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Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Document Title Document Number/
Location
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
253666
Reference, A-L
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
253667
Reference, M-U
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
326018
Reference, V-Z
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set 334569
Reference
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
. . 253668
Programming Guide, Part 1
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
. . 253669
Programming Guide, Part 2
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
. . 326019
Programming Guide, Part 3
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
. . 332831
Programming Guide, Part 4
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific 335592
Registers
Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)

No. DOCUMENTATION CHANGES
1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 8, Volume 1

4 Updates to Chapter 13, Volume 1
5 Updates to Chapter 18, Volume 1
6 Updates to Appendix D (previously Appendix E), Volume 1
7 Updates to Chapter 1, Volume 2A
8 Updates to Chapter 2, Volume 2A
9 Updates to Chapter 3, Volume 2A
10 Updates to Chapter 4, Volume 2B
11 Updates to Chapter 5, Volume 2C
12 Updates to Chapter 6, Volume 2D
13 Updates to Chapter 7, Volume 2D
14 Updates to Chapter 1, Volume 3A
15 Updates to Chapter 2, Volume 3A
16 Updates to Chapter 6, Volume 3A
17 Updates to Chapter 9, Volume 3A
18 Updates to Chapter 15, Volume 3B
19 Updates to Chapter 16, Volume 3B
20 Updates to Chapter 17, Volume 3B
21 Updates to Chapter 18, Volume 3B
22 Updates to Chapter 22, Volume 3C
23 Updates to Chapter 27, Volume 3C
24 Updates to Chapter 30, Volume 3C
25 Updates to Chapter 32, Volume 3D
26 Updates to Chapter 35, Volume 3D
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Documentation Changes(Sheet 2 of 2)

No. DOCUMENTATION CHANGES
27 Updates to Chapter 36, Volume 3D

28 Updates to Appendix A, Volume 3D

29 Updates to Chapter 1, Volume 4

30 Updates to Chapter 2, Volume 4
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Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.
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1. Updates to Chapter 1, Volume 1

Change bars and green text show changes to Chapter 1 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”. Updated
Section 1.2 “Overview of Volume 1: Basic Architecture” to delete the appendix that has been removed and rela-

beled the existing appendix that followed. The appendix removed is Appendix D, “Guidelines for Writing x87 FPU
Exception Handlers”. Removed link to outdated reference document.
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32
architecture processors. Other volumes in this set are:

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018 and 334569).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System
Programming Guide (order numbers 253668, 253669, 326019 and 332831).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

® P6 family processors

*  Pentium® 4 processors

*  Pentium® M processors

* Intel® Xeon® processors

*  Pentium® D processors

* Pentium® processor Extreme Editions

*  64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme processor QX6000 series
* Intel® Xeon® processor 7100 series
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* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor E8000, T9000 series

* Intel® Atom™ processor family

* Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
*  4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

* Intel® Atom™ processor Z3400 series

* Intel® Atom™ processor Z3500 series

*  6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

*  7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Processor Scalable Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Processor Scalable Family
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* 10th generation Intel® Core™ processors
* 11th generation Intel® Core™ processors
* 3rd generation Intel® Xeon® Processor Scalable Family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® IIl Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2XxX,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.
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The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and some are
based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Inte/® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with the
families of Intel processors that are based on these architectures. It also gives an overview of the common features
found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.
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Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2
extensions, including XMM registers and packed double-precision floating-point data types; provides an overview
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel®
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3,
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set,
FMA and Intel AVX2 extensions and gives guidelines for writing code that access these extensions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 17 — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection
Extensions and gives guidelines for writing code that access these extensions.

Chapter 18 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 19 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/0
instructions, and I/0 protection mechanisms.

Chapter 20 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. This notation is described below.

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.
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Data Structure

Highest
Address 32 24 23 16 15 8 7 0 < Bitoffset

28
24
20
16
12
8

4

Byte 3 Byte 2 Byte 1 Byte O

Lowest
* Address

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able.

Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of registers that contain such bits.
Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or
reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.2.1 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

® The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.
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For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, OF82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “"B"” designation is only used in situations where confusion as to the type of number might
arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:
Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:
DS:FF79H
The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CSEIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.
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CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values

CR4.0SFXSR[bit 9] = 1

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

: | :

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code.
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)
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1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:

https://software.intel.com/en-us/articles/intel-sdm

See also:

The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

Software developer resources, guidance and insights for security advisories:
https://software.intel.com/security-software-guidance/

The data sheet for a particular Intel 64 or IA-32 processor
The specification update for a particular Intel 64 or IA-32 processor

Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

Intel® Software Guard Extensions (Intel® SGX) Information
https://software.intel.com/en-us/isa-extensions/intel-sgx

Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to select features in future Intel processors are available at:

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

More relevant links are:

Intel® Developer Zone:

https://software.intel.com/en-us

Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
Processor support general link:

http://www.intel.com/support/processors/

Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
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http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us
https://software.intel.com/en-us/articles/resource-center/
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/security-software-guidance/
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2. Updates to Chapter 5, Volume 1

Change bars and green text show changes to Chapter 5 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

Changes to this chapter: Update to Table 5-2, “Instruction Set Extensions Introduction in Intel 64 and IA-32
Processors” to combine the Intel SHA extensions and SHA-NI lines into one. Added protection keys.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:

® Section 5.1, “"General-Purpose Instructions”.

® Section 5.2, "x87 FPU Instructions”.

® Section 5.3, "x87 FPU AND SIMD State Management Instructions”.

® Section 5.4, "MMX™ Instructions”.

® Section 5.5, "SSE Instructions”.

® Section 5.6, "SSE2 Instructions”.

® Section 5.7, "SSE3 Instructions”.

® Section 5.8, “"Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions”.
® Section 5.9, "SSE4 Instructions”.

® Section 5.10, "SSE4.1 Instructions”.

® Section 5.11, "SSE4.2 Instruction Set”.

® Section 5.12, “Intel® AES-NI and PCLMULQDQ".

® Section 5.13, “"Intel® Advanced Vector Extensions (Intel® AVX)".

® Section 5.14, “16-bit Floating-Point Conversion”.

® Section 5.15, “Fused-Multiply-ADD (FMA)”".

® Section 5.16, “"Intel® Advanced Vector Extensions 2 (Intel® AVX2)”.

® Section 5.17, “"Intel® Transactional Synchronization Extensions (Intel® TSX)".
® Section 5.18, “Intel® SHA Extensions”.

® Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512)".
® Section 5.20, “"System Instructions”.

® Section 5.21, “64-Bit Mode Instructions”.

® Section 5.22, “Virtual-Machine Extensions”.

® Section 5.23, “Safer Mode Extensions”.

® Section 5.24, “Intel® Memory Protection Extensions”.

® Section 5.25, “"Intel® Software Guard Extensions”.

® Section 5.26, "Shadow Stack Management Instructions”.

® Section 5.27, “Control Transfer Terminating Instructions”.

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set

Architecture Intel 64 and IA-32 Processor Support
General Purpose All Intel 64 and |IA-32 processors.
x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,

Pentium Ill, Pentium Ill Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

x87 FPU and SIMD State | Pentium II, Pentium II Xeon, Pentium lll, Pentium lll Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Management Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.
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Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture

Intel 64 and IA-32 Processor Support

MMX Technology

Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium lll, Pentium Ill Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors.

SSE Extensions

Pentium Ill, Pentium Ill Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

SSEZ2 Extensions

Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors.

SSE3 Extensions

Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions

Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors.

IA-32e mode: 64-bit
mode instructions

Intel 64 processors.

System Instructions

Intel 64 and IA-32 processors.

VMX Instructions

Intel 64 and |IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions

Intel Core 2 Duo processor E6x50, EBxxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture

Processor Generation Introduction

SSE4.1 Extensions

Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme processors
QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors 8000 series
and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions,
CRC32, POPCNT

Intel® Core™ i7 965 processor, Intel®* Xeon® processors X3400, X3500, X5500, X6500, X7500 series,
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI, Intel® Xeon® processor €7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X

PCLMULQDQ processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence of
Intel AES-NI and PCLMULQDAQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor €3 and E5 families, 2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor €3-1200 v2 product family, Intel® Xeon®
processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon
processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access 3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon

processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.

FMA, AVX2, BMI1, BMIZ,
INVPCID, LZCNT, Intel®
TSX

Intel® Xeon® processor €E3/€5/€7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE Intel Xeon processor E3/E5/E7 v3 product families, 4th Generation Intel Core processor family, Intel Atom
processors.
PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor based

on Silvermont microarchitecture.
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Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture

Processor Generation Introduction

ADX

Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC

Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based on
Goldmont microarchitecture.

AVX512ER, AVX512PF,
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD

Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Processor Scalable Family, Intel® Core™ i3-
8121U processor.

CLFLUSHOPT, XSAVEC,
XSAVES, Intel® MPX

Intel Xeon Processor Scalable Family, 6th Generation Intel® Core™ processor family, Intel Atom processor
based on Goldmont microarchitecture.

SGX1

6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus
microarchitecture.

AVX512DQ, AVX512BW,
AVX512VL

Intel Xeon Processor Scalable Family, Intel Core i3-8121U processor based on Cannon Lake
microarchitecture.

cLwB Intel Xeon Processor Scalable Family, Intel Atom® processor based on Tremont microarchitecture, 11th
Generation Intel Core processor family based on Tiger Lake microarchitecture.

PKU Intel Xeon Processor Scalable Family, 10th generation Intel® Core™ processors based on Comet Lake
microarchitecture.

AVX512_IFMA, Intel Core i3-8121U processor based on Cannon Lake microarchitecture.

AVX512_VBMI

Intel® SHA Extensions

Intel Core i3-8121U processor based on Cannon Lake microarchitecture , Intel Atom processor based on
Goldmont microarchitecture, 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake
microarchitecture.

UMIP Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based on
Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture.

RDPID 10th Generation Intel® Core™ processor family based on Ice Lake microarchitecture, Intel Atom processor

based on Goldmont Plus microarchitecture.

AVX512_4FMAPS,
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI

2nd Generation Intel® Xeon® Processor Scalable Family, 10th Generation Intel Core processor family based
on Ice Lake microarchitecture.

AVX512_VPOPCNTDQ

Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family based on
Ice Lake microarchitecture.

Fast Short REP MOV 10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (SSE) 10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.

VAES, 10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (AVX/AVX512),
AVX512_VBMI2,
VPCLMULQDQ,
AVX512_BITALG

ENCLV

Intel Atom processor based on Tremont microarchitecture, 3rd Generation Intel® Xeon® Processor Scalable
Processors based on Ice Lake microarchitecture.

Split Lock Detection

10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.
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Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)
Instruction Set

Architecture Processor Generation Introduction

CLDEMOTE Intel Atom processor based on Tremont microarchitecture.

Direct stores: MOVDIRI, Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor family
MOVDIR64B based on Tiger Lake microarchitecture.

User wait: TPAUSE, Intel Atom processor based on Tremont microarchitecture.

UMONITOR, UMWAIT

AVX512_BF16 3rd Generation Intel® Xeon® Processor Scalable Processors based on Cooper Lake product.

AVX512_VPZ2INTERSECT | 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.

Key Locker! 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.

Control-flow Enforcement | 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.
Technology (CET)

MKTMEZ, PCONFIG 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake microarchitecture.
WBNOINVD 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake microarchitecture.
Supervisor Memory Future Intel processors

Protection Keys (PKS)
NOTES:

1. Details on Key Locker can be found in the Intel Key Locker Specification here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. Further details on MKTME usage can be found here:
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf.

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations,
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and
miscellaneous subgroups. The sections that follow introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment registers. They
also perform specific operations such as conditional moves, stack access, and data conversion.
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MOV

CMOVE/CMOVZ
CMOVNE/CMOVNZ
CMOVA/CMOVNBE
CMOVAE/CMOVNB
CMOVB/CMOVNAE
CMOVBE/CMOVNA
CMOVG/CMOVNLE
CMOVGE/CMOVNL
CMOVL/CMOVNGE
CMOVLE/CMOVNG
CMOVC

CMOVNC

CMOVO

CMOVNO

CMOVS

CMOVNS
CMOVP/CMOVPE
CMOVNP/CMOVPO
XCHG

BSWAP

XADD

CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD
CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

5.1.2

INSTRUCTION SET SUMMARY

Move data between general-purpose registers; move data between memory and general-
purpose or segment registers; move immediates to general-purpose registers.

Conditional move if equal/Conditional move if zero.

Conditional move if not equal/Conditional move if not zero.
Conditional move if above/Conditional move if not below or equal.
Conditional move if above or equal/Conditional move if not below.
Conditional move if below/Conditional move if not above or equal.
Conditional move if below or equal/Conditional move if not above.
Conditional move if greater/Conditional move if not less or equal.
Conditional move if greater or equal/Conditional move if not less.
Conditional move if less/Conditional move if not greater or equal.
Conditional move if less or equal/Conditional move if not greater.
Conditional move if carry.

Conditional move if not carry.

Conditional move if overflow.

Conditional move if not overflow.

Conditional move if sign (negative).

Conditional move if not sign (non-negative).

Conditional move if parity/Conditional move if parity even.
Conditional move if not parity/Conditional move if parity odd.
Exchange.

Byte swap.

Exchange and add.

Compare and exchange.

Compare and exchange 8 bytes.

Push onto stack.

Pop off of stack.

Push general-purpose registers onto stack.

Pop general-purpose registers from stack.

Convert word to doubleword/Convert doubleword to quadword.
Convert byte to word/Convert word to doubleword in EAX register.
Move and sign extend.

Move and zero extend.

Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.

ADCX
ADOX
ADD
ADC
sSuB
SBB
IMUL
MUL
IDIV

Unsigned integer add with carry.
Unsigned integer add with overflow.
Integer add.

Add with carry.

Subtract.

Subtract with borrow.

Signed multiply.

Unsigned multiply.

Signed divide.
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DIV Unsigned divide.
INC Increment.

DEC Decrement.

NEG Negate.

CMP Compare.

5.1.3 Decimal Arithmetic Instructions

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.

DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.

AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

514 Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword
values.

AND Perform bitwise logical AND.

OR Perform bitwise logical OR.

XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.

SHR Shift logical right.

SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.

SHLD Shift left double.

ROR Rotate right.

ROL Rotate left.

RCR Rotate through carry right.

RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of
a byte operand to indicate the status of flags in the EFLAGS register.

BT Bit test.

BTS Bit test and set.

BTR Bit test and reset.

BTC Bit test and complement.
BSF Bit scan forward.
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BSR
SETE/SETZ

SETNE/SETNZ

SETA/SETNBE

INSTRUCTION SET SUMMARY

Bit scan reverse.

Set byte if equal/Set byte if zero.

Set byte if not equal/Set byte if not zero.

Set byte if above/Set byte if not below or equal.

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.

SETB/SETNAE/SETC

SETBE/SETNA
SETG/SETNLE
SETGE/SETNL
SETL/SETNGE
SETLE/SETNG
SETS

SETNS

SETO

SETNO
SETPE/SETP
SETPO/SETNP
TEST

CRC32!

POPCNT?2

Set byte if below/Set byte if not above or equal/Set byte if carry.
Set byte if below or equal/Set byte if not above.
Set byte if greater/Set byte if not less or equal.
Set byte if greater or equal/Set byte if not less.
Set byte if less/Set byte if not greater or equal.
Set byte if less or equal/Set byte if not greater.
Set byte if sign (negative).

Set byte if not sign (non-negative).

Set byte if overflow.

Set byte if not overflow.

Set byte if parity even/Set byte if parity.

Set byte if parity odd/Set byte if not parity.
Logical compare.

Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient
implementation of data integrity protocols.

This instruction calculates of number of bits set to 1 in the second operand (source) and
returns the count in the first operand (a destination register).

5.1.7 Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control

program flow.
JMP
JE/IZ
IJNE/INZ
JA/INBE
JAE/INB
JB/INAE
JBE/INA
JG/INLE
JGE/INL
JL/INGE
JLE/ING
iC

JNC

Jo

IJNO

]S

INS

Jump.

Jump if equal/Jump if zero.

Jump if not equal/Jump if not zero.

Jump if above/Jump if not below or equal.
Jump if above or equal/Jump if not below.
Jump if below/Jump if not above or equal.
Jump if below or equal/Jump if not above.
Jump if greater/Jump if not less or equal.

Jump if greater or equal/Jump if not less.

Jump if less/Jump if not greater or equal.

Jump if less or equal/Jump if not greater.

Jump if carry.

Jump if not carry.

Jump if overflow.

Jump if not overflow.

Jump if sign (negative).

Jump if not sign (non-negative).

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1
2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1
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JPO/INP Jump if parity odd/Jump if not parity.

JPE/JP Jump if parity even/Jump if parity.

JCXZ/IECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.

RET Return.

IRET Return from interrupt.

INT Software interrupt.

INTO Interrupt on overflow.

BOUND Detect value out of range.

ENTER High-level procedure entry.

LEAVE High-level procedure exit.

5.1.8 String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from memory.

MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.

SCAS/SCASW Scan string/Scan word string.

SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.

LODS/LODSW Load string/Load word string.

LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.
STOS/STOSD Store string/Store doubleword string.

REP Repeat while ECX not zero.

REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 1/0 Instructions

These instructions move data between the processor’s I/O ports and a register or memory.

IN Read from a port.

ouT Write to a port.

INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/0OUTSB Output string to port/Output byte string to port.
OUTS/0OUTSW Output string to port/Output word string to port.
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OUTS/0UTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions

These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag.

CLC Clear the carry flag.

CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.

LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.

CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.

LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.

LEA Load effective address.

NOP No operation.

ub Undefined instruction.

XLAT/XLATB Table lookup translation.

CPUID Processor identification.

MOVBE! Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.
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CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of
the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions

XSAVE Save processor extended states to memory.

XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.

XGETBV Reads the state of an extended control register.

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16  BMI1, BMI2

ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract.

BLSI Extract lowest set bit.

BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.

BZHI Zero high bits starting from specified bit position.
LZCNT Count the number leading zero bits.

MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.

PEXT Parallel extraction of bits using a mask.

RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.

SHLX Shift logic left.

SHRX Shift logic right.

TZCNT Count the number trailing zero bits.

5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW

VEX-encoded general-purpose instructions do not operate on any vector registers.

There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:

CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);

CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);

CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

CPUID.EAX=80000001H:ECX.PREFTEHCHW!/[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.
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5.2 X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point,
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8,
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions

The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU
registers. They also perform conditional move operations on floating-point operands.

FLD Load floating-point value.

FST Store floating-point value.

FSTP Store floating-point value and pop.

FILD Load integer.

FIST Store integer.

FISTP! Store integer and pop.

FBLD Load BCD.

FBSTP Store BCD and pop.

FXCH Exchange registers.

FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 x87 FPU Basic Arithmetic Instructions

The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point

FADDP Add floating-point and pop
FIADD Add integer

FSUB Subtract floating-point

FSUBP Subtract floating-point and pop
FISUB Subtract integer

FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse

FMUL Multiply floating-point

FMULP Multiply floating-point and pop
FIMUL Multiply integer

FDIV Divide floating-point

1. SSE3 provides an instruction FISTTP for integer conversion.
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FDIVP Divide floating-point and pop
FIDIV Divide integer

FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse

FPREM Partial remainder

FPREM1 IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions

The compare instructions examine or compare floating-point or integer operands.

FCOM Compare floating-point.

FCOMP Compare floating-point and pop.

FCOMPP Compare floating-point and pop twice.

FUCOM Unordered compare floating-point.

FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.

FICOMP Compare integer and pop.

FCOMI Compare floating-point and set EFLAGS.

FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).

FXAM Examine floating-point.

5.2.4 x87 FPU Transcendental Instructions

The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2%-1

FYL2X y*logoX

FYL2XP1 yxlogo(x+1)

5.2.5 x87 FPU Load Constants Instructions

The load constants instructions load common constants, such as «, into the x87 floating-point registers.
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FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load &
FLDL2E Load log,e
FLDLN2 Load logg2
FLDL2T Load log,10
FLDLG2 Load log1g2

5.2.6 x87 FPU Control Instructions

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.

FINCSTP Increment FPU register stack pointer.

FDECSTP Decrement FPU register stack pointer.

FFREE Free floating-point register.

FINIT Initialize FPU after checking error conditions.

FNINIT Initialize FPU without checking error conditions.

FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.

FNSTCW Store FPU control word without checking error conditions.

FLDCW Load FPU control word.

FSTENV Store FPU environment after checking error conditions.

FNSTENV Store FPU environment without checking error conditions.

FLDENV Load FPU environment.

FSAVE Save FPU state after checking error conditions.

FNSAVE Save FPU state without checking error conditions.

FRSTOR Restore FPU state.

FSTSW Store FPU status word after checking error conditions.

FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.

FNOP FPU no operation.

53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor
family:

FXSAVE Save x87 FPU and SIMD state.

FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore,
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium Il processor

family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel
64 architecture also supports these instructions.

See Section 10.5, "FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS

Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2
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extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory,
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9,
“Programming with Intel® MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each
subgroup.

5.4.1 MMX Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX
registers and memory.

MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords

PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.

PUNPCKHWD Unpack high-order words.

PUNPCKHDQ Unpack high-order doublewords.

PUNPCKLBW Unpack low-order bytes.

PUNPCKLWD Unpack low-order words.

PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.

PADDB Add packed byte integers.

PADDW Add packed word integers.

PADDD Add packed doubleword integers.

PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.

PSUBW Subtract packed word integers.

PSUBD Subtract packed doubleword integers.

PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
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PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal.

PCMPEQW Compare packed words for equal.

PCMPEQD Compare packed doublewords for equal.

PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

545 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.

PAND Bitwise logical AND.

PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.

PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit
operands.

PSLLW Shift packed words left logical.

PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.

PSRLW Shift packed words right logical.

PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 SSE INSTRUCTIONS

SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For
more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel®
SSE).”
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SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its
own):

® SIMD single-precision floating-point instructions that operate on the XMM registers.
® MXCSR state management instructions.

® 64-bit SIMD integer instructions that operate on the MMX registers.

® Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions

These instructions operate on packed and scalar single-precision floating-point values located in XMM registers
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions

SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM
registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or
between and XMM register and memory.

MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers
or between and XMM register and memory.

MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an
XMM register and memory.

MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM
register to the low quadword of another XMM register.

MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an
XMM register and memory.

MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM
register to the high quadword of another XMM register.

MOVMSKPS Extract sign mask from four packed single-precision floating-point values.

MOVSS Move scalar single-precision floating-point value between XMM registers or between an

XMM register and memory.

5.5.1.2 SSE Packed Arithmetic Instructions

SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.

ADDPS Add packed single-precision floating-point values.
ADDSS Add scalar single-precision floating-point values.
SUBPS Subtract packed single-precision floating-point values.
SUBSS Subtract scalar single-precision floating-point values.
MULPS Multiply packed single-precision floating-point values.
MULSS Multiply scalar single-precision floating-point values.
DIVPS Divide packed single-precision floating-point values.
DIVSS Divide scalar single-precision floating-point values.
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RCPPS Compute reciprocals of packed single-precision floating-point values.

RCPSS Compute reciprocal of scalar single-precision floating-point values.

SQRTPS Compute square roots of packed single-precision floating-point values.

SQRTSS Compute square root of scalar single-precision floating-point values.

RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values.
MAXPS Return maximum packed single-precision floating-point values.

MAXSS Return maximum scalar single-precision floating-point values.

MINPS Return minimum packed single-precision floating-point values.

MINSS Return minimum scalar single-precision floating-point values.

5.5.1.3 SSE Comparison Instructions

SSE compare instructions compare packed and scalar single-precision floating-point operands.

CMPPS Compare packed single-precision floating-point values.

CMPSS Compare scalar single-precision floating-point values.

COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in
EFLAGS register.

UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags

in EFLAGS register.

5.5.1.4 SSE Logical Instructions

SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision
floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values.
ORPS Perform bitwise logical OR of packed single-precision floating-point values.
XORPS Perform bitwise logical XOR of packed single-precision floating-point values.

5.5.1.5 SSE Shuffle and Unpack Instructions

SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point operands.

UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point
operands.

UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point
operands.

5.5.1.6 SSE Conversion Instructions

SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-
precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values.

CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value.

CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers.

CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed double-
word integers.

CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer.
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CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar double-
word integer.

5.5.2 SSE MXCSR State Management Instructions

MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status
register.

LDMXCSR Load MXCSR register.

STMXCSR Save MXCSR register state.

5.5.3 SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4,
“MMX™ Instructions.”

PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.

PINSRW Insert word.

PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.

PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.

PSHUFW Shuffle packed integer word in MMX register.

554 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

The cacheability control instructions provide control over the caching of hon-temporal data when storing data from
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The
SFENCE instruction controls instruction ordering on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.

MOVNTQ Non-temporal store of quadword from an MMX register into memory.

MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM
register into memory.

PREFETCHA Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-
archy

SFENCE Serializes store operations.

5.6 SSEZ2 INSTRUCTIONS

SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “"Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-
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tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate
subgroups):

® Packed and scalar double-precision floating-point instructions.
®* Packed single-precision floating-point conversion instructions.
® 128-bit SIMD integer instructions.

® Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions

SSE2 data movement instructions move double-precision floating-point data between XMM registers and between
XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or
between and XMM register and memory.

MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers
or between and XMM register and memory.

MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an
XMM register and memory.

MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an
XMM register and memory.

MOVMSKPD Extract sign mask from two packed double-precision floating-point values.

MOVSD Move scalar double-precision floating-point value between XMM registers or between an

XMM register and memory.

5.6.1.2 SSEZ2 Packed Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point operands.

ADDPD Add packed double-precision floating-point values.

ADDSD Add scalar double precision floating-point values.

SUBPD Subtract packed double-precision floating-point values.

SUBSD Subtract scalar double-precision floating-point values.

MULPD Multiply packed double-precision floating-point values.

MULSD Multiply scalar double-precision floating-point values.

DIVPD Divide packed double-precision floating-point values.

DIVSD Divide scalar double-precision floating-point values.

SQRTPD Compute packed square roots of packed double-precision floating-point values.
SQRTSD Compute scalar square root of scalar double-precision floating-point values.
MAXPD Return maximum packed double-precision floating-point values.

MAXSD Return maximum scalar double-precision floating-point values.

MINPD Return minimum packed double-precision floating-point values.
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MINSD Return minimum scalar double-precision floating-point values.

5.6.1.3 SSE2 Logical Instructions

SSE?2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.

ANDPD Perform bitwise logical AND of packed double-precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values.
ORPD Perform bitwise logical OR of packed double-precision floating-point values.
XORPD Perform bitwise logical XOR of packed double-precision floating-point values.

5.6.1.4 SSE2 Compare Instructions

SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.

CMPPD Compare packed double-precision floating-point values.

CMPSD Compare scalar double-precision floating-point values.

COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags
in EFLAGS register.

UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set

flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions

SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point operands.

UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point
operands.

UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point
operands.

5.6.1.6 SSEZ2 Conversion Instructions

SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and
double-precision floating-point values.

CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed double-
word integers.

CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values.

CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers.

CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed double-
word integers.

CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values.

CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-
point values.

CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-
point values.

CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-

point values.
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CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-
point values.

CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer.

CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword
integers.

CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value.

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions

SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision
floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed double-

word integers.

5.6.3 SSE2 128-Bit SIMD Integer Instructions

SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords
contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword.

MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.

PSUBQ Subtract packed quadword integers.

PSHUFLW Shuffle packed low words.

PSHUFHW Shuffle packed high words.

PSHUFD Shuffle packed doublewords.

PSLLDQ Shift double quadword left logical.

PSRLDQ Shift double quadword right logical.

PUNPCKHQDQ Unpack high quadwords.

PUNPCKLQDQ Unpack low quadwords.

5.6.4 SSE2 Cacheability Control and Ordering Instructions

SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on
store operations.

CLFLUSH See Section 5.1.13.

LFENCE Serializes load operations.

MFENCE Serializes load and store operations.

PAUSE Improves the performance of “spin-wait loops”.

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.

MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM
register into memory.

MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.
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MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 SSE3 INSTRUCTIONS

The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into the
following categories:

® One x87FPU instruction used in integer conversion.

® One SIMD integer instruction that addresses unaligned data loads.
®* Two SIMD floating-point packed ADD/SUB instructions.

® Four SIMD floating-point horizontal ADD/SUB instructions.

® Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.

®* Two thread synchronization instructions.

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction

FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode
specified in the floating-point control word (FCW).

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.73 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions

ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements
within the operands; single-precision subtraction on the first and third pairs.
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision

subtraction on the first pair.

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions

HADDPS Performs a single-precision addition on contiguous data elements. The first data element of
the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by
adding the first and second elements of the second operand; and the fourth by adding the
third and fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the fourth
element of the first operand from the third element of the first operand; the third by
subtracting the second element of the second operand from the first element of the second
operand; and the fourth by subtracting the fourth element of the second operand from the
third element of the second operand.
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HADDPD Performs a double-precision addition on contiguous data elements. The first data element
of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the second
element of the second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.

MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in
both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from
the source.

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.

MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back
store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers.
These include:

®* Twelve instructions that perform horizontal addition or subtraction operations.

® Six instructions that evaluate absolute values.

®* Two instructions that perform multiply and add operations and speed up the evaluation of dot products.

®* Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
®* Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.

®* Six instructions that negate packed integers in the destination operand if the signs of the corresponding
element in the source operand is less than zero.

®* Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction

PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination
operands and packs the signed 16-bit results to the destination operand.

PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination
operands and packs the signed, saturated 16-bit results to the destination operand.

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination
operands and packs the signed 32-bit results to the destination operand.

PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by

subtracting the most significant word from the least significant word of each pair in the
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source and destination operands. The signed 16-bit results are packed and written to the
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by
subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed, saturated 16-bit results are packed and
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by
subtracting the most significant doubleword from the least significant double word of each
pair in the source and destination operands. The signed 32-bit results are packed and
written to the destination operand.

5.8.2 Packed Absolute Values

PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes

PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce
an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are
added horizontally. The signed, saturated 16-bit results are packed to the destination
operand.

5.84 Packed Multiply High with Round and Scale

PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-
sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits.
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destination
operand.

5.8.5 Packed Shuffle Bytes

PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant
three or four bits of each shuffle control byte of the control mask form the shuffle index.
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is
set, the constant zero is written in the result byte.

5.8.6 Packed Sign

PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-
sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right

PALIGNR Source operand is appended after the destination operand forming an intermediate value
of twice the width of an operand. The result is extracted from the intermediate value into
the destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the
byte offset specified by the immediate value.
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5.9 SSE4 INSTRUCTIONS

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory

type.

The 47 SSE4.1 instructions include:

® Two instructions perform packed dword multiplies.

®* Two instructions perform floating-point dot products with input/output selects.

® One instruction performs a load with a streaming hint.

® Six instructions simplify packed blending.

® Eight instructions expand support for packed integer MIN/MAX.

®* Fourinstructions support floating-point round with selectable rounding mode and precision exception override.
® Seven instructions improve data insertion and extractions from XMM registers

* Twelve instructions improve packed integer format conversions (sign and zero extensions).
® One instruction improves SAD (sum absolute difference) generation for small block sizes.

® One instruction aids horizontal searching operations.

® One instruction improves masked comparisons.

® One instruction adds qword packed equality comparisons.

® One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:

® String and text processing that can take advantage of single-instruction multiple-data programming
techniques.

®* A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS

SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe
each subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction

MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-
byte region (a streaming line) to be fetched and held in a small set of temporary buffers
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5.10.4
BLENDPD

BLENDPS

BLENDVPD
BLENDVPS
PBLENDVB

PBLENDW

5.10.5
PMINUW
PMINUD
PMINSB
PMINSD
PMAXUW
PMAXUD
PMAXSB
PMAXSD

5.10.6

ROUNDPS
ROUNDPD
ROUNDSS

ROUNDSD

5.10.7
EXTRACTPS

INSERTPS
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(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in
the same streaming line may be supplied from the streaming load buffer and can improve
throughput.

Packed Blending Instructions

Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.
Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.
Conditionally copies specified byte elements in the source operand to the corresponding
elements in the destination, using an implied mask.

Conditionally copies specified word elements in the source operand to the corresponding
elements in the destination, using an immediate byte control.

Packed Integer MIN/MAX Instructions

Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.
Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.

Floating-Point Round Instructions with Selectable Rounding Mode

Round packed single precision floating-point values into integer values and return rounded
floating-point values.

Round packed double precision floating-point values into integer values and return
rounded floating-point values.

Round the low packed single precision floating-point value into an integer value and return
a rounded floating-point value.

Round the low packed double precision floating-point value into an integer value and return
a rounded floating-point value.

Insertion and Extractions from XMM Registers

Extracts a single-precision floating-point value from a specified offset in an XMM register
and stores the result to memory or a general-purpose register.

Inserts a single-precision floating-point value from either a 32-bit memory location or
selected from a specified offset in an XMM register to a specified offset in the destination
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.



PINSRB
PINSRD
PINSRQ
PEXTRB

PEXTRW
PEXTRD

PEXTRQ

INSTRUCTION SET SUMMARY

Insert a byte value from a register or memory into an XMM register.
Insert a dword value from 32-bit register or memory into an XMM register.
Insert a qword value from 64-bit register or memory into an XMM register.

Extract a byte from an XMM register and insert the value into a general-purpose register or
memory.

Extract a word from an XMM register and insert the value into a general-purpose register
or memory.

Extract a dword from an XMM register and insert the value into a general-purpose register
or memory.

Extract a gword from an XMM register and insert the value into a general-purpose register
or memory.

5.10.8 Packed Integer Format Conversions

PMOVSXBW
PMOVZXBW
PMOVSXBD
PMOVZXBD
PMOVSXWD
PMOVZXWD
PMOVSXBQ
PMOVZXBQ
PMOVSXWQ
PMOVZXWQ
PMOVSXDQ

PMOVZXDQ

5.10.9
MPSADBW

Sign extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Zero extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Sign extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Sign extend the lower 16-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 16-bit integer of each packed dword element into packed signed
dword integers..

Sign extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Sign extend the lower 16-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 16-bit integer of each packed gqword element into packed signed
gword integers.

Sign extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks

Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word
integers.

5.10.10 Horizontal Search

PHMINPOSUW

Finds the value and location of the minimum unsigned word from one of 8 horizontally
packed unsigned words. The resulting value and location (offset within the source) are
packed into the low dword of the destination XMM register.
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5.10.11 Packed Test

PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the
result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation.

5.11  SSE4.2 INSTRUCTION SET

Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit
integer SIMD instructions.

CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1  String and Text Processing Instructions

PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMMO.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMMO.

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12  INTEL® AES-NI AND PCLMULQDQ

Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less
multiplication for two binary numbers up to 64-bit wide.

AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.

AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.

PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.
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5.13  INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM
register set to use a “vector extension" (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy
128-bit SIMD floating-point instructions to support three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:

®* Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD
instruction sets.

®* Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit
SIMD instruction sets.

®* Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

®* Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction
sets.

®* Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

®* Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14  16-BIT FLOATING-POINT CONVERSION

Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by
VCVTPS2PH, VCVTPH2PS:

VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four
single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into

eight/four 16-bit floating-point data.

5.15  FUSED-MULTIPLY-ADD (FMA)

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.

® Table 14-15 lists FMA instruction sets.

5.16  INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)

Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

®* Table 14-18 lists promoted vector integer instructions in AVX2.
®* Table 14-19 lists new instructions in AVX2 that complements AVX.
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5.17  INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)

XABORT Abort an RTM transaction execution.

XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.

XEND Transaction end of an RTM transaction region.

XTEST Test if executing in a transactional region.

5.18  INTEL® SHA EXTENSIONS

Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants.

SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the
previous message dwords.

SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate
message dwords.

SHA1INEXTE Calculate SHA1 state E after four rounds.

SHA1RNDS4 Perform four rounds of SHA1 operations.

SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.

SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.

SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)

The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit,
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers.

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX / Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX / Intel AVX2. Some instruction
mnemonics in AVX / AVX2 that are promoted into AVX-512 can be replaced by new instruction mnemonics that are
available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details of EVEX instruction
encoding are discussed in Section 2.6, “Intel® AVX-512 Encoding” of the Inte/® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

512-bit instruction mnemonics in AVX-512F that are not AVX/AVX2 promotions include:

VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.

VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.

VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.

5-30 Vol. 1



INSTRUCTION SET SUMMARY

VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.

VFIXUPIMMPD/PS
VFIXUPIMMSD/SS
VGETEXPPD/PS
VGETEXPSD/SS
VGETMANTPD/PS
VGETMANTSD/SS

VINSERTF32X4/64X4

VMOVDQA32/64
VMOVDQU32/64
VPBLENDMD/Q
VPBROADCASTD/Q
VPCMPD/UD
VPCMPQ/UQ
VPCOMPRESSQ/D
VPERMI2D/Q
VPERMI2PD/PS
VPERMT2D/Q
VPERMT2PD/PS
VPEXPANDD/Q
VPMAXSQ
VPMAXUD/UQ
VPMINSQ
VPMINUD/UQ
VPMOV(S|US)QB

VPMOV(S|US)QW
VPMOV(S|US)QD
VPMOV(S|US)DB
VPMOV/(S|US)DW

VPROLD/Q
VPROLVD/Q

VPRORD/Q
VPRORRD/Q

VPSCATTERDD/DQ
VPSCATTERQD/QQ
VPSRAQ

VPSRAVQ
VPTESTNMD/Q

VPTERLOGD/Q

Perform fix-up to special values in DP/SP FP vectors.

Perform fix-up to special values of the low DP/SP FP element.

Convert the exponent of DP/SP FP elements of a vector into FP values.

Convert the exponent of the low DP/SP FP element in a vector into FP value.
Convert the mantissa of DP/SP FP elements of a vector into FP values.

Convert the mantissa of the low DP/SP FP element of a vector into FP value.
Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA with 32/64-bit granular conditional update.

VMOVDQU with 32/64-bit granular conditional update.

Blend dword/qword elements using opmask as select control.

Broadcast from general-purpose register to vector register.

Compare packed signed/unsigned dwords using specified primitive.

Compare packed signed/unsigned quadwords using specified primitive.
Compress packed 64/32-bit elements of a vector.

Full permute of two tables of dword/qword elements overwriting the index vector.
Full permute of two tables of DP/SP elements overwriting the index vector.

Full permute of two tables of dword/qword elements overwriting one source table.
Full permute of two tables of DP/SP elements overwriting one source table.
Expand packed dword/qword elements of a vector.

Compute maximum of packed signed 64-bit integer elements.

Compute maximum of packed unsigned 32/64-bit integer elements.

Compute minimum of packed signed 64-bit integer elements.

Compute minimum of packed unsigned 32/64-bit integer elements.

Down convert gword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Down convert gqword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Down convert gword elements in a vector to dword elements using truncation (saturation
| unsigned saturation).

Down convert dword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Down convert dword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Rotate dword/qword element left by a constant shift count with conditional update.

Rotate dword/qword element left by shift counts specified in a vector with conditional
update.

Rotate dword/qword element right by a constant shift count with conditional update.

Rotate dword/qword element right by shift counts specified in a vector with conditional
update.

Scatter dword/qword elements in a vector to memory using dword indices.
Scatter dword/qword elements in a vector to memory using qword indices.
Shift qwords right by a constant shift count and shifting in sign bits.

Shift gqwords right by shift counts in a vector and shifting in sign bits.

Perform bitwise NAND of dword/qword elements of two vectors and write results to
opmask.

Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional
update.
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VPTESTMD/Q
VRCP14PD/PS
VRCP14SD/SS
VRNDSCALEPD/PS
VRNDSCALESD/SS
VRSQRT14PD/PS
VRSQRT14SD/SS

VSCALEPD/PS
VSCALESD/SS

VSCATTERDD/DQ
VSCATTERQD/QQ

VSHUFF32X4/64X2
VSHUFI32X4/64X2

Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
Compute approximate reciprocals of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of the low DP/SP FP element of a vector.

Round packed DP/SP FP elements of a vector to specified humber of fraction bits.

Round the low DP/SP FP element of a vector to specified number of fraction bits.

Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of square root of the low DP/SP FP element of a
vector.

Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified
in a second vector.

Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in
the corresponding element of a second vector.

Scatter SP/DP FP elements in a vector to memory using dword indices.
Scatter SP/DP FP elements in a vector to memory using qword indices.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not AVX/AVX2 promotions include:

VCVT(T)PD2QQ
VCVT(T)PD2UQQ
VCVT(T)PS2QQ
VCVT(T)PS2UQQ
VCVTUQQ2PD/PS
VEXTRACTF64X2
VEXTRACTI64X2
VFPCLASSPD/PS
VFPCLASSSD/SS
VINSERTF64X2
VINSERTI64X2
VPMOVM2D/Q
VPMOVB2D/Q2M
VPMULLQ

VRANGEPD/PS
VRANGESD/SS
VREDUCEPD/PS

VREDUCESD/SS

Convert packed DP FP elements of a vector to packed signed 64-bit integers.
Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed SP FP elements of a vector to packed signed 64-bit integers.
Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
Extract a vector from a full-length vector with 64-bit granular update.

Extract a vector from a full-length vector with 64-bit granular update.

Test packed DP/SP FP elements in a vector by numeric/special-value category.
Test the low DP/SP FP element by numeric/special-value category.

Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Convert opmask register to vector register in 32/64-bit granularity.

Convert a vector register in 32/64-bit granularity to an opmask register.

Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed
result.

Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified
range primitive in imm8.

Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-
fied range primitive in imm8.

Perform Reduction operation on packed DP/SP FP elements of a vector using specified
reduction primitive in immS8.

Perform Reduction operation on the low DP/SP FP element of a vector using specified
reduction primitive in immS8.

512-bit instruction mnemonics in AVX-512BW that are not AVX/AVX2 promotions include:

VDBPSADBW
VMOVDQUS8/16
VPBLENDMB
VPBLENDMW

VPBROADCASTB/W
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Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU with 8/16-bit granular conditional update.

Replaces the VPBLENDVB instruction (using opmask as select control).
Blend word elements using opmask as select control.

Broadcast from general-purpose register to vector register.



VPCMPB/UB
VPCMPW/UW
VPERMW
VPERMI2B/W
VPMOVM2B/W
VPMOVB2M/W2M
VPMOV(S|US)WB

VPSLLVW
VPSRAVW
VPSRLVW
VPTESTNMB/W
VPTESTMB/W

INSTRUCTION SET SUMMARY

Compare packed signed/unsigned bytes using specified primitive.

Compare packed signed/unsigned words using specified primitive.

Permute packed word elements.

Full permute from two tables of byte/word elements overwriting the index vector.
Convert opmask register to vector register in 8/16-bit granularity.

Convert a vector register in 8/16-bit granularity to an opmask register.

Down convert word elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Shift word elements in a vector left by shift counts in a vector.

Shift words right by shift counts in a vector and shifting in sign bits.

Shift word elements in a vector right by shift counts in a vector.

Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not AVX/AVX2 promotions include:

VPBROADCASTM
VPCONFLICTD/Q
VPLZCNTD/Q

Broadcast from opmask register to vector register.
Detect conflicts within a vector of packed 32/64-bit integers.
Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:

KADDB/W/D/Q
KANDB/W/D/Q
KANDNB/W/D/Q
KMOVB/W/D/Q
KNOTB/W/D/Q
KORB/W/D/Q
KORTESTB/W/D/Q
KSHIFTLB/W/D/Q
KSHIFTRB/W/D/Q
KTESTB/W/D/Q

KUNPCKBW/WD/DQ

KXNORB/W/D/Q
KXORB/W/D/Q

Add two 8/16/32/64-bit opmasks.

Logical AND two 8/16/32/64-bit opmasks.

Logical AND NOT two 8/16/32/64-bit opmasks.

Move from or move to opmask register of 8/16/32/64-bit data.

Bitwise NOT of two 8/16/32/64-bit opmasks.

Logical OR two 8/16/32/64-bit opmasks.

Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
Shift left 8/16/32/64-bit opmask by specified count.

Shift right 8/16/32/64-bit opmask by specified count.

Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.

Bitwise logical XNOR of two 8/16/32/64-bit opmasks.

Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:

VEXP2PD/PS
VEXP2SD/SS
VRCP28PD/PS
VRCP28SD/SS
VRSQRT28PD/PS

VRSQRT28SD/SS

Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector.
Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector.

Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements
of a vector.

Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element
of a vector.

512-bit instruction mnemonics in AVX-512PF include:

VGATHERPFODPD/PS

Sparse prefetch of packed DP/SP FP vector with TO hint using dword indices.
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VGATHERPFOQPD/PS
VGATHERPF1DPD/PS
VGATHERPF1QPD/PS
VSCATTERPFODPD/PS
VSCATTERPFOQPD/PS
VSCATTERPF1DPD/PS
VSCATTERPF1QPD/PS

Sparse prefetch of packed DP/SP FP vector with TO hint using qword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
Sparse prefetch of packed DP/SP FP vector with TO hint to write using dword indices.
Sparse prefetch of packed DP/SP FP vector with TO hint to write using gqword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint to write using gqword indices.

5.20 SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.

CLAC
STAC
LGDT
SGDT
LLDT
SLDT
LTR

STR
LIDT
SIDT
MOV
LMSW
SMSWwW
CLTS
ARPL
LAR

LSL
VERR
VERW
MOV
INVD
WBINVD
INVLPG
INVPCID
LOCK (prefix)

HLT

RSM
RDMSR
WRMSR
RDPMC
RDTSC
RDTSCP
SYSENTER
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Clear AC Flag in EFLAGS register.

Set AC Flag in EFLAGS register.

Load global descriptor table (GDT) register.
Store global descriptor table (GDT) register.
Load local descriptor table (LDT) register.
Store local descriptor table (LDT) register.
Load task register.

Store task register.

Load interrupt descriptor table (IDT) register.
Store interrupt descriptor table (IDT) register.
Load and store control registers.

Load machine status word.

Store machine status word.

Clear the task-switched flag.

Adjust requested privilege level.

Load access rights.

Load segment limit.

Verify segment for reading

Verify segment for writing.

Load and store debug registers.

Invalidate cache, no writeback.

Invalidate cache, with writeback.

Invalidate TLB Entry.

Invalidate Process-Context Identifier.

Perform atomic access to memory (can be applied to a number of general purpose instruc-
tions that provide memory source/destination access).

Halt processor.

Return from system management mode (SMM).

Read model-specific register.

Write model-specific register.

Read performance monitoring counters.

Read time stamp counter.

Read time stamp counter and processor ID.

Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
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SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.

XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.

XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.

XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.

XSETBV Writes the state of an extended control register.

RDFSBASE Reads from FS base address at any privilege level.

RDGSBASE Reads from GS base address at any privilege level.

WRFSBASE Writes to FS base address at any privilege level.

WRGSBASE Writes to GS base address at any privilege level.

5.21  64-BIT MODE INSTRUCTIONS

The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.

CDQE Convert doubleword to quadword.

CMPSQ Compare string operands.

CMPXCHG16B Compare RDX:RAX with m128.

LODSQ Load qword at address (R)SI into RAX.

MOVSQ Move gword from address (R)SI to (R)DI.

MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.

STOSQ Store RAX at address RDI.

SWAPGS Exchanges current GS base register value with value in MSR address CO000102H.
SYSCALL Fast call to privilege level 0 system procedures.

SYSRET Return from fast systemcall.

5.22  VIRTUAL-MACHINE EXTENSIONS

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and
current.

VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is
stored into the destination operand.

VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand.
VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand)

from a source operand.

The behavior of the VMX management instructions is summarized below:

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.

VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.
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VMXOFF Causes the processor to leave VMX operation.

VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX
root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:

INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize
address translation in virtual machines with memory-resident EPT pages.

INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID
(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs,
transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which

is processor functionality enabled and configured by software in VMX root operation. No
VM exit occurs.

5.23  SAFER MODE EXTENSIONS

The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution

mode.

GETSEC[EXITAC] Exits authenticated code execution mode.

GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust
anchored to a chipset supporting Intel Trusted Execution Technology.

GETSEC[SEXIT] Exits the MLE.

GETSEC[PARAMETERS] Returns SMX related parameter information.

GETSEC[SMCRTL] SMX mode control.

GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

5.24  INTEL® MEMORY PROTECTION EXTENSIONS

Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds
checking capability to memory references. Details of Intel MPX are described in Chapter 17, “Intel® MPX”.

BNDMK Create a LowerBound and a UpperBound in a register.

BNDCL Check the address of a memory reference against a LowerBound.

BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.

BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment
form.

BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.

BNDMOV Store to memory of the LowerBound and UpperBound from a register.

BNDLDX Load bounds using address translation.

BNDSTX Store bounds using address translation.
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5.25 INTEL® SOFTWARE GUARD EXTENSIONS

Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in CHAPTER 32 through CHAPTER 38 of Inte/® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3D.

The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave
ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave
ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key
ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report
ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave
ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

5.26  SHADOW STACK MANAGEMENT INSTRUCTIONS

Shadow stack management instructions allow the program and run-time to perform operations like recovering
from control protection faults, shadow stack switching, etc. The following instructions are provided.

CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).

RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.

WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS

ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.
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3. Updates to Chapter 8, Volume 1

Change bars and green text show changes to Chapter 8 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

Changes to this chapter: Removed references to Appendix D, which has been removed from the manual. The
appendix removed is Appendix D, “Guidelines for Writing x87 FPU Exception Handlers”".

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13



CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capabilities for use in
graphics processing, scientific, engineering, and business applications. It supports the floating-point, integer, and
packed BCD integer data types and the floating-point processing algorithms and exception handling architecture
defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides exception
handling information that is specific to the x87 FPU. Refer to the following chapters or sections of chapters for addi-
tional information about x87 FPU instructions and floating-point operations:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed descrip-
tions of x87 FPU instructions.

® Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “"BCD and
Packed BCD Integers,” describe the floating-point, integer, and BCD data types.

® Section 4.9, “"Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-Point Exception Conditions,” and
Section 4.9.2, “Floating-Point Exception Priority,” give an overview of the floating-point exceptions that the x87
FPU can detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the IA-32 architecture (see Figure 8-1). This
execution environment consists of eight data registers (called the x87 FPU data registers) and the following
special-purpose registers:

® Status register

® Control register

®* Tag word register

® Last instruction pointer register

®* Last data (operand) pointer register

® Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of the x87 FPU is inde-
pendent from the state of the basic execution environment and from the state of SSE/SSE2/SSE3 extensions.

However, the x87 FPU and Intel MMX technology share state because the MMX registers are aliased to the x87 FPU
data registers. Therefore, when writing code that uses x87 FPU and MMX instructions, the programmer must
explicitly manage the x87 FPU and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode

In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in protected mode. Memory
operands are specified using the ModR/M, SIB encoding that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are stored in these regis-
ters in the double extended-precision floating-point format shown in Figure 4-3. When floating-point, integer, or
packed BCD integer values are loaded from memory into any of the x87 FPU data registers, the values are auto-
matically converted into double extended-precision floating-point format (if they are not already in that format).
When computation results are subsequently transferred back into memory from any of the x87 FPU registers, the
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results can be left in the double extended-precision floating-point format or converted back into a shorter floating-
point format, an integer format, or the packed BCD integer format. (See Section 8.2, "x87 FPU Data Types,” for a
description of the data types operated on by the x87 FPU.)

Data Registers
Sign \19 78 64 63 0
R7 | | Exponent Significand
R6
R5
R4
R3
R2
R1
RO
15 0 47 0
Fc{:gg”itsrgr Last Instruction Pointer (FCS:FIP)
Rse}git:tZr Last Data (Operand) Pointer (FDS:FDP)
Register Opcode

Figure 8-1. x87 FPU Execution Environment

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure 8-2). All addressing of
the data registers is relative to the register on the top of the stack. The register number of the current top-of-stack
register is stored in the TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by one
and load a value into the new top-of-stack register, and store operations store the value from the current TOP
register in memory and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and
a store operation is equivalent to a pop.) Note that load and store operations are also available that do not push and
pop the stack.

FPU Data Register Stack
7
6
ook 5 ST
4 ST(1) Top
1 3 ST(0)
2
1
0

Figure 8-2. x87 FPU Data Register Stack

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value of TOP is set to 7.
The floating-point stack-overflow exception indicates when wraparound might cause an unsaved value to be over-
written (see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)").

Many floating-point instructions have several addressing modes that permit the programmer to implicitly operate
on the top of the stack, or to explicitly operate on specific registers relative to the TOP. Assemblers support these

8-2 Vol. 1



PROGRAMMING WITH THE X87 FPU

register addressing modes, using the expression ST(0), or simply ST, to represent the current stack top and ST(i)
to specify the ith register from TOP in the stack (0 <i< 7). For example, if TOP contains 011B (register 3 is the top
of the stack), the following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instructions are typically used
to perform a series of computations. Here, a two-dimensional dot product is computed, as follows:

1. The first instruction (FLD valuel) decrements the stack register pointer (TOP) and loads the value 5.6 from
memory into ST(0). The result of this operation is shown in snap-shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and stores the result in
ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and stores the result in
ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0), shown in snap-shot

(d).

Computation
Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD valuel ; (a) valuel = 5.6
FMUL value2 ; (b) value2 = 2.4

FLD value3 ; value3 = 3.8
FMUL value4 ; (c)value4 = 10.3

FADD ST (1) ;(d)
(@) (b) (c) (d)
R7 R7 R7 R7
R6 R6 R6 R6
R5 R5 R5 R5
R4| 56 |[ST() R4| 1344 |ST(0) R4| 1344 |ST(1) R4| 1344 |ST(1)
R3 R3 R3| 3914 |[ST() R3| 5258 |ST(0)
R2 R2 R2 R2
R1 R1 R1 R1
RO RO RO RO

Figure 8-3. Example x87 FPU Dot Product Computation

The style of programming demonstrated in this example is supported by the floating-point instruction set. In cases
where the stack structure causes computation bottlenecks, the FXCH (exchange x87 FPU register contents)
instruction can be used to streamline a computation.

8.1.2.1 Parameter Passing With the x87 FPU Register Stack

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by procedure calls, or
in other words, the values are maintained across procedure boundaries. A calling procedure can thus use the x87
FPU data registers (as well as the procedure stack) for passing parameter between procedures. The called proce-
dure can reference parameters passed through the register stack using the current stack register pointer (TOP)
and the ST(0) and ST(i) nomenclature. It is also common practice for a called procedure to leave a return value or
result in register ST(0) when returning execution to the calling procedure or program.
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When mixing MMX and x87 FPU instructions in the procedures or code sequences, the programmer is responsible
for maintaining the integrity of parameters being passed in the x87 FPU data registers. If an MMX instruction is
executed before the parameters in the x87 FPU data registers have been passed to another procedure, the param-
eters may be lost (see Section 9.5, "Compatibility with x87 FPU Architecture”).

8.1.3 x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU. The flags in the x87
FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition code flags, exception summary
status flag, stack fault flag, and exception flags. The x87 FPU sets the flags in this register to show the results of
operations.

FPU Busy
Top of Stack Pointer

151413 11109 8 76 5432 10

C
3

Top |C|C|C|E|S|P|U|O|Z|D|I

B 2|1|0|s|F|E|E|E|E|E|E

Condition ‘ ‘
Code

Exception Summary Status

Stack Fault

Exception Flags
Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

Figure 8-4. x87 FPU Status Word

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be stored in memory using
the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX
register of the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1 Top of Stack (TOP) Pointer

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack is contained in bits
11 through 13 of the x87 FPU status word. This pointer, which is commonly referred to as TOP (for top-of-stack),
is a binary value from 0 to 7. See Section 8.1.2, "x87 FPU Data Registers,” for more information about the TOP
pointer.

8.1.3.2 Condition Code Flags

The four condition code flags (CO through C3) indicate the results of floating-point comparison and arithmetic oper-
ations. Table 8-1 summarizes the manner in which the floating-point instructions set the condition code flags.
These condition code bits are used principally for conditional branching and for storage of information used in
exception handling (see Section 8.1.4, “"Branching and Conditional Moves on Condition Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both the IE and SF flags
in the x87 FPU status word are set, indicating a stack overflow or underflow exception (#1S), the C1 flag distin-
guishes between overflow (C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indicating
an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the instruction was upward. The FXAM
instruction sets C1 to the sign of the value being examined.
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The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an incomplete reduction (or
partial remainder). When a successful reduction has been completed, the C0O, C3, and C1 condition code flags are
set to the three least-significant bits of the quotient (Q2, Q1, and QO, respectively). See “FPREM1—Partial
Remainder” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A, for more information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the source operand is
beyond the allowable range of +2°3 and clear the C2 flag if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on any specific value in
these flags.

8.1.3.3 x87 FPU Floating-Point Exception Flags

The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word indicate that one or
more floating-point exceptions have been detected since the bits were last cleared. The individual exception flags
(IE, DE, ZE, OE, UE, and PE) are described in detail in Section 8.4, "x87 FPU Floating-Point Exception Handling.”
Each of the exception flags can be masked by an exception mask bit in the x87 FPU control word (see Section 8.1.5,
“x87 FPU Control Word”). The exception summary status flag (ES, bit 7) is set when any of the unmasked exception
flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of the techniques
described in Section 8.7, “"Handling x87 FPU Exceptions in Software.” (Note that if an exception flag is masked, the
x87 FPU will still set the appropriate flag if the associated exception occurs, but it will not set the ES flag.)

The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They can be cleared by
executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or
FSAVE/FNSAVE instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

Table 8-1. Condition Code Interpretation

Instruction co c3 c2 C1
FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FTST, Result of Comparison Operands O or #IS
FUCOM, FUCOMP, FUCOMPP are not
Comparable
FCOMI, FCOMIP, FUCOMI, FUCOMIP Undefined. (These instructions set the #IS
status flags in the EFLAGS register.)
FXAM Operand class Sign
FPREM, FPREM1 Q2 Q1 0 = reduction QO or #IS
complete
1 = reduction
incomplete
F2XM1, FADD, FADDP, FBSTP, FCMOVCcc, Undefined Roundup or #IS

FIADD, FDIV, FDIVP, FDIVR, FDIVRP, FIDIV,
FIDIVR, FIMUL, FIST, FISTP, FISUB,
FISUBR,FMUL, FMULP, FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB, FSUBP, FSUBR,
FSUBRP,FSQRT, FYLZX, FYL2ZXP1

FCOS, FSIN, FSINCOS, FPTAN Undefined 0 = source Roundup or #IS
operand within (Undefined if C2 =
range 1)
1 = source
operand out of
range
FABS, FBLD, FCHS, FDECSTP, FILD, FINCSTP, Undefined Oor #IS
FLD, Load Constants, FSTP (ext. prec.), FXCH,
FXTRACT
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Table 8-1. Condition Code Interpretation (Contd.)

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, FCLEX/FNCLEX, FNOP,

FSTCW/FNSTCW, FSTENV/FNSTENV, Undefined

FSTSW/FNSTSW,

FINIT/ENINIT, FSAVE/FNSAVE 0 0 0 0

8.1.3.4 Stack Fault Flag

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack underflow has occurred
with data in the x87 FPU data register stack. The x87 FPU explicitly sets the SF flag when it detects a stack overflow
or underflow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand condi-
tion.

When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow (C1 = 1) and under-
flow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set, the processor does not clear it until it is
explicitly instructed to do so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction).

See Section 8.1.7, "x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching and performing
conditional moves according to comparisons of two floating-point values. These mechanism are referred to here as
the “old mechanism” and the “new mechanism.”

The old mechanism is available in x87 FPU's prior to the P6 family processors and in P6 family processors. This
mechanism uses the floating-point compare instructions (FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and
FICOMP) to compare two floating-point values and set the condition code flags (CO through C3) according to the
results. The contents of the condition code flags are then copied into the status flags of the EFLAGS register using
a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the condition code flags, into the
lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps or conditional moves
can be performed based on the new settings of the status flags in the EFLAGS register.

15 x87 FPU Status Word 0
Condition  Status
c clclc
Code Flag 3 s11lo
Co CF L
C1 (none) .
c2 PF FSTSW AX Instruction
C3 ZF 15 AX Register 0
c clclc
3 2[1|0
SAHF Instruction
1
31 EFLAGS Register 7 0
z Plilc
F FI'[F

Figure 8-5. Moving the Condition Codes to the EFLAGS Register
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The new mechanism is available beginning with the P6 family processors. Using this mechanism, the new floating-
point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point
values and set the ZF, PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the three
instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow conditional moves of floating-
point values (values in the x87 FPU data registers) based on the setting of the status flags (ZF, PF, and CF) in the
EFLAGS register. These instructions eliminate the need for an IF statement to perform conditional moves of
floating-point values.

8.1.5 x87 FPU Control Word

The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and rounding method used.
It also contains the x87 FPU floating-point exception mask bits. The control word is cached in the x87 FPU control
register. The contents of this register can be loaded with the FLDCW instruction and stored in memory with the
FSTCW/FNSTCW instructions.

Infinity Control

Rounding Control
’— Precision Control

1514131211109 8 7 6 5 4 3 2 1 0

PlU[O|Z|D]| I

X| RC | PC M|M[M|M|M|m

Exception Masks
Precision
Underflow
Overflow
Zero Divide
Denormal Operand
Invalid Operation

I:l Reserved

Figure 8-6. x87 FPU Control Word

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU control
word is set to 037FH, which masks all floating-point exceptions, sets rounding to nearest, and sets the x87 FPU
precision to 64 bits.

8.1.5.1 x87 FPU Floating-Point Exception Mask Bits

The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-point exception
flags in the x87 FPU status word. When one of these mask bits is set, its corresponding x87 FPU floating-point
exception is blocked from being generated.

8.1.5.2 Precision Control Field

The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the precision (64, 53, or 24
bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The default precision is double extended
precision, which uses the full 64-bit significand available with the double extended-precision floating-point format
of the x87 FPU data registers. This setting is best suited for most applications, because it allows applications to take
full advantage of the maximum precision available with the x87 FPU data registers.
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Table 8-2. Precision Control Field (PC)

Precision PC Field
Single Precision (24 bits) 00B
Reserved 01B
Double Precision (53 bits) 10B
Double Extended Precision (64 bits) 11B

The double precision and single precision settings reduce the size of the significand to 53 bits and 24 bits, respec-
tively. These settings are provided to support IEEE Standard 754 and to provide compatibility with the specifica-
tions of certain existing programming languages. Using these settings nullifies the advantages of the double
extended-precision floating-point format's 64-bit significand length. When reduced precision is specified, the
rounding of the significand value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-point instructions: FADD, FADDP, FIADD,
FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR,
and FSQRT.

8.1.5.3 Rounding Control Field

The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how the results of x87 FPU
floating-point instructions are rounded. See Section 4.8.4, “"Rounding,” for a discussion of rounding of floating-
point values; See Section 4.8.4.1, "Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag

The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with the Intel 287 Math
Coprocessor; it is not meaningful for later version x87 FPU coprocessors or IA-32 processors. See Section 4.8.3.3,
“Signed Infinities,” for information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word

The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU data-register
stack (one 2-bit tag per register). The tag codes indicate whether a register contains a valid number, zero, or a
special floating-point number (NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 FPU is initialized with either
an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87 FPU
data registers as empty.

15 0
TAG(7) | TAG(6) | TAG(5) | TAG(4) | TAG(3) | TAG(2) | TAG(1) | TAG(0)

TAG Values
00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty

Figure 8-7. x87 FPU Tag Word

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The current top-of-
stack (TOP) pointer stored in the x87 FPU status word can be used to associate tags with registers relative to ST(0).
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The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section 8.5.1.1, “"Stack
Overflow or Underflow Exception (#1S)").

Application programs and exception handlers can use this tag information to check the contents of an x87 FPU data
register without performing complex decoding of the actual data in the register. To read the tag register, it must be
stored in memory using either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word
in memory after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR instructions load an
image of the tag register into the x87 FPU; however, the x87 FPU uses those tag values only to determine if the
data registers are empty (11B) or non-empty (00B, 01B, or 10B).

If the tag register image indicates that a data register is empty, the tag in the tag register for that data register is
marked empty (11B); if the tag register image indicates that the data register is non-empty, the x87 FPU reads the
actual value in the data register and sets the tag for the register accordingly. This action prevents a program from
setting the values in the tag register to incorrectly represent the actual contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed.
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illustrates
the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer is always a pointer to a memory operand. If the last non-control
instruction that was executed did not have a memory operand, the value in the data pointer is undefined
(reserved). If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the data pointer is updated only for x87 non-control
instructions that incur unmasked x87 exceptions.

The contents of the x87 FPU instruction and data pointers remain unchanged when any of the following instructions
are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and
WAIT/FWAIT.

For all the x87 FPUs and Numeric Processor Extensions (NPXs) except the 8087, the x87 FPU instruction pointer
points to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to
the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector:

®* The x87 FPU Instruction Pointer Offset (FIP) comprises 64 bits on processors that support IA-32e mode; on
other processors, it offset comprises 32 bits.

®* The x87 FPU Instruction Pointer Selector (FCS) comprises 16 bits.

® The x87 FPU Data Pointer Offset (FDP) comprises 64 bits on processors that support IA-32e mode; on other
processors, it offset comprises 32 bits.

® The x87 FPU Data Pointer Selector (FDS) comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR,
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:

® FINIT/FNINIT. Each instruction clears FIP, FCS, FDP, and FDS.

® FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:
— For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.
— If CRO.PE = 1, each instruction loads FCS and FDS from memory; otherwise, it clears them.

® FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through
8-12.

— Each instruction saves the lower 32 bits of each FIP and FDP into memory. the upper 32 bits are not saved.

— If CRO.PE = 1, each instruction saves FCS and FDS into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates FCS and FDS; it saves each as
0000H.
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— After saving these data into memory, FSAVE/FNSAVE clears FIP, FCS, FDP, and FDS.

® FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating
mode and the REX prefix. The memory formats are given in Tables 3-43, 3-46, and 3-47 in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

* For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

* Each instruction loads FCS and FDS from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:
* Each instruction loads FIP and FDP from memory.
* Each instruction clears FCS and FDS.

® FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on
operating mode and the REX prefix. The memory formats are given in Tables 3-43, 3-46, and 3-47 in Chapter
3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

* Each instruction saves the lower 32 bits of each of FIP and FDP into memory. The upper 32 bits are not
saved.

* Each instruction saves FCS and FDS into memory. If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates FCS and FDS; it saves each as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves FIP and FDP into memory. FCS and FDS are not
saved.

8.1.9 Last Instruction Opcode

The x87 FPU stores in the 11-bit x87 FPU opcode register (FOP) the opcode of the last x87 non-control instruction
executed that incurred an unmasked x87 exception. (This information provides state information for exception
handlers.) Only the first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for
all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode register.

8.1.9.1 Fopcode Compatibility Sub-mode

Some Pentium 4 and Intel Xeon processors provide program control over the value stored into FOP. Here, bit 2 of
the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the fopcode compatibility mode.

If fopcode compatibility mode is enabled, FOP is defined as it had been in previous IA-32 implementations, as the
opcode of the last x87 non-control instruction executed (even if that instruction did not incur an unmasked x87
exception).
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1st Instruction Byte 2nd Instruction Byte

x87 FPU Opcode Register

Figure 8-8. Contents of x87 FPU Opcode Registers

The fopcode compatibility mode should be enabled only when x87 FPU floating-point exception handlers are
designed to use the fopcode to analyze program performance or restart a program after an exception has been
handled.

More recent Intel 64 processors do not support fopcode compatibility mode and do not allow software to set bit 2
of the IA32_MISC_ENABLE MSR.

8.1.10 Saving the x87 FPU's State with FSTENV/FNSTENV and FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by
exception handlers and other system and application software. The FSTENV/FNSTENYV instruction saves the
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction does)
after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures
8-9 through 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. See
Chapter 34, “"System Management Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87 FPU.
Here, the FLDENYV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer,
and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU stack
registers.

32-Bit Protected Mode Format

31 16 15 0
Control Word 0
Status Word
Tag Word 8
FPU Instruction Pointer Offset (FIP) 12
00000| Bits 10:0 of opcode | FPU Instruction Pointer Selector | 16
FPU Data Pointer Offset (FDP) 20
|FPU Data Pointer Selector (FDS) | 24

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0O-R7) follow the above structure in sequence.

Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format
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32-Bit Real-Address Mode Format

31 16 15 0
Control Word
Status Word
Tag Word
FIP[15:0] 12
000 o\ FIP[31:16] ] FOP[10:0] 16
\ FDP[15:0] 20
0000| FDP[31:16] | 000000000000 |24

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0O-R7) follow the above structure in sequence.

Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit Format

16-Bit Protected Mode Format
15 0

Control Word 0
Status Word 2
Tag Word 4
6
8

FIP
FCS
FDP 10
FDS 12

Figure 8-11. Protected Mode x87 FPU State Image in Memory, 16-Bit Format

16-Bit Real-Address Mode and
Virtual-8086 Mode Format
15

Control Word 0
Status Word 2
Tag Word 4
6
8

FIP[15:0]
FIP[19:16]| 0| Bits 10:0 of opcode

FDP[15:0] 10
FDP[19:16]0(00000000000| 12

Figure 8-12. Real Mode x87 FPU State Image in Memory, 16-Bit Format

8.1.11

tions.
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Saving the x87 FPU's State with FXSAVE

The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along with the state of the
XMM registers and the MXCSR register. Using the FXSAVE instruction to save the x87 FPU state has two benefits:
(1) FXSAVE executes faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in one

operation. See Section 10.5, "FXSAVE and FXRSTOR Instructions,” for additional information about these instruc-
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8.2 X87 FPU DATA TYPES

The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13): single-precision
floating point, double-precision floating point, double extended-precision floating point, signed word integer,
signed doubleword integer, signed quadword integer, and packed BCD decimal integers.

For detailed information about these data types, see Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2,
“Signed Integers,” and Section 4.7, “"BCD and Packed BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all of these data types exist in
memory only. When they are loaded into x87 FPU data registers, they are converted into double extended-preci-
sion floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE Standard 754. When a
denormal number in single-precision or double-precision floating-point format is used as a source operand and the
denormal exception is masked, the x87 FPU automatically normalizes the number when it is converted to double
extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the initial address
specified for the value. Successive bytes from the value are then stored in successively higher addresses in
memory. The floating-point instructions load and store memory operands using only the initial address of the
operand.

Single-Precision Floating-Point
Sign—»f | Exp. [~ Fraction |
3130 2322 ™ mplied Integer 0
Double-Precision Floating-Point
Sign—»t| Exponent |~ Fraction |
6362 52 51 Implied Integer 0
Sign
+ Double Extended-Precision Floating-Point
H Exponent H'\ Fraction |
7978 646362 Integer 0
Word Integer
sign—{] |
15 14 0
Doubleword Integer
sign—>f] |
3130 0
Quadword Integer
sign—>f] |
Sign 6362 0
Packed BCD Integers
[[ x [p17,D16 D15 D14 D13 D12, D11 D10, D9, K D8 D7 D6 , D5 D4 D3, D2, D1, DO |
7978 7271 4 Bits = 1 BCD Digit 0

Figure 8-13. x87 FPU Data Type Formats

As a general rule, values should be stored in memory in double-precision format. This format provides sufficient
range and precision to return correct results with a minimum of programmer attention. The single-precision format
is useful for debugging algorithms, because rounding problems will manifest themselves more quickly in this
format. The double extended-precision format is normally reserved for holding intermediate results in the x87 FPU
registers and constants. Its extra length is designed to shield final results from the effects of rounding and over-
flow/underflow in intermediate calculations. However, when an application requires the maximum range and preci-
sion of the x87 FPU (for data storage, computations, and results), values can be stored in memory in double
extended-precision format.
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8.2.1 Indefinites

For each x87 FPU data type, one unique encoding is reserved for representing the special value indefinite. The x87
FPU produces indefinite values as responses to some masked floating-point invalid-operation exceptions. See
Tables 4-1, 4-3, and 4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and packed BCD
integer indefinite, respectively.

The binary integer encoding 100..00B represents either of two things, depending on the circumstances of its use:
* The largest negative number supported by the format (-213, -231, or -203)
®* The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the x87 FPU
interprets it as the largest negative number representable in the format being used. If the x87 FPU detects an
invalid operation when storing an integer value in memory with an FIST/FISTP instruction and the invalid-operation
exception is masked, the x87 FPU stores the integer indefinite encoding in the destination operand as a masked
response to the exception. In situations where the origin of a value with this encoding may be ambiguous, the
invalid-operation exception flag can be examined to see if the value was produced as a response to an exception.

8.2.2 Unsupported Double Extended-Precision
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do not fall into any of the cate-
gories shown in Table 4-3. Table 8-3 shows these unsupported encodings. Some of these encodings were supported
by the Intel 287 math coprocessor; however, most of them are not supported by the Intel 387 math coprocessor

and later IA-32 processors. These encodings are no longer supported due to changes made in the final version of
IEEE Standard 754 that eliminated these encodings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal
numbers are not supported and should not be used as operand values. The Intel 387 math coprocessor and later
IA-32 processors generate an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-denormal numbers are
not generated by IA-32 processors. When encountered as operands, however, they are handled correctly; that is,
they are treated as denormals and a denormal exception is generated. Pseudo-denormal numbers should not be
used as operand values. They are supported by current IA-32 processors (as described here) to support legacy
code.

Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals

Significand
Class Sign Biased Exponent Integer Fraction
Positive 0 11.11 0 11.11
Pseudo-NaNs Quiet . : .
0 11.11 10.00
0 11.11 0 01.11
vlgnaling 0 11.11 00.01
Positive Floating Point | Pseudo-infinity 0 11.11 0 00..00
0 11.10 0 11.11
Unnormals : :
00..01 00.00
Pseudo-denormals 0 00.00 1 11.11
0 00.00 00.00
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Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals (Contd.)

Negative Floating Point | Pseudo-denormals 1 00..00 1 11.11
i 00.'.00 00...00
1 11.10 0 11..01
Unnormals : : :
1 00..01 00.00
Pseudo-infinity 1 11.11 0 00..00
Negative Pseudo-NaNs 1 11.11 0 01.11
>lgnaling 1 11.11 00.01
1 11.11 0 11.11
Quiet : : :
1 11.11 10..00
< 15 bits — <— 63 bits —

8.3 X87 FPU INSTRUCTION SET

The floating-point instructions that the x87 FPU supports can be grouped into six functional categories:
* Data transfer instructions

® Basic arithmetic instructions

® Comparison instructions

®* Transcendental instructions

® Load constant instructions

® x87 FPU control instructions

See Section , "CPUID.EAX=80000001H:ECX.PREFTEHCHW][bit 8]: if 1 indicates the processor supports the PREFT-
EHCHW instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports
the PREFTEHCHWT1 instruction.,” for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions of the floating-point
instructions are given in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

8.3.1 Escape (ESC) Instructions

All of the instructions in the x87 FPU instruction set fall into a class of instructions known as escape (ESC) instruc-
tions. All of these instructions have a common opcode format, where the first byte of the opcode is one of the
numbers from D8H through DFH.

8.3.2 x87 FPU Instruction Operands

Most floating-point instructions require one or two operands, located on the x87 FPU data-register stack or in
memory. (None of the floating-point instructions accept immediate operands.)

When an operand is located in a data register, it is referenced relative to the ST(0) register (the register at the top
of the register stack), rather than by a physical register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described in Section 3.7,
“Operand Addressing.”
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8.3.3 Data Transfer Instructions

The data transfer instructions (see Table 8-4) perform the following operations:

®* Load a floating-point, integer, or packed BCD operand from memory into the ST(0) register.

® Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD format.
®* Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from memory onto the top of the x87 FPU
data-register stack. If the operand is in single-precision or double-precision floating-point format, it is automati-
cally converted to double extended-precision floating-point format. This instruction can also be used to push the
value in a selected x87 FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double extended-precision floating-
point format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) instruction
performs the same load operation for a packed BCD operand in memory.

Table 8-4. Data Transfer Instructions

Floating Point Integer Packed Decimal
FLD Load Floating Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating Point FIST Store Integer

FSTP Store Floating Point and FISTP Store Integer FBSTP Store Packed
Pop and Pop Decimal and Pop

FXCH Exchange Register
Contents

FCMOVcc Conditional Move

The FST (store floating point) and FIST (store integer) instructions store the value in register ST(0) in memory in
the destination format (floating point or integer, respectively). Again, the format conversion is carried out automat-
ically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP (store packed decimal and pop)
instructions store the value in the ST(0) registers into memory in the destination format (floating point, integer, or
packed BCD), then performs a pop operation on the register stack. A pop operation causes the ST(0) register to be
marked empty and the stack pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruc-
tion can also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in the stack [ST(i)]
with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack [ST(i)] to register
ST(0) if a condition specified with a condition code (cc) is satisfied (see Table 8-5). The condition being tested for

is represented by the status flags in the EFLAGS register. The condition code mnemonics are appended to the
letters "FCMOV” to form the mnemonic for a FCMOVcc instruction.

Table 8-5. Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description
FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal
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Table 8-5. Floating-Point Conditional Move Instructions (Contd.)

Instruction Mnemonic Status Flag States Condition Description
FCMOVBE CF=1 or ZF=1 Below or equal
FCMOVNBE CF=0or ZF=0 Not below nor equal
FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch mispredictions by the processor.

Software can check if the FCMOVcc instructions are supported by checking the processor’s feature information with
the CPUID instruction.

8.34 Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load n
FLDL2T Load log, 10
FLDL2E Load log,e
FLDLG2 Load log1g2
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and are accurate to
approximately 19 decimal digits. They are stored internally in a format more precise than double extended-preci-
sion floating point. When loading the constant, the x87 FPU rounds the more precise internal constant according
to the RC (rounding control) field of the x87 FPU control word. The inexact-result exception (#P) is not generated
as a result of this rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See
Section 8.3.8, “"Approximation of Pi,” for information on the © constant.

8.3.5 Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on floating-point numbers. Where
applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add floating point

FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point

FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point

FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point

FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point

FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide

FIDIVR Reverse divide integer by floating point
FABS Absolute value

FCHS Change sign
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FSQRT Square root

FPREM Partial remainder

FPREM1 IEEE partial remainder

FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:
®* Two x87 FPU data registers
®* An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, "x87 FPU Data Registers,” for a description of how operands are referenced on the data register
stack.

Operands in memory can be in single-precision floating-point, double-precision floating-point, word-integer, or
doubleword-integer format. They are converted to double extended-precision floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient coding. For example, the
following options are available with the FSUB and FSUBR instructions for operating on values in a specified x87 FPU
data register ST(/) and the ST(0) register:
FSUB:

ST(0) := ST(0) - ST(i)

ST(i) := ST(i) - ST(0)
FSUBR:

ST(0) := ST(i) — ST(0)

ST(i) := ST(0) — ST(i)
These instructions eliminate the need to exchange values between the ST(0) register and another x87 FPU register
to perform a subtraction or division.

The pop versions of the add, subtract, multiply, and divide instructions offer the option of popping the x87 FPU
register stack following the arithmetic operation. These instructions operate on values in the ST(i/) and ST(0) regis-
ters, store the result in the ST(/) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the manner used by the Intel
8087 and Intel 287 math coprocessors; the FPREM1 instruction computes the remainder in the manner specified in
IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the source value in the
direction of the rounding mode specified in the RC field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The FABS instruction
produces the absolute value of the source operand. The FCHS instruction changes the sign of the source operand.
The FXTRACT instruction separates the source operand into its exponent and fraction and stores each value in a
register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnNordered compare floating point and set
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU
condition code flags.
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FCOMI/FCOMIPCompare floating point and set EFLAGS
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because floating-point values have four
(rather than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or in an unsup-
ported format. This additional relationship is required because, by definition, NaNs are not numbers, so they
cannot have less than, equal, or greater than relationships with other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a floating-point source
operand and set the condition code flags (C0O, C2, and C3) in the x87 FPU status word according to the results (see
Table 8-6).

If an unordered condition is detected (one or both of the values are NaNs or in an undefined format), a floating-
point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the comparison operation is
complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, and FCOMPP instructions.
The only difference is that with the FUCOM, FUCOMP, and FUCOMPP instructions, if an unordered condition is
detected because one or both of the operands are QNaNs, the floating-point invalid-operation exception is not
generated.

Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons

Condition c3 c2 co
ST(0) > Source Operand 0 0 0
ST(0) < Source Operand 0 0 1
ST(0) = Source Operand 1 0 0
Unordered 1 1 1

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instructions, except that the
source operand is an integer value in memory. The integer value is automatically converted into an double
extended-precision floating-point value prior to making the comparison. The FICOMP instruction pops the x87 FPU
register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value in register ST(0)
is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6 family processors. They
perform the same comparison as the FCOM and FCOMP instructions, except that they set the status flags (ZF, PF,
and CF) in the EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of the x87 FPU
condition code flags. The FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed
directly from the results of their comparison.

Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons

Comparison Results ZF PF CF
STO > ST(i) 0 0 0
STO < ST(i) 0 0 1
STO =ST(i) 1 0 0
Unordered 1 1 1
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Software can check if the FCOMI and FCOMIP instructions are supported by checking the processor’s feature infor-
mation with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP instructions, except that they
do not generate a floating-point invalid-operation exception if the unordered condition is the result of one or both
of the operands being a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack following the
comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0) register (that is, whether
the value is zero, a denormal number, a normal finite number, -, a NaN, or an unsupported format) or that the
register is empty. It sets the x87 FPU condition code flags to indicate the classification (see "FXAM—Examine” in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). It also sets the C1 flag to indicate the sign of the value.

8.3.6.1 Branching on the x87 FPU Condition Codes

The processor does not offer any control-flow instructions that branch on the setting of the condition code flags
(CO0, C2, and C3) in the x87 FPU status word. To branch on the state of these flags, the x87 FPU status word must
first be moved to the AX register in the integer unit. The FSTSW AX (store status word) instruction can be used for
this purpose. When these flags are in the AX register, the TEST instruction can be used to control conditional
branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the AX register with the
constant 0400H (see Table 8-8). This operation will clear the ZF flag in the EFLAGS register if the condition code
flags indicate an unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then be used to
transfer control (if necessary) to a procedure for handling unordered operands.

Table 8-8. TEST Instruction Constants for Conditional Branching

Order Constant Branch
ST(0) > Source Operand 4500H )z
ST(0) < Source Operand 0100H JNZ
ST(0) = Source Operand 4000H JNZ
Unordered 0400H JNZ

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST instruction to test for a less
than, equal to, or greater than result, then use the corresponding conditional branch instruction to transfer
program control to the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for QNaN results, then it
is not necessary to check for the unordered result every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for another technique for branching on
x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU status word. To ensure
that the status word is not altered inadvertently, store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine

FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent
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These instructions operate on the top one or two registers of the x87 FPU register stack and they return their
results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and FPTAN instructions must be given in
radians; the source operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It operates faster than
executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result in radians. It is
useful for converting rectangular coordinates to polar coordinates.

See Section 8.3.8, “"Approximation of Pi” and Section 8.3.10, “Transcendental Instruction Accuracy” for information
regarding the accuracy of these instructions.

8.3.8 Approximation of Pi

When the argument (source operand) of a trigonometric function is within the domain of the function, the argu-
ment is automatically reduced by the appropriate multiple of 2r through the same reduction mechanism used by
the FPREM and FPREM1 instructions. The internal value of n (3.1415926...) that the x87 FPU uses for argument
reduction and other computations, denoted as Pi in the expression below. The numerical value of Pi can be written
as:

Pi = 0.f  2°
where the fraction f is expressed in binary form as:
f=C90FDAAZ2 2168C234 C

(The spaces in the fraction above indicate 32-bit boundaries.)

The internal approximation Pi of the value n has a 66 significant bits. Since the exact value of n represented in
binary has the next 3 bits equal to 0, it means that Pi is the value of = rounded to nearest-even to 68 bits, and also
the value of © rounded toward zero (truncated) to 69 bits.

However, accuracy problems may arise because this relatively short finite approximation Pi of the number =t is used
for calculating the reduced argument of the trigonometric function approximations in the implementations of FSIN,
FCOS, FSINCOS, and FPTAN. Alternately, this means that FSIN (x), FCOS (x), and FPTAN (x) are really approxi-
mating the mathematical functions sin (x * n /Pi), cos (x * n / Pi), and tan (x * n / Pi), and not exactly sin (x), cos
(x), and tan (x). (Note that FSINCOS is the equivalent of FSIN and FCOS combined together). The period of sin (x
* 1 /Pi) for example is 2* Pi, and not 2x.

See also Section 8.3.10, “Transcendental Instruction Accuracy” for more information on the accuracy of these func-
tions.

8.3.9 Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function and a scale function:

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations. The FYL2X instruction
computes (y * log,x). This operation permits the calculation of the log of any base using the following equation:

logyx = (1/log, b) * log, x

The FYL2XP1 instruction computes (y * log>(x + 1)). This operation provides optimum accuracy for values of x that
are close to 0.

The F2XM1 instruction computes (2% —1). This instruction only operates on source values in the range -1.0 to +1.0.
The FSCALE instruction multiplies the source operand by a power of 2.
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8.3.10 Transcendental Instruction Accuracy

New transcendental instruction algorithms were incorporated into the IA-32 architecture beginning with the
Pentium processors. These new algorithms (used in transcendental instructions FSIN, FCOS, FSINCOS, FPTAN,
FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 processors
and x87 math coprocessors. The accuracy of these instructions is measured in terms of units in the last place
(ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) function values,
respectively. The error in ulps is defined to be:

error = r—(x)F(x)
2k—63

where k is an integer such that:
1< 2_kf(x) <2.

With the Pentium processor and later IA-32 processors, the worst case error on transcendental functions is less
than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps when rounding in other modes. The func-
tions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported by the
instruction.

However, for FSIN, FCOS, FSINCOS, and FPTAN which approximate periodic trigonometric functions, the previous
statement about maximum ulp errors is true only when these instructions are applied to reduced argument (see
Section 8.3.8, "Approximation of Pi”). This is due to the fact that only 66 significant bits are retained in the finite
approximation Pi of the nhumber n (3.1415926...), used internally for calculating the reduced argument in FSIN,
FCOS, FSINCOS, and FPTAN. This approximation of x is not always sufficiently accurate for good argument reduc-
tion.

For single precision, the argument of FSIN, FCOS, FSINCOS, and FPTAN must exceed 200,000 radians in order for
the error of the result to exceed 1 ulp when rounding to the nearest (even), or 1.5 ulps when rounding in other
(directed) rounding modes.

For double and double-extended precision, the ulp errors will grow above these thresholds for arguments much
smaller in magnitude. The ulp errors increase significantly when the argument approaches the value of = (or Pi) for
FSIN, and when it approaches n/2(or Pi/2) for FCOS, FSINCOS, and FPTAN.

For all three IEEE precisions supported (32-bit single precision, 64-bit double precision, and 80-bit double-
extended precision), applying FSIN, FCOS, FSINCOS, or FPTAN to arguments larger than a certain value can lead
to reduced arguments (calculated internally) that are inaccurate or even very inaccurate in some cases. This leads
to equally inaccurate approximations of the corresponding mathematical functions. In particular, arguments that
are close to certain values will lose significance when reduced, leading to increased relative (and ulp) errors in the
results of FSIN, FCOS, FSINCOS, and FPTAN. These values are:

® any non-zero multiple of = for FSIN,
®* any multiple of =, plus n/2 for FCOS, and
® any non-zero multiple of n/2 for FSINCOS and FPTAN.

If the arguments passed to FSIN, FCOS, FSINCOS, and FPTAN are not close to these values then even the finite
approximation Pi of n used internally for argument reduction will allow for results that have good accuracy.

Therefore, in order to avoid such errors it is recommended to perform accurate argument reduction in software,
and to apply FSIN, FCOS, FSINCOS, and FPTAN to reduced arguments only. Regardless of the target precision
(single, double, or double-extended), it is safe to reduce the argument to a value smaller in absolute value than
about 3n/4 for FSIN, and smaller than about 3n/8 for FCOS, FSINCOS, and FPTAN.

The thresholds shown above are not exact. For example, accuracy measurements show that the double-extended
precision result of FSIN will not have errors larger than 0.72 ulp for |x| < 2.82 (so |x| < 3n/4 will ensure good accu-
racy, as 3n/4 < 2.82). On the same interval, double precision results from FSIN will have errors at most slightly
larger than 0.5 ulp, and single precision results will be correctly rounded in the vast majority of cases.

Likewise, the double-extended precision result of FCOS will not have errors larger than 0.82 ulp for |[x| < 1.31 (so
x| < 3n/8 will ensure good accuracy, as 3n/8 < 1.31). On the same interval, double precision results from FCOS
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will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast
majority of cases.

FSINCOS behaves similarly to FSIN and FCOS, combined as a pair.

Finally, the double-extended precision result of FPTAN will not have errors larger than 0.78 ulp for [x| < 1.25 (so
[x] < 3n/8 will ensure good accuracy, as 3n/8 < 1.25). On the same interval, double precision results from FPTAN
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast
majority of cases.

A recommended alternative in order to avoid the accur