand (second operand) to
the destination operand (first operand) using a non-temporal hint. A processor
implementation may make use of the non-temporal hint associated with this instruc-
tion if the memory source is WC (write combining) memory type. An implementation
may also make use of the non-temporal hint associated with this instruction if the
memory source is WB (write back) memory type.
A processor’s implementation of the non-temporal hint does not override the effec-
tive memory type semantics, but the implementation of the hint is processor depen-
dent. For example, a processor implementation may choose to ignore the hint and
process the instruction as a normal MOVDQA for any memory type. Another imple-
mentation of the hint for WC memory type may optimize data transfer throughput of
WC reads. A third implementation may optimize cache reads generated by
MOVNTDQA on WB memory type to reduce cache evictions.

WC Streaming Load Hint

For WC memory type in particular, the processor never appears to read the data into
the cache hierarchy. Instead, the non-temporal hint may be implemented by loading
a temporary internal buffer with the equivalent of an aligned cache line without filling
this data to the cache. Any memory-type aliased lines in the cache will be snooped
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line
will receive data from the temporary internal buffer if data is available. The tempo-
rary internal buffer may be flushed by the processor at any time for any reason, for
example:
• A load operation other than a MOVNTDQA which references memory already

resident in a temporary internal buffer.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 2A /r

MOVNTDQA xmm1, m128

RM V/V SSE4_1 Move double quadword
from m128 to xmm using
non-temporal hint if WC
memory type.

VEX.128.66.0F38.WIG 2A /r

VMOVNTDQA xmm1, m128

RM V/V AVX Move double quadword from
m128 to xmm using non-
temporal hint if WC memory
type.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-92 Vol. 2B MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to memory currently residing in a single

temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of

a mis-speculation condition, and various fault conditions
The memory type of the region being read can override the non-temporal hint, if the
memory address specified for the non-temporal read is not a WC memory region.
Information on non-temporal reads and writes can be found in Chapter 11, “Memory
Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
Because the WC protocol uses a weakly-ordered memory consistency model, an
MFENCE or locked instruction should be used in conjunction with MOVNTDQA instruc-
tions if multiple processors might reference the same WC memory locations or in
order to synchronize reads of a processor with writes by other agents in the system.
Because of the speculative nature of fetching due to MOVNTDQA, Streaming loads
must not be used to reference memory addresses that are mapped to I/O devices
having side effects or when reads to these devices are destructive. For additional
information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Program-
ming with SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will
cause a #GP.
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST  SRC
DEST[VLMAX-1:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST  SRC
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);

Flags Affected

None
Vol. 2B 4-93MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 1.SSE4.1; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
4-94 Vol. 2B MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed integers in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to prevent caching of the data
during the write to memory. The source operand is an XMM register or YMM register,
which is assumed to contain integer data (packed bytes, words, doublewords, or
quadwords). The destination operand is a 128-bit or 256-bit memory location. The
memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTDQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F E7 /r

MOVNTDQ m128, xmm

MR V/V SSE2 Move double quadword
from xmm to m128 using
non-temporal hint.

VEX.128.66.0F.WIG E7 /r

VMOVNTDQ m128, xmm1

MR V/V AVX Move packed integer values
in xmm1 to m128 using
non-temporal hint.

VEX.256.66.0F.WIG E7 /r

VMOVNTDQ m256, ymm1

MR V/V AVX Move packed integer values
in ymm1 to m256 using
non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-95MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_si128(__m128i *p, __m128i a);

VMOVNTDQ: void _mm256_stream_si256 (__m256i * p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-96 Vol. 2B MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the desti-
nation operand (first operand) using a non-temporal hint to minimize cache pollution
during the write to memory. The source operand is a general-purpose register. The
destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTI instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32
to m32 using non-temporal
hint.

REX.W + 0F C3
/r

MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to
m64 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-97MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-98 Vol. 2B MOVNTI—Store Doubleword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed double-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed double-preci-
sion, floating-pointing data. The destination operand is a 128-bit or 256-bit memory
location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-
byte (VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 2B /r

MOVNTPD m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm to m128
using non-temporal hint.

VEX.128.66.0F.WIG 2B /r

VMOVNTPD m128, xmm1

MR V/V AVX Move packed double-
precision values in xmm1 to
m128 using non-temporal
hint.

VEX.256.66.0F.WIG 2B /r

VMOVNTPD m256, ymm1

MR V/V AVX Move packed double-
precision values in ymm1 to
m256 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-99MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPD instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTPD: void _mm_stream_pd(double *p, __m128d a)

VMOVNTPD: void _mm256_stream_pd (double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
4-100 Vol. 2B MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using
Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed single-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed single-preci-
sion, floating-pointing. The destination operand is a 128-bit or 256-bitmemory loca-
tion. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 2B /r

MOVNTPS m128, xmm

MR V/V SSE Move packed single-
precision floating-point
values from xmm to m128
using non-temporal hint.

VEX.128.0F.WIG 2B /r

VMOVNTPS m128, xmm1

MR V/V AVX Move packed single-
precision values xmm1 to
mem using non-temporal
hint.

VEX.256.0F.WIG 2B /r

VMOVNTPS m256, ymm1

MR V/V AVX Move packed single-
precision values ymm1 to
mem using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
Vol. 2B 4-101MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPS instructions if multiple processors might use
different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_ps(float * p, __m128 a)

VMOVNTPS: void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
4-102 Vol. 2B MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal
Hint

INSTRUCTION SET REFERENCE, M-Z
MOVNTQ—Store of Quadword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the quadword in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during
the write to memory. The source operand is an MMX technology register, which is
assumed to contain packed integer data (packed bytes, words, or doublewords). The
destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTQ: void _mm_stream_pi(__m64 * p, __m64 a)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F E7 /r MOVNTQ m64,
mm

MR Valid Valid Move quadword from mm to
m64 using non-temporal
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-103MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-104 Vol. 2B MOVNTQ—Store of Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, M-Z
MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be MMX tech-
nology registers, XMM registers, or 64-bit memory locations. This instruction can be
used to move a quadword between two MMX technology registers or between an
MMX technology register and a 64-bit memory location, or to move data between two
XMM registers or between an XMM register and a 64-bit memory location. The
instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the
destination operand is an XMM register, the quadword is stored to the low quadword
of the register, and the high quadword is cleared to all 0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 6F /r MOVQ mm,
mm/m64

RM Valid Valid Move quadword from
mm/m64 to mm.

0F 7F /r MOVQ mm/m64,
mm

MR Valid Valid Move quadword from mm to
mm/m64.

F3 0F 7E MOVQ xmm1,
xmm2/m64

RM Valid Valid Move quadword from
xmm2/mem64 to xmm1.

66 0F D6 MOVQ
xmm2/m64,
xmm1

MR Valid Valid Move quadword from xmm1
to xmm2/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-105MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
4-106 Vol. 2B MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-Z
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword
of the destination operand (first operand). The source operand is an MMX technology
register and the destination operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0s [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_pi64 (__m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F D6 MOVQ2DQ xmm,
mm

RM Valid Valid Move quadword from mmx
to low quadword of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-107MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-108 Vol. 2B MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, M-Z
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from
String to String
\

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVS m16, m16 NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVS m32, m32 NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.

A4 MOVSB NP Valid Valid For legacy mode, Move byte
from address DS:(E)SI to
ES:(E)DI. For 64-bit mode
move byte from address
(R|E)SI to (R|E)DI.

A5 MOVSW NP Valid Valid For legacy mode, move
word from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move word at address
(R|E)SI to (R|E)DI.

A5 MOVSD NP Valid Valid For legacy mode, move
dword from address DS:(E)SI
to ES:(E)DI. For 64-bit mode
move dword from address
(R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ NP Valid N.E. Move qword from address
(R|E)SI to (R|E)DI.
Vol. 2B 4-109MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). Both
the source and destination operands are located in memory. The address of the
source operand is read from the DS:ESI or the DS:SI registers (depending on the
address-size attribute of the instruction, 32 or 16, respectively). The address of the
destination operand is read from the ES:EDI or the ES:DI registers (again depending
on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the MOVS mnemonic) allows the source and destination operands to be speci-
fied explicitly. Here, the source and destination operands should be symbols that
indicate the size and location of the source value and the destination, respectively.
This explicit-operands form is provided to allow documentation; however, note that
the documentation provided by this form can be misleading. That is, the source and
destination operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the
DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the move
string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to
be the source and destination operands, respectively. The size of the source and
destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW
(word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decre-
mented automatically according to the setting of the DF flag in the EFLAGS register.
(If the DF flag is 0, the (E)SI and (E)DI register are incremented; if the DF flag is 1,
the (E)SI and (E)DI registers are decremented.) The registers are incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP
prefix (see “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for a description of the REP prefix) for block moves of ECX bytes, words,
or doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is
supported using the prefix 67H. The 64-bit addresses are specified by RSI and RDI;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-110 Vol. 2B MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
32-bit address are specified by ESI and EDI. Use of the REX.W prefix promotes
doubleword operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SRC;

Non-64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN
(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;
FI;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;
FI;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;
64-bit Mode:

IF (Byte move)
THEN IF DF = 0

THEN
(R|E)SI ← (R|E)SI + 1;
(R|E)DI ← (R|E)DI + 1;
Vol. 2B 4-111MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
ELSE
(R|E)SI ← (R|E)SI – 1;
(R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 2;
(R|E)DI ← (R|E)DI + 2;
FI;

ELSE
(R|E)SI ← (R|E)SI – 2;
(R|E)DI ← (R|E)DI – 2;

FI;
ELSE IF (Doubleword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 4;
(R|E)DI ← (R|E)DI + 4;
FI;

ELSE
(R|E)SI ← (R|E)SI – 4;
(R|E)DI ← (R|E)DI – 4;

FI;
ELSE IF (Quadword move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 8;
(R|E)DI ← (R|E)DI + 8;
FI;

ELSE
(R|E)SI ← (R|E)SI – 8;
(R|E)DI ← (R|E)DI – 8;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.
4-112 Vol. 2B MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-113MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String

INSTRUCTION SET REFERENCE, M-Z
MOVSD—Move Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

MOVSD moves a scalar double-precision floating-point value from the source
operand (second operand) to the destination operand (first operand). The source and
destination operands can be XMM registers or 64-bit memory locations. This instruc-

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 10 /r

MOVSD xmm1, xmm2/m64

RM V/V SSE2 Move scalar double-
precision floating-point
value from xmm2/m64 to
xmm1 register.

VEX.NDS.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar double-
precision floating-point
value from xmm2 and
xmm3 to xmm1 register.

VEX.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, m64

XM V/V AVX Load scalar double-precision
floating-point value from
m64 to xmm1 register.

F2 0F 11 /r

MOVSD xmm2/m64, xmm1

MR V/V SSE2 Move scalar double-
precision floating-point
value from xmm1 register
to xmm2/m64.

VEX.NDS.LIG.F2.0F.WIG 11 /r

VMOVSD xmm1, xmm2, xmm3

MVR V/V AVX Merge scalar double-
precision floating-point
value from xmm2 and
xmm3 registers to xmm1.

VEX.LIG.F2.0F.WIG 11 /r

VMOVSD m64, xmm1

MR V/V AVX Move scalar double-
precision floating-point
value from xmm1 register
to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
4-114 Vol. 2B MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
tion can be used to move a double-precision floating-point value to and from the low
quadword of an XMM register and a 64-bit memory location, or to move a double-
precision floating-point value between the low quadwords of two XMM registers. The
instruction cannot be used to transfer data between memory locations.
For non-VEX encoded instruction syntax and when the source and destination oper-
ands are XMM registers, the high quadword of the destination operand remains
unchanged. When the source operand is a memory location and destination operand
is an XMM registers, the high quadword of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b, otherwise instruction will #UD.
Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
VEX encoded instruction syntax supports two source operands and a destination
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source
operand (the second operand). The low 128 bits of the destination operand stores the
result of merging the low quadword of the second source operand with the quad word
in bits 127:64 of the first source operand. The upper bits of the destination operand
are cleared.

Operation

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0]  SRC[63:0]

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)
DEST[63:0]  SRC[63:0]
DEST[127:64]  0
DEST[VLMAX-1:128] (Unmodified)

VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0]  SRC2[63:0]
DEST[127:64]  SRC1[127:64]
Vol. 2B 4-115MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0]  SRC[63:0]
DEST[VLMAX-1:64]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSD: __m128d _mm_load_sd (double *p)

MOVSD: void _mm_store_sd (double *p, __m128d a)

MOVSD: __m128d _mm_store_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
4-116 Vol. 2B MOVSD—Move Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
MOVSHDUP—Move Packed Single-FP High and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 1
and 3 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.
See Figure 4-3.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 16 /r

MOVSHDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision
floating-point values from
the higher 32-bit operand of
each qword in xmm2/m128
to xmm1 and duplicate each
32-bit operand to the lower
32-bits of each qword.

VEX.128.F3.0F.WIG 16 /r

VMOVSHDUP xmm1, xmm2/m128

RM V/V AVX Move odd index single-
precision floating-point
values from xmm2/mem
and duplicate each element
into xmm1.

VEX.256.F3.0F.WIG 16 /r

VMOVSHDUP ymm1, ymm2/m256

RM V/V AVX Move odd index single-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-117MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVSHDUP (128-bit Legacy SSE version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMOVSHDUP (VEX.128 encoded version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]

Figure 4-3. MOVSHDUP—Move Packed Single-FP High and Duplicate
4-118 Vol. 2B MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

VMOVSHDUP (VEX.256 encoded version)
DEST[31:0]  SRC[63:32]
DEST[63:32]  SRC[63:32]
DEST[95:64]  SRC[127:96]
DEST[127:96]  SRC[127:96]
DEST[159:128]  SRC[191:160]
DEST[191:160]  SRC[191:160]
DEST[223:192]  SRC[255:224]
DEST[255:224]  SRC[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSHDUP: __m128 _mm_movehdup_ps(__m128 a)

VMOVSHDUP: __m256 _mm256_movehdup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions

None

Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-119MOVSHDUP—Move Packed Single-FP High and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVSLDUP—Move Packed Single-FP Low and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data
at memory location m128 are loaded and the single-precision elements in positions 0
and 2 are duplicated. When the register-register form of this operation is used, the
same operation is performed but with data coming from the 128-bit source register.

See Figure 4-4.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 12 /r

MOVSLDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision
floating-point values from
the lower 32-bit operand of
each qword in xmm2/m128
to xmm1 and duplicate each
32-bit operand to the higher
32-bits of each qword.

VEX.128.F3.0F.WIG 12 /r

VMOVSLDUP xmm1, xmm2/m128

RM V/V AVX Move even index single-
precision floating-point
values from xmm2/mem
and duplicate each element
into xmm1.

VEX.256.F3.0F.WIG 12 /r
VMOVSLDUP ymm1, ymm2/m256

RM V/V AVX Move even index single-
precision floating-point
values from ymm2/mem and
duplicate each element into
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-120 Vol. 2B MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VMOVSLDUP (VEX.128 encoded version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]

Figure 4-4. MOVSLDUP—Move Packed Single-FP Low and Duplicate
Vol. 2B 4-121MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

VMOVSLDUP (VEX.256 encoded version)
DEST[31:0]  SRC[31:0]
DEST[63:32]  SRC[31:0]
DEST[95:64]  SRC[95:64]
DEST[127:96]  SRC[95:64]
DEST[159:128]  SRC[159:128]
DEST[191:160]  SRC[159:128]
DEST[223:192]  SRC[223:192]
DEST[255:224]  SRC[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSLDUP: __m128 _mm_moveldup_ps(__m128 a)

VMOVSLDUP: __m256 _mm256_moveldup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-122 Vol. 2B MOVSLDUP—Move Packed Single-FP Low and Duplicate

INSTRUCTION SET REFERENCE, M-Z
MOVSS—Move Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves a scalar single-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be XMM registers or 32-bit memory locations. This instruction can be
used to move a single-precision floating-point value to and from the low doubleword

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 10 /r

MOVSS xmm1, xmm2/m32

RM V/V SSE Move scalar single-precision
floating-point value from
xmm2/m32 to xmm1
register.

VEX.NDS.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar single-
precision floating-point
value from xmm2 and
xmm3 to xmm1 register.

VEX.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, m32

XM V/V AVX Load scalar single-precision
floating-point value from
m32 to xmm1 register.

F3 0F 11 /r

MOVSS xmm2/m32, xmm

MR V/V SSE Move scalar single-precision
floating-point value from
xmm1 register to
xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 11 /r

VMOVSS xmm1, xmm2, xmm3

MVR V/V AVX Move scalar single-precision
floating-point value from
xmm2 and xmm3 to xmm1
register.

VEX.LIG.F3.0F.WIG 11 /r

VMOVSS m32, xmm1

MR V/V AVX Move scalar single-precision
floating-point value from
xmm1 register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
Vol. 2B 4-123MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
of an XMM register and a 32-bit memory location, or to move a single-precision
floating-point value between the low doublewords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.
For non-VEX encoded syntax and when the source and destination operands are XMM
registers, the high doublewords of the destination operand remains unchanged.
When the source operand is a memory location and destination operand is an XMM
registers, the high doublewords of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX encoded instruction syntax supports two source operands and a destination
operand if ModR/M.mod field is 11B. VEX.vvvv is used to encode the first source
operand (the second operand). The low 128 bits of the destination operand stores the
result of merging the low dword of the second source operand with three dwords in
bits 127:32 of the first source operand. The upper bits of the destination operand are
cleared.
Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.
Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Operation

MOVSS (Legacy SSE version when the source and destination operands are both XMM
registers)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

MOVSS/VMOVSS (when the source operand is an XMM register and the destination is
memory)
DEST[31:0]  SRC[31:0]

MOVSS (Legacy SSE version when the source operand is memory and the destination is an
XMM register)
DEST[31:0]  SRC[31:0]
DEST[127:32]  0
DEST[VLMAX-1:128] (Unmodified)

VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)
DEST[31:0]  SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)
4-124 Vol. 2B MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0]  SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination
is an XMM register)
DEST[31:0]  SRC[31:0]
DEST[VLMAX-1:32]  0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSS: __m128 _mm_load_ss(float * p)

MOVSS: void _mm_store_ss(float * p, __m128 a)

MOVSS: __m128 _mm_move_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-125MOVSS—Move Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVSX/MOVSXD—Move with Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).
The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

DEST ← SignExtend(SRC);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with
sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword
with sign-extension.

REX + 0F BE /r MOVSX r64, r/m8* RM Valid N.E. Move byte to quadword
with sign-extension.

0F BF /r MOVSX r32,
r/m16

RM Valid Valid Move word to doubleword,
with sign-extension.

REX.W + 0F BF
/r

MOVSX r64,
r/m16

RM Valid N.E. Move word to quadword
with sign-extension.

REX.W** + 63 /r MOVSXD r64,
r/m32

RM Valid N.E. Move doubleword to
quadword with sign-
extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used

instead of using MOVSXD without REX.W.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-126 Vol. 2B MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-127MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
4-128 Vol. 2B MOVSX/MOVSXD—Move with Sign-Extension

INSTRUCTION SET REFERENCE, M-Z
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

128-bit versions:

Moves a double quadword containing two packed double-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load an XMM register from a 128-bit

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 10 /r

MOVUPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.128.66.0F.WIG 10 /r

VMOVUPD xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
double-precision floating-
point from xmm2/mem to
xmm1.

VEX.256.66.0F.WIG 10 /r

VMOVUPD ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
double-precision floating-
point from ymm2/mem to
ymm1.

66 0F 11 /r

MOVUPD xmm2/m128, xmm

MR V/V SSE2 Move packed double-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.66.0F.WIG 11 /r

VMOVUPD xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
double-precision floating-
point from xmm1 to
xmm2/mem.

VEX.256.66.0F.WIG 11 /r

VMOVUPD ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
double-precision floating-
point from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
Vol. 2B 4-129MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
memory location, store the contents of an XMM register into a 128-bit memory loca-
tion, or move data between two XMM registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move double-precision floating-point values to and from memory locations that
are known to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

VEX.256 encoded version:

Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVUPD (128-bit load and register-copy form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPD (128-bit store form)
DEST[127:0]  SRC[127:0]

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
4-130 Vol. 2B MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VMOVUPD (VEX.128 encoded version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVUPD (VEX.256 encoded version)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPD: __m128 _mm_loadu_pd(double * p)

MOVUPD: void _mm_storeu_pd(double *p, __m128 a)

VMOVUPD: __m256d _mm256_loadu_pd (__m256d * p);

VMOVUPD: _mm256_storeu_pd(_m256d *p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-131MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

128-bit versions: Moves a double quadword containing four packed single-precision
floating-point values from the source operand (second operand) to the destination
operand (first operand). This instruction can be used to load an XMM register from a
128-bit memory location, store the contents of an XMM register into a 128-bit
memory location, or move data between two XMM registers.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 10 /r

MOVUPS xmm1, xmm2/m128

RM V/V SSE Move packed single-
precision floating-point
values from xmm2/m128 to
xmm1.

VEX.128.0F.WIG 10 /r

VMOVUPS xmm1, xmm2/m128

RM V/V AVX Move unaligned packed
single-precision floating-
point from xmm2/mem to
xmm1.

VEX.256.0F.WIG 10 /r

VMOVUPS ymm1, ymm2/m256

RM V/V AVX Move unaligned packed
single-precision floating-
point from ymm2/mem to
ymm1.

0F 11 /r

MOVUPS xmm2/m128, xmm1

MR V/V SSE Move packed single-
precision floating-point
values from xmm1 to
xmm2/m128.

VEX.128.0F.WIG 11 /r

VMOVUPS xmm2/m128, xmm1

MR V/V AVX Move unaligned packed
single-precision floating-
point from xmm1 to
xmm2/mem.

VEX.256.0F.WIG 11 /r

VMOVUPS ymm2/m256, ymm1

MR V/V AVX Move unaligned packed
single-precision floating-
point from ymm1 to
ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-132 Vol. 2B MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated.1

To move packed single-precision floating-point values to and from memory locations
that are known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access
that overlaps the end of a 16-bit segment is not allowed and is defined as reserved
behavior. A specific processor implementation may or may not generate a general-
protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point
values from the source operand (second operand) to the destination operand (first
operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or
to move data between two YMM registers.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

MOVUPS (128-bit load and register-copy form Legacy SSE version)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPS (128-bit store form)
DEST[127:0]  SRC[127:0]

VMOVUPS (VEX.128 encoded load-form)
DEST[127:0]  SRC[127:0]
DEST[VLMAX-1:128]  0

VMOVUPS (VEX.256 encoded version)

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check
exception (#AC) may or may not be generated (depending on processor implementation) when
the operand is not aligned on an 8-byte boundary.
Vol. 2B 4-133MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPS: __m128 _mm_loadu_ps(double * p)

MOVUPS: void _mm_storeu_ps(double *p, __m128 a)

VMOVUPS: __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS: _mm256_storeu_ps(_m256 *p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
4-134 Vol. 2B MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MOVZX—Move with Zero-Extend

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the desti-
nation operand (register) and zero extends the value. The size of the converted value
depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bit operands. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F B6 /r MOVZX r16, r/m8 RM Valid Valid Move byte to word with
zero-extension.

0F B6 /r MOVZX r32, r/m8 RM Valid Valid Move byte to doubleword,
zero-extension.

REX.W + 0F B6
/r

MOVZX r64, r/m8* RM Valid N.E. Move byte to quadword,
zero-extension.

0F B7 /r MOVZX r32,
r/m16

RM Valid Valid Move word to doubleword,
zero-extension.

REX.W + 0F B7
/r

MOVZX r64,
r/m16

RM Valid N.E. Move word to quadword,
zero-extension.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix

is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-135MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-136 Vol. 2B MOVZX—Move with Zero-Extend

INSTRUCTION SET REFERENCE, M-Z
MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

MPSADBW sums the absolute difference (SAD) of a pair of unsigned bytes for a group
of 4 byte pairs, and produces 8 SAD results (one for each 4 byte-pairs) stored as 8
word integers in the destination operand (first operand). Each 4 byte pairs are
selected from the source operand (first operand) and the destination according to the
bit fields specified in the immediate byte (third operand).

The immediate byte provides two bit fields:

SRC_OFFSET: the value of Imm8[1:0]*32 specifies the offset of the 4 sequential
source bytes in the source operand.

DEST_OFFSET: the value of Imm8[2]*32 specifies the offset of the first of 8 groups
of 4 sequential destination bytes in the destination operand. The next four destina-
tion bytes starts at DEST_OFFSET + 8, etc.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer
difference of adjacent
groups of 4 byte integers in
xmm1 and xmm2/m128
and writes the results in
xmm1. Starting offsets
within xmm1 and
xmm2/m128 are
determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer
difference of adjacent
groups of 4 byte integers in
xmm2 and xmm3/m128 and
writes the results in xmm1.
Starting offsets within
xmm2 and xmm3/m128 are
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-137MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
The SAD operation is repeated 8 times, each time using the same 4 source bytes but
selecting the next group of 4 destination bytes starting at the next higher byte in the
destination. Each 16-bit sum is written to destination.
128-bit Legacy SSE version: The first source and destination are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MPSADBW (128-bit Legacy SSE version)
SRC_OFFSET  imm8[1:0]*32
DEST_OFFSET  imm8[2]*32
DEST_BYTE0  DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1  DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2  DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3  DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4  DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5  DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6  DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7  DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8  DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9  DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10  DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0  SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1  SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2  SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3  SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0  ABS(DEST_BYTE0 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE1 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE2 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE1 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE2 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE3 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16]  TEMP0 + TEMP1 + TEMP2 + TEMP3
4-138 Vol. 2B MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
TEMP0  ABS(DEST_BYTE2 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE3 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE5 - SRC_BYTE3)
DEST[47:32]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE3 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE4 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE5 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE6 - SRC_BYTE3)
DEST[63:48]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE4 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE5 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE6 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE5 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE6 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE7 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE8 - SRC_BYTE3)
DEST[95:80]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE6 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE7 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE8 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE9 - SRC_BYTE3)
DEST[111:96]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(DEST_BYTE7 - SRC_BYTE0)
TEMP1  ABS(DEST_BYTE8 - SRC_BYTE1)
TEMP2  ABS(DEST_BYTE9 - SRC_BYTE2)
TEMP3  ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112]  TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] (Unmodified)

VMPSADBW (VEX.128 encoded version)
SRC2_OFFSET  imm8[1:0]*32
SRC1_OFFSET  imm8[2]*32
SRC1_BYTE0  SRC1[SRC1_OFFSET+7:SRC1_OFFSET]
SRC1_BYTE1  SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
Vol. 2B 4-139MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
SRC1_BYTE2  SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3  SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4  SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTE5  SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTE6  SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]
SRC1_BYTE7  SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8  SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTE9  SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10  SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 SRC2[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTE1  SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTE2  SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3  SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0  ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE7 - SRC2_BYTE2)
4-140 Vol. 2B MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
TEMP3  ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80]  TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0  ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96]  TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0  ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1  ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2  ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3  ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112]  TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW: __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

Flags Affected

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-141MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, M-Z
MUL—Unsigned Multiply

Instruction Operand Encoding

Description

Performs an unsigned multiplication of the first operand (destination operand) and
the second operand (source operand) and stores the result in the destination
operand. The destination operand is an implied operand located in register AL, AX or
EAX (depending on the size of the operand); the source operand is located in a
general-purpose register or a memory location. The action of this instruction and the
location of the result depends on the opcode and the operand size as shown in Table
4-9.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX
(depending on the operand size), with the high-order bits of the product contained in
register AH, DX, or EDX, respectively. If the high-order bits of the product are 0, the
CF and OF flags are cleared; otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 M Valid Valid Unsigned multiply (AX ← AL
∗ r/m8).

REX + F6 /4 MUL r/m8* M Valid N.E. Unsigned multiply (AX ← AL
∗ r/m8).

F7 /4 MUL r/m16 M Valid Valid Unsigned multiply (DX:AX ←
AX ∗ r/m16).

F7 /4 MUL r/m32 M Valid Valid Unsigned multiply (EDX:EAX
← EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 M Valid N.E. Unsigned multiply (RDX:RAX
← RAX ∗ r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
4-142 Vol. 2B MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
Operation

IF (Byte operation)
THEN

AX ← AL ∗ SRC;
ELSE (* Word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC;
ELSE IF OperandSize = 32

THEN EDX:EAX ← EAX ∗ SRC; FI;
ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC;
FI;

FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Table 4-9. MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
Vol. 2B 4-143MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-144 Vol. 2B MUL—Unsigned Multiply

INSTRUCTION SET REFERENCE, M-Z
MULPD—Multiply Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the two or four packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the packed double-precision floating-point results in the desti-
nation operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 11-3 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 59 /r

MULPD xmm1, xmm2/m128

RM V/V SSE2 Multiply packed double-
precision floating-point
values in xmm2/m128 by
xmm1.

VEX.NDS.128.66.0F.WIG 59 /r

VMULPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed double-
precision floating-point
values from xmm3/mem to
xmm2 and stores result in
xmm1.

VEX.NDS.256.66.0F.WIG 59 /r
VMULPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Multiply packed double-
precision floating-point
values from ymm3/mem to
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-145MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MULPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] * SRC[63:0]
DEST[127:64]  DEST[127:64] * SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VMULPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64] * SRC2[127:64]
DEST[VLMAX-1:128]  0

VMULPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64] * SRC2[127:64]
DEST[191:128]  SRC1[191:128] * SRC2[191:128]
DEST[255:192]  SRC1[255:192] * SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

MULPD: __m128d _mm_mul_pd (m128d a, m128d b)

VMULPD: __m256d _mm256_mul_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2
4-146 Vol. 2B MULPD—Multiply Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULPS—Multiply Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the packed single-precision floating-point results in the desti-
nation operand. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 59 /r

MULPS xmm1, xmm2/m128

RM V/V SSE Multiply packed single-
precision floating-point
values in xmm2/mem by
xmm1.

VEX.NDS.128.0F.WIG 59 /r

VMULPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed single-
precision floating-point
values from xmm3/mem to
xmm2 and stores result in
xmm1.

VEX.NDS.256.0F.WIG 59 /r

VMULPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Multiply packed single-
precision floating-point
values from ymm3/mem to
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-147MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

MULPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VMULPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[VLMAX-1:128]  0

VMULPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[63:32]  SRC1[63:32] * SRC2[63:32]
DEST[95:64]  SRC1[95:64] * SRC2[95:64]
DEST[127:96]  SRC1[127:96] * SRC2[127:96]
DEST[159:128]  SRC1[159:128] * SRC2[159:128]
DEST[191:160] SRC1[191:160] * SRC2[191:160]
DEST[223:192]  SRC1[223:192] * SRC2[223:192]
DEST[255:224]  SRC1[255:224] * SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

MULPS: __m128 _mm_mul_ps(__m128 a, __m128 b)

VMULPS: __m256 _mm256_mul_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2
4-148 Vol. 2B MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSD—Multiply Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low double-precision floating-point value in the source operand
(second operand) by the low double-precision floating-point value in the destination
operand (first operand), and stores the double-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar
double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 59 /r

MULSD xmm1, xmm2/m64

RM V/V SSE2 Multiply the low double-
precision floating-point
value in xmm2/mem64 by
low double-precision
floating-point value in
xmm1.

VEX.NDS.LIG.F2.0F.WIG 59/r

VMULSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Multiply the low double-
precision floating-point
value in xmm3/mem64 by
low double precision
floating-point value in
xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-149MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] * SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

VMULSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] * SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MULSD: __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3
4-150 Vol. 2B MULSD—Multiply Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MULSS—Multiply Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low single-precision floating-point value from the source operand
(second operand) by the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

MULSS (128-bit Legacy SSE version)

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F 59 /r

MULSS xmm1, xmm2/m32

RM V/V SSE Multiply the low single-
precision floating-point
value in xmm2/mem by the
low single-precision
floating-point value in
xmm1.

VEX.NDS.LIG.F3.0F.WIG 59 /r

VMULSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Multiply the low single-
precision floating-point
value in xmm3/mem by the
low single-precision floating-
point value in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-151MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0]  DEST[31:0] * SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

VMULSS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

MULSS: __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3
4-152 Vol. 2B MULSS—Multiply Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of
the MONITOR instruction.

A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability
of MONITOR and MWAIT in the processor. When set, MWAIT may be executed only at
privilege level 0 (use at any other privilege level results in an invalid-opcode excep-
tion). The operating system or system BIOS may disable this instruction by using the
IA32_MISC_ENABLE MSR; disabling MWAIT clears the CPUID feature flag and causes
execution to generate an illegal opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at
the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it
can enter an implementation-dependent-optimized state while waiting for an event
or a store operation to the address range armed by MONITOR.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints
such as the preferred optimized state the processor should enter.

For Pentium 4 processors (CPUID signature family 15 and model 3), non-zero values
for EAX and ECX are reserved. Later processors defined ECX=1 as a valid extension
(see below).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the
processor to stop
instruction execution and
enter an implementation-
dependent optimized state
until occurrence of a class of
events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-153MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
The following cause the processor to exit the implementation-dependent-optimized
state: a store to the address range armed by the MONITOR instruction, an NMI or
SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT#
signal, and the RESET# signal. Other implementation-dependent events may also
cause the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-
dependent-optimized state if either (1) the interrupt would be delivered to software
(e.g., if HLT had been executed instead of MWAIT); or (2) ECX[0] = 1. Implementa-
tion-specific conditions may result in an interrupt causing the processor to exit the
implementation-dependent-optimized state even if interrupts are masked and
ECX[0] = 0.

Following exit from the implementation-dependent-optimized state, control passes
to the instruction following the MWAIT instruction. A pending interrupt that is not
masked (including an NMI or an SMI) may be delivered before execution of that
instruction. Unlike the HLT instruction, the MWAIT instruction does not support a
restart at the MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if
the MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution
will resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a
specified target C state while waiting for an event or a store operation to the address
range armed by MONITOR. Support for MWAIT extensions for power management is
indicated by CPUID.05H.ECX[0] reporting 1.

EAX and ECX will be used to communicate the additional information to the MWAIT
instruction, such as the kind of optimized state the processor should enter. ECX spec-
ifies optional extensions for the MWAIT instruction. EAX may contain hints such as
the preferred optimized state the processor should enter. Implementation-specific
conditions may cause a processor to ignore the hint and enter a different optimized
state. Future processor implementations may implement several optimized “waiting”
states and will select among those states based on the hint argument.

Table 4-10 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 4-10. MWAIT Extension Register (ECX)
Bits Description

0 Treat masked interrupts as break events (e.g., if EFLAGS.IF=0). May be set
only if CPUID.01H:ECX.MONITOR[bit 3] = 1.

31: 1 Reserved
4-154 Vol. 2B MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
Note that if MWAIT is used to enter any of the C-states that are numerically higher
than C1, a store to the address range armed by the MONITOR instruction will cause
the processor to exit MWAIT only if the store was originated by other processor
agents. A store from non-processor agent might not cause the processor to exit
MWAIT in such cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in
ECX as an instruction extension MWAIT EAX, ECX *)
{
WHILE (("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution
of the MWAIT instruction will trigger the monitor hardware. It is not a proper usage
to execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR
without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)

Table 4-11. MWAIT Hints Register (EAX)
Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-
states, not ACPI C-states

31: 8 Reserved
Vol. 2B 4-155MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen
between the first check of the trigger and the execution of the monitor instruction.
Without the second check that triggering store would go un-noticed. Typical usage of
MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:1] ≠ 0.

If ECX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:1] ≠ 0.

If RCX[0] = 1 and CPUID.05H:ECX[bit 3] = 0.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
4-156 Vol. 2B MWAIT—Monitor Wait

INSTRUCTION SET REFERENCE, M-Z
NEG—Two's Complement Negation

Instruction Operand Encoding

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IF DEST = 0
THEN CF ← 0;
ELSE CF ← 1;

FI;
DEST ← [– (DEST)]

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /3 NEG r/m8 M Valid Valid Two's complement negate
r/m8.

REX + F6 /3 NEG r/m8* M Valid N.E. Two's complement negate
r/m8.

F7 /3 NEG r/m16 M Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 M Valid Valid Two's complement negate
r/m32.

REX.W + F7 /3 NEG r/m64 M Valid N.E. Two's complement negate
r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
Vol. 2B 4-157NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-158 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-159NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
NOP—No Operation

Instruction Operand Encoding

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

90 NOP NP Valid Valid One byte no-operation
instruction.

0F 1F /0 NOP r/m16 M Valid Valid Multi-byte no-operation
instruction.

0F 1F /0 NOP r/m32 M Valid Valid Multi-byte no-operation
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

M ModRM:r/m (r) NA NA NA
4-160 Vol. 2B NOP—No Operation

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Table 4-12. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 +
00000000H]

66 0F 1F 84 00 00 00 00
00H
Vol. 2B 4-161NOP—No Operation

INSTRUCTION SET REFERENCE, M-Z
NOT—One's Complement Negation

Instruction Operand Encoding

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 M Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m8* M Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 M Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 M Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 M Valid N.E. Reverse each bit of r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
4-162 Vol. 2B NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-163NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, M-Z
OR—Logical Inclusive OR
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0C ib OR AL, imm8 I Valid Valid AL OR imm8.

0D iw OR AX, imm16 I Valid Valid AX OR imm16.

0D id OR EAX, imm32 I Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 I Valid N.E. RAX OR imm32 (sign-
extended).

80 /1 ib OR r/m8, imm8 MI Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m8*, imm8 MI Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 MI Valid Valid r/m16 OR imm16.

81 /1 id OR r/m32, imm32 MI Valid Valid r/m32 OR imm32.

REX.W + 81 /1
id

OR r/m64, imm32 MI Valid N.E. r/m64 OR imm32 (sign-
extended).

83 /1 ib OR r/m16, imm8 MI Valid Valid r/m16 OR imm8 (sign-
extended).

83 /1 ib OR r/m32, imm8 MI Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W + 83 /1
ib

OR r/m64, imm8 MI Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR r/m8, r8 MR Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* MR Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 MR Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 MR Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 MR Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 RM Valid Valid r8 OR r/m8.

REX + 0A /r OR r8*, r/m8* RM Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 RM Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 RM Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 RM Valid N.E. r64 OR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
4-164 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to 0 if both corresponding bits of the first and second operands are 0; otherwise,
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2B 4-165OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-166 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, M-Z
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
If VORPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 56 /r

ORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG 56 /r
VORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
OR of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 56 /r

VORPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
OR of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-167ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

ORPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64]  DEST[127:64] BITWISE OR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VORPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[VLMAX-1:128]  0

VORPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128]  SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192]  SRC1[255:192] BITWISE OR SRC2[255:192]

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD: __m128d _mm_or_pd(__m128d a, __m128d b);

VORPD: __m256d _mm256_or_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-168 Vol. 2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 Encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
If VORPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 56 /r

ORPS xmm1, xmm2/m128

RM V/V SSE Bitwise OR of xmm1 and
xmm2/m128.

VEX.NDS.128.0F.WIG 56 /r

VORPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
OR of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 56 /r

VORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
OR of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-169ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

ORPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VORPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[VLMAX-1:128]  0

VORPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128]  SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192]  SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224]  SRC1[255:224] BITWISE OR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ORPS: __m128 _mm_or_ps (__m128 a, __m128 b);

VORPS: __m256 _mm256_or_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-170 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
OUT—Output to Port

Instruction Operand Encoding

Description

Copies the value from the second operand (source operand) to the I/O port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL I Valid Valid Output byte in AL to I/O port
address imm8.

E7 ib OUT imm8, AX I Valid Valid Output word in AX to I/O
port address imm8.

E7 ib OUT imm8, EAX I Valid Valid Output doubleword in EAX
to I/O port address imm8.

EE OUT DX, AL NP Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX NP Valid Valid Output word in AX to I/O
port address in DX.

EF OUT DX, EAX NP Valid Valid Output doubleword in EAX
to I/O port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
Vol. 2B 4-171OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
4-172 Vol. 2B OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
Vol. 2B 4-173OUT—Output to Port

INSTRUCTION SET REFERENCE, M-Z
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Instruction Operand Encoding

Description

Copies data from the source operand (second operand) to the I/O port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:SI, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

6E OUTS DX, m8 NP Valid Valid Output byte from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTS DX, m16 NP Valid Valid Output word from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTS DX, m32 NP Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

6E OUTSB NP Valid Valid Output byte from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTSW NP Valid Valid Output word from memory
location specified in DS:(E)SI
or RSI to I/O port specified in
DX**.

6F OUTSD NP Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.
** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit

mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-174 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an I/O port address (from 0 to 65,535) that is read from the
DX register. The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the
I/O port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the I/O port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
I/O port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing I/O ports located in the
processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor ensures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
Vol. 2B 4-175OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to I/O port *)

FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 1;
ELSE RSI ← RSI or – 1;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1;
ELSE ESI ← ESI – 1;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
FI;

Word transfer:
IF 64-bit mode

Then
4-176 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
IF 64-Bit Address Size
THEN

IF DF = 0
THEN RSI ← RSI RSI + 2;
ELSE RSI ← RSI or – 2;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2;
ELSE ESI ← ESI – 2;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 4;
ELSE RSI ← RSI or – 4;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4;
ELSE ESI ← ESI – 4;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

Flags Affected

None.
Vol. 2B 4-177OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If a memory operand effective address is outside the limit of the
CS, DS, ES, FS, or GS segment.
If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-178 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
Vol. 2B 4-179OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, M-Z
PABSB/PABSW/PABSD — Packed Absolute Value
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 1C /r1

PABSB mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of bytes in mm2/m64 and
store UNSIGNED result in
mm1.

66 0F 38 1C /r

PABSB xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of bytes in xmm2/m128 and
store UNSIGNED result in
xmm1.

0F 38 1D /r1

PABSW mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of 16-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1D /r

PABSW xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of 16-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

0F 38 1E /r1

PABSD mm1, mm2/m64

RM V/V SSSE3 Compute the absolute value
of 32-bit integers in
mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1E /r

PABSD xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value
of 32-bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

VEX.128.66.0F38.WIG 1C /r

VPABSB xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of bytes in xmm2/m128 and
store UNSIGNED result in
xmm1.

VEX.128.66.0F38.WIG 1D /r

VPABSW xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of 16- bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.
4-180 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise
instructions will #UD.

Operation

PABSB (with 64 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] ← ABS(SRC[63:56])

PABSB (with 128 bit operands)
Unsigned DEST[7:0] ← ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes

VEX.128.66.0F38.WIG 1E /r

VPABSD xmm1, xmm2/m128

RM V/V AVX Compute the absolute value
of 32- bit integers in
xmm2/m128 and store
UNSIGNED result in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-181PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Unsigned DEST[127:120] ← ABS(SRC[127:120])

PABSW (with 64 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] ← ABS(SRC[63:48])

PABSW (with 128 bit operands)
Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] ← ABS(SRC[127:112])

PABSD (with 64 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0])
Unsigned DEST[63:32] ← ABS(SRC[63:32])

PABSD (with 128 bit operands)
Unsigned DEST[31:0] ← ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96] ← ABS(SRC[127:96])

PABSB (128-bit Legacy SSE version)
DEST[127:0]  BYTE_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSB (VEX.128 encoded version)
DEST[127:0]  BYTE_ABS(SRC)
DEST[VLMAX-1:128]  0

PABSW (128-bit Legacy SSE version)
DEST[127:0]  WORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSW (VEX.128 encoded version)
DEST[127:0]  WORD_ABS(SRC)
DEST[VLMAX-1:128]  0

PABSD (128-bit Legacy SSE version)
DEST[127:0]  DWORD_ABS(SRC)
DEST[VLMAX-1:128] (Unmodified)

VPABSD (VEX.128 encoded version)
DEST[127:0]  DWORD_ABS(SRC)
DEST[VLMAX-1:128]  0
4-182 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalents

PABSB: __m64 _mm_abs_pi8 (__m64 a)

PABSB: __m128i _mm_abs_epi8 (__m128i a)

PABSW: __m64 _mm_abs_pi16 (__m64 a)

PABSW: __m128i _mm_abs_epi16 (__m128i a)

PABSD: __m64 _mm_abs_pi32 (__m64 a)

PABSD: __m128i _mm_abs_epi32 (__m128i a)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-183PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, M-Z
PACKSSWB/PACKSSDW—Pack with Signed Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 63 /r1

PACKSSWB mm1, mm2/m64

RM V/V MMX Converts 4 packed signed
word integers from mm1
and from mm2/m64 into 8
packed signed byte integers
in mm1 using signed
saturation.

66 0F 63 /r

PACKSSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 packed signed
word integers from xmm1
and from xxm2/m128 into
16 packed signed byte
integers in xxm1 using
signed saturation.

0F 6B /r1

PACKSSDW mm1, mm2/m64

RM V/V MMX Converts 2 packed signed
doubleword integers from
mm1 and from mm2/m64
into 4 packed signed word
integers in mm1 using
signed saturation.

66 0F 6B /r

PACKSSDW xmm1, xmm2/m128

RM V/V SSE2 Converts 4 packed signed
doubleword integers from
xmm1 and from
xxm2/m128 into 8 packed
signed word integers in
xxm1 using signed
saturation.

VEX.NDS.128.66.0F.WIG 63 /r

VPACKSSWB xmm1,xmm2,
xmm3/m128

RVM V/V AVX Converts 8 packed signed
word integers from xmm2
and from xmm3/m128 into
16 packed signed byte
integers in xmm1 using
signed saturation.
4-184 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-5 for an
example of the packing operation.

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand
(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

VEX.NDS.128.66.0F.WIG 6B /r

VPACKSSDW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Converts 4 packed signed
doubleword integers from
xmm2 and from
xmm3/m128 into 8 packed
signed word integers in
xmm1 using signed
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-5. Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
Vol. 2B 4-185PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see
Figure 4-5). If a signed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PACKSSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW (with 64-bit operands)
DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToSignedByte (DEST[79:64]);
4-186 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
DEST[47:40] ← SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW (with 128-bit operands)
DEST[15:0] ← SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] ← SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] ← SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] ← SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] ← SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] ← SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] ← SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] ← SaturateSignedDwordToSignedWord (SRC[127:96]);

PACKSSDW
DEST[127:0]  SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSDW
DEST[127:0]  SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128]  0

PACKSSWB
DEST[127:0]  SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKSSWB
DEST[127:0]  SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB: __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSWB: __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSDW: __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)
Vol. 2B 4-187PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKSSDW: __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-188 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKUSDW — Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

TMP[15:0]  (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0]  (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1, xmm2/m128

RM V/V SSE4_1 Convert 4 packed signed
doubleword integers from
xmm1 and 4 packed signed
doubleword integers from
xmm2/m128 into 8 packed
unsigned word integers in
xmm1 using unsigned
saturation.

VEX.NDS.128.66.0F38.WIG 2B /r
VPACKUSDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Convert 4 packed signed
doubleword integers from
xmm2 and 4 packed signed
doubleword integers from
xmm3/m128 into 8 packed
unsigned word integers in
xmm1 using unsigned
saturation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-189PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
TMP[31:16]  (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16]  (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32]  (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32]  (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48]  (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48]  (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48]  (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48]  (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64]  (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[63:48]  (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80]  (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80]  (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96]  (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96]  (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112]  (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[128:112]  (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

PACKUSDW (128-bit Legacy SSE version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_DW(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPACKUSDW (VEX.128 encoded version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_DW(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW: __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Flags Affected

None.

SIMD Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-190 Vol. 2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PACKUSWB—Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-5 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 67 /r1

PACKUSWB mm, mm/m64

RM V/V MMX Converts 4 signed word
integers from mm and 4
signed word integers from
mm/m64 into 8 unsigned
byte integers in mm using
unsigned saturation.

66 0F 67 /r

PACKUSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 signed word
integers from xmm1 and 8
signed word integers from
xmm2/m128 into 16
unsigned byte integers in
xmm1 using unsigned
saturation.

VEX.NDS.128.66.0F.WIG 67 /r

VPACKUSWB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Converts 8 signed word
integers from xmm2 and 8
signed word integers from
xmm3/m128 into 16
unsigned byte integers in
xmm1 using unsigned
saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-191PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB (with 64-bit operands)
DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (with 128-bit operands)
DEST[7:0]← SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (128-bit Legacy SSE version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_WB(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)
4-192 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
VPACKUSWB (VEX.128 encoded version)
DEST[127:0]  UNSIGNED_SATURATING_PACK_WB(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB: __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PACKUSWB: __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-193PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDB/PADDW/PADDD—Add Packed Integers

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers
from mm/m64 and mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers
from xmm2/m128 and
xmm1.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers
from mm/m64 and mm.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers
from xmm2/m128 and
xmm1.

0F FE /r1

PADDD mm, mm/m64

RM V/V MMX Add packed doubleword
integers from mm/m64 and
mm.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword
integers from xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed byte integers
from xmm3/m128 and
xmm2.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed word integers
from xmm3/m128 and
xmm2.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed doubleword
integers from xmm3/m128
and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-194 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Description

Performs a SIMD add of the packed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.
Adds the packed byte, word, doubleword, or quadword integers in the first source
operand to the second source operand and stores the result in the destination
operand. When a result is too large to be represented in the 8/16/32 integer (over-
flow), the result is wrapped around and the low bits are written to the destination
element (that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];
Vol. 2B 4-195PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PADDW (with 128-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD (with 128-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

VPADDB (VEX.128 encoded version)
DEST[7:0]  SRC1[7:0]+SRC2[7:0]
DEST[15:8]  SRC1[15:8]+SRC2[15:8]
DEST[23:16]  SRC1[23:16]+SRC2[23:16]
DEST[31:24]  SRC1[31:24]+SRC2[31:24]
DEST[39:32]  SRC1[39:32]+SRC2[39:32]
DEST[47:40]  SRC1[47:40]+SRC2[47:40]
DEST[55:48]  SRC1[55:48]+SRC2[55:48]
DEST[63:56]  SRC1[63:56]+SRC2[63:56]
DEST[71:64]  SRC1[71:64]+SRC2[71:64]
DEST[79:72]  SRC1[79:72]+SRC2[79:72]
DEST[87:80]  SRC1[87:80]+SRC2[87:80]
DEST[95:88]  SRC1[95:88]+SRC2[95:88]
DEST[103:96]  SRC1[103:96]+SRC2[103:96]
DEST[111:104]  SRC1[111:104]+SRC2[111:104]
DEST[119:112]  SRC1[119:112]+SRC2[119:112]
DEST[127:120]  SRC1[127:120]+SRC2[127:120]
DEST[VLMAX-1:128]  0

VPADDW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0]+SRC2[15:0]
DEST[31:16]  SRC1[31:16]+SRC2[31:16]
DEST[47:32]  SRC1[47:32]+SRC2[47:32]
DEST[63:48]  SRC1[63:48]+SRC2[63:48]
DEST[79:64]  SRC1[79:64]+SRC2[79:64]
DEST[95:80]  SRC1[95:80]+SRC2[95:80]
DEST[111:96]  SRC1[111:96]+SRC2[111:96]
DEST[127:112]  SRC1[127:112]+SRC2[127:112]
DEST[VLMAX-1:128]  0
4-196 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
VPADDD (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]+SRC2[31:0]
DEST[63:32]  SRC1[63:32]+SRC2[63:32]
DEST[95:64]  SRC1[95:64]+SRC2[95:64]
DEST[127:96]  SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDB: __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDB: __m128i _mm_add_epi8 (__m128ia,__m128ib)

PADDW: __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDW: __m128i _mm_add_epi16 (__m128i a, __m128i b)

PADDD: __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDD: __m128i _mm_add_epi32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-197PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PADDQ—Add Packed Quadword Integers

Instruction Operand Encoding

Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D4 /r1

PADDQ mm1, mm2/m64

RM V/V SSE2 Add quadword integer
mm2/m64 to mm1.

66 0F D4 /r

PADDQ xmm1, xmm2/m128

RM V/V SSE2 Add packed quadword
integers xmm2/m128 to
xmm1.

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed quadword
integers xmm3/m128 and
xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-198 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

VPADDQ (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]+SRC2[63:0]
DEST[127:64]  SRC1[127:64]+SRC2[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ: __m64 _mm_add_si64 (__m64 a, __m64 b)

PADDQ: __m128i _mm_add_epi64 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-199PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EC /r1

PADDSB mm, mm/m64

RM V/V MMX Add packed signed byte
integers from mm/m64 and
mm and saturate the
results.

66 0F EC /r

PADDSB xmm1, xmm2/m128

RM V/V SSE2 Add packed signed byte
integers from xmm2/m128
and xmm1 saturate the
results.

0F ED /r1

PADDSW mm, mm/m64

RM V/V MMX Add packed signed word
integers from mm/m64 and
mm and saturate the
results.

66 0F ED /r

PADDSW xmm1, xmm2/m128

RM V/V SSE2 Add packed signed word
integers from xmm2/m128
and xmm1 and saturate the
results.

VEX.NDS.128.66.0F.WIG EC /r
VPADDSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed signed byte
integers from xmm3/m128
and xmm2 saturate the
results.

VEX.NDS.128.66.0F.WIG ED /r

VPADDSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed signed word
integers from xmm3/m128
and xmm2 and saturate the
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
4-200 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB (with 128-bit operands)
DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-201PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

VPADDSB
DEST[7:0]  SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128]  0

PADDSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW (with 128-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

VPADDSW
DEST[15:0]  SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB: __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSB: __m128i _mm_adds_epi8 (__m128i a, __m128i b)

PADDSW: __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDSW: __m128i _mm_adds_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-202 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DC /r1

PADDUSB mm, mm/m64

RM V/V MMX Add packed unsigned byte
integers from mm/m64 and
mm and saturate the
results.

66 0F DC /r

PADDUSB xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned byte
integers from xmm2/m128
and xmm1 saturate the
results.

0F DD /r1

PADDUSW mm, mm/m64

RM V/V MMX Add packed unsigned word
integers from mm/m64 and
mm and saturate the
results.

66 0F DD /r

PADDUSW xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned word
integers from xmm2/m128
to xmm1 and saturate the
results.

VEX.NDS.128.660F.WIG DC /r

VPADDUSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed unsigned byte
integers from xmm3/m128
to xmm2 and saturate the
results.

VEX.NDS.128.66.0F.WIG DD /r

VPADDUSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add packed unsigned word
integers from xmm3/m128
to xmm2 and saturate the
results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-203PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

VPADDUSB
DEST[7:0]  SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[VLMAX-1:128]  0
4-204 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PADDUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW (with 128-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

VPADDUSW
DEST[15:0]  SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB: __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW: __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PADDUSB: __m128i _mm_adds_epu8 (__m128i a, __m128i b)

PADDUSW: __m128i _mm_adds_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-205PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PALIGNR — Packed Align Right

Instruction Operand Encoding

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 3A 0F1

PALIGNR mm1, mm2/m64, imm8

RMI V/V SSSE3 Concatenate destination and
source operands, extract
byte-aligned result shifted
to the right by constant
value in imm8 into mm1.

66 0F 3A 0F

PALIGNR xmm1, xmm2/m128, imm8

RMI V/V SSSE3 Concatenate destination and
source operands, extract
byte-aligned result shifted
to the right by constant
value in imm8 into xmm1

VEX.NDS.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Concatenate xmm2 and
xmm3/m128, extract byte
aligned result shifted to the
right by constant value in
imm8 and result is stored in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-206 Vol. 2B PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, M-Z
In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR (with 128-bit operands)
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

VPALIGNR
temp1[255:0]  CONCATENATE(SRC1,SRC2)>>(imm8*8)
DEST[127:0]  temp1[127:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR: __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

PALIGNR: __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-207PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, M-Z
PAND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAND (128-bit Legacy SSE version)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DB /r1

PAND mm, mm/m64

RM V/V MMX Bitwise AND mm/m64 and
mm.

66 0F DB /r

PAND xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DB /r

VPAND xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise AND of
xmm3/m128 and xmm.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-208 Vol. 2B PAND—Logical AND

INSTRUCTION SET REFERENCE, M-Z
DEST  DEST AND SRC
DEST[VLMAX-1:1288] (Unmodified)

VPAND (VEX.128 encoded version)
DEST  SRC1 AND SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PAND: __m64 _mm_and_si64 (__m64 m1, __m64 m2)

PAND: __m128i _mm_and_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-209PAND—Logical AND

INSTRUCTION SET REFERENCE, M-Z
PANDN—Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is 0 and the corresponding bit in the second
operand is 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DF /r1

PANDN mm, mm/m64

RM V/V MMX Bitwise AND NOT of
mm/m64 and mm.

66 0F DF /r

PANDN xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND NOT of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DF /r

VPANDN xmm1, xmm2,
xmm3/m128

RVM V/V AVX Bitwise AND NOT of
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-210 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, M-Z
Operation

PANDN(128-bit Legacy SSE version)
DEST  NOT(DEST) AND SRC
DEST[VLMAX-1:128] (Unmodified)

VPANDN (VEX.128 encoded version)
DEST  NOT(SRC1) AND SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PANDN: __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN: _m128i _mm_andnot_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-211PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, M-Z
PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that
improves performance of
spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-212 Vol. 2B PAUSE—Spin Loop Hint

INSTRUCTION SET REFERENCE, M-Z
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Vol. 2B 4-213PAUSE—Spin Loop Hint

INSTRUCTION SET REFERENCE, M-Z
PAVGB/PAVGW—Average Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD average of the packed unsigned integers from the source operand

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E0 /r1

PAVGB mm1, mm2/m64

RM V/V SSE Average packed unsigned
byte integers from
mm2/m64 and mm1 with
rounding.

66 0F E0, /r

PAVGB xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned
byte integers from
xmm2/m128 and xmm1
with rounding.

0F E3 /r1

PAVGW mm1, mm2/m64

RM V/V SSE Average packed unsigned
word integers from
mm2/m64 and mm1 with
rounding.

66 0F E3 /r

PAVGW xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned
word integers from
xmm2/m128 and xmm1
with rounding.

VEX.NDS.128.66.0F.WIG E0 /r

VPAVGB xmm1, xmm2, xmm3/m128

RVM V/V AVX Average packed unsigned
byte integers from
xmm3/m128 and xmm2
with rounding.

VEX.NDS.128.66.0F.WIG E3 /r

VPAVGW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Average packed unsigned
word integers from
xmm3/m128 and xmm2
with rounding.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-214 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAVGB (with 64-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] ← (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW (with 64-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] ← (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB (with 128-bit operands)
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] ← (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW (with 128-bit operands)
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] ← (SRC[127:112] + DEST[127:112] + 1) >> 1;

VPAVGB (VEX.128 encoded version)
DEST[7:0]  (SRC1[7:0] + SRC2[7:0] + 1) >> 1;
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120]  (SRC1[127:120] + SRC2[127:120] + 1) >> 1
DEST[VLMAX-1:128]  0
Vol. 2B 4-215PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
VPAVGW (VEX.128 encoded version)
DEST[15:0]  (SRC1[15:0] + SRC2[15:0] + 1) >> 1;
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112]  (SRC1[127:112] + SRC2[127:112] + 1) >> 1
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB: __m64 _mm_avg_pu8 (__m64 a, __m64 b)

PAVGW: __m64 _mm_avg_pu16 (__m64 a, __m64 b)

PAVGB: __m128i _mm_avg_epu8 (__m128i a, __m128i b)

PAVGW: __m128i _mm_avg_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-216 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PBLENDVB — Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMM0. The mask bits are the most significant bit in each
byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left
unchanged.
The register assignment of the implicit third operand is defined to be the architectural
register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128,
<XMM0>

RM V/V SSE4_1 Select byte values from
xmm1 and xmm2/m128
from mask specified in the
high bit of each byte in
XMM0 and store the values
into xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2,
xmm3/m128, xmm4

RVMR V/V AVX Select byte values from
xmm2 and xmm3/m128
using mask bits in the
specified mask register,
xmm4, and store the
values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) ModRM:reg (r)
Vol. 2B 4-217PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
register (destination register) are zeroed. VEX.L must be 0, otherwise the instruction
will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast,
PBLENDVB treats XMM0 implicitly as the mask and do not support non-destructive
destination operation. An attempt to execute PBLENDVB encoded with a VEX prefix
will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE version)
MASK  XMM0
IF (MASK[7] = 1) THEN DEST[7:0]  SRC[7:0];
ELSE DEST[7:0]  DEST[7:0];
IF (MASK[15] = 1) THEN DEST[15:8]  SRC[15:8];
ELSE DEST[15:8]  DEST[15:8];
IF (MASK[23] = 1) THEN DEST[23:16]  SRC[23:16]
ELSE DEST[23:16]  DEST[23:16];
IF (MASK[31] = 1) THEN DEST[31:24]  SRC[31:24]
ELSE DEST[31:24]  DEST[31:24];
IF (MASK[39] = 1) THEN DEST[39:32]  SRC[39:32]
ELSE DEST[39:32]  DEST[39:32];
IF (MASK[47] = 1) THEN DEST[47:40]  SRC[47:40]
ELSE DEST[47:40]  DEST[47:40];
IF (MASK[55] = 1) THEN DEST[55:48]  SRC[55:48]
ELSE DEST[55:48]  DEST[55:48];
IF (MASK[63] = 1) THEN DEST[63:56]  SRC[63:56]
ELSE DEST[63:56]  DEST[63:56];
IF (MASK[71] = 1) THEN DEST[71:64]  SRC[71:64]
ELSE DEST[71:64]  DEST[71:64];
IF (MASK[79] = 1) THEN DEST[79:72]  SRC[79:72]
ELSE DEST[79:72]  DEST[79:72];
IF (MASK[87] = 1) THEN DEST[87:80]  SRC[87:80]
ELSE DEST[87:80]  DEST[87:80];
IF (MASK[95] = 1) THEN DEST[95:88]  SRC[95:88]
ELSE DEST[95:88] DEST[95:88];
IF (MASK[103] = 1) THEN DEST[103:96]  SRC[103:96]
ELSE DEST[103:96] DEST[103:96];
IF (MASK[111] = 1) THEN DEST[111:104]  SRC[111:104]
ELSE DEST[111:104]  DEST[111:104];
IF (MASK[119] = 1) THEN DEST[119:112]  SRC[119:112]
ELSE DEST[119:112]  DEST[119:112];
IF (MASK[127] = 1) THEN DEST[127:120]  SRC[127:120]
ELSE DEST[127:120]  DEST[127:120])
4-218 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128] (Unmodified)

VPBLENDVB (VEX.128 encoded version)
MASK  SRC3
IF (MASK[7] = 1) THEN DEST[7:0]  SRC2[7:0];
ELSE DEST[7:0]  SRC1[7:0];
IF (MASK[15] = 1) THEN DEST[15:8]  SRC2[15:8];
ELSE DEST[15:8]  SRC1[15:8];
IF (MASK[23] = 1) THEN DEST[23:16]  SRC2[23:16]
ELSE DEST[23:16]  SRC1[23:16];
IF (MASK[31] = 1) THEN DEST[31:24]  SRC2[31:24]
ELSE DEST[31:24]  SRC1[31:24];
IF (MASK[39] = 1) THEN DEST[39:32]  SRC2[39:32]
ELSE DEST[39:32]  SRC1[39:32];
IF (MASK[47] = 1) THEN DEST[47:40]  SRC2[47:40]
ELSE DEST[47:40]  SRC1[47:40];
IF (MASK[55] = 1) THEN DEST[55:48]  SRC2[55:48]
ELSE DEST[55:48]  SRC1[55:48];
IF (MASK[63] = 1) THEN DEST[63:56]  SRC2[63:56]
ELSE DEST[63:56]  SRC1[63:56];
IF (MASK[71] = 1) THEN DEST[71:64]  SRC2[71:64]
ELSE DEST[71:64]  SRC1[71:64];
IF (MASK[79] = 1) THEN DEST[79:72]  SRC2[79:72]
ELSE DEST[79:72]  SRC1[79:72];
IF (MASK[87] = 1) THEN DEST[87:80]  SRC2[87:80]
ELSE DEST[87:80]  SRC1[87:80];
IF (MASK[95] = 1) THEN DEST[95:88]  SRC2[95:88]
ELSE DEST[95:88] SRC1[95:88];
IF (MASK[103] = 1) THEN DEST[103:96]  SRC2[103:96]
ELSE DEST[103:96] SRC1[103:96];
IF (MASK[111] = 1) THEN DEST[111:104]  SRC2[111:104]
ELSE DEST[111:104]  SRC1[111:104];
IF (MASK[119] = 1) THEN DEST[119:112]  SRC2[119:112]
ELSE DEST[119:112]  SRC1[119:112];
IF (MASK[127] = 1) THEN DEST[127:120]  SRC2[127:120]
ELSE DEST[127:120]  SRC1[127:120])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB: __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);
Vol. 2B 4-219PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.W = 1.
4-220 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, M-Z
PBLENDW — Blend Packed Words

Instruction Operand Encoding

Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.
If a bit is “1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PBLENDW (128-bit Legacy SSE version)
IF (imm8[0] = 1) THEN DEST[15:0]  SRC[15:0]
ELSE DEST[15:0]  DEST[15:0]
IF (imm8[1] = 1) THEN DEST[31:16]  SRC[31:16]
ELSE DEST[31:16]  DEST[31:16]
IF (imm8[2] = 1) THEN DEST[47:32]  SRC[47:32]
ELSE DEST[47:32]  DEST[47:32]
IF (imm8[3] = 1) THEN DEST[63:48]  SRC[63:48]

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0E /r ib
PBLENDW xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Select words from xmm1
and xmm2/m128 from mask
specified in imm8 and store
the values into xmm1.

VEX.NDS.128.6
6.0F3A.WIG 0E
/r ib

VPBLENDW
xmm1, xmm2,
xmm3/m128,
imm8

RVMI V/V AVX Select words from xmm2
and xmm3/m128 from mask
specified in imm8 and store
the values into xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-221PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[63:48]  DEST[63:48]
IF (imm8[4] = 1) THEN DEST[79:64]  SRC[79:64]
ELSE DEST[79:64]  DEST[79:64]
IF (imm8[5] = 1) THEN DEST[95:80]  SRC[95:80]
ELSE DEST[95:80]  DEST[95:80]
IF (imm8[6] = 1) THEN DEST[111:96]  SRC[111:96]
ELSE DEST[111:96]  DEST[111:96]
IF (imm8[7] = 1) THEN DEST[127:112]  SRC[127:112]
ELSE DEST[127:112]  DEST[127:112]

VPBLENDW (VEX.128 encoded version)
IF (imm8[0] = 1) THEN DEST[15:0]  SRC2[15:0]
ELSE DEST[15:0]  SRC1[15:0]
IF (imm8[1] = 1) THEN DEST[31:16]  SRC2[31:16]
ELSE DEST[31:16]  SRC1[31:16]
IF (imm8[2] = 1) THEN DEST[47:32]  SRC2[47:32]
ELSE DEST[47:32]  SRC1[47:32]
IF (imm8[3] = 1) THEN DEST[63:48]  SRC2[63:48]
ELSE DEST[63:48]  SRC1[63:48]
IF (imm8[4] = 1) THEN DEST[79:64]  SRC2[79:64]
ELSE DEST[79:64]  SRC1[79:64]
IF (imm8[5] = 1) THEN DEST[95:80]  SRC2[95:80]
ELSE DEST[95:80]  SRC1[95:80]
IF (imm8[6] = 1) THEN DEST[111:96]  SRC2[111:96]
ELSE DEST[111:96]  SRC1[111:96]
IF (imm8[7] = 1) THEN DEST[127:112]  SRC2[127:112]
ELSE DEST[127:112]  SRC1[127:112]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW: __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-222 Vol. 2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, M-Z
PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source
and second source operand according to the value of the immediate byte. Bits 4 and
0 are used to select which 64-bit half of each operand to use according to Table 4-13,
other bits of the immediate byte are ignored.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128,
imm8

RMI V/V CLMUL Carry-less multiplication of
one quadword of xmm1 by
one quadword of
xmm2/m128, stores the
128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm1 and xmm2/m128
should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V Both
CLMUL
and AVX
flags

Carry-less multiplication of
one quadword of xmm2 by
one quadword of
xmm3/m128, stores the
128-bit result in xmm1. The
immediate is used to deter-
mine which quadwords of
xmm2 and xmm3/m128
should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-13. PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
Vol. 2B 4-223PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
 The first source operand and the destination operand are the same and must be an
XMM register. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register
remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply
programming and emit the required encoding for Imm8.

Operation

PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2  SRC2 [63:0];

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i]  (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
For i = 64 to 126 {

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1

denotes the first source and destination operand.

Table 4-14. Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B
4-224 Vol. 2B PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
TmpB [i]  0;
For j = i - 63 to 63 {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
DEST[127]  0;
DEST[VLMAX-1:128] (Unmodified)

VPCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2  SRC2 [63:0];

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i]  (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
For i = 64 to 126 {

TmpB [i]  0;
For j = i - 63 to 63 {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
DEST[VLMAX-1:127]  0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ: __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)
Vol. 2B 4-225PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-226 Vol. 2B PCLMULQDQ - Carry-Less Multiplication Quadword

INSTRUCTION SET REFERENCE, M-Z
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in
mm/m64 and mm for
equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in
xmm2/m128 and xmm1 for
equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in
mm/m64 and mm for
equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in
xmm2/m128 and xmm1 for
equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed
doublewords in mm/m64
and mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed
doublewords in
xmm2/m128 and xmm1 for
equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3
/m128

RVM V/V AVX Compare packed bytes in
xmm3/m128 and xmm2 for
equality.

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed words in
xmm3/m128 and xmm2 for
equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed
doublewords in
xmm3/m128 and xmm2 for
equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 2B 4-227PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPEQB (with 64-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPEQB (with 128-bit operands)
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-228 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[127:120] ← 0; FI;

PCMPEQW (with 64-bit operands)
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQW (with 128-bit operands)
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPEQD (with 64-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPEQD (with 128-bit operands)
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPEQB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPEQW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0
Vol. 2B 4-229PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
VPCMPEQD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB: __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW: __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD: __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

PCMPEQB: __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

PCMPEQW: __m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)

PCMPEQD: __m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-230 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, M-Z
PCMPEQQ — Compare Packed Qword Data for Equal

Instruction Operand Encoding

Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0]  0; FI;

IF (DEST[127:64] = SRC[127:64])
THEN DEST[127:64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64]  0; FI;

VPCMPEQQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_EQUAL(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 29 /r
PCMPEQQ xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed qwords in
xmm2/m128 and xmm1 for
equality.

VEX.NDS.128.66.0F38.WIG 29 /r
VPCMPEQQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed quadwords
in xmm3/m128 and xmm2
for equality.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-231PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ: __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-232 Vol. 2B PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, M-Z
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Oper-
ation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an
index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in an input length register. The
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The
length represents the number of bytes/words which are valid for the respective
xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in the length register is
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned in ECX. If no bits are set
in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128,
imm8

RMI V/V SSE4_2 Perform a packed
comparison of string data
with explicit lengths,
generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128,
imm8

RMI V/V AVX Perform a packed
comparison of string data
with explicit lengths,
generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-233PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating
mode/size

Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX
4-234 Vol. 2B PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 4.1, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in an input length register. The
input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The
length represents the number of bytes/words which are valid for the respective
xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the
length register. The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in the length register is
greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128,
imm8

RMI V/V SSE4_2 Perform a packed
comparison of string data
with explicit lengths,
generating a mask, and
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128,
imm8

RMI V/V AVX Perform a packed
comparison of string data
with explicit lengths,
generating a mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-235PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating
mode/size

Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
4-236 Vol. 2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 64 /r1

PCMPGTB mm, mm/m64

RM V/V MMX Compare packed signed byte
integers in mm and
mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed byte
integers in xmm1 and
xmm2/m128 for greater
than.

0F 65 /r1

PCMPGTW mm, mm/m64

RM V/V MMX Compare packed signed
word integers in mm and
mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed
word integers in xmm1 and
xmm2/m128 for greater
than.

0F 66 /r1

PCMPGTD mm, mm/m64

RM V/V MMX Compare packed signed
doubleword integers in mm
and mm/m64 for greater
than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed
doubleword integers in
xmm1 and xmm2/m128 for
greater than.

VEX.NDS.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 for greater
than.

VEX.NDS.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in xmm2 and
xmm3/m128 for greater
than.
Vol. 2B 4-237PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPGTB (with 64-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;

VEX.NDS.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
doubleword integers in
xmm2 and xmm3/m128 for
greater than.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-238 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[7:0] ← 0; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTB (with 128-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

PCMPGTW (with 64-bit operands)
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW (with 128-bit operands)
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPGTD (with 64-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPGTD (with 128-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;
Vol. 2B 4-239PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

VPCMPGTB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB: __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW: __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD: __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

PCMPGTB: __m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)

PCMPGTW: __m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)

DCMPGTD: __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-240 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-Z
PCMPGTQ — Compare Packed Data for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If the data
element in the first (destination) operand is greater than the corresponding element
in the second (source) operand, the corresponding data element in the destination
is set to all 1s; otherwise, it is set to 0s.

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0]  FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0]  0; FI

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64]  FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64]  0; FI

VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_GREATER(SRC1,SRC2)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 37 /r
PCMPGTQ xmm1,xmm2/m128

RM V/V SSE4_2 Compare packed signed
qwords in xmm2/m128 and
xmm1 for greater than.

VEX.NDS.128.66.0F38.WIG 37 /r
VPCMPGTQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
qwords in xmm2 and
xmm3/m128 for greater
than.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-241PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ: __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-242 Vol. 2B PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, M-Z
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). The index of the first (or last, according to
imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX is set
to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128,
imm8

RM V/V SSE4_2 Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128,
imm8

RM V/V AVX Perform a packed
comparison of string data
with implicit lengths,
generating an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-243PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX
4-244 Vol. 2B PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, M-Z
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the
imm8 byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 4.1). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128,
imm8

RM V/V SSE4_2 Perform a packed
comparison of string data
with implicit lengths,
generating a mask, and
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128,
imm8

RM V/V AVX Perform a packed
comparison of string data
with implicit lengths,
generating a Mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA
Vol. 2B 4-245PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0
4-246 Vol. 2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, M-Z
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 14
/r ib
PEXTRB reg/m8, xmm2, imm8

MRI V/V SSE4_1 Extract a byte integer value
from xmm2 at the source
byte offset specified by
imm8 into rreg or m8. The
upper bits of r32 or r64 are
zeroed.

66 0F 3A 16
/r ib
PEXTRD r/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a dword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r/m32.

66 REX.W 0F 3A 16
/r ib
PEXTRQ r/m64, xmm2, imm8

MRI V/N.E. SSE4_1 Extract a qword integer
value from xmm2 at the
source qword offset
specified by imm8 into
r/m64.

VEX.128.66.0F3A.W0 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

MRI V1/V AVX Extract a byte integer value
from xmm2 at the source
byte offset specified by
imm8 into reg or m8. The
upper bits of r64/r32 is
filled with zeros.

VEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

MRI V/V AVX Extract a dword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r32/m32.

VEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

MRI V/i AVX Extract a qword integer
value from xmm2 at the
source dword offset
specified by imm8 into
r64/m64.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPEXTRB (similar to legacy REX.W=1 prefix in PEXTRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
Vol. 2B 4-247PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
Description

Extract a byte/dword/qword integer value from the source XMM register at a
byte/dword/qword offset determined from imm8[3:0]. The destination can be a
register or byte/dword/qword memory location. If the destination is a register, the
upper bits of the register are zero extended.
In legacy non-VEX encoded version and if the destination operand is a register, the
default operand size in 64-bit mode for PEXTRB/PEXTRD is 64 bits, the bits above the
least significant byte/dword data are filled with zeros. PEXTRQ is not encodable in
non-64-bit modes and requires REX.W in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD. If the destination operand is a register,
the default operand size in 64-bit mode for VPEXTRB/VPEXTRD is 64 bits, the bits
above the least significant byte/word/dword data are filled with zeros. Attempt to
execute VPEXTRQ in non-64-bit mode will cause #UD.

Operation

CASE of
PEXTRB: SEL  COUNT[3:0];

TEMP  (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)

THEN
Mem8  TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)
THEN

R64[7:0]  TEMP[7:0];
r64[63:8] ← ZERO_FILL; };

ELSE
R32[7:0]  TEMP[7:0];
r32[31:8] ← ZERO_FILL; };

FI;
PEXTRD:SEL  COUNT[1:0];

TEMP  (Src >> SEL*32) AND FFFF_FFFFH;
DEST  TEMP;

PEXTRQ: SEL  COUNT[0];
TEMP  (Src >> SEL*64);
DEST  TEMP;

EASC:

(V)PEXTRTD/(V)PEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN

Src_Offset  Imm8[0]
4-248 Vol. 2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
r64/m64 (Src >> Src_Offset * 64)
ELSE

Src_Offset  Imm8[1:0]
r32/m32  ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

(V)PEXTRB (dest=m8)
SRC_Offset  Imm8[3:0]
Mem8  (Src >> Src_Offset*8)

(V)PEXTRB (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset  Imm8[3:0]
DEST[7:0]  ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] ZERO_FILL;

ELSE
SRC_Offset . Imm8[3:0];
DEST[7:0]  ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB: int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD: int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ: __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
If VPEXTRQ in non-64-bit mode, VEX.W=1.
Vol. 2B 4-249PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
PEXTRW—Extract Word

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C5 /r ib1

PEXTRW reg, mm, imm8

RMI V/V SSE Extract the word specified
by imm8 from mm and move
it to reg, bits 15-0. The
upper bits of r32 or r64 is
zeroed.

66 0F C5 /r ib

PEXTRW reg, xmm, imm8

RMI V/V SSE2 Extract the word specified
by imm8 from xmm and
move it to reg, bits 15-0.
The upper bits of r32 or r64
is zeroed.

66 0F 3A 15
/r ib
PEXTRW reg/m16, xmm, imm8

MRI V/V SSE4_1 Extract the word specified
by imm8 from xmm and
copy it to lowest 16 bits of
reg or m16. Zero-extend
the result in the destination,
r32 or r64.

VEX.128.66.0F.W0 C5 /r ib
VPEXTRW reg, xmm1, imm8

RMI V2/V AVX Extract the word specified
by imm8 from xmm1 and
move it to reg, bits 15:0.
Zero-extend the result. The
upper bits of r64/r32 is
filled with zeros.

VEX.128.66.0F3A.W0 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

MRI V/V AVX Extract a word integer value
from xmm2 at the source
word offset specified by
imm8 into reg or m16. The
upper bits of r64/r32 is
filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPEXTRW (similar to legacy REX.W=1 prefix in PEXTRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-250 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD. If the destination operand is a register,
the default operand size in 64-bit mode for VPEXTRW is 64 bits, the bits above the
least significant byte/word/dword data are filled with zeros.

Operation

IF (DEST = Mem16)
THEN

SEL  COUNT[2:0];
TEMP  (Src >> SEL*16) AND FFFFH;
Mem16  TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT[1:0];
TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Vol. 2B 4-251PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
{ SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FI;
FI;

(V)PEXTRW (dest=m16)
SRC_Offset  Imm8[2:0]
Mem16  (Src >> Src_Offset*16)

(V)PEXTRW (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset  Imm8[2:0]
DEST[15:0]  ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] ZERO_FILL;

ELSE
SRC_Offset  Imm8[2:0]
DEST[15:0]  ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW: int _mm_extract_pi16 (__m64 a, int n)

PEXTRW: int _mm_extract_epi16 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
4-252 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, M-Z
PHADDW/PHADDD — Packed Horizontal Add

Instruction Operand Encoding

Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 01 /r1

PHADDW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit integers
horizontally, pack to MM1.

66 0F 38 01 /r

PHADDW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit integers
horizontally, pack to XMM1.

0F 38 02 /r

PHADDD mm1, mm2/m64

RM V/V SSSE3 Add 32-bit integers
horizontally, pack to MM1.

66 0F 38 02 /r

PHADDD xmm1, xmm2/m128

RM V/V SSSE3 Add 32-bit integers
horizontally, pack to XMM1.

VEX.NDS.128.66.0F38.WIG 01 /r

VPHADDW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 16-bit integers
horizontally, pack to xmm1.

VEX.NDS.128.66.0F38.WIG 02 /r

VPHADDD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 32-bit integers
horizontally, pack to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-253PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHADDW (with 64-bit operands)
mm1[15-0] = mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW (with 128-bit operands)
xmm1[15-0] = xmm1[31-16] + xmm1[15-0];
xmm1[31-16] = xmm1[63-48] + xmm1[47-32];
xmm1[47-32] = xmm1[95-80] + xmm1[79-64];
xmm1[63-48] = xmm1[127-112] + xmm1[111-96];
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

PHADDD (with 64-bit operands)
mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD (with 128-bit operands)
xmm1[31-0] = xmm1[63-32] + xmm1[31-0];
xmm1[63-32] = xmm1[127-96] + xmm1[95-64];
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

VPHADDW (VEX.128 encoded version)
DEST[15:0]  SRC1[31:16] + SRC1[15:0]
DEST[31:16]  SRC1[63:48] + SRC1[47:32]
DEST[47:32]  SRC1[95:80] + SRC1[79:64]
DEST[63:48]  SRC1[127:112] + SRC1[111:96]
DEST[79:64]  SRC2[31:16] + SRC2[15:0]
DEST[95:80]  SRC2[63:48] + SRC2[47:32]
4-254 Vol. 2B PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
DEST[111:96]  SRC2[95:80] + SRC2[79:64]
DEST[127:112]  SRC2[127:112] + SRC2[111:96]
DEST[VLMAX-1:128]  0

VPHADDD (VEX.128 encoded version)
DEST[31-0]  SRC1[63-32] + SRC1[31-0]
DEST[63-32]  SRC1[127-96] + SRC1[95-64]
DEST[95-64]  SRC2[63-32] + SRC2[31-0]
DEST[127-96]  SRC2[127-96] + SRC2[95-64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW: __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

PHADDW: __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHADDD: __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

PHADDD: __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-255PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, M-Z
PHADDSW — Packed Horizontal Add and Saturate

Instruction Operand Encoding

Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHADDSW (with 64-bit operands)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 03 /r1

PHADDSW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit signed integers
horizontally, pack saturated
integers to MM1.

66 0F 38 03 /r

PHADDSW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit signed integers
horizontally, pack saturated
integers to XMM1.

VEX.NDS.128.66.0F38.WIG 03 /r

VPHADDSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Add 16-bit signed integers
horizontally, pack saturated
integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-256 Vol. 2B PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, M-Z
mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW (with 128-bit operands)
xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

VPHADDSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW: __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

PHADDSW: __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-257PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, M-Z
PHMINPOSUW — Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE version)
INDEX  0;
MIN  SRC[15:0]
IF (SRC[31:16] < MIN)

THEN INDEX  1; MIN  SRC[31:16]; FI;
IF (SRC[47:32] < MIN)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned
word in xmm2/m128 and
place its value in the low
word of xmm1 and its index
in the second-lowest word
of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned
word in xmm2/m128 and
place its value in the low
word of xmm1 and its index
in the second-lowest word
of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-258 Vol. 2B PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-Z
THEN INDEX  2; MIN  SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)

THEN INDEX  7; MIN  SRC[127:112]; FI;
DEST[15:0]  MIN;
DEST[18:16]  INDEX;
DEST[127:19]  0000000000000000000000000000H;

VPHMINPOSUW (VEX.128 encoded version)
INDEX  0
MIN  SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX  1; MIN  SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX  2; MIN  SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX  7; MIN  SRC[127:112]
DEST[15:0]  MIN
DEST[18:16]  INDEX
DEST[127:19]  0000000000000000000000000000H
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW: __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-259PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, M-Z
PHSUBW/PHSUBD — Packed Horizontal Subtract

Instruction Operand Encoding

Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 05 /r1

PHSUBW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed
integers horizontally, pack
to MM1.

66 0F 38 05 /r

PHSUBW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed
integers horizontally, pack
to XMM1.

0F 38 06 /r

PHSUBD mm1, mm2/m64

RM V/V SSSE3 Subtract 32-bit signed
integers horizontally, pack
to MM1.

66 0F 38 06 /r

PHSUBD xmm1, xmm2/m128

RM V/V SSSE3 Subtract 32-bit signed
integers horizontally, pack
to XMM1.

VEX.NDS.128.66.0F38.WIG 05 /r

VPHSUBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 16-bit signed
integers horizontally, pack
to xmm1.

VEX.NDS.128.66.0F38.WIG 06 /r

VPHSUBD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 32-bit signed
integers horizontally, pack
to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
4-260 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHSUBW (with 64-bit operands)
mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW (with 128-bit operands)
xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];
xmm1[63-48] = xmm1[111-96] - xmm1[127-112];
xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD (with 64-bit operands)
mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD (with 128-bit operands)
xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

VPHSUBW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0] - SRC1[31:16]
DEST[31:16]  SRC1[47:32] - SRC1[63:48]
DEST[47:32]  SRC1[79:64] - SRC1[95:80]
DEST[63:48]  SRC1[111:96] - SRC1[127:112]
Vol. 2B 4-261PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
DEST[79:64]  SRC2[15:0] - SRC2[31:16]
DEST[95:80]  SRC2[47:32] - SRC2[63:48]
DEST[111:96]  SRC2[79:64] - SRC2[95:80]
DEST[127:112]  SRC2[111:96] - SRC2[127:112]
DEST[VLMAX-1:128]  0
VPHSUBD (VEX.128 encoded version)
DEST[31-0]  SRC1[31-0] - SRC1[63-32]
DEST[63-32]  SRC1[95-64] - SRC1[127-96]
DEST[95-64]  SRC2[31-0] - SRC2[63-32]
DEST[127-96]  SRC2[95-64] - SRC2[127-96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW: __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

PHSUBW: __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PHSUBD: __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

PHSUBD: __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-262 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, M-Z
PHSUBSW — Packed Horizontal Subtract and Saturate

Instruction Operand Encoding

Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 07 /r1

PHSUBSW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed
integer horizontally, pack
saturated integers to MM1.

66 0F 38 07 /r

PHSUBSW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed
integer horizontally, pack
saturated integers to XMM1

VEX.NDS.128.66.0F38.WIG 07 /r

VPHSUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract 16-bit signed
integer horizontally, pack
saturated integers to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-263PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, M-Z
Operation

PHSUBSW (with 64-bit operands)
mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]);
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW (with 128-bit operands)
xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]);
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

VPHSUBSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW: __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

PHSUBSW: __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-264 Vol. 2B PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, M-Z
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value
from r32/m8 into xmm1 at
the destination element in
xmm1 specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value
from r/m32 into the xmm1
at the destination element
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI N. E./V SSE4_1 Insert a qword integer value
from r/m32 into the xmm1
at the destination element
specified by imm8.

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8,
imm8

RVMI V1/V AVX Merge a byte integer value
from r32/m8 and rest from
xmm2 into xmm1 at the
byte offset in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r32/m32,
imm8

RVMI V/V AVX Insert a dword integer value
from r32/m32 and rest from
xmm2 into xmm1 at the
dword offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r64/m64,
imm8

RVMI V/I AVX Insert a qword integer value
from r64/m64 and rest from
xmm2 into xmm1 at the
qword offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-265PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD. Attempt to execute
VPINSRQ in non-64-bit mode will cause #UD.

Operation
CASE OF

PINSRB: SEL  COUNT[3:0];
MASK  (0FFH << (SEL * 8));
TEMP  (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL  COUNT[1:0];
MASK  (0FFFFFFFFH << (SEL * 32));
TEMP  (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL  COUNT[0]
MASK  (0FFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP  (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST  ((DEST AND NOT MASK) OR TEMP);

VPINSRB (VEX.128 encoded version)
SEL  imm8[3:0]
DEST[127:0]  write_b_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRD (VEX.128 encoded version)
SEL  imm8[1:0]
DEST[127:0]  write_d_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

VPINSRQ (VEX.128 encoded version)
SEL  imm8[0]
DEST[127:0]  write_q_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0
4-266 Vol. 2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD: __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ: __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.
Vol. 2B 4-267PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, M-Z
PINSRW—Insert Word

Instruction Operand Encoding

Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C4 /r ib1

PINSRW mm, r32/m16, imm8

RMI V/V SSE Insert the low word from
r32 or from m16 into mm at
the word position specified
by imm8

66 0F C4 /r ib

PINSRW xmm, r32/m16, imm8

RMI V/V SSE2 Move the low word of r32 or
from m16 into xmm at the
word position specified by
imm8.

VEX.NDS.128.66.0F.W0 C4 /r ib

VPINSRW xmm1, xmm2, r32/m16,
imm8

RVMI V2/V AVX Insert a word integer value
from r32/m16 and rest from
xmm2 into xmm1 at the
word offset in imm8.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions
of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-268 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PINSRW (with 64-bit source operand)
SEL ← COUNT AND 3H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 000000000000FFFFH;
SEL ← 1: MASK ← 00000000FFFF0000H;
SEL ← 2: MASK ← 0000FFFF00000000H;
SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

PINSRW (with 128-bit source operand)
SEL ← COUNT AND 7H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;
SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;
SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;
SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;
SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;
SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;
SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;
SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

VPINSRW (VEX.128 encoded version)
SEL  imm8[2:0]
DEST[127:0]  write_w_element(SEL, SRC2, SRC1)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW: __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW: __m128i _mm_insert_epi16 (__m128i a, int b, int imm)

Flags Affected

None.
Vol. 2B 4-269PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRW in non-64-bit mode with VEX.W=1.
4-270 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-Z
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 04 /r1

PMADDUBSW mm1, mm2/m64

RM V/V MMX Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 0F 38 04 /r

PMADDUBSW xmm1, xmm2/m128

RM V/V SSSE3 Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to XMM1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-271PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-Z
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDUBSW (with 64 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (with 128 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-

112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)
DEST[15:0]  SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word
DEST[127:112]  SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]*
SRC1[119:112])
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW: __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

PMADDUBSW: __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-272 Vol. 2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-Z
PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-6 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F5 /r1

PMADDWD mm, mm/m64

RM V/V MMX Multiply the packed words in
mm by the packed words in
mm/m64, add adjacent
doubleword results, and
store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed word
integers in xmm1 by the
packed word integers in
xmm2/m128, add adjacent
doubleword results, and
store in xmm1.

VEX.NDS.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed word
integers in xmm2 by the
packed word integers in
xmm3/m128, add adjacent
doubleword results, and
store in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-273PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDWD (with 64-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD (with 128-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

VPMADDWD (VEX.128 encoded version)
DEST[31:0]  (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32]  (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64]  (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96]  (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[VLMAX-1:128]  0

Figure 4-6. PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2)

TEMP
4-274 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD: __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMADDWD: __m128i _mm_madd_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-275PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSB — Maximum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0]  DEST[7:0];
ELSE DEST[7:0]  SRC[7:0]; FI;

IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8]  DEST[15:8];
ELSE DEST[15:8]  SRC[15:8]; FI;

IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16]  DEST[23:16];
ELSE DEST[23:16]  SRC[23:16]; FI;

IF (DEST[31:24] > SRC[31:24])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3C /r
PMAXSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3C /r
VPMAXSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-276 Vol. 2B PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[31:24]  DEST[31:24];
ELSE DEST[31:24]  SRC[31:24]; FI;

IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32]  DEST[39:32];
ELSE DEST[39:32]  SRC[39:32]; FI;

IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40]  DEST[47:40];
ELSE DEST[47:40]  SRC[47:40]; FI;

IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48]  DEST[55:48];
ELSE DEST[55:48]  SRC[55:48]; FI;

IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56]  DEST[63:56];
ELSE DEST[63:56]  SRC[63:56]; FI;

IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64]  DEST[71:64];
ELSE DEST[71:64]  SRC[71:64]; FI;

IF (DEST[79:72] > SRC[79:72])
THEN DEST[79:72]  DEST[79:72];
ELSE DEST[79:72]  SRC[79:72]; FI;

IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80]  DEST[87:80];
ELSE DEST[87:80]  SRC[87:80]; FI;

IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88]  DEST[95:88];
ELSE DEST[95:88]  SRC[95:88]; FI;

IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96]  DEST[103:96];
ELSE DEST[103:96]  SRC[103:96]; FI;

IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104]  DEST[111:104];
ELSE DEST[111:104]  SRC[111:104]; FI;

IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112]  DEST[119:112];
ELSE DEST[119:112]  SRC[119:112]; FI;

IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120]  DEST[127:120];
ELSE DEST[127:120]  SRC[127:120]; FI;

VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE
Vol. 2B 4-277PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB: __m128i _mm_max_epi8 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-278 Vol. 2B PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSD — Maximum of Packed Signed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3D /r
PMAXSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed
dword integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3D /r
VPMAXSD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
dword integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-279PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD: __m128i _mm_max_epi32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-280 Vol. 2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXSW—Maximum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EE /r1

PMAXSW mm1, mm2/m64

RM V/V SSE Compare signed word
integers in mm2/m64 and
mm1 and return maximum
values.

66 0F EE /r

PMAXSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word
integers in xmm2/m128 and
xmm1 and return maximum
values.

VEX.NDS.128.66.0F.WIG EE /r

VPMAXSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in
xmm3/m128 and xmm2 and
store packed maximum
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-281PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMAXSW (64-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW (128-bit operands)
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW: __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXSW: __m128i _mm_max_epi16 (__m128i a, __m128i b)

Flags Affected

None.
4-282 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-283PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUB—Maximum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DE /r1

PMAXUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte
integers in mm2/m64 and
mm1 and returns maximum
values.

66 0F DE /r

PMAXUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte
integers in xmm2/m128 and
xmm1 and returns
maximum values.

VEX.NDS.128.66.0F.WIG DE /r

VPMAXUB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
byte integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-284 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMAXUB (64-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB (128-bit operands)
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE

DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB: __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUB: __m128i _mm_max_epu8 (__m128i a, __m128i b)

Flags Affected

None.
Vol. 2B 4-285PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-286 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUD — Maximum of Packed Unsigned Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3F /r
PMAXUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
dword integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3F /r
VPMAXUD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
dword integers in xmm2 and
xmm3/m128 and store
packed maximum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-287PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD: __m128i _mm_max_epu32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-288 Vol. 2B PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMAXUW — Maximum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0]  DEST[15:0];
ELSE DEST[15:0]  SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])
THEN DEST[31:16]  DEST[31:16];
ELSE DEST[31:16]  SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])
THEN DEST[47:32]  DEST[47:32];
ELSE DEST[47:32]  SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3E /r
PMAXUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
word integers in xmm1 and
xmm2/m128 and store
packed maximum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3E/r
VPMAXUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
word integers in
xmm3/m128 and xmm2 and
store maximum packed
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-289PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[63:48]  DEST[63:48];
ELSE DEST[63:48]  SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])
THEN DEST[79:64]  DEST[79:64];
ELSE DEST[79:64]  SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80])
THEN DEST[95:80]  DEST[95:80];
ELSE DEST[95:80]  SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])
THEN DEST[111:96]  DEST[111:96];
ELSE DEST[111:96]  SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112]  DEST[127:112];
ELSE DEST[127:112]  SRC[127:112]; FI;

VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW: __m128i _mm_max_epu16 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-290 Vol. 2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSB — Minimum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0]  DEST[7:0];
ELSE DEST[7:0]  SRC[7:0]; FI;

IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8]  DEST[15:8];
ELSE DEST[15:8]  SRC[15:8]; FI;

IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16]  DEST[23:16];
ELSE DEST[23:16]  SRC[23:16]; FI;

IF (DEST[31:24] < SRC[31:24])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 38 /r
PMINSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 38 /r
VPMINSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-291PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[31:24]  DEST[31:24];
ELSE DEST[31:24]  SRC[31:24]; FI;

IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32]  DEST[39:32];
ELSE DEST[39:32]  SRC[39:32]; FI;

IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40]  DEST[47:40];
ELSE DEST[47:40]  SRC[47:40]; FI;

IF (DEST[55:48] < SRC[55:48])
THEN DEST[55:48]  DEST[55:48];
ELSE DEST[55:48]  SRC[55:48]; FI;

IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56]  DEST[63:56];
ELSE DEST[63:56]  SRC[63:56]; FI;

IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64]  DEST[71:64];
ELSE DEST[71:64]  SRC[71:64]; FI;

IF (DEST[79:72] < SRC[79:72])
THEN DEST[79:72]  DEST[79:72];
ELSE DEST[79:72]  SRC[79:72]; FI;

IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80]  DEST[87:80];
ELSE DEST[87:80]  SRC[87:80]; FI;

IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88]  DEST[95:88];
ELSE DEST[95:88]  SRC[95:88]; FI;

IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96]  DEST[103:96];
ELSE DEST[103:96]  SRC[103:96]; FI;

IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104]  DEST[111:104];
ELSE DEST[111:104]  SRC[111:104]; FI;

IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112]  DEST[119:112];
ELSE DEST[119:112]  SRC[119:112]; FI;

IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120]  DEST[127:120];
ELSE DEST[127:120]  SRC[127:120]; FI;

VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0]  SRC1[7:0];
ELSE
4-292 Vol. 2B PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[7:0]  SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB: __m128i _mm_min_epi8 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-293PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 39 /r
PMINSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed
dword integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 39 /r
VPMINSD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
dword integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-294 Vol. 2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0]  SRC1[31:0];
ELSE

DEST[31:0]  SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD: __m128i _mm_min_epi32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-295PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMINSW—Minimum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:1288) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EA /r1

PMINSW mm1, mm2/m64

RM V/V SSE Compare signed word
integers in mm2/m64 and
mm1 and return minimum
values.

66 0F EA /r

PMINSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word
integers in xmm2/m128 and
xmm1 and return minimum
values.

VEX.NDS.128.66.0F.WIG EA /r

VPMINSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed signed
word integers in
xmm3/m128 and xmm2 and
return packed minimum
values in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-296 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMINSW (64-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW (128-bit operands)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0]  SRC1[15:0];
ELSE

DEST[15:0]  SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW: __m64 _mm_min_pi16 (__m64 a, __m64 b)

PMINSW: __m128i _mm_min_epi16 (__m128i a, __m128i b)

Flags Affected

None.
Vol. 2B 4-297PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-298 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUB—Minimum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DA /r1

PMINUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte
integers in mm2/m64 and
mm1 and returns minimum
values.

66 0F DA /r

PMINUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte
integers in xmm2/m128 and
xmm1 and returns minimum
values.

VEX.NDS.128.66.0F.WIG DA /r

VPMINUB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
byte integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-299PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PMINUB (for 64-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB (for 128-bit operands)
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0]  SRC1[7:0];

ELSE
DEST[7:0]  SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120]  SRC1[127:120];
ELSE

DEST[127:120]  SRC2[127:120]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB: __m64 _m_min_pu8 (__m64 a, __m64 b)

PMINUB: __m128i _mm_min_epu8 (__m128i a, __m128i b)

Flags Affected

None.
4-300 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-301PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0]  DEST[31:0];
ELSE DEST[31:0]  SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32]  DEST[63:32];
ELSE DEST[63:32]  SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64]  DEST[95:64];
ELSE DEST[95:64]  SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3B /r
PMINUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
dword integers in xmm1
and xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3B /r
VPMINUD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
dword integers in xmm2 and
xmm3/m128 and store
packed minimum values in
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-302 Vol. 2B PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[127:96]  DEST[127:96];
ELSE DEST[127:96]  SRC[127:96]; FI;

VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0]  SRC1[31:0];

ELSE
DEST[31:0]  SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95]  SRC1[127:95];
ELSE

DEST[127:95]  SRC2[127:95]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD: __m128i _mm_min_epu32 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-303PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMINUW — Minimum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0]  DEST[15:0];
ELSE DEST[15:0]  SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16]  DEST[31:16];
ELSE DEST[31:16]  SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32]  DEST[47:32];
ELSE DEST[47:32]  SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48])

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3A /r
PMINUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned
word integers in xmm1 and
xmm2/m128 and store
packed minimum values in
xmm1.

VEX.NDS.128.66.0F38.WIG 3A/r
VPMINUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Compare packed unsigned
word integers in
xmm3/m128 and xmm2 and
return packed minimum
values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-304 Vol. 2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
THEN DEST[63:48]  DEST[63:48];
ELSE DEST[63:48]  SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64]  DEST[79:64];
ELSE DEST[79:64]  SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80]  DEST[95:80];
ELSE DEST[95:80]  SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96]  DEST[111:96];
ELSE DEST[111:96]  SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112]  DEST[127:112];
ELSE DEST[127:112]  SRC[127:112]; FI;

VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0]  SRC1[15:0];

ELSE
DEST[15:0]  SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112]  SRC1[127:112];
ELSE

DEST[127:112]  SRC2[127:112]; FI;
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW: __m128i _mm_min_epu16 (__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-305PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, M-Z
PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. The default operand size is 64-bit in 64-bit
mode.
VEX.128 encodings are valid but identical in function. VEX.vvvv is reserved and must
be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMOVMSKB (with 64-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D7 /r1

PMOVMSKB reg, mm

RM V/V SSE Move a byte mask of mm to
reg. The upper bits of r32 or
r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm
to reg. The upper bits of r32
or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1
to reg. The upper bits of r32
or r64 are filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-306 Vol. 2B PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, M-Z
(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63];
r32[31:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127];
r32[31:16] ← ZERO_FILL;

PMOVMSKB (with 64-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63];
r64[63:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127];
r64[63:16] ← ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB: int _mm_movemask_pi8(__m64 a)

PMOVMSKB: int _mm_movemask_epi8 (__m128i a)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-307PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, M-Z
PMOVSX — Packed Move with Sign Extend
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 20 /r
PMOVSXBW xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 8 packed signed
8-bit integers in the low 8
bytes of xmm2/m64 to 8
packed signed 16-bit
integers in xmm1.

66 0f 38 21 /r
PMOVSXBD xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 4 packed signed
8-bit integers in the low 4
bytes of xmm2/m32 to 4
packed signed 32-bit
integers in xmm1.

66 0f 38 22 /r

PMOVSXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Sign extend 2 packed signed
8-bit integers in the low 2
bytes of xmm2/m16 to 2
packed signed 64-bit
integers in xmm1.

66 0f 38 23 /r
PMOVSXWD xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 4 packed signed
16-bit integers in the low 8
bytes of xmm2/m64 to 4
packed signed 32-bit
integers in xmm1.

66 0f 38 24 /r
PMOVSXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 2 packed signed
16-bit integers in the low 4
bytes of xmm2/m32 to 2
packed signed 64-bit
integers in xmm1.

66 0f 38 25 /r
PMOVSXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 2 packed signed
32-bit integers in the low 8
bytes of xmm2/m64 to 2
packed signed 64-bit
integers in xmm1.

VEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1, xmm2/m64

RM V/V AVX Sign extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1, xmm2/m32

RM V/V AVX Sign extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.
4-308 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PMOVSXBW
DEST[15:0]  SignExtend(SRC[7:0]);
DEST[31:16]  SignExtend(SRC[15:8]);
DEST[47:32]  SignExtend(SRC[23:16]);
DEST[63:48]  SignExtend(SRC[31:24]);

VEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1, xmm2/m16

RM V/V AVX Sign extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1, xmm2/m64

RM V/V AVX Sign extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1, xmm2/m32

RM V/V AVX Sign extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 25 /r
VPMOVSXDQ xmm1, xmm2/m64

RM V/V AVX Sign extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Vol. 2B 4-309PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
DEST[79:64]  SignExtend(SRC[39:32]);
DEST[95:80]  SignExtend(SRC[47:40]);
DEST[111:96]  SignExtend(SRC[55:48]);
DEST[127:112]  SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0]  SignExtend(SRC[7:0]);
DEST[63:32]  SignExtend(SRC[15:8]);
DEST[95:64]  SignExtend(SRC[23:16]);
DEST[127:96]  SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0]  SignExtend(SRC[7:0]);
DEST[127:64]  SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0]  SignExtend(SRC[15:0]);
DEST[63:32]  SignExtend(SRC[31:16]);
DEST[95:64]  SignExtend(SRC[47:32]);
DEST[127:96]  SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0]  SignExtend(SRC[15:0]);
DEST[127:64]  SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0]  SignExtend(SRC[31:0]);
DEST[127:64]  SignExtend(SRC[63:32]);

VPMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128]  0

VPMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128]  0
4-310 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
VPMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW: __m128i _mm_ cvtepi8_epi16 (__m128i a);
PMOVSXBD: __m128i _mm_ cvtepi8_epi32 (__m128i a);
PMOVSXBQ: __m128i _mm_ cvtepi8_epi64 (__m128i a);
PMOVSXWD: __m128i _mm_ cvtepi16_epi32 (__m128i a);
PMOVSXWQ: __m128i _mm_ cvtepi16_epi64 (__m128i a);
PMOVSXDQ: __m128i _mm_ cvtepi32_epi64 (__m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-311PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, M-Z
PMOVZX — Packed Move with Zero Extend
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

66 0f 38 31 /r
PMOVZXBD xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38 32 /r
PMOVZXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Zero extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38 33 /r
PMOVZXWD xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

66 0f 38 34 /r
PMOVZXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

66 0f 38 35 /r
PMOVZXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

RM V/V AVX Zero extend 8 packed 8-bit
integers in the low 8 bytes
of xmm2/m64 to 8 packed
16-bit integers in xmm1.

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

RM V/V AVX Zero extend 4 packed 8-bit
integers in the low 4 bytes
of xmm2/m32 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

RM V/V AVX Zero extend 2 packed 8-bit
integers in the low 2 bytes
of xmm2/m16 to 2 packed
64-bit integers in xmm1.
4-312 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PMOVZXBW
DEST[15:0]  ZeroExtend(SRC[7:0]);
DEST[31:16]  ZeroExtend(SRC[15:8]);
DEST[47:32]  ZeroExtend(SRC[23:16]);
DEST[63:48]  ZeroExtend(SRC[31:24]);
DEST[79:64]  ZeroExtend(SRC[39:32]);
DEST[95:80]  ZeroExtend(SRC[47:40]);
DEST[111:96]  ZeroExtend(SRC[55:48]);
DEST[127:112]  ZeroExtend(SRC[63:56]);

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

RM V/V AVX Zero extend 4 packed 16-bit
integers in the low 8 bytes
of xmm2/m64 to 4 packed
32-bit integers in xmm1.

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

RM V/V AVX Zero extend 2 packed 16-bit
integers in the low 4 bytes
of xmm2/m32 to 2 packed
64-bit integers in xmm1.

VEX.128.66.0F38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

RM V/V AVX Zero extend 2 packed 32-bit
integers in the low 8 bytes
of xmm2/m64 to 2 packed
64-bit integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Vol. 2B 4-313PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
PMOVZXBD
DEST[31:0]  ZeroExtend(SRC[7:0]);
DEST[63:32]  ZeroExtend(SRC[15:8]);
DEST[95:64]  ZeroExtend(SRC[23:16]);
DEST[127:96]  ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0]  ZeroExtend(SRC[7:0]);
DEST[127:64]  ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0]  ZeroExtend(SRC[15:0]);
DEST[63:32]  ZeroExtend(SRC[31:16]);
DEST[95:64]  ZeroExtend(SRC[47:32]);
DEST[127:96]  ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0]  ZeroExtend(SRC[15:0]);
DEST[127:64]  ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0]  ZeroExtend(SRC[31:0]);
DEST[127:64]  ZeroExtend(SRC[63:32]);

VPMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[VLMAX-1:128]  0

VPMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[VLMAX-1:128]  0

VPMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[VLMAX-1:128]  0

VPMOVZXDQ
4-314 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[VLMAX-1:128]  0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW: __m128i _mm_ cvtepu8_epi16 (__m128i a);
PMOVZXBD: __m128i _mm_ cvtepu8_epi32 (__m128i a);
PMOVZXBQ: __m128i _mm_ cvtepu8_epi64 (__m128i a);
PMOVZXWD: __m128i _mm_ cvtepu16_epi32 (__m128i a);
PMOVZXWQ: __m128i _mm_ cvtepu16_epi64 (__m128i a);
PMOVZXDQ: __m128i _mm_ cvtepu32_epi64 (__m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-315PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, M-Z
PMULDQ — Multiply Packed Signed Dword Integers

Instruction Operand Encoding

Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high qword element of the destination.
If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULDQ (128-bit Legacy SSE version)
DEST[63:0]  DEST[31:0] * SRC[31:0]
DEST[127:64]  DEST[95:64] * SRC[95:64]
DEST[VLMAX-1:128] (Unmodified)

VPMULDQ (VEX.128 encoded version)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 28 /r
PMULDQ xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed signed
dword integers in xmm1 and
xmm2/m128 and store the
quadword product in xmm1.

VEX.NDS.128.66.0F38.WIG 28 /r
VPMULDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply packed signed
doubleword integers in
xmm2 by packed signed
doubleword integers in
xmm3/m128, and store the
quadword results in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-316 Vol. 2B PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[63:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:64]  SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ: __m128i _mm_mul_epi32(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-317PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, M-Z
PMULHRSW — Packed Multiply High with Round and Scale

Instruction Operand Encoding

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 0B /r1

PMULHRSW mm1, mm2/m64

RM V/V SSSE3 Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to MM1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128

RM V/V SSSE3 Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to XMM1.

VEX.NDS.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-318 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)
temp0[31:0]  INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0]  INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0]  INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0]  INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0]  INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0]  INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0]  INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
Vol. 2B 4-319PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
temp7[31:0]  INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0]  temp0[16:1]
DEST[31:16]  temp1[16:1]
DEST[47:32]  temp2[16:1]
DEST[63:48]  temp3[16:1]
DEST[79:64]  temp4[16:1]
DEST[95:80]  temp5[16:1]
DEST[111:96]  temp6[16:1]
DEST[127:112]  temp7[16:1]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW: __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-320 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, M-Z
PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E4 /r1

PMULHUW mm1, mm2/m64

RM V/V SSE Multiply the packed
unsigned word integers in
mm1 register and
mm2/m64, and store the
high 16 bits of the results in
mm1.

66 0F E4 /r

PMULHUW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed
unsigned word integers in
xmm1 and xmm2/m128,
and store the high 16 bits of
the results in xmm1.

VEX.NDS.128.66.0F.WIG E4 /r

VPMULHUW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed
unsigned word integers in
xmm2 and xmm3/m128,
and store the high 16 bits of
the results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-321PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHUW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHUW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];

Figure 4-7. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
4-322 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHUW (VEX.128 encoded version)
TEMP0[31:0]  SRC1[15:0] * SRC2[15:0]
TEMP1[31:0]  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0]  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0]  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0]  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0]  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0]  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0]  SRC1[127:112] * SRC2[127:112]
DEST[15:0]  TEMP0[31:16]
DEST[31:16]  TEMP1[31:16]
DEST[47:32]  TEMP2[31:16]
DEST[63:48]  TEMP3[31:16]
DEST[79:64]  TEMP4[31:16]
DEST[95:80]  TEMP5[31:16]
DEST[111:96]  TEMP6[31:16]
DEST[127:112]  TEMP7[31:16]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW: __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHUW: __m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-323PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
PMULHW—Multiply Packed Signed Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E5 /r1

PMULHW mm, mm/m64

RM V/V MMX Multiply the packed signed
word integers in mm1
register and mm2/m64, and
store the high 16 bits of the
results in mm1.

66 0F E5 /r

PMULHW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed
word integers in xmm1 and
xmm2/m128, and store the
high 16 bits of the results in
xmm1.

VEX.NDS.128.66.0F.WIG E5 /r

VPMULHW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed signed
word integers in xmm2 and
xmm3/m128, and store the
high 16 bits of the results in
xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-324 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULHW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

VPMULHW (VEX.128 encoded version)
TEMP0[31:0]  SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0]  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0]  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0]  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0]  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0]  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0]  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0]  SRC1[127:112] * SRC2[127:112]
Vol. 2B 4-325PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0]  TEMP0[31:16]
DEST[31:16]  TEMP1[31:16]
DEST[47:32]  TEMP2[31:16]
DEST[63:48]  TEMP3[31:16]
DEST[79:64]  TEMP4[31:16]
DEST[95:80]  TEMP5[31:16]
DEST[111:96]  TEMP6[31:16]
DEST[127:112]  TEMP7[31:16]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW: __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

PMULHW: __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-326 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, M-Z
PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Instruction Operand Encoding

Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

Temp0[63:0]  DEST[31:0] * SRC[31:0];
Temp1[63:0]  DEST[63:32] * SRC[63:32];
Temp2[63:0]  DEST[95:64] * SRC[95:64];
Temp3[63:0]  DEST[127:96] * SRC[127:96];
DEST[31:0]  Temp0[31:0];
DEST[63:32]  Temp1[31:0];
DEST[95:64]  Temp2[31:0];

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 40 /r
PMULLD xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed dword
signed integers in xmm1
and xmm2/m128 and store
the low 32 bits of each
product in xmm1.

VEX.NDS.128.66.0F38.WIG 40 /r
VPMULLD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed dword
signed integers in xmm2
and xmm3/m128 and store
the low 32 bits of each
product in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-327PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
DEST[127:96]  Temp3[31:0];

VPMULLD (VEX.128 encoded version)
Temp0[63:0]  SRC1[31:0] * SRC2[31:0]
Temp1[63:0]  SRC1[63:32] * SRC2[63:32]
Temp2[63:0]  SRC1[95:64] * SRC2[95:64]
Temp3[63:0]  SRC1[127:96] * SRC2[127:96]
DEST[31:0]  Temp0[31:0]
DEST[63:32]  Temp1[31:0]
DEST[95:64]  Temp2[31:0]
DEST[127:96]  Temp3[31:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD: __m128i _mm_mullo_epi32(__m128i a, __m128i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-328 Vol. 2B PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
PMULLW—Multiply Packed Signed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-7 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D5 /r1

PMULLW mm, mm/m64

RM V/V MMX Multiply the packed signed
word integers in mm1
register and mm2/m64, and
store the low 16 bits of the
results in mm1.

66 0F D5 /r

PMULLW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed
word integers in xmm1 and
xmm2/m128, and store the
low 16 bits of the results in
xmm1.

VEX.NDS.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply the packed dword
signed integers in xmm2
and xmm3/m128 and store
the low 32 bits of each
product in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-329PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULLW (with 64-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];

PMULLW (with 128-bit operands)
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];
DEST[79:64] ← TEMP4[15:0];

Figure 4-8. PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
4-330 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
DEST[95:80] ← TEMP5[15:0];
DEST[111:96] ← TEMP6[15:0];
DEST[127:112] ← TEMP7[15:0];

VPMULLW (VEX.128 encoded version)
Temp0[31:0]  SRC1[15:0] * SRC2[15:0]
Temp1[31:0]  SRC1[31:16] * SRC2[31:16]
Temp2[31:0]  SRC1[47:32] * SRC2[47:32]
Temp3[31:0]  SRC1[63:48] * SRC2[63:48]
Temp4[31:0]  SRC1[79:64] * SRC2[79:64]
Temp5[31:0]  SRC1[95:80] * SRC2[95:80]
Temp6[31:0]  SRC1[111:96] * SRC2[111:96]
Temp7[31:0]  SRC1[127:112] * SRC2[127:112]
DEST[15:0]  Temp0[15:0]
DEST[31:16]  Temp1[15:0]
DEST[47:32]  Temp2[15:0]
DEST[63:48]  Temp3[15:0]
DEST[79:64]  Temp4[15:0]
DEST[95:80]  Temp5[15:0]
DEST[111:96]  Temp6[15:0]
DEST[127:112]  Temp7[15:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW: __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULLW: __m128i _mm_mullo_epi16 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-331PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, M-Z
PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F4 /r1

PMULUDQ mm1, mm2/m64

RM V/V SSE2 Multiply unsigned
doubleword integer in mm1
by unsigned doubleword
integer in mm2/m64, and
store the quadword result in
mm1.

66 0F F4 /r

PMULUDQ xmm1, xmm2/m128

RM V/V SSE2 Multiply packed unsigned
doubleword integers in
xmm1 by packed unsigned
doubleword integers in
xmm2/m128, and store the
quadword results in xmm1.

VEX.NDS.128.66.0F.WIG F4 /r

VPMULUDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Multiply packed unsigned
doubleword integers in
xmm2 by packed unsigned
doubleword integers in
xmm3/m128, and store the
quadword results in xmm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-332 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULUDQ (with 64-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ (with 128-Bit operands)
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

VPMULUDQ (VEX.128 encoded version)
DEST[63:0]  SRC1[31:0] * SRC2[31:0]
DEST[127:64]  SRC1[95:64] * SRC2[95:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ: __m64 _mm_mul_su32 (__m64 a, __m64 b)

PMULUDQ: __m128i _mm_mul_epu32 (__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
Vol. 2B 4-333PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
#UD If VEX.L = 1.
4-334 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, M-Z
POP—Pop a Value from the Stack
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16;
increment stack pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32;
increment stack pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64;
increment stack pointer.
Cannot encode 32-bit
operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16;
increment stack pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32;
increment stack pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64;
increment stack pointer.
Cannot encode 32-bit
operand size.

1F POP DS NP Invalid Valid Pop top of stack into DS;
increment stack pointer.

07 POP ES NP Invalid Valid Pop top of stack into ES;
increment stack pointer.

17 POP SS NP Invalid Valid Pop top of stack into SS;
increment stack pointer.

0F A1 POP FS NP Valid Valid Pop top of stack into FS;
increment stack pointer by
16 bits.

0F A1 POP FS NP N.E. Valid Pop top of stack into FS;
increment stack pointer by
32 bits.

0F A1 POP FS NP Valid N.E. Pop top of stack into FS;
increment stack pointer by
64 bits.

0F A9 POP GS NP Valid Valid Pop top of stack into GS;
increment stack pointer by
16 bits.

0F A9 POP GS NP N.E. Valid Pop top of stack into GS;
increment stack pointer by
32 bits.
Vol. 2B 4-335POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when writing to a destination operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the
default operand size; it may be overridden by instruction prefixes (66H or
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is incremented (2, 4 or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading
from the stack in memory and when incrementing the stack pointer. (As stated
above, the amount by which the stack pointer is incremented is determined by
the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A9 POP GS NP Valid N.E. Pop top of stack into GS;
increment stack pointer by
64 bits.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

O opcode + rd (w) NA NA NA

NP NA NA NA NA
4-336 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to 0H as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt1. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning
of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP
Vol. 2B 4-337POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
ESP ← ESP + 2;
FI;

ELSE IF StackAddrSize = 64
THEN

IF OperandSize = 64
THEN

DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
4-338 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

 FI;
Vol. 2B 4-339POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.
If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
4-340 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.
If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed

to is marked not present.
#UD If the LOCK prefix is used.
Vol. 2B 4-341POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-Z
POPA/POPAD—Pop All General-Purpose Registers

Instruction Operand Encoding

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

61 POPA NP Invalid Valid Pop DI, SI, BP, BX, DX, CX,
and AX.

61 POPAD NP Invalid Valid Pop EDI, ESI, EBP, EBX, EDX,
ECX, and EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-342 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack

segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2B 4-343POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
4-344 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST  Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16,
r/m16

RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32,
r/m32

RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8
/r

POPCNT r64,
r/m64

RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-345POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
4-346 Vol. 2B POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, M-Z
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level 0
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower
16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into
EFLAGS.

REX.W + 9D POPFQ NP Valid N.E. Pop top of stack and zero-
extend into RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.
Vol. 2B 4-347POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64
bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

 modified; IOPL, RF, VM, and all reserved bits are
 unaffected; VIP and VIF are cleared. *)

FI;
4-348 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
ELSE IF (Operandsize = 64)
IF CPL > IOPL

THEN
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved

 bits are unaffected; VIP and VIF are cleared. *)
ELSE

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are

 unaffected; VIP and VIF are cleared. *)
FI;

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL = 3

THEN IF OperandSize = 32
THEN

EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
Vol. 2B 4-349POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-350 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, M-Z
POR—Bitwise Logical OR

Instruction Operand Encoding

Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

POR (128-bit Legacy SSE version)

Opcode Instruction Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EB /r1

POR mm, mm/m64

RM V/V MMX Bitwise OR of mm/m64 and
mm.

66 0F EB /r

POR xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG EB /r

VPOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise OR of xmm2/m128
and xmm3.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-351POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, M-Z
DEST  DEST OR SRC
DEST[VLMAX-1:128] (Unmodified)

VPOR (VEX.128 encoded version)
DEST  SRC1 OR SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

POR: __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR: __m128i _mm_or_si128(__m128i m1, __m128i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-352 Vol. 2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, M-Z
PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2

cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-

temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium III processor—1st-level cache

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer
to the processor using T0
hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer
to the processor using T1
hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer
to the processor using T2
hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer
to the processor using NTA
hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2B 4-353PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_MM_HINT_T0, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.
4-354 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Vol. 2B 4-355PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, M-Z
PSADBW—Compute Sum of Absolute Differences

Instruction Operand Encoding

Description

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F6 /r1

PSADBW mm1, mm2/m64

RM V/V SSE Computes the absolute
differences of the packed
unsigned byte integers from
mm2 /m64 and mm1;
differences are then
summed to produce an
unsigned word integer
result.

66 0F F6 /r

PSADBW xmm1, xmm2/m128

RM V/V SSE2 Computes the absolute
differences of the packed
unsigned byte integers from
xmm2 /m128 and xmm1;
the 8 low differences and 8
high differences are then
summed separately to
produce two unsigned word
integer results.

VEX.NDS.128.66.0F.WIG F6 /r

VPSADBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Computes the absolute
differences of the packed
unsigned byte integers from
xmm3 /m128 and xmm2;
the 8 low differences and 8
high differences are then
summed separately to
produce two unsigned word
integer results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-356 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-9 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSADBW (when using 64-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);

Figure 4-9. PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
Vol. 2B 4-357PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;

PSADBW (when using 128-bit operands)
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;
DEST[79:64] ← SUM(TEMP8:TEMP15);
DEST[127:80] ← 000000000000H;

DEST[VLMAX-1:128] (Unmodified)

VPSADBW (VEX.128 encoded version)
TEMP0  ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15  ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16]  000000000000H
DEST[79:64]  SUM(TEMP8:TEMP15)
DEST[127:80]  00000000000
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW: __m64 _mm_sad_pu8(__m64 a,__m64 b)

PSADBW: __m128i _mm_sad_epu8(__m128i a, __m128i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-358 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, M-Z
PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:128) of the corresponding YMM destination register
remain unchanged.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 00 /r1

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1
according to contents of
mm2/m64.

66 0F 38 00 /r

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1
according to contents of
xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2
according to contents of
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-359PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: The destination operand is the first operand, the first
source operand is the second operand, the second source operand is the third
operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must
be 0, otherwise the instruction will #UD.

Operation

PSHUFB (with 64 bit operands)

for i = 0 to 7 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7...(i*8)+0] ← 0;
else

index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB (with 128 bit operands)

for i = 0 to 15 {
if (SRC[(i * 8)+7] = 1) then

DEST[(i*8)+7..(i*8)+0] ← 0;
 else

index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif
}

DEST[VLMAX-1:128]  0

VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0]  0;
else
index[3..0]  SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0]  SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128]  0
4-360 Vol. 2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB: __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

PSHUFB: __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

Figure 4-10. PSHUB with 64-Bit Operands
Vol. 2B 4-361PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, M-Z
PSHUFD—Shuffle Packed Doublewords

Instruction Operand Encoding

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-11 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits 0
and 1 of the order operand select the contents of doubleword 0 of the destination
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in
Figure 4-11) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 70 /r ib

PSHUFD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.66.0F.WIG 70 /r ib

VPSHUFD xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

Figure 4-11. PSHUFD Instruction Operation

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand
4-362 Vol. 2B PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, M-Z
The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:1288) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation

PSHUFD (128-bit Legacy SSE version)
DEST[31:0]  (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32]  (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64]  (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96]  (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128] (Unmodified)

VPSHUFD (VEX.128 encoded version)
DEST[31:0]  (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32]  (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64]  (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96]  (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD: __m128i _mm_shuffle_epi32(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-363PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, M-Z
PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/ m128,
imm8

RMI V/V SSE2 Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-364 Vol. 2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, M-Z
Operation

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0]  SRC[63:0]
DEST[79:64]  (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80]  (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFHW (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]
DEST[79:64]  (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80]  (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96]  (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112]  (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW: __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-365PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, M-Z
PSHUFLW—Shuffle Packed Low Words

Instruction Operand Encoding

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-11. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 70 /r ib

PSHUFLW xmm1, xmm2/m128,
imm8

RMI V/V SSE2 Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

VEX.128.F2.0F.WIG 70 /r ib

VPSHUFLW xmm1, xmm2/m128,
imm8

RMI V/V AVX Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-366 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, M-Z
Operation

PSHUFLW (128-bit Legacy SSE version)
DEST[15:0]  (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16]  (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32]  (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48]  (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64]  SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFLW (VEX.128 encoded version)
DEST[15:0]  (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16]  (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32]  (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48]  (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64]  SRC[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFLW: __m128i _mm_shufflelo_epi16(__m128i a, int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Vol. 2B 4-367PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, M-Z
PSHUFW—Shuffle Packed Words

Instruction Operand Encoding

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-11. For the PSHUFW instruction, each 2-
bit field in the order operand selects the contents of one word location in the destina-
tion operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW: __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 70 /r ib PSHUFW mm1,
mm2/m64, imm8

RMI Valid Valid Shuffle the words in
mm2/m64 based on the
encoding in imm8 and store
the result in mm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-368 Vol. 2B PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Table 22-7, “Exception Conditions for SIMD/MMX Instructions with Memory
Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
Vol. 2B 4-369PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, M-Z
PSIGNB/PSIGNW/PSIGND — Packed SIGN
Opcode Instruction Op/

En
64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 08 /r1

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed byte integers in
mm1 depending on the
corresponding sign in
mm2/m64

66 0F 38 08 /r

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed byte integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.

0F 38 09 /r1

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed word integers in
mm1 depending on the
corresponding sign in
mm2/m128.

66 0F 38 09 /r

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed word integers in
xmm1 depending on the
corresponding sign in
xmm2/m128.

0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve
packed doubleword integers
in mm1 depending on the
corresponding sign in
mm2/m128.

66 0F 38 0A /r

PSIGND xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve
packed doubleword integers
in xmm1 depending on the
corresponding sign in
xmm2/m128.

VEX.NDS.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed byte integers in
xmm2 depending on the
corresponding sign in
xmm3/m128.
4-370 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in
the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.NDS.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed word integers in
xmm2 depending on the
corresponding sign in
xmm3/m128.

VEX.NDS.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2,
xmm3/m128

RVM V/V AVX Negate/zero/preserve
packed doubleword integers
in xmm2 depending on the
corresponding sign in
xmm3/m128.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Opcode Instruction Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Vol. 2B 4-371PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSIGNB (with 64 bit operands)

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56] ← Neg(DEST[63:56])

ELSEIF (SRC[63:56] = 0)
DEST[63:56] ← 0

ELSEIF (SRC[63:56] > 0)
DEST[63:56] ← DEST[63:56]

PSIGNB (with 128 bit operands)

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] = 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 15th bytes
IF (SRC[127:120] < 0)

DEST[127:120] ← Neg(DEST[127:120])
ELSEIF (SRC[127:120] = 0)

DEST[127:120] ← 0
ELSEIF (SRC[127:120] > 0)

DEST[127:120] ← DEST[127:120]

PSIGNW (with 64 bit operands)

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
4-372 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
DEST[15:0] ← DEST[15:0]
Repeat operation for 2nd through 3rd words

IF (SRC[63:48] < 0)
DEST[63:48] ← Neg(DEST[63:48])

ELSEIF (SRC[63:48] = 0)
DEST[63:48] ← 0

ELSEIF (SRC[63:48] > 0)
DEST[63:48] ← DEST[63:48]

PSIGNW (with 128 bit operands)

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
DEST[15:0] ← DEST[15:0]

Repeat operation for 2nd through 7th words
IF (SRC[127:112] < 0)

DEST[127:112] ← Neg(DEST[127:112])
ELSEIF (SRC[127:112] = 0)

DEST[127:112] ← 0
ELSEIF (SRC[127:112] > 0)

DEST[127:112] ← DEST[127:112]

PSIGND (with 64 bit operands)

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
DEST[31:0] ← 0

ELSEIF (SRC[31:0] > 0)
DEST[31:0] ← DEST[31:0]

IF (SRC[63:32] < 0)
DEST[63:32] ← Neg(DEST[63:32])

ELSEIF (SRC[63:32] = 0)
DEST[63:32] ← 0

ELSEIF (SRC[63:32] > 0)
DEST[63:32] ← DEST[63:32]

PSIGND (with 128 bit operands)

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] = 0)
Vol. 2B 4-373PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0] ← 0
ELSEIF (SRC[31:0] > 0)

DEST[31:0] ← DEST[31:0]
Repeat operation for 2nd through 3rd double words
IF (SRC[127:96] < 0)

DEST[127:96] ← Neg(DEST[127:96])
ELSEIF (SRC[127:96] = 0)

DEST[127:96] ← 0
ELSEIF (SRC[127:96] > 0)

DEST[127:96] ← DEST[127:96]

VPSIGNB (VEX.128 encoded version)
DEST[127:0] BYTE_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSIGNW (VEX.128 encoded version)
DEST[127:0] WORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSIGND (VEX.128 encoded version)
DEST[127:0] DWORD_SIGN(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB: __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB: __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGNW: __m64 _mm_sign_pi16 (__m64 a, __m64 b)

PSIGNW: __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSIGND: __m64 _mm_sign_pi32 (__m64 a, __m64 b)

PSIGND: __m128i _mm_sign_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-374 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, M-Z
PSLLDQ—Shift Double Quadword Left Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all 0s. The destination operand is an XMM register. The
count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSLLDQ(128-bit Legacy SSE version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  DEST << (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLDQ (VEX.128 encoded version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  SRC << (TEMP * 8)
DEST[VLMAX-1:128]  0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /7 ib

PSLLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 left by imm8
bytes while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /7 ib

VPSLLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 left by imm8
bytes while shifting in 0s
and store result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-375PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

PSLLDQ: __m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
4-376 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, M-Z
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F1 /r1

PSLLW mm, mm/m64

RM V/V MMX Shift words in mm left
mm/m64 while shifting in
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 left by
xmm2/m128 while shifting
in 0s.

0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V MMX Shift words in mm left by
imm8 while shifting in 0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 left by
imm8 while shifting in 0s.

0F F2 /r1

PSLLD mm, mm/m64

RM V/V MMX Shift doublewords in mm
left by mm/m64 while
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1
left by xmm2/m128 while
shifting in 0s.

0F 72 /6 ib1

PSLLD mm, imm8

MI V/V MMX Shift doublewords in mm
left by imm8 while shifting
in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
left by imm8 while shifting
in 0s.

0F F3 /r1

PSLLQ mm, mm/m64

RM V/V MMX Shift quadword in mm left
by mm/m64 while shifting
in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1
left by xmm2/m128 while
shifting in 0s.

0F 73 /6 ib1

PSLLQ mm, imm8

MI V/V MMX Shift quadword in mm left
by imm8 while shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1
left by imm8 while shifting
in 0s.
Vol. 2B 4-377PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 left by
amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 left by
imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
left by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
left by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2
left by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2
left by imm8 while shifting
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
4-378 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all 0s. Figure 4-12 gives an example of
shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

Figure 4-12. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
Vol. 2B 4-379PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

PSLLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN
4-380 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLQ (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLQ (xmm, imm8)
Vol. 2B 4-381PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0]  LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSLLD (xmm, imm8)
DEST[127:0]  LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW: __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW: __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW: __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW: __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD: __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD: __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD: __m128i _mm_slli_epi32(__m128i m, int count)

PSLLD: __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ: __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ: __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ: __m128i _mm_slli_epi64(__m128i m, int count)

PSLLQ: __m128i _mm_sll_epi64(__m128i m, __m128i count)
4-382 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
Vol. 2B 4-383PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-Z
PSRAW/PSRAD—Shift Packed Data Right Arithmetic
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E1 /r1

PSRAW mm, mm/m64

RM V/V MMX Shift words in mm right by
mm/m64 while shifting in
sign bits.

66 0F E1 /r

PSRAW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right
by xmm2/m128 while
shifting in sign bits.

0F 71 /4 ib1

PSRAW mm, imm8

MI V/V MMX Shift words in mm right by
imm8 while shifting in sign
bits

66 0F 71 /4 ib

PSRAW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right
by imm8 while shifting in
sign bits

0F E2 /r1

PSRAD mm, mm/m64

RM V/V MMX Shift doublewords in mm
right by mm/m64 while
shifting in sign bits.

66 0F E2 /r

PSRAD xmm1, xmm2/m128

RM V/V SSE2 Shift doubleword in xmm1
right by xmm2 /m128 while
shifting in sign bits.

0F 72 /4 ib1

PSRAD mm, imm8

MI V/V MMX Shift doublewords in mm
right by imm8 while shifting
in sign bits.

66 0F 72 /4 ib

PSRAD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
right by imm8 while shifting
in sign bits.

VEX.NDS.128.66.0F.WIG E1 /r

VPSRAW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift words in xmm2 right
by amount specified in
xmm3/m128 while shifting
in sign bits.

VEX.NDD.128.66.0F.WIG 71 /4 ib

VPSRAW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right
by imm8 while shifting in
sign bits.

VEX.NDS.128.66.0F.WIG E2 /r

VPSRAD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
right by amount specified in
xmm3/m128 while shifting
in sign bits.
4-384 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-13 gives an example of shifting words in a 64-
bit operand.)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDD.128.66.0F.WIG 72 /4 ib

VPSRAD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
right by imm8 while shifting
in sign bits.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-13. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Sign
Extension
Vol. 2B 4-385PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /4), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. : Bits (255:128) of the
corresponding YMM destination register remain unchanged. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRAW (with 64-bit operand)
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
4-386 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAW (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRAW (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRAD (xmm, xmm, xmm/m128)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRAD (xmm, imm8)
DEST[127:0]  ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0
Vol. 2B 4-387PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalents

PSRAW: __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW: __m64 _mm_sra_pi16 (__m64 m, __m64 count)

PSRAD: __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD: __m64 _mm_sra_pi32 (__m64 m, __m64 count)

PSRAW: __m128i _mm_srai_epi16(__m128i m, int count)

PSRAW: __m128i _mm_sra_epi16(__m128i m, __m128i count))

PSRAD: __m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD: __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
4-388 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, M-Z
PSRLDQ—Shift Double Quadword Right Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all 0s. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source and destination operands are the same. Bits
(VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes
the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSRLDQ(128-bit Legacy SSE version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  DEST >> (TEMP * 8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLDQ (VEX.128 encoded version)
TEMP  COUNT
IF (TEMP > 15) THEN TEMP  16; FI
DEST  SRC >> (TEMP * 8)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /3 ib

PSRLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 right by imm8
while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /3 ib

VPSRLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 right by imm8
bytes while shifting in 0s.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-389PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLDQ: __m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.L = 1.
4-390 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D1 /r1

PSRLW mm, mm/m64

RM V/V MMX Shift words in mm right by
amount specified in
mm/m64 while shifting in
0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right
by amount specified in
xmm2/m128 while shifting
in 0s.

0F 71 /2 ib1

PSRLW mm, imm8

MI V/V MMX Shift words in mm right by
imm8 while shifting in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right
by imm8 while shifting in 0s.

0F D2 /r1

PSRLD mm, mm/m64

RM V/V MMX Shift doublewords in mm
right by amount specified in
mm/m64 while shifting in
0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1
right by amount specified in
xmm2 /m128 while shifting
in 0s.

0F 72 /2 ib1

PSRLD mm, imm8

MI V/V MMX Shift doublewords in mm
right by imm8 while shifting
in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1
right by imm8 while shifting
in 0s.

0F D3 /r1

PSRLQ mm, mm/m64

RM V/V MMX Shift mm right by amount
specified in mm/m64 while
shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1
right by amount specified in
xmm2/m128 while shifting
in 0s.

0F 73 /2 ib1

PSRLQ mm, imm8

MI V/V MMX Shift mm right by imm8
while shifting in 0s.
Vol. 2B 4-391PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /2 ib

PSRLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1
right by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Shift words in xmm2 right
by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right
by imm8 while shifting in 0s.

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2
right by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2
right by imm8 while shifting
in 0s.

VEX.NDS.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2
right by amount specified in
xmm3/m128 while shifting
in 0s.

VEX.NDD.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2
right by imm8 while shifting
in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
4-392 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all 0s. Figure 4-14 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv
encodes the destination register, and VEX.B + ModRM.r/m encodes the source
register. VEX.L must be 0, otherwise instructions will #UD. If the count operand is a
memory address, 128 bits are loaded but the upper 64 bits are ignored.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN

Figure 4-14. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
Vol. 2B 4-393PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

PSRLW (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;
4-394 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSRLQ (with 128-bit operand)
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLW (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLD (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

PSRLQ (xmm, xmm, xmm/m128)
Vol. 2B 4-395PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX-1:128] (Unmodified)

VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPSRLQ (xmm, imm8)
DEST[127:0]  LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW: __m64 _mm_srli_pi16(__m64 m, int count)

PSRLW: __m64 _mm_srl_pi16 (__m64 m, __m64 count)

PSRLW: __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW: __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD: __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD: __m64 _mm_srl_pi32 (__m64 m, __m64 count)

PSRLD: __m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD: __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ: __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ: __m64 _mm_srl_si64 (__m64 m, __m64 count)

PSRLQ: __m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ: __m128i _mm_srl_epi64 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.
#UD If VEX.L = 1.
4-396 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-Z
PSUBB/PSUBW/PSUBD—Subtract Packed Integers
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F8 /r1

PSUBB mm, mm/m64

RM V/V MMX Subtract packed byte
integers in mm/m64 from
packed byte integers in mm.

66 0F F8 /r

PSUBB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed byte
integers in xmm2/m128
from packed byte integers
in xmm1.

0F F9 /r1

PSUBW mm, mm/m64

RM V/V MMX Subtract packed word
integers in mm/m64 from
packed word integers in mm.

66 0F F9 /r

PSUBW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed word
integers in xmm2/m128
from packed word integers
in xmm1.

0F FA /r1

PSUBD mm, mm/m64

RM V/V MMX Subtract packed doubleword
integers in mm/m64 from
packed doubleword integers
in mm.

66 0F FA /r

PSUBD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed doubleword
integers in xmm2/mem128
from packed doubleword
integers in xmm1.

VEX.NDS.128.66.0F.WIG F8 /r
VPSUBB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed byte
integers in xmm3/m128
from xmm2.

VEX.NDS.128.66.0F.WIG F9 /r

VPSUBW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed word
integers in xmm3/m128
from xmm2.

VEX.NDS.128.66.0F.WIG FA /r
VPSUBD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed doubleword
integers in xmm3/m128
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 2B 4-397PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-398 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
Operation

PSUBB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] − SRC[127:120];

PSUBW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW (with 128-bit operands)
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] − SRC[127:112];

PSUBD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD (with 128-bit operands)
DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] ← DEST[127:96] − SRC[127:96];

VPSUBB (VEX.128 encoded version)
DEST[7:0]  SRC1[7:0]-SRC2[7:0]
DEST[15:8]  SRC1[15:8]-SRC2[15:8]
DEST[23:16]  SRC1[23:16]-SRC2[23:16]
DEST[31:24]  SRC1[31:24]-SRC2[31:24]
DEST[39:32]  SRC1[39:32]-SRC2[39:32]
DEST[47:40]  SRC1[47:40]-SRC2[47:40]
DEST[55:48]  SRC1[55:48]-SRC2[55:48]
DEST[63:56]  SRC1[63:56]-SRC2[63:56]
DEST[71:64]  SRC1[71:64]-SRC2[71:64]
DEST[79:72]  SRC1[79:72]-SRC2[79:72]
DEST[87:80]  SRC1[87:80]-SRC2[87:80]
DEST[95:88]  SRC1[95:88]-SRC2[95:88]
DEST[103:96]  SRC1[103:96]-SRC2[103:96]
Vol. 2B 4-399PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
DEST[111:104]  SRC1[111:104]-SRC2[111:104]
DEST[119:112]  SRC1[119:112]-SRC2[119:112]
DEST[127:120]  SRC1[127:120]-SRC2[127:120]
DEST[VLMAX-1:128]  00

VPSUBW (VEX.128 encoded version)
DEST[15:0]  SRC1[15:0]-SRC2[15:0]
DEST[31:16]  SRC1[31:16]-SRC2[31:16]
DEST[47:32]  SRC1[47:32]-SRC2[47:32]
DEST[63:48]  SRC1[63:48]-SRC2[63:48]
DEST[79:64]  SRC1[79:64]-SRC2[79:64]
DEST[95:80]  SRC1[95:80]-SRC2[95:80]
DEST[111:96]  SRC1[111:96]-SRC2[111:96]
DEST[127:112]  SRC1[127:112]-SRC2[127:112]
DEST[VLMAX-1:128]  0

VPSUBD (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]-SRC2[31:0]
DEST[63:32]  SRC1[63:32]-SRC2[63:32]
DEST[95:64]  SRC1[95:64]-SRC2[95:64]
DEST[127:96]  SRC1[127:96]-SRC2[127:96]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB: __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW: __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD: __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBB: __m128i _mm_sub_epi8 (__m128i a, __m128i b)

PSUBW: __m128i _mm_sub_epi16 (__m128i a, __m128i b)

PSUBD: __m128i _mm_sub_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-400 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, M-Z
PSUBQ—Subtract Packed Quadword Integers

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F FB /r1

PSUBQ mm1, mm2/m64

RM V/V SSE2 Subtract quadword integer
in mm1 from mm2 /m64.

66 0F FB /r

PSUBQ xmm1, xmm2/m128

RM V/V SSE2 Subtract packed quadword
integers in xmm1 from
xmm2 /m128.

VEX.NDS.128.66.0F.WIG FB/r

VPSUBQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed quadword
integers in xmm3/m128
from xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-401PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];

PSUBQ (with 128-Bit operands)
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

VPSUBQ (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]-SRC2[63:0]
DEST[127:64]  SRC1[127:64]-SRC2[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ: __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBQ: __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-402 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, M-Z
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E8 /r1

PSUBSB mm, mm/m64

RM V/V MMX Subtract signed packed
bytes in mm/m64 from
signed packed bytes in mm
and saturate results.

66 0F E8 /r

PSUBSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed byte
integers in xmm2/m128
from packed signed byte
integers in xmm1 and
saturate results.

0F E9 /r1

PSUBSW mm, mm/m64

RM V/V MMX Subtract signed packed
words in mm/m64 from
signed packed words in mm
and saturate results.

66 0F E9 /r

PSUBSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed
word integers in
xmm2/m128 from packed
signed word integers in
xmm1 and saturate results.

VEX.NDS.128.66.0F.WIG E8 /r

VPSUBSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed signed byte
integers in xmm3/m128
from packed signed byte
integers in xmm2 and
saturate results.

VEX.NDS.128.66.0F.WIG E9 /r

VPSUBSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed signed
word integers in
xmm3/m128 from packed
signed word integers in
xmm2 and saturate results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 2B 4-403PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBSB (with 64-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56]);

PSUBSB (with 128-bit operands)
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-404 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[127:120] − SRC[127:120]);

PSUBSW (with 64-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48]);

PSUBSW (with 128-bit operands)
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBSB
DEST[7:0]  SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128]  0

VPSUBSW
DEST[15:0]  SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB: __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSB: __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW: __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBSW: __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-405PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, M-Z
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D8 /r1

PSUBUSB mm, mm/m64

RM V/V MMX Subtract unsigned packed
bytes in mm/m64 from
unsigned packed bytes in
mm and saturate result.

66 0F D8 /r

PSUBUSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned
byte integers in
xmm2/m128 from packed
unsigned byte integers in
xmm1 and saturate result.

0F D9 /r1

PSUBUSW mm, mm/m64

RM V/V MMX Subtract unsigned packed
words in mm/m64 from
unsigned packed words in
mm and saturate result.

66 0F D9 /r

PSUBUSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned
word integers in
xmm2/m128 from packed
unsigned word integers in
xmm1 and saturate result.

VEX.NDS.128.66.0F.WIG D8 /r

VPSUBUSB xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed unsigned
byte integers in
xmm3/m128 from packed
unsigned byte integers in
xmm2 and saturate result.

VEX.NDS.128.66.0F.WIG D9 /r

VPSUBUSW xmm1, xmm2,
xmm3/m128

RVM V/V AVX Subtract packed unsigned
word integers in
xmm3/m128 from packed
unsigned word integers in
xmm2 and saturate result.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
4-406 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBUSB (with 64-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56];

PSUBUSB (with 128-bit operands)
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-407PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PSUBUSW (with 64-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48]);

PSUBUSW (with 128-bit operands)
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBUSB
DEST[7:0]  SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120]  SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX-1:128]  0

VPSUBUSW
DEST[15:0]  SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112]  SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB: __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB: __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW: __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW: __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-408 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, M-Z
PTEST- Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of
the first source operand (first operand) and the second source operand (second
operand). VPTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of
the second source operand (second operand) and the logical NOT of the destination
operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source
register can be an XMM register or a 128-bit memory location. The destination
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second
source register can be a YMM register or a 256-bit memory location. The destination
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

(V)PTEST (128-bit version)
IF (SRC[127:0] BITWISE AND DEST[127:0] = 0)

THEN ZF  1;
ELSE ZF  0;

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND
xmm1 result is all 0s. Set CF
if xmm2/m128 AND NOT
xmm1 result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
bitwise AND and ANDN of
sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
bitwise AND and ANDN of
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-409PTEST- Logical Compare

INSTRUCTION SET REFERENCE, M-Z
IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0)
THEN CF  1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF  1;

ELSE ZF  0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF  1;

ELSE CF  0;
DEST (unmodified)
AF  OF  PF  SF  0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
int _mm_testc_si128 (__m128i s1, __m128i s2);
int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-410 Vol. 2B PTEST- Logical Compare

INSTRUCTION SET REFERENCE, M-Z
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack
High Data
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 68 /r1

PUNPCKHBW mm, mm/m64

RM V/V MMX Unpack and interleave high-
order bytes from mm and
mm/m64 into mm.

66 0F 68 /r

PUNPCKHBW xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order bytes from xmm1 and
xmm2/m128 into xmm1.

0F 69 /r1

PUNPCKHWD mm, mm/m64

RM V/V MMX Unpack and interleave high-
order words from mm and
mm/m64 into mm.

66 0F 69 /r

PUNPCKHWD xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order words from xmm1 and
xmm2/m128 into xmm1.

0F 6A /r1

PUNPCKHDQ mm, mm/m64

RM V/V MMX Unpack and interleave high-
order doublewords from mm
and mm/m64 into mm.

66 0F 6A /r

PUNPCKHDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order doublewords from
xmm1 and xmm2/m128
into xmm1.

66 0F 6D /r

PUNPCKHQDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-
order quadwords from
xmm1 and xmm2/m128
into xmm1.

VEX.NDS.128.66.0F.WIG 68/r

VPUNPCKHBW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order bytes
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 69/r

VPUNPCKHWD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order words
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6A/r

VPUNPCKHDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order
doublewords from xmm2
and xmm3/m128 into
xmm1.
Vol. 2B 4-411PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-15 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG 6D/r
VPUNPCKHQDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave high-order
quadword from xmm2 and
xmm3/m128 into xmm1
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-15. PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
4-412 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] ← DEST[39:32];
DEST[15:8] ← SRC[39:32];
DEST[23:16] ← DEST[47:40];
DEST[31:24] ← SRC[47:40];
DEST[39:32] ← DEST[55:48];
DEST[47:40] ← SRC[55:48];
DEST[55:48] ← DEST[63:56];
DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] ← DEST[47:32];
DEST[31:16] ← SRC[47:32];
DEST[47:32] ← DEST[63:48];
DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] ← DEST[63:32];
Vol. 2B 4-413PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32] ← SRC[63:32];
PUNPCKHBW instruction with 128-bit operands:

DEST[7:0]← DEST[71:64];
DEST[15:8] ← SRC[71:64];
DEST[23:16] ← DEST[79:72];
DEST[31:24] ← SRC[79:72];
DEST[39:32] ← DEST[87:80];
DEST[47:40] ← SRC[87:80];
DEST[55:48] ← DEST[95:88];
DEST[63:56] ← SRC[95:88];
DEST[71:64] ← DEST[103:96];
DEST[79:72] ← SRC[103:96];
DEST[87:80] ← DEST[111:104];
DEST[95:88] ← SRC[111:104];
DEST[103:96] ← DEST[119:112];
DEST[111:104] ← SRC[119:112];
DEST[119:112] ← DEST[127:120];
DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] ← DEST[79:64];
DEST[31:16] ← SRC[79:64];
DEST[47:32] ← DEST[95:80];
DEST[63:48] ← SRC[95:80];
DEST[79:64] ← DEST[111:96];
DEST[95:80] ← SRC[111:96];
DEST[111:96] ← DEST[127:112];
DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];
DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

PUNPCKHBW
DEST[127:0]  INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHBW
4-414 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
DEST[127:0]  INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHWD
DEST[127:0]  INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHWD
DEST[127:0]  INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHDQ
DEST[127:0]  INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHDQ
DEST[127:0]  INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

PUNPCKHQDQ
DEST[127:0]  INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHQDQ
DEST[127:0]  INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW: __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW: __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD: __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD: __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ: __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ: __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ: __m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

Flags Affected

None.
Vol. 2B 4-415PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-416 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, M-Z
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 60 /r1

PUNPCKLBW mm, mm/m32

RM V/V MMX Interleave low-order bytes
from mm and mm/m32 into
mm.

66 0F 60 /r

PUNPCKLBW xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order bytes
from xmm1 and
xmm2/m128 into xmm1.

0F 61 /r1

PUNPCKLWD mm, mm/m32

RM V/V MMX Interleave low-order words
from mm and mm/m32 into
mm.

66 0F 61 /r

PUNPCKLWD xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order words
from xmm1 and
xmm2/m128 into xmm1.

0F 62 /r1

PUNPCKLDQ mm, mm/m32

RM V/V MMX Interleave low-order
doublewords from mm and
mm/m32 into mm.

66 0F 62 /r

PUNPCKLDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order
doublewords from xmm1
and xmm2/m128 into
xmm1.

66 0F 6C /r

PUNPCKLQDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order
quadword from xmm1 and
xmm2/m128 into xmm1
register.

VEX.NDS.128.66.0F.WIG 60/r

VPUNPCKLBW xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order bytes
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 61/r

VPUNPCKLWD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order words
from xmm2 and
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 62/r

VPUNPCKLDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order
doublewords from xmm2
and xmm3/m128 into
xmm1.
Vol. 2B 4-417PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-16 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F.WIG 6C/r

VPUNPCKLQDQ xmm1, xmm2,
xmm3/m128

RVM V/V AVX Interleave low-order
quadword from xmm2 and
xmm3/m128 into xmm1
register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-16. PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
4-418 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE versions: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded versions: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] ← SRC[31:24];
DEST[55:48] ← DEST[31:24];
DEST[47:40] ← SRC[23:16];
DEST[39:32] ← DEST[23:16];
DEST[31:24] ← SRC[15:8];
DEST[23:16] ← DEST[15:8];
DEST[15:8] ← SRC[7:0];
DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] ← SRC[31:16];
DEST[47:32] ← DEST[31:16];
DEST[31:16] ← SRC[15:0];
DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] ← SRC[31:0];
DEST[31:0] ← DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]← DEST[7:0];
Vol. 2B 4-419PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
DEST[15:8] ← SRC[7:0];
DEST[23:16] ← DEST[15:8];
DEST[31:24] ← SRC[15:8];
DEST[39:32] ← DEST[23:16];
DEST[47:40] ← SRC[23:16];
DEST[55:48] ← DEST[31:24];
DEST[63:56] ← SRC[31:24];
DEST[71:64] ← DEST[39:32];
DEST[79:72] ← SRC[39:32];
DEST[87:80] ← DEST[47:40];
DEST[95:88] ← SRC[47:40];
DEST[103:96] ← DEST[55:48];
DEST[111:104] ← SRC[55:48];
DEST[119:112] ← DEST[63:56];
DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0];
DEST[31:16] ← SRC[15:0];
DEST[47:32] ← DEST[31:16];
DEST[63:48] ← SRC[31:16];
DEST[79:64] ← DEST[47:32];
DEST[95:80] ← SRC[47:32];
DEST[111:96] ← DEST[63:48];
DEST[127:112] ← SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

VPUNPCKLBW
DEST[127:0]  INTERLEAVE_BYTES(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPUNPCKLWD
DEST[127:0]  INTERLEAVE_WORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0
4-420 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
VPUNPCKLDQ
DEST[127:0]  INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

VPUNPCKLQDQ
DEST[127:0]  INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW: __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW: __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD: __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD: __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

PUNPCKLDQ: __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

PUNPCKLDQ: __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ: __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
Vol. 2B 4-421PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, M-Z
PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the

default address size; it may be overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64.

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A PUSH imm8 I Valid Valid Push imm8.

68 PUSH imm16 I Valid Valid Push imm16.

68 PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (w) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
4-422 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
• Operand size. The D flag in the current code-segment descriptor determines the
default operand size; it may be overridden by instruction prefixes (66H or
REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack
pointer is decremented (2, 4 or 8).
If the source operand is an immediate and its size is less than the operand size,
a sign-extended value is pushed on the stack. If the source operand is a
segment register (16 bits) and the operand size is greater than 16 bits, a zero-
extended value is pushed on the stack.

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-
segment descriptor determines the size of the stack pointer (16 or 32 bits); in
64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing
to the stack in memory and when decrementing the stack pointer. (As stated
above, the amount by which the stack pointer is decremented is determined by
the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may
result in a misaligned stack pointer (a stack pointer that is not aligned on a
doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. If a PUSH instruction uses a memory operand in which
the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address
mode, a stack-fault exception (#SS) is generated (because the limit of the stack
segment is violated). Its delivery encounters a second stack-fault exception (for the
same reason), causing generation of a double-fault exception (#DF). Delivery of the
double-fault exception encounters a third stack-fault exception, and the logical
processor enters shutdown mode. See the discussion of the double-fault exception in
Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of IA-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation

IF SRC is a segment register
THEN
Vol. 2B 4-423PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
IF operand size = 16
THEN TEMP ← SRC;
ELSE TEMP ← ZeroExtend(SRC); (* extend to operand size *)

FI;
ELSE IF SRC is immediate byte

THEN TEMP ← SignExtend(SRC); (* extend to operand size *)
ELSE IF SRC is immediate word (* operand size is 16 *)

THEN TEMP ← SRC;
ELSE IF SRC is immediate doubleword (* operand size is 32 or 64 *)

THEN
IF operand size = 32

THEN TEMP ← SRC;
ELSE TEMP ← SignExtend(SRC); (* extend to operand size of 64 *)

FI;
ELSE IF SRC is in memory

THEN TEMP ← SRC; (* use address and operand sizes *)
ELSE TEMP ← SRC; (* SRC is register; use operand size *)

FI;
IF in 64-bit mode (* stack-address size = 64 *)

THEN
IF operand size = 64

THEN
RSP ← RSP − 8;
Memory[RSP] ← TEMP; (* Push quadword *)

ELSE (* operand size = 16 *)
RSP ← RSP − 2;
Memory[RSP] ← TEMP; (* Push word *)

FI;
ELSE IF stack-address size = 32

THEN
IF operand size = 32

THEN
ESP ← ESP − 4;
Memory[SS:ESP] ← TEMP; (* Push doubleword *)

ELSE (* operand size = 16 *)
ESP ← ESP − 2;
Memory[SS:ESP] ← TEMP; (* Push word *)

FI;
ELSE (* stack-address size = 16 *)

IF operand size = 32
THEN

SP ← SP − 4;
Memory[SS:SP] ← TEMP; (* Push doubleword *)
4-424 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
ELSE (* operand size = 16 *)
SP ← SP − 2;
Memory[SS:SP] ← TEMP; (* Push word *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
If the new value of the SP or ESP register is outside the stack
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
Vol. 2B 4-425PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-426 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, M-Z
PUSHA/PUSHAD—Push All General-Purpose Registers

Instruction Operand Encoding

Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit Mode

THEN #UD

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

60 PUSHA NP Invalid Valid Push AX, CX, DX, BX, original
SP, BP, SI, and DI.

60 PUSHAD NP Invalid Valid Push EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-427PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
FI;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
4-428 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
Vol. 2B 4-429PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, M-Z
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9C PUSHF NP Valid Valid Push lower 16 bits of
EFLAGS.

9C PUSHFD NP N.E. Valid Push EFLAGS.

9C PUSHFQ NP Valid N.E. Push RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-430 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 6 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push (EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment

boundary.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
Vol. 2B 4-431PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment

checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current

privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.
4-432 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, M-Z
PXOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the result in
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation

PXOR (128-bit Legacy SSE version)

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F EF /r1

PXOR mm, mm/m64

RM V/V MMX Bitwise XOR of mm/m64
and mm.

66 0F EF /r

PXOR xmm1, xmm2/m128

RM V/V SSE2 Bitwise XOR of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EF /r
VPXOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise XOR of
xmm3/m128 and xmm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception
Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-433PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
DEST  DEST XOR SRC
DEST[VLMAX-1:128] (Unmodified)

VPXOR (VEX.128 encoded version)
DEST  SRC1 XOR SRC2
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

PXOR: __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

PXOR: __m128i _mm_xor_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
4-434 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left
once.

REX + D0 /2 RCL r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left
once.

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left
CL times.

REX + D2 /2 RCL r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left
CL times.

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left
imm8 times.

REX + C0 /2 ib RCL r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left
imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16)
left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16)
left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16)
left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32)
left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64)
left once. Uses a 6 bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32)
left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64)
left CL times. Uses a 6 bit
count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32)
left imm8 times.

REX.W + C1 /2
ib

RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64)
left imm8 times. Uses a 6 bit
count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right
once.

REX + D0 /3 RCR r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right
once.
Vol. 2B 4-435RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right
CL times.

REX + D2 /3 RCR r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right
CL times.

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right
imm8 times.

REX + C0 /3 ib RCR r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right
imm8 times.

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16)
right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16)
right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16)
right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32)
right once. Uses a 6 bit
count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64)
right once. Uses a 6 bit
count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32)
right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64)
right CL times. Uses a 6 bit
count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32)
right imm8 times.

REX.W + C1 /3
ib

RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64)
right imm8 times. Uses a 6
bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL
times.

REX + D2 /0 ROL r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 left CL
times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8
times.
4-436 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

REX + C0 /0 ib ROL r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8
times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left
once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL
times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left
imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left
once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left
once. Uses a 6 bit count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL
times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL
times. Uses a 6 bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left
imm8 times.

C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left
imm8 times. Uses a 6 bit
count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right
once.

REX + D0 /1 ROR r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 right
once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL
times.

REX + D2 /1 ROR r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 right CL
times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right
imm8 times.

REX + C0 /1 ib ROR r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m16 right
imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right
once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right
CL times.
Vol. 2B 4-437RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through

Opcode** Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right
imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right
once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right
once. Uses a 6 bit count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right
CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right
CL times. Uses a 6 bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right
imm8 times.

REX.W + C1 /1
ib

ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right
imm8 times. Uses a 6 bit
count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 NA NA

MC ModRM:r/m (w) CL NA NA

MI ModRM:r/m (w) imm8 NA NA
4-438 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except RCL and RCR instructions only: a zero-bit rotate does nothing, that is affects
no flags). For left rotates, the OF flag is set to the exclusive OR of the CF bit (after the
rotate) and the most-significant bit of the result. For right rotates, the OF flag is set
to the exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE ← 32: tempCOUNT ← COUNT AND 1FH;
SIZE ← 64: tempCOUNT ← COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
Vol. 2B 4-439RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)
IF OperandSize = 64

THEN COUNTMASK = 3FH;
ELSE COUNTMASK = 1FH;

FI;

(* ROL instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* ROR instruction operation *)
tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE
4-440 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2B 4-441RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-442 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, M-Z
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate
reciprocals of the packed
single-precision floating-
point values in xmm2/m128
and stores the results in
xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate
reciprocals of packed single-
precision values in
xmm2/mem and stores the
results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate
reciprocals of packed single-
precision values in
ymm2/mem and stores the
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-443RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

RCPPS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VRCPPS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128]  0

VRCPPS (VEX.256 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[63:32]  APPROXIMATE(1/SRC[63:32])
DEST[95:64]  APPROXIMATE(1/SRC[95:64])
DEST[127:96]  APPROXIMATE(1/SRC[127:96])
DEST[159:128]  APPROXIMATE(1/SRC[159:128])
DEST[191:160]  APPROXIMATE(1/SRC[191:160])
4-444 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[223:192]  APPROXIMATE(1/SRC[223:192])
DEST[255:224]  APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS: __m128 _mm_rcp_ps(__m128 a)

RCPPS: __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-445RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate
reciprocal of the scalar
single-precision floating-
point value in xmm2/m32
and stores the result in
xmm1.

VEX.NDS.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate
reciprocal of the scalar
single-precision floating-
point value in xmm3/m32
and stores the result in
xmm1. Also, upper single
precision floating-point
values (bits[127:32]) from
xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-446 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

RCPSS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VRCPSS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS: __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
Vol. 2B 4-447RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the general-purpose register indicated by the modR/M:r/m field with the FS or
GS segment base address.

The destination operand may be either a 32-bit or a 64-bit general-purpose register.
The REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the
operand size is 32 bits; the upper 32 bits of the source base address (for FS or GS)
are ignored and upper 32 bits of the destination register are cleared.
This instruction is supported only in 64-bit mode.

Operation

DEST ← FS/GS segment base address;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

RDFSBASE: unsigned int _readfsbase_u32(void);

RDFSBASE: unsigned __int64 _readfsbase_u64(void);

RDGSBASE: unsigned int _readgsbase_u32(void);

RDGSBASE: unsigned __int64 _readgsbase_u64(void);

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the FS base address.

REX.W + F3 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the FS base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination reg-
ister with the GS base address.

REX.W + F3 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination reg-
ister with the GS base address.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-448 Vol. 2B RDFSBASE/RDGSBASE—Read FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in protected mode.

Real-Address Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The RDFSBASE and RDGSBASE instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0.
Vol. 2B 4-449RDFSBASE/RDGSBASE—Read FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
RDMSR—Read from Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Chapter 34, “Model-Specific Registers (MSRs),” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the IA-32 Architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR NP Valid Valid Read MSR specified by ECX
into EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-450 Vol. 2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.
Vol. 2B 4-451RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with
the supported high-order bits of the counter. The number of high-order bits loaded
into EDX is implementation specific on processors that do no support architectural
performance monitoring. The width of fixed-function and general-purpose perfor-
mance counters on processors supporting architectural performance monitoring are
reported by CPUID 0AH leaf. See below for the treatment of the EDX register for
“fast” reads.

The ECX register selects one of two type of performance counters, specifies the index
relative to the base of each counter type, and selects “fast” read mode if supported.
The two counter types are :
• General-purpose or special-purpose performance counters: The number of

general-purpose counters is model specific if the processor does not support
architectural performance monitoring, see Chapter 30 of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Special-purpose
counters are available only in selected processor members, see Section 30.13,
30.14 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. This counter type is selected if ECX[30] is clear.

• Fixed-function performance counter. The number fixed-function performance
counters is enumerated by CPUID 0AH leaf. See Chapter 30 of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters
are 40-bits for processors that do not support architectural performance monitoring
counters.The width of special-purpose performance counters are implementation
specific. The width of fixed-function performance counters and general-purpose
performance counters on processor supporting architectural performance monitoring
are reported by CPUID 0AH leaf.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC NP Valid Valid Read performance-
monitoring counter
specified by ECX into
EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-452 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Table 4-15 lists valid indices of the general-purpose and special-purpose perfor-
mance counters according to the derived DisplayFamily_DisplayModel values of
CPUID encoding for each processor family (see CPUID instruction in Chapter 3,
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using

Table 4-15. Valid General and Special Purpose Performance Counter Index Range for
RDPMC

Processor Family DisplayFamily_Display
Model/ Other
Signatures

Valid PMC
Index Range

General-
purpose
Counters

P6 06H_01H, 06H_03H,
06H_05H, 06H_06H,
06H_07H, 06H_08H,
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon
processors

0FH_00H, 0FH_01H,
0FH_02H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H,
0FH_06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors
with L3

0FH_03H, 0FH_04H)
and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel®
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor,
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100
series with L3

(0FH_06H) and (L3 is
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™2 Duo processor
family, Intel Xeon processor
family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400
series

(06H_1DH) ≥ 0 and ≤ 9 0, 1

Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor, Intel
Xeon processors 5500 series

06H_1AH, 06H_1EH,
06H_1FH, 06H_2EH

0-3 0, 1, 2, 3
Vol. 2B 4-453RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25
are also 32-bit counters.

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, 5300 and 7400
series, the fixed-function performance counters are 40-bits wide; they can be
accessed by RDMPC with ECX between from 4000_0000H and 4000_0002H.

On Intel Xeon processor 7400 series, there are eight 32-bit special-purpose counters
addressable with indices 2-9, ECX[30]=0.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Chapter 19, “Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and IA-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.
4-454 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Operation

(* Intel Core i7 processor family and Intel Xeon processor 3400, 5500 series*)

Most significant counter bit (MSCB) = 47

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300, 7400 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid special-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;
(* Processors with CPUID family 15 *)
Vol. 2B 4-455RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30:0] = 0:17)

THEN IF ECX[31] = 0
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-18. *)

GP(0);
FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.
If an invalid performance counter index is specified (see
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.
4-456 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see

Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-15).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.
If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-15).

#UD If the LOCK prefix is used.
Vol. 2B 4-457RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-Z
RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register.
The size of the random value is determined by the destination register size and oper-
ating mode. The Carry Flag indicates whether a random value is available at the
time the instruction is executed. CF=1 indicates that the data in the destination is
valid. Otherwise CF=0 and the data in the destination operand will be returned as
zeros for the specified width. All other flags are forced to 0 in either situation. Soft-
ware must check the state of CF=1 for determining if a valid random value has been
returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, Section 7.3.18,
“Random Number Generator Instruction”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix
in the form of REX.B permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN

CASE of
osize is 64: DEST[63:0] ← HW_RND_GEN.data;
osize is 32: DEST[31:0] ← HW_RND_GEN.data;

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random
number and store in the
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random
number and store in the
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random
number and store in the
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-458 Vol. 2B RDRAND—Read Random Number

INSTRUCTION SET REFERENCE, M-Z
osize is 16: DEST[15:0] ← HW_RND_GEN.data;
ESAC
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC
CF ← 0;

FI
OF, SF, ZF, AF, PF ← 0;

Flags Affected

All flags are affected.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND: int _rdrand16_step(unsigned short *);

RDRAND: int _rdrand32_step(unsigned int *);

RDRAND: int _rdrand64_step(unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-459RDRAND—Read Random Number

INSTRUCTION SET REFERENCE, M-Z
RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait
until all previous instructions have been executed before reading the counter. Simi-
larly, subsequent instructions may begin execution before the read operation is
performed. If software requires RDTSC to be executed only after all previous instruc-
tions have completed locally, it can either use RDTSCP (if the processor supports that
instruction) or execute the sequence LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter
into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-460 Vol. 2B RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-Z
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-461RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-Z
RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers and also loads the IA32_TSC_AUX MSR (address
C000_0103H) into the ECX register. The EDX register is loaded with the high-order
32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of
the IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of
IA32_TSC_AUX MSR. On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSCP instruction as follows. When the TSD
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the
flag is set, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed
before reading the counter. However, subsequent instructions may begin execution
before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX
bit 27. If the bit is set to 1 then RDTSCP is present on the processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp
counter and 32-bit
IA32_TSC_AUX value into
EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-462 Vol. 2B RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-Z
THEN
EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-463RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-Z
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX NP Valid Valid Input (E)CX bytes from port
DX into ES:[(E)DI].

F3 6C REP INS m8, DX NP Valid N.E. Input RCX bytes from port
DX into [RDI].

F3 6D REP INS m16, DX NP Valid Valid Input (E)CX words from port
DX into ES:[(E)DI.]

F3 6D REP INS m32, DX NP Valid Valid Input (E)CX doublewords
from port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX NP Valid N.E. Input RCX default size from
port DX into [RDI].

F3 A4 REP MOVS m8, m8 NP Valid Valid Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 NP Valid N.E. Move RCX bytes from [RSI]
to [RDI].

F3 A5 REP MOVS m16,
m16

NP Valid Valid Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32,
m32

NP Valid Valid Move (E)CX doublewords
from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A5 REP MOVS m64,
m64

NP Valid N.E. Move RCX quadwords from
[RSI] to [RDI].

F3 6E REP OUTS DX,
r/m8

NP Valid Valid Output (E)CX bytes from
DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX,
r/m8*

NP Valid N.E. Output RCX bytes from [RSI]
to port DX.

F3 6F REP OUTS DX,
r/m16

NP Valid Valid Output (E)CX words from
DS:[(E)SI] to port DX.

F3 6F REP OUTS DX,
r/m32

NP Valid Valid Output (E)CX doublewords
from DS:[(E)SI] to port DX.

F3 REX.W 6F REP OUTS DX,
r/m32

NP Valid N.E. Output RCX default size
from [RSI] to port DX.

F3 AC REP LODS AL NP Valid Valid Load (E)CX bytes from
DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL NP Valid N.E. Load RCX bytes from [RSI]
to AL.

F3 AD REP LODS AX NP Valid Valid Load (E)CX words from
DS:[(E)SI] to AX.
4-464 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
F3 AD REP LODS EAX NP Valid Valid Load (E)CX doublewords
from DS:[(E)SI] to EAX.

F3 REX.W AD REP LODS RAX NP Valid N.E. Load RCX quadwords from
[RSI] to RAX.

F3 AA REP STOS m8 NP Valid Valid Fill (E)CX bytes at ES:[(E)DI]
with AL.

F3 REX.W AA REP STOS m8 NP Valid N.E. Fill RCX bytes at [RDI] with
AL.

F3 AB REP STOS m16 NP Valid Valid Fill (E)CX words at ES:[(E)DI]
with AX.

F3 AB REP STOS m32 NP Valid Valid Fill (E)CX doublewords at
ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 NP Valid N.E. Fill RCX quadwords at [RDI]
with RAX.

F3 A6 REPE CMPS m8,
m8

NP Valid Valid Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8,
m8

NP Valid N.E. Find non-matching bytes in
[RDI] and [RSI].

F3 A7 REPE CMPS m16,
m16

NP Valid Valid Find nonmatching words in
ES:[(E)DI] and DS:[(E)SI].

F3 A7 REPE CMPS m32,
m32

NP Valid Valid Find nonmatching
doublewords in ES:[(E)DI]
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64,
m64

NP Valid N.E. Find non-matching
quadwords in [RDI] and
[RSI].

F3 AE REPE SCAS m8 NP Valid Valid Find non-AL byte starting at
ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 NP Valid N.E. Find non-AL byte starting at
[RDI].

F3 AF REPE SCAS m16 NP Valid Valid Find non-AX word starting
at ES:[(E)DI].

F3 AF REPE SCAS m32 NP Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 NP Valid N.E. Find non-RAX quadword
starting at [RDI].

F2 A6 REPNE CMPS m8,
m8

NP Valid Valid Find matching bytes in
ES:[(E)DI] and DS:[(E)SI].

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2B 4-465REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-16.

F2 REX.W A6 REPNE CMPS m8,
m8

NP Valid N.E. Find matching bytes in [RDI]
and [RSI].

F2 A7 REPNE CMPS m16,
m16

NP Valid Valid Find matching words in
ES:[(E)DI] and DS:[(E)SI].

F2 A7 REPNE CMPS m32,
m32

NP Valid Valid Find matching doublewords
in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64,
m64

NP Valid N.E. Find matching doublewords
in [RDI] and [RSI].

F2 AE REPNE SCAS m8 NP Valid Valid Find AL, starting at
ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 NP Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 NP Valid Valid Find AX, starting at
ES:[(E)DI].

F2 AF REPNE SCAS m32 NP Valid Valid Find EAX, starting at
ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 NP Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
4-466 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can
be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address
size attribute. Thus the default count register is RCX; REX.W has no effect on the
address size and the count register. In 64-bit mode, if 67H is used to override
address size attribute, the count register is ECX and any implicit source/destination
operand will use the corresponding 32-bit index register. See the summary chart at
the beginning of this section for encoding data and limits.

Table 4-16. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.
Vol. 2B 4-467REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
Operation
IF AddressSize = 16
 THEN
 Use CX for CountReg;
 Implicit Source/Dest operand for memory use of SI/DI;
 ELSE IF AddressSize = 64
 THEN Use RCX for CountReg;
 Implicit Source/Dest operand for memory use of RSI/RDI;
 ELSE
 Use ECX for CountReg;
 Implicit Source/Dest operand for memory use of ESI/EDI;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
4-468 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, M-Z
RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment

(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

• Far return — A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level
than that of the currently executing program or procedure.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling
procedure.

CB RET NP Valid Valid Far return to calling
procedure.

C2 iw RET imm16 I Valid Valid Near return to calling
procedure and pop imm16
bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling
procedure and pop imm16
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA
Vol. 2B 4-469RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack-address size,
i.e. 64 bits.

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
4-470 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 64
THEN

RSP ← RSP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)
Vol. 2B 4-471RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
SP ← SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
4-472 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF OperandSize = 32
THEN

EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) ← CPL;
Vol. 2B 4-473RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)
4-474 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
Vol. 2B 4-475RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
4-476 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
RSP ← RSP + SRC;
FI;

FI;
FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand
Vol. 2B 4-477RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
4-478 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP ← RSP + SRC;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.
Vol. 2B 4-479RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the
CPL.
If the return code or stack segment selector index is not within
its descriptor table limits.
If the return code segment descriptor does not indicate a code
segment.
If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector
If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code

segment limit
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code

segment limit
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking

is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.
4-480 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.
If the stack segment selector is NULL going back to compatibility
mode.
If the stack segment selector is NULL going back to CPL3 64-bit
mode.
If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not
indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit
and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-481RET—Return from Procedure

INSTRUCTION SET REFERENCE, M-Z
ROUNDPD — Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Round packed double
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128,
imm8

RMI V/V AVX Round packed double-
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256,
imm8

RMI V/V AVX Round packed double-
precision floating-point
values in ymm2/m256 and
place the result in ymm1.
The rounding mode is
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-482 Vol. 2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_M(SRC[127:64]);

Figure 4-17. Bit Control Fields of Immediate Byte for ROUNDxx Instruction

Table 4-17. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding
Mode

RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two
values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise
result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the
infinitely precise result.

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
Vol. 2B 4-483ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ELSE // rounding mode is determined by IMM8.RC
DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

ROUNDPD (128-bit Legacy SSE version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPD (VEX.128 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128]  0

VROUNDPD (VEX.256 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[191:128]  RoundToInteger(SRC[191:128]], ROUND_CONTROL)
DEST[255:192]  RoundToInteger(SRC[255:192]], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);

__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
4-484 Vol. 2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDPS — Round Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 4 single-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 08
/r ib
ROUNDPS xmm1, xmm2/m128,
imm8

RMI V/V SSE4_1 Round packed single
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.128.66.0F3A.WIG 08 /r ib
VROUNDPS xmm1, xmm2/m128,
imm8

RMI V/V AVX Round packed single-
precision floating-point
values in xmm2/m128 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.256.66.0F3A.WIG 08 /r ib
VROUNDPS ymm1, ymm2/m256,
imm8

RMI V/V AVX Round packed single-
precision floating-point
values in ymm2/m256 and
place the result in ymm1.
The rounding mode is
determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Vol. 2B 4-485ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32]  ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64]  ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96]  ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

ROUNDPS(128-bit Legacy SSE version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPS (VEX.128 encoded version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[VLMAX-1:128]  0

VROUNDPS (VEX.256 encoded version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
4-486 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32]  RoundToInteger(SRC[63:32], ROUND_CONTROL)
DEST[95:64]  RoundToInteger(SRC[95:64]], ROUND_CONTROL)
DEST[127:96]  RoundToInteger(SRC[127:96]], ROUND_CONTROL)
DEST[159:128]  RoundToInteger(SRC[159:128]], ROUND_CONTROL)
DEST[191:160]  RoundToInteger(SRC[191:160]], ROUND_CONTROL)
DEST[223:192]  RoundToInteger(SRC[223:192]], ROUND_CONTROL)
DEST[255:224]  RoundToInteger(SRC[255:224]], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_ps(__m128 s1, int iRoundMode);

__m128 _mm_floor_ps(__m128 s1);

__m128 _mm_ceil_ps(__m128 s1)

__m256 _mm256_round_ps(__m256 s1, int iRoundMode);

__m256 _mm256_floor_ps(__m256 s1);

__m256 _mm256_ceil_ps(__m256 s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPS.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-487ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDSD — Round Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the DP FP value in the lower qword of the source operand (second operand)
using the rounding mode specified in the immediate operand (third operand) and
place the result in the destination operand (first operand). The rounding process
rounds a double-precision floating-point input to an integer value and returns the
integer result as a double precision floating-point value in the lowest position. The
upper double precision floating-point value in the destination is retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0B /r ib
ROUNDSD xmm1, xmm2/m64, imm8

RMI V/V SSE4_1 Round the low packed
double precision floating-
point value in xmm2/m64
and place the result in
xmm1. The rounding mode
is determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0B /r ib
VROUNDSD xmm1, xmm2,
xmm3/m64, imm8

RVMI V/V AVX Round the low packed
double precision floating-
point value in xmm3/m64
and place the result in
xmm1. The rounding mode
is determined by imm8.
Upper packed double
precision floating-point
value (bits[127:64]) from
xmm2 is copied to
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-488 Vol. 2B ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

ROUNDSD (128-bit Legacy SSE version)
DEST[63:0]  RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[VLMAX-1:64] (Unmodified)

VROUNDSD (VEX.128 encoded version)
DEST[63:0]  RoundToInteger(SRC2[63:0], ROUND_CONTROL)
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD: __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSD.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-489ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ROUNDSS — Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single-precision floating-point value in the lowest dword of the source
operand (second operand) using the rounding mode specified in the immediate
operand (third operand) and place the result in the destination operand (first
operand). The rounding process rounds a single-precision floating-point input to an
integer value and returns the result as a single-precision floating-point value in the
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-17. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-17 lists the
encoded values for rounding-mode field).

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single
precision floating-point
value in xmm2/m32 and
place the result in xmm1.
The rounding mode is
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0A ib
VROUNDSS xmm1, xmm2,
xmm3/m32, imm8

RVMI V/V AVX Round the low packed single
precision floating-point
value in xmm3/m32 and
place the result in xmm1.
The rounding mode is
determined by imm8. Also,
upper packed single
precision floating-point
values (bits[127:32]) from
xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-490 Vol. 2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

IF (imm[2] = ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0]  ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0]  ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

ROUNDSS (128-bit Legacy SSE version)
DEST[31:0]  RoundToInteger(SRC[31:0], ROUND_CONTROL)
DEST[VLMAX-1:32] (Unmodified)

VROUNDSS (VEX.128 encoded version)
DEST[31:0]  RoundToInteger(SRC2[31:0], ROUND_CONTROL)
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS: __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the
MXSCSR is ignored and precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-491ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
RSM—Resume from System Management Mode

Instruction Operand Encoding

Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:
• Any reserved bit of CR4 is set to 1.
• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and

CD=0).
• (Intel Pentium and Intel486™ processors only.) The value stored in the state

dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 29, “System Management Mode,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C, for more information about SMM and
the behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH)

THEN
ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AA RSM NP Invalid Valid Resume operation of
interrupted program.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-492 Vol. 2B RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the

processor is not in SMM.
If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-493RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, M-Z
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 52 /r

RSQRTPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate
reciprocals of the square
roots of the packed single-
precision floating-point
values in xmm2/m128 and
stores the results in xmm1.

VEX.128.0F.WIG 52 /r

VRSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate
reciprocals of the square
roots of packed single-
precision values in
xmm2/mem and stores the
results in xmm1.

VEX.256.0F.WIG 52 /r

VRSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate
reciprocals of the square
roots of packed single-
precision values in
ymm2/mem and stores the
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-494 Vol. 2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

RSQRTPS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128] (Unmodified)

VRSQRTPS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[VLMAX-1:128]  0

VRSQRTPS (VEX.256 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32]  APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64]  APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96]  APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[159:128]  APPROXIMATE(1/SQRT(SRC2[159:128]))
DEST[191:160]  APPROXIMATE(1/SQRT(SRC2[191:160]))
DEST[223:192]  APPROXIMATE(1/SQRT(SRC2[223:192]))
DEST[255:224]  APPROXIMATE(1/SQRT(SRC2[255:224]))
Vol. 2B 4-495RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS: __m128 _mm_rsqrt_ps(__m128 a)
RSQRTPS: __m256 _mm256_rsqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
4-496 Vol. 2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, M-Z
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate
reciprocal of the square root
of the low single-precision
floating-point value in
xmm2/m32 and stores the
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2,
xmm3/m32

RVM V/V AVX Computes the approximate
reciprocal of the square root
of the low single precision
floating-point value in
xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-
point values (bits[127:32])
from xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-497RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, M-Z
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Operation

RSQRTSS (128-bit Legacy SSE version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[VLMAX-1:32] (Unmodified)

VRSQRTSS (VEX.128 encoded version)
DEST[31:0]  APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32]  SRC1[31:0]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS: __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
4-498 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, M-Z
SAHF—Store AH into Flags

Instruction Operand Encoding

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001H.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0,
respectively.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9E SAHF NP Invalid* Valid Loads SF, ZF, AF, PF, and CF
from AH into EFLAGS
register.

NOTES:
* Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-499SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001H.ECX[0] = 0.

If the LOCK prefix is used.
4-500 Vol. 2B SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, M-Z
SAL/SAR/SHL/SHR—Shift
Opcode*** Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SAL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SAL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SAL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SAL r/m16, 1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL
times.

C1 /4 ib SAL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SAL r/m32, 1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL
times.

REX.W + D3 /4 SAL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL
times.

C1 /4 ib SAL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4
ib

SAL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8
times.

D0 /7 SAR r/m8, 1 M1 Valid Valid Signed divide* r/m8 by 2,
once.

REX + D0 /7 SAR r/m8**, 1 M1 Valid N.E. Signed divide* r/m8 by 2,
once.

D2 /7 SAR r/m8, CL MC Valid Valid Signed divide* r/m8 by 2, CL
times.

REX + D2 /7 SAR r/m8**, CL MC Valid N.E. Signed divide* r/m8 by 2, CL
times.

C0 /7 ib SAR r/m8, imm8 MI Valid Valid Signed divide* r/m8 by 2,
imm8 time.

REX + C0 /7 ib SAR r/m8**, imm8 MI Valid N.E. Signed divide* r/m8 by 2,
imm8 times.
Vol. 2B 4-501SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D1 /7 SAR r/m16,1 M1 Valid Valid Signed divide* r/m16 by 2,
once.

D3 /7 SAR r/m16, CL MC Valid Valid Signed divide* r/m16 by 2,
CL times.

C1 /7 ib SAR r/m16, imm8 MI Valid Valid Signed divide* r/m16 by 2,
imm8 times.

D1 /7 SAR r/m32, 1 M1 Valid Valid Signed divide* r/m32 by 2,
once.

REX.W + D1 /7 SAR r/m64, 1 M1 Valid N.E. Signed divide* r/m64 by 2,
once.

D3 /7 SAR r/m32, CL MC Valid Valid Signed divide* r/m32 by 2,
CL times.

REX.W + D3 /7 SAR r/m64, CL MC Valid N.E. Signed divide* r/m64 by 2,
CL times.

C1 /7 ib SAR r/m32, imm8 MI Valid Valid Signed divide* r/m32 by 2,
imm8 times.

REX.W + C1 /7
ib

SAR r/m64, imm8 MI Valid N.E. Signed divide* r/m64 by 2,
imm8 times

D0 /4 SHL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SHL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SHL r/m16,1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL
times.

C1 /4 ib SHL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SHL r/m32,1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SHL r/m64,1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL
times.

REX.W + D3 /4 SHL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL
times.
4-502 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C1 /4 ib SHL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4
ib

SHL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8
times.

D0 /5 SHR r/m8,1 M1 Valid Valid Unsigned divide r/m8 by 2,
once.

REX + D0 /5 SHR r/m8**, 1 M1 Valid N.E. Unsigned divide r/m8 by 2,
once.

D2 /5 SHR r/m8, CL MC Valid Valid Unsigned divide r/m8 by 2,
CL times.

REX + D2 /5 SHR r/m8**, CL MC Valid N.E. Unsigned divide r/m8 by 2,
CL times.

C0 /5 ib SHR r/m8, imm8 MI Valid Valid Unsigned divide r/m8 by 2,
imm8 times.

REX + C0 /5 ib SHR r/m8**, imm8 MI Valid N.E. Unsigned divide r/m8 by 2,
imm8 times.

D1 /5 SHR r/m16, 1 M1 Valid Valid Unsigned divide r/m16 by 2,
once.

D3 /5 SHR r/m16, CL MC Valid Valid Unsigned divide r/m16 by 2,
CL times

C1 /5 ib SHR r/m16, imm8 MI Valid Valid Unsigned divide r/m16 by 2,
imm8 times.

D1 /5 SHR r/m32, 1 M1 Valid Valid Unsigned divide r/m32 by 2,
once.

REX.W + D1 /5 SHR r/m64, 1 M1 Valid N.E. Unsigned divide r/m64 by 2,
once.

D3 /5 SHR r/m32, CL MC Valid Valid Unsigned divide r/m32 by 2,
CL times.

REX.W + D3 /5 SHR r/m64, CL MC Valid N.E. Unsigned divide r/m64 by 2,
CL times.

C1 /5 ib SHR r/m32, imm8 MI Valid Valid Unsigned divide r/m32 by 2,
imm8 times.

REX.W + C1 /5
ib

SHR r/m64, imm8 MI Valid N.E. Unsigned divide r/m64 by 2,
imm8 times.
Vol. 2B 4-503SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to 0 to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
***See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (r, w) 1 NA NA

MC ModRM:r/m (r, w) CL NA NA

MI ModRM:r/m (r, w) imm8 NA NA
4-504 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN

countMASK ← 3FH;
ELSE

countMASK ← 1FH;
FI

tempCOUNT ← (COUNT AND countMASK);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
Vol. 2B 4-505SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
ELSE (* Instruction is SAR or SHR *)
CF ← LSB(DEST);

FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* Instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
4-506 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
Vol. 2B 4-507SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-508 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, M-Z
SBB—Integer Subtraction with Borrow

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow
imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow
imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8
from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 MI Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16,
imm16

MI Valid Valid Subtract with borrow
imm16 from r/m16.

81 /3 id SBB r/m32,
imm32

MI Valid Valid Subtract with borrow
imm32 from r/m32.

REX.W + 81 /3
id

SBB r/m64,
imm32

MI Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REX.W + 83 /3
ib

SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8
from r/m8.

REX + 18 /r SBB r/m8*, r8 MR Valid N.E. Subtract with borrow r8
from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16
from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32
from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64
from r/m64.
Vol. 2B 4-509SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8
from r8.

REX + 1A /r SBB r8*, r/m8* RM Valid N.E. Subtract with borrow r/m8
from r8.

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16
from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32
from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (w) imm8/16/32 NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-510 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← (DEST – (SRC + CF));

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
Vol. 2B 4-511SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-512 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, M-Z
SCAS/SCASB/SCASW/SCASD—Scan String

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AE SCAS m8 NP Valid Valid Compare AL with byte at
ES:(E)DI or RDI, then set
status flags.*

AF SCAS m16 NP Valid Valid Compare AX with word at
ES:(E)DI or RDI, then set
status flags.*

AF SCAS m32 NP Valid Valid Compare EAX with
doubleword at ES(E)DI or
RDI then set status flags.*

REX.W + AF SCAS m64 NP Valid N.E. Compare RAX with
quadword at RDI or EDI then
set status flags.

AE SCASB NP Valid Valid Compare AL with byte at
ES:(E)DI or RDI then set
status flags.*

AF SCASW NP Valid Valid Compare AX with word at
ES:(E)DI or RDI then set
status flags.*

AF SCASD NP Valid Valid Compare EAX with
doubleword at ES:(E)DI or
RDI then set status flags.*

REX.W + AF SCASQ NP Valid N.E. Compare RAX with
quadword at RDI or EDI then
set status flags.

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit

mode, only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-513SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
4-514 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4; FI;
Vol. 2B 4-515SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
FI;
ELSE IF (Quadword comparison using REX.W)

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

F

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the

ES segment.
If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES
segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
4-516 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-517SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, M-Z
SETcc—Set Byte on Condition
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and
ZF=0).

REX + 0F 97 SETA r/m8* M Valid N.E. Set byte if above (CF=0 and
ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal
(CF=0).

REX + 0F 93 SETAE r/m8* M Valid N.E. Set byte if above or equal
(CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal
(CF=1 or ZF=1).

REX + 0F 96 SETBE r/m8* M Valid N.E. Set byte if below or equal
(CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0
and SF=OF).

REX + 0F 9F SETG r/m8* M Valid N.E. Set byte if greater (ZF=0
and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal
(SF=OF).

REX + 0F 9D SETGE r/m8* M Valid N.E. Set byte if greater or equal
(SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal
(ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m8* M Valid N.E. Set byte if less or equal
(ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1
or ZF=1).
4-518 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
REX + 0F 96 SETNA r/m8* M Valid N.E. Set byte if not above (CF=1
or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or
equal (CF=1).

REX + 0F 92 SETNAE r/m8* M Valid N.E. Set byte if not above or
equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or
equal (CF=0 and ZF=0).

REX + 0F 97 SETNBE r/m8* M Valid N.E. Set byte if not below or
equal (CF=0 and ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater
(ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m8* M Valid N.E. Set byte if not greater
(ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or
equal (SF≠ OF).

REX + 0F 9C SETNGE r/m8* M Valid N.E. Set byte if not greater or
equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal
(ZF=0 and SF=OF).

REX + 0F 9F SETNLE r/m8* M Valid N.E. Set byte if not less or equal
(ZF=0 and SF=OF).

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow
(OF=0).

REX + 0F 91 SETNO r/m8* M Valid N.E. Set byte if not overflow
(OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
Vol. 2B 4-519SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

REX + 0F 9B SETNP r/m8* M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m8* M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even
(PF=1).

REX + 0F 9A SETPE r/m8* M Valid N.E. Set byte if parity even
(PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd
(PF=0).

REX + 0F 9B SETPO r/m8* M Valid N.E. Set byte if parity odd
(PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* M Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description
4-520 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS
Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST ← 1;
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
Vol. 2B 4-521SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
4-522 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, M-Z
SFENCE—Store Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes the SFENCE instruction in program order becomes globally
visible before any store instruction that follows the SFENCE instruction. The SFENCE
instruction is ordered with respect to store instructions, other SFENCE instructions,
any LFENCE and MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of ensuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /7 SFENCE NP Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-523SFENCE—Store Fence

INSTRUCTION SET REFERENCE, M-Z
SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill
these bits with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] ← GDTR(Limit);

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-524 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
Vol. 2B 4-525SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-526 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit 0 of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits 0 through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A4 SHLD r/m16, r16,
imm8

MRI Valid Valid Shift r/m16 to left imm8
places while shifting bits
from r16 in from the right.

0F A5 SHLD r/m16, r16,
CL

MRC Valid Valid Shift r/m16 to left CL places
while shifting bits from r16
in from the right.

0F A4 SHLD r/m32, r32,
imm8

MRI Valid Valid Shift r/m32 to left imm8
places while shifting bits
from r32 in from the right.

REX.W + 0F A4 SHLD r/m64, r64,
imm8

MRI Valid N.E. Shift r/m64 to left imm8
places while shifting bits
from r64 in from the right.

0F A5 SHLD r/m32, r32,
CL

MRC Valid Valid Shift r/m32 to left CL places
while shifting bits from r32
in from the right.

REX.W + 0F A5 SHLD r/m64, r64,
CL

MRC Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64
in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
Vol. 2B 4-527SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask
to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
4-528 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
Vol. 2B 4-529SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-530 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, M-Z
SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AC SHRD r/m16, r16,
imm8

MRI Valid Valid Shift r/m16 to right imm8
places while shifting bits
from r16 in from the left.

0F AD SHRD r/m16, r16,
CL

MRC Valid Valid Shift r/m16 to right CL
places while shifting bits
from r16 in from the left.

0F AC SHRD r/m32, r32,
imm8

MRI Valid Valid Shift r/m32 to right imm8
places while shifting bits
from r32 in from the left.

REX.W + 0F AC SHRD r/m64, r64,
imm8

MRI Valid N.E. Shift r/m64 to right imm8
places while shifting bits
from r64 in from the left.

0F AD SHRD r/m32, r32,
CL

MRC Valid Valid Shift r/m32 to right CL
places while shifting bits
from r32 in from the left.

REX.W + 0F AD SHRD r/m64, r64,
CL

MRC Valid N.E. Shift r/m64 to right CL
places while shifting bits
from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
Vol. 2B 4-531SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask
to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.
4-532 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
Vol. 2B 4-533SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used.
4-534 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, M-Z
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see
Figure 4-18). The select operand (third operand) determines which values are
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F C6 /r ib

SHUFPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle packed double-
precision floating-point
values selected by imm8
from xmm1 and
xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG C6 /r ib

VSHUFPD xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point
values selected by imm8
from xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG C6 /r ib

VSHUFPD ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed double-
precision floating-point
values selected by imm8
from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
Vol. 2B 4-535SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit 0
selects which value is moved from the destination operand to the result (where 0
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

IF SELECT[0] = 0
THEN DEST[63:0] ← DEST[63:0];
ELSE DEST[63:0] ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64] ← SRC[63:0];
ELSE DEST[127:64] ← SRC[127:64]; FI;

SHUFPD (128-bit Legacy SSE version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]

Figure 4-18. SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST
4-536 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ELSE DEST[127:64]  SRC2[127:64] FI;
DEST[VLMAX-1:128] (Unmodified)

VSHUFPD (VEX.128 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]
ELSE DEST[127:64]  SRC2[127:64] FI;

DEST[VLMAX-1:128]  0

VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0]  SRC1[63:0]
ELSE DEST[63:0]  SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64]  SRC2[63:0]
ELSE DEST[127:64]  SRC2[127:64] FI;

IF IMM0[2] = 0
THEN DEST[191:128]  SRC1[191:128]
ELSE DEST[191:128]  SRC1[255:192] FI;

IF IMM0[3] = 0
THEN DEST[255:192]  SRC2[191:128]
ELSE DEST[255:192]  SRC2[255:192] FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD: __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)
VSHUFPD: __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-537SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;
moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see
Figure 4-19). The select operand (third operand) determines which values are
moved to the destination operand.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
determines which values are moved to the destination operand.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C6 /r ib

SHUFPS xmm1, xmm2/m128, imm8

RMI V/V SSE Shuffle packed single-
precision floating-point
values selected by imm8
from xmm1 and
xmm1/m128 to xmm1.

VEX.NDS.128.0F.WIG C6 /r ib

VSHUFPS xmm1, xmm2,
xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point
values selected by imm8
from xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG C6 /r ib

VSHUFPS ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed single-
precision floating-point
values selected by imm8
from ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
4-538 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits 0
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] ← DEST[31:0];
1: DEST[31:0] ← DEST[63:32];
2: DEST[31:0] ← DEST[95:64];
3: DEST[31:0] ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] ← DEST[31:0];
1: DEST[63:32] ← DEST[63:32];
2: DEST[63:32] ← DEST[95:64];
3: DEST[63:32] ← DEST[127:96];

Figure 4-19. SHUFPS Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST
Vol. 2B 4-539SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] ← SRC[31:0];
1: DEST[95:64] ← SRC[63:32];
2: DEST[95:64] ← SRC[95:64];
3: DEST[95:64] ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] ← SRC[31:0];
1: DEST[127:96] ← SRC[63:32];
2: DEST[127:96] ← SRC[95:64];
3: DEST[127:96] ← SRC[127:96];

ESAC;

SHUFPS (128-bit Legacy SSE version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128] (Unmodified)

VSHUFPS (VEX.128 encoded version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[VLMAX-1:128]  0

VSHUFPS (VEX.256 encoded version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128]  Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160]  Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192]  Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224]  Select4(SRC2[255:128], imm8[7:6]);

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPS: __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)
VSHUFPS: __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
4-540 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-541SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with 0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize = 16
THEN

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-542 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
Vol. 2B 4-543SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
4-544 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector
from LDTR in r/m16.

REX.W + 0F 00
/0

SLDT r64/m16 M Valid Valid Stores segment selector
from LDTR in r64/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) LDTR NA NA
Vol. 2B 4-545SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
4-546 Vol. 2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, M-Z
SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CR0 are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word
to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word
in low-order 16 bits of
r32/m16; high-order 16 bits
of r32 are undefined.

REX.W + 0F 01
/4

SMSW r64/m16 M Valid Valid Store machine status word
in low-order 16 bits of
r64/m16; high-order 16 bits
of r32 are undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
Vol. 2B 4-547SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← CR0[15:0];
(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
4-548 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-549SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, M-Z
SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 51 /r

SQRTPD xmm1, xmm2/m128

RM V/V SSE2 Computes square roots of
the packed double-precision
floating-point values in
xmm2/m128 and stores the
results in xmm1.

VEX.128.66.0F.WIG 51 /r

VSQRTPD xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of
the packed double-precision
floating-point values in
xmm2/m128 and stores the
result in xmm1.

VEX.256.66.0F.WIG 51/r

VSQRTPD ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of
the packed double-precision
floating-point values in
ymm2/m256 and stores the
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-550 Vol. 2B SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

SQRTPD (128-bit Legacy SSE version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPD (VEX.128 encoded version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[VLMAX-1:128]  0

VSQRTPD (VEX.256 encoded version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[127:64]  SQRT(SRC[127:64])
DEST[191:128]  SQRT(SRC[191:128])
DEST[255:192]  SQRT(SRC[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD: __m128d _mm_sqrt_pd (m128d a)

SQRTPD: __m256d _mm256_sqrt_pd (__m256d a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-551SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 51 /r

SQRTPS xmm1, xmm2/m128

RM V/V SSE Computes square roots of
the packed single-precision
floating-point values in
xmm2/m128 and stores the
results in xmm1.

VEX.128.0F.WIG 51 /r

VSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of
the packed single-precision
floating-point values in
xmm2/m128 and stores the
result in xmm1.

VEX.256.0F.WIG 51/r

VSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of
the packed single-precision
floating-point values in
ymm2/m256 and stores the
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
4-552 Vol. 2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation

SQRTPS (128-bit Legacy SSE version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VSQRTPS (VEX.128 encoded version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[VLMAX-1:128]  0

VSQRTPS (VEX.256 encoded version)
DEST[31:0]  SQRT(SRC[31:0])
DEST[63:32]  SQRT(SRC[63:32])
DEST[95:64]  SQRT(SRC[95:64])
DEST[127:96]  SQRT(SRC[127:96])
DEST[159:128]  SQRT(SRC[159:128])
DEST[191:160]  SQRT(SRC[191:160])
DEST[223:192]  SQRT(SRC[223:192])
DEST[255:224]  SQRT(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS: __m128 _mm_sqrt_ps(__m128 a)

SQRTPS: __m256 _mm256_sqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.
Vol. 2B 4-553SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
4-554 Vol. 2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:64) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 51 /r

SQRTSD xmm1, xmm2/m64

RM V/V SSE2 Computes square root of
the low double-precision
floating-point value in
xmm2/m64 and stores the
results in xmm1.

VEX.NDS.LIG.F2.0F.WIG 51/

VSQRTSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Computes square root of
the low double-precision
floating point value in
xmm3/m64 and stores the
results in xmm2. Also, upper
double precision floating-
point value (bits[127:64])
from xmm2 is copied to
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-555SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

SQRTSD (128-bit Legacy SSE version)
DEST[63:0]  SQRT(SRC[63:0])
DEST[VLMAX-1:64] (Unmodified)

VSQRTSD (VEX.128 encoded version)
DEST[63:0]  SQRT(SRC2[63:0])
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD: __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
4-556 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Instruction Operand Encoding

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (VLMAX-1:32) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 51 /r

SQRTSS xmm1, xmm2/m32

RM V/V SSE Computes square root of
the low single-precision
floating-point value in
xmm2/m32 and stores the
results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 51

VSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes square root of
the low single-precision
floating-point value in
xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-
point values (bits[127:32])
from xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-557SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
Operation

SQRTSS (128-bit Legacy SSE version)
DEST[31:0]  SQRT(SRC2[31:0])
DEST[VLMAX-1:32] (Unmodified)

VSQRTSS (VEX.128 encoded version)
DEST[31:0]  SQRT(SRC2[31:0])
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS: __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
4-558 Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, M-Z
STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F9 STC NP Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-559STC—Set Carry Flag

INSTRUCTION SET REFERENCE, M-Z
STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FD STD NP Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-560 Vol. 2B STD—Set Direction Flag

INSTRUCTION SET REFERENCE, M-Z
STI—Set Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognized1. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-18 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FB STI NP Valid Valid Set interrupt flag; external,
maskable interrupts enabled
at the end of the next
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a
sequence of STI instructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET
Vol. 2B 4-561STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0 (* Executing in protected mode*)
THEN

IF IOPL ≥ CPL
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

Table 4-18. Decision Table for STI Results
PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:
X = This setting has no impact.
4-562 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;
FI;

FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-563STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, M-Z
STMXCSR—Store MXCSR Register State

Instruction Operand Encoding

Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
VEX.L must be 0, otherwise instructions will #UD.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5; additionally
#UD If VEX.L= 1,

If VEX.vvvv != 1111B.

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F AE /3

STMXCSR m32

M V/V SSE Store contents of MXCSR
register to m32.

VEX.LZ.0F.WIG AE /3

VSTMXCSR m32

M V/V AVX Store contents of MXCSR
register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-564 Vol. 2B STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, M-Z
STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or
EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at
address ES:(E)DI; For 64-bit
mode store AL at address
RDI or EDI.

AB STOSW NA Valid Valid For legacy mode, store AX
at address ES:(E)DI; For 64-
bit mode store AX at
address RDI or EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX
at address ES:(E)DI; For 64-
bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or
EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
Vol. 2B 4-565STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI
register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
4-566 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
THEN
DEST ← AL;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
Vol. 2B 4-567STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4;

FI;
FI;

ELSE IF (Quadword store using REX.W)
THEN

DEST ← RAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.
4-568 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-569STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, M-Z
STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-

writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector
from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-570 Vol. 2B STR—Store Task Register

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-571STR—Store Task Register

INSTRUCTION SET REFERENCE, M-Z
SUB—Subtract
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-
extended to 64-bits from
RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16,
imm16

MI Valid Valid Subtract imm16 from
r/m16.

81 /5 id SUB r/m32,
imm32

MI Valid Valid Subtract imm32 from
r/m32.

REX.W + 81 /5
id

SUB r/m64,
imm32

MI Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended
imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended
imm8 from r/m32.

REX.W + 83 /5
ib

SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended
imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r32 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
4-572 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/26/32 NA NA

MI ModRM:r/m (r, w) imm8/26/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2B 4-573SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-574 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, M-Z
SUBPD—Subtract Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5C /r

SUBPD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed double-
precision floating-point
values in xmm2/m128 from
xmm1.

VEX.NDS.128.66.0F.WIG 5C /r

VSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed double-
precision floating-point
values in xmm3/mem from
xmm2 and stores result in
xmm1.

VEX.NDS.256.66.0F.WIG 5C /r

VSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed double-
precision floating-point
values in ymm3/mem from
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-575SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

SUBPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] - SRC[63:0]
DEST[127:64]  DEST[127:64] - SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VSUBPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] - SRC2[127:64]
DEST[VLMAX-1:128]  0

VSUBPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64] - SRC2[127:64]
DEST[191:128]  SRC1[191:128] - SRC2[191:128]
DEST[255:192]  SRC1[255:192] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

SUBPD: __m128d _mm_sub_pd (m128d a, m128d b)

VSUBPD: __m256d _mm256_sub_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.
4-576 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBPS—Subtract Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the four packed single-precision floating-point values in
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5C /r

SUBPS xmm1 xmm2/m128

RM V/V SSE Subtract packed single-
precision floating-point
values in xmm2/mem from
xmm1.

VEX.NDS.128.0F.WIG 5C /r

VSUBPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed single-
precision floating-point
values in xmm3/mem from
xmm2 and stores result in
xmm1.

VEX.NDS.256.0F.WIG 5C /r

VSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed single-
precision floating-point
values in ymm3/mem from
ymm2 and stores result in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-577SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

SUBPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VSUBPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[VLMAX-1:128]  0

VSUBPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[63:32]  SRC1[63:32] - SRC2[63:32]
DEST[95:64]  SRC1[95:64] - SRC2[95:64]
DEST[127:96]  SRC1[127:96] - SRC2[127:96]
DEST[159:128]  SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] - SRC2[191:160]
DEST[223:192]  SRC1[223:192] - SRC2[223:192]
DEST[255:224]  SRC1[255:224] - SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS: __m128 _mm_sub_ps(__m128 a, __m128 b)

VSUBPS: __m256 _mm256_sub_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.
4-578 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Other Exceptions
See Exceptions Type 2.
Vol. 2B 4-579SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low double-precision floating-point value in the source operand
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in
the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. The high quadword of
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] - SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5C /r

SUBSD xmm1, xmm2/m64

RM V/V SSE2 Subtracts the low double-
precision floating-point
values in xmm2/mem64
from xmm1.

VEX.NDS.LIG.F2.0F.WIG 5C /r
VSUBSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Subtract the low double-
precision floating-point
value in xmm3/mem from
xmm2 and store the result
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-580 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VSUBSD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] - SRC2[63:0]
DEST[127:64]  SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSD: __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-581SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low single-precision floating-point value in the source operand (second
operand) from the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

SUBSS (128-bit Legacy SSE version)
DEST[31:0]  DEST[31:0] - SRC[31:0]
DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5C /r

SUBSS xmm1, xmm2/m32

RM V/V SSE Subtract the lower single-
precision floating-point
values in xmm2/m32 from
xmm1.

VEX.NDS.LIG.F3.0F.WIG 5C /r

VSUBSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Subtract the low single-
precision floating-point
value in xmm3/mem from
xmm2 and store the result
in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-582 Vol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VSUBSS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] - SRC2[31:0]
DEST[127:32]  SRC1[127:32]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSS: __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.
Vol. 2B 4-583SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in
MSR address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction
is a privileged instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS
entry point. Neither is there a straightforward method to obtain a pointer to kernel
structures from which the kernel stack pointer could be read. Thus, the kernel can't
save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges
the CPL 0 data pointer from the KernelGSbase MSR with the GS base register. The
kernel can then use the GS prefix on normal memory references to access kernel
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions.
Those instructions are only accessible at privilege level 0. WRMSR will cause a
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical.

See Table 4-19.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /7 SWAPGS NP Valid Invalid Exchanges the current GS
base register value with the
value contained in MSR
address C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-19. SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit
Mode

64-bit Mode

OF 01 MOD ≠ 11 111 xxx INVLPG INVLPG

11 111 000 #UD SWAPGS

11 111 ≠ 000 #UD #UD
4-584 Vol. 2B SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-Z
Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS(BASE);
GS(BASE) ← KERNELGSbase;
KERNELGSbase ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.

If the LOCK prefix is used.
Vol. 2B 4-585SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, M-Z
SYSCALL—Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new
RIP from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value
saved in RCX to the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an
OS-defined value using the IA32_FMASK (MSR C000_0084). The actual mask value
used by the OS is the complement of the value written to the IA32_FMASK MSR.
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:
• The CS and SS base and limit remain the same for all processes, including the

operating system (the base is 0H and the limit is 0FFFFFFFFH).
• The CS of the SYSCALL target has a privilege level of 0.
• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-586 Vol. 2B SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;
SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Flags Affected

All.

Protected Mode Exceptions
#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
Vol. 2B 4-587SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a
companion instruction to SYSEXIT. The instruction is optimized to provide the
maximum performance for system calls from user code running at privilege level 3 to
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege
level 0 code segment and code entry point, and the privilege level 0 stack segment
and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are

the segment selector for the privilege level 0 code segment. This value is also
used to compute the segment selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level
0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register
addresses are listed in Table 4-20. The addresses are defined to remain fixed for
future Intel 64 and IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0
system procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-20. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H
4-588 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling
procedure.

The SYSENTER instruction always transfers program control to a protected-mode
code segment with a DPL of 0. The instruction requires that the following conditions
are met by the operating system:
• The segment descriptor for the selected system code segment selects a flat,

32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up
permissions.

The SYSENTER instruction can be invoked from all operating modes except real-
address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. When executing a SYSENTER instruction, the processor
does not save state information for the user code, and neither the SYSENTER nor the
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level 0 operating system proce-
dures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and

for the privilege level 3 code and stack segments must be contiguous in the
global descriptor table. This convention allows the processor to compute the
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared
libraries or DLLs) must save the required return IP and processor state
information if a return to the calling procedure is required. Likewise, the
operating system or executive procedures called with SYSENTER instructions
must have access to and use this saved return and state information when
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
Vol. 2B 4-589SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE

SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* ensures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 0;
CS.BASE ← 0; (* Flat segment *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.SEL.RPL ← 0;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← SYSENTER_ESP_MSR;
4-590 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation

In IA-32e mode, SYSENTER executes a fast system calls from user code running at
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-
dures running at privilege level 0. This instruction is a companion instruction to the
SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit =

FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected

VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
Vol. 2B 4-591SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-592 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the
maximum performance for returns from system procedures executing at protections
levels 0 to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment
and code entry point, and the privilege level 3 stack segment and stack pointer by
writing values into the following MSR and general-purpose registers:
• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are

the segment selector for the privilege level 0 code segment in which the
processor is currently executing. This value is used to compute the segment
selectors for the privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the
first instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using
RDMSR/WRMSR. The register address is listed in Table 4-20. This address is defined
to remain fixed for future Intel 64 and IA-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS
selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level
3 user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode
privilege level 3 user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-593SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are
met by the operating system:
• The segment descriptor for the selected user code segment selects a flat, 32-bit

code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed
permissions.

The SYSEXIT instruction can be invoked from all operating modes except real-
address mode and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.SEL.RPL ← 3;
CS.BASE ← 0; (* Flat segment *)
4-594 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.ARbyte.P ← 1;
CS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.SEL.RPL ← 3;
SS.BASE ← 0; (* Flat segment *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← 1;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.ARbyte.P ← 1;
SS.LIMIT ← FFFFFH; (* with 4-KByte granularity, implies a 4-GByte limit *)

ESP ← ECX;
EIP ← EDX;

IA-32e Mode Operation

In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level 0 to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the
SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in the

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 8 to the value of CS selector.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:
Vol. 2B 4-595SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
• Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) Always.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.
If ECX or EDX contains a non-canonical address.

#UD If the LOCK prefix is used.
4-596 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, M-Z
SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value
is set to MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:
• CS and SS base and limit remain the same for all processes, including the

operating system.
• CS of the SYSCALL target has a privilege level of 0.
• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility
mode from fast system call

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from
fast system call

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-597SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-Z
THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

Flags Affected

VM, IF, RF.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.
4-598 Vol. 2B SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-Z
TEST—Logical Compare
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 I Valid Valid AND imm8 with AL; set SF,
ZF, PF according to result.

A9 iw TEST AX, imm16 I Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.

A9 id TEST EAX, imm32 I Valid Valid AND imm32 with EAX; set
SF, ZF, PF according to
result.

REX.W + A9 id TEST RAX, imm32 I Valid N.E. AND imm32 sign-extended
to 64-bits with RAX; set SF,
ZF, PF according to result.

F6 /0 ib TEST r/m8, imm8 MI Valid Valid AND imm8 with r/m8; set
SF, ZF, PF according to
result.

REX + F6 /0 ib TEST r/m8*, imm8 MI Valid N.E. AND imm8 with r/m8; set
SF, ZF, PF according to
result.

F7 /0 iw TEST r/m16,
imm16

MI Valid Valid AND imm16 with r/m16; set
SF, ZF, PF according to
result.

F7 /0 id TEST r/m32,
imm32

MI Valid Valid AND imm32 with r/m32; set
SF, ZF, PF according to
result.

REX.W + F7 /0
id

TEST r/m64,
imm32

MI Valid N.E. AND imm32 sign-extended
to 64-bits with r/m64; set
SF, ZF, PF according to
result.

84 /r TEST r/m8, r8 MR Valid Valid AND r8 with r/m8; set SF,
ZF, PF according to result.

REX + 84 /r TEST r/m8*, r8* MR Valid N.E. AND r8 with r/m8; set SF,
ZF, PF according to result.

85 /r TEST r/m16, r16 MR Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.

85 /r TEST r/m32, r32 MR Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 MR Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.
Vol. 2B 4-599TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r) imm8/16/32 NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA
4-600 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-601TEST—Logical Compare

INSTRUCTION SET REFERENCE, M-Z
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the double-precision floating-point values in the
low quadwords of source operand 1 (first operand) and source operand 2 (second
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the
result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the
EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISD instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the
low double-precision
floating-point values in
xmm1 and xmm2/m64 and
set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double
precision floating-point
values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
4-602 Vol. 2B UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-603UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs and unordered compare of the single-precision floating-point values in the
low doublewords of the source operand 1 (first operand) and the source operand 2
(second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according
to the result (unordered, greater than, less than, or equal). In The OF, SF and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISS instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 2E /r

UCOMISS xmm1, xmm2/m32

RM V/V SSE Compare lower single-
precision floating-point
value in xmm1 register with
lower single-precision
floating-point value in
xmm2/mem and set the
status flags accordingly.

VEX.LIG.0F.WIG 2E /r

VUCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single
precision floating-point
values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
4-604 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
Vol. 2B 4-605UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, M-Z
UD2—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software
testing to explicitly generate an invalid opcode exception. The opcode for this
instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on
processor state or memory.

Even though it is the execution of the UD2 instruction that causes the invalid opcode
exception, the instruction pointer saved by delivery of the exception references the
UD2 instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 0B UD2 NP Valid Valid Raise invalid opcode
exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
4-606 Vol. 2B UD2—Undefined Instruction

INSTRUCTION SET REFERENCE, M-Z
UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-20.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 15 /r

UNPCKHPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves
double-precision floating-
point values from high
quadwords of xmm1 and
xmm2/m128.

VEX.NDS.128.66.0F.WIG 15 /r

VUNPCKHPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values from high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.66.0F.WIG 15 /r

VUNPCKHPD ymm1,ymm2,
ymm3/m256

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values from high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-607UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKHPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[127:64]
DEST[127:64]  SRC2[127:64]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPD (VEX.128 encoded version)
DEST[63:0]  SRC1[127:64]
DEST[127:64]  SRC2[127:64]
DEST[VLMAX-1:128]  0

VUNPCKHPD (VEX.256 encoded version)
DEST[63:0]  SRC1[127:64]

Figure 4-20. UNPCKHPD Instruction High Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST
4-608 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[127:64]  SRC2[127:64]
DEST[191:128]SRC1[255:192]
DEST[255:192]SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPD: __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-609UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-21. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 15 /r

UNPCKHPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of xmm1 and
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 15 /r

VUNPCKHPS xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.0F.WIG 15 /r

VUNPCKHPS
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-610 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKHPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPS (VEX.128 encoded version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[VLMAX-1:128]  0

Figure 4-21. UNPCKHPS Instruction High Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST
Vol. 2B 4-611UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VUNPCKHPS (VEX.256 encoded version)
DEST[31:0]  SRC1[95:64]
DEST[63:32]  SRC2[95:64]
DEST[95:64]  SRC1[127:96]
DEST[127:96]  SRC2[127:96]
DEST[159:128]  SRC1[223:192]
DEST[191:160]  SRC2[223:192]
DEST[223:192]  SRC1[255:224]
DEST[255:224]  SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS: __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKHPS: __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-612 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-22. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 14 /r

UNPCKLPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves
double-precision floating-
point values from low
quadwords of xmm1 and
xmm2/m128.

VEX.NDS.128.66.0F.WIG 14 /r

VUNPCKLPD xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values low high
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.66.0F.WIG 14 /r

VUNPCKLPD ymm1,ymm2,
ymm3/m256

RVM V/V AVX Unpacks and Interleaves
double precision floating-
point values low high
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-613UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPD (128-bit Legacy SSE version)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0]
DEST[127:64]  SRC2[63:0]
DEST[VLMAX-1:128]  0

VUNPCKLPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0]

Figure 4-22. UNPCKLPD Instruction Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST
4-614 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[127:64]  SRC2[63:0]
DEST[191:128]  SRC1[191:128]
DEST[255:192]  SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPD: __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
Vol. 2B 4-615UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-23. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 14 /r

UNPCKLPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of xmm1 and
xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 14 /r

VUNPCKLPS xmm1,xmm2,
xmm3/m128

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of xmm2 and
xmm3/m128.

VEX.NDS.256.0F.WIG 14 /r

VUNPCKLPS
ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves
single-precision floating-
point values from low
quadwords of ymm2 and
ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-616 Vol. 2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

Operation

UNPCKLPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]

Figure 4-23. UNPCKLPS Instruction Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST
Vol. 2B 4-617UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[VLMAX-1:128]  0
UNPCKLPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0]
DEST[63:32]  SRC2[31:0]
DEST[95:64]  SRC1[63:32]
DEST[127:96]  SRC2[63:32]
DEST[159:128]  SRC1[159:128]
DEST[191:160]  SRC2[159:128]
DEST[223:192]  SRC1[191:160]
DEST[255:224]  SRC2[191:160]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS: __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

UNPCKLPS: __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-618 Vol. 2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VBROADCAST—Load with Broadcast

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast
to all elements of the destination operand (first operand).
The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will
#UD.
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide
versions. VBROADCASTSS is supported in both 128-bit and 256-bit wide versions.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to
execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM I/V AVX Broadcast single-precision
floating-point element in
mem to four locations in
xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision
floating-point element in
mem to eight locations in
ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision
floating-point element in
mem to four locations in
ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of
floating-point data in mem
to low and high 128-bits in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-619VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
Figure 4-24. VBROADCASTSS Operation (VEX.256 encoded version)

Figure 4-25. VBROADCASTSS Operation (128-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00
4-620 Vol. 2B VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
Operation

VBROADCASTSS (128 bit version)
temp  SRC[31:0]
DEST[31:0]  temp
DEST[63:32]  temp
DEST[95:64]  temp
DEST[127:96]  temp
DEST[VLMAX-1:128]  0

VBROADCASTSS (VEX.256 encoded version)

Figure 4-26. VBROADCASTSD Operation

Figure 4-27. VBROADCASTF128 Operation

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0
Vol. 2B 4-621VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
temp  SRC[31:0]
DEST[31:0]  temp
DEST[63:32]  temp
DEST[95:64]  temp
DEST[127:96]  temp
DEST[159:128]  temp
DEST[191:160]  temp
DEST[223:192]  temp
DEST[255:224]  temp

VBROADCASTSD (VEX.256 encoded version)
temp  SRC[63:0]
DEST[63:0]  temp
DEST[127:64]  temp
DEST[191:128]  temp
DEST[255:192]  temp

VBROADCASTF128
temp  SRC[127:0]
DEST[127:0]  temp
DEST[VLMAX-1:128]  temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS: __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS: __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD: __m256d _mm256_broadcast_sd(double *a);

VBROADCASTF128: __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128: __m256d _mm256_broadcast_pd(__m128d * a);

Flags Affected

None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0 for VBROADCASTSD

If VEX.L = 0 for VBROADCASTF128
If VEX.W = 1.
4-622 Vol. 2B VBROADCAST—Load with Broadcast

INSTRUCTION SET REFERENCE, M-Z
VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

Instruction Operand Encoding

Description

Converts four/eight packed half precision (16-bits) floating-point values in the low-
order 64/128 bits of an XMM/YMM register or 64/128-bit memory location to
four/eight packed single-precision floating-point values and writes the converted
values into the destination XMM/YMM register.
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is
ignored and is treated as if it 0. No denormal exception is reported on MXCSR.
128-bit version: The source operand is a XMM register or 64-bit memory location.
The destination operand is a XMM register. The upper bits (255:128) of the corre-
sponding destination YMM register are zeroed.
256-bit version: The source operand is a XMM register or 128-bit memory location.
The destination operand is a YMM register.
 The diagram below illustrates how data is converted from four packed half precision
(in 64 bits) to four single precision (in 128 bits) FP values.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F38.W0 13 /r RM V/V F16C Convert eight packed half
precision (16-bit) floating-
point values in xmm2/m128
to packed single-precision
floating-point value in
ymm1.

VCVTPH2PS ymm1, xmm2/m128

VEX.128.66.0F38.W0 13 /r RM V/V F16C Convert four packed half
precision (16-bit) floating-
point values in xmm2/m64
to packed single-precision
floating-point value in
xmm1.

VCVTPH2PS xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-623VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-28. VCVTPH2PS (128-bit Version)

Operation
vCvt_h2s(SRC1[15:0])
{
RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);
}

VCVTPH2PS (VEX.256 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[159:128] vCvt_h2s(SRC1[79:64]);
DEST[191:160] vCvt_h2s(SRC1[95:80]);
DEST[223:192] vCvt_h2s(SRC1[111:96]);

DEST[255:224] vCvt_h2s(SRC1[127:112]);

VCVTPH2PS (VEX.128 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[VLMAX-1:128] 0

Flags Affected

None

VH0VH1VH2VH3

15 031 1647 3263 4895 64127 96

VS0VS1VS2VS3

31 063 3295 64127 96

convert convert

convertconvert

xmm2/mem64

xmm1

VCVTPH2PS xmm1, xmm2/mem64, imm8
4-624 Vol. 2B VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_cvtph_ps (__m128i m1);

__m256 _mm256_cvtph_ps (__m128i m1)

SIMD Floating-Point Exceptions
Invalid

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
Vol. 2B 4-625VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

INSTRUCTION SET REFERENCE, M-Z
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand
to four or eight packed half-precision (16-bit) floating-point values. The rounding
mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is
ignored. If a source element is denormal relative to input format with DM masked
and at least one of PM or UM unmasked; a SIMD exception will be raised with DE, UE
and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a
XMM register or 64-bit memory location. If destination operand is a register then the
upper bits (255:64) of corresponding YMM register are zeroed.
256-bit version: The source operand is a YMM register. The destination operand is a
XMM register or 128-bit memory location. If the destination operand is a register, the
upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed
single-precision float-
ing-point value in ymm2
to packed half-preci-
sion (16-bit) floating-
point value in
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m128, ymm2, imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed
single-precision float-
ing-point value in xmm2
to packed half-preci-
sion (16-bit) floating-
point value in
xmm1/mem. Imm8 pro-
vides rounding controls.

VCVTPS2PH xmm1/m64, xmm2, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-626 Vol. 2B VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
The diagram below illustrates how data is converted from four packed single preci-
sion (in 128 bits) to four half precision (in 64 bits) FP values.

Figure 4-29. VCVTPS2PH (128-bit Version)

The immediate byte defines several bit fields that controls rounding operation. The
effect and encoding of RC field are listed in Table 4-21.

Operation
vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN // using Imm[1:0] for rounding control, see Table 4-21

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;

Table 4-21. Immediate Byte Encoding for 16-bit Floating-Point Conversion
Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for round-
ing

Ignore MXCSR.RC

MS1=1 Use MXCSR.RC for round-
ing

Imm[7:3] Ignored Ignored by processor

VH0VH1VH2VH3

15 031 1647 3263 4895 64127 96

VS0VS1VS2VS3

31 063 3295 64127 96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2, imm8

convertconvert convertconvert
Vol. 2B 4-627VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
}

VCVTPS2PH (VEX.256 encoded version)
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);
DEST[79:64]  vCvt_s2h(SRC1[159:128]);
DEST[95:80]  vCvt_s2h(SRC1[191:160]);
DEST[111:96]  vCvt_s2h(SRC1[223:192]);
DEST[127:112]  vCvt_s2h(SRC1[255:224]);
DEST[255:128]  0

VCVTPS2PH (VEX.128 encoded version)
DEST[15:0]  vCvt_s2h(SRC1[31:0]);
DEST[31:16]  vCvt_s2h(SRC1[63:32]);
DEST[47:32]  vCvt_s2h(SRC1[95:64]);
DEST[63:48]  vCvt_s2h(SRC1[127:96]);
DEST[VLMAX-1:64] 0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cvtps_ph (__m128 m1, const int imm);

__m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions
Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
4-628 Vol. 2B VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

INSTRUCTION SET REFERENCE, M-Z
VERR/VERW—Verify a Segment for Reading or Writing

Instruction Operand Encoding

Description

Verifies whether the code or data segment specified with the source operand is read-
able (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector
for the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:
• The segment selector is not NULL.
• The selector must denote a descriptor within the bounds of the descriptor table

(GDT or LDT).
• The selector must denote the descriptor of a code or data segment (not that of a

system segment or gate).
• For the VERR instruction, the segment must be readable.
• For the VERW instruction, the segment must be a writable data segment.
• If the segment is not a conforming code segment, the segment’s DPL must be

greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as is performed when a segment selector is
loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) is
performed. The segment selector's value cannot result in a protection exception,
enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The
operand size is fixed at 16 bits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /4 VERR r/m16 M Valid Valid Set ZF=1 if segment
specified with r/m16 can be
read.

0F 00 /5 VERW r/m16 M Valid Valid Set ZF=1 if segment
specified with r/m16 can be
written.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2B 4-629VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) ≠ conforming code segment)
and (CPL > DPL) or (RPL > DPL)

THEN
ZF ← 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-

address mode.
If the LOCK prefix is used.
4-630 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-

8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.
Vol. 2B 4-631VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, M-Z
VEXTRACTF128 — Extract Packed Floating-Point Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed floating-point values from the source operand (second
operand) at an 128-bit offset from imm8[0] into the destination operand (first
operand). The destination may be either an XMM register or an 128-bit memory loca-
tion.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction
encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTF128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.

VEXTRACTF128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF128: __m128 _mm256_extractf128_ps (__m256 a, int offset);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F3A.W0 19 /r ib

VEXTRACTF128 xmm1/m128,
ymm2, imm8

MR V/V AVX Extract 128 bits of packed
floating-point values from
ymm2 and store results in
xmm1/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
4-632 Vol. 2B VEXTRACTF128 — Extract Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEXTRACTF128: __m128d _mm256_extractf128_pd (__m256d a, int offset);

VEXTRACTF128: __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L= 0

If VEX.W=1.
Vol. 2B 4-633VEXTRACTF128 — Extract Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second
source operand (third operand) into an the destination operand (first operand) at an
128-bit offset from imm8[0]. The remaining portions of the destination are written
by the corresponding fields of the first source operand (second operand). The second
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0]  SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0]  SRC2[127:0]
1: TEMP[255:128]  SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128: __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128: __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128: __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8

RVM V/V AVX Insert a single precision
floating-point value
selected by imm8 from
xmm2/m32 into xmm1 at
the specified destination
element specified by imm8
and zero out destination
elements in xmm1 as
indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
4-634 Vol. 2B VINSERTF128 — Insert Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
Vol. 2B 4-635VINSERTF128 — Insert Packed Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed
single-precision values from
m128 using mask in xmm2
and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed
single-precision values from
m256 using mask in ymm2
and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed
double-precision values
from m128 using mask in
xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed
double-precision values
from m256 using mask in
ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed
single-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed
single-precision values from
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed
double-precision values
from xmm2 using mask in
xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed
double-precision values
from ymm2 using mask in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
4-636 Vol. 2B VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
Description

Conditionally moves packed data elements from the second source operand into the
corresponding data element of the destination operand, depending on the mask bits
associated with each data element. The mask bits are specified in the first source
operand.
The mask bit for each data element is the most significant bit of that element in the
first source operand. If a mask is 1, the corresponding data element is copied from
the second source operand to the destination operand. If the mask is 0, the corre-
sponding data element is set to zero in the load form of these instructions, and
unmodified in the store form.
The second source operand is a memory address for the load form of these instruc-
tion. The destination operand is a memory address for the store form of these
instructions. The other operands are both XMM registers (for VEX.128 version) or
YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults.
Faults will not occur due to referencing any memory location if the corresponding
mask bit for that memory location is 0. For example, no faults will be detected if the
mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontem-
poral hint is not applied to these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s
are the same as with mask bits of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached
memory as the access and the ordering of the individual loads or stores it does is
implementation specific.
In cases where mask bits indicate data should not be loaded or stored paging A and
D bits will be set in an implementation dependent way. However, A and D bits are
always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second
source is encoded in rm_field, and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second
source register is encoded in reg_field, and the destination memory location is
encoded in rm_field.

Operation

VMASKMOVPS -128-bit load
DEST[31:0]  IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32]  IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64]  IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:97]  IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[VLMAX-1:128]  0
DEST[31:0]  IF (SRC1[31]) Load_32(mem) ELSE 0
Vol. 2B 4-637VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
DEST[63:32]  IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64]  IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:96]  IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[159:128]  IF (SRC1[159]) Load_32(mem + 16) ELSE 0
DEST[191:160]  IF (SRC1[191]) Load_32(mem + 20) ELSE 0
DEST[223:192]  IF (SRC1[223]) Load_32(mem + 24) ELSE 0
DEST[255:224]  IF (SRC1[255]) Load_32(mem + 28) ELSE 0

VMASKMOVPD - 128-bit load
DEST[63:0]  IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64]  IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[VLMAX-1:128]  0

VMASKMOVPD - 256-bit load
DEST[63:0]  IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64]  IF (SRC1[127]) Load_64(mem + 8) ELSE 0
DEST[195:128]  IF (SRC1[191]) Load_64(mem + 16) ELSE 0
DEST[255:196]  IF (SRC1[255]) Load_64(mem + 24) ELSE 0

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0]  SRC2[31:0]
IF (SRC1[63]) DEST[63:32]  SRC2[63:32]
IF (SRC1[95]) DEST[95:64]  SRC2[95:64]
IF (SRC1[127]) DEST[127:96]  SRC2[127:96]

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0]  SRC2[31:0]
IF (SRC1[63]) DEST[63:32]  SRC2[63:32]
IF (SRC1[95]) DEST[95:64]  SRC2[95:64]
IF (SRC1[127]) DEST[127:96]  SRC2[127:96]
IF (SRC1[159]) DEST[159:128] SRC2[159:128]
IF (SRC1[191]) DEST[191:160]  SRC2[191:160]
IF (SRC1[223]) DEST[223:192]  SRC2[223:192]
IF (SRC1[255]) DEST[255:224]  SRC2[255:224]

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0]  SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0]  SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]
4-638 Vol. 2B VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
VMASKMOVPS - 256-bit load
IF (SRC1[191]) DEST[191:128]  SRC2[191:128]
IF (SRC1[255]) DEST[255:192]  SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_maskload_ps(float const *a, __m256i mask)

void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm128_maskload_ps(float const *a, __m128i mask)

void _mm128_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm128_maskload_pd(double *a, __m128i mask);

void _mm128_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.
Vol. 2B 4-639VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, M-Z
VPERMILPD — Permute Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Permute double-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of the second source operand
(third operand) and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 0D /r
VPERMILPD xmm1, xmm2,
xmm3/m128

RVM V/V AVX Permute double-precision
floating-point values in
xmm2 using controls from
xmm3/mem and store result
in xmm1.

VEX.NDS.256.66.0F38.W0 0D /r
VPERMILPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Permute double-precision
floating-point values in
ymm2 using controls from
ymm3/mem and store result
in ymm1.

VEX.128.66.0F3A.W0 05 /r ib
VPERMILPD xmm1, xmm2/m128,
imm8

RMI V/V AVX Permute double-precision
floating-point values in
xmm2/mem using controls
from imm8.

VEX.256.66.0F3A.W0 05 /r ib
VPERMILPD ymm1, ymm2/m256,
imm8

RMI V/V AVX Permute double-precision
floating-point values in
ymm2/mem using controls
from imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-640 Vol. 2B VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-30. VPERMILPD operation

There is one control byte per destination double-precision element. Each control byte
is aligned with the low 8 bits of the corresponding double-precision destination
element. Each control byte contains a 1-bit select field (see Figure 4-31) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 4-31. VPERMILPD Shuffle Control

(immediate control version)
Permute double-precision floating-point values in the first source operand (second
operand) using two, 1-bit control fields in the low 2 bits of the 8-bit immediate and
store results in the destination operand (first operand). The source operand is a YMM
register or 256-bit memory location and the destination operand is a YMM register.
Note: For the VEX.128.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

X2..X3 X2..X3 X0..X1 X0..X1DEST

X3 X2SRC1 X1 X0

1

sel

Bit

. . .ignored

Control Field1Control Field 2Control Field 4
ig

no
re

d

65

sel

ig
no

re
d

194 193

sel

ig
no

re
d

255

ignored

66127

ignored

263
Vol. 2B 4-641VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Note: For the VEX.256.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation

VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128]SRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128]SRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192]SRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128]  0

VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128]SRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128]SRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192]SRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192]SRC1[255:192]

VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD: __m128d _mm_permute_pd (__m128d a, int control)

VPERMILPD: __m256d _mm256_permute_pd (__m256d a, int control)
4-642 Vol. 2B VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERMILPD: __m128d _mm_permutevar_pd (__m128d a, __m128i control);

VPERMILPD: __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1
Vol. 2B 4-643VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERMILPS — Permute Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

(variable control version)
Permute single-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of corresponding elements the
shuffle control (third operand) and store results in the destination operand (first
operand). The first source operand is a YMM register, the second source operand is a
YMM register or a 256-bit memory location, and the destination operand is a YMM
register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 0C /r
VPERMILPS xmm1, xmm2,
xmm3/m128

RVM V/V AVX Permute single-precision
floating-point values in
xmm2 using controls from
xmm3/mem and store result
in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128,
imm8

RMI V/V AVX Permute single-precision
floating-point values in
xmm2/mem using controls
from imm8 and store result
in xmm1.

VEX.NDS.256.66.0F38.W0 0C /r
VPERMILPS ymm1, ymm2,
ymm3/m256

RVM V/V AVX Permute single-precision
floating-point values in
ymm2 using controls from
ymm3/mem and store result
in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256,
imm8

RMI V/V AVX Permute single-precision
floating-point values in
ymm2/mem using controls
from imm8 and store result
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
4-644 Vol. 2B VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Figure 4-32. VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte
is aligned with the low 8 bits of the corresponding single-precision destination
element. Each control byte contains a 2-bit select field (see Figure 4-33) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 4-33. VPERMILPS Shuffle Control

(immediate control version)
Permute single-precision floating-point values in the first source operand (second
operand) using four 2-bit control fields in the 8-bit immediate and store results in the
destination operand (first operand). The source operand is a YMM register or 256-bit
memory location and the destination operand is a YMM register. This is similar to a
wider version of PSHUFD, just operating on single-precision floating-point values.
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

sel

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
Vol. 2B 4-645VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP  SRC[31:0];
1: TMP  SRC[63:32];
2: TMP  SRC[95:64];
3: TMP  SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (256-bit immediate version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128]  Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160]  Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192]  Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224]  Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)
DEST[31:0]  Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32]  Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64]  Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96]  Select4(SRC1[127:0], imm8[7:6]);
DEST[VLMAX-1:128]  0

VPERMILPS (256-bit variable version)
DEST[31:0]  Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32]  Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64]  Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96]  Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128]  Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160]  Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192]  Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224]  Select4(SRC1[255:128], SRC2[225:224]);

VPERMILPS (128-bit variable version)
4-646 Vol. 2B VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
DEST[31:0]  Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32]  Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64]  Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96]  Select4(SRC1[127:0], SRC2[97:96]);
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VPERM1LPS: __m128 _mm_permute_ps (__m128 a, int control);

VPERM1LPS: __m256 _mm256_permute_ps (__m256 a, int control);

VPERM1LPS: __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERM1LPS: __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
Vol. 2B 4-647VPERMILPS — Permute Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VPERM2F128 — Permute Floating-Point Values

Instruction Operand Encoding

Description

Permute 128 bit floating-point-containing fields from the first source operand
(second operand) and second source operand (third operand) using bits in the 8-bit
immediate and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Figure 4-34. VPERM2F128 Operation

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 06 /r ib
VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

RVMI V/V AVX Permute 128-bit floating-
point fields in ymm2 and
ymm3/mem using controls
from imm8 and store result
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
4-648 Vol. 2B VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select
the source for the second destination field. If imm8[3] is set, the low 128-bit field is
zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Operation

VPERM2F128
CASE IMM8[1:0] of
0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]
2: DEST[127:0]  SRC2[127:0]
3: DEST[127:0]  SRC2[255:128]
ESAC

CASE IMM8[5:4] of
0: DEST[255:128]  SRC1[127:0]
1: DEST[255:128]  SRC1[255:128]
2: DEST[255:128]  SRC2[127:0]
3: DEST[255:128]  SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0]  0
FI

IF (imm8[7])
DEST[VLMAX-1:128]  0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128: __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128: __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128: __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L = 0
Vol. 2B 4-649VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
If VEX.W = 1.
4-650 Vol. 2B VPERM2F128 — Permute Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-
precision elements in the first source operation and corresponding sign bits in the
second source operand. If the AND of the source sign bits with the dest sign bits
produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits
with the inverted dest sign bits produces all zeros the CF is set else the CF is clear. An
attempt to execute VTESTPS with VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision
elements in the first source operation and corresponding sign bits in the second
source operand. If the AND of the source sign bits with the dest sign bits produces all
zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt
to execute VTESTPS with VEX.W=1 will cause #UD.
The first source register is specified by the ModR/M reg field.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed single-precision
floating-point sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed single-precision
floating-point sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed double-precision
floating-point sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on
sign bit AND and ANDN of
packed double-precision
floating-point sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
Vol. 2B 4-651VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
128-bit version: The first source register is an XMM register. The second source
register can be an XMM register or a 128-bit memory location. The destination
register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second
source register can be a YMM register or a 256-bit memory location. The destination
register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

VTESTPS (128-bit version)
TEMP[127:0]  SRC[127:0] AND DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[127:0]  SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0]  SRC[255:0] AND DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[255:0]  SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPD (128-bit version)
TEMP[127:0]  SRC[127:0] AND DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN ZF 1;
4-652 Vol. 2B VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
ELSE ZF  0;

TEMP[127:0]  SRC[127:0] AND NOT DEST[127:0]
IF (TEMP[63] = TEMP[127] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0]  SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF 1;
ELSE ZF  0;

TEMP[255:0]  SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF 1;
ELSE CF  0;

DEST (unmodified)
AF  OF  PF  SF  0;

Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);
Vol. 2B 4-653VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
4-654 Vol. 2B VTESTPD/VTESTPS—Packed Bit Test

INSTRUCTION SET REFERENCE, M-Z
VZEROALL—Zero All YMM Registers

Instruction Operand Encoding

Description

The instruction zeros contents of all XMM or YMM registers.
Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. In
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROALL (VEX.256 encoded version)
IF (64-bit mode)

YMM0[VLMAX-1:0]  0
YMM1[VLMAX-1:0]  0
YMM2[VLMAX-1:0]  0
YMM3[VLMAX-1:0]  0
YMM4[VLMAX-1:0]  0
YMM5[VLMAX-1:0]  0
YMM6[VLMAX-1:0]  0
YMM7[VLMAX-1:0]  0
YMM8[VLMAX-1:0]  0
YMM9[VLMAX-1:0]  0
YMM10[VLMAX-1:0]  0
YMM11[VLMAX-1:0]  0
YMM12[VLMAX-1:0]  0
YMM13[VLMAX-1:0]  0
YMM14[VLMAX-1:0]  0
YMM15[VLMAX-1:0]  0

ELSE
YMM0[VLMAX-1:0]  0
YMM1[VLMAX-1:0]  0
YMM2[VLMAX-1:0]  0

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.256.0F.WIG 77

VZEROALL

NP V/V AVX Zero all YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-655VZEROALL—Zero All YMM Registers

INSTRUCTION SET REFERENCE, M-Z
YMM3[VLMAX-1:0]  0
YMM4[VLMAX-1:0]  0
YMM5[VLMAX-1:0]  0
YMM6[VLMAX-1:0]  0
YMM7[VLMAX-1:0]  0
YMM8-15: Unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL: _mm256_zeroall()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
4-656 Vol. 2B VZEROALL—Zero All YMM Registers

INSTRUCTION SET REFERENCE, M-Z
VZEROUPPER—Zero Upper Bits of YMM Registers

Instruction Operand Encoding

Description

The instruction zeros the bits in position 128 and higher of all YMM registers. The
lower 128-bits of the registers (the corresponding XMM registers) are unmodified.
This instruction is recommended when transitioning between AVX and legacy SSE
code - it will eliminate performance penalties caused by false dependencies.
Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. In
Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation

VZEROUPPER
IF (64-bit mode)

YMM0[VLMAX-1:128]  0
YMM1[VLMAX-1:128]  0
YMM2[VLMAX-1:128]  0
YMM3[VLMAX-1:128]  0
YMM4[VLMAX-1:128]  0
YMM5[VLMAX-1:128]  0
YMM6[VLMAX-1:128]  0
YMM7[VLMAX-1:128]  0
YMM8[VLMAX-1:128]  0
YMM9[VLMAX-1:128]  0
YMM10[VLMAX-1:128]  0
YMM11[VLMAX-1:128]  0
YMM12[VLMAX-1:128]  0
YMM13[VLMAX-1:128]  0
YMM14[VLMAX-1:128]  0
YMM15[VLMAX-1:128]  0

ELSE

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.0F.WIG 77

VZEROUPPER

NP V/V AVX Zero upper 128 bits of all
YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-657VZEROUPPER—Zero Upper Bits of YMM Registers

INSTRUCTION SET REFERENCE, M-Z
YMM0[VLMAX-1:128]  0
YMM1[VLMAX-1:128]  0
YMM2[VLMAX-1:128]  0
YMM3[VLMAX-1:128]  0
YMM4[VLMAX-1:128]  0
YMM5[VLMAX-1:128]  0
YMM6[VLMAX-1:128]  0
YMM7[VLMAX-1:128]  0
YMM8-15: unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER: _mm256_zeroupper()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
4-658 Vol. 2B VZEROUPPER—Zero Upper Bits of YMM Registers

INSTRUCTION SET REFERENCE, M-Z
WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code.
Coding a WAIT instruction after a floating-point instruction ensures that any
unmasked floating-point exceptions the instruction may raise are handled before the
processor can modify the instruction’s results. See the section titled “Floating-Point
Exception Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information on using the
WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9B WAIT NP Valid Valid Check pending unmasked
floating-point exceptions.

9B FWAIT NP Valid Valid Check pending unmasked
floating-point exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-659WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-660 Vol. 2B WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, M-Z
WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory
and invalidates (flushes) the internal caches. The instruction then issues a special-
function bus cycle that directs external caches to also write back modified data and
another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches
to complete their write-back and flushing operations before proceeding with instruc-
tion execution. It is the responsibility of hardware to respond to the cache write-back
and flush signals. The amount of time or cycles for WBINVD to complete will vary due
to size and other factors of different cache hierarchies. As a consequence, the use of
the WBINVD instruction can have an impact on logical processor interrupt/event
response time.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also a serializing instruction (see “Serializing Instruc-
tions” in Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software
can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be
implemented differently on future Intel 64 and IA-32 processors. The instruction is
not supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD NP Valid Valid Write back and flush Internal
caches; initiate writing-back
and flushing of external
caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-661WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, M-Z
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-662 Vol. 2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, M-Z
WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indi-
cated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The
REX.W prefix indicates the operand size is 64 bits. If no REX.W prefix is used, the
operand size is 32 bits; the upper 32 bits of the source register are ignored and upper
32 bits of the base address (for FS or GS) are cleared.
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address ← SRC;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

WRFSBASE: void _writefsbase_u32(unsigned int);

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with
the 32-bit value in the source
register.

REX.W + F3 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with
the 64-bit value in the source
register.

F3 0F AE /3
WRGSBASE
r32

M V/I FSGSBASE Load the GS base address with
the 32-bit value in the source
register.

REX.W + F3 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with
the 64-bit value in the source
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2B 4-663WRFSBASE/WRGSBASE—Write FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
WRFSBASE: _writefsbase_u64(unsigned __int64);

WRGSBASE: void _writegsbase_u32(unsigned int);

WRGSBASE: _writegsbase_u64(unsigned __int64);

Protected Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in protected mode.

Real-Address Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRFSBASE and WRGSBASE instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.
4-664 Vol. 2B WRFSBASE/WRGSBASE—Write FS/GS Segment Base

INSTRUCTION SET REFERENCE, M-Z
WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register
(MSR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected MSR and the contents of the EAX
register are copied to low-order 32 bits of the MSR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception.
The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated.
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. Chapter 34, “Model-Specific Registers (MSRs)”, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, lists all
MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H)
and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX
to MSR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-665WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced
into the IA-32 architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.
If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.
If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-666 Vol. 2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, M-Z
XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that
runs on earlier processors.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W + 0F C1
/r

XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Vol. 2B 4-667XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
Operation

TEMP ← SRC + DEST;
SRC ← DEST;
DEST ← TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition,
which is stored in the destination operand.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
4-668 Vol. 2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
Vol. 2B 4-669XADD—Exchange and Add

INSTRUCTION SET REFERENCE, M-Z
XCHG—Exchange Register/Memory with Register
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register)
with byte from r/m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register)
with byte from r/m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8
with r8 (byte register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8
with r8 (byte register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word
from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16
with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with
doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with
quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from
r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from
r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
4-670 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
If a memory operand is referenced, the processor’s locking protocol is automatically
implemented for the duration of the exchange operation, regardless of the presence
or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix
description in this chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See “Bus Locking” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on bus
locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) NA NA

O opcode + rd (r, w) AX/EAX/RAX (r, w) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
Vol. 2B 4-671XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-672 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, M-Z
XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the XCR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection
exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0).

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by
ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-673XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-674 Vol. 2B XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as an unsigned integer. The XLAT and XLATB
instructions get the base address of the table in memory from either the DS:EBX or
the DS:BX registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). (The DS segment may be overridden with a segment override
prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operand” form and the “no-operand” form. The explicit-operand form (specified with
the XLAT mnemonic) allows the base address of the table to be specified explicitly
with a symbol. This explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That
is, the symbol does not have to specify the correct base address. The base address is
always specified by the DS:(E)BX registers, which must be loaded correctly before
the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here
also the processor assumes that the DS:(E)BX registers contain the base address of
the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is
used to specify the table index (the operand size is fixed at 8 bits). RBX, however, is
used to specify the table’s base address. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize = 16

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 NP Valid Valid Set AL to memory byte
DS:[(E)BX + unsigned AL].

D7 XLATB NP Valid Valid Set AL to memory byte
DS:[(E)BX + unsigned AL].

REX.W + D7 XLATB NP Valid N.E. Set AL to memory byte
[RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-675XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
THEN
AL ← (DS:BX + ZeroExtend(AL));

ELSE IF (AddressSize = 32)
AL ← (DS:EBX + ZeroExtend(AL)); FI;

ELSE (AddressSize = 64)
AL ← (RBX + ZeroExtend(AL));

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
4-676 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
Vol. 2B 4-677XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, M-Z
XOR—Logical Exclusive OR
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-
extended).

80 /6 ib XOR r/m8, imm8 MI Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 MI Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16,
imm16

MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32,
imm32

MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6
id

XOR r/m64,
imm32

MI Valid N.E. r/m64 XOR imm32 (sign-
extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-
extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-
extended).

REX.W + 83 /6
ib

XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-
extended).

30 /r XOR r/m8, r8 MR Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* MR Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 RM Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* RM Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
4-678 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the
corresponding bits of the operands are different; each bit is 0 if the corresponding
bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Vol. 2B 4-679XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.
#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory

operand.
4-680 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, M-Z
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 57 /r

XORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise exclusive-OR of
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 57 /r

VXORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
XOR of packed double-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 57 /r

VXORPD ymm1, ymm2,
ymm3/m256

RVM V/V AVX Return the bitwise logical
XOR of packed double-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-681XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

XORPD (128-bit Legacy SSE version)
DEST[63:0]  DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64]  DEST[127:64] BITWISE XOR SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VXORPD (VEX.128 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[VLMAX-1:128]  0

VXORPD (VEX.256 encoded version)
DEST[63:0]  SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64]  SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128]  SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192]  SRC1[255:192] BITWISE XOR SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

XORPD: __m128d _mm_xor_pd(__m128d a, __m128d b)

VXORPD: __m256d _mm256_xor_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-682 Vol. 2B XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 57 /r

XORPS xmm1, xmm2/m128

RM V/V SSE Bitwise exclusive-OR of
xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 57 /r

VXORPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical
XOR of packed single-
precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.0F.WIG 57 /r

VXORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical
XOR of packed single-
precision floating-point
values in ymm2 and
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Vol. 2B 4-683XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
Operation

XORPS (128-bit Legacy SSE version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128] (Unmodified)

VXORPS (VEX.128 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[VLMAX-1:128]  0

VXORPS (VEX.256 encoded version)
DEST[31:0]  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32]  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64]  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96]  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128]  SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192]  SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224]  SRC1[255:224] BITWISE XOR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

XORPS: __m128 _mm_xor_ps(__m128 a, __m128 b)

VXORPS: __m256 _mm256_xor_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
4-684 Vol. 2B XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, M-Z
XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of the enabled processor states using the state infor-
mation stored in the memory address specified by the source operand. The implicit
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-22. The memory layout of
the XSAVE/XRSTOR area may have holes between save areas written by the
processor as a result of the processor not supporting certain processor extended
states or system software not supporting certain processor extended states. There is
no relationship between the order of XCR0 bits and the order of the state layout.
States corresponding to higher and lower XCR0 bits may be intermingled in the
layout.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore processor extended
states from memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/5

XRSTOR64 mem M Valid N.E. Restore processor extended
states from memory. The
states are specified by
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
Vol. 2B 4-685XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XRSTOR operates on each subset of the processor state or a processor extended
state in one of three ways (depending on the corresponding bit in XCR0
(XFEATURE_ENABLED_MASK register), the restore mask EDX:EAX, and the save
mask XSAVE.HEADER.XSTATE_BV in memory):
• Updates the processor state component using the state information stored in the

respective save area (see Table 4-22) of the source operand, if the corresponding
bit in XCR0, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-
supplied values (see Table 4-24) without using state information stored in
respective save area of the memory region, if the corresponding bit in XCR0 and
EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is
0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or
EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is
shown in Table 4-23.

Table 4-22. General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1

NOTES:
1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes

464:511 of an XSAVE SAVE image.

0 512

Header 512 64

Reserved
(Ext_Save_Area_2)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_A
rea_4)2

2. State corresponding to higher and lower XCR0 bits may be intermingled in layout.

CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(Ext_Save_A
rea_3)

CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(...)
4-686 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
If a processor state component is not enabled in XCR0 but the corresponding save
mask bit in XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will
cause a #GP(0) exception. Software may specify all 1’s in the implicit restore mask
EDX:EAX, so that all the enabled processors states in XCR0 are restored from state
information stored in memory or from processor supplied values. When using all 1's
as the restore mask, software is required to determine the total size of the
XSAVE/XRSTOR save area (specified as source operand) to fit all enabled processor
states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX. While it's
legal to set any bit in the EDX:EAX mask to 1, it is strongly recommended to set only
the bits that are required to save/restore specific states.

An attempt to restore processor states with writing 1s to reserved bits in certain
registers (see Table 4-25) will cause a #GP(0) exception.

Because bit 63 of XCR0 is reserved for future bit vector expansion, it will not be used
for any future processor state feature, and XRSTOR will ignore bit 63 of EDX:EAX
(EDX[31]).

Table 4-23. XSAVE.HEADER Layout

15 8 7 0 Byte Offset
from Header

Byte Offset from
XSAVE/XRSTOR Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560

Table 4-24. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by

XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;

Else XMM0-XMM7 ← 0H
Vol. 2B 4-687XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will
result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of
RDX and RAX are ignored.

Operation

/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] ← (EDX[30:0] << 32) OR EAX[31:0];
ST_TMP_MASK[62:0] ← SRCMEM.HEADER.XSTATE_BV[62:0];
IF (((XCR0[62:0] XOR 7FFFFFFF_FFFFFFFFH) AND ST_TMP_MASK[62:0]))

THEN
#GP(0)

ELSE
FOR i = 0, 62 STEP 1

IF (RS_TMP_MASK[i] and XCR0[i])
THEN

IF (ST_TMP_MASK[i])
CASE (i) OF
0: Processor state[x87 FPU] ← SRCMEM. FPUSSESave_Area[FPU];
1: Processor state[SSE] ← SRCMEM. FPUSSESave_Area[SSE];

// MXCSR is loaded as part of the SSE state
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

Processor state[i] ← SRCMEM. Ext_Save_Area[i];
ESAC;

ELSE
Processor extended state[i] ← Processor supplied values; (see Table 4-24)
CASE (i) OF
1: MXCSR ← SRCMEM. FPUSSESave_Area[SSE];
ESAC;

FI;
FI;

NEXT;
FI;

Table 4-25. Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking

X87 FPU State None

SSE State Reserved bits of MXCSR
4-688 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a 16-
byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.
If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.
Vol. 2B 4-689XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.
If a bit in XCR0 is 0 and the corresponding bit in
XSAVE.HEADER.XSTATE_BV is 1.
If bytes 23:8 of HEADER is not zero.
If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
4-690 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
Vol. 2B 4-691XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of the enabled processor state components to a
memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-22. Each component save area is
written if both the corresponding bits in the save mask operand and in XCR0 (the
XFEATURE_ENABLED_MASK register) are 1. A processor state component save area
is not updated if either one of the corresponding bits in the mask operand or in XCR0
is 0. If the mask operand (EDX:EAX) contains all 1's, all enabled processor state
components in XCR0 are written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches XCR0 (see chapter 2
of Vol. 3B). For the XSAVE instruction, software can specify "1" in any bit position of
EDX:EAX, irrespective of whether the corresponding bit position in XCR0 is valid for
the processor. The bit vector in EDX:EAX is "anded" with XCR0 to determine which
save area will be written. While it's legal to set any bit in the EDX:EAX mask to 1, it is
strongly recommended to set only the bits that are required to save/restore specific
states. When specifying 1 in any bit position of EDX:EAX mask, software is required
to determine the total size of the XSAVE/XRSTOR save area (specified as destination
operand) to fit all enabled processor states by using the value enumerated in
CPUID.(EAX=0D, ECX=0):EBX.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save processor extended
states to memory. The
states are specified by
EDX:EAX

REX.W+ 0F AE
/4

XSAVE64 mem M Valid N.E. Save processor extended
states to memory. The
states are specified by
EDX:EAX

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-692 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable
framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area (refer to “FXSAVE—Save x87 FPU, MMX Technology,
and SSE State” on page 458). But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers.

Bytes 464:511 are available for software use. The processor does not write to bytes
464:511 when executing XSAVE.

The processor writes 1 or 0 to each HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a
processor implementation discern that a processor state component is in its initial-
ized state (according to Table 4-24) it may modify the corresponding bit in the
HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] ← ((EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1

IF (TMP_MASK[i] = 1) THEN
THEN

CASE (i) of
0: DEST.FPUSSESAVE_Area[x87 FPU] ← processor state[x87 FPU];
1: DEST.FPUSSESAVE_Area[SSE] ← processor state[SSE];

// SSE state include MXCSR
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

DEST.Ext_Save_Area[i] ← processor state[i] ;
ESAC:
DEST.HEADER.XSTATE_BV[i] ← INIT_FUNCTION[i];

FI;
NEXT;

Flags Affected

None.
Vol. 2B 4-693XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
4-694 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

#AC If this exception is disabled a general protection exception
(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC
is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition,
the width of the alignment check may also vary with implemen-
tation. For instance, for a given implementation, an alignment
check exception might be signaled for a 2-byte misalignment,
whereas a general protection exception might be signaled for all
other misalignments (4-, 8-, or 16-byte misalignments).
Vol. 2B 4-695XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, M-Z
XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

XSAVEOPT performs a full or partial save of the enabled processor state components
to a memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned. The hardware may optimize the manner in which data is saved. The perfor-
mance of this instruction will be equal or better than using the XSAVE instruction.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-22.

The bit assignment used for the EDX:EAX register pair matches XCR0 (the
XFEATURE_ENABLED_MASK register). For the XSAVEOPT instruction, software can
specify "1" in any bit position of EDX:EAX, irrespective of whether the corresponding
bit position in XCR0 is valid for the processor. The bit vector in EDX:EAX is "anded"
with XCR0 to determine which save area will be written. While it's legal to set any bit
in the EDX:EAX mask to 1, it is strongly recommended to set only the bits that are
required to save/restore specific states. When specifying 1 in any bit position of
EDX:EAX mask, software is required to determine the total size of the
XSAVE/XRSTOR save area (specified as destination operand) to fit all enabled
processor states by using the value enumerated in CPUID.(EAX=0D, ECX=0):EBX.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save processor extended
states specified in EDX:EAX
to memory, optimizing the
state save operation if
possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save processor extended
states specified in EDX:EAX
to memory, optimizing the
state save operation if
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
4-696 Vol. 2B XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
framework of the XSAVE/XRSTOR layout is depicted by Table 4-22. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area. But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers.
The processor writes 1 or 0 to each.HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV.
The state updated to the XSAVE/XRSTOR area may be optimized as follows:
• If the state is in its initialized form, the corresponding XSTATE_BV bit may be set

to 0, and the corresponding processor state component that is indicated as
initialized will not be saved to memory.

A processor state component save area is not updated if either one of the corre-
sponding bits in the mask operand or in XCR0 is 0. The processor state component
that is updated to the save area is computed by bit-wise AND of the mask operand
(EDX:EAX) with XCR0.
HEADER.XSTATE_BV is updated to reflect the data that is actually written to the save
area. A "1" bit in the header indicates the contents of the save area corresponding to
that bit are valid. A "0" bit in the header indicates that the state corresponding to
that bit is in its initialized form. The memory image corresponding to a "0" bit may
or may not contain the correct (initialized) value since only the header bit (and not
the save area contents) is updated when the header bit value is 0. XRSTOR will
ensure the correct value is placed in the register state regardless of the value of the
save area when the header bit is zero.

XSAVEOPT Usage Guidelines

When using the XSAVEOPT facility, software must be aware of the following guide-
lines:

1. The processor uses a tracking mechanism to determine which state components
will be written to memory by the XSAVEOPT instruction. The mechanism includes
three sub-conditions that are recorded internally each time XRSTOR is executed
and evaluated on the invocation of the next XSAVEOPT. If a change is detected in
any one of these sub-conditions, XSAVEOPT will behave exactly as XSAVE. The
three sub-conditions are:

— current CPL of the logical processor

— indication whether or not the logical processor is in VMX non-root operation

— linear address of the XSAVE/XRSTOR area
Vol. 2B 4-697XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
2. Upon allocation of a new XSAVE/XRSTOR area and before an XSAVE or XSAVEOPT
instruction is used, the save area header (HEADER.XSTATE) must be initialized to
zeroes for proper operation.

3. XSAVEOPT is designed primarily for use in context switch operations. The values
stored by the XSAVEOPT instruction depend on the values previously stored in a
given XSAVE area.

4. Manual modifications to the XSAVE area between an XRSTOR instruction and the
matching XSAVEOPT may result in data corruption.

5. For optimization to be performed properly, the XRSTOR XSAVEOPT pair must use
the same segment when referencing the XSAVE area and the base of that
segment must be unchanged between the two operations.

6. Software should avoid executing XSAVEOPT into a buffer from which it hadn’t
previously executed a XRSTOR. For newly allocated buffers, software can execute
XRSTOR with the linear address of the buffer and a restore mask of EDX:EAX = 0.
Executing XRSTOR(0:0) doesn’t restore any state, but ensures expected
operation of the XSAVEOPT instruction.

7. The XSAVE area can be moved or even paged, but the contents at the linear
address of the save area at an XSAVEOPT must be the same as that when the
previous XRSTOR was performed.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation
TMP_MASK[62:0] (EDX[30:0] << 32) OR EAX[31:0]) AND XCR0[62:0];
FOR i = 0, 62 STEP 1
 IF (TMP_MASK[i] = 1)
 THEN
 If not HW_CAN_OPTIMIZE_SAVE
 THEN
 CASE (i) of
 0: DEST.FPUSSESAVE_Area[x87 FPU] processor state[x87 FPU];
 1: DEST.FPUSSESAVE_Area[SSE] processor state[SSE];
 // SSE state include MXCSR
 2: DEST.EXT_SAVE_Area2[YMM] processor state[YMM];
 DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH
 DEST.Ext_Save_Area[i] processor state[i] ;
 ESAC:
 FI;
 DEST.HEADER.XSTATE_BV[i] INIT_FUNCTION[i];
 FI;
NEXT;
4-698 Vol. 2B XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.
If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
Vol. 2B 4-699XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CPUID.(EAX=0DH, ECX=01H):EAX.XSAVEOPT[bit 0] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.
4-700 Vol. 2B XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, M-Z
XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register
(XCR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an XCR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented XCR in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to
write to reserved bits in an XCR.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0). Note that bit 0 of XCR0
(corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if
an attempt is made to clear this bit. Additionally, bit 1 of XCR0 (corresponding to AVX
state) and bit 2 of XCR0 (corresponding to SSE state) must be set to 1 when using
AVX registers; the instruction will cause a #GP(0) if an attempt is made to set
XCR0[2:1] = 10.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX
to the XCR specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
Vol. 2B 4-701XSETBV—Set Extended Control Register

INSTRUCTION SET REFERENCE, M-Z
If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] = 10.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
4-702 Vol. 2B XSETBV—Set Extended Control Register

	Chapter 4 Instruction Set Reference, M-Z
	4.1 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM
	4.1.1 General Description
	4.1.2 Source Data Format
	4.1.3 Aggregation Operation
	4.1.4 Polarity
	4.1.5 Output Selection
	4.1.6 Valid/Invalid Override of Comparisons
	4.1.7 Summary of Im8 Control byte
	4.1.8 Diagram Comparison and Aggregation Process

	4.2 Instructions (M-Z)
	MASKMOVDQU-Store Selected Bytes of Double Quadword
	MASKMOVQ-Store Selected Bytes of Quadword
	MAXPD-Return Maximum Packed Double-Precision Floating-Point Values
	MAXPS-Return Maximum Packed Single-Precision Floating-Point Values
	MAXSD-Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS-Return Maximum Scalar Single-Precision Floating-Point Value
	MFENCE-Memory Fence
	MINPD-Return Minimum Packed Double-Precision Floating-Point Values
	MINPS-Return Minimum Packed Single-Precision Floating-Point Values
	MINSD-Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS-Return Minimum Scalar Single-Precision Floating-Point Value
	MONITOR-Set Up Monitor Address
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVAPD-Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS-Move Aligned Packed Single-Precision Floating-Point Values
	MOVBE-Move Data After Swapping Bytes
	MOVD/MOVQ-Move Doubleword/Move Quadword
	MOVDDUP-Move One Double-FP and Duplicate
	MOVDQA-Move Aligned Double Quadword
	MOVDQU-Move Unaligned Double Quadword
	MOVDQ2Q-Move Quadword from XMM to MMX Technology Register
	MOVHLPS- Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD-Move High Packed Double-Precision Floating-Point Value
	MOVHPS-Move High Packed Single-Precision Floating-Point Values
	MOVLHPS-Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD-Move Low Packed Double-Precision Floating-Point Value
	MOVLPS-Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD-Extract Packed Double-Precision Floating-Point Sign Mask
	MOVMSKPS-Extract Packed Single-Precision Floating-Point Sign Mask
	MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint
	MOVNTDQ-Store Double Quadword Using Non-Temporal Hint
	MOVNTI-Store Doubleword Using Non-Temporal Hint
	MOVNTPD-Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTPS-Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTQ-Store of Quadword Using Non-Temporal Hint
	MOVQ-Move Quadword
	MOVQ2DQ-Move Quadword from MMX Technology to XMM Register
	MOVS/MOVSB/MOVSW/MOVSD/MOVSQ-Move Data from String to String
	MOVSD-Move Scalar Double-Precision Floating-Point Value
	MOVSHDUP-Move Packed Single-FP High and Duplicate
	MOVSLDUP-Move Packed Single-FP Low and Duplicate
	MOVSS-Move Scalar Single-Precision Floating-Point Values
	MOVSX/MOVSXD-Move with Sign-Extension
	MOVUPD-Move Unaligned Packed Double-Precision Floating-Point Values
	MOVUPS-Move Unaligned Packed Single-Precision Floating-Point Values
	MOVZX-Move with Zero-Extend
	MPSADBW - Compute Multiple Packed Sums of Absolute Difference
	MUL-Unsigned Multiply
	MULPD-Multiply Packed Double-Precision Floating-Point Values
	MULPS-Multiply Packed Single-Precision Floating-Point Values
	MULSD-Multiply Scalar Double-Precision Floating-Point Values
	MULSS-Multiply Scalar Single-Precision Floating-Point Values
	MWAIT-Monitor Wait
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	ORPD-Bitwise Logical OR of Double-Precision Floating-Point Values
	ORPS-Bitwise Logical OR of Single-Precision Floating-Point Values
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	PABSB/PABSW/PABSD - Packed Absolute Value
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSDW - Pack with Unsigned Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Add Packed Integers
	PADDQ-Add Packed Quadword Integers
	PADDSB/PADDSW-Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW-Add Packed Unsigned Integers with Unsigned Saturation
	PALIGNR - Packed Align Right
	PAND-Logical AND
	PANDN-Logical AND NOT
	PAUSE-Spin Loop Hint
	PAVGB/PAVGW-Average Packed Integers
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCLMULQDQ - Carry-Less Multiplication Quadword
	PCMPEQB/PCMPEQW/PCMPEQD- Compare Packed Data for Equal
	PCMPEQQ - Compare Packed Qword Data for Equal
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPGTB/PCMPGTW/PCMPGTD-Compare Packed Signed Integers for Greater Than
	PCMPGTQ - Compare Packed Data for Greater Than
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PEXTRB/PEXTRD/PEXTRQ - Extract Byte/Dword/Qword
	PEXTRW-Extract Word
	PHADDW/PHADDD - Packed Horizontal Add
	PHADDSW - Packed Horizontal Add and Saturate
	PHMINPOSUW - Packed Horizontal Word Minimum
	PHSUBW/PHSUBD - Packed Horizontal Subtract
	PHSUBSW - Packed Horizontal Subtract and Saturate
	PINSRB/PINSRD/PINSRQ - Insert Byte/Dword/Qword
	PINSRW-Insert Word
	PMADDUBSW - Multiply and Add Packed Signed and Unsigned Bytes
	PMADDWD-Multiply and Add Packed Integers
	PMAXSB - Maximum of Packed Signed Byte Integers
	PMAXSD - Maximum of Packed Signed Dword Integers
	PMAXSW-Maximum of Packed Signed Word Integers
	PMAXUB-Maximum of Packed Unsigned Byte Integers
	PMAXUD - Maximum of Packed Unsigned Dword Integers
	PMAXUW - Maximum of Packed Word Integers
	PMINSB - Minimum of Packed Signed Byte Integers
	PMINSD - Minimum of Packed Dword Integers
	PMINSW-Minimum of Packed Signed Word Integers
	PMINUB-Minimum of Packed Unsigned Byte Integers
	PMINUD - Minimum of Packed Dword Integers
	PMINUW - Minimum of Packed Word Integers
	PMOVMSKB-Move Byte Mask
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Signed Dword Integers
	PMULHRSW - Packed Multiply High with Round and Scale
	PMULHUW-Multiply Packed Unsigned Integers and Store High Result
	PMULHW-Multiply Packed Signed Integers and Store High Result
	PMULLD - Multiply Packed Signed Dword Integers and Store Low Result
	PMULLW-Multiply Packed Signed Integers and Store Low Result
	PMULUDQ-Multiply Packed Unsigned Doubleword Integers
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPCNT - Return the Count of Number of Bits Set to 1
	POPF/POPFD/POPFQ-Pop Stack into EFLAGS Register
	POR-Bitwise Logical OR
	PREFETCHh-Prefetch Data Into Caches
	PSADBW-Compute Sum of Absolute Differences
	PSHUFB - Packed Shuffle Bytes
	PSHUFD-Shuffle Packed Doublewords
	PSHUFHW-Shuffle Packed High Words
	PSHUFLW-Shuffle Packed Low Words
	PSHUFW-Shuffle Packed Words
	PSIGNB/PSIGNW/PSIGND - Packed SIGN
	PSLLDQ-Shift Double Quadword Left Logical
	PSLLW/PSLLD/PSLLQ-Shift Packed Data Left Logical
	PSRAW/PSRAD-Shift Packed Data Right Arithmetic
	PSRLDQ-Shift Double Quadword Right Logical
	PSRLW/PSRLD/PSRLQ-Shift Packed Data Right Logical
	PSUBB/PSUBW/PSUBD-Subtract Packed Integers
	PSUBQ-Subtract Packed Quadword Integers
	PSUBSB/PSUBSW-Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW-Subtract Packed Unsigned Integers with Unsigned Saturation
	PTEST- Logical Compare
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ- Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ- Unpack Low Data
	PUSH-Push Word, Doubleword or Quadword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	PXOR-Logical Exclusive OR
	RCL/RCR/ROL/ROR--Rotate
	RCPPS-Compute Reciprocals of Packed Single-Precision Floating- Point Values
	RCPSS-Compute Reciprocal of Scalar Single-Precision Floating-Point Values
	RDFSBASE/RDGSBASE-Read FS/GS Segment Base
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDRAND-Read Random Number
	RDTSC-Read Time-Stamp Counter
	RDTSCP-Read Time-Stamp Counter and Processor ID
	REP/REPE/REPZ/REPNE/REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	ROUNDPD - Round Packed Double Precision Floating-Point Values
	ROUNDPS - Round Packed Single Precision Floating-Point Values
	ROUNDSD - Round Scalar Double Precision Floating-Point Values
	ROUNDSS - Round Scalar Single Precision Floating-Point Values
	RSM-Resume from System Management Mode
	RSQRTPS-Compute Reciprocals of Square Roots of Packed Single- Precision Floating-Point Values
	RSQRTSS-Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String
	SETcc-Set Byte on Condition
	SFENCE-Store Fence
	SGDT-Store Global Descriptor Table Register
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SHUFPD-Shuffle Packed Double-Precision Floating-Point Values
	SHUFPS-Shuffle Packed Single-Precision Floating-Point Values
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	SQRTPD-Compute Square Roots of Packed Double-Precision Floating- Point Values
	SQRTPS-Compute Square Roots of Packed Single-Precision Floating- Point Values
	SQRTSD-Compute Square Root of Scalar Double-Precision Floating- Point Value
	SQRTSS-Compute Square Root of Scalar Single-Precision Floating- Point Value
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STMXCSR-Store MXCSR Register State
	STOS/STOSB/STOSW/STOSD/STOSQ-Store String
	STR-Store Task Register
	SUB-Subtract
	SUBPD-Subtract Packed Double-Precision Floating-Point Values
	SUBPS-Subtract Packed Single-Precision Floating-Point Values
	SUBSD-Subtract Scalar Double-Precision Floating-Point Values
	SUBSS-Subtract Scalar Single-Precision Floating-Point Values
	SWAPGS-Swap GS Base Register
	SYSCALL-Fast System Call
	SYSENTER-Fast System Call
	SYSEXIT-Fast Return from Fast System Call
	SYSRET-Return From Fast System Call
	TEST-Logical Compare
	UCOMISD-Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
	UCOMISS-Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
	UD2-Undefined Instruction
	UNPCKHPD-Unpack and Interleave High Packed Double-Precision Floating-Point Values
	UNPCKHPS-Unpack and Interleave High Packed Single-Precision Floating-Point Values
	UNPCKLPD-Unpack and Interleave Low Packed Double-Precision Floating-Point Values
	UNPCKLPS-Unpack and Interleave Low Packed Single-Precision Floating-Point Values
	VBROADCAST-Load with Broadcast
	VCVTPH2PS-Convert 16-bit FP Values to Single-Precision FP Values
	VCVTPS2PH-Convert Single-Precision FP value to 16-bit FP value
	VERR/VERW-Verify a Segment for Reading or Writing
	VEXTRACTF128 - Extract Packed Floating-Point Values
	VINSERTF128 - Insert Packed Floating-Point Values
	VMASKMOV-Conditional SIMD Packed Loads and Stores
	VPERMILPD - Permute Double-Precision Floating-Point Values
	VPERMILPS - Permute Single-Precision Floating-Point Values
	VPERM2F128 - Permute Floating-Point Values
	VTESTPD/VTESTPS-Packed Bit Test
	VZEROALL-Zero All YMM Registers
	VZEROUPPER-Zero Upper Bits of YMM Registers
	WAIT/FWAIT-Wait
	WBINVD-Write Back and Invalidate Cache
	WRFSBASE/WRGSBASE-Write FS/GS Segment Base
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XGETBV-Get Value of Extended Control Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR
	XORPD-Bitwise Logical XOR for Double-Precision Floating-Point Values
	XORPS-Bitwise Logical XOR for Single-Precision Floating-Point Values
	XRSTOR-Restore Processor Extended States
	XSAVE-Save Processor Extended States
	XSAVEOPT-Save Processor Extended States Optimized
	XSETBV-Set Extended Control Register

