intel)

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

April 2021

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

Document Number: 252046-066

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2021, Intel Corporation. All Rights Reserved.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Contents
Revision History 4
Preface. 7
Summary Tablesof Changes 8
Documentation Changes. e 9

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

[®
I n tel Revision History

Revision History

Revision Description Date
-001 o Initial release November 2002
e Added 1-10 Documentation Changes.
-002 ¢ Removed old Documentation Changes items that already have been December 2002
incorporated in the published Software Developer’s manual
e Added 9 -17 Documentation Changes.
e Removed Documentation Change #6 - References to bits Gen and Len
-003 Deleted. February 2003
e Removed Documentation Change #4 - VIF Information Added to CLI
Discussion
e Removed Documentation changes 1-17.
004 o Added Documentation changes 1-24. June 2003
e Removed Documentation Changes 1-24.
005 e Added Documentation Changes 1-15. September 2003
-006 e Added Documentation Changes 16- 34. November 2003
e Updated Documentation changes 14, 16, 17, and 28.
007 e Added Documentation Changes 35-45. January 2004
e Removed Documentation Changes 1-45.
008 e Added Documentation Changes 1-5. March 2004
-009 e Added Documentation Changes 7-27. May 2004
e Removed Documentation Changes 1-27.
010 e Added Documentation Changes 1. August 2004
-011 e Added Documentation Changes 2-28. November 2004
¢ Removed Documentation Changes 1-28.
012 e Added Documentation Changes 1-16. March 2005
e Updated title.
-013 e There are no Documentation Changes for this revision of the July 2005
document.
-014 e Added Documentation Changes 1-21. September 2005
e Removed Documentation Changes 1-21.
015 e Added Documentation Changes 1-20. March 9, 2006
-016 ¢ Added Documentation changes 21-23. March 27, 2006
e Removed Documentation Changes 1-23.
017 e Added Documentation Changes 1-36. September 2006
-018 e Added Documentation Changes 37-42. October 2006
e Removed Documentation Changes 1-42.
019 e Added Documentation Changes 1-19. March 2007
-020 ¢ Added Documentation Changes 20-27. May 2007
e Removed Documentation Changes 1-27.
021 e Added Documentation Changes 1-6 November 2007
e Removed Documentation Changes 1-6
022 e Added Documentation Changes 1-6 August 2008
e Removed Documentation Changes 1-6
023 e Added Documentation Changes 1-21 March 2009

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

intel.

Revision Description Date
032 | e Documentation Changes 114 May 2011
-047 Removed Documentation Changes 1-25 June 2015

Add Documentation Changes 1-19

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

ntel.

Revision History

Revision Description Date
-066 Removed Documentation Changes 1-31 April 2021

Add Documentation Changes 1-24

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Document Title Document Number/
Location
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
253666
Reference, A-L
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
253667
Reference, M-U
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
326018
Reference, V-Z
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set 334569
Reference
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
. . 253668
Programming Guide, Part 1
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
. . 253669
Programming Guide, Part 2
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
. . 326019
Programming Guide, Part 3
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
. . 332831
Programming Guide, Part 4
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific 335592
Registers
Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes

No. DOCUMENTATION CHANGES
1 Updates to Chapter 1, Volume 1
2 Updates to Chapter 5, Volume 1
3 Updates to Chapter 1, Volume 2A
4 Updates to Chapter 3, Volume 2A
5 Updates to Chapter 4, Volume 2B
6 Updates to Chapter 5, Volume 2C
7 Updates to Chapter 1, Volume 3A
8 Updates to Chapter 2, Volume 3A
9 Updates to Chapter 14, Volume 2B
10 Updates to Chapter 16, Volume 3B
11 Updates to Chapter 17, Volume 3B
12 Updates to Chapter 18, Volume 3B
13 Updates to Chapter 24, Volume 3B
14 Updates to Chapter 25, Volume 3C
15 Updates to Chapter 26, Volume 3C
16 Updates to Chapter 27, Volume 3C
17 Updates to Chapter 31, Volume 3C
18 Updates to Chapter 35, Volume 3C
19 Updates to Chapter 40, Volume 3D
20 Updates to Appendix A, Volume 3D
21 Updates to Appendix B, Volume 3D
22 Updates to Appendix C, Volume 3D
23 Updates to Chapter 1, Volume 4
24 Updates to Chapter 2, Volume 4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

10

1. Updates to Chapter 1, Volume 1

Change bars and green text show changes to Chapter 1 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

11

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32
architecture processors. Other volumes in this set are:

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018 and 334569).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System
Programming Guide (order numbers 253668, 253669, 326019 and 332831).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme processor QX6000 series
* Intel® Xeon® processor 7100 series

Vol. T 1-1

ABOUT THIS MANUAL

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor E8000, T9000 series

* Intel® Atom™ processor family

* Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
* 4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

* Intel® Atom™ processor Z3400 series

* Intel® Atom™ processor Z3500 series

* 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

* 7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Processor Scalable Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Processor Scalable Family

1-2 Vol. 1

ABOUT THIS MANUAL

* 10th generation Intel® Core™ processors
* 11th generation Intel® Core™ processors
* 3rd generation Intel® Xeon® Processor Scalable Family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® IIl Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2XxX,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

Vol.1T 1-3

ABOUT THIS MANUAL

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Inte/® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with the
families of Intel processors that are based on these architectures. It also gives an overview of the common features
found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

1-4 Vol. 1

ABOUT THIS MANUAL

Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2
extensions, including XMM registers and packed double-precision floating-point data types; provides an overview
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel®
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3,
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set,
FMA and Intel AVX2 extensions and gives guidelines for writing code that access these extensions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 17 — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection
Extensions and gives guidelines for writing code that access these extensions.

Chapter 18 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 19 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/0
instructions, and I/0 protection mechanisms.

Chapter 20 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. This notation is described below.

Vol.1T 1-5

ABOUT THIS MANUAL

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are humbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

Data Structure

Highest
Adgdress 32 24 23 16 15 8 7 0 <« Bitoffset

28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 ByteO | O
Lowest

* Address
Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able.

Software should follow these guidelines in dealing with reserved bits:

* Do not depend on the states of any reserved bits when testing the values of registers that contain such bits.
Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or
reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.2.1 Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

1-6 Vol. 1

ABOUT THIS MANUAL

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, OF82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A, B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of humber might
arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:
Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:
DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:ElP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.

Vol. 1T 1-7

ABOUT THIS MANUAL

CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values

CR4.0SFXSR[bit 9] = 1

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

: | :

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code.
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1-8 Vol. 1

ABOUT THIS MANUAL

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:

https://software.intel.com/en-us/articles/intel-sdm

See also:

The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

Software developer resources, guidance and insights for security advisories:
https://software.intel.com/security-software-guidance/

The data sheet for a particular Intel 64 or IA-32 processor
The specification update for a particular Intel 64 or IA-32 processor

Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

Intel® Software Guard Extensions (Intel® SGX) Programming Reference
https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:

Intel® Developer Zone:

https://software.intel.com/en-us

Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
Processor support general link:

http://www.intel.com/support/processors/

Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Vol. 1

1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us
https://software.intel.com/en-us/articles/resource-center/
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/security-software-guidance/

ABOUT THIS MANUAL

1-10 Vol.1

2. Updates to Chapter 5, Volume 1

Change bars and green text show changes to Chapter 5 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.

Changes to this chapter: Update to Table 5-2, “Instruction Set Extensions Introduction in Intel 64 and IA-32
Processors”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

12

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:

® Section 5.1, “"General-Purpose Instructions”.

® Section 5.2, "x87 FPU Instructions”.

® Section 5.3, "x87 FPU AND SIMD State Management Instructions”.

® Section 5.4, "MMX™ Instructions”.

® Section 5.5, "SSE Instructions”.

® Section 5.6, "SSE2 Instructions”.

® Section 5.7, "SSE3 Instructions”.

® Section 5.8, “"Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions”.
® Section 5.9, "SSE4 Instructions”.

® Section 5.10, "SSE4.1 Instructions”.

® Section 5.11, "SSE4.2 Instruction Set”.

® Section 5.12, “Intel® AES-NI and PCLMULQDQ".

® Section 5.13, “"Intel® Advanced Vector Extensions (Intel® AVX)".

® Section 5.14, “16-bit Floating-Point Conversion”.

® Section 5.15, “Fused-Multiply-ADD (FMA)”".

® Section 5.16, “"Intel® Advanced Vector Extensions 2 (Intel® AVX2)”.

® Section 5.17, “"Intel® Transactional Synchronization Extensions (Intel® TSX)".
® Section 5.18, “Intel® SHA Extensions”.

® Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512)".
® Section 5.20, “"System Instructions”.

® Section 5.21, “64-Bit Mode Instructions”.

® Section 5.22, “Virtual-Machine Extensions”.

® Section 5.23, “Safer Mode Extensions”.

® Section 5.24, “Intel® Memory Protection Extensions”.

® Section 5.25, “"Intel® Software Guard Extensions”.

® Section 5.26, "Shadow Stack Management Instructions”.

® Section 5.27, “Control Transfer Terminating Instructions”.

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set

Architecture Intel 64 and IA-32 Processor Support
General Purpose All Intel 64 and |IA-32 processors.
x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,

Pentium Ill, Pentium Ill Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

x87 FPU and SIMD State | Pentium II, Pentium II Xeon, Pentium lll, Pentium lll Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Management Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.

Vol. T 5-1

INSTRUCTION SET SUMMARY

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture

Intel 64 and IA-32 Processor Support

MMX Technology

Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium lll, Pentium Ill Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors.

SSE Extensions

Pentium Ill, Pentium Ill Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

SSEZ2 Extensions

Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors.

SSE3 Extensions

Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions

Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors.

IA-32e mode: 64-bit
mode instructions

Intel 64 processors.

System Instructions

Intel 64 and IA-32 processors.

VMX Instructions

Intel 64 and |IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions

Intel Core 2 Duo processor E6x50, EBxxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture

Processor Generation Introduction

SSE4.1 Extensions

Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme processors
QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors 8000 series
and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions,
CRC32, POPCNT

Intel® Core™ i7 965 processor, Intel®* Xeon® processors X3400, X3500, X5500, X6500, X7500 series,
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI, Intel® Xeon® processor €7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X

PCLMULQDQ processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence of
Intel AES-NI and PCLMULQDAQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor €3 and E5 families, 2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor €3-1200 v2 product family, Intel® Xeon®
processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon
processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access 3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon

processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.

FMA, AVX2, BMI1, BMIZ,
INVPCID, LZCNT, Intel®
TSX

Intel® Xeon® processor €E3/€5/€7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE Intel Xeon processor E3/E5/E7 v3 product families, 4th Generation Intel Core processor family, Intel Atom
processors.
PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor based

on Silvermont microarchitecture.

5-2 Vol.1

INSTRUCTION SET SUMMARY

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture

Processor Generation Introduction

Intel® SHA Extensions

Intel Atom processor based on Goldmont microarchitecture.

ADX

Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC

Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based on
Goldmont microarchitecture.

AVX512ER, AVX512PF,
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD

Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Processor Scalable Family, Intel® Core™ i3-
8121U processor.

CLFLUSHOPT, XSAVEC,
XSAVES, Intel® MPX

Intel Xeon Processor Scalable Family, 6th Generation Intel® Core™ processor family, Intel Atom processor
based on Goldmont microarchitecture.

SGX1

6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus
microarchitecture.

AVX512DQ, AVX512BW,
AVX512VL

Intel Xeon Processor Scalable Family, Intel Core i3-8121U processor based on Cannon Lake
microarchitecture.

CLwB Intel Xeon Processor Scalable Family, Intel Atom® processor based on Tremont microarchitecture, 11th
Generation Intel Core processor family based on Tiger Lake microarchitecture.

PKU Intel Xeon Processor Scalable Family, 10th generation Intel® Core™ processors based on Comet Lake
microarchitecture.

AVX512_IFMA, Intel Core i3-8121U processor based on Cannon Lake microarchitecture.

AVX512_VBMI

SHA-NI Intel Core i3-8121U processor based on Cannon Lake microarchitecture , Intel Atom processor based on
Goldmont microarchitecture, 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake
microarchitecture.

UMIP Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based on
Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture.

RDPID 10th Generation Intel® Core™ processor family based on Ice Lake microarchitecture, Intel Atom processor

based on Goldmont Plus microarchitecture.

AVX512_4FMAPS,
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI

2nd Generation Intel® Xeon® Processor Scalable Family, 10th Generation Intel Core processor family based
on Ice Lake microarchitecture.

AVX512_VPOPCNTDQ

Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family based on
Ice Lake microarchitecture.

Fast Short REP MOV 10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (SSE) 10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.

VAES, 10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (AVX/AVX512),
AVX512_VBMIz,
VPCLMULQDAQ,
AVX512_BITALG

ENCLV

Intel Atom processor based on Tremont microarchitecture, 3rd Generation Intel® Xeon® Processor Scalable
Processors based on Ice Lake microarchitecture.

Vol. 1T 5-3

INSTRUCTION SET SUMMARY

Table 5-2. Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors (Contd.)
Instruction Set

Architecture Processor Generation Introduction

Split Lock Detection 10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.

CLDEMOTE Intel Atom processor based on Tremont microarchitecture.

Direct stores: MOVDIRI, Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor family

MOVDIR64B based on Tiger Lake microarchitecture.

User wait: TPAUSE, Intel Atom processor based on Tremont microarchitecture.

UMONITOR, UMWAIT

AVX512_BF16 3rd Generation Intel® Xeon® Processor Scalable Processors based on Cooper Lake product.

AVX512_VP2INTERSECT | 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.

Key Locker' 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.

Control-flow Enforcement | 11th Generation Intel Core processor family based on Tiger Lake microarchitecture.
Technology (CET)

MKTMEZ, PCONFIG 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake microarchitecture.
WBNOINVD 3rd Generation Intel® Xeon® Processor Scalable Family based on Ice Lake microarchitecture.
NOTES:

1. Details on Key Locker can be found in the Intel Key Locker Specification here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. Further details on MKTME usage can be found here:
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf.

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations,
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and
miscellaneous subgroups. The sections that follow introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment registers. They
also perform specific operations such as conditional moves, stack access, and data conversion.

5-4 Vol.1

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

MOV

CMOVE/CMOVZ
CMOVNE/CMOVNZ
CMOVA/CMOVNBE
CMOVAE/CMOVNB
CMOVB/CMOVNAE
CMOVBE/CMOVNA
CMOVG/CMOVNLE
CMOVGE/CMOVNL
CMOVL/CMOVNGE
CMOVLE/CMOVNG
CMOVC

CMOVNC

CMOVO

CMOVNO

CMOVS

CMOVNS
CMOVP/CMOVPE
CMOVNP/CMOVPO
XCHG

BSWAP

XADD

CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD
CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

5.1.2

INSTRUCTION SET SUMMARY

Move data between general-purpose registers; move data between memory and general-
purpose or segment registers; move immediates to general-purpose registers.

Conditional move if equal/Conditional move if zero.

Conditional move if not equal/Conditional move if not zero.
Conditional move if above/Conditional move if not below or equal.
Conditional move if above or equal/Conditional move if not below.
Conditional move if below/Conditional move if not above or equal.
Conditional move if below or equal/Conditional move if not above.
Conditional move if greater/Conditional move if not less or equal.
Conditional move if greater or equal/Conditional move if not less.
Conditional move if less/Conditional move if not greater or equal.
Conditional move if less or equal/Conditional move if not greater.
Conditional move if carry.

Conditional move if not carry.

Conditional move if overflow.

Conditional move if not overflow.

Conditional move if sign (negative).

Conditional move if not sign (non-negative).

Conditional move if parity/Conditional move if parity even.
Conditional move if not parity/Conditional move if parity odd.
Exchange.

Byte swap.

Exchange and add.

Compare and exchange.

Compare and exchange 8 bytes.

Push onto stack.

Pop off of stack.

Push general-purpose registers onto stack.

Pop general-purpose registers from stack.

Convert word to doubleword/Convert doubleword to quadword.
Convert byte to word/Convert word to doubleword in EAX register.
Move and sign extend.

Move and zero extend.

Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.

ADCX
ADOX
ADD
ADC
sSuB
SBB
IMUL
MUL
IDIV

Unsigned integer add with carry.
Unsigned integer add with overflow.
Integer add.

Add with carry.

Subtract.

Subtract with borrow.

Signed multiply.

Unsigned multiply.

Signed divide.

Vol. 1T 5-5

INSTRUCTION SET SUMMARY

DIV Unsigned divide.
INC Increment.

DEC Decrement.

NEG Negate.

CMP Compare.

5.1.3 Decimal Arithmetic Instructions

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.

DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.

AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

514 Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword
values.

AND Perform bitwise logical AND.

OR Perform bitwise logical OR.

XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.

SHR Shift logical right.

SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.

SHLD Shift left double.

ROR Rotate right.

ROL Rotate left.

RCR Rotate through carry right.

RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of
a byte operand to indicate the status of flags in the EFLAGS register.

BT Bit test.

BTS Bit test and set.

BTR Bit test and reset.

BTC Bit test and complement.
BSF Bit scan forward.

5-6 Vol.1

BSR
SETE/SETZ

SETNE/SETNZ

SETA/SETNBE

INSTRUCTION SET SUMMARY

Bit scan reverse.

Set byte if equal/Set byte if zero.

Set byte if not equal/Set byte if not zero.

Set byte if above/Set byte if not below or equal.

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.

SETB/SETNAE/SETC

SETBE/SETNA
SETG/SETNLE
SETGE/SETNL
SETL/SETNGE
SETLE/SETNG
SETS

SETNS

SETO

SETNO
SETPE/SETP
SETPO/SETNP
TEST

CRC32!

POPCNT?2

Set byte if below/Set byte if not above or equal/Set byte if carry.
Set byte if below or equal/Set byte if not above.
Set byte if greater/Set byte if not less or equal.
Set byte if greater or equal/Set byte if not less.
Set byte if less/Set byte if not greater or equal.
Set byte if less or equal/Set byte if not greater.
Set byte if sign (negative).

Set byte if not sign (non-negative).

Set byte if overflow.

Set byte if not overflow.

Set byte if parity even/Set byte if parity.

Set byte if parity odd/Set byte if not parity.
Logical compare.

Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient
implementation of data integrity protocols.

This instruction calculates of number of bits set to 1 in the second operand (source) and
returns the count in the first operand (a destination register).

5.1.7 Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control

program flow.
JMP
JE/IZ
IJNE/INZ
JA/INBE
JAE/INB
JB/INAE
JBE/INA
JG/INLE
JGE/INL
JL/INGE
JLE/ING
iC

JNC

Jo

IJNO

]S

INS

Jump.

Jump if equal/Jump if zero.

Jump if not equal/Jump if not zero.

Jump if above/Jump if not below or equal.
Jump if above or equal/Jump if not below.
Jump if below/Jump if not above or equal.
Jump if below or equal/Jump if not above.
Jump if greater/Jump if not less or equal.

Jump if greater or equal/Jump if not less.

Jump if less/Jump if not greater or equal.

Jump if less or equal/Jump if not greater.

Jump if carry.

Jump if not carry.

Jump if overflow.

Jump if not overflow.

Jump if sign (negative).

Jump if not sign (non-negative).

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1
2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

Vol.1 5-7

INSTRUCTION SET SUMMARY

JPO/INP Jump if parity odd/Jump if not parity.

JPE/JP Jump if parity even/Jump if parity.

JCXZ/IECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.

RET Return.

IRET Return from interrupt.

INT Software interrupt.

INTO Interrupt on overflow.

BOUND Detect value out of range.

ENTER High-level procedure entry.

LEAVE High-level procedure exit.

5.1.8 String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from memory.

MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.

SCAS/SCASW Scan string/Scan word string.

SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.

LODS/LODSW Load string/Load word string.

LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.
STOS/STOSD Store string/Store doubleword string.

REP Repeat while ECX not zero.

REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 1/0 Instructions

These instructions move data between the processor’s I/O ports and a register or memory.

IN Read from a port.

ouT Write to a port.

INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/0OUTSB Output string to port/Output byte string to port.
OUTS/0OUTSW Output string to port/Output word string to port.

5-8 Vol.1

INSTRUCTION SET SUMMARY

OUTS/0UTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions

These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag.

CLC Clear the carry flag.

CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.

LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.

CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.

LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.

LEA Load effective address.

NOP No operation.

ub Undefined instruction.

XLAT/XLATB Table lookup translation.

CPUID Processor identification.

MOVBE! Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.

Vol.1T 5-9

INSTRUCTION SET SUMMARY

CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of
the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions

XSAVE Save processor extended states to memory.

XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.

XGETBV Reads the state of an extended control register.

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1, BMI2

ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract.

BLSI Extract lowest set bit.

BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.

BZHI Zero high bits starting from specified bit position.
LZCNT Count the number leading zero bits.

MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.

PEXT Parallel extraction of bits using a mask.

RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.

SHLX Shift logic left.

SHRX Shift logic right.

TZCNT Count the number trailing zero bits.

5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW

VEX-encoded general-purpose instructions do not operate on any vector registers.

There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:

CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);

CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);

CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

CPUID.EAX=80000001H:ECX.PREFTEHCHW!/[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.

5-10 Vol. 1

INSTRUCTION SET SUMMARY

5.2 X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point,
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8,
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions

The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU
registers. They also perform conditional move operations on floating-point operands.

FLD Load floating-point value.

FST Store floating-point value.

FSTP Store floating-point value and pop.

FILD Load integer.

FIST Store integer.

FISTP! Store integer and pop.

FBLD Load BCD.

FBSTP Store BCD and pop.

FXCH Exchange registers.

FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 x87 FPU Basic Arithmetic Instructions

The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point

FADDP Add floating-point and pop
FIADD Add integer

FSUB Subtract floating-point

FSUBP Subtract floating-point and pop
FISUB Subtract integer

FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse

FMUL Multiply floating-point

FMULP Multiply floating-point and pop
FIMUL Multiply integer

FDIV Divide floating-point

1. SSE3 provides an instruction FISTTP for integer conversion.

Vol. 1T 5-11

INSTRUCTION SET SUMMARY

FDIVP Divide floating-point and pop
FIDIV Divide integer

FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse

FPREM Partial remainder

FPREM1 IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions

The compare instructions examine or compare floating-point or integer operands.

FCOM Compare floating-point.

FCOMP Compare floating-point and pop.

FCOMPP Compare floating-point and pop twice.

FUCOM Unordered compare floating-point.

FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.

FICOMP Compare integer and pop.

FCOMI Compare floating-point and set EFLAGS.

FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).

FXAM Examine floating-point.

5.2.4 x87 FPU Transcendental Instructions

The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2%-1

FYL2X y*logoX

FYL2XP1 yxlogo(x+1)

5.2.5 x87 FPU Load Constants Instructions

The load constants instructions load common constants, such as «, into the x87 floating-point registers.

5-12 Vol. 1

INSTRUCTION SET SUMMARY

FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load &
FLDL2E Load log,e
FLDLN2 Load logg2
FLDL2T Load log,10
FLDLG2 Load log1g2

5.2.6 x87 FPU Control Instructions

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.

FINCSTP Increment FPU register stack pointer.

FDECSTP Decrement FPU register stack pointer.

FFREE Free floating-point register.

FINIT Initialize FPU after checking error conditions.

FNINIT Initialize FPU without checking error conditions.

FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.

FNSTCW Store FPU control word without checking error conditions.

FLDCW Load FPU control word.

FSTENV Store FPU environment after checking error conditions.

FNSTENV Store FPU environment without checking error conditions.

FLDENV Load FPU environment.

FSAVE Save FPU state after checking error conditions.

FNSAVE Save FPU state without checking error conditions.

FRSTOR Restore FPU state.

FSTSW Store FPU status word after checking error conditions.

FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.

FNOP FPU no operation.

53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor
family:

FXSAVE Save x87 FPU and SIMD state.

FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore,
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium Il processor

family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel
64 architecture also supports these instructions.

See Section 10.5, "FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS

Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2

Vol.1 5-13

INSTRUCTION SET SUMMARY

extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory,
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9,
“Programming with Intel® MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each
subgroup.

5.4.1 MMX Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX
registers and memory.

MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords

PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.

PUNPCKHWD Unpack high-order words.

PUNPCKHDQ Unpack high-order doublewords.

PUNPCKLBW Unpack low-order bytes.

PUNPCKLWD Unpack low-order words.

PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.

PADDB Add packed byte integers.

PADDW Add packed word integers.

PADDD Add packed doubleword integers.

PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.

PSUBW Subtract packed word integers.

PSUBD Subtract packed doubleword integers.

PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.

5-14 Vol. 1

INSTRUCTION SET SUMMARY

PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal.

PCMPEQW Compare packed words for equal.

PCMPEQD Compare packed doublewords for equal.

PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

545 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.

PAND Bitwise logical AND.

PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.

PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit
operands.

PSLLW Shift packed words left logical.

PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.

PSRLW Shift packed words right logical.

PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 SSE INSTRUCTIONS

SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For
more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel®
SSE).”

Vol.1 5-15

INSTRUCTION SET SUMMARY

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its
own):

® SIMD single-precision floating-point instructions that operate on the XMM registers.
® MXCSR state management instructions.

® 64-bit SIMD integer instructions that operate on the MMX registers.

® Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions

These instructions operate on packed and scalar single-precision floating-point values located in XMM registers
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions

SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM
registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or
between and XMM register and memory.

MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers
or between and XMM register and memory.

MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an
XMM register and memory.

MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM
register to the low quadword of another XMM register.

MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an
XMM register and memory.

MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM
register to the high quadword of another XMM register.

MOVMSKPS Extract sign mask from four packed single-precision floating-point values.

MOVSS Move scalar single-precision floating-point value between XMM registers or between an

XMM register and memory.

5.5.1.2 SSE Packed Arithmetic Instructions

SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.

ADDPS Add packed single-precision floating-point values.
ADDSS Add scalar single-precision floating-point values.
SUBPS Subtract packed single-precision floating-point values.
SUBSS Subtract scalar single-precision floating-point values.
MULPS Multiply packed single-precision floating-point values.
MULSS Multiply scalar single-precision floating-point values.
DIVPS Divide packed single-precision floating-point values.
DIVSS Divide scalar single-precision floating-point values.

5-16 Vol. 1

INSTRUCTION SET SUMMARY

RCPPS Compute reciprocals of packed single-precision floating-point values.

RCPSS Compute reciprocal of scalar single-precision floating-point values.

SQRTPS Compute square roots of packed single-precision floating-point values.

SQRTSS Compute square root of scalar single-precision floating-point values.

RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values.
MAXPS Return maximum packed single-precision floating-point values.

MAXSS Return maximum scalar single-precision floating-point values.

MINPS Return minimum packed single-precision floating-point values.

MINSS Return minimum scalar single-precision floating-point values.

5.5.1.3 SSE Comparison Instructions

SSE compare instructions compare packed and scalar single-precision floating-point operands.

CMPPS Compare packed single-precision floating-point values.

CMPSS Compare scalar single-precision floating-point values.

COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in
EFLAGS register.

UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags

in EFLAGS register.

5.5.1.4 SSE Logical Instructions

SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision
floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values.
ORPS Perform bitwise logical OR of packed single-precision floating-point values.
XORPS Perform bitwise logical XOR of packed single-precision floating-point values.

5.5.1.5 SSE Shuffle and Unpack Instructions

SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point operands.

UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point
operands.

UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point
operands.

5.5.1.6 SSE Conversion Instructions

SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-
precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values.

CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value.

CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers.

CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed double-
word integers.

CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer.

Vol.1 5-17

INSTRUCTION SET SUMMARY

CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar double-
word integer.

5.5.2 SSE MXCSR State Management Instructions

MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status
register.

LDMXCSR Load MXCSR register.

STMXCSR Save MXCSR register state.

5.5.3 SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4,
“MMX™ Instructions.”

PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.

PINSRW Insert word.

PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.

PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.

PSHUFW Shuffle packed integer word in MMX register.

554 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

The cacheability control instructions provide control over the caching of hon-temporal data when storing data from
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The
SFENCE instruction controls instruction ordering on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.

MOVNTQ Non-temporal store of quadword from an MMX register into memory.

MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM
register into memory.

PREFETCHA Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-
archy

SFENCE Serializes store operations.

5.6 SSEZ2 INSTRUCTIONS

SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “"Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruc-

5-18 Vol. 1

INSTRUCTION SET SUMMARY

tion in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate
subgroups):

® Packed and scalar double-precision floating-point instructions.
®* Packed single-precision floating-point conversion instructions.
® 128-bit SIMD integer instructions.

® Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions

SSE2 data movement instructions move double-precision floating-point data between XMM registers and between
XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or
between and XMM register and memory.

MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers
or between and XMM register and memory.

MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an
XMM register and memory.

MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an
XMM register and memory.

MOVMSKPD Extract sign mask from two packed double-precision floating-point values.

MOVSD Move scalar double-precision floating-point value between XMM registers or between an

XMM register and memory.

5.6.1.2 SSEZ2 Packed Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point operands.

ADDPD Add packed double-precision floating-point values.

ADDSD Add scalar double precision floating-point values.

SUBPD Subtract packed double-precision floating-point values.

SUBSD Subtract scalar double-precision floating-point values.

MULPD Multiply packed double-precision floating-point values.

MULSD Multiply scalar double-precision floating-point values.

DIVPD Divide packed double-precision floating-point values.

DIVSD Divide scalar double-precision floating-point values.

SQRTPD Compute packed square roots of packed double-precision floating-point values.
SQRTSD Compute scalar square root of scalar double-precision floating-point values.
MAXPD Return maximum packed double-precision floating-point values.

MAXSD Return maximum scalar double-precision floating-point values.

MINPD Return minimum packed double-precision floating-point values.

Vol.1 5-19

INSTRUCTION SET SUMMARY

MINSD Return minimum scalar double-precision floating-point values.

5.6.1.3 SSE2 Logical Instructions

SSE?2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.

ANDPD Perform bitwise logical AND of packed double-precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values.
ORPD Perform bitwise logical OR of packed double-precision floating-point values.
XORPD Perform bitwise logical XOR of packed double-precision floating-point values.

5.6.1.4 SSE2 Compare Instructions

SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.

CMPPD Compare packed double-precision floating-point values.

CMPSD Compare scalar double-precision floating-point values.

COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags
in EFLAGS register.

UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set

flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions

SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point operands.

UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point
operands.

UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point
operands.

5.6.1.6 SSEZ2 Conversion Instructions

SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and
double-precision floating-point values.

CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed double-
word integers.

CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values.

CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers.

CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed double-
word integers.

CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values.

CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-
point values.

CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-
point values.

CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-

point values.

5-20 Vol. 1

INSTRUCTION SET SUMMARY

CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-
point values.

CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer.

CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword
integers.

CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value.

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions

SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision
floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed double-

word integers.

5.6.3 SSE2 128-Bit SIMD Integer Instructions

SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords
contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword.

MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.

PSUBQ Subtract packed quadword integers.

PSHUFLW Shuffle packed low words.

PSHUFHW Shuffle packed high words.

PSHUFD Shuffle packed doublewords.

PSLLDQ Shift double quadword left logical.

PSRLDQ Shift double quadword right logical.

PUNPCKHQDQ Unpack high quadwords.

PUNPCKLQDQ Unpack low quadwords.

5.6.4 SSE2 Cacheability Control and Ordering Instructions

SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on
store operations.

CLFLUSH See Section 5.1.13.

LFENCE Serializes load operations.

MFENCE Serializes load and store operations.

PAUSE Improves the performance of “spin-wait loops”.

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.

MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM
register into memory.

MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.

Vol.1 5-21

INSTRUCTION SET SUMMARY

MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 SSE3 INSTRUCTIONS

The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into the
following categories:

® One x87FPU instruction used in integer conversion.

® One SIMD integer instruction that addresses unaligned data loads.
®* Two SIMD floating-point packed ADD/SUB instructions.

® Four SIMD floating-point horizontal ADD/SUB instructions.

® Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.

®* Two thread synchronization instructions.

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction

FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode
specified in the floating-point control word (FCW).

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.73 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions

ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements
within the operands; single-precision subtraction on the first and third pairs.
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision

subtraction on the first pair.

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions

HADDPS Performs a single-precision addition on contiguous data elements. The first data element of
the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by
adding the first and second elements of the second operand; and the fourth by adding the
third and fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the fourth
element of the first operand from the third element of the first operand; the third by
subtracting the second element of the second operand from the first element of the second
operand; and the fourth by subtracting the fourth element of the second operand from the
third element of the second operand.

5-22 Vol. 1

INSTRUCTION SET SUMMARY

HADDPD Performs a double-precision addition on contiguous data elements. The first data element
of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the second
element of the second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.

MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in
both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from
the source.

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.

MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back
store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers.
These include:

®* Twelve instructions that perform horizontal addition or subtraction operations.

® Six instructions that evaluate absolute values.

®* Two instructions that perform multiply and add operations and speed up the evaluation of dot products.

®* Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
®* Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.

®* Six instructions that negate packed integers in the destination operand if the signs of the corresponding
element in the source operand is less than zero.

®* Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction

PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination
operands and packs the signed 16-bit results to the destination operand.

PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination
operands and packs the signed, saturated 16-bit results to the destination operand.

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination
operands and packs the signed 32-bit results to the destination operand.

PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by

subtracting the most significant word from the least significant word of each pair in the

Vol.1 5-23

INSTRUCTION SET SUMMARY

source and destination operands. The signed 16-bit results are packed and written to the
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by
subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed, saturated 16-bit results are packed and
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by
subtracting the most significant doubleword from the least significant double word of each
pair in the source and destination operands. The signed 32-bit results are packed and
written to the destination operand.

5.8.2 Packed Absolute Values

PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes

PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce
an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are
added horizontally. The signed, saturated 16-bit results are packed to the destination
operand.

5.84 Packed Multiply High with Round and Scale

PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-
sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits.
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destination
operand.

5.8.5 Packed Shuffle Bytes

PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant
three or four bits of each shuffle control byte of the control mask form the shuffle index.
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is
set, the constant zero is written in the result byte.

5.8.6 Packed Sign

PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-
sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right

PALIGNR Source operand is appended after the destination operand forming an intermediate value
of twice the width of an operand. The result is extracted from the intermediate value into
the destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the
byte offset specified by the immediate value.

5-24 Vol. 1

INSTRUCTION SET SUMMARY

5.9 SSE4 INSTRUCTIONS

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory

type.

The 47 SSE4.1 instructions include:

® Two instructions perform packed dword multiplies.

®* Two instructions perform floating-point dot products with input/output selects.

® One instruction performs a load with a streaming hint.

® Six instructions simplify packed blending.

® Eight instructions expand support for packed integer MIN/MAX.

®* Fourinstructions support floating-point round with selectable rounding mode and precision exception override.
® Seven instructions improve data insertion and extractions from XMM registers

* Twelve instructions improve packed integer format conversions (sign and zero extensions).
® One instruction improves SAD (sum absolute difference) generation for small block sizes.

® One instruction aids horizontal searching operations.

® One instruction improves masked comparisons.

® One instruction adds qword packed equality comparisons.

® One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:

® String and text processing that can take advantage of single-instruction multiple-data programming
techniques.

®* A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS

SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe
each subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction

MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-
byte region (a streaming line) to be fetched and held in a small set of temporary buffers

Vol.1 5-25

INSTRUCTION SET SUMMARY

5.10.4
BLENDPD

BLENDPS

BLENDVPD
BLENDVPS
PBLENDVB

PBLENDW

5.10.5
PMINUW
PMINUD
PMINSB
PMINSD
PMAXUW
PMAXUD
PMAXSB
PMAXSD

5.10.6

ROUNDPS
ROUNDPD
ROUNDSS

ROUNDSD

5.10.7
EXTRACTPS

INSERTPS

5-26 Vol. 1

(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in
the same streaming line may be supplied from the streaming load buffer and can improve
throughput.

Packed Blending Instructions

Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.
Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.
Conditionally copies specified byte elements in the source operand to the corresponding
elements in the destination, using an implied mask.

Conditionally copies specified word elements in the source operand to the corresponding
elements in the destination, using an immediate byte control.

Packed Integer MIN/MAX Instructions

Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.
Compare packed unsigned word integers.
Compare packed unsigned dword integers.
Compare packed signed byte integers.
Compare packed signed dword integers.

Floating-Point Round Instructions with Selectable Rounding Mode

Round packed single precision floating-point values into integer values and return rounded
floating-point values.

Round packed double precision floating-point values into integer values and return
rounded floating-point values.

Round the low packed single precision floating-point value into an integer value and return
a rounded floating-point value.

Round the low packed double precision floating-point value into an integer value and return
a rounded floating-point value.

Insertion and Extractions from XMM Registers

Extracts a single-precision floating-point value from a specified offset in an XMM register
and stores the result to memory or a general-purpose register.

Inserts a single-precision floating-point value from either a 32-bit memory location or
selected from a specified offset in an XMM register to a specified offset in the destination
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.

PINSRB
PINSRD
PINSRQ
PEXTRB

PEXTRW
PEXTRD

PEXTRQ

INSTRUCTION SET SUMMARY

Insert a byte value from a register or memory into an XMM register.
Insert a dword value from 32-bit register or memory into an XMM register.
Insert a qword value from 64-bit register or memory into an XMM register.

Extract a byte from an XMM register and insert the value into a general-purpose register or
memory.

Extract a word from an XMM register and insert the value into a general-purpose register
or memory.

Extract a dword from an XMM register and insert the value into a general-purpose register
or memory.

Extract a gword from an XMM register and insert the value into a general-purpose register
or memory.

5.10.8 Packed Integer Format Conversions

PMOVSXBW
PMOVZXBW
PMOVSXBD
PMOVZXBD
PMOVSXWD
PMOVZXWD
PMOVSXBQ
PMOVZXBQ
PMOVSXWQ
PMOVZXWQ
PMOVSXDQ

PMOVZXDQ

5.10.9
MPSADBW

Sign extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Zero extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Sign extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Sign extend the lower 16-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 16-bit integer of each packed dword element into packed signed
dword integers..

Sign extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Sign extend the lower 16-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 16-bit integer of each packed gqword element into packed signed
gword integers.

Sign extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks

Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word
integers.

5.10.10 Horizontal Search

PHMINPOSUW

Finds the value and location of the minimum unsigned word from one of 8 horizontally
packed unsigned words. The resulting value and location (offset within the source) are
packed into the low dword of the destination XMM register.

Vol. 1 5-27

INSTRUCTION SET SUMMARY

5.10.11 Packed Test

PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the
result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation.

5.11 SSE4.2 INSTRUCTION SET

Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit
integer SIMD instructions.

CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions

PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMMO.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMMO.

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 INTEL® AES-NI AND PCLMULQDQ

Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less
multiplication for two binary numbers up to 64-bit wide.

AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.

AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.

PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.

5-28 Vol. 1

INSTRUCTION SET SUMMARY

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM
register set to use a “vector extension" (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy
128-bit SIMD floating-point instructions to support three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:

®* Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD
instruction sets.

®* Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit
SIMD instruction sets.

®* Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

®* Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction
sets.

®* Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD
instruction sets.

®* Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION

Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by
VCVTPS2PH, VCVTPH2PS:

VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four
single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into

eight/four 16-bit floating-point data.

5.15 FUSED-MULTIPLY-ADD (FMA)

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.

® Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)

Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

®* Table 14-18 lists promoted vector integer instructions in AVX2.
®* Table 14-19 lists new instructions in AVX2 that complements AVX.

Vol.1 5-29

INSTRUCTION SET SUMMARY

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)

XABORT Abort an RTM transaction execution.

XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.

XEND Transaction end of an RTM transaction region.

XTEST Test if executing in a transactional region.

5.18 INTEL® SHA EXTENSIONS

Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants.

SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the
previous message dwords.

SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate
message dwords.

SHA1INEXTE Calculate SHA1 state E after four rounds.

SHA1RNDS4 Perform four rounds of SHA1 operations.

SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.

SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.

SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)

The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit,
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers.

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX / Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX / Intel AVX2. Some instruction
mnemonics in AVX / AVX2 that are promoted into AVX-512 can be replaced by new instruction mnemonics that are
available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details of EVEX instruction
encoding are discussed in Section 2.6, “Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

512-bit instruction mnemonics in AVX-512F that are not AVX/AVX2 promotions include:

VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.

VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.

VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.

5-30 Vol. 1

INSTRUCTION SET SUMMARY

VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.

VFIXUPIMMPD/PS
VFIXUPIMMSD/SS
VGETEXPPD/PS
VGETEXPSD/SS
VGETMANTPD/PS
VGETMANTSD/SS

VINSERTF32X4/64X4

VMOVDQA32/64
VMOVDQU32/64
VPBLENDMD/Q
VPBROADCASTD/Q
VPCMPD/UD
VPCMPQ/UQ
VPCOMPRESSQ/D
VPERMI2D/Q
VPERMI2PD/PS
VPERMT2D/Q
VPERMT2PD/PS
VPEXPANDD/Q
VPMAXSQ
VPMAXUD/UQ
VPMINSQ
VPMINUD/UQ
VPMOV(S|US)QB

VPMOV(S|US)QW
VPMOV(S|US)QD
VPMOV(S|US)DB
VPMOV/(S|US)DW

VPROLD/Q
VPROLVD/Q

VPRORD/Q
VPRORRD/Q

VPSCATTERDD/DQ
VPSCATTERQD/QQ
VPSRAQ

VPSRAVQ
VPTESTNMD/Q

VPTERLOGD/Q

Perform fix-up to special values in DP/SP FP vectors.

Perform fix-up to special values of the low DP/SP FP element.

Convert the exponent of DP/SP FP elements of a vector into FP values.

Convert the exponent of the low DP/SP FP element in a vector into FP value.
Convert the mantissa of DP/SP FP elements of a vector into FP values.

Convert the mantissa of the low DP/SP FP element of a vector into FP value.
Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA with 32/64-bit granular conditional update.

VMOVDQU with 32/64-bit granular conditional update.

Blend dword/qword elements using opmask as select control.

Broadcast from general-purpose register to vector register.

Compare packed signed/unsigned dwords using specified primitive.

Compare packed signed/unsigned quadwords using specified primitive.
Compress packed 64/32-bit elements of a vector.

Full permute of two tables of dword/qword elements overwriting the index vector.
Full permute of two tables of DP/SP elements overwriting the index vector.

Full permute of two tables of dword/qword elements overwriting one source table.
Full permute of two tables of DP/SP elements overwriting one source table.
Expand packed dword/qword elements of a vector.

Compute maximum of packed signed 64-bit integer elements.

Compute maximum of packed unsigned 32/64-bit integer elements.

Compute minimum of packed signed 64-bit integer elements.

Compute minimum of packed unsigned 32/64-bit integer elements.

Down convert gword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Down convert gqword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Down convert gword elements in a vector to dword elements using truncation (saturation
| unsigned saturation).

Down convert dword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Down convert dword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Rotate dword/qword element left by a constant shift count with conditional update.

Rotate dword/qword element left by shift counts specified in a vector with conditional
update.

Rotate dword/qword element right by a constant shift count with conditional update.

Rotate dword/qword element right by shift counts specified in a vector with conditional
update.

Scatter dword/qword elements in a vector to memory using dword indices.
Scatter dword/qword elements in a vector to memory using qword indices.
Shift qwords right by a constant shift count and shifting in sign bits.

Shift gqwords right by shift counts in a vector and shifting in sign bits.

Perform bitwise NAND of dword/qword elements of two vectors and write results to
opmask.

Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional
update.

Vol. 1 5-31

INSTRUCTION SET SUMMARY

VPTESTMD/Q
VRCP14PD/PS
VRCP14SD/SS
VRNDSCALEPD/PS
VRNDSCALESD/SS
VRSQRT14PD/PS
VRSQRT14SD/SS

VSCALEPD/PS
VSCALESD/SS

VSCATTERDD/DQ
VSCATTERQD/QQ

VSHUFF32X4/64X2
VSHUFI32X4/64X2

Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
Compute approximate reciprocals of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of the low DP/SP FP element of a vector.

Round packed DP/SP FP elements of a vector to specified humber of fraction bits.

Round the low DP/SP FP element of a vector to specified number of fraction bits.

Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of square root of the low DP/SP FP element of a
vector.

Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified
in a second vector.

Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in
the corresponding element of a second vector.

Scatter SP/DP FP elements in a vector to memory using dword indices.
Scatter SP/DP FP elements in a vector to memory using qword indices.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not AVX/AVX2 promotions include:

VCVT(T)PD2QQ
VCVT(T)PD2UQQ
VCVT(T)PS2QQ
VCVT(T)PS2UQQ
VCVTUQQ2PD/PS
VEXTRACTF64X2
VEXTRACTI64X2
VFPCLASSPD/PS
VFPCLASSSD/SS
VINSERTF64X2
VINSERTI64X2
VPMOVM2D/Q
VPMOVB2D/Q2M
VPMULLQ

VRANGEPD/PS
VRANGESD/SS
VREDUCEPD/PS

VREDUCESD/SS

Convert packed DP FP elements of a vector to packed signed 64-bit integers.
Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed SP FP elements of a vector to packed signed 64-bit integers.
Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
Extract a vector from a full-length vector with 64-bit granular update.

Extract a vector from a full-length vector with 64-bit granular update.

Test packed DP/SP FP elements in a vector by numeric/special-value category.
Test the low DP/SP FP element by numeric/special-value category.

Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Convert opmask register to vector register in 32/64-bit granularity.

Convert a vector register in 32/64-bit granularity to an opmask register.

Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed
result.

Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified
range primitive in imm8.

Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-
fied range primitive in imm8.

Perform Reduction operation on packed DP/SP FP elements of a vector using specified
reduction primitive in immS8.

Perform Reduction operation on the low DP/SP FP element of a vector using specified
reduction primitive in immS8.

512-bit instruction mnemonics in AVX-512BW that are not AVX/AVX2 promotions include:

VDBPSADBW
VMOVDQUS8/16
VPBLENDMB
VPBLENDMW

VPBROADCASTB/W

5-32 Vol. 1

Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU with 8/16-bit granular conditional update.

Replaces the VPBLENDVB instruction (using opmask as select control).
Blend word elements using opmask as select control.

Broadcast from general-purpose register to vector register.

VPCMPB/UB
VPCMPW/UW
VPERMW
VPERMI2B/W
VPMOVM2B/W
VPMOVB2M/W2M
VPMOV(S|US)WB

VPSLLVW
VPSRAVW
VPSRLVW
VPTESTNMB/W
VPTESTMB/W

INSTRUCTION SET SUMMARY

Compare packed signed/unsigned bytes using specified primitive.

Compare packed signed/unsigned words using specified primitive.

Permute packed word elements.

Full permute from two tables of byte/word elements overwriting the index vector.
Convert opmask register to vector register in 8/16-bit granularity.

Convert a vector register in 8/16-bit granularity to an opmask register.

Down convert word elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Shift word elements in a vector left by shift counts in a vector.

Shift words right by shift counts in a vector and shifting in sign bits.

Shift word elements in a vector right by shift counts in a vector.

Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not AVX/AVX2 promotions include:

VPBROADCASTM
VPCONFLICTD/Q
VPLZCNTD/Q

Broadcast from opmask register to vector register.
Detect conflicts within a vector of packed 32/64-bit integers.
Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:

KADDB/W/D/Q
KANDB/W/D/Q
KANDNB/W/D/Q
KMOVB/W/D/Q
KNOTB/W/D/Q
KORB/W/D/Q
KORTESTB/W/D/Q
KSHIFTLB/W/D/Q
KSHIFTRB/W/D/Q
KTESTB/W/D/Q

KUNPCKBW/WD/DQ

KXNORB/W/D/Q
KXORB/W/D/Q

Add two 8/16/32/64-bit opmasks.

Logical AND two 8/16/32/64-bit opmasks.

Logical AND NOT two 8/16/32/64-bit opmasks.

Move from or move to opmask register of 8/16/32/64-bit data.

Bitwise NOT of two 8/16/32/64-bit opmasks.

Logical OR two 8/16/32/64-bit opmasks.

Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
Shift left 8/16/32/64-bit opmask by specified count.

Shift right 8/16/32/64-bit opmask by specified count.

Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.

Bitwise logical XNOR of two 8/16/32/64-bit opmasks.

Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:

VEXP2PD/PS
VEXP2SD/SS
VRCP28PD/PS
VRCP28SD/SS
VRSQRT28PD/PS

VRSQRT28SD/SS

Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector.
Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector.

Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements
of a vector.

Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element
of a vector.

512-bit instruction mnemonics in AVX-512PF include:

VGATHERPFODPD/PS

Sparse prefetch of packed DP/SP FP vector with TO hint using dword indices.

Vol.1 5-33

INSTRUCTION SET SUMMARY

VGATHERPFOQPD/PS
VGATHERPF1DPD/PS
VGATHERPF1QPD/PS
VSCATTERPFODPD/PS
VSCATTERPFOQPD/PS
VSCATTERPF1DPD/PS
VSCATTERPF1QPD/PS

Sparse prefetch of packed DP/SP FP vector with TO hint using qword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
Sparse prefetch of packed DP/SP FP vector with TO hint to write using dword indices.
Sparse prefetch of packed DP/SP FP vector with TO hint to write using gqword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
Sparse prefetch of packed DP/SP FP vector with T1 hint to write using gqword indices.

5.20 SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.

CLAC
STAC
LGDT
SGDT
LLDT
SLDT
LTR

STR
LIDT
SIDT
MOV
LMSW
SMSWwW
CLTS
ARPL
LAR

LSL
VERR
VERW
MOV
INVD
WBINVD
INVLPG
INVPCID
LOCK (prefix)

HLT

RSM
RDMSR
WRMSR
RDPMC
RDTSC
RDTSCP
SYSENTER

5-34 Vol. 1

Clear AC Flag in EFLAGS register.

Set AC Flag in EFLAGS register.

Load global descriptor table (GDT) register.
Store global descriptor table (GDT) register.
Load local descriptor table (LDT) register.
Store local descriptor table (LDT) register.
Load task register.

Store task register.

Load interrupt descriptor table (IDT) register.
Store interrupt descriptor table (IDT) register.
Load and store control registers.

Load machine status word.

Store machine status word.

Clear the task-switched flag.

Adjust requested privilege level.

Load access rights.

Load segment limit.

Verify segment for reading

Verify segment for writing.

Load and store debug registers.

Invalidate cache, no writeback.

Invalidate cache, with writeback.

Invalidate TLB Entry.

Invalidate Process-Context Identifier.

Perform atomic access to memory (can be applied to a number of general purpose instruc-
tions that provide memory source/destination access).

Halt processor.

Return from system management mode (SMM).

Read model-specific register.

Write model-specific register.

Read performance monitoring counters.

Read time stamp counter.

Read time stamp counter and processor ID.

Fast System Call, transfers to a flat protected mode kernel at CPL = 0.

INSTRUCTION SET SUMMARY

SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.

XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.

XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.

XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.

XSETBV Writes the state of an extended control register.

RDFSBASE Reads from FS base address at any privilege level.

RDGSBASE Reads from GS base address at any privilege level.

WRFSBASE Writes to FS base address at any privilege level.

WRGSBASE Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS

The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.

CDQE Convert doubleword to quadword.

CMPSQ Compare string operands.

CMPXCHG16B Compare RDX:RAX with m128.

LODSQ Load qword at address (R)SI into RAX.

MOVSQ Move gword from address (R)SI to (R)DI.

MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.

STOSQ Store RAX at address RDI.

SWAPGS Exchanges current GS base register value with value in MSR address CO000102H.
SYSCALL Fast call to privilege level 0 system procedures.

SYSRET Return from fast systemcall.

5.22 VIRTUAL-MACHINE EXTENSIONS

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and
current.

VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is
stored into the destination operand.

VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand.
VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand)

from a source operand.

The behavior of the VMX management instructions is summarized below:

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.

VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.

Vol.1 5-35

INSTRUCTION SET SUMMARY

VMXOFF Causes the processor to leave VMX operation.

VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX
root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:

INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize
address translation in virtual machines with memory-resident EPT pages.

INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID
(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs,
transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which

is processor functionality enabled and configured by software in VMX root operation. No
VM exit occurs.

5.23 SAFER MODE EXTENSIONS

The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution

mode.

GETSEC[EXITAC] Exits authenticated code execution mode.

GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust
anchored to a chipset supporting Intel Trusted Execution Technology.

GETSEC[SEXIT] Exits the MLE.

GETSEC[PARAMETERS] Returns SMX related parameter information.

GETSEC[SMCRTL] SMX mode control.

GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

5.24 INTEL® MEMORY PROTECTION EXTENSIONS

Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds
checking capability to memory references. Details of Intel MPX are described in Chapter 17, “Intel® MPX".

BNDMK Create a LowerBound and a UpperBound in a register.

BNDCL Check the address of a memory reference against a LowerBound.

BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.

BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment
form.

BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.

BNDMOV Store to memory of the LowerBound and UpperBound from a register.

BNDLDX Load bounds using address translation.

BNDSTX Store bounds using address translation.

5-36 Vol. 1

INSTRUCTION SET SUMMARY

5.25 INTEL® SOFTWARE GUARD EXTENSIONS

Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in CHAPTER 36 through CHAPTER 42 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3D.

The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave
ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave
ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key
ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report
ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave
ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS

Shadow stack management instructions allow the program and run-time to perform operations like recovering
from control protection faults, shadow stack switching, etc. The following instructions are provided.

CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).

RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.

WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS

ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.

Vol. 1 5-37

INSTRUCTION SET SUMMARY

5-38 Vol. 1

3. Updates to Chapter 1, Volume 2A

Change bars and green text show changes to Chapter 1 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018 and 334569) are part of a set that describes the architecture
and programming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order
Number 253665).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System
Programming Guide (order numbers 253668, 253669, 326019 and 332831).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme processor QX6000 series
* Intel® Xeon® processor 7100 series

Vol.2A 1-1

ABOUT THIS MANUAL

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor E8000, T9000 series

* Intel® Atom™ processor family

* Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
* 4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

* Intel® Atom™ processor Z3400 series

* Intel® Atom™ processor Z3500 series

* 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

* 7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Processor Scalable Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Processor Scalable Family

1-2 Vol.2A

ABOUT THIS MANUAL

* 10th generation Intel® Core™ processors
* 11th generation Intel® Core™ processors
* 3rd generation Intel® Xeon® Processor Scalable Family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® IIl Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2XxX,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

Vol.2A 1-3

ABOUT THIS MANUAL

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B, 2C AND 2D: INSTRUCTION SET REFERENCE

A description of Inte/l® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D content
follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related
Intel® manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and

the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-U. Continues the description of Intel 64 and IA-32 instructions
started in Chapter 3. It starts Inte/l® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

Chapter 5 — Instruction Set Reference, V-Z. Continues the description of Intel 64 and IA-32 instructions
started in chapters 3 and 4. It provides the balance of the alphabetized list of instructions and starts Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2C.

Chapter 6 — Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions. This chapter
starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

1-4 Vol. 2A

ABOUT THIS MANUAL

Chapter 7— Instruction Set Reference Unique to Intel® Xeon Phi™ Processors. Describes the instruction
set that is unique to Intel® Xeon Phi™ processors based on the Knights Landing and Knights Mill microarchitec-
tures. The set is not supported in any other Intel processors.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary humbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. IA-32 processors are “little endian” machines; this means the bytes of
a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

Highest Data Structure

Address 31 24 23 16 15 8 7 0 =— Bit offset
28

24

20

16

12

8

4
Byte 3 Byte 2 Byte 1 ByteO | O k%g?;;s

A

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.
Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

Vol.2A 1-5

ABOUT THIS MANUAL

NOTE

Avoid any software dependence upon the state of reserved bits in IA-32 registers. Depending upon
the values of reserved register bits will make software dependent upon the unspecified manner in

which the processor handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero to three operands,
depending on the opcode. When present, they take the form of either literals or identifiers for data items.
Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4, 5,6,7,8,9,A,B,C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes in memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

1-6 Vol.2A

ABOUT THIS MANUAL

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:ElP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.
See Figure 1-2.

Vol.2A 1-7

ABOUT THIS MANUAL

CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

, i :

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values

CR4.0SFXSR[bit 9] = 1

: i :

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:

https://software.intel.com/en-us/articles/intel-sdm

See also:

* The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

® Software developer resources, guidance and insights for security advisories:
https://software.intel.com/security-software-guidance/

®* The data sheet for a particular Intel 64 or IA-32 processor
® The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

1-8 Vol.2A

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/

ABOUT THIS MANUAL

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

Intel® Software Guard Extensions (Intel® SGX) Programming Reference
https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:

Intel® Developer Zone:

https://software.intel.com/en-us

Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
Processor support general link:

http://www.intel.com/support/processors/

Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Vol.2A 1-9

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602

ABOUT THIS MANUAL

1-10 Vol. 2A

4. Updates to Chapter 3, Volume 2A

Change bars and green text show changes to Chapter 3 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A: Instruction Set Reference, A-L.

Changes to this chapter:

Added information to Section 3.1.1.3, “Instruction Column in the Opcode Summary Table”.
Added the following Key Locker instructions: AESDEC128KL, AESDEC256KL, AESDECWIDE128KL,
AESDECWIDE256KL, AESENC128KL, AESENC256KL, AESENCWIDE128KL, AESENCWIDE256KL,
ENCODEKEY128, ENCODEKEY256, and LOADIWKEY.

Updated CPUID with additional feature enumeration information.

Updates to the following instructions to correct typos: AESDEC and FCLEX/FNCLEX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

INSTRUCTION SET REFERENCE, A-L

— WIG: EVEX.W bit ignored
opcode — Instruction opcode.

In general, the encoding of EVEX.R and R’, EVEX.X and X', and EVEX.B and B’ fields are not shown explicitly in
the opcode column.

NOTE

Previously, the terms NDS, NDD and DDS were used in instructions with an EVEX (or VEX) prefix.
These terms indicated that the vvvv field was valid for encoding, and specified register usage.
These terms are no longer necessary and are redundant with the instruction operand encoding
tables provided with each instruction. The instruction operand encoding tables give explicit details
on all operands, indicating where every operand is stored and if they are read or written. If vvvv is
not listed as an operand in the instruction operand encoding table, then EVEX (or VEX) vvvv must
be Ob1111.

3.1.1.3 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program.
The following is a list of the symbols used to represent operands in the instruction statements:

rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the
end of the instruction.

rell6, rel32 — A relative address within the same code segment as the instruction assembled. The rel16
symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions
with an operand-size attribute of 32 bits.

ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one
of the byte registers (R8B - R15B) available when using REX.R and 64-bit mode.

r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers
(R8-R15) available when using REX.R and 64-bit mode.

r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8-R15.
These are available when using REX.R and 64-bit mode.

imm8 — An immediate byte value. The imm8 symbol is a signed number between -128 and +127 inclusive.
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between -32,768 and +32,767 inclusive.

imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and -2,147,483,648 inclusive.

imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
The value allows the use of a number between +9,223,372,036,854,775,807 and -
9,223,372,036,854,775,808 inclusive.

r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8B - R15B are available using REX.R in
64-bit mode.

r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-L

memory are found at the address provided by the effective address computation. Word registers R8W - R15W
are available using REX.R in 64-bit mode.

* r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
EDI. The contents of memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

®* r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8-R15; these are available only in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

® reg — A general-purpose register used for instructions when the width of the register does not matter to the
semantics of the operation of the instruction. The register can be r16, r32, or r64.

®* m — A 16-, 32- or 64-bit operand in memory.

* m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.

* m1l6 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.

* m32 — Adoubleword operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.

®* m64 — A memory quadword operand in memory.
* m128 — A memory double quadword operand in memory.

®* m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The
number to the left of the colon corresponds to the pointer's segment selector. The number to the right
corresponds to its offset.

* m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR
registers.

* m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.

* moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or
doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

®* Sreg — A segment register. The segment register bit assignmentsare ES=0,CS =1,SS =2,DS =3, FS =4,
and GS = 5.

* m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands for
x87 FPU floating-point instructions.

* m1l6int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

® ST or ST(0) — The top element of the FPU register stack.
® ST(i) —The ith element from the top of the FPU register stack (i := 0 through 7).
®* mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

* mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers
are: MMO through MM7. The contents of memory are found at the address provided by the effective address
computation.

3-6 Vol.2A

INSTRUCTION SET REFERENCE, A-L

mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MMO through MM7.
The contents of memory are found at the address provided by the effective address computation.

xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode.

xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMMO through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMMO through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of
memory are found at the address provided by the effective address computation.

xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMMO through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

<XMMO>— Indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm?2 the second
source operand using an XMM register.

Some instructions use the XMMO register as the third source operand, indicated by <XMMO0>. The use of the
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

ymm — A YMM register. The 256-bit YMM registers are: YMMO through YMM7; YMM8 through YMM15 are
available in 64-bit mode.

m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
ymm/m256 — A YMM register or 256-bit memory operand.

<YMMO>— Indicates use of the YMMO register as an implicit argument.

bnd — A 128-bit bounds register. BNDO through BND3.

mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-
lation, Scale is ignored. Only the base and displacement are used in effective address calculation.

m512 — A 64-byte operand in memory.
zmm/m512 — A ZMM register or 512-bit memory operand.

{k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.
Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.

{k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking.

k1l — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0
through k7.

mV — A vector memory operand; the operand size is dependent on the instruction.

vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).

vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).

zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.

zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-L

®* <ZMMO> — Indicates use of the ZMMO register as an implicit argument.

* {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form
of the instruction. This also implies support for SAE (Suppress All Exceptions).

* {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE,
but do not support embedded rounding control.

® SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having two or more source operands.

® SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having two or more source operands.

® SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the
VEX/EVEX prefix and having three source operands.

® SRC — The source in a single-source instruction.
® DST — The destination in an instruction. This field is encoded by reg_field.

In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:

® If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is
denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

* If the MODRM.MOD field is constrained to be a value other than Ob11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

* If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb.

3.1.14 Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.

EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 2-34 and Table 2-35, according to tupletypes. The tupletype for an instruction is listed in the operand
encoding definition table where applicable.

NOTES

® The letters in the Op/En column of an instruction apply ONLY to the encoding definition table
immediately following the instruction summary table.

* In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of
the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the
content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table

The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated specific
instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
® V — Supported.
® I — Not supported.

3-8 Vol.2A

INSTRUCTION SET REFERENCE, A-L

AESDEC—Perform One Round of an AES Decryption Flow

Opcode/ Op/ |64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
66 OF 38 DE /r A VIV AES Perform one round of an AES decryption flow, using

AESDEC xmm1, xmm2/m128 the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm1 with one 128-bit round key from

xmm2/m128.

VEX.128.66.0F38.WIG DE /r B VIV AES Perform one round of an AES decryption flow, using

VAESDEC xmm1, xmm2, xmm3/m128 AVX the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.

VEX.256.66.0F38.WIG DE /r B VIV VAES Perform one round of an AES decryption flow, using

VAESDEC ymm1, ymm2, ymm3/m256 the Equivalent Inverse Cipher, using two 128-bit data
(state) from ymm2 with two 128-bit round keys from

ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DE /r C VIV VAES
VAESDEC xmm1, xmm2, xmm3/m128

Perform one round of an AES decryption flow, using

AVX512VL | the Equivalent Inverse Cipher, using one 128-bit data
(state) from xmm2 with one 128-bit round key from
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DE /r C VIV VAES Perform one round of an AES decryption flow, using
VAESDEC ymm1, ymmZ2, ymm3/m256 AVX512VL | the Equivalent Inverse Cipher, using two 128-bit data
(state) from ymm2 with two 128-bit round keys from
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DE /r C VIV VAES
VAESDEC zmm1, zmmZ2, zmm3/m512 AVX512F

Perform one round of an AES decryption flow, using
the Equivalent Inverse Cipher, using four 128-bit data
(state) from zmm?2 with four 128-bit round keys from
zmm3/m512; store the result in zmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA
B NA ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Description

This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, using
one/two/four (depending on vector length) 128-bit data (state) from the first source operand with one/two/four
(depending on vector length) round key(s) from the second source operand, and stores the result in the destination

operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-

CLAST instruction.

VEX and EVEX encoded versions of the instruction allow 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.

The EVEX encoded form of this instruction does not support memory fault suppression.

3-50 Vol.2A

AESDEC—Perform One Round of an AES Decryption Flow

Operation

AESDEC

STATE := SRCT;

RoundKey := SRCZ;

STATE := InvShiftRows(STATE);
STATE := InvSubBytes(STATE);
STATE := InvMixColumns(STATE);
DEST[127:0] := STATE XOR RoundKey;
DEST[MAXVL-1:128] (Unmodified)

VAESDEC (128b and 256b VEX encoded versions)
(KL VL) =(1,128), (2.256)
FOR i =0 to KL-1:

STATE := SRC1.xmm[i]

RoundKey := SRC2.xmm[i]

STATE := InvShiftRows(STATE)

STATE := InvSubBytes(STATE)

STATE := InvMixColumns(STATE)

DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL]:= 0

VAESDEC (EVEX encoded version)
(KLVL) =(1,128), (2,256), (4,512)
FOR i =0 to KL-1:
STATE := SRC1.xmm[i]
RoundKey := SRC2.xmm[i]
STATE := InvShiftRows(STATE)
STATE := InvSubBytes(STATE)
STATE := InvMixColumns(STATE)
DEST.xmm[i] := STATE XOR RoundKey
DEST[MAXVL-1:VL] :=0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC __m128i _mm_aesdec (__m128i, _m128i)
VVAESDEC __m256i _mm256_aesdec_epi128(_m256i,
VVAESDEC __m512i _mm512_aesdec_epi128(_m512i,

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.

AESDEC—Perform One Round of an AES Decryption Flow

__m256i);
__m512i);

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-51

INSTRUCTION SET REFERENCE, A-L

AESDEC128KL—Perform Ten Rounds of AES Decryption Flow with Key Locker Using 128-Bit Key

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DD !{(11):rrr:bbb A VIV AESKLE Decrypt xmm using 128-bit AES key indicated by han-
AESDEC128KL xmm, m384 dle at m384 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reqg (r, w) ModRM:r/m (r) NA NA
Description

The AESDEC128KL! instruction performs 10 rounds of AES to decrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESDEC128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > Q)) ||
Handle [2] ||
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES128);
IF (llegal Handle) {
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE
DEST := AES128Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=(;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC128KL unsigned char _mm_aesdec128kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-52 Vol. 2A AESDECT28KL—Perform Ten Rounds of AES Decryption Flow with Key Locker Using 128-Bit Key

INSTRUCTION SET REFERENCE, A-L

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDEC128KL—Perform Ten Rounds of AES Decryption Flow with Key Locker Using 128-Bit Key Vol.2A 3-53

INSTRUCTION SET REFERENCE, A-L

AESDEC256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker Using 256-Bit Key

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DF !(11):rrr:bbb A VIV AESKLE Decrypt xmm using 256-bit AES key indicated by han-
AESDEC256KL xmm, m512 dle at m512 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reqg (r, w) ModRM:r/m (r) NA NA
Description

The AESDEC256KL! instruction performs 14 rounds of AES to decrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESDEC256KL
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > Q)) ||
Handle [2] ||
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256);
IF (llegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE
DEST := AES256Decrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=(;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESDEC256KL unsigned char _mm_aesdec256kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-54 Vol. 2A AESDEC256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker Using 256-Bit Key

INSTRUCTION SET REFERENCE, A-L

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDEC256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker Using 256-Bit Key Vol.2A 3-55

INSTRUCTION SET REFERENCE, A-L

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow with Key Locker on 8 Blocks
Using 128-Bit Key

Opcode/ Op/ |64/32-bit | CPUID Feature |Description

Instruction En |Mode Flag

F3 OF 38 D8 (11):001:bbb A VIV AESKLEWIDE_KL | Decrypt XMMO-7 using 128-bit AES key indicated

AESDECWIDET28KL m384, <XMMO-7> by handle at m384 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operands 2 -9
A NA ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESDECWIDE128KL! instruction performs ten rounds of AES to decrypt each of the eight blocks in XMMO0-7
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7 with
its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDE128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES128);
IF (llegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) ;= UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF Authentic == 0 {
THEN RFLAGS.ZF = 1;
ELSE
XMMO := AES128Decrypt
XMM1 ;= AES128Decrypt
XMM2 := AES128Decrypt
XMM3 ;= AES128Decrypt
XMM4 ;= AES128Decrypt
XMMS ;= AES128Decrypt
XMM6 := AES128Decrypt
XMM7 := AES128Decrypt
RFLAGS.ZF = 0;

XMMO, UnwrappedKey) ;
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey) ;
XMM3, UnwrappedKey) ;
XMM4, UnwrappedKey) ;
XMM5, UnwrappedKey) ;
XMM6, UnwrappedKey) ;
XMM7, UnwrappedKey) ;

P S —

Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF = 0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-58 Vol. 2A AESDECWIDET28KL—Perform Ten Rounds of AES Decryption Flow with Key Locker on 8 Blocks Using 128-Bit Key

INSTRUCTION SET REFERENCE, A-L

Intel C/C++ Compiler Intrinsic Equivalent

AESDECWIDET28KL unsigned char _mm_aesdecwide128kl_u8(_m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL [bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDECWIDE128KL—Perform Ten Rounds of AES Decryption Flow with Key Locker on 8 Blocks Using 128-Bit Key Vol.2A 3-59

INSTRUCTION SET REFERENCE, A-L

AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker on 8 Blocks
Using 256-Bit Key

Opcode/ Op/ |64/32-bit | CPUID Feature |Description

Instruction En |Mode Flag

F3 OF 38 D8!(11):011:bbb A VIV AESKLEWIDE_KL | Decrypt XMMO-7 using 256-bit AES key indicated

AESDECWIDE256KL m512, <XMMO-7> by handle at m512 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operands 2 -9
A NA ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESDECWIDE256KL! instruction performs 14 rounds of AES to decrypt each of the eight blocks in XMMO0-7
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7 with
its corresponding decrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESDECWIDE256KL

Handle := UnalignedLoad of 512 bit (SRC); ~ // Load is not guaranteed to be atomic.

lllegal Handle = (HandleReservedBitSet (Handle) ||
(Handle[0] AND (CPL > 0)) ||
Handle [2] ||
HandleKeyType (Handle) = HANDLE_KEY_TYPE_AES256);

IF (llegal Handle) {

THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) ;= UnwrapKeyAndAuthenticate512 (Handle[511:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE

XMMO ;= AES256Decrypt
XMM1 ;= AES256Decrypt
XMM2 ;= AES256Decrypt
XMM3 ;= AES256Decrypt
XMM4 ;= AES256Decrypt
XMMS ;= AES256Decrypt
XMMG := AES256Decrypt
XMM7 := AES256Decrypt
RFLAGS.ZF = 0;

XMMO, UnwrappedKey) ;
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey) ;
XMM3, UnwrappedKey) ;
XMM4, UnwrappedKey) ;
XMM5, UnwrappedKey) ;
XMM6, UnwrappedKey) ;
XMM7, UnwrappedKey) ;

P S —

Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF = 0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

1. Further details on Key Locker and usage of this instruction can be found here:
I https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-60 Vol. 2A AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker on 8 Blocks Using 256-Bit Key

INSTRUCTION SET REFERENCE, A-L

Intel C/C++ Compiler Intrinsic Equivalent

AESDECWIDEZ256KL unsigned char _mm_aesdecwide256kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL [bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESDECWIDE256KL—Perform 14 Rounds of AES Decryption Flow with Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-61

INSTRUCTION SET REFERENCE, A-L

AESENC128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker Using 128-Bit Key

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DC!(11):rrr:bbb A VIV AESKLE Encrypt xmm using 128-bit AES key indicated by han-
AESENC128KL xmm, m384 dle at m384 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reqg (r, w) ModRM:r/m (r) NA NA
Description

The AESENC128KL! instruction performs ten rounds of AES to encrypt the first operand using the 128-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESENC128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > 0)) ||
Handle [1]]|
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES128
).
IF (llegal Handle) {
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF := 1;
ELSE
DEST := AES128Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC128KL unsigned char _mm_aesenc128kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-64 Vol. 2A AESENC128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker Using 128-Bit Key

INSTRUCTION SET REFERENCE, A-L

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENC128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker Using 128-Bit Key Vol.2A 3-65

INSTRUCTION SET REFERENCE, A-L

AESENC256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker Using 256-Bit Key

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DE !(11):rrr:bbb A VIV AESKLE Encrypt xmm using 256-bit AES key indicated by han-
AESENC256KL xmm, m512 dle at m512 and store result in xmm.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reqg (r, w) ModRM:r/m (r) NA NA
Description

The AESENC256KL! instruction performs 14 rounds of AES to encrypt the first operand using the 256-bit key indi-
cated by the handle from the second operand. It stores the result in the first operand if the operation succeeds
(e.g., does not run into a handle violation failure).

Operation

AESENC256KL
Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > Q)) ||
Handle [1]]|
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256
)
IF (llegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE
DEST := AES256Encrypt (DEST, UnwrappedKey) ;
RFLAGS.ZF := 0;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF:=0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENC256KL unsigned char _mm_aesenc256kl_u8(__m128i* odata, __m128i idata, const void* h);

1. Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-66 Vol. 2A AESENC256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker Using 256-Bit Key

INSTRUCTION SET REFERENCE, A-L

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENC256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker Using 256-Bit Key Vol.2A 3-67

INSTRUCTION SET REFERENCE, A-L

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker on 8 Blocks
Using 128-Bit Key

Opcode/ Op/ |64/32-bit | CPUID Feature Description

Instruction En |Mode Flag

F3 OF 38 D8 (11):000:bbb A VIV AESKLE WIDE_KL | Encrypt XMMO-7 using 128-bit AES key indicated

AESENCWIDE128KL m384, <XMMO0-7> by handle at m384 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operands 2 - 9
A NA ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESENCWIDE128KL! instruction performs ten rounds of AES to encrypt each of the eight blocks in XMMO-7
using the 128-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7 with
its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESENCWIDE128KL
Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > Q)) ||
Handle [1]]|
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES128
)
IF (llegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) ;= UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey);
IF Authentic ==
THEN RFLAGS.ZF = 1;
ELSE
XMMO := AES128Encrypt (XMMO, UnwrappedKey) ;
XMM1 := AES128Encrypt (XMM1, UnwrappedKey) ;
XMM2 := AES128Encrypt (XMM2, UnwrappedKey) ;
XMM3 := AES128Encrypt (XMM3, UnwrappedKey) ;
XMM4 := AES128Encrypt (XMM4, UnwrappedKey) ;
XMMS5 := AES128Encrypt (XMM5, UnwrappedKey) ;
XMMB6 := AES128Encrypt (XMM6, UnwrappedKey) ;
XMM7 := AES128Encrypt (XMM7, UnwrappedKey) ;
RFLAGS.ZF = 0;

o o e ——

Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF = 0;

1. Further details on Key Locker and usage of this instruction can be found here:
I https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-70 Vol. 2A AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker on 8 Blocks Using 128-Bit Key

INSTRUCTION SET REFERENCE, A-L

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENCWIDET28KL unsigned char _mm_aesencwide128kl_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.AESKLE = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL [bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENCWIDE128KL—Perform Ten Rounds of AES Encryption Flow with Key Locker on 8 Blocks Using 128-Bit Key Vol.2A 3-71

INSTRUCTION SET REFERENCE, A-L

AESENCWIDEZ256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker on 8 Blocks
Using 256-Bit Key

Opcode/ Op/ |64/32-bit | CPUID Feature Description

Instruction En |Mode Flag

F3 OF 38 D8(11):010:bbb A VIV AESKLE WIDE_KL | Encrypt XMMO-7 using 256-bit AES key indicated

AESENCWIDEZ256KL m512, <XMMO-7> by handle at m512 and store each resultant block
back to its corresponding register.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operands 2 - 9
A NA ModRM:r/m (r) Implicit XMMO-7 (r, w)
Description

The AESENCWIDE256KL! instruction performs 14 rounds of AES to encrypt each of the eight blocks in XMMO-7
using the 256-bit key indicated by the handle from the second operand. It replaces each input block in XMMO0-7 with
its corresponding encrypted block if the operation succeeds (e.g., does not run into a handle violation failure).

Operation

AESENCWIDE256KL
Handle := UnalignedLoad of 512 bit (SRC); ~ // Load is not guaranteed to be atomic.
lllegal Handle = (
HandleReservedBitSet (Handle) ||
(Handle[O] AND (CPL > 0)) ||
Handle [1]]|
HandleKeyType (Handle) I= HANDLE_KEY_TYPE_AES256
)
IF (llegal Handle)
THEN RFLAGS.ZF = 1;
ELSE
(UnwrappedKey, Authentic) ;= UnwrapKeyAndAuthenticate512 (Handle[511:0], IwWKey);
IF (Authentic == 0)
THEN RFLAGS.ZF = 1;
ELSE
XMMO := AES256Encrypt
XMM1 := AES256Encrypt
XMM2 := AES256Encrypt
XMM3 ;= AES256Encrypt
XMM4 ;= AES256Encrypt
XMM5 ;= AES256Encrypt
XMMG6 := AES256Encrypt
XMM7 := AES256Encrypt
RFLAGS.ZF = 0;

XMMO, UnwrappedKey) ;
XMM1, UnwrappedKey) ;
XMM2, UnwrappedKey) ;
XMM3, UnwrappedKey) ;
XMM4, UnwrappedKey) ;
XMM5, UnwrappedKey) ;
XMMG6, UnwrappedKey) ;
XMM7, UnwrappedKey) ;

ey o o~ p— p— p— p— p—

Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF = 0;

1. Further details on Key Locker and usage of this instruction can be found here:
I https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

3-72 Vol. 2A AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker on 8 Blocks Using 256-Bit Key

INSTRUCTION SET REFERENCE, A-L

Flags Affected

ZF is set to O if the operation succeeded and set to 1 if the operation failed due to a handle violation. The other
arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

AESENCWIDEZ256KL unsigned char _mm_aesencwide256k|_u8(__m128i odata[8], const __m128i idata[8], const void* h);

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.

If CR4.0SFXSR = 0.
If CPUID.19H:EBX.WIDE_KL [bit 2] = 0.

#NM If CRO.TS = 1.

#PF If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If the memory address is in a non-canonical form.
#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory address referencing the SS segment is in a non-canonical form.

AESENCWIDE256KL—Perform 14 Rounds of AES Encryption Flow with Key Locker on 8 Blocks Using 256-Bit Key Vol.2A 3-73

INSTRUCTION SET REFERENCE, A-L

CPUID—CPU Identification

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
OF A2 CPUID Z0 |Valid Valid Returns processor identification and feature

information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 NA NA NA NA
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction oper-
ates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, O0H
CPUID

Table 3-8 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using some Intel processors, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)2

CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. ’*)2

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = OBH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, "Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Inte/l® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends first checking for the existence of CPUID leaf 1FH before using
leaf OBH.

3-214 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information.
EBX “Genu”
ECX “ntel”
EDX “inel”
O1H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).
EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value * 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31 - 24: Initial APIC ID**.
ECX Feature Information (see Figure 3-7 and Table 3-10).
EDX Feature Information (see Figure 3-8 and Table 3-11).
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC
IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.
** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf OBH and
Leaf 1FH.
02H EAX Cache and TLB Information (see Table 3-12).
EBX Cache and TLB Information.
ECX Cache and TLB Information.
EDX Cache and TLB Information.
03H EAX Reserved.
EBX Reserved.
ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium Il processor only; otherwise, the
value in this register is reserved.)
EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium Ill processor only; otherwise, the
value in this register is reserved.)
NOTES:

Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf

04H

NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 244.

EAX Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

CPUID—CPU Identification Vol.2A 3-215

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Bits 07 - 05: Cache Level (starts at 1).
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.
Bits 13 - 10: Reserved.
Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***,
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical
package**’ ****’ *****'
EBX Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.
ECX Bits 31-00: S = Number of Sets**,
EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.
Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.
Bits 31 - 03: Reserved = 0.
NOTES:
* [f ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-
leaf n returns EAX[4:0] as O.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-
tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique
Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.
***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.
MONITOR/MWAIT Leaf
O5H EAX Bits 15 - 00: Smallest monitor-line size in bytes (default is processor’s monitor granularity).
Bits 31 - 16: Reserved = 0.
EBX Bits 15 - 00: Largest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31 - 16: Reserved = 0.
ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.
Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.
Bits 31 - 02: Reserved.

3-216 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EDX Bits 03 - 00: Number of CO* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:

* The definition of CO through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-
states.

Thermal and Power Management Leaf

06H EAX Bit 00: Digital temperature sensor is supported if set.

Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).

Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.

Bit 03: Reserved.

Bit 04: PLN. Power limit notification controls are supported if set.

Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.

Bit 06: PTM. Package thermal management is supported if set.

Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.

Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.

Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.

Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.

Bit 12: Reserved.

Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.

Bit 14: Intel® Turbo Boost Max Technology 3.0 available.

Bit 15: HWP Capabilities. Highest Performance change is supported if set.

Bit 16: HWP PECI override is supported if set.

Bit 17: Flexible HWP is supported if set.

Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.

Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR MSR, IA32_HW_FEEDBACK_CONFIG MSR,
IA32_PACKAGE_THERM_STATUS MSR bit 26, and IA32_PACKAGE_THERM_INTERRUPT MSR bit 25 are
supported if set.

Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.

Bits 31 - 21: Reserved.

EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved.
ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The

capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.

Bits 02 - 01: Reserved = 0.

Bit 03: The processor supports performance-energy bias preference if CPUID.O6H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH).
Bits 31 - 04: Reserved = 0.

CPUID—CPU Identification Vol.2A 3-217

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EDX

Bits 7-0: Bitmap of supported hardware feedback interface capabilities.

0 = When set to 1, indicates support for performance capability reporting.

1 = When set to 1, indicates support for energy efficiency capability reporting.

2-7 = Reserved
Bits 11-8: Enumerates the size of the hardware feedback interface structure in number of 4 KB pages;
add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor's row in the hardware feedback interface struc-
ture. Note that on some parts the index may be same for multiple logical processors. On some parts the
indices may not be contiguous, i.e., there may be unused rows in the hardware feedback interface struc-
ture.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H

EAX
EBX

Sub-leaf O (Input ECX = 0). *

Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.

Bit 01:1A32_TSC_ADJUST MSR is supported if 1.

Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.

Bit 03: BMIT.

Bit 04: HLE.

Bit 05: AVX2.

Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.

Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.

Bit 08: BMI2.

Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.

Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.

Bit 11: RTM.

Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.

Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.

Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.

Bit 17: AVX512DQ.

Bit 18: RDSEED.

Bit 19: ADX.

Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.

Bit 22: Reserved.

Bit 23: CLFLUSHOPT.

Bit 24: CLWB.

Bit 25: Intel Processor Trace.

Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)

Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)

Bit 28: AVX512CD.

Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.

Bit 30: AVX512BW.

Bit 31: AVX512VL.

3-218 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

ECX Bit 00: PREFETCHWT 1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 of the
IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs:
IA32_INTERRUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and
IA32_PLO_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDQ.
Bit 11: AVX512_VNNIL.
Bit 12: AVX512_BITALG.
Bits 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE,
IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
Bit 14: AVX512_VPOPCNTDQ.
Bit 15: Reserved.
Bit 16: LAS57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: Reserved.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: Reserved.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 01: Reserved.
Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bits 07-05: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: Reserved.
Bit 10: MD_CLEAR supported.
Bits 14-11: Reserved.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part.
Bits 17-16: Reserved.
Bit 18: PCONFIG. Supports PCONFIG if 1.
Bit 19: Reserved.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit define
bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bits 25 - 21: Reserved.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch pre-
dictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[O] (IBRS) and IA32_PRED_CMD[0]
(IBPB).

CPUID—CPU Identification Vol.2A 3-219

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set this
bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).

Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the IA32_FLUSH_CMD
MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).

Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.

Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit being
set in this MSR indicates that a model specific feature is supported; software must still consult CPUID
family/model/stepping to determine the behavior of the enumerated feature as features enumerated in
IA32_CORE_CAPABILITIES may have different behavior on different processor models.

Additionally, on hybrid parts (CPUID.07H.0H:EDX[15]=1), software must consult the native model ID and
core type from the Hybrid Information Enumeration Leaf.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit sup-
port the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:

* |f ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 1)

07H

NOTES:

Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports O if the sub-leaf index, 7, is invalid.
Bits 04-00: Reserved.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT 16 inputs and conversion
instructions from IEEE single precision.
Bits 31-06: Reserved.

EBX This field reports 0 if the sub-leaf index, 71, is invalid; otherwise it is reserved.
ECX This field reports 0O if the sub-leaf index, 7, is invalid; otherwise it is reserved.

EDX This field reports O if the sub-leaf index, 71, is invalid; otherwise it is reserved.

Direct Cache Access Information Leaf

0SH

EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).
EBX Reserved.
ECX Reserved.
EDX Reserved.

Architectural Performance Monitoring Leaf

O0AH

EAX Bits 07 - 00: Version ID of architectural performance monitoring.
Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events. Archi-
tectural event x is supported if EBX[x]=0 && EAX[31:24]>x.

3-220 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX

EDX

Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.

Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.

Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.

Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.

Bits 31 - 08: Reserved = 0.

Bits 31 - 00: Supported fixed counters bit mask. Fixed-function performance counter ‘i' is supported if bit
‘i"is 1 (first counter index starts at zero). It is recommended to use the following logic to determine if a
Fixed Counter is supported: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

Bits 04 - 00: Number of contiguous fixed-function performance counters starting from O (if Version ID >
1).

Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).

Bits 14 - 13: Reserved = 0.

Bit 15: AnyThread deprecation.

Bits 31 - 16: Reserved = 0.

Extended Topology Enumeration Leaf

0BH

EAX

EBX

ECX

EDX

NOTES:

CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends first checking for the existence
of Leaf 1FH before using leaf OBH.

Most of Leaf OBH output depends on the initial value in ECX.

The EDX output of leaf OBH is always valid and does not vary with input value in ECX.

Output value in ECX[7:0] always equals input value in ECX[7:0].

Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.

For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel*™.
Bits 31- 16: Reserved.

Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

CPUID—CPU Identification

Vol.2A 3-221

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/0S/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:

0: Invalid.

1: SMT.

2: Core.

3-255: Reserved.

Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)

ODH

EAX

EBX

ECX

EDX

NOTES:
Leaf ODH main leaf (ECX = 0).

Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCRO. XCRO[n] can be set to 1 only if
EAX[n]is 1.

Bit 00: x87 state.

Bit O1: SSE state.

Bit 02: AVX state.

Bits 04 - 03: MPX state.

Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.

Bits 12 - 10: Reserved.

Bit 13: Used for IA32_XSS.
Bits 15 - 14: Reserved.

Bit 16: Used for IA32_XSS.
Bits 31 - 17: Reserved.

Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in
XCRO.

Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCRO. XCRO[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

ODH

EAX

EBX

Bit 00: XSAVEOPT is available.

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.

Bits 31 - 04: Reserved.

Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

3-222 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07 - 00: Used for XCRO.
Bit 08: PT state.

Bit 09: Used for XCRO.

Bit 10: Reserved.

Bit 11: CET user state.

Bit 12: CET supervisor state.
Bit 13: HDC state.

Bits 15 - 14: Reserved.

Bit 16: HWP state.

Bits 31 - 17: Reserved.

Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)

ODH

EAX

EBX

ECX

EDX

NOTES:
Leaf ODH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCRO register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 < n < 31) is invalid
if sub-leaf O returns O in EAX[n] and sub-leaf 1 returns O in ECX[n]. Sub-leaf n (32 < n < 63)is invalid if
sub-leaf O returns 0 in EDX[n-32] and sub-leaf 1 returns O in EDX[n-32].

Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n.

Bits 31 - 0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports O if the sub-leaf index, n, does not map to a valid bit in the XCRO register*.

Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCRO.

Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).

Bits 31 - 02 are reserved.

This field reports O if the sub-leaf index, n, is invalid*.

This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = OFH, ECX = 0)

OFH

EAX
EBX
ECX
EDX

NOTES:
Leaf OFH output depends on the initial value in ECX.
Sub-leaf index O reports valid resource type starting at bit position 1 of EDX.
Reserved.
Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.
Reserved.

Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31 - 02: Reserved.

CPUID—CPU Identification

Vol.2A 3-223

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = OFH, ECX = 1)
OFH NOTES:
Leaf OFH output depends on the initial value in ECX.
EAX Reserved.
EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and Mem-
ory Bandwidth Monitoring (MBM) metrics.
ECX Maximum range (zero-based) of RMID of this resource type.
EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31 - 03: Reserved.
Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = T10H, ECX = 0)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index O reports valid resource identification (ResID) starting at bit position 1 of EBX.
EAX Reserved.
EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31 - 04: Reserved.
ECX Reserved.
EDX Reserved.
L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31 - 05: Reserved.
EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.
ECX Bits 01- 00: Reserved.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.
EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.
L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value to
get the result.
Bits 31 - 05: Reserved.
EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.
ECX Bits 31 - 00: Reserved.

3-224 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.
Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
EAX Bits 11 - 00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add one
to the return value to get the result.
Bits 31 - 12: Reserved.
EBX Bits 31 - 00: Reserved.
ECX Bits 01 - 00: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31 - 03: Reserved.
EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.
Intel SGX Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)
12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04 - 02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and
ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bits 31 - 07: Reserved.
EBX Bits 31 - 00: MISCSELECT. Bit vector of supported extended SGX features.
ECX Bits 31 - 00: Reserved.
EDX Bits 07 - 00: Max€nclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2" (EDX[7:0]).
Bits 15 - 08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2" (EDX[15:8]).
Bits 31 - 16: Reserved.
Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)
12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
EAX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.
EBX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.
ECX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.
EDX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.
Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)
12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SCGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below.

CPUID—CPU Identification Vol.2A 3-225

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EAX Bit 03 - 00: Sub-leaf Type
0000Db: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.
EDX:ECX:EBX:EAX return O.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
If EAX[3:0] 0010b, then this section has confidentiality protection only.
All other encodings are reserved.
ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved
Memory.
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H

NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bit O1: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bit 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEN) and
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] (InjectPsb-
PmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to Intel
PT disable. Writes can also set PendToPAPMI and PendPSB.
Bit 31 - 07: Reserved.

3-226 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit O1: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.
EDX Bits 31 - 00: Reserved.
Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)
14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.
EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.
ECX Bits 31 - 00: Reserved.
EDX Bits 31 - 00: Reserved.
Time Stamp Counter and Nominal Core Crystal Clock Information Leaf
15H NOTES:
If EBX[31:0]is O, the TSC/"core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is O, the nominal core crystal clock frequency is not enumerated.
"TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.
EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/"core crystal clock” ratio.
EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/"core crystal clock” ratio.
ECX Bits 31 - 00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.
EDX Bits 31 - 00: Reserved = 0.
Processor Frequency Information Leaf
16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.
EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.
ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.
EDX Reserved.

CPUID—CPU Identification

Vol.2A 3-227

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

NOTES:

* Data is returned from this interface in accordance with the processor’s specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H

EAX
EBX

ECX
EDX

NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

Bits 15 - 00: SOC Vendor ID.

Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.

Bits 31 - 17: Reserved = 0.

Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.
Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H

EAX
EBX
ECX
EDX

Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of O0H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H

EAX
EBX
ECX
EDX

NOTES:
Leaf 17H output depends on the initial value in ECX.

Bits 31 - 00: Reserved = 0.
Bits 31 - 00: Reserved = 0.
Bits 31 - 00: Reserved = 0.
Bits 31 - 00: Reserved = 0.

3-228 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)
18H NOTES:

Each sub-leaf enumerates a different address translation structure.

If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns O.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.

* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.

** Add one to the return value to get the result.

EAX Bits 31 - 00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (O: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.
Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

CPUID—CPU Identification Vol.2A 3-229

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX 2 1)
18H NOTES:

Each sub-leaf enumerates a different address translation structure.

If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index nis invalid if n
exceeds the value that sub-leaf O returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns O.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.

* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.

** Add one to the return value to get the result.

EAX Bits 31 - 00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (O: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB*.
All other encodings are reserved.
Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Key Locker Leaf (EAX = 19H)

19H EAX Bit 00: Key Locker restriction of CPLO-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs (IA32_COPY_LOCAL_TO_PLATFORM,
IA23_COPY_PLATFORM_TO_LOCAL, IA32_COPY_STATUS, and IA32_IWKEYBACKUP_STATUS) and backing
up the internal wrapping key.
Bits 31-05: Reserved.

3-230 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: Reserved.
EDX Reserved.
Hybrid Information Enumeration Leaf (EAX = 1AH, ECX = 0)
1AH EAX Enumerates the native model ID and core type.
Bits 31-24: Core type
10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™
Bits 23-0: Native model ID of the core. The core-type and native mode ID can be used to uniquely identify
the microarchitecture of the core. This native model ID is not unique across core types, and not related to
the model ID reported in CPUID leaf 01H, and does not identify the SOC.
EBX Reserved.
ECX Reserved.
EDX Reserved.
PCONFIG Information Sub-leaf (EAX = 1BH, ECX 2 0)
1BH For details on this sub-leaf, see “INPUT EAX = 1BH: Returns PCONFIG Information” on page 3-246.
NOTE:

Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.
V2 Extended Topology Enumeration Leaf

1FH NOTES:

CPUID leaf 1FH is a preferred superset to leaf OBH. Intel recommends first checking for the existence
of Leaf 1FH and using this if available.

Most of Leaf 1FH output depends on the initial value in ECX.
The EDX output of leaf 1FH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].

Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.

For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel*™*.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.

Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

CPUID—CPU Identification Vol.2A 3-231

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/0S/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:

0: Invalid.

1: SMT.

2: Core.

3: Module.

4: Tile.

5: Die.

6-255: Reserved.

Unimplemented CPUID Leaf Functions

40000000H

AFFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H

EAX
EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information.
Reserved.
Reserved.

Reserved.

80000001TH

EAX
EBX
ECX

EDX

Extended Processor Signature and Feature Bits.
Reserved.

Bit 00: LAHF/SAHF available in 64-bit mode.*
Bits 04 - 01: Reserved.

Bit 05: LZCNT.

Bits 07 - 06: Reserved.

Bit 08: PREFETCHW.

Bits 31 - 09: Reserved.

Bits 10 - 00: Reserved.

Bit 11: SYSCALL/SYSRET.**

Bits 19 - 12: Reserved = 0.

Bit 20: Execute Disable Bit available.

Bits 25 - 21: Reserved = 0.

Bit 26: 1-GByte pages are available if 1.

Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.

Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.

NOTES:
* LAHF and SAHF are always available in other modes, regardless of the enumeration of this feature flag.

** Intel processors support SYSCALL and SYSRET only in 64-bit mode. This feature flag is always enumer-
ated as 0 outside 64-bit mode.

3-232 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
80000002H | EAX Processor Brand String.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
80000003H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
80000004H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
80000005H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Reserved = 0.
80000006H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
EDX Reserved = 0.
NOTES:
* L2 associativity field encodings:
OOH - Disabled 08H - 16 ways
OTH - 1 way (direct mapped) 09H - Reserved
02H - 2 ways OAH - 32 ways
03H - Reserved OBH - 48 ways
04H - 4 ways OCH - 64 ways
O5H - Reserved ODH - 96 ways
0O6H - 8 ways OEH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** OFH - Fully associative
** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-leaf 2
80000007H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.
80000008H | EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.

CPUID—CPU Identification

Vol.2A 3-233

INSTRUCTION SET REFERENCE, A-L

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EBX Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.

ECX Reserved = 0.
EDX Reserved = 0.
NOTES:

* |f CPUID.BOO0O0008H:EAX[7:0] is supported, the maximum physical address number supported should
come from this field.

INPUT EAX = 0: Returns CPUID'’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
elntel” and is expressed:

EBX ;= 756e6547h (* “Genu", with G in the low eight bits of BL *)
EDX := 49656e69h (* “inel”, with i in the low eight bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

® Model —1111B

®* Family — 0101B

® Processor Type — 00B

See Table 3-9 for available processor type values. Stepping IDs are provided as needed.

3-234 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID Model ID ID Model ID

Extended Family ID (0)

Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)

Model

D Reserved

OM16525
Figure 3-6. Version Information Returned by CPUID in EAX
Table 3-9. Processor Type Field
Type Encoding
Original OEM Processor 00B
Intel OverDrive” Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B
NOTE

See Chapter 20 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Integrate the fields into a display
using the following rule:

IF Family_ID # OFH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)
Fl;
(* Show DisplayFamily as HEX field. *)
The Extended Model ID needs to be examined only when the Family ID is 06H or OFH. Integrate the field into a
display using the following rule:

IF (Family_ID = O6H or Family_ID = OFH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

Fl;

(* Show DisplayModel as HEX field. *)

CPUID—CPU Identification Vol.2A 3-235

INSTRUCTION SET REFERENCE, A-L

INPUT EAX = 01H: Returns Additional Information in EBX
When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:

®* Brand index (low byte of EBX) — this humber provides an entry into a brand string table that contains brand
strings for IA-32 processors. More information about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.

®* Figure 3-7 and Table 3-10 show encodings for ECX.

® Figure 3-8 and Table 3-11 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

3130292827 26252423222120191817 161514 131211109 8 7 6 54 3 2 1 0
ECX

0
RDRAND g
F16C ——
AVX
OSXSAVE
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
x2APIC
SSE4_2 — SSE4.2
SSE4_1 — SSEA4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
XxTPR Update Control
CMPXCHG16B
FMA — Fused Multiply Add
SDBG

CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication
SSE3 — SSE3 Extensions

OM16524b
D Reserved

Figure 3-7. Feature Information Returned in the ECX Register

3-236 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-10. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 pcLMULQDQ PCLMULQDAQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 6, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of O indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“"CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor supports changing

Control IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4_1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4 2 A value of 1 indicates that the processor supports SSE4.2.

21 Xx2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCRO.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.0SXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCRO and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

CPUID—CPU Identification

Vol.2A 3-237

INSTRUCTION SET REFERENCE, A-L

Table 3-10. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.
30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

3-238 Vol.2A

PSE-3

MCA-

MCE-

MSR-

PBE-Pend. Brk. EN.J
TM—-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store
CLFSH-CLFLUSH instruction
PSN-Processor Serial Number

PAT—-Page Attribute Table
CMOV-Conditional Move/Compare Instruction

PGE-PTE Global Bit
MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT
APIC-APIC on Chip
CX8-CMPXCHGSB Inst.

PAE-Physical Address Extensions

TSC-Time Stamp Counter
PSE-Page Size Extensions
DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement
FPU-x87 FPU on Chip

D Reserved

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

EDX

6 — Page Size Extension

Machine Check Architecture

Machine Check Exception

RDMSR and WRMSR Support

OM16523

Figure 3-8. Feature Information Returned in the EDX Register

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-11. More on Feature Information Returned in the EDX Register

Bit # | Mnemonic | Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFEOOOOH to FFFEOFFFH (by default - some
processors permit the APIC to be relocated).

10 | Reserved | Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 | MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 | PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 | MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 | CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 | PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 | PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 | PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 | CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 | Reserved | Reserved

CPUID—CPU Identification

Vol.2A 3-239

INSTRUCTION SET REFERENCE, A-L

Table 3-11. More on Feature Information Returned in the EDX Register (Contd.)

Bit # | Mnemonic | Description

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 30).

22 | ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 | MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 | FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 | SSE SSE. The processor supports the SSE extensions.

26 | SSE2 SSEZ2. The processor supports the SSE2 extensions.

27 |SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 |HTT Max APIC IDs reserved field is Valid. A value of O for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 |T™ Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 | Reserved | Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt.

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form
and fall into the following categories:

®* The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value
and not interpret it as an informational descriptor.

®* The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).

* If a register contains valid information, the information is contained in 1 byte descriptors. There are four types
of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-12. Table
3-12 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

3-240 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-12. Encoding of CPUID Leaf 2 Descriptors

Value Type Description
OOH General | Null descriptor, this byte contains no information
O1H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries
03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries
04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries
O5H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
06H Cache | 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
08H Cache | 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
0O%H Cache | 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size
OAH Cache | 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
OBH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
OCH Cache | 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
ODH Cache | 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size
OEH Cache | 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size
1DH Cache |2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size
21H Cache | 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size
22H Cache | 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H Cache | 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
24H Cache |2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size
25H Cache | 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
29H Cache | 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
2CH Cache | 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
30H Cache | 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
40H Cache |No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
41H Cache |2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
42H Cache | 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
43H Cache |2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
44H Cache | 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
45H Cache |2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
46H Cache | 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
47H Cache | 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
48H Cache | 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size
49H Cache | 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family OFH, Model
06H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
4AH Cache | 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
4BH Cache | 3rd-level cache; 8MByte, 16-way set associative, 64 byte line size
4CH Cache | 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
4DH Cache | 3rd-level cache:; 16MByte, 16-way set associative, 64 byte line size
4€EH Cache | 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
4FH TLB Instruction TLB: 4 KByte pages, 32 entries

CPUID—CPU Identification Vol.2A 3-241

INSTRUCTION SET REFERENCE, A-L

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value Type Description

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLBO: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLBO: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLBO: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache | 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte

pages, 4-way set associative, 4 entries

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries

66H Cache | 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache | 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache | 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache |uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache |DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache |DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache |DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache | Trace cache: 12 K-uop, 8-way set associative

71H Cache |Trace cache: 16 K-pop, 8-way set associative

72H Cache | Trace cache: 32 K-uop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache |2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache | 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7AH Cache | 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7BH Cache | 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7CH Cache |2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
7DH Cache | 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache |2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache | 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache |2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache | 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache |2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache |2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache |2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache |2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

3-242 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value Type Description

AOH DTLB | DTLB: 4k pages, fully associative, 32 entries

BOH TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

COH TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB | Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB | Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,

16 entries.

C4H DTLB | DTLB: 2M/4M Byte pages, 4-way associative, 32 entries

CAH STLB | Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

DOH Cache | 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache | 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache | 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache | 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache | 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache | 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache | 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache | 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache | 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

€2H Cache | 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

€3H Cache | 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache | 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache | 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache | 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache | 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

FOH Prefetch |64-Byte prefetching

F1H Prefetch | 128-Byte prefetching

FEH General |CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address

translation parameters.
FFH General |CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

CPUID—CPU Identification Vol.2A 3-243

INSTRUCTION SET REFERENCE, A-L

Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX OH
ECX OH
EDX 00 7A 70 OOH

Which means:
®* The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.

®* The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

®* Bytes 1, 2, and 3 of register EAX indicate that the processor has:
— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.
— b5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.
— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
® The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
® Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
— OOH - NULL descriptor.
— 70H - Trace cache: 12 K-uop, 8-way set associative.
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
— OOH - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-8.

This Cache Size in Bytes
= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)
= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “"Multiple-Processor Management,” in the Inte/l® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = O5H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-8.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-8.

3-244 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-8.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-8),
the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest
leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 3-8.

INPUT EAX = OAH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-8) is greater than Pn 0. See Table 3-8.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C.

INPUT EAX = OBH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH
before using leaf OBH.

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.OBH:EBX[15:0] reports a non-zero value. See Table 3-8.

INPUT EAX = ODH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 3-8.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 3-8. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

Fori =2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR([i] = 1) // VECTOR is the 64-bit value of EDX:EAX
Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
Fl;

INPUT EAX = OFH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to OFH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 3-8.

When CPUID executes with EAX set to OFH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

CPUID—CPU Identification Vol.2A 3-245

INSTRUCTION SET REFERENCE, A-L

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = OH, the processor returns information about Intel SGX capa-
bilities. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 3-8.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = OH, the processor returns information about Intel Processor
Trace extensions. See Table 3-8.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 3-8.

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = OH, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 3-8.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 3-8.

INPUT EAX = 17H: Returns System-0n-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 3-8.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 3-8.

INPUT EAX = 19H: Returns Key Locker Information
When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 3-8.

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table
3-8.

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. This
information is enumerated in sub-leaves selected by the value of ECX (starting with 0).

3-246 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Each sub-leaf of CPUID function 1BH enumerates its sub-leaf type in EAX. If a sub-leaf type is 0, the sub-leaf is
invalid and zero is returned in EBX, ECX, and EDX. In this case, all subsequent sub-leaves (selected by larger input
values of ECX) are also invalid.

The only valid sub-leaf type currently defined is 1, meaning target identifier, indicating that the sub-leaf enumer-
ates target identifiers for the PCONFIG instruction. Any non-zero value returned in EBX, ECX, or EDX indicates a
valid target of the PCONFIG instruction (any value of zero should be ignored). The only target identifier currently
defined is 1, indicating MKTME. See the “PCONFIG — Platform Configuration” instruction in Chapter 4 of the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B for more information.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 3-8.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 20 of the Inte/® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor
Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

CPUID—CPU Identification Vol.2A 3-247

INSTRUCTION SET REFERENCE, A-L

Input: EAX=
0x80000000

False Processor Brand
IF (EAX & 0x80000000) String Not
Supported
CPUID
True=
Function
Supported Extended
EAX Return Value =
Max. Extended CPUID
Function Index
True Processor Brand

IF (EAX Return Value
= 0x80000004)

String Supported

OM15194

Figure 3-9. Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-13 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Table 3-13. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent
80000002H EAX =20202020H o
EBX =20202020H e
ECX =20202020H "

EDX = 6E492020H “nl "
80000003H EAX =286C6574H “(let”
EBX =50202952H “P)R"
ECX =69746€E65H “itne”
EDX = 52286D75H “R(mu”

3-248 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-13. Processor Brand String Returned with Pentium 4 Processor (Contd.)

EAX Input Value Return Values ASCII Equivalent
80000004H EAX = 20342029H "4y
EBX =20555043H " UPC”
ECX =30303531H “0051"
EDX = 007A484DH “\OzHM"

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

Scan "Brand String" in
Reverse Byte Order

"zZHM", or
"zHG", or
N T

Match
Substring

False

IF Substring Matched Report Error

Determine "Freq"
True Multiplier = 1 x 10°

and "Multiplier"
If "zZHG" — 5
Multiplier =1 x 10
Determine "Multiplier" If "zZHT" ”
< Multiplier = 1 x 10
Scan Digits
e " Until Blank Reverse Digits
Determine "Freq < .
In Reverse Order To Decimal Value
Processor Base l
Frequency = . . .
"Freg" x "Multiplier" Frgq =X.YZif
Digits = "ZY.X"

Figure 3-10. Algorithm for Extracting Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium® 11l Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model humber of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = OFH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-14 shows brand indices that have identification strings associated with them.

CPUID—CPU Identification Vol.2A 3-249

INSTRUCTION SET REFERENCE, A-L

Table 3-14. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String
OOH This processor does not support the brand identification feature
OTH Intel(R) Celeron(R) processor1
02H Intel(R) Pentium(R) Ill processor1
03H Intel(R) Pentium(R) Il Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor
04H Intel(R) Pentium(R) Ill processor
06H Mobile Intel(R) Pentium(R) Ill processor-M
07H Mobile Intel(R) Celeron(R) processor1
08H Intel(R) Pentium(R) 4 processor
OSH Intel(R) Pentium(R) 4 processor
OAH Intel(R) Celeron(R) processor1
OBH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP
OCH Intel(R) Xeon(R) processor MP
OEH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
OFH Mobile Intel(R) Celeron(R) processor1
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
13H Mobile Intel(R) Celeron(R) processor1
14H Intel(R) Celeron(R) processor
15H Mobile Genuine Intel(R) processor
16H Intel(R) Pentium(R) M processor
17H Mobile Intel(R) Celeron(R) proces.sor1
18H - OFFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium Il

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation
IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF

EAX = 0:
EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;

EAX = TH:
EAX[3:0] := Stepping ID;
EAX[7:4] := Model;
EAX[11:8] := Family;

3-250 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

EAX[13:12] := Processor type;
EAX[15:14] ;= Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 3-7. %)
EDX := Feature flags; (* See Figure 3-8.*)
BREAK;
EAX = 2H:
EAX := Cache and TLB information;
EBX := Cache and TLB information;
ECX := Cache and TLB information;
EDX := Cache and TLB information;
BREAK;
EAX = 3H:
EAX = Reserved;
EBX := Reserved;
ECX := ProcessorSerialNumber[31:0];
(* Pentium Ill processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32];
(* Pentium IIl processors only, otherwise reserved. *
BREAK
EAX = 4H:
EAX := Deterministic Cache Parameters Leaf; (* See Table 3-8. *)
EBX := Deterministic Cache Parameters Leaf;
ECX := Deterministic Cache Parameters Leaf;
€DX := Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX := MONITOR/MWAIT Leaf; (* See Table 3-8. *)
EBX := MONITOR/MWAIT Leaf;
ECX := MONITOR/MWAIT Leaf;
EDX := MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX := Thermal and Power Management Leaf; (* See Table 3-8. *)
EBX := Thermal and Power Management Leaf;
ECX := Thermal and Power Management Leaf;
€DX := Thermal and Power Management Leaf;
BREAK;
EAX = 7H:
EAX := Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-8. *)
EBX := Structured Extended Feature Flags Enumeration Leaf;
ECX := Structured Extended Feature Flags Enumeration Leaf;
EDX := Structured Extended Feature Flags Enumeration Leaf;
BREAK;
EAX = 8H:
EAX = Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;

CPUID—CPU Identification Vol.2A 3-251

INSTRUCTION SET REFERENCE, A-L

EDX := Reserved = 0;
BREAK;
EAX = 9H:
EAX := Direct Cache Access Information Leaf; (* See Table 3-8. *)
EBX := Direct Cache Access Information Leaf;
ECX := Direct Cache Access Information Leaf;
EDX := Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX := Architectural Performance Monitoring Leaf; (* See Table 3-8. *)
EBX := Architectural Performance Monitoring Leaf;
ECX := Architectural Performance Monitoring Leaf;
EDX := Architectural Performance Monitoring Leaf;
BREAK
EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := Extended Topology Enumeration Leaf;
ECX := Extended Topology Enumeration Leaf;
EDX := Extended Topology Enumeration Leaf;
BREAK;
EAX = CH:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;
BREAK;
EAX = DH:
EAX := Processor Extended State Enumeration Leaf; (* See Table 3-8. *)
EBX := Processor Extended State Enumeration Leaf;
ECX := Processor Extended State Enumeration Leaf;
EDX := Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;
BREAK;
EAX = FH:
EAX := Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 3-8. *)
EBX := Intel Resource Director Technology Monitoring Enumeration Leaf;
ECX := Intel Resource Director Technology Monitoring Enumeration Leaf;
EDX := Intel Resource Director Technology Monitoring Enumeration Leaf;
BREAK;
EAX = T10H:
EAX := Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 3-8. *)
EBX := Intel Resource Director Technology Allocation Enumeration Leaf;
ECX := Intel Resource Director Technology Allocation Enumeration Leaf;
EDX := Intel Resource Director Technology Allocation Enumeration Leaf;
BREAK;
EAX = 12H:
EAX := Intel SGX Enumeration Leaf; (* See Table 3-8. *)
EBX := Intel SGX Enumeration Leaf;
ECX := Intel SGX Enumeration Leaf;

3-252 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

EDX := Intel SGX Enumeration Leaf;
BREAK;
EAX = 14H:
EAX := Intel Processor Trace Enumeration Leaf; (* See Table 3-8. *)
EBX := Intel Processor Trace Enumeration Leaf;
ECX := Intel Processor Trace Enumeration Leaf;
EDX := Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:
EAX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; (* See Table 3-8. *)
€BX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
ECX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
€DX := Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:
EAX := Processor Frequency Information Enumeration Leaf; (* See Table 3-8. *)
EBX := Processor Frequency Information Enumeration Leaf;
ECX := Processor Frequency Information Enumeration Leaf;
EDX := Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:
EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-8. *)
EBX := System-0n-Chip Vendor Attribute Enumeration Leaf;
ECX := System-On-Chip Vendor Attribute Enumeration Leaf;
EDX := System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:
EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 3-8. *)
EBX := Deterministic Address Translation Parameters Enumeration Leaf;
ECX := Deterministic Address Translation Parameters Enumeration Leaf;
EDX := Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 19H:
EAX := Key Locker Enumeration Leaf; (* See Table 3-8. *)
EBX := Key Locker Enumeration Leaf;
ECX := Key Locker Enumeration Leaf;
EDX := Key Locker Enumeration Leaf;
BREAK;
EAX = 1AH:
EAX := Hybrid Information Enumeration Leaf; (* See Table 3-8. *)
€BX := Hybrid Information Enumeration Leaf;
ECX := Hybrid Information Enumeration Leaf;
€DX := Hybrid Information Enumeration Leaf;
BREAK;
EAX = 1BH:
EAX := PCONFIG Information Enumeration Leaf; (* See "INPUT EAX = 1BH: Returns PCONFIG Information” on page 3-246. *)
EBX := PCONFIG Information Enumeration Leaf;
ECX := PCONFIG Information Enumeration Leaf;
EDX := PCONFIG Information Enumeration Leaf;
BREAK;
EAX = 1FH:
EAX := V2 Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX := V2 Extended Topology Enumeration Leaf;
ECX := V2 Extended Topology Enumeration Leaf;

CPUID—CPU Identification Vol.2A 3-253

INSTRUCTION SET REFERENCE, A-L

EDX := V2 Extended Topology Enumeration Leaf;
BREAK;
EAX = 80000000H:
EAX := Highest extended function input value understood by CPUID;
EBX := Reserved;
ECX := Reserved;
EDX := Reserved;
BREAK;
EAX = 80000001TH:
EAX := Reserved;
EBX := Reserved;
ECX := Extended Feature Bits (* See Table 3-8.%);
EDX := Extended Feature Bits (* See Table 3-8. *);
BREAK;
EAX = 80000002H:
EAX := Processor Brand String;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;
BREAK;
EAX = 80000006H:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Cache information;
EDX := Reserved = 0;
BREAK;
EAX = 80000007H:
EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = Misc Feature Flags;
BREAK;
EAX = 80000008H:
EAX := Reserved = Physical Address Size Information;
EBX := Reserved = Virtual Address Size Information;
ECX := Reserved = 0;

3-254 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

EDX := Reserved = O;

BREAK;

EAX >= 40000000H and EAX <= 4FFFFFFFH:

DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *
EBX := Reserved; (* Information returned for highest basic information leaf. *
ECX := Reserved; (* Information returned for highest basic information leaf. *
EDX := Reserved; (* Information returned for highest basic information leaf. *

BREAK;

ESAC;

Flags Affected
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.

CPUID—CPU Identification Vol.2A 3-255

INSTRUCTION SET REFERENCE, A-L

ENCODEKEY128—Encode 128-Bit Key with Key Locker

Opcode/ Op/ |64/32-bit |CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 FA 11:rrr:bbb A VIV AESKLE Wrap a 128-bit AES key from XMMO into a key handle
ENCODEKEY128r32,r32, <XMMO0-2>, and output handle in XMMO-2.
<XMM4-6>

Instruction Operand Encoding

Op/En | Tuple Operand 1 Operand 2 Operand 3 Operands 4 - 5 Operands 6 - 7
A NA ModRM:reg (w) ModRM:r/m (r) Implicit XMMO (r, w) | Implicit XMM1-2 (w) | Implicit XMM4-6 (w)
Description

The ENCODEKEY1281 instruction wraps a 128-bit AES key from the implicit operand XMMO into a key handle that
is then stored in the implicit destination operands XMM0-2.

The explicit source operand specifies handle restrictions, if any.

The explicit destination operand is populated with information on the source of the key and its attributes. XMM4
through XMM6 are reserved for future usages and software should not rely upon them being zeroed.

Operation

ENCODEKEY128

#GP (0) if a reserved bit? in SRC[31:0] is set

InputKey[127:0] := XMMO;

KeyMetadata[2:0] = SRC[2:0];

KeyMetadata[23:3] = 0; // Reserved for future usage
KeyMetadata[27:24] = O; // KeyType is AES-128 (value of 0)
KeyMetadata[127:28] = 0; // Reserved for future usage

/1 KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey128
Handle[383:0] := WrapKey128(InputKey[127:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], IwWKey.Encryption Key[255:0]);

DEST[O] := IwKey.NoBackup;

DEST[4:1] := IWKey.KeySource[3:0];
DEST[31:5]=0;

XMMO := Handle[127:0]; // AAD

XMM1 := Handle[255:128]; // Integrity Tag
XMM2 := Handle[383:256]; // CipherText
XMM4 := 0; //Reserved for future usage
XMM5 = 0; //Reserved for future usage
XMMG6 := 0; //Reserved for future usage
RFLAGS.OF, SF, ZF, AF, PF, CF := 0;

Flags Affected

All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently defined oper-
ations, future extensions may report information in the flags.

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0. SRC[O], which indicates
a CPLO-only restriction, is reserved if CPUID.19H:EAX[O] is O.

ENCODEKEY 128—Encode 128-Bit Key with Key Locker Vol.2A 3-335

INSTRUCTION SET REFERENCE, A-L

Intel C/C++ Compiler Intrinsic Equivalent

ENCODEKEY 128 unsigned int _mm_encodekey128_u32(unsigned int htype, __m128i key, void* h);

Exceptions (All Operating Modes)
#GP If reserved bit is set in source register value.
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.

3-336 Vol.2A ENCODEKEY 128—Encode 128-Bit Key with Key Locker

INSTRUCTION SET REFERENCE, A-L

ENCODEKEY256—Encode 256-Bit Key with Key Locker

Opcode/ Op/ |64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 FB 11:rrr:bbb A VIV AESKLE Wrap a 256-bit AES key from XMM1:XMMO into a key
ENCODEKEY256 r32, r32 <XMMO0-6> handle and store it in XMMO-3.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operands 3 - 4 Operands 5 - 9
A NA ModRM:reg (w) ModRM:r/m (r) Implicit XMMO-1 (r, w) Implicit XMM2-6 (w)
Description

The ENCODEKEY2561 instruction wraps a 256-bit AES key from the implicit operand XMM1:XMMO into a key handle
that is then stored in the implicit destination operands XMMO0-3.

The explicit source operand is a general-purpose register and specifies what handle restrictions should be built into
the handle.

The explicit destination operand is populated with information on the source of the key and its attributes. XMM4
through XMM6 are reserved for future usages and software should not rely upon them being zeroed.

Operation

ENCODEKEY256

#GP (0) if a reserved bit? in SRC[31:0] is set

InputKey[255:0] := XMM1:XMMO;

KeyMetadata[2:0] = SRC[2:0];

KeyMetadata[23:3] = 0; // Reserved for future usage
KeyMetadata[27:24] = 1; // KeyType is AES-256 (value of 1)
KeyMetadata[127:28] = 0; // Reserved for future usage

/1 KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey256
Handle[511:0] := WrapKey256(InputKey[255:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], IwWKey.Encryption Key[255:0]);

DEST[O] := IwKey.NoBackup;

DEST[4:1] := IWKey.KeySource[3:0];
DEST[31:5]=0;

XMMO := Handle[127:0]; // AAD

XMM1 := Handle[255:128]; // Integrity Tag

XMM2 := Handle[383:256]; // CipherText[127:0]
XMM3 := Handle[511:384]; // CipherText[255:128]

XMM4 = 0; //Reserved for future usage
XMM5 = 0; //Reserved for future usage
XMMG6 := 0; //Reserved for future usage

RFLAGS.OF, SF, ZF, AF, PF, CF = 0;

1. Further details on Key Locker and usage of this instruction can be found here:

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0. SRC[O], which indicates
a CPLO-only restriction, is reserved if CPUID.19H:EAX[O] is O.

ENCODEKEY256—Encode 256-Bit Key with Key Locker Vol.2A 3-337

INSTRUCTION SET REFERENCE, A-L

Flags Affected

All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently defined oper-
ations, future extensions may report information in the flags.

Intel C/C++ Compiler Intrinsic Equivalent

ENCODEKEY256 unsigned int _mm_encodekey256_u32(unsigned int htype, __m128i key_lo, __m128i key_hi, void* h);

Exceptions (All Operating Modes)
#GP If reserved bit is set in source register value.
#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CPUID.19H:EBX.AESKLE [bit 0] = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.

3-338 Vol.2A ENCODEKEY256—Encode 256-Bit Key with Key Locker

INSTRUCTION SET REFERENCE, A-L

FCLEX/FNCLEX—Clear Exceptions

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
9BDBEZ2 FCLEX Valid Valid Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.
DB E2 FNCLEX Valid Valid Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary status flag (ES), the
stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX instruction checks for and handles
any pending unmasked floating-point exceptions before clearing the exception flags; the FNCLEX instruction does
not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction followed by an FNCLEX
instruction), and the processor executes each of these instructions separately. If an exception is generated for
either of these instructions, the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible (under unusual
circumstances) for an FNCLEX instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled "No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An
FNCLEX instruction cannot be interrupted in this way on later Intel processors, except for the Intel Quark™ X1000
processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the SIMD floating-point
exception flags in the MXCSR register.

This instruction’s operation is the same in hon-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] := 0;
FPUStatusWord[15] := O;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The CO, C1, C2, and C3 flags are
undefined.

Floating-Point Exceptions
None

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

3-358 Vol.2A FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-L

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

FCLEX/FNCLEX—Clear Exceptions Vol.2A 3-359

INSTRUCTION SET REFERENCE, A-L

LOADIWKEY—Load Internal Wrapping Key with Key Locker

Opcode/ Op/ |64/32-bit | CPUID Description
Instruction En |Mode Feature
Flag
F3 OF 38 DC 11:rrr:bbb A VIV KL Load internal wrapping key from xmm1, xmm2, and
LOADIWKEY xmm1, xmm2, <EAX>, <XMMO> XMMO.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r) ModRM:r/m (r) Implicit EAX (r) Implicit XMMO (r)
Description

The LOADIWKEY! instruction writes the Key Locker internal wrapping key, which is called IWKey. This IWKey is
used by the ENCODEKEY* instructions to wrap keys into handles. Conversely, the AESENC/DEC*KL instructions
use IWKey to unwrap those keys from the handles and help verify the handle integrity. For security reasons, no
instruction is designed to allow software to directly read the IWKey value.

IWKey includes two cryptographic keys as well as metadata. The two cryptographic keys are loaded from register
sources so that LOADIWKEY can be executed without the keys ever being in memory.

The key input operands are:

The 256-bit encryption key is loaded from the two explicit operands.
The 128-bit integrity key is loaded from the implicit operand XMMO.

The implicit operand EAX specifies the KeySource and whether backing up the key is permitted:

EAX[0] - When set, the wrapping key being initialized is not permitted to be backed up to platform-scoped
storage.

EAX[4:1] - This specifies the KeySource, which is the type of key. Currently only two encodings are supported.
A KeySource of 0 indicates that the key input operands described above should be directly stored as the
internal wrapping keys. LOADIWKEY with a KeySource of 1 will have random numbers from the on-chip random
number generator XORed with the source registers (including XMMO) so that the software that executes the
LOADIWKEY does not know the actual IWKey encryption and integrity keys. Software can choose to put
additional random data into the source registers so that other sources of random data are combined with the
hardware random number generator supplied value. Software should always check ZF after executing
LOADIWKEY with KeySource of 1 as this operation may fail due to it being unable to get sufficient full-entropy
data from the on-chip random number generator. Both KeySource of 0 and 1 specify that IWKey be used with
the AES-GCM-SIV algorithm. CPUID.19H.ECX[1] enumerates support for KeySource of 1. All other KeySource
encodings are reserved.

EAX[31:5] - Reserved.

I 1.

LOADIWKEY—Load Internal Wrapping Key with Key Locker Vol.2A 3-589

Further details on Key Locker and usage of this instruction can be found here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

INSTRUCTION SET REFERENCE, A-L

Operation

LOADIWKEY
IFCPL>0 // LOADKWKEY only allowed at ring O (supervisor mode)
THEN #GP (0); FI;
IF EAX[4:1]> 1 /1 Reserved KeySource encoding used
THEN #GP (0); FI;
IF EAX[31:5]!=0 /I Reserved bit in EAX is set
THEN #GP (0); FI;
IF EAX[O] AND (CPUID.19H.ECX[0] == 0) // NoBackup is not supported on this part
THEN #GP (0); FI;
IF (EAX[4:1] == 1) AND (CPUID.1SH.ECX[1] == 0) // KeySource of 1 is not supported on this part
THEN #GP (0); FI;
IF (EAX[4:1]==0) // KeySource of O
THEN
IWKey.Encryption Key[127:0] := SRC2[127:0]:
IWKey.Encryption Key[255:128] := SRC1[127:0];
IWKey.IntegrityKey[127:0] := XMMO[127:0];
IWKey.NoBackup = EAX [0];
IWKey.KeySource = EAX [4:1];

RFLAGS.ZF := 0;
ELSE // KeySource of 1. See RDSEED definition for details of randomness
IF HW_NRND_GEN.ready == // Full-entropy random data from RDSEED hardware block was received
THEN

IWKey.Encryption Key[127:0] := SRC2[127:0] XOR HW_NRND_GEN.data[127:0];
IWKey.Encryption Key[255:128] := SRC1[127:0] XOR HW_NRND_GEN.data[255:128];
IWKey.IntegrityKey[127:0] := XMMO[127:0] XOR HW_NRND_GEN.data[383:256];
IWKey.NoBackup = EAX [0];
IWKey.KeySource = EAX [4:1];
RFLAGS.ZF := 0;
ELSE // Random data was not returned from RDSEED hardware block. IWKey was not loaded
RFLAGS.ZF = 1;
Fl;
Fl;
RFLAGS.OF, SF, AF, PF, CF := 0;

Flags Affected

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to full-entropy random data not
being received from RDSEED. The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.

Intel C/C++ Compiler Intrinsic Equivalent

LOADIWKEY void _mm_loadiwkey(unsigned int ctl, __m128i intkey, __m128i enkey_lo, __m128i enkey_hi);

3-590 Vol.2A LOADIWKEY—Load Internal Wrapping Key with Key Locker

Exceptions (All Operating Modes)

#GP If CPL > 0. (Does not apply in real-address mode.)
If EAX[4:1] > 1.
If EAX[31:5] !'= 0.
If (EAX[0] == 1) AND (CPUID.19H.ECX[0] == 0).

If (EAX[4:1] == 1) AND (CPUID.19H.ECX[1] == 0).

#UD If the LOCK prefix is used.
If CPUID.07H:ECX.KL [bit 23] = 0.
If CR4.KL = 0.
If CRO.EM = 1.
If CR4.0SFXSR = 0.
#NM If CRO.TS = 1.

LOADIWKEY—Load Internal Wrapping Key with Key Locker

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-591

5. Updates to Chapter 4, Volume 2B

Change bars and green text show changes to Chapter 4 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B: Instruction Set Reference, M-U.

Changes to this chapter:
Added the PCONFIG instruction.

Updated the following instructions to correct typos: PINSRW and PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/
PUNPCKLQDQ.

Added additional information to the RDPMC instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

INSTRUCTION SET REFERENCE, M-U

PCONFIG — Platform Configuration

Opcode/ Op/ 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
NP OF 01 C5 A VIV PCONFIG This instruction is used to execute functions for
PCONFIG configuring platform features.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA NA
Description

PCONFIG allows software to configure certain platform features. PCONFIG supports multiple leaf functions, with a
leaf function identified by the value in EAX. The registers RBX, RCX, and RDX may provide input information for
certain leaves. All leaves write status information to EAX but do not modify RBX, RCX, or RDX.

Each PCONFIG leaf function applies to a specific hardware block called a PCONFIG target, and each PCONFIG target
is associated with a numerical target identifier. Supported target identifiers are enumerated, along with other
PCONFIG capabilities, in the sub-leaves of the PCONFIG-information leaf of CPUID (EAX = 1BH). An attempt to
execute an undefined leaf function, or a leaf function that applies to an unsupported target identifier, results in a
general-protection exception (#GP). (In the future, the PCONFIG-information leaf of CPUID may enumerate
PCONFIG capabilities in addition to the supported target identifiers.)

Addresses and operands are 32 bits outside 64-bit mode and are 64 bits in 64-bit mode. The value of CS.D does not
affect operand size or address size.

Table 4-15 shows the leaf encodings for PCONFIG.

Table 4-15. PCONFIG Leaf Encodings

Leaf Encoding Description

MKTME_KEY_PROGRAM 00000000H This leaf is used to program the key and encryption mode associated
with a KeylID.

RESERVED 0000000TH - FFFFFFFFH Reserved for future use (#GP(0) if used).

The MKTME_KEY_PROGRAM leaf of PCONFIG pertains to the MKTME! target, which has target identifier 1. It is used
by software to manage the key associated with a KeyID. The leaf function is invoked by setting the leaf value of 0
in EAX and the address of MKTME_KEY_PROGRAM_STRUCT in RBX. Successful execution of the leaf clears RAX (set
to zero) and ZF, CF, PF, AF, OF, and SF are cleared. In case of failure, the failure reason is indicated in RAX with ZF
set to 1 and CF, PF, AF, OF, and SF are cleared. The MKTME_KEY_PROGRAM leaf uses the
MKTME_KEY_PROGRAM_STRUCT in memory shown in Table 4-16.

1. Further details on MKTME usage can be found here;
I https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

4-276 Vol. 2B PCONFIG — Platform Configuration

INSTRUCTION SET REFERENCE, M-U

Table 4-16. MKTME_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) | Size (bytes) Comments
KEYID 0 2 Key Identifier.
KEYID_CTRL 2 4 KeyID control:

= Bits [7:0]: COMMAND.
= Bits [23:8]: ENC_ALG.
= Bits [31:24]: Reserved, must be zero.

RESERVED 6 58 Reserved, must be zero.
KEY_FIELD_1 64 64 Software supplied KeyID data key or entropy for KeyID data key.
KEY_FIELD_2 128 64 Software supplied KeyID tweak key or entropy for KeylD tweak key.

A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
® KEYID: Key Identifier being programmed to the MKTME engine.

® KEYID_CTRL: The KEYID_CTRL field carries two sub-fields used by software to control the behavior of a
KeyID: Command and KeyID encryption algorithm.

The command used controls the encryption mode for a KeyID. Table 4-17 provides a summary of the
commands supported.

Table 4-17. Supported Key Programming Commands

Command Encoding Description
KEYID_SET_KEY_DIRECT 0 Software uses this mode to directly program a key for use with KeyID.
KEYID_SET_KEY_RANDOM 1 CPU generates and assigns an ephemeral key for use with a KeyID. Each time the

instruction is executed, the CPU generates a new key using a hardware random
number generator and the keys are discarded on reset.

KEYID_CLEAR_KEY 2 Clear the (software programmed) key associated with the KeyID. On execution of this
command, the KeyID gets TME behavior (encrypt with platform TME key or bypass
TME encryption).

KEYID_NO_ENCRYPT 3 Do not encrypt memory when this KeyID is in use.

The encryption algorithm field (ENC_ALG) allows software to select one of the activated encryption algorithms
for the KeyID. The BIOS can activate a set of algorithms to allow for use when programming keys using the

IA32_TME_ACTIVATE MSR (does not apply to KeyID 0 which uses the TME policy when TME encryption is not
bypassed). The processor checks to ensure that the algorithm selected by software is one of the algorithms

that has been activated by the BIOS.

* KEY_FIELD_1: This field carries the software supplied data key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated
random data key. It is software's responsibility to ensure that the key supplied for the direct programming
option or the entropy supplied for the random programming option does not result in weak keys. There are no
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are
treated as reserved and must be zeroed out by software before executing the instruction.

®* KEY_FIELD_2: This field carries the software supplied tweak key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated
random tweak key. It is software's responsibility to ensure that the key supplied for the direct programming
option or the entropy supplied for the random programming option does not result in weak keys. There are no
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are
treated as reserved and must be zeroed out by software before executing the instruction.

All KeyIDs default to TME behavior (encrypt with TME key or bypass encryption) on MKTME activation.
Software can at any point decide to change the key for a KeyID using the PCONFIG instruction. Change of

PCONFIG — Platform Configuration Vol.2B 4-277

INSTRUCTION SET REFERENCE, M-U

keys for a KeyID does NOT change the state of the TLB caches or memory pipeline. It is software's responsi-
bility to take appropriate actions to ensure correct behavior.

Table 4-18 shows the return values associated with the MKTME_KEY_PROGRAM leaf of PCONFIG. On
instruction execution, RAX is populated with the return value.

Table 4-18. Supported Key Error Codes

Return Value Encoding Description

PROG_SUCCESS 0 KeyID was successfully programmed.
INVALID_PROG_CMD 1 Invalid KeyID programming command.
ENTROPY_ERROR 2 Insufficient entropy.

INVALID_KEYID 3 KeyID not valid.

INVALID_ENC_ALG 4 Invalid encryption algorithm chosen (not supported).
DEVICE_BUSY 5 Failure to access key table.

PCONFIG Virtualization

Software in VMX root operation can control the execution of PCONFIG in VMX non-root operation using the
following VM-execution controls introduced for PCONFIG:

® PCONFIG_ENABLE: This control is a single bit control and enables the PCONFIG instruction in VMX non-root
operation. If 0, the execution of PCONFIG in VMX non-root operation causes #UD. Otherwise, execution of
PCONFIG works according to PCONFIG_EXITING.

® PCONFIG_EXITING: This is a 64b control and allows VMX root operation to cause a VM-exit for various leaf
functions of PCONFIG. This control does not have any effect if the PCONFIG_ENABLE control is clear. It is
recommended that VMMs intercept execution of any PCONFIG leaves with which they are not familiar and
convert such executions into #GP(0).

PCONFIG Concurrency

In a scenario where the MKTME_KEY_PROGRAM leaf of PCONFIG is executed concurrently on multiple logical
processors, only one logical processor will succeed in updating the key table. PCONFIG execution will return with an
error code (DEVICE_BUSY) on other logical processors and software must retry. In cases where the instruction
execution fails with a DEVICE_BUSY error code, the key table is not updated, thereby ensuring that either the key
table is updated in its entirety with the information for a KeyID, or it is not updated at all. In order to accomplish
this, the MKTME_KEY_PROGRAM leaf of PCONFIG maintains a writer lock for updating the key table. This lock is
referred to as the Key table lock and denoted in the instruction flows as KEY_TABLE_LOCK. The lock can either be
unlocked, when no logical processor is holding the lock (also the initial state of the lock) or be in an exclusive state
where a logical processor is trying to update the key table. There can be only one logical processor holding the lock
in exclusive state. The lock, being exclusive, can only be acquired when the lock is in unlocked state.

PCONFIG uses the following syntax to acquire KEY_TABLE_LOCK in exclusive mode and release the lock:
® KEY_TABLE_LOCK.ACQUIRE(WRITE)
® KEY_TABLE_LOCK.RELEASE()

Operation
Table 4-19. PCONFIG Operation Variables
Variable Name Type Size Description
(Bytes)
TMP_KEY_PROGRAM_STRUCT | MKTME_KEY_PROGRAM_STRUCT | 192 Structure holding the key programming structure.
TMP_RND_DATA_KEY UINT128 16 Random data key generated for random key
programming option.
TMP_RND_TWEAK_KEY UINT128 16 Random tweak key generated for random key
programming option.

4-278 Vol. 2B PCONFIG — Platform Configuration

(* #UD if PCONFIG is not enumerated or CPL>0 *)
IF (CPUID.7.0:EDX[18] == 0 OR CPL > 0) #UD;

IF (in VMX non-root mode)
{
IF (VMCS.PCONFIG_ENABLE == 1)
{
IF (EAX > 62 AND VMCS.PCONFIG_EXITING[63] ==1) OR
(EAX < 63 AND VMCS.PCONFIG_EXITING[EAX] == 1))
{
Set VMCS.EXIT_REASON = PCONFIG; //No Exit qualification
Deliver VMEXIT;

ELSE

#UD

}

(* #GP(0) for an unsupported leaf *)
IF (EAX |= 0) #GP(0)

(* KEY_PROGRAM leaf flow *)
IF (EAX == 0)
{

INSTRUCTION SET REFERENCE, M-U

(* #GP(0) if TME_ACTIVATE MSR is not locked or does not enable hardware encryption or multiple keys are not enabled *)
IF IA32_TME_ACTIVATE.LOCK != 1 OR IA32_TME_ACTIVATE.ENABLE != 1 OR IA32_TME_ACTIVATE.MK_TME_KEYID_BITS == 0)

#GP(0)

(* Check MKTME_KEY_PROGRAM_STRUCT is 256B aligned *)
IF (DS:RBX is not 2568 aligned) #GP(0);

(* Check that MKTME_KEY_PROGRAM_STRUCT is read accessible *)
<<DS: RBX should be read accessible>>

(* Copy MKTME_KEY_PROGRAM_STRUCT to a temporary variable *)
TMP_KEY_PROGRAM_STRUCT = DS:RBX.*;

(* RSVD field check *)
IF (TMP_KEY_PROGRAM_STRUCT.RSVD = 0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCT.KEYID_CTRLRSVD !=0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCTKEY_FIELD_1.BYTES[63:16] = 0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCTKEY_FIELD_2.BYTES[63:16] = 0) #GP(0);

(* Check for a valid command *)

IF (TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND is not a valid command)

{
RFLAGS.ZF = 1;

RAX = INVALID_PROG_CMD;
goto EXIT;

PCONFIG — Platform Configuration

Vol.2B 4-279

INSTRUCTION SET REFERENCE, M-U

}
(* Check that the KEYID being operated upon is a valid KEYID *)
IF (TMP_KEY_PROGRAM_STRUCT.KEYID >
2"1A32_TME_ACTIVATEMK_TME_KEYID_BITS - 1
OR TMP_KEY_PROGRAM_STRUCT.KEYID >
IA32_TME_CAPABILITY.MK_TME_MAX_KEYS
OR TMP_KEY_PROGRAM_STRUCT.KEYID == 0)

{
RFLAGS.ZF = 1;
RAX = INVALID_KEYID;
goto EXIT;

}

(* Check that only one algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF (NUM_BITS(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG) = 1 ||
(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG &
IA32_TME_ACTIVATE. MK_TME_CRYPTO_ALGS == 0))

{
RFLAGS.ZF = 1;
RAX = INVALID_ENC_ALG;
goto EXIT;

}

(* Try to acquire exclusive lock *)
IF (NOT KEY_TABLE_LOCK.ACQUIRE(WRITE))

{
//PCONFIG failure
RFLAGS.ZF = 1;
RAX = DEVICE_BUSY;
goto EXIT;

}

(* Lock is acquired and key table will be updated as per the command
Before this point no changes to the key table are made *)

switch(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND)
{
case KEYID_SET_KEY_DIRECT:
<<Write
DATA_KEY=TMP_KEY_PROGRAM_STRUCT KEY_FIELD_T,
TWEAK_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,

to MKTME Key table at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>

break;

case KEYID_SET_KEY_RANDOM:
TMP_RND_DATA_KEY = <<Generate a random key using hardware RNG>>

IF (NOT ENOUGH ENTROPY)

{
RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;

}

TMP_RND_TWEAK_KEY = <<Generate a random key using hardware RNG>>

4-280 Vol.2B PCONFIG — Platform Configuration

IF (NOT ENOUGH ENTROPY)
{
RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;
}
(* Mix user supplied entropy to the data key and tweak key *)
TMP_RND_DATA_KEY = TMP_RND_KEY XOR
TMP_KEY_PROGRAM_STRUCT KEY_FIELD_1.BYTES[15:0];
TMP_RND_TWEAK_KEY = TMP_RND_TWEAK_KEY XOR
TMP_KEY_PROGRAM_STRUCT KEY_FIELD_2.BYTES[15:0];

<<Write
DATA_KEY=TMP_RND_DATA_KEY,
TWEAK_KEY=TMP_RND_TWEAK_KEY,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT KEYID
>>
break;

case KEYID_CLEAR_KEY:
<<Write
DATA_KEY="0,
TWEAK_KEY="0,
ENCRYPTION_MODE = ENCRYPT_WITH_TME_KEY_OR_BYPASS,

to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>

break;
case KD_NO_ENCRYPT:
<<Write
ENCRYPTION_MODE=NO_ENCRYPTION,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>
break;

}

RAX =0;
RFLAGS.ZF = 0;

//Release Lock
KEY_TABLE_LOCK(RELEASE);

EXIT:

RFLAGS.CF=0;
RFLAGS.PF=0;
RFLAGS.AF=0;
RFLAGS.OF=0;
RFLAGS.SF=0;

}

end_of_flow

PCONFIG — Platform Configuration

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-281

INSTRUCTION SET REFERENCE, M-U

Protected Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and MKTME capability are not enabled in IA32_TME_ACTIVATE MSR.
If the memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand effective address is outside the DS segment limit.
#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.7.0:EDX[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Real-Address Mode Exceptions
#GP If input value in EAX encodes an unsupported leaf.
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and MKTME capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Virtual-8086 Mode Exceptions
#UD PCONFIG instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and MKTME capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand is non-canonical form.
#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.
If the current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0.
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

4-282 Vol.2B PCONFIG — Platform Configuration

PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-U

Opcode/ Op/ En | 64/32 bit | CPUID Description
Instruction Mode Feature
Support | Flag
NP OF C4 /rib’ A VIV SSE Insert the low word from r32 or fromm16
PINSRW mm, r32/m16, imm8 into mm at the word position specified by
imm8.
66 0FC4/rib A VIV SSE2 Move the low word of r32 or from m16 into
PINSRW xmm, r32/m16, imm8 xmm at the word position specified by imm8.
VEX.128.66.0FWO0 C4 /rib B Ve AVX Insert the word from r32/m16 at the offset
VPINSRW xmm1, xmm2, r32/m16, imm8 indicated by imm8 into the value from xmm2
and store result in xmm1.
EVEX.128.66.0F.WIG C4 /rib C VIV AVX512BW | Insert the word from r32/m16 at the offset
VPINSRW xmm1, xmmZ2, r32/m16, imm8 indicated by imm8 into the value from xmmZ2
and store result in xmm1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (w) ModRM:r/m (r) imm8 NA
B NA ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8
C Tuple1 Scalar ModRM:reg (w) EVEX.vvwv (r) ModRM:r/m (r) Imm8
Description

Three operand MMX and SSE instructions:

Copies a word from the source operand and inserts it in the destination operand at the location specified with the
count operand. (The other words in the destination register are left untouched.) The source operand can be a
general-purpose register or a 16-bit memory location. (When the source operand is a general-purpose register, the
low word of the register is copied.) The destination operand can be an MMX technology register or an XMM register.
The count operand is an 8-bit immediate. When specifying a word location in an MMX technology register, the 2
least-significant bits of the count operand specify the location; for an XMM register, the 3 least-significant bits
specify the location.

Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.
Four operand AVX and AVX-512 instructions:

Combines a word from the first source operand with the second source operand, and inserts it in the destination
operand at the location specified with the count operand. The second source operand can be a general-purpose
register or a 16-bit memory location. (When the source operand is a general-purpose register, the low word of the
register is copied.) The first source and destination operands are XMM registers. The count operand is an 8-bit
immediate. When specifying a word location, the 3 least-significant bits specify the location.

Bits (MAXVL-1:128) of the destination YMM register are zeroed. VEX.L/EVEX.L'L must be 0, otherwise the instruc-
tion will #UD.

PINSRW—Insert Word Vol. 2B 4-309

INSTRUCTION SET REFERENCE, M-U

Operation

PINSRW dest, src, imm8 (MMX)
SEL :=imm8[1:0]
DEST.word[SEL] := src.word[0]

PINSRW dest, src, imm8 (SSE)
SEL := imm8[2:0]
DEST.word[SEL] := src.word[0]

VPINSRW dest, src1, src2, imm8 (AVX/AVX512)
SEL := imm8[2:0]
DEST :=src1
DEST.word[SEL] := src2.word[0]
DEST[MAXVL-1:128]:=0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW: __m64 _mm_insert_pi16 (__m64 a3, int d, int n)
PINSRW: __m128i _mm_insert_epi16 (_m128i a, int b, int imm)
Flags Affected

None.

Numeric Exceptions
None.

Other Exceptions

EVEX-encoded instruction, see Exceptions Type 5;
EVEX-encoded instruction, see Exceptions Type EONF.
#UD If VEX.L = 1 or EVEX.LL > 0.

4-310 Vol.2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, M-U

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

Opcode/ Op/ |64/32 bit |CPUID Description
Instruction En |Mode Feature
Support | Flag
NP OF 60 /" A VIV MMX Interleave low-order bytes from mm and
PUNPCKLBW mm, mm/m32 mm/m32 into mm.
66 OF 60 /r A VIV SSE2 Interleave low-order bytes from xmm71 and
PUNPCKLBW xmm1, xmm2/m128 xmmgz/m128into xmm1.
NP OF 61 /r' A VIV MMX Interleave low-order words from mm and
PUNPCKLWD mm, mm/m32 mm/m32 into mm.
66 OF 61 /r A VIV SSE2 Interleave low-order words from xmm71 and
PUNPCKLWD xmm1, xmm2/m128 xmmez/m128into xmm1.
NP OF 62 /1" A VIV MMX Interleave low-order doublewords from mm
PUNPCKLDQ mm, mm/m32 and mm/m32 into mm.
66 OF 62 /r A VIV SSE2 Interleave low-order doublewords from xmm1
PUNPCKLDQ xmm1, xmm2/m128 and xmme/m128into xmm1.
66 OF6C/r A VIV SSE2 Interleave low-order quadword from xmm1
PUNPCKLQDQ xmm1, xmm2/m128 and xmmZ2/m128into xmm1 register.
VEX.128.66.0F.WIG 60/r B VIV AVX Interleave low-order bytes from xmmZ2 and
VPUNPCKLBW xmm1,xmm2, xmm3/m128 xmm3/m128into xmm1.
VEX.128.66.0F.WIG 61/r B VIV AVX Interleave low-order words from xmmZ and
VPUNPCKLWD xmm1,xmm2, xmm3/m128 xmm3/m128 into xmm?.
VEX.128.66.0F.WIG 62/r B VIV AVX Interleave low-order doublewords from xmmZ2
VPUNPCKLDQ xmm1, xmm2, xmm3/m128 and xmm3/m128into xmm1.
VEX.128.66.0FWIG 6C/r B VIV AVX Interleave low-order quadword from xmmZ2
VPUNPCKLQDQ xmm1, xmm2, xmm3/m128 and xmm3/m128into xmm1 register.
VEX.256.66.0F.WIG 60 /r B VIV AVX2 Interleave low-order bytes from ymmZ and
VPUNPCKLBW ymm1, ymm2, ymm3/m256 ymm3/me56 into ymm1 register.
VEX.256.66.0F.WIG 61 /r B VIV AVX2 Interleave low-order words from ymmZ2 and
VPUNPCKLWD ymm1, ymm2, ymm3/m256 ymm3/me56 into ymm1 register.
VEX.256.66.0F.WIG 62 /r B VIV AVX2 Interleave low-order doublewords from ymmZ2
VPUNPCKLDQ ymm1, ymm2, ymm3/m256 and ymm3/mZ256 into ymm1 register.
VEX.256.66.0FWIG 6C /r B VIV AVX2 Interleave low-order quadword from ymmZ2
VPUNPCKLQDQ ymm1, ymm2, ymm3/m256 and ymm3/m256 into ymm1 register.
EVEX.128.66.0FWIG 60 /r C VIV AVX512VL | Interleave low-order bytes from xmmZ2 and
VPUNPCKLBW xmm1 {k1¥z}, xmm2, xmm3/m128 AVX512BW | xmm3/m128 into xmm1 register subject to
write mask k1.
EVEX.128.66.0FWIG 61 /r C VIV AVX512VL |Interleave low-order words from xmmZ2 and
VPUNPCKLWD xmm1 {k1¥z}, xmm2, xmm3/m128 AVX512BW | xmm3/m128 into xmm1 register subject to
write mask k1.
EVEX.128.66.0FWO0 62 /r D VIV AVX512VL |Interleave low-order doublewords from xmm2
VPUNPCKLDQ xmm1 {k1¥z}, xmm2, AVX512F | and xmm3/m128/m32bcst into xmm1
xmm3/m128/m32bcst register subject to write mask k1.
EVEX.128.66.0FW1 6C /r D VIV AVX512VL | Interleave low-order quadword from zmm?2
VPUNPCKLQDQ xmm1 {k1}{z}, xmm2, AVX512F |and zmm3/m512/m64bcst into zmm1
xmm3/m128/m64bcst register subject to write mask k1.
4-510 Vol.2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, M-U

EVEX.256.66.0F.WIG 60 /r VIV AVX512VL |Interleave low-order bytes from ymmZ2 and
VPUNPCKLBW ymm1 {k1}{z}, ymmZ2, ymm3/m256 AVX512BW | ymm3/m256 into ymm1 register subject to
write mask k1.
EVEX.256.66.0F.WIG 61 /r VIV AVX512VL |Interleave low-order words from ymmZ2 and
VPUNPCKLWD ymm1 {k1¥z}, ynm2, ymm3/m256 AVX512BW | ymm3/m256 into ymm1 register subject to
write mask k1.
EVEX.256.66.0FWO0 62 /r VIV AVX512VL | Interleave low-order doublewords from ymm2
VPUNPCKLDQ ymm1 {k1}z}, ymm2, AVX512F |and ymm3/m256/m32bcst into ymm1
ymm3/m256/m32bcst register subject to write mask k1.
EVEX.256.66.0FW1 6C/r VIV AVX512VL | Interleave low-order quadword from ymm2
VPUNPCKLQDQ ymm1 {k1¥z}, ymm2, AVX512F |and ymm3/m256/m64bcst into ymm1
ymm3/m256/m64bcst register subject to write mask k1.
EVEX.512.66.0F.WIG 60/r VIV AVX512BW | Interleave low-order bytes from zmm?2 and
VPUNPCKLBW zmm1 {k1¥z}, zmm2, zmm3/m512 zmm3/m512 into zmm1 register subject to
write mask k1.
EVEX.512.66.0FWIG 61/r VIV AVX512BW | Interleave low-order words from zmmZ2 and
VPUNPCKLWD zmm1 {k1¥z}, zmm2, zmm3/m512 zmm3/m512 into zmm1 register subject to
write mask k1.
EVEX.512.66.0F.WO0 62 /r VIV AVX512F | Interleave low-order doublewords from zmm2
VPUNPCKLDQ zmm1 {k1¥z}, zmm2, and zmm3/m512/m32bcst into zmm1
zmm3/m512/m32bcst register subject to write mask k1.
EVEX.512.66.0FW1 6C/r VIV AVX512F |Interleave low-order quadword from zmm2

VPUNPCKLQDQ zmm1 {k1¥z}, zmm2,
zmm3/m512/m64bcst

and zmm3/m512/m64bcst into zmm1
register subject to write mask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer's Manual, \/olume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, olume 3A.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA
B NA ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
C Full Mem ModRM:reg (w) EVEX.vvwv (r) ModRM:r/m (r) NA
D Full ModRM:reg (w) EVEX.vvwv (1) ModRM:r/m (r) NA
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quadwords) of the destina-
tion operand (first operand) and source operand (second operand) into the destination operand. (Figure 4-22
shows the unpack operation for bytes in 64-bit operands.). The high-order data elements are ignored.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

Vol.2B 4-511

INSTRUCTION SET REFERENCE, M-U

SRC|Y7|Y6|Y5|Y4|Y 0 |DEST

3(Y2|Y1]|YO0 X7 | X6 | X5 X4 | X3 |X2|X1]|X
Y3 |X3[Y2|X2|Y1|X1[Y0 |X0

DEST

Figure 4-22. PUNPCKLBW Instruction Operation Using 64-bit Operands

255 31 0 255 31 0
SRC| Y7 |Y6 | Y5|Y4|Y3|Y2|Y1|YO X7 | X6 | X5| X4 | X3 |X2 | X1]|X0
55 0

DEST| Y5 | X5|Y4 | X4|Y1|X1|Y0 | X0

Figure 4-23. 256-bit VPUNPCKLDQ Instruction Operation

When the source data comes from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking will still be enforced.

The (V)PUNPCKLBW instruction interleaves the low-order bytes of the source and destination operands, the
(V)PUNPCKLWD instruction interleaves the low-order words of the source and destination operands, the
(V)PUNPCKLDQ instruction interleaves the low-order doubleword (or doublewords) of the source and destination
operands, and the (V)PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and destination
operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords to quadwords, and
quadwords to double quadwords, respectively, by placing all Os in the source operand. Here, if the source operand
contains all Os, the result (stored in the destination operand) contains zero extensions of the high-order data
elements from the original value in the destination operand. For example, with the (V)PUNPCKLBW instruction the
high-order bytes are zero extended (that is, unpacked into unsigned word integers), and with the (V)PUNPCKLWD
instruction, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE versions 64-bit operand: The source operand can be an MMX technology register or a 32-bit memory
location. The destination operand is an MMX technology register.

128-bit Legacy SSE versions: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti-
nation register remain unchanged.

VEX.128 encoded versions: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register
are zeroed.

VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding ZMM
register are zeroed.

4-512 Vol.2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, M-U

EVEX encoded VPUNPCKLDQ/QDQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source
operand and destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with
writemask k1.

EVEX encoded VPUNPCKLWD/BW: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination
is conditionally updated with writemask k1.

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] := SRC[31:24];
DEST[55:48] := DEST[31:24];
DEST[47:40] := SRC[23:16];
DEST[39:32] := DEST[23:16];
DEST[31:24] := SRC[15:8];
DEST[23:16] := DEST[15:8];
DEST[15:8] := SRC[7:0];
DEST[7:0] := DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] := SRC[31:16];
DEST[47:32] := DEST[31:16];
DEST[31:16] := SRC[15:0];
DEST[15:0] := DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] := SRC[31:0];
DEST[31:0] := DEST[31:0];
INTERLEAVE_BYTES_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_BYTES_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_BYTES_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_BYTES_256b (SRC1, SRC2)
DEST[7:0] := SRC1[7:0]
DEST[15:8] := SRC2[7:0]
DEST[23:16] := SRC1[15:8]
DEST[31:24] := SRC2[15:8]
DEST[39:32] := SRC1[23:16]
DEST[47:40] := SRC2[23:16]
DEST[55:48] := SRC1[31:24]
DEST[63:56] := SRC2[31:24]
DEST[71:64] := SRC1[39:32]
DEST[79:72] := SRC2[39:32]
DEST[87:80] := SRC1[47:40]
DEST[95:88] := SRC2[47:40]
DEST[103:96] := SRC1[55:48]
DEST[111:104] := SRC2[55:48]
DEST[119:112] := SRC1[63:56]
DEST[127:120] := SRC2[63:56]
DEST[135:128] := SRC1[135:128]
DEST[143:136] := SRC2[135:128]
DEST[151:144] := SRC1[143:136]
DEST[159:152] := SRC2[143:136]
DEST[167:160] := SRC1[151:144]

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data Vol.2B 4-513

INSTRUCTION SET REFERENCE, M-U

DEST[175:168] := SRC2[151:144]
DEST[183:176] := SRC1[159:152]
DEST[191:184] := SRC2[159:152]
DEST[199:192] := SRC1[167:160]
DEST[207:200] := SRC2[167:160]
DEST[215:208] := SRC1[175:168]
DEST[223:216] := SRC2[175:168]
DEST[231:224] := SRC1[183:176]
DEST[239:232] := SRC2[183:176]
DEST[247:240] := SRC1[191:184]
DEST[255:248] := SRC2[191:184]

INTERLEAVE_BYTES (SRC1, SRC2)
DEST[7:0] := SRC1[7:0]
DEST[15:8] := SRC2[7:0]
DEST[23:16] := SRC1[15:8]
DEST[31:24] := SRC2[15:8]
DEST[39:32] := SRC1[23:16]
DEST[47:40] := SRC2[23:16]
DEST[55:48] := SRC1[31:24]
DEST[63:56] := SRC2[31:24]
DEST[71:64] := SRC1[39:32]
DEST[79:72] := SRC2[39:32]
DEST[87:80] := SRC1[47:40]
DEST[95:88] := SRC2[47:40]
DEST[103:96] := SRC1[55:48]
DEST[111:104] := SRC2[55:48]
DEST[119:112] := SRC1[63:56]
DEST[127:120] := SRC2[63:56]

INTERLEAVE_WORDS_512b (SRC1, SRC2)

TMP_DEST[255:0] := INTERLEAVE_WORDS_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] := INTERLEAVE_WORDS_256b(SRC1[511:256], SRC[511:256])

INTERLEAVE_WORDS_256b(SRCT, SRC2)

DEST[15:0] := SRC1[15:0]
DEST[31:16] := SRC2[15:0]
DEST[47:32] := SRC1[31:16]
DEST[63:48] := SRC2[31:16]
DEST[79:64] := SRC1[47:32]
DEST[95:80] := SRC2[47:32]
DEST[111:96] := SRC1[63:48]
DEST[127:112] := SRC2[63:48]
DEST[143:128] := SRC1[143:128]
DEST[159:144] := SRC2[143:128]
DEST[175:160] := SRC1[159:144]
DEST[191:176] := SRC2[159:144]
DEST[207:192] := SRC1[175:160]
DEST[223:208] := SRC2[175:160]
DEST[239:224] := SRC1[191:176]
DEST[255:240] := SRC2[191:176]

INTERLEAVE_WORDS (SRCT, SRC2)
DEST[15:0] := SRC1[15:0]

4-514 Vol.2B

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

DEST[31:16] := SRC2[15:0]
DEST[47:32] := SRC1[31:16]
DEST[63:48] := SRC2[31:16]
DEST[79:64] := SRC1[47:32]
DEST[95:80] := SRC2[47:32]
DEST[111:96] := SRC1[63:48]
DEST[127:112] := SRC2[63:48]

INTERLEAVE_DWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] := INTERLEAVE_DWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_DWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[31:0] := SRC1[31:0]

DEST[63:32] := SRC2[31:0]

DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[159:128] := SRC1[159:128]
DEST[191:160] := SRC2[159:128]
DEST[223:192] := SRC1[191:160]
DEST[255:224] := SRC2[191:160]

INTERLEAVE_DWORDS(SRC1, SRC2)

DEST[31:0] := SRC1[31:0]

DEST[63:32] := SRC2[31:0]

DEST[95:64] := SRC1[63:32]

DEST[127:96] := SRC2[63:32]

INTERLEAVE_QWORDS_512b (SRC1, SRC2)

TMP_DEST[255:0] := INTERLEAVE_QWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] := INTERLEAVE_QWORDS_256b(SRC1[511:256], SRC2[511:256])

INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[63:0] := SRC1[63:0]

DEST[127:64] := SRC2[63:0]
DEST[191:128] := SRC1[191:128]
DEST[255:192] := SRC2[191:128]

INTERLEAVE_QWORDS(SRCT, SRC2)
DEST[63:0] := SRC1[63:0]
DEST[127:64] := SRC2[63:0]

PUNPCKLBW
DEST[127:0] := INTERLEAVE_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLBW (VEX.128 encoded instruction)
DEST[127:0]:= INTERLEAVE_BYTES(SRCT, SRC2)
DEST[MAXVL-1:127]:=0

VPUNPCKLBW (VEX.256 encoded instruction)

DEST[255:0] := INTERLEAVE_BYTES_256b(SRCT, SRC2)
DEST[MAXVL-1:256]:= 0

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, M-U

Vol.2B 4-515

INSTRUCTION SET REFERENCE, M-U

VPUNPCKLBW (EVEX.512 encoded instruction)
(KL, VL) = (16, 128), (32, 256), (64, 512)

IFVL=128

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;
IFVL=256

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES_256b(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;
IFVL=512

TMP_DEST[VL-1:0] := INTERLEAVE_BYTES_512b(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;

FORj:= 0 TOKL-1

i=j*8
IF k1[j] OR *no writemask*
THEN DESTIi+7:i] := TMP_DESTI[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DESTI[i+7:i1:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL]:=0
DEST[511:0] := INTERLEAVE_BYTES_512b(SRCT, SRC2)

PUNPCKLWD
DEST[127:0] := INTERLEAVE_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLWD (VEX.128 encoded instruction)
DEST[127:0] := INTERLEAVE_WORDS(SRCT, SRC2)
DEST[MAXVL-1:127]:=0

VPUNPCKLWD (VEX.256 encoded instruction)
DEST[255:0] := INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256]:=0

VPUNPCKLWD (EVEX.512 encoded instruction)
(KL, VL) = (8, 128), (16, 256), (32, 512)

IFVL=128

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;
IFVL=256

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS_256b(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;
IFVL=512

TMP_DEST[VL-1:0] := INTERLEAVE_WORDS_512b(SRC1[VL-1:0], SRC2[VL-1:0])
Fl;

FORj:=0 TO KL-1
i=j*16
IF k1[j] OR *no writemask*

4-516 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

THEN DESTIi+15:i] := TMP_DEST[i+15:i]

ELSE

IF *merging-masking* , merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL]:=0
DEST[511:0] := INTERLEAVE_WORDS_512b(SRC1, SRC2)

PUNPCKLDQ
DEST[127:0] := INTERLEAVE_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

VPUNPCKLDQ (VEX.128 encoded instruction)
DEST[127:0] := INTERLEAVE_DWORDS(SRCT, SRC2)
DEST[MAXVL-1:128]:=0

VPUNPCKLDQ (VEX.256 encoded instruction)
DEST[255:0] := INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256]:= 0

VPUNPCKLDQ (EVEX encoded instructions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0TOKL-1
i=j*32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRCZ[i+31:i] := SRC2[31:0]
ELSE TMP_SRCZ[i+31:i] := SRC2[i+31:i]
Fl;
ENDFOR;
IFVL=128

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS(SRC1[VL-1:0], TMP_SRCZ[VL-1:0])

Fl;
IF VL =256

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS_256b(SRC1[VL-1:0], TMP_SRCZ2[VL-1:0])

Fl;
IFVL=512

TMP_DEST[VL-1:0] := INTERLEAVE_DWORDS_512b(SRC1[VL-1:0], TMP_SRCZ2[VL-1:0])

Fl;

FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask*
THEN DESTI[i+31:i]:= TMP_DEST[i+31:i]

ELSE
IF *merging-masking* , merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i1:=0
Fl

Fl;

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, M-U

Vol.2B 4-517

INSTRUCTION SET REFERENCE, M-U

ENDFOR
DEST511:0] := INTERLEAVE_DWORDS_512b(SRC1, SRC2)
DEST[MAXVL-1:VL]:=0

PUNPCKLQDQ
DEST[127:0] := INTERLEAVE_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

VPUNPCKLQDQ (VEX.128 encoded instruction)
DEST[127:0] := INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128]:=0

VPUNPCKLQDQ (VEX.256 encoded instruction)
DEST[255:0] := INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256]:=0

VPUNPCKLQDQ (EVEX encoded instructions)
(KL, VL) = (2, 128), (4, 256), (8,512)
FORj:=0 TOKL-1
i=j*64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRCZ[i+63:i] := SRC2[63:0]
ELSE TMP_SRCZ[i+63:i] := SRC2[i+63:i]
Fl;
ENDFOR;
IFVL=128
TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS(SRC1[VL-1:0], TMP_SRCZ2[VL-1:0])
Fl;
IF VL =256
TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS_256b(SRCT[VL-1:0], TMP_SRCZ2[VL-1:0])
Fl;
IFVL=512
TMP_DEST[VL-1:0] := INTERLEAVE_QWORDS_512b(SRCT[VL-1:0], TMP_SRCZ2[VL-1:0])
Fl;

FORj:= 0 TO KL-1

i=j*64
IF k1[j] OR *no writemask*
THEN DESTI[i+63:i] := TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL] =0

Intel C/C++ Compiler Intrinsic Equivalents

VPUNPCKLBW __m512i _mm512_unpacklo_epi8(__m512ia, __m512ib);
VPUNPCKLBW __m512i _mm512_mask_unpacklo_epi8(_m512is, __mmask64 k,
VPUNPCKLBW __m512i _mm512_maskz_unpacklo_epi8(_mmask64 k, __ m512ia,
VPUNPCKLBW __m256i _mm256_mask_unpacklo_epi8(_m256is, __mmask32 k,

m512ia, __m512ib);
m512i b);
m256i a, __m256i b);

4-518 Vol.2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, M-U

VPUNPCKLBW _m256i _mm256_maskz_unpacklo_epi8(_mmask32 k, __m256i a, __m256i b);
VPUNPCKLBW _m128i _mm_mask_unpacklo_epi8(vs, __mmask16 k, __m128ia, __m128ib);
VPUNPCKLBW _m128i _mm_maskz_unpacklo_epi8(_mmask16 k, __m128ia, __m128ib);

VPUNPCKLWD __m512i _mm512_unpacklo_epi16(_m512ia, __m512ib);

VPUNPCKLWD _m512i _mm512_mask_unpacklo_epi16(__m512is, __mmask32 k, __m512ia, __m512ib);
VPUNPCKLWD _m512i _mm512_maskz_unpacklo_epi16(_mmask32 k, __m512ia, __m512ib);
VPUNPCKLWD _m256i _mm256_mask_unpacklo_epi16(__m256is, __mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD _m256i _mm256_maskz_unpacklo_epi16(_mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD _m128i _mm_mask_unpacklo_epi16(vs, __mmask8 k, __m128ia, __m128ib);
VPUNPCKLWD _m128i _mm_maskz_unpacklo_epi16(_mmask8 k, __m128ia, __m128ib);

VPUNPCKLDQ __m512i _mm512_unpacklo_epi32(_m512ia, __m512ib);

VPUNPCKLDQ __m512i _mm512_mask_unpacklo_epi32(__m512is, __mmask16 k, __m512ia, __m512ib);
VPUNPCKLDQ __m512i _mm512_maskz_unpacklo_epi32(_mmask16 k, __m512ia, __m512ib);
VPUNPCKLDQ __m256i _mm256_mask_unpacklo_epi32(__m256is, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ __m256i _mm256_maskz_unpacklo_epi32(__mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ _m128i _mm_mask_unpacklo_epi32(v s, __mmask8k, __m128ia,__m128ib);
VPUNPCKLDQ _m128i _mm_maskz_unpacklo_epi32(_mmask8 k, __m128ia, __m128ib);
VPUNPCKLQDQ __m512i _mm512_unpacklo_epi64(__m512ia, __m512ib);

VPUNPCKLQDQ __m512i _mm512_mask_unpacklo_epi64(__m512is, __mmask8k, __m512ia, __m512ib);
VPUNPCKLQDQ __m512i _mm512_maskz_unpacklo_epi64(_mmask8 k, __m512ia, __m512ib);
VPUNPCKLQDQ __m256i _mm256_mask_unpacklo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m256i _mm256_maskz_unpacklo_epi64(_mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m128i _mm_mask_unpacklo_epi64(__m128is, __mmask8k, __m128ia,__m128ib);
VPUNPCKLQDQ __m128i _mm_maskz_unpacklo_epi64(_mmask8 k, __m128ia, __m128ib);
PUNPCKLBW:_m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

(V)PUNPCKLBW:__m128i _mm_unpacklo_epi8 (_m128im1, __m128i m2)

VPUNPCKLBW:_m256i _mm256_unpacklo_epi8 (__m256i m1, __m256i m2)

PUNPCKLWD:_m64 _mm_unpacklo_pi16 (__m64 m1, _m64 m2)

(V)PUNPCKLWD:_m128i _mm_unpacklo_epi16 (__m128i m1, _m128i m2)

VPUNPCKLWD:_m256i _mm256_unpacklo_epi16 (__m256im1, __m256i m2)

PUNPCKLDQ:_m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

(V)PUNPCKLDQ:_m128i _mm_unpacklo_epi32 (__m128im1, __m128i m2)

VPUNPCKLDQ:__m256i _mm256_unpacklo_epi32 (__m256i m1, __m256i m2)

(V)PUNPCKLQDQ:_m128i _mm_unpacklo_epi64 (__m128i m1, _m128i m2)

VPUNPCKLQDQ:__m256i _mm256_unpacklo_epi64 (__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPUNPCKLDQ/QDQ, see Exceptions Type E4NF.
EVEX-encoded VPUNPCKLBW/WD, see Exceptions Type E4NF.nb.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data Vol.2B 4-519

INSTRUCTION SET REFERENCE, M-U

RDPMC—Read Performance-Monitoring Counters

Opcode* Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
OF 33 RDPMC Z0 |Valid Valid Read performance-monitoring counter
specified by ECX into EDX:EAX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 NA NA NA NA
Description

Reads the contents of the performance monitoring counter (PMC) specified in ECX register into registers EDX:EAX.
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register
is loaded with the high-order 32 bits of the PMC and the EAX register is loaded with the low-order 32 bits. (On
processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If
fewer than 64 bits are implemented in the PMC being read, unimplemented bits returned to EDX:EAX will have
value zero.

The width of PMCs on processors supporting architectural performance monitoring (CPUID.0AH:EAX[7:0] # 0) are
reported by CPUID.OAH:EAX[23:16]. On processors that do not support architectural performance monitoring
(CPUID.OAH:EAX[7:0]=0), the width of general-purpose performance PMCs is 40 bits, while the widths of special-
purpose PMCs are implementation specific.

Use of ECX to specify a PMC depends on whether the processor supports architectural performance monitoring:

® If the processor does not support architectural performance monitoring (CPUID.0AH:EAX[7:0]=0), ECX[30:0]
specifies the index of the PMC to be read. Setting ECX[31] selects “fast” read mode if supported. In this mode,
RDPMC returns bits 31:0 of the PMC in EAX while clearing EDX to zero.

® If the processor does support architectural performance monitoring (CPUID.0AH:EAX[7:0] #0), ECX[31:16]
specifies type of PMC while ECX[15:0] specifies the index of the PMC to be read within that type. The following
PMC types are currently defined:

— General-purpose counters use type 0. The index x (to read IA32_PMCx) must be less than the value
enumerated by CPUID.OAH.EAX[15:8] (thus ECX[15:8] must be zero).

— Fixed-function counters use type 4000H. The index x (to read IA32_FIXED_CTRXx) can be used if either
CPUID.0AH.EDX[4:0] > x or CPUID.0AH.ECX[x] = 1 (thus ECX[15:5] must be 0).

— Performance metrics use type 8000H. This type can be used only if
IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[bit 15]=1. For this type, the index in ECX[15:0] is
implementation specific.

Specifying an unsupported PMC encoding will cause a general protection exception #GP(0). For PMC details see
Chapter 18, “Performance Monitoring”, in the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

When in protected or virtual 8086 mode, the Performance-monitoring Counters Enabled (PCE) flag in register
CR4 restricts the use of the RDPMC instruction. When the PCE flag is set, the RDPMC instruction can be executed at
any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDPMC instruction is always enabled.) The PMCs can also be read with the RDMSR instruction,
when executing at privilege level 0.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

Performing back-to-back fast reads are not guaranteed to be monotonic. To guarantee monotonicity on back-to-
back reads, a serializing instruction must be placed between the two RDPMC instructions.

4-546 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, M-U

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents of
the ECX register are used to select the PMC, and the event count is stored in the full EAX and EDX registers. The
RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have PMCs, but they must be read with the RDMSR

instruction.

Operation
MSCB = Most Significant Counter Bit (* Model-specific *)

IF ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0)) and (ECX indicates a supported counter))
THEN
EAX := counter[31:0];
EDX := ZeroExtend(counter[MSCB:32]);
ELSE (* ECX is not valid or CR4.PCEis 0O and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified.
#UD If the LOCK prefix is used.

RDPMC—Read Performance-Monitoring Counters

Vol.2B 4-547

6. Updates to Chapter 5, Volume 2C

Change bars and green text show changes to Chapter 5 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2C: Instruction Set Reference, V-Z.

Changes to this chapter:

Updated the following instructions to correct typos: VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ,
VCVTTPS2QQ, VCVTTPS2UDQ, VCVTTPS2UQQ, VCVTTSD2USI, VCVTTSS2USI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

INSTRUCTION SET REFERENCE, V-Z

VCVTTPD2QQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Quadword Integers

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.128.66.0FW1 7A /r A VIV AVX512VL | Convert two packed double-precision floating-point values from
VCVTTPD2QQ xmm1 {k1¥z}, AVX512DQ | zmm2/m128/m64bcst to two packed quadword integers in
xmm2/m128/m64bcst zmm1 using truncation with writemask k1.
EVEX.256.66.0FW1 7A /r A VIV AVX512VL | Convert four packed double-precision floating-point values
VCVTTPD2QQ ymm1 {k1Xz}, AVX512DQ | from ymm2/m256/m64bcst to four packed quadword integers
ymm2/m256/m64bcst in ymm1 using truncation with writemask k1.
EVEX.512.66.0FW1 7A /r A VIV AVX512DQ | Convert eight packed double-precision floating-point values
VCVTTPD2QQ zmm1 {k1Xz], from zmm2/m512 to eight packed quadword integers in zmm1
zmm2/m512/m64bcst{sae} using truncation with writemask k1.
Instruction Operand Encoding
Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation packed double-precision floating-point values in the source operand (second operand) to
packed quadword integers in the destination operand (first operand).

EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the indefinite integer value (2%-1, where w represents the number of bits in the destination format) is returned.

Note: EVEX.vvvyv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2QQ (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)

FORj:= 0 TOKL-1
i=j*64

IF k1[j] OR *no writemask*

THEN DEST[i+63:i] :=

Convert_Double_Precision_Floating_Point_To_Quadinteger_Truncate(SRC[i+63:i])

ELSE

IF *merging-masking*
THEN *DESTIi+63:i] remains unchanged*

ELSE

DEST[i+63:i]:= 0

Fl
FI;
ENDFOR
DEST[MAXVL-1:VL]:=0

5-60 Vol.2C

; merging-masking

; zeroing-masking

VCVTTPD2QQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Quadword Integers

INSTRUCTION SET REFERENCE, V-Z

VCVTTPD2QQ (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8,512)

FORj:=0 TOKL-1

i=j*64
IF k1[j] OR *no writemask*
THEN
IF (EVEXb ==1)
THEN
DEST[i+63:i] := Convert_Double_Precision_Floating_Point_To_Quadinteger_Truncate(SRC[63:0])
ELSE
DESTI[i+63:i] := Convert_Double_Precision_Floating_Point_To_Quadinteger_Truncate(SRC[i+63:i])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2QQ _m512i _mm512_cvttpd_epib4(_m512d a);

VCVTTPD2QQ _m512i _mm512_mask_cvttpd_epi64(_m512is, __mmask8 k, __m512d a);
VCVTTPD2QQ _m512i _mm512_maskz_cvttpd_epi64(_mmask8 k, __m512d a);

VCVTTPD2QQ _m512i _mm512_cvtt_roundpd_epib4(_m512d a, int sae);

VCVTTPD2QQ __m512i _mm512_mask_cvtt_roundpd_epi64(_m512is,__mmask8k, __m512d g, int sae);

VCVTTPD2QQ _m512i _mm512_maskz_cvtt_roundpd_epi64(_mmask8 k, __m512d a, int sae);
VCVTTPD2QQ _m256i _mm256_mask_cvttpd_epi64(_m256is, __mmask8 k, __m256d a);
VCVTTPD2QQ _m256i _mm256_maskz_cvttpd_epi64(_mmask8 k, __m256d a);
VCVTTPD2QQ _m128i _mm_mask_cvttpd_epi64(_m128is, _mmask8 k, __m128d a);
VCVTTPD2QQ _m128i _mm_maskz_cvttpd_epi64(__mmask8 k, __m128d a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.

VCVTTPD2QQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Quadword Integers Vol.2C 5-61

INSTRUCTION SET REFERENCE, V-Z

VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Unsigned Doubleword Integers

Opcode Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.128.0FW1 78 /r A VIV AVX512VL | Convert two packed double-precision floating-point values
VCVTTPD2UDQ xmm1 {k1}z]}, AVX512F in xmm2/m128/m64bcst to two unsigned doubleword
xmm2/m128/m64bcst integers in xmm1 using truncation subject to writemask
k1.
EVEX.256.0FW1 78 02 /r A VIV AVX512VL | Convert four packed double-precision floating-point
VCVTTPD2UDQ xmm1 {k1}z]}, AVX512F values in ymm2/m256/m64bcst to four unsigned
ymm2/m256/m64bcst doubleword integers in xmm1 using truncation subject to
writemask k1.
EVEX.512.0FW1 78 /r A VIV AVX512F Convert eight packed double-precision floating-point
VCVTTPD2UDQ ymm1 {k1}z}, values in zmm2/m512/m64bcst to eight unsigned
zmm2/m512/m64bcst{sae} doubleword integers in ymm1 using truncation subject to
writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation packed double-precision floating-point values in the source operand (the second operand)
to packed unsigned doubleword integers in the destination operand (the first operand).

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2V - 1 is returned, where w represents the number of bits in the destination format.

The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, ora 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register
conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are
zeroed.

Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

5-62 Vol.2C VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, V-Z

Operation

VCVTTPD2UDQ (EVEX encoded versions) when src2 operand is a register
(KL, VL) = (2, 128), (4, 256),(8,512)

FORj:=0TOKL-1

i=j*32
k:=j*64
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i]:=
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i]1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL/2] := 0

VCVTTPD2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256),(8,512)

FORj:=0 TOKL-1

i=j*32
k:=j*64
IF k1[j] OR *no writemask*
THEN
IF (EVEXb =1)
THEN
DEST[i+31:i]:=
Convert_Double_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[63:0])
ELSE
DEST[i+31:i]:=
Convert_Double_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[k+63:k])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTI[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i]1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL/2] =0

VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers Vol.2C 5-63

INSTRUCTION SET REFERENCE, V-Z

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2UDQ _m256i _mm512_cvttpd_epu32(__m512d a);

VCVTTPD2UDQ _m256i _mm512_mask_cvttpd_epu32(__m256is, __mmask8 k, __m512d a);
VCVTTPD2UDQ _m256i _mm512_maskz_cvttpd_epu32(_mmask8 k, __m512d a);

VCVTTPD2UDQ _m256i _mm512_cvtt_roundpd_epu32(_m512d g, int sae);

VCVTTPD2UDQ _m256i _mm512_mask_cvtt_roundpd_epu32(__m256is, _mmask8 k, __m512d a, int sae);
VCVTTPD2UDQ _m256i _mm512_maskz_cvtt_roundpd_epu32(__mmask8 k, __m512d g, int sae);
VCVTTPD2UDQ _m128i _mm256_mask_cvttpd_epu32(_m128is, __mmask8 k, __m256d a);
VCVTTPD2UDQ _m128i _mm256_maskz_cvttpd_epu32(_mmask8 k, __m256d a);

VCVTTPD2UDQ _m128i _mm_mask_cvttpd_epu32(_m128is, _mmask8 k, __m128d a);

VCVTTPD2UDQ _m128i _mm_maskz_cvttpd_epu32(_mmask8 k, __m128d a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv I= 1111B.

5-64 Vol.2C VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, V-Z

VCVTTPD2UQQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Unsigned Quadword Integers

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature
Support | Flag
EVEX.128.66.0FW1 78 /r A VIV AVX512VL Convert two packed double-precision floating-point values
VCVTTPD2UQQ xmm1 {k1}z}, AVX512DQ | from xmm2/m128/m64bcst to two packed unsigned
xmm2/m128/m64bcst quadword integers in xmm1 using truncation with
writemask k1.
EVEX.256.66.0FW1 78 /r A VIV AVX512VL | Convert four packed double-precision floating-point values
VCVTTPD2UQQ ymm1 {k1¥z}, AVX512DQ | from ymm2/m256/m64bcst to four packed unsigned
ymm2/m256/m64bcst quadword integers in ymm1 using truncation with
writemask k1.
EVEX.512.66.0FW1 78 /r A VIV AVX512DQ | Convert eight packed double-precision floating-point values
VCVTTPD2UQQ zmm1 {k1¥z], from zmm2/mem to eight packed unsigned quadword
zmm2/m512/m64bcst{sae} integers in zmm1 using truncation with writemask k1.
Instruction Operand Encoding
Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation packed double-precision floating-point values in the source operand (second operand) to
packed unsigned quadword integers in the destination operand (first operand).

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2% - 1 is returned, where w represents the number of bits in the destination format.

EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operation is a ZMM/YMM/XMM register conditionally updated with writemask k1.

Note: EVEX.vvvyv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTTPD2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8,512)

FORj:=0TOKL-1
i=j*64
IF k1[j] OR *no writemask*
THEN DESTI[i+63:i] :=

Convert_Double_Precision_Floating_Point_To_UQuadinteger_Truncate(SRC[i+63:i])

ELSE

IF *merging-masking*

ELSE

DEST[i+63:] := 0

FI
Fl;
ENDFOR
DEST[MAXVL-1:VL]:=0

; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
; zeroing-masking

VCVTTPD2UQQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Quadword Integers Vol.2C 5-65

INSTRUCTION SET REFERENCE, V-Z

VCVTTPD2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8,512)

FORj:= 0 TO KL-1

i=j*64
IF k1[j] OR *no writemask*
THEN
IF (EVEXb==1)
THEN
DESTI[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadinteger_Truncate(SRC[63:0])
ELSE
DESTI[i+63:i] :=
Convert_Double_Precision_Floating_Point_To_UQuadinteger_Truncate(SRC[i+63:i])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL]:=0
Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2UQQ _mm<size>[_mask[z]]_cvtt[_round]pd_epub4

VCVTTPD2UQQ _m512i _mm512_cvttpd_epub4(__m512d a);

VCVTTPD2UQQ _m512i _mm512_mask_cvttpd_epu64(_m512is, __mmask8Kk,
VCVTTPD2UQQ _m512i _mm512_maskz_cvttpd_epub4(_mmask8 k, __m512d a);
VCVTTPD2UQQ _m512i _mm512_cvtt_roundpd_epub4(_m512d a, int sae);
VCVTTPD2UQQ _m512i _mm512_mask_cvtt_roundpd_epu64(_m512is,
VCVTTPD2UQQ _m512i _mm512_maskz_cvtt_roundpd_epub4(__mmask8 k,
VCVTTPD2UQQ _m256i _mm256_mask_cvttpd_epub4(__m256is, __mmask8 Kk,
VCVTTPD2UQQ _m256i _mm256_maskz_cvttpd_epub4(_mmask8 k, __m256d a);
VCVTTPD2UQQ _m128i _mm_mask_cvttpd_epu64(__m128is, _mmask8 k, __m128d a);
VCVTTPD2UQQ _m128i _mm_maskz_cvttpd_epub4(__mmask8 k, __m128d a);

m512d a);

mmask8 k, __m512d 3, int sae);
m512d a, int sae);
m256d a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv I= 1111B.

5-66 Vol.2C VCVTTPD2UQQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Quadword Integers

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2QQ—Convert with Truncation Packed Single Precision Floating-Point Values to

Packed Signed Quadword Integer Values

Opcode/ Op/ | 64/32 CPUID Description
Instruction €n bit Mode | Feature

Support | Flag
EVEX.128.66.0FWO0 7A /t A VIV AVX512VL | Convert two packed single precision floating-point values from
VCVTTPS2QQ xmm1 {k1Xz], AVX512DQ | xmm2/m64/m32bcst to two packed signed quadword values in
xmm2/m64/m32bcst xmm1 using truncation subject to writemask k1.
EVEX.256.66.0FWO 7A /r A VIV AVX512VL | Convert four packed single precision floating-point values from
VCVTTPS2QQ ymm1 {k1Xz}, AVX512DQ | xmm2/m128/m32bcst to four packed signed quadword values
xmm2/m128/m32bcst in ymm1 using truncation subject to writemask k1.
EVEX.512.66.0FWO 7A /r A VIV AVX512DQ | Convert eight packed single precision floating-point values from
VCVTTPS2QQ zmm1 {k1¥z}, ymm2/m256/m32bcst to eight packed signed quadword values
ymm2/m256/m32bcst{sae} in zmm1 using truncation subject to writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Half ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation packed single-precision floating-point values in the source operand to eight signed quad-

word integers in the destination operand.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the indefinite integer value (2%-1, where w represents the number of bits in the destination format) is returned.

EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/1

28/64-bit

memory location. The destination operation is a vector register conditionally updated with writemask k1.

Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2QQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8,512)
FORj:=0 TOKL-1

i=j*64

k:=j*32

IF k1[j] OR *no writemask*

THEN DESTI[i+63:i] :=
Convert_Single_Precision_To_Quadinteger_Truncate(SRC[k+31:k])

ELSE

IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL] := 0

VCVTTPS2QQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Signed Quadword Integer Values

Vol.2C 5-69

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2QQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8,512)

FORj:= 0 TO KL-1

i=j*64
k:=j*32
IF k1[j] OR *no writemask*
THEN
IF (EVEXb==1)
THEN
DESTI[i+63:i] :=
Convert_Single_Precision_To_Quadinteger_Truncate(SRC[31:0])
ELSE
DESTI[i+63:i] :=
Convert_Single_Precision_To_Quadinteger_Truncate(SRC[k+31:k])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL]:= 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2QQ _m512i _mm512_cvttps_epib4(_m256 a);

VCVTTPS2QQ __m512i _mm512_mask_cvttps_epib4(__m512is,__mmask16 k, __m256 a);

VCVTTPS2QQ _m512i _mm512_maskz_cvttps_epi64(_mmask16 k, __m256 a);

VCVTTPS2QQ _m512i _mm512_cvtt_roundps_epi64(__m256 a, int sae);

VCVTTPS2QQ _m512i _mm512_mask_cvtt_roundps_epi64(_m512is, __mmask16 k, __m256 3, int sae);
VCVTTPS2QQ _m512i _mm512_maskz_cvtt_roundps_epi64(_mmask16 k, __m256 a, int sae);
VCVTTPS2QQ _m256i _mm256_mask_cvttps_epib4(_m256is, __mmask8 k, __m128 a);

VCVTTPS2QQ _m256i _mm256_maskz_cvttps_epi64(_mmask8 k, __m128 a);

VCVTTPS2QQ _m128i _mm_mask_cvttps_epi64(_m128is, _mmask8 k, __m128 a);

VCVTTPS2QQ _m128i _mm_maskz_cvttps_epi64(_mmask8 k, __m128 a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3.
#UD If EVEX.vvvv I= 1111B.

5-70 Vol.2C VCVTTPS2QQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Signed Quadword Integer Values

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2UDQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Unsigned Doubleword Integer Values

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.128.0FW0 78 /r A VIV AVX512VL | Convert four packed single precision floating-point
VCVTTPS2UDQ xmm1 {k1}z}, AVX512F values from xmm2/m128/m32bcst to four packed
xmm2/m128/m32bcst unsigned doubleword values in xmm1 using
truncation subject to writemask k1.
EVEX.256.0FWO0 78 /r A VIV AVX512VL | Convert eight packed single precision floating-point
VCVTTPS2UDQ ymm1 {k1}z}, AVX512F values from ymm2/m256/m32bcst to eight packed
ymm2/m256/m32bcst unsigned doubleword values in ymm1 using
truncation subject to writemask k1.
EVEX.512.0FWO0 78 /r A VIV AVX512F Convert sixteen packed single-precision floating-
VCVTTPS2UDQ zmm1 {k1¥z], point values from zmm2/m512/m32bcst to sixteen
zmm2/m512/m32bcst{sae} packed unsigned doubleword values in zmm1 using
truncation subject to writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Full ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation packed single-precision floating-point values in the source operand to sixteen unsigned
doubleword integers in the destination operand.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2V - 1 is returned, where w represents the number of bits in the destination format.

EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or
a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register conditionally updated with writemask k1.

Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2UDQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj:=0 TOKL-1
i=j*32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]:=
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[i+31:i])

ELSE

IF *merging-masking* , merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL] =0

VCVTTPS2UDQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer Val- Vol.2C 5-67

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)

FORj:= 0 TO KL-1

i=j*32
IF k1[j] OR *no writemask*
THEN
IF (EVEXb=1)
THEN
DESTI[i+31:i]:=
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0])
ELSE
DESTI[i+31:i]:=
Convert_Single_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[i+31:i])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL]:=0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2UDQ _m512i _mm512_cvttps_epu32(__m512 a);

VCVTTPS2UDQ _m512i _mm512_mask_cvttps_epu32(_m512is, __mmask16 k, __m512 a);
VCVTTPS2UDQ _m512i _mm5712_maskz_cvttps_epu32(__mmask16 k, __m512 a);

VCVTTPS2UDQ _m512i _mm512_cvtt_roundps_epu32(_m512 a, int sae);

VCVTTPS2UDQ _m512i _mm512_mask_cvtt_roundps_epu32(__m512is,__mmask16 k, __m512 g, int sae);
VCVTTPS2UDQ _m512i _mm512_maskz_cvtt_roundps_epu32(_mmask16 k, __m512 g, int sae);
VCVTTPS2UDQ _m256i _mm256_mask_cvttps_epu32(_m256is, __mmask8 k, __m256 a);
VCVTTPS2UDQ _m256i _mm256_maskz_cvttps_epu32(__mmask8 k, __m256 a);

VCVTTPS2UDQ _m128i _mm_mask_cvttps_epu32(_m128is, _mmask8k, __m128 a);

VCVTTPS2UDQ _m128i _mm_maskz_cvttps_epu32(__mmask8 k, __m128 a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv I= 1111B.

5-68 Vol. 2C VCVTTPS2UDQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer Val-

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2UQQ—Convert with Truncation Packed Single Precision Floating-Point Values to
Packed Unsigned Quadword Integer Values

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.128.66.0FW0 78 /r A VIV AVX512VL Convert two packed single precision floating-point values
VCVTTPS2UQQ xmm1 {k1}z}, AVX512DQ from xmm2/m64/m32bcst to two packed unsigned quadword
xmm2/m64/m32bcst values in xmm1 using truncation subject to writemask k1.
EVEX.256.66.0F.WO0 78 /r A VIV AVX512VL Convert four packed single precision floating-point values
VCVTTPS2UQQ ymm1 {k1Xz], AVX512DQ from xmm2/m128/m32bcst to four packed unsigned
xmm2/m128/m32bcst quadword values in ymm1 using truncation subject to
writemask k1.
EVEX.512.66.0F.W0 78 /r A VIV AVX512DQ | Convert eight packed single precision floating-point values
VCVTTPS2UQQ zmm1 {k1}z}, from ymm2/m256/m32bcst to eight packed unsigned
ymm2/m256/m32bcst{sae} quadword values in zmm1 using truncation subject to
writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Half ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation up to eight packed single-precision floating-point values in the source operand to
unsigned quadword integers in the destination operand.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2% - 1 is returned, where w represents the number of bits in the destination format.

EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/128/64-bit
memory location. The destination operation is a vector register conditionally updated with writemask k1.

Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTTPS2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FORj:=0TOKL-1

i=j*64

k:=j*32

IF k1[j] OR *no writemask*

THEN DESTI[i+63:i] =
Convert_Single_Precision_To_UQuadinteger_Truncate(SRC[k+31:k])

ELSE

IF *merging-masking* ; merging-masking
THEN *DESTI[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i1:=0
Fl
Fl;
ENDFOR

DEST[MAXVL-1:VL]:=0

VCVTTPS2UQQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Unsigned Quadword Integer Values Vol.2C 5-71

INSTRUCTION SET REFERENCE, V-Z

VCVTTPS2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8,512)

FORj:= 0 TO KL-1

i=j*64
k:=j*32
IF k1[j] OR *no writemask*
THEN
IF (EVEXb==1)
THEN
DESTI[i+63:i] :=
Convert_Single_Precision_To_UQuadinteger_Truncate(SRC[31:0])
ELSE
DESTI[i+63:i] :=
Convert_Single_Precision_To_UQuadIinteger_Truncate(SRC[k+31:k])
Fl;
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i]:=0
Fl
FI;
ENDFOR

DEST[MAXVL-1:VL]:= 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2UQQ _mmc<size>[_mask[z]]_cvtt[_round]ps_epub4

VCVTTPS2UQQ __m512i _mm512_cvttps_epub4(__m256 a);

VCVTTPS2UQQ _m512i _mm512_mask_cvttps_epub4(_m512is, __mmask16 k, __m256 a);
VCVTTPS2UQQ _m512i _mm512_maskz_cvttps_epub4(_mmask16 k, __m256 a);
VCVTTPS2UQQ _m512i _mm512_cvtt_roundps_epub4(_m256 g, int sae);

VCVTTPS2UQQ __m512i _mm512_mask_cvtt_roundps_epub4(_m512is,__mmask16 k, __m256 g, int sae);
VCVTTPS2UQQ _m512i _mm512_maskz_cvtt_roundps_epub4(_mmask16 k, __m256 a, int sae);
VCVTTPS2UQQ _m256i _mm256_mask_cvttps_epub4(_m256is, __mmask8 k, __m128 a);
VCVTTPS2UQQ _m256i _mm256_maskz_cvttps_epub4(_mmask8 k, __m128 a);
VCVTTPS2UQQ _m128i _mm_mask_cvttps_epub4(_m128is, _mmask8 k, __m128 a);
VCVTTPS2UQQ __m128i _mm_maskz_cvttps_epub4(_mmask8 k, __m128 a);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3.
#UD If EVEX.vvvv I= 1111B.

5-72 Vol.2C VCVTTPS2UQQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Unsigned Quadword Integer Values

INSTRUCTION SET REFERENCE, V-Z

VCVTTSD2USI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Unsigned Integer

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.LIG.F2.0FWO0 78 /r A VIV AVX512F Convert one double-precision floating-point value from
VCVTTSD2USI r32, xmm1/m64{sae} xmm1/m64 to one unsigned doubleword integer r32
using truncation.
EVEX.LIG.F2.0FW1 78 /r A V/NE] AVX512F Convert one double-precision floating-point value from
VCVTTSD2USI r64, xmm1/m64{sae} xmm1/m64 to one unsigned quadword integer zero-
extended into r64 using truncation.

NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the WO version is
used.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation a double-precision floating-point value in the source operand (the second operand) to an
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand
(the first operand). The source operand can be an XMM register or a 64-bit memory location. The destination
operand is a general-purpose register. When the source operand is an XMM register, the double-precision floating-
point value is contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2V - 1 is returned, where w represents the number of bits in the destination format.

EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.

Operation

VCVTTSD2USI (EVEX encoded version)
IF 64-Bit Mode and OperandSize = 64
THEN DEST[63:0]:= Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0]);
ELSE DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[63:0]);
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSD2USI unsigned int _mm_cvttsd_u32(__m128d);

VCVTTSD2USI unsigned int _mm_cvtt_roundsd_u32(__m128d, int sae);
VCVTTSD2USI unsigned __int64 _mm_cvttsd_u64(__m128d);
VCVTTSD2USI unsigned __int64 _mm_cvtt_roundsd_u64(__m1284d, int sae);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.

VCVTTSD2USI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Unsigned Integer Vol.2C 5-73

INSTRUCTION SET REFERENCE, V-Z

VCVTTSS2USI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Unsigned Integer

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bit Mode | Feature
Support | Flag
EVEX.LIG.F3.0FWO 78 /r A VIV AVX512F Convert one single-precision floating-point value from
VCVTTSS2USI r32, xmm1/m32{sae} xmm1/m32 to one unsigned doubleword integer in
r32 using truncation.
EVEX.LIG.F3.0FW1 78 /r A V/NE] AVX512F Convert one single-precision floating-point value from
VCVTTSS2USI r64, xmm1/m32{sae} xmm1/m32 to one unsigned quadword integer in r64
using truncation.

NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the WO version is
used.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A Tuple1 Fixed ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Converts with truncation a single-precision floating-point value in the source operand (the second operand) to an
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand
(the first operand). The source operand can be an XMM register or a memory location. The destination operand is
a general-purpose register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result cannot be
represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked,
the integer value 2V - 1 is returned, where w represents the number of bits in the destination format.

EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation
VCVTTSS2USI (EVEX encoded version)
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] := Convert_Single_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[31:0]);
ELSE

DEST[31:0] := Convert_Single_Precision_Floating_Point_To_Ulnteger_Truncate(SRC[31:0]);
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTSS2USI unsigned int _mm_cvttss_u32(__m128 a);

VCVTTSS2USI unsigned int _mm_cvtt_roundss_u32(__m128 g, int sae);
VCVTTSS2USI unsigned __int64 _mm_cvttss_u64(__m128 a);

VCVTTSS2USI unsigned __int64 _mm_cvtt_roundss_u64(__m128 g, int sae);

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.

5-74 Vol.2C VCVTTSS2USI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Unsigned Integer

7. Updates to Chapter 1, Volume 3A

Change bars and green text show changes to Chapter 1 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

Changes to this chapter: Updated section 1.1 “Intel® 64 and IA-32 Processors Covered in this Manual”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

13

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide,
Part 1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2 (order number 253669), the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019), and the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3D:System Programming Guide, Part 4 (order
number 332831) are part of a set that describes the architecture and programming environment of Intel 64 and IA-
32 Architecture processors. The other volumes in this set are:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665).

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018 and 334569).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers
(order number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming
environment for classes of software that host operating systems. The Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, describes the model-specific registers of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

®* P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series
* Intel® Xeon® processor 3000, 3200 series
* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

Vol. 3A 1-1

ABOUT THIS MANUAL

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor E8000, T9000 series

* Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes.

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
* 4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

* Intel® Atom™ processor Z3400 series

* Intel® Atom™ processor Z3500 series

* 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

* 7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Processor Scalable Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

1-2 Vol.3A

ABOUT THIS MANUAL

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Processor Scalable Family
* 10th generation Intel® Core™ processors

* 11th generation Intel® Core™ processors

* 3rd generation Intel® Xeon® Processor Scalable Family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® 1I, Pentium® Ill, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor ES000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, 2500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Airmont microarchitecture.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Silver-
mont microarchitecture.

Vol.3A 1-3

ABOUT THIS MANUAL

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel® Atom™ processor C series, the Intel® Atom™ processor X series, the Intel® Pentium® processor J
series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Gold-
mont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

The 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture and support Intel 64
architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows?:

Chapter 1 — About This Manual. Gives an overview of all eight volumes of the Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual. 1t also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

1. Model-Specific Registers have been moved out of this volume and into a separate volume: Intel® 64 and IA-32 Architectures Soft-
ware Developer's Manual, Volume 4.

1-4 Vol. 3A

ABOUT THIS MANUAL

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes
programming the LINTO and LINT1 inputs and gives an example of how to program the LINTO and LINT1 pins for
specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support
multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use the MP protocol to boot P6 family processors in
an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and
Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache
control and memory streaming instructions introduced with the Pentium lll, Pentium 4, and Intel Xeon processors
is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™
technology that must be handled and considered at the system programming level, including: task switching,
exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter
describes the extensible framework of operating system requirements to support processor extended states.
Processor extended state may be required by instruction set extensions beyond those of
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for
power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-check
exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, a signaling mech-
anism for software to respond to hardware corrected machine check error is covered.

Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes
for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debug, Branch Profile, TSC, and Resource Monitoring Features. Describes the debugging
registers and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the
time-stamp counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring
performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Vol.3A 1-5

ABOUT THIS MANUAL

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual Machine Control Structures. Describes components that manage VMX operation. These
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software
(running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a host
to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitor Programming Considerations. Describes programming consider-
ations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources. These
include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 35 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 36 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 37 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures and
defines various Intel SGX data structures.

Chapter 38 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring an
enclave, and enclave entry and exit.

Chapter 39 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit
(AEX).

Chapter 40 — SGX Instruction References. Describes the supervisor and user level instructions provided by
Intel SGX.

Chapter 41 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX
collection of enclave instructions for creating protected execution environments on processors supporting IA32 and
Intel 64 architectures.

Chapter 42 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

1-6 Vol. 3A

ABOUT THIS MANUAL

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMlIs,
external interrupts, and triple faults.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The humerical value of a set bit is equal to

two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:

* Do not depend on the states of any reserved bits when testing the values of registers which contain such bits.
Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

. Data Structure

fighest 34 24 23 16 15 8 7 0 <« Bit offset
28

24

20

16

12

8

Lowest
Address

4
Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Figure 1-1. Bit and Byte Order

Vol.3A 1-7

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4, 5,6, 7,8,9,A,B,C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the character B (for
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CS:EP

1-8 Vol. 3A

1.3.6

Syntax for CPUID, CR, and MSR Values

ABOUT THIS MANUAL

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-

mation. See Figure 1-2.

CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

Control Register Values

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

CR4.0SFXSR{bit 9] = 1

]

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

i

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the

error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate

code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Vol.3A 1-9

ABOUT THIS MANUAL

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm
See also:

* The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

® Software developer resources, guidance and insights for security advisories:
https://software.intel.com/security-software-guidance/

®* The data sheet for a particular Intel 64 or IA-32 processor
®* The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

* Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

* Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

* Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

* Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

®* Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

* Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

® Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:

* Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/isa-extensions

* Intel® Software Guard Extensions (Intel® SGX) Programming Reference
https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
* Intel® Developer Zone:
https://software.intel.com/en-us
®* Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
® Processor support general link:
http://www.intel.com/support/processors/
* Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

1-10 Vol. 3A

http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
https://software.intel.com/en-us/articles/intel-sdm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://software.intel.com/sites/default/files/22/30/25602
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/security-software-guidance/

8. Updates to Chapter 2, Volume 3A

Change bars and green text show changes to Chapter 2 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

Changes to this chapter: Added CR4.KL to Section 2.5, “Control Registers” and Figure 2-7, “Control Registers”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes
referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e
mode allows software to operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.
The IA-32 system-level architecture includes features to assist in the following operations:
® Memory management

®* Protection of software modules

® Multitasking

®* Exception and interrupt handling

® Multiprocessing

®* Cache management

® Hardware resource and power management

®* Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 9, “Processor
Management and Initialization”). Software then initiates the switch from real-address mode to protected mode. If
IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

Y

*Physical Address

EFLAGS Register Physical Address Code, Data or
- Linear Address Stack Segment
Control ReglstersCR4 S—>S | Task-State
egment Selector Segment (TSS)
CR3 = > j:f_->Co-<rja:aSk
CR2 oSl
SR Register 7 >Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | - »| Seg. Desc. | Irlerrupt Handler
c | Code |
urrent- — >
Interrupt TSS Seg. Sel.; — »| TSS Desc. TSS L Stack
Vector)
- - - - > Seg. Desc.
Interrupt Descriptor | 4 Task-State
Table (IDT) | . _ 3! TSS Desc. Segment _(T_S§)) Task
[- - Code
Interrupt Gatet — — = | LDT Desc. | - " P Data
[- |: >
Task Gate |- - - - - Stack
GDTR
> Trap Gate [--- .
‘ Local Descriptor Exception Handler
L Table (LDT) T Code |
Current- — > Stack
IDTR Call-Gate ->»| Seg. Desc. TSS |_
Segment Selector
| - > CallGate | |- - N Protected Procedure
XCRO (XFEM) [;:LDTR < Current- — 2200
TSS |_ Stack
Linear Address Space Linear Address
[Dir | Table Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
. 3 3
0 This page mapping example is for 4-KByte pages
and 32-bit paging.

Figure 2-1. IA-32 System-Level Registers and Data Structures

2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS
i —>
lf’r_1¥s_|c_aI;\ddress Code, Data or Stack

Control Register Linear Address Segment (Base =0)

CR8 Task-State

CR4 Segment Selector Segment (TSS)

CR3 il >

CR2

CR1

CRO .

Global D It
Task Register ql'aat‘)Ie (eGSg.llP) or
[Segment Sel. | - »| Seg. Desc. — Irgelrrupt Handler
NULL - — »S0de]
|nterrupt TR |‘ — »| TSS Desc. L Stack
Vector
. - — - —» Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
Int t Gat) C t TSS Code
nterrupt Gate — — - LDT Desc. —— urren
Interrupt Gate | - - - ‘ Stack
GDTR IST—
“»| Trap Gate |- -~)
! Local Descriptor Exception Handler
' Table (LDT) >
- Tl
IDTR Call-Gate -3| Seg. Desc. | |
Segment Selector
| - > CallGate ||~ - N Protected Procedure
XCRO (XFEM) TDTR < NULL - — ;Code

|_ Stack

Linear Address Space Linear Address
J—>l PML4 [Dir. Pointer | Directory [Table [Offset |
Linear Addr.
PML4 Pg. Dir. Ptr.| Page Dir. | page Table Page

Physical

PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>

, This page mapping example is for 4-KByte pages
CR3* and 4-level paging.

*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode and 4-Level Paging

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment

descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “"Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure! supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,

the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

®* Pointer addresses for the interrupt stack table

* Offset address of the I0-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 7.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or
from software by means of an INT n, INTO, INT3, INT1, or BOUND instruction. The interrupt vector provides an
index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler proce-
dure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the
handler is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true
for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data structures. In both compatibility
mode and 64-bit mode, four or five levels of system data structures are used (see Chapter 4, “Paging”). These
include the following:

®* The page map level 5 (PML5) — An entry in the PML5 table contains the physical address of the base of a
PML4 table, access rights, and memory management information. The base physical address of the PML5 table
is stored in CR3. The PMLS5 table is used only with 5-level paging.

* A page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page
directory pointer table, access rights, and memory management information. With 4-level paging, there is only
one PML4 table and its base physical address is stored in CR3.

* A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

* Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

®* Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,
instruction tracing, and access rights. See also: Section 2.3, "System Flags and Fields in the EFLAGS Register.

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-
level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Section 2.5, “Control Registers” and Section 2.6, “Extended
Control Registers (Including XCRO).”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 17, "Debug, Branch Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features.”

®* The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, "Memory-Management Registers.”

”

® The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 9.4, “"Model-Specific Registers (MSRs),” and Chapter 2, “*Model-Specific Registers
(MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are
several model-specific registers that govern IA-32e mode instructions:

* 1IA32_KERNEL_GS_BASE — Used by SWAPGS instruction.
® IA32_LSTAR — Used by SYSCALL instruction.

* 1IA32_FMASK — Used by SYSCALL instruction.

® IA32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:

® Operating system instructions (see also: Section 2.8, “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the humber of interrupts received, or the number of cache loads. See also:
Chapter 19, “Performance Monitoring Events.”

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 11, *“Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

®* Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural
features, flexibility, high performance and backward compatibility to existing software base.

®* Real-address mode — This operating mode provides the programming environment of the Intel 8086
processor, with a few extensions (such as the ability to switch to protected or system management mode).

* System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors,
beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

entered through activation of an external system interrupt pin (SMI#), which generates a system management
interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the
currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

®* Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:

* IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit
mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

Real-Address

»
Mode <
Reset
or
Reset or RSM
PE=0
SMI#
Reset
Protected Mode RSN System
Management

LME=1, CRO.PG=1* g4
See:\
=1

VM=0 VM=

Mode

* See Section 9.8.5
** See Section 9.8.5.4

Virtual-8086

Mode

Figure 2-3. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CRO then
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, "Mode
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

2-8 Vol.3A

2.2.1

SYSTEM ARCHITECTURE OVERVIEW

Extended Feature Enable Register

The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “"Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

63 121110 9 8 7 1.0

IA32_EFER

Execute Disable Bit Enable

1A-32e Mode Active

1A-32e Mode Enable

SYSCALL Enable

D Reserved

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information

Bit Description
0 SYSCALL Enable: IA32_EFER.SCE (R/W)
Enables SYSCALL/SYSRET instructions in 64-bit mode.
7:1 Reserved.
8 IA-32e Mode Enable: IA32_EFER.LME (R/W)
Enables IA-32e mode operation.
9 Reserved.
10 IA-32e Mode Active: IA32_EFER.LMA (R)
Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)
Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).
63:12 Reserved.
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF

Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using a

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

IF

IOPL

NT

RF

VM

POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

31 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

o—

Reserved (set to 0) CIRILITIS|2]0|Rl0|El1|€

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check / Access Control
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

D Reserved

Figure 2-5. System Flags in the EFLAGS Register

IIAVRON
FCMF T

rUO0-—
Bl
m
ul

Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “"Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

I/0 privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 19, “Input/Output,” in the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 7.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”
Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CRO register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by instructions executed in
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 4.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “"Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, "Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seq. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-6. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT;, the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the humber of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to OFFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

®* The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms
of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded
(at privilege level 0 only). This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the
upper 32 bits results in a general-protection exception, #GP(0).

® All 64 bits of CR2 are writable by software.

® Bits of CR3 in the range 51:12 that are beyond the processor’s physical-address width are reserved and must
be 0.

® The MOV CR2 instruction does not check that address written to CR2 is canonical.
®* Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CRO).

® CRO — Contains system control flags that control operating mode and states of the processor.
® CR1 — Reserved.
® CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

® CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. With 4-level paging and 5-level paging, the CR3 register contains the base address of the PML4
table and PMLS5 table, respectively. If PCIDs are enabled, CR3 has a format different from that illustrated in
Figure 2-7. See Section 4.5, “4-Level Paging and 5-Level Paging.”

See also: Chapter 4, “Paging.”

® CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or
executive support for specific processor capabilities.

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

® CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

31 (63) 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P|C|P S‘ ,\SA K S‘ ,\\2 ,\L,JI PIP|M|PIP| |T|P|V
Reserved KIEIKIAlE]|L X | X \ C|G|C|A|S|g|S|V M CR4
T|E E|E|E|E|E D|I|E
P|P E|E P
L
OSXSAVEJ L rscsmse L OSFXSR
PCIDE OSXMMEXCPT
31 (63) 12 1 5 4 3 2 0
P|P
Page-Directory Base c|w CR3
D|T
31 (63) 0
Page-Fault Linear Address CR2
31 (63) 0
CR1
31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0
P|C|N A w N E|T|E|M|P
G|D|W M P E|T|S|M|P|E|CRO
|:| Reserved

Figure 2-7. Control Registers

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CRO.PG

Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CRO.PG.
CRO.CD

Cache Disable (bit 30 of CR0O) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “"Cache Control.”

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CRO.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

CRO.AM
Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CRO.WP
Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX. This flag must
be set before software can set CR4.CET, and it cannot be cleared as long as CR4.CET = 1 (see below).

CRO.NE
Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: Section 8.7, “"Handling x87 FPU Exceptions in Software” in Chapter 8, "Programming with the x87
FPU,” and Appendix A, "EFLAGS Cross-Reference,” in the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

CRO.ET
Extension Type (bit 4 of CR0O) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

CRO.TS
Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHhA, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

e Ifthe TS flag is set and the MP flag (bit 1 of CR0O) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

* If the EM flag is set, the setting of the TS flag has no effect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

it encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type
EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.
0 0 1 #NM Exception Execute.
0 1 0 Execute Execute.
0 1 1 #NM Exception #NM exception.
1 0 0 #NM Exception Execute.
1 0 1 #NM Exception Execute.
1 1 0 #NM Exception Execute.
1 1 1 #NM Exception #NM exception.
CRO.EM

Emulation (bit 2 of CR0O) — Indicates that the processor does not have an internal or external x87 FPU when set;
indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHA, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

CRO.MP

CRO.PE

Monitor Coprocessor (bit 1 of CR0O) — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

Protection Enable (bit 0 of CR0O) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 9.9, “"Mode Switching.”

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR3.PCD
Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging? or 5-level paging if CR4.PCIDE=1.

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging or 5-level paging if CR4.PCIDE=1.

CR4.VME
Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, "Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “"Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory-pointer-table entry, a page-directory entry, or a page-table entry). Global pages are not flushed from
the translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

2. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

CR4.0SFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also,
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHA, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.0SXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.LA57
57-bit linear addresses (bit 12 of CR4) — When set in IA-32e mode, the processor uses 5-level paging
to translate 57-bit linear addresses. When clear in IA-32e mode, the processor uses 4-level paging to
translate 48-bit linear addresses. This bit cannot be modified in IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 6, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D.

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Applies only in IA-32e mode (if IA32_EFER.LMA = 1).

CR4.0SXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBYV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCRO; (3) enables the processor to execute XGETBV
and XSETBYV instructions in order to read and write XCRO. See Section 2.6 and Chapter 13, "System
Programming for Instruction Set Extensions and Processor Extended States”.

CR4.KL
Key-Locker-Enable Bit (bit 19 of CR4) — When set, the LOADIWKEY instruction is enabled; in addition,
if support for the AES Key Locker instructions has been activated by system firmware,
CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 1 and the AES Key Locker instructions are enabled.3
When clear, CPUID.19H:EBX.AESKLE[bit 0] is enumerated as 0 and execution of any Key Locker instruction
causes an invalid-opcode exception (#UD).

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

CR4.PKE
Enable protection keys for user-mode pages (bit 22 of CR4) — 4-level paging and 5-level paging
associate each user-mode linear address with a protection key. When set, this flag indicates (via
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4]) that the operating system supports use of the PKRU
register to specify, for each protection key, whether user-mode linear addresses with that protection key
can be read or written. This bit also enables access to the PKRU register using the RDPKRU and WRPKRU
instructions.

CR4.CET
Control-flow Enforcement Technology (bit 23 of CR4) — Enables control-flow enforcement tech-
nology when set. See Chapter 18, “Control-flow Enforcement Technology (CET)" of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1. This flag can be set only if CRO.WP is set, and it must be
clear before CRO.WP can be cleared (see below).

CR4.PKS
Enable protection keys for supervisor-mode pages (bit 24 of CR4) — 4-level paging and 5-level
paging associate each supervisor-mode linear address with a protection key. When set, this flag allows use
of the IA32_PKRS MSR to specify, for each protection key, whether supervisor-mode linear addresses with
that protection key can be read or written.

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

3. Software can check CPUID.19H:EBX.AESKLE[bit 0] after setting CR4.KL to determine whether the AES Key Locker instructions have
been enabled. Note that some processors may allow enabling of those instructions without activation by system firmware. Some
processors may not support use of the AES Key Locker instructions in system-management mode (SMM). Those processors enumer-
ate CPUID.19H:EBX.AESKLE[bit 0] as 0 in SMM regardless of the setting of CR4.KL.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCRO. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCRO to reflect the features for which it provides context management.

63 9 76543 210

D Reserved (must be 0) 1

Reserved for XCRO bit vector expansion
Reserved / Future processor extended states
PKRU state
Hi16_ZMM state
ZMM_Hi256 state
Opmask state
BNDCSR state
BNDREG state
AVX state
SSE state
x87 FPU/MMX state (must be 1)

Figure 2-8. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.0OSXSAVE[bit 27].) Software can use CPUID leaf function ODH to enumerate the bits in XCRO that
the processor supports (see CPUID instruction in Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0O. System software enables state
components by loading an appropriate bit mask value into XCRO using the XSETBV instruction.

As each bit in XCRO (except bit 63) corresponds to a processor state component, XCRO thus provides support for
up to 63 sets of processor state components. Bit 63 of XCRO is reserved for future expansion and will not represent
a processor state component.

Currently, XCRO defines support for the following state components:
® XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.

® XCRO.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMMO-
XMM15 in 64-bit mode; otherwise XMM0-XMM7).

® XCRO.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage the
upper halves of the YMM registers (YMM0O-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

® XCRO.BNDREG (bit 3): If 1, MPX instructions can be executed and the XSAVE feature set can be used to
manage the bounds registers BNDO-BND3.

® XCRO.BNDCSR (bit 4): If 1, MPX instructions can be executed and the XSAVE feature set can be used to
manage the BNDCFGU and BNDSTATUS registers.

® XCRO.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the opmask registers k0-k7.

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

® XCR0.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMMO-
ZMM?7).

¢ XCRO0.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

® XCRO.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

An attempt to use XSETBV to write to XCRO results in general-protection exceptions (#GP) if it would do any of the
following:

® Seta bitreserved in XCRO for a given processor (as determined by the contents of EAX and EDX after executing
CPUID with EAX=0DH, ECX= 0OH).

® Clear XCR0.x87.

® Clear XCRO0.SSE and set XCRO.AVX.

® (Clear XCRO0O.AVX and set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCRO0.Hi16_ZMM.

® Set either XCR0O.BNDREG and XCRO.BNDCSR while not setting the other.

® Set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
After reset, all bits (except bit 0) in XCRO are cleared to zero; XCRO[0] is set to 1.

2.7 PROTECTION-KEY RIGHTS REGISTERS (PKRU AND IA32_PKRS)

Processors may support either or both of two protection-key rights registers: PKRU for user-mode pages and the
IA32_PKRS MSR (MSR index 6E1H) for supervisor-mode pages. 4-level paging and 5-level paging associate a 4-bit
protection key with each page. The protection-key rights registers determine accessibility based on a page’s
protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for user-
mode pages. When CR4.PKE = 1, software can use the protection-key rights register for user pages (PKRU)
to specify the access rights for user-mode pages for each protection key.

If CPUID.(EAX=07H,ECX=0H):ECX.PKS [bit 31] = 1, the processor supports the protection-key feature for super-
visor-mode pages. When CR4.PKS = 1, software can use the protection-key rights register for supervisor
pages (the IA32_PKRS MSR) to specify the access rights for supervisor-mode pages for each protection key.

313029 28272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0 BitPosition

WIA|WAIWAIWA| WA WAIWA WA WA WAIWA| WA|WA WA WA|W
bppb/bDb/DDD|/D/D/D|D/D/D|D/D/D|D|D|D/D/D|D|D/D|D|D|D|D|D|D
15/15(14| 14/ 13/ 13| 12{12/11|11({10/10 |9 (9 |8 |8 |7 |7 |6 |6 |5 |5|4 |4 (3|3 |2 |2|1|1|0

co>»

Figure 2-9. Format of Protection-Key Rights Registers

The format of each protection-key rights register is given in Figure 2-9. Each contains 16 pairs of disable controls
to prevent data accesses to linear addresses (user-mode or supervisor-mode, depending on the register) based on
their protection keys. Each protection key i (0 <i < 15) is associated with two bits in each protection-key rights
register:

®* Bit 2/, shown as “"AD/"” (access disable): if set, the processor prevents any data accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key /.

® Bit 2i+1, shown as "WDi” (write disable): if set, the processor prevents write accesses to linear addresses
(user-mode or supervisor-mode, depending on the register) with protection key /.

(Bits 63:32 of the IA32_PKRS MSR are reserved and must be zero.)

See Section 4.6.2, “Protection Keys,” for details of how the processor uses the protection-key rights registers to
control accesses to linear addresses.

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

Software can read and write PKRU using the RDPKRU and WRPKRU instructions. The IA32_PKRS MSR can be read
and written with the RDMSR and WRMSR instructions. Writes to the IA32_PKRS MSR using WRMSR are not serial-
izing.

2.8 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application programs.
These instructions are described in the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A, 2B, 2C & 2D.

Table 2-3. Summary of System Instructions

Useful to Protected from

Instruction Description Application? Application?

LLDT Load LDT Register No Yes
SLDT Store LDT Register No If CR4.UMIP =1
LGDT Load GDT Register No Yes
SGDT Store GDT Register No If CR4.UMIP =1
LTR Load Task Register No Yes

STR Store Task Register No If CR4.UMIP =1
LIDT Load IDT Register No Yes

SIDT Store IDT Register No If CR4.UMIP =1
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes If CR4.UMIP =1
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes' > No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’ Read Serialized Time-Stamp Counter Yes Yes?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor extended states No® Yes

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4, This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-
ogy.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.8.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

®* LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
® SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
®* LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.

®* SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.

®* LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into
the LDTR. (The segment selector operand can also be located in a general-purpose register.)

® SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

®* LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the
task register. (The segment selector operand can also be located in a general-purpose register.)

®* STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into
memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV CR instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CRO, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to deter-
mine if access to their associated segments is allowed. These instructions duplicate some of the automatic access

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

rights and type checking done by the processor, thus allowing operating-system or executive software to prevent
exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of
the program or procedure that supplied the segment selector. See Section 5.10.4, "Checking Caller Access Privi-
leges (ARPL Instruction)” for a detailed explanation of the function and use of this instruction. Note that ARPL is not
supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1,

“Checking Access Rights (LAR Instruction)” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section
5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction)” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 5.10.2, “"Checking Read/Write Rights (VERR and VERW Instruc-
tions)” for a detailed explanation of the function and use of these instructions.

2.8.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DRO-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DR0O-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.8.4 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either
LPO or LP1 were to execute a WBINVD, the shared L1 and L2 for LPO/LP1 will be written back and invalidated as will
the shared L3. However, the L1 and L2 caches not shared with LPO and LP1 will not be written back nor invalidated.

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Not Written back and

not Invalidated
Logical Processors [LPO | LP1 [LP2 [LP3 |LP4 [LPs [LPe [LP7 | 20

L1 & L2 Cache _ |]
Written back < P

& Invalidated =l

\

Execution Engine

L3 Cache Written back and Invalidated

Uncore

QPI
t

Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any hon-wake events are pending during

shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the
LOCK# signal during the instruction. This always causes an explicit bus lock to occur.

®* Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock
or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the
Intel Core microarchitecture support two types of performance monitoring counters: programmable performance
counters similar to those available in the P6 family, and three fixed-function performance monitoring counters.

Vol.3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

Details of programmable and fixed-function performance monitoring counters for each processor generation are
described in Chapter 18, “Performance Monitoring”.

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the PerfEvtSell MSR (for
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 19, “Performance
Monitoring Events”, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 101 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium
processor.

See Section 9.4, “"Model-Specific Registers (MSRs),” for more information.

2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.8.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor extended states in XCRO (see
Section 2.6).

2-26 Vol. 3A

9. Updates to Chapter 14, Volume 2B

Change bars and green text show changes to Chapter 14 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

Changes to this chapter include typo corrections and added new Section 14.4.4.4, “"IA32_HWP_CTL MSR
(Address: 776H Logical Processor Scope)”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

14

CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power management and thermal moni-
toring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY

Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor. The technology enables the
management of processor power consumption via performance state transitions. These states are defined as
discrete operating points associated with different voltages and frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep® Technology in two
ways:

®* Centralization of the control mechanism and software interface in the processor by using model-specific
registers.

® Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus
master transfers for the duration of a performance state transition. Performance state transitions under the
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared.

14.1.1 Software Interface For Initiating Performance State Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL register, see Figure 14-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from
IA32_PERF_STATUS. IA32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance
monitoring tools can access model-specific events and report the occurrences of state transitions.

14.2 P-STATE HARDWARE COORDINATION

The Advanced Configuration and Power Interface (ACPI) defines performance states (P-states) that are used to
facilitate system software’s ability to manage processor power consumption. Different P-states correspond to
different performance levels that are applied while the processor is actively executing instructions. Enhanced Intel
SpeedStep Technology supports P-states by providing software interfaces that control the operating frequency and
voltage of a processor.

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a
subset of logical processors on a platform. These dependencies may impose requirements that impact the coordi-
nation of P-state transitions. As a result, multi-core processors may require an OS to provide additional software
support for coordinating P-state transitions for those subsets of logical processors.

ACPI firmware can choose to expose P-states as dependent and hardware-coordinated to OS power management
(OSPM) policy. To support OSPMs, multi-core processors must have additional built-in support for P-state hardware
coordination and feedback.

Intel 64 and IA-32 processors with dependent P-states amongst a subset of logical processors permit hardware
coordination of P-states and provide a hardware-coordination feedback mechanism using IA32_MPERF MSR and

Vol.3B 14-1

POWER AND THERMAL MANAGEMENT

IA32_APERF MSR. See Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed
description.

63 0 63 0

IA32_MPERF (Addr: E7H) IA32_APERF (Addr: E8H)

Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

® Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.06H.ECX[Bit 0] = 1
indicates IA32_MPERF MSR and IA32_APERF MSR are present.

®* IA32_MPERF MSR (E7H) increments in proportion to a fixed frequency, which is configured when the processor
is booted.

®* IA32_APERF MSR (E8H) increments in proportion to actual performance, while accounting for hardware coordi-
nation of P-state and TM1/TM2; or software initiated throttling.

® The MSRs are per logical processor; they measure performance only when the targeted processor is in the CO
state.

®* Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the
content of the individual of IA32_APERF or IA32_MPERF MSRs.

®* When either MSR overflows, both MSRs are reset to zero and continue to increment.

®* Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should
follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support
for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later
time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at the start of the time window used
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking
whether the new values read are less than the previously saved values.

Example 14-1 demonstrates steps for using the hardware feedback mechanism provided by IA32_APERF MSR and
IA32_MPERF MSR to determine a target P-state.

Example 14-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy” during previous sampling window.
// Typically, “PercentBusy” is measure over a time scale suitable for
// power management decisions
/!
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy,

// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.

// Note that both values need to be calculated over the same

14-2 Vol. 3B

POWER AND THERMAL MANAGEMENT

/I time window.
PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate # currentPstate) {
SetPState(TargetPstate);
}
// WRMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
/1 the two WRMSRs (for example, interrupts).
WRMSR(IA32_MPEREF, 0);
WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to
opportunistically increase performance. The Intel® Turbo Boost Technology can convert thermal headroom into
higher performance across multi-threaded and single-threaded workloads. The Intel® Dynamic Acceleration Tech-
nology feature can convert thermal headroom into higher performance if only one thread is active.

14.3.1 Intel® Dynamic Acceleration Technology

The Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration Technology. Intel Dynamic Accelera-
tion Technology takes advantage of thermal design headroom and opportunistically allows a single core to operate
at a higher performance level when the operating system requests increased performance.

14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation

Opportunistic processor performance operation, applicable to Intel Dynamic Acceleration Technology and Intel®
Turbo Boost Technology, has the following characteristics:

®* A transition from a normal state of operation (e.g. Intel Dynamic Acceleration Technology/Turbo mode
disengaged) to a target state is not guaranteed, but may occur opportunistically after the corresponding enable
mechanism is activated, the headroom is available and certain criteria are met.

®* The opportunistic processor performance operation is generally transparent to most application software.

* System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor
performance operation and may need to temporarily disengage opportunistic processor performance operation
when it requires more predictable processor operation.

®* When opportunistic processor performance operation is engaged, the OS should use hardware coordination
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Performance Operation

If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For
processors that do not support opportunistic processor performance operation, the default value is 0. The power-

Vol.3B 14-3

POWER AND THERMAL MANAGEMENT

on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during
platform initiation to enable/disable opportunistic processor performance operation in conjunction of OS power
management capabilities, see Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of IA32_MISC_ENABLE[38] to 0 to enable
opportunistic processor performance operation. OS and applications must use CPUID leaf 06H if it needs to detect
processors that have opportunistic processor performance operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. CPUID.06H:EAX[1]) indicates
opportunistic processor performance operation, such as Intel Dynamic Acceleration Technology, has been enabled
by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0.

14.3.2.2 0S Control of Opportunistic Processor Performance Operation

There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write
sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR (0198H),
and it is not shared between logical processors in a physical package. In order for OS to engage Intel Dynamic
Acceleration Technology/Turbo mode, the BIOS must:

®* Enable opportunistic processor performance operation, as described in Section 14.3.2.1.
®* Expose the operating points associated with Intel Dynamic Acceleration Technology/Turbo mode to the OS.

63 3332 31 16 15 0

Reserved Reserved

Intel® Dynamic Acceleration Technology / Turbo DISENGAGE

Enhanced Intel Speedstep® Technology Transition Target

Figure 14-2. IA32_PERF_CTL Register

14.3.2.3 Required Changes to OS Power Management P-State Policy

Intel Dynamic Acceleration Technology and Intel Turbo Boost Technology can provide opportunistic performance
greater than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s
processor frequency information). System software can use a pair of MSRs to observe performance feedback. Soft-
ware must query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between
IA32_APERF and IA32_MPERF is architecturally defined and a value greater than unity indicates performance
increase occurred during the observation period due to Intel Dynamic Acceleration Technology. Without incorpo-
rating such performance feedback, the target P-state evaluation algorithm can result in a non-optimal P-state
target.

14-4 Vol.3B

POWER AND THERMAL MANAGEMENT

There are other scenarios under which OS power management may want to disable Intel Dynamic Acceleration
Technology, some of these are listed below:

®* When engaging ACPI defined passive thermal management, it may be more effective to disable Intel Dynamic
Acceleration Technology for the duration of passive thermal management.

®* When the user has indicated a policy preference of power savings over performance, OS power management
may want to disable Intel Dynamic Acceleration Technology while that policy is in effect.

14.3.3 Intel® Turbo Boost Technology

Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Intel®
microarchitecture code name Nehalem. It uses the same principle of leveraging thermal headroom to dynamically
increase processor performance for single-threaded and multi-threaded/multi-tasking environment. The program-
ming interface described in Section 14.3.2 also applies to Intel Turbo Boost Technology.

14.3.4 Performance and Energy Bias Hint Support

Intel 64 processors may support additional software hint to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy consumption.

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and
it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a
hint to balance performance with energy consumption.

63 43 0

Reserved

Energy Policy Preference Hint

Figure 14-3. IA32_ENERGY_PERF_BIAS Register

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-3. The scope of IA32_ENERGY_PERF_BIAS is per
logical processor, which means that each of the logical processors in the package can be programmed with a
different value. This may be especially important in virtualization scenarios, where the performance / energy
requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors
at higher hierarchy level will be resolved in favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

14.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)

Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control and monitor discrete frequency-based operating points
via the IA32_PERF_CTL and IA32_PERF_STATUS MSRs.

Vol.3B 14-5

POWER AND THERMAL MANAGEMENT

In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC),
which specifies that the platform enumerates a continuous, abstract unit-less, performance value scale that is not
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in terms
of a delivered integer workload performance result, the OS is required to characterize the performance value range
to comprehend the delivered performance for an applied workload.

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided
hints include minimum and maximum performance limits, preference towards energy efficiency or performance,
and the specification of a relevant workload history observation time window. The means for the OS to override
HWP's autonomous selection of performance state with a specific desired performance target is also provided,
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

14.4.1 HWP Programming Interfaces

The programming interfaces provided by HWP include the following:

® The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-
cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects in
bits 7 through 11 of CPUID.06H:EAX:

— Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST,
IA32_HWP_STATUS.

— Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic
Performance changes and excursions.

— Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software to
program activity window in the IA32_HWP_REQUEST MSR.

— Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

— Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors
in the physical package.

Table 14-1. Architectural and Non-Architectural MSRs Related to HWP

Address | Architectural Register Name Description
770H Y IA32_PM_ENABLE Enable/Disable HWP.
771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic).
772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy

Performance Preference, Desired) for all logical processor in the
physical package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy
Performance Preference, Desired) for a single logical processor.

775H Y IA32_HWP_PECI_REQUEST_INFO | Conveys embedded system controller requests to override some of
the OS HWP Request settings via the PECI mechanism.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and
excursions to Minimum Performance.

19CH Y IA32_THERM_STATUSIbits 15:12] | Conveys reasons for performance excursions.

64€H N MSR_PPERF Productive Performance Count.

14-6 Vol. 3B

POWER AND THERMAL MANAGEMENT

* Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

14.4.2 E€Enabling HWP
The layout of the IA32_PM_ENABLE MSR is shown in Figure 14-4. The bit fields are described below:

63 10

Reserved

HWP_ENABLE

Figure 14-4. IA32_PM_ENABLE MSR

* HWP_ENABLE (bit 0, R/W10nce) — Software sets this bit to enable HWP with autonomous selection of
processor P-States. When set, the processor will disregard input from the legacy performance control interface
(IA32_PERF_CTL). Note this bit can only be enabled once from the default value. Once set, writes to the
HWP_ENABLE bit are ignored. Only RESET will clear this bit. Default = zero (0).

® Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to
IA32_PM_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of
IA32_PM_ENABLE MSR at power-on is 0, i.e. HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e., writing to it from any logical processor within a package affects all
logical processors within that package.

14.4.3 HWP Performance Range and Dynamic Capabilities

The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to work-
load-specific frequency optimizations of HWP). However the mapping is processor family specific.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 14-5. The bit fields are described below:

Vol.3B 14-7

POWER AND THERMAL MANAGEMENT

63 32 31 24 23 16 15 87 0

Reserved

Lowest_Performance

Most_Efficient_Performance

Guaranteed_Performance

Highest_Performance

Figure 14-5. IA32_HWP_CAPABILITIES Register

* Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.

®* Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This
value can change dynamically as a result of internal or external constraints, e.g. thermal or power limits.

* Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level.
This value can change dynamically as a result of workload characteristics.

* Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can program
to IA32_HWP_REQUEST.

® Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external agent,
e.g. RAPL (see Figure 14.10.1), or the setting of a Configurable TDP level (see model-specific controls related to
Programmable TDP Limit in Chapter 2, "Model-Specific Registers (MSRs)"” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 4.). Notification of a change to the Guaranteed_Performance occurs via
interrupt (if configured) and the IA32_HWP_Status MSR. Changes to Guaranteed_Performance are indicated when
a macroscopically meaningful change in performance occurs i.e. sustained for greater than one second. Conse-
quently, notification of a change in Guaranteed Performance will typically occur no more frequently than once per
second. Rapid changes in platform configuration, e.g. docking / undocking, with corresponding changes to a
Configurable TDP level could potentially cause more frequent notifications.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

14.4.4 Managing HWP

14.4.4.1 1A32_HWP_REQUEST MSR (Address: 774H Logical Processor Scope)

Typically, the operating system controls HWP operation for each logical processor via the writing of control hints /
constraints to the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 14-6.
The bit fields are described below Figure 14-6.

Operating systems can control HWP by writing both IA32_ HWP_REQUEST and IA32_HWP_REQUEST_PKG MSRs
(see Section 14.4.4.2). Five valid bits within the IA32_HWP_REQUEST MSR let the operating system flexibly select
which of its five hint / constraint fields should be derived by the processor from the IA32_HWP_REQUEST MSR and
which should be derived from the IA32_HWP_REQUEST_PKG MSR. These five valid bits are supported if
CPUID[6].EAX[17] is set.

14-8 Vol.3B

POWER AND THERMAL MANAGEMENT

When the IA32_HWP_REQUEST MSR Package Control bit is set, any valid bit that is NOT set indicates to the
processor to use the respective field value from the IA32_HWP_REQUEST_PKG MSR. Otherwise, the values are
derived from the IA32_HWP_REQUEST MSR. The valid bits are ignored when the IA32_HWP_REQUEST MSR
Package Control bit is zero.

63 62 61 60 59 4342 41 32 31 24 23 16 15 87 0

]

Reserved

Minimum Valid

Maximum Valid
Desired Valid

EPP Valid
Activity_Window Valid
Package_Control

Activity_Window

Energy_Performance_Preference

Desired_Performance

Maximum_Performance

Minimum_Performance

Figure 14-6. IA32_HWP_REQUEST Register

® Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

* Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions
above the limit requested by OS are possible due to hardware coordination between the processor cores and
other components in the package. The default value of this field is
IA32_HWP_CAPABILITIES.Highest_Performance.

®* Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero,
hardware autonomous selection determines the performance target. When set to a non-zero value (between
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit
performance request hint to the hardware; effectively disabling HW Autonomous selection. The
Desired_Performance input is non-constraining in terms of Performance and Energy Efficiency optimizations,
which are independently controlled. The default value of this field is 0.

* Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may
write a range of values from 0 (performance preference) to OFFH (energy efficiency preference) to influence
the rate of performance increase /decrease and the result of the hardware's energy efficiency and performance
optimizations. The default value of this field is 80H. Note: If CPUID.06H:EAX[bit 10] indicates that this field is
not supported, HWP uses the value of the IA32_ENERGY_PERF_BIAS MSR to determine the energy efficiency /
performance preference.

®* Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload
history observation window for performance/frequency optimizations. If 0, the hardware will determine the
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined
with the Energy_Performance_Preference input, Activity_ Window influences the rate of performance increase

Vol.3B 14-9

POWER AND THERMAL MANAGEMENT

/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this field
is 0.

®* Package_Control (bit 42, RW) — When set, causes this logical processor's IA32_HWP_REQUEST control
inputs to be derived from the IA32_ HWP_REQUEST_PKG MSR.

® Bits 58:43 are reserved and must be zero.

¢ Activity_Window Valid (bit 59, RW) — When set, indicates to the processor to derive the Activity Window
field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

* EPP Valid (bit 60, RW) — When set, indicates to the processor to derive the EPP field value from the
IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

* Desired Valid (bit 61, RW) — When set, indicates to the processor to derive the Desired Performance field
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

* Maximum Valid (bit 62, RW) — When set, indicates to the processor to derive the Maximum Performance
field value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from
the IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

¢* Minimum Valid (bit 63, RW) — When set, indicates to the processor to derive the Minimum Performance field
value from the IA32_HWP_REQUEST MSR even if the package control bit is set. Otherwise, derive it from the
IA32_HWP_REQUEST_PKG MSR. The default value of this field is 0.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by
setting the Desired_Performance field to a non-zero value, however, the effective frequency delivered is subject to
the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including: power,
thermal, and package coordination constraints. The processor may also run below the Minimum_Performance level
for short durations (few milliseconds) following C-state exit, and when Hardware Duty Cycling (see Section 14.5) is
enabled.

When the IA32_HWP_REQUEST MSR is set to fast access mode, writes of this MSR are posted, i.e., the WRMSR
instruction retires before the data reaches its destination within the processor. It may retire even before all
preceding IA stores are globally visible, i.e., it is not an architecturally serializing instruction anymore (no store
fence). A new CPUID bit indicates this new characteristic of the IA32_HWP_REQUEST MSR (see Section 14.4.8 for
additional details).

14-10 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.4.4.2 1A32_HWP_REQUEST_PKG MSR (Address: 772H Package Scope)

63 42 41 32 31 24 23 16 15 87 0

Reserved

Activity_Window

Energy_Performance_Preference

Desired_Performance

Maximum_Performance

Minimum_Performance

Figure 14-7. IA32_HWP_REQUEST_PKG Register

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR
with the exception of the the Package Control bit field and the five valid bit fields, which do not exist in the
IA32_HWP_REQUEST_PKG MSR. Field values written to this MSR apply to all logical processors within the physical
package with the exception of logical processors whose IA32_HWP_REQUEST.Package Control field is clear (zero).
Single P-state Control mode is only supported when IA32_HWP_REQUEST_PKG is not supported.

14.4.4.3 1A32_HWP_PECI_REQUEST_INFO MSR (Address 775H Package Scope)

When an embedded system controller is integrated in the platform, it can override some of the OS HWP Request
settings via the PECI mechanism. PECI initiated settings take precedence over the relevant fields in the
IA32_HWP_REQUEST MSR and in the IA32_HWP_REQUEST_PKG MSR, irrespective of the Package Control bit or
the Valid Bit values described above. PECI can independently control each of: Minimum Performance, Maximum
Performance and EPP fields. This MSR contains both the PECI induced values and the control bits that indicate
whether the embedded controller actually set the processor to use the respective value.

PECI override is supported if CPUID[6].EAX[16] is set.

63 62 61 60 59 32 31 24 23 16 15 87 0

Min PECI Override J

Max PECI Override
Reserved

EPP PECI Overrde ———
Energy_Performance_Preference

Reserved Reserved

Maximum_Performance

Minimum_Performance

Figure 14-8. IA32_HWP_PECI_REQUEST_INFO MSR

Vol.3B 14-11

POWER AND THERMAL MANAGEMENT

The layout of the IA32_HWP_PECI_REQUEST_INFO MSR is shown in Figure 14-8. This MSR is writable by the
embedded controller but is read-only by software executing on the CPU. This MSR has Package scope. The bit fields
are described below:

® Minimum_Performance (bits 7:0, RO) — Used by the OS to read the latest value of PECI minimum
performance input.

* Maximum_Performance (bits 15:8, RO) — Used by the OS to read the latest value of PECI maximum
performance input.

® Bits 23:16 are reserved and must be zero.

* Energy_Performance_Preference (bits 31:24, RO) — Used by the OS to read the latest value of PECI
energy performance preference input.

® Bits 59:32 are reserved and must be zero.

®* EPP_PECI_Override (bit 60, RO) — Indicates whether PECI if currently overriding the Energy Performance
Preference input. If set(1), PECI is overriding the Energy Performance Preference input. If clear(0), OS has
control over Energy Performance Preference input.

® Bit 61 is reserved and must be zero.

* Max_PECI_Override (bit 62, RO) — Indicates whether PECI if currently overriding the Maximum
Performance input. If set(1), PECI is overriding the Maximum Performance input. If clear(0), OS has control
over Maximum Performance input.

®* Min_PECI_Override (bit 63, RO) — Indicates whether PECI if currently overriding the Minimum Performance
input. If set(1), PECI is overriding the Minimum Performance input. If clear(0), OS has control over Minimum
Performance input.

HWP Request Field Hierarchical Resolution

HWP Request field resolution is fed by three MSRs: IA32_HWP_REQUEST, IA32_HWP_REQUEST_PKG and
IA32_HWP_PECI_REQUEST_INFO. The flow that the processor goes through to resolve which field value is chosen
is shown below.
For each of the two HWP Request fields; Desired and Activity Window:
If IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0
Resolved Field Value = IA32_HWP_REQUEST_PKG. <field>
Else
Resolved Field Value = IA32_HWP_REQUEST. <field>
For each of the three HWP Request fields; Min, Max and EPP:
If IA32_HWP_PECI_REQUEST_INFO.<field> PECI Override bit = 1
Resolved Field Value = IA32_HWP_PECI_REQUEST_INFO.<field>
Else if IA32_HWP_REQUEST.PACKAGE_CONTROL = 1 and IA32_HWP_REQUEST.<field> valid bit = 0
Resolved Field Value = IA32_HWP_REQUEST_PKG.<field>
Else
Resolved Field Value = IA32_HWP_REQUEST. <field>

14.4.4.4 |1A32_HWP_CTL MSR (Address: 776H Logical Processor Scope)

IA32_HWP_CTL[0] controls the behavior of IA32_HWP_REQUEST Package Control [bit 42]. This control bit allows
the IA32_HWP_REQUEST MSR to stay in INIT mode most of the time (Control Bit is equal to its RESET value of 0)
thus avoiding actual saving/restoring of the MSR contents when the OS adds it to the register set saved and
restored by XSAVES/XRSTORS.

® When IA32_HWP_CTL[0] = O:

— IfIA32_HWP_REQUEST[42] = 0, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— IfIA32_HWP_REQUEST[42] = 1, the processor selects the HWP values (Min, Max, EPP, Desired, Activity
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according

14-12 Vol. 3B

POWER AND THERMAL MANAGEMENT

to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 14.4.4.1 for
additional details.

® When IA32_HWP_CTL[0] = 1, the behavior is reversed:

— IfIA32_HWP_REQUEST[42] = 1, the processor ignores all fields of the IA32_HWP_REQUEST_PKG MSR and
selects all HWP values (Min, Max, EPP, Desired, Activity Window) from the IA32_HWP_REQUEST MSR.

— IfIA32_HWP_REQUEST[42] = 0, the processor selects the HWP values (Min, Max, EPP, Desired, Activity
Window) either from the IA32_HWP_REQUEST MSR or from the IA32_HWP_REQUEST_PKG MSR according
to the values contained in the IA32_HWP_REQUEST MSR bit fields [bits 63:59]. See Section 14.4.4.1 for
additional details.

Section 14-2 summarizes the IA32_HWP_CTL MSR bit 0 control behavior.

Table 14-2. IA32_HWP_CTL MSR Bit 0 Behavior
Field Description

Threadrequest | Defines which HWP Request MSR is used, whether thread level or package level. When the package MSR is used, the
PKG CTL thread MSR valid bits define which thread MSR fields override the package (default 0).

meaning A3 HWP_CTL[PKG_CTL_PLR] |IA32_HWP_REQUEST[PKG_CTL] HWP Request MSR Used
0 0 IA32_HWP_REQUEST MSR
0 1 IA32_HWP_REQUEST_PKG MSR
1 0 IA32_HWP_REQUEST_PKG MSR
1 1 IA32_HWP_REQUEST MSR

This MSR is supported if CPUID[6].EAX[22] is set.
If the IA32_PM_ENABLE[HWP_ENABLE] (bit 0) is not set, access to this MSR will generate a #GP fault.

14.4.5 HWP Feedback

The processor provides several types of feedback to the OS during HWP operation.

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 14.2) allows the OS to calculate the resultant
effective frequency delivered over a time period. Energy efficiency and performance optimizations directly impact
the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 14-9. It provides feedback regarding changes to
IA32_HWP_CAPABILITIES.Guaranteed_Performance, IA32_HWP_CAPABILITIES.Highest_Performance, excur-
sions to IA32_HWP_CAPABILITIES.Minimum_Performance, and PECI_Override entry/exit events. The bit fields are
described below:

* Guaranteed_Performance_Change (bit 0, RWC0) — If set (1), a change to Guaranteed_Performance has
occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST.
Software must clear this bit by writing a zero (0).

® Bit 1 is reserved and must be zero.

* Excursion_To_Minimum (bit 2, RWCO0) — If set (1), an excursion to Minimum_Performance of
IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).

®* Highest_Change (bit 3, RWC0) — If set (1), a change to Highest Performance has occurred. Software
should query IA32_HWP_CAPABILITIES to ascertain the new Highest Performance value. Software must clear
this bit by writing a zero (0). Interrupts upon Highest Performance change are supported if CPUID[6].EAX[15]
is set.

®* PECI_Override_Entry (bit 4, RWCO) — If set (1), an embedded/management controller has started a PECI
override of one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or
IA32_HWP_REQUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which
fields are now overridden via the PECI mechanism and what their values are (see Section 14.4.4.3 for

Vol. 3B 14-13

POWER AND THERMAL MANAGEMENT

additional details). Software must clear this bit by writing a zero (0). Interrupts upon PECI override entry are
supported if CPUID[6].EAX[16] is set.

®* PECI_Override_Exit (bit 5, RWCO0) — If set (1), an embedded/management controller has stopped
overriding one or more OS control hints (Min, Max, EPP) specified in IA32_HWP_REQUEST or
IA32_HWP_REQUEST_PKG. Software may query IA32_HWP_PECI_REQUEST_INFO MSR to ascertain which
fields are still overridden via the PECI mechanism and which fields are now back under software control (see
Section 14.4.4.3 for additional details). Software must clear this bit by writing a zero (0). Interrupts upon PECI
override exit are supported if CPUID[6].EAX[16] is set.

® Bits 63:6 are reserved and must be zero.

63 6543210

Reserved

PECI_Override_Exit

PECI_Override_Entry

Highest_Change

Excursion_To_Minimum

Reserved

Guaranteed_Performance_Change

Figure 14-9. IA32_HWP_STATUS MSR

The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will
cause the hardware to set the bit again and issue the notification. Status bits are not set for “*normal” excursions,
e.g., running below Minimum Performance for short durations during C-state exit. Changes to
Guaranteed_Performance, Highest_Performance, excursions to Minimum_Performance, or PECI_Override
entry/exit will occur no more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to
Minimum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query of
HWP feedback is shown in Figure 14-10. The bit fields of IA32_THERM_STATUS associated with HWP feedback are
described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 14.8.5.2).

14-14 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 32 31 27 2322 161514131211 10 9 8 7 6 5 4 3 2 10

Reserved

Reading Valid %

Resolution in Deg. Celsius
Digital Readout
Cross-domain Limit Log
Cross-domain Limit Status
Current Limit Log
Current Limit Status
Power Limit Notification Log
Power Limit Notification Status
Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log
Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

Figure 14-10. IA32_THERM_STATUS Register With HWP Feedback

® Bits 11:0, See Section 14.8.5.2.

® Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g. Electrical Design
Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.

® Current Limit Log (bit 13, RWCO0) — If set (1), an electrical current limit has been exceeded that has
adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is sticky,
software may clear this bit by writing a zero (0).

®* Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g. processor
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

® Cross-domain Limit Log (bit 15, RWCO0) — If set (1), indicates another hardware domain (e.g. processor
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of this
bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

® Bits 63:16, See Section 14.8.5.2.

14.4.5.1 Non-Architectural HWP Feedback

The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to software.
The layout of the MSR_PPERF is shown in Figure 14-11.

63 0

PCNT - Productive Performance Count

Figure 14-11. MSR_PPERF MSR

® PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contributing
to instruction execution (e.g. unhalted and unstalled cycles). This counter increments at the same rate as
IA32_APERF, where the ratio of (APCNT/AACNT) is an indicator of workload scalability (0% to 100%). Note that
values in this register are valid even when HWP is not enabled.

Vol. 3B 14-15

POWER AND THERMAL MANAGEMENT

14.4.6 HWP Notifications

Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID. If supported,
the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, when enabled,
are delivered using the existing thermal LVT entry. The layout of the IA32_ HWP_INTERRUPT is shown in

Figure 14-12. The bit fields are described below:

63 43210

Reserved

EN_PECI_OVERRIDE

EN_Highest_Change

EN_Excursion_Minimum

EN_Guaranteed_Performance_Change

Figure 14-12. IA32_HWP_INTERRUPT MSR

®* EN_Guaranteed_Performance_Change (bit 0, RW) — When set (1), an HWP Interrupt will be generated
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0
(Interrupt generation is disabled).

®* EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value is
0 (Interrupt generation is disabled).

* EN_Highest_Change (bit 2, RW) — When set (1), an HWP Interrupt will be generated whenever a change to
the IA32_HWP_CAPABILITIES.Highest_Performance occurs. The default value is 0 (interrupt generation is
disabled). Interrupts upon Highest Performance change are supported if CPUID[6].EAX[15] is set.

* EN_PECI_OVERRIDE (bit 3, RW) — When set (1), an HWP Interrupt will be generated whenever PECI starts
or stops overriding any of the three HWP fields described in Section 14.4.4.3. The default value is 0 (interrupt
generation is disabled). See Section 14.4.5 and Section 14.4.4.3 for details on how the OS learns what is the
current set of HWP fields that are overridden by PECI. Interrupts upon PECI override change are supported if
CPUID[6].EAX[16] is set.

® Bits 63:4 are reserved and must be zero.

14.4.7 Idle Logical Processor Impact on Core Frequency
Intel processors use one of two schemes for setting core frequency:
1. All cores share same frequency.

2. Each physical core is set to a frequency of its own.

In both cases the two logical processors that share a single physical core are set to the same frequency, so the
processor accounts for the IA32_HWP_REQUEST MSR fields of both logical processors when defining the core
frequency or the whole package frequency.

When CPUID[6].EAX[20] is set and only one logical processor of the two is active, while the other is idle (in any
C1 sub-state or in a deeper sleep state), only the active logical processor's IA32_HWP_REQUEST MSR fields
are considered, i.e., the HWP Request fields of a logical processor in the C1E sub-state or in a deeper sleep state
are ignored.

Note: when a logical processor is in C1 state its HWP Request fields are accounted for.

14-16 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.4.8 Fast Write of Uncore MSR (Model Specific Feature)

There are a few logical processor scope MSRs whose values need to be observed outside the logical processor. The
WRMSR instruction takes over 1000 cycles to complete (retire) for those MSRs. This overhead forces operating
systems to avoid writing them too often whereas in many cases it is preferable that the OS writes them quite
frequently for optimal power/performance operation of the processor.

The model specific “Fast Write MSR” feature reduces this overhead by an order of magnitude to a level of 100 cycles
for a selected subset of MSRs.

Note: Writes to Fast Write MSRs are posted, i.e., when the WRMSR instruction completes, the data may still be “in
transit” within the processor. Software can check the status by querying the processor to ensure data is already
visible outside the logical processor (see Section 14.4.8.3 for additional details). Once the data is visible outside
the logical processor, software is ensured that later writes by the same logical processor to the same MSR will be
visible later (will not bypass the earlier writes).

MSRs that are selected for Fast Write are specified in a special capability MSR (see Section 14.4.8.1). Architectural
MSRs that existed prior to the introduction of this feature and are selected for Fast Write, thus turning from slow to
fast write MSRs, will be noted as such via a new CPUID bit. New MSRs that are fast upon introduction will be docu-
mented as such without an additional CPUID bit.

Three model specific MSRs are associated with the feature itself. They enable enumerating, controlling and moni-
toring it. All three are logical processor scope.

14.4.8.1 FAST_UNCORE_MSRS_CAPABILITY (Address: 0x65F, Logical Processor Scope)

Operating systems or BIOS can read the FAST_UNCORE_MSRS_CAPABILITY MSR to enumerate those MSRs that
are Fast Write MSRs.

63 10

Reserved

FAST_IA32_HWP_REQUEST MSR

Figure 14-13. FAST_UNCORE_MSRS_CAPABILITY MSR

®* FAST_IA32_ HWP_REQUEST MSR (bit 0, RO) — When set (1), indicates that the IA32_HWP_REQUEST MSR
is supported as a Fast Write MSR. A value of 0 indicates the IA32_HWP_REQUEST MSR is not supported as a
Fast Write MSR.

® Bits 63:1 are reserved and must be zero.

14.4.8.2 FAST_UNCORE_MSRS_CTL (Address: 0x657, Logical Processor Scope)

Operating Systems or BIOS can use the FAST_UNCORE_MSRS_CTL MSR to opt-in or opt-out for fast write of
specific MSRs that are enabled for Fast Write by the processor.

Note: Not all MSRs that are selected for this feature will necessarily have this opt-in/opt-out option. They may be
supported in fast write mode only.

Vol. 3B 14-17

POWER AND THERMAL MANAGEMENT

63 10

Reserved

FAST_IA32_HWP_REQUEST MSR_ENABLE

Figure 14-14. FAST_UNCORE_MSRS_CTL MSR

®* FAST_IA32 HWP_REQUEST_MSR_ENABLE (bit 0, RW) — When set (1), enables fast access mode for the
IA32_HWP_REQUEST MSR and sets the low latency, posted IA32_HWP_REQUESRT MSR' CPUID[6].EAX[18].
The default value is 0. Note that this bit can only be enabled once from the default value. Once set, writes to
this bit are ignored. Only RESET will clear this bit.

® Bits 63:1 are reserved and must be zero.

14.4.8.3 FAST_UNCORE_MSRS_STATUS (Address: 0x65E, Logical Processor Scope)

Software that executes the WRMSR instruction of a Fast Write MSR can check whether the data is already visible
outside the logical processor by reading the FAST_UNCORE_MSRS_STATUS MSR. For each Fast Write MSR there is
a status bit that indicates whether the data is already visible outside the logical processor or is still in “transit”.

63 10

Reserved

FAST IA32_HWP_REQUEST WRITE_STATUS

Figure 14-15. FAST_UNCORE_MSRS_STATUS MSR

® FAST_IA32_HWP_REQUEST_WRITE_STATUS (bit 0, RO) — Indicates whether the CPU is still in the
middle of writing IA32_HWP_REQUEST MSR, even after the WRMSR instruction has retired. A value of 1
indicates the last write of IA32_HWP_REQUEST is still ongoing. A value of 0 indicates the last write of
IA32_HWP_REQUEST is visible outside the logical processor.

® Bits 63:1 are reserved and must be zero.

14.49 Fast_IA32_HWP_REQUEST CPUID

IA32_HWP_REQUEST is an architectural MSR that exists in processors whose CPUID[6].EAX[7] is set (HWP BASE
is enabled). This MSR has logical processor scope, but after its contents are written the contents become visible
outside the logical processor. When the FAST_IA32_HWP_REQUEST CPUID[6].EAX[18] bit is set, writes to the
IA32_HWP_REQUEST MSR are visible outside the logical processor via the “Fast Write"” feature described in Section
14.4.8.

14.4.10 Recommendations for OS use of HWP Controls
Common Cases of Using HWP
The default HWP control field values are expected to be suitable for many applications. The OS can enable autono-

mous HWP for these common cases by

14-18 Vol. 3B

POWER AND THERMAL MANAGEMENT

® Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the
performance target). Set IA32_HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window
size).

To maximize HWP benefit for the common cases, the OS should set

* IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and

* IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance.

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is function-
ally equivalent to using of the IA32_PERF_CTL interface and is therefore not recommended (bypassing HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default values.
The OS can characterize HWP by:

®* keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to
prevent non-linearity in the characterization process,

® utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program
IA32_HWP_REQUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_HWP_REQUEST.Energy
Performance Preference field, which must also be characterized.

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than
IA32_HWP_CAPABILITIES.Guaranteed Performance then notification of excursions to Minimum Performance may
be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current
delivered effective frequency and for the duration of the specific performance requirement set
IA32_HWP_REQUEST.Desired_Performance # 0 and adjust IA32_HWP_REQUEST.Energy_Performance_Preference
as necessary to achieve the required workload performance. The MSR_PPERF.PCNT value can be used to better
comprehend the potential performance result from adjustments to IA32_HWP_REQUEST.Desired_Performance.
The OS should set IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection.

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance =
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting
IA32_HWP_REQUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_HWP_REQUEST.Minimum_Performance =
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting
IA32_HWP_REQUEST.Energy_Performance_Preference = OFFH (energy efficiency preference).

Mixing Logical Processor and Package Level HWP Field Settings

Using the IA32_HWP_REQUEST Package_Control bit and the five valid bits in that MSR, the OS can mix and match
between selecting the Logical Processor scope fields and the Package level fields. For example, the OS can set all
logical cores' IA32_HWP_REQUEST.Package_Control bit to '1’, and for those logical processors if it prefers a
different EPP value than the one set in the IA32_HWP_REQUEST_PKG MSR, the OS can set the desired EPP value
and the EPP valid bit. This overrides the package EPP value for only a subset of the logical processors in the
package.

Additional Guidelines

Set IA32_HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of oper-
ation. For example, a mobile platforms' setting may be towards performance preference when on AC power and
more towards energy efficiency when on DC power.

Vol. 3B 14-19

POWER AND THERMAL MANAGEMENT

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject to
limitations and can adversely impact the performance of other processor components e.g. Graphics

If default values deliver undesirable performance latency in response to events, the OS should set
IA32_HWP_REQUEST. Activity_Window to a low (non-zero) value and
IA32_HWP_REQUEST.Energy_Performance_Preference towards performance (0) for the event duration.

Similarly, for “real-time” threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards performance
(0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g. 01H, for the duration of their execution.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the
IA32_HWP_Request.Maximum_Performance value as appropriate to control energy efficiency. Adjustments to
IA32_HWP_REQUEST.Energy_Performance_Preference may also be necessary.

145 HARDWARE DUTY CYCLING (HDC)

Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selectively
force only the processor cores into an idle state.

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC
to force one or more components into an idle state or wake up those components previously forced into an idle
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR to
a packaged-scope MSR from any logical processor within the same package.

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.qg. if a thread is forced to idle state just before completion and entering a “natural idle”.

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average
frequency computed by software will include the impact of HDC forced idle.

The primary use of HDC is enable system software to manage low active workloads to increase the package level
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation.

When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is set
to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

14.5.1 Hardware Duty Cycling Programming Interfaces

The programming interfaces provided by HDC include the following:

® The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-
cally, execute CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of the
following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

®* Additionally, HDC may provide several non-architectural MSR.

14-20 Vol. 3B

POWER AND THERMAL MANAGEMENT

Table 14-3. Architectural and non-Architecture MSRs Related to HDC

Address | Architec Register Name Description
tural

DBOH Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling.

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY | Core level stalled cycle counter due to HDC forced idling on one or more
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE | Accumulate the cycles the package was in C2' state and at least one logical

SIDENCY processor was in forced idle
656H N MSR_PKG_HDC_DEEP_RESIDE | Accumulate the cycles the package was in the software specified Cx! state
NCY and at least one logical processor was in forced idle. Cx is specified in

MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL | HDC configuration controls

NOTES:

1. The package “C-states” referred to in this section are processor-specific C-states.

14.5.2 Package level Enabling HDC

The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 14-16. IA32_PKG_HDC_CTL is a writable MSR from
any logical processor in a package. The bit fields are described below:

63 10

Reserved

[| Reserved HDC_PKG_Enable

Figure 14-16. IA32_PKG_HDC_CTL MSR

* HDC_PKG_Enable (bit 0, R/W) — Software sets this bit to enable HDC operation by allowing the processor
to force to idle all "HDC-allowed” (see Figure 14.5.3) logical processors in the package. Clearing this bit
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a
previous ‘0’-to-"1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

® Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting
IA32_PKG_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A
'0'-to-'1" transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the non-
zero state of IA32_PM_CTL1[bit 0]) logical processors in the package. A *1’-to-'0’ transition wakes up those HDC
force-idled logical processors.

Software can enable or disable HDC using this package level control multiple times from any logical processor in
the package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such
as: IA32_PM_CTL1 (described in Section 14.5.3). Propagation of the change in
IA32_PKG_HDC_CTL.HDC_PKG_Enable and reaching all HDC idled logical processor to be woken up may take on
the order of core C6 exit latency.

Vol. 3B 14-21

POWER AND THERMAL MANAGEMENT

14.5.3 Logical-Processor Level HDC Control

The layout of the IA32_PM_CTL1 MSR is shown in Figure 14-17. Each logical processor in a package has its own
IA32_PM_CTL1 MSR. The bit fields are described below:

63 10

Reserved

HDC_Allow_Block

|:| Reserved

Figure 14-17. IA32_PM_CTL1 MSR

* HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1).

® Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1. At
RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using the
package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR.
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to IA32_PM_CTL1
on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code that executes on
the logical processor targeted to be allowed into or blocked from HDC operation.

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may
decide to stop duty cycling of all other Logical Processors as well.

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to
IA32_PM_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-'1’
transition of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

14.5.4 HDC Residency Counters

There is a collection of counters available for software to track various residency metrics related to HDC operation.
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the
logical processor in a core/package must be in the HDC forced idle state.

14.5.4.1 1A32_THREAD_STALL

Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The
layout of the IA32_THREAD_STALL MSR is shown in Figure 14-18. Each logical processor in a package has its own
IA32_THREAD_STALL MSR. The bit fields are described below:

63 0

Stall_cycle_cnt

Figure 14-18. IA32_THREAD_STALL MSR

14-22 Vol. 3B

POWER AND THERMAL MANAGEMENT

¢ Stall_Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this processor core
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical
processor was stalled due to forced-idle will be added to the counter. This counter is available only if
CPUID.06H:EAX[bit 13] = 1. Default = zero (0).

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as CO time to
traditional OS accounting mechanisms (e.g. time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as
long as CPUID.06H:EAX[bit 13] = 1.

14.5.4.2 Non-Architectural HDC Residency Counters

Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the
MSR_CORE_HDC_RESIDENCY is shown in Figure 14-19. Each processor core in a package has its own
MSR_CORE_HDC_RESIDENCY MSR. The bit fields are described below:

63 0

Core_Cx_duty_cycle_cnt

Figure 14-19. MSR_CORE_HDC_RESIDENCY MSR

® Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated
only after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the
core is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced
into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault.
Default = zero (0).

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core never
serviced any forced HDC idle.

MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the
package is in C2 state, all processor cores in the package are not active and at least one logical processor was
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in

Figure 14-20. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described
below:

63 0

Pkg_Duty_cycle_cnt

Figure 14-20. MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

Vol. 3B 14-23

POWER AND THERMAL MANAGEMENT

* Pkg_Duty_Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this processor
core since last RESET. This counter increments at the same rate of the TSC. Package shallow residency may be
implementation specific. In the initial implementation, the threshold is package C2-state. The count is updated
only after package C2-state exit from a forced idled C-state. At each update, the increment counts cycles when
the package is in C2 state and at least one processor core in this package was forced into idle state due to HDC.
If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. Default = zero (0).

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using
MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 14-21. There is
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below:

63 0

Pkg_Cx_duty_cycle_cnt

Figure 14-21. MSR_PKG_HDC_DEEP_RESIDENCY MSR

* Pkg_Cx_Duty_Cycle_Cnt (bits 63:0, R/0) — Stores accumulated HDC forced-idle cycle count of this
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated only
after package C-state exit from a forced idle state. At each update, the increment counts cycles when the
package is in the software-configured Cx state and at least one processor core in this package was forced into
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor
package never serviced any forced HDC idle.

MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter
MSR_PKG_HDC_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 14-22.
There is one MSR_PKG_HDC_CONFIG per package. The bit fields are described below:

63 2 0

Reserved

HDC_Cx_Monitor

\:’ Reserved

Figure 14-22. MSR_PKG_HDC_CONFIG MSR

®* Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0: no-counting; 1: count package C2 only,
2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; other
encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault.
Default = zero (0).

® Bits 63:3 are reserved and must be zero.

14-24 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.5.5 MPERF and APERF Counters Under HDC

HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period.

1600 MHz: 25% Ultilization /75% Forced Idle

L] L
| |

Effective Frequency @ 100% Utilization: 400 MHz

Figure 14-23. Example of Effective Frequency Reduction and Forced Idle Period of HDC

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry
(OS visible C0) by AACNT/AMCNT * TSC Frequency.

14.6 HARDWARE FEEDBACK INTERFACE

Intel processors that enumerate CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] as 1 support Hardware Feedback
Interface. Hardware provides guidance to the Operating System (OS) scheduler to perform optimal workload
scheduling through a hardware feedback interface structure in memory. This structure has a global header that is
16 byte in size. Following this global header, there is one 8 byte entry per logical processor in the socket. The struc-
ture is designed as follows.

Table 14-4. Hardware Feedback Interface Structure

Byte Offset Size (Bytes) Description

0 16 Global Header

16 8 Per Logical Processor Entry
24 8 Per Logical Processor Entry
16 + n*8 8 Per Logical Processor Entry

The global header is structured as shown in Table 14-5.

Vol. 3B 14-25

POWER AND THERMAL MANAGEMENT

Table 14-5. Hardware Feedback Interface Global Header Structure

Byte Offset Size (Bytes) Field Name Description
0 8 Timestamp Timestamp of when the table was last updated by hardware. This is a
timestamp in crystal clock units.
Initialized by OS to O.
8 1 Performance If set to 1, indicates the performance capability field for one or more logical
Capability Changed | processors was updated in the table.
Initialized by OS to O.
9 1 Energy Efficiency If set to 1, indicates the energy efficiency capability field for one or more
Capability Changed | logical processors was updated in the table.
Initialized by OS to O.
10 6 Reserved Initialized by OS to O.

The per logical processor scheduler feedback entry is structured as follows. The operating system can determine
the index of the logical processor feedback entry for a logical processor using CPUID.06H.0H:EDX[31:16] by

executing CPUID on that logical processor.

Table 14-6. Hardware Feedback Interface Logical Processor Entry Structure

Byte Offset

Size (Bytes)

Field Name

Description

0

1

Performance
Capability

Performance capability is an 8-bit value (0 .. 255) specifying the relative
performance level of a logical processor. Higher values indicate higher perfor-
mance; the lowest performance level of O indicates a recommendation to the OS to
not schedule any software threads on it for performance reasons. OS scheduler is
expected to initialize the Hardware Feedback Interface Structure to O prior to
enabling Hardware Feedback.

CPUID.06H.0H:EDX[0] enumerates support for Performance capability reporting.

Energy
Efficiency
Capability

Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the relative
energy efficiency level of a logical processor. Higher values indicate higher energy
efficiency; the lowest energy efficiency capability of 0 indicates a recommendation
to the OS to not schedule any software threads on it for efficiency reasons. 0S
scheduler is expected to initialize the Hardware Feedback Interface Structure to 0
prior to enabling Hardware Feedback.

CPUID.06H.0H:EDX[1] enumerates support for Energy Efficiency capability
reporting.

Reserved

0S scheduler is expected to initialize the Hardware Feedback Interface Structure
to O prior to enabling Hardware Feedback.

14.6.1

Hardware Feedback Interface Pointer

The physical address of the hardware feedback interface structure is programmed by the OS into a package scoped
MSR named IA32_HW_FEEDBACK_PTR. The MSR is structured as follows:

* Bits 63:MAXPHYADDR! - Reserved.
®* Bits MAXPHYADDR-1:12 - ADDR. This is the physical address of the page frame of the first page of this

structure.

® Bits11:1 -

Reserved.

® Bit 0 - Valid. When set to 1, indicates a valid pointer is programmed into the ADDR field of the MSR.
The address of this MSR is 17D0OH.

1. MAXPHYADDR is reported in CPUID.80000008H:EAX[7:0].

14-26 Vol. 3B

POWER AND THERMAL MANAGEMENT

CPUID.06H.0H:EDX[11:8] enumerates the size of memory that must be allocated by the OS for this structure.

14.6.2 Hardware Feedback Interface Configuration

The operating system enables the hardware feedback interface using a package scoped MSR named
IA32_HW_FEEDBACK_CONFIG (address 17D1H).

The MSR is structured as follows:
® Bits 63:1 - Reserved.
® Bit 0 - Enable. When set to 1, enables the hardware feedback interface.

Before enabling the hardware feedback interface, the OS must set a valid hardware feedback interface structure
using IA32_HW_FEEDBACK_PTR.

When the Enable bit transitions from 1 to 0, hardware sets the IA32_PACKAGE_THERM_STATUS bit 26 to 1 to
acknowledge disabling of the interface. The OS must wait for this bit to be set to 1 after disabling the interface
before reclaiming the memory allocated for this structure. When this bit is set to 1, it is safe to reclaim the memory
as it is guaranteed that there are no writes in progress to this structure by hardware.

Execution of GETSEC[SENTER] clears the enable bit to 0 on all sockets in the platform.

14.6.3 Hardware Feedback Interface Notifications

The IA32_PACKAGE_THERM_STATUS MSR is extended with a new bit, hardware feedback interface structure
change status (bit 26, R/WCO0), to indicate that the hardware has updated the hardware feedback interface struc-
ture. This is a sticky bit and once set, indicates that the OS should read the structure to determine the change and
adjust its scheduling decisions. Once set, the hardware will not generate any further updates to this structure until
the OS clears this bit by writing 0.

The OS can enable interrupt-based notifications when the structure is updated by hardware through a new enable
bit, hardware feedback interrupt enable (bit 25, R/W), in the IA32_PACKAGE_THERM_INTERRUPT MSR. When this
bit is set to 1, it enables the generation of an interrupt when the hardware feedback interface structure is updated
by hardware. When the Enable bit transitions from 0 to 1, hardware will generate an initial notify, with the
IA32_PACKAGE_THERM_STATUS bit 26 set to 1, to indicate that the OS should read the current hardware feedback
interface structure.

14.7 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT

IA-32 processors may support a number of C-states? that reduce power consumption for inactive states. Intel Core
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If
CPUID.0O5H.ECX[Bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter
4, “Instruction Set Reference, M-U,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B).

If CPUID.O5H.ECX[Bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even
when interrupts are disabled. Use this feature to measure C-state residency as follows:

® Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a
processor-specific C-state or sub C-state.

®* When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an
interrupt service routine (ISR) is potentially executed.

2. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (CO, C1, C2, C3). The mapping
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI
defined _CST table.

Vol. 3B 14-27

POWER AND THERMAL MANAGEMENT

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub C-states available for use with
MWAIT extensions. IA-32 processors may support more than one C-state of a given C-state type. These are called
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than
lower-numbered C-state.

At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX).
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state
request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are
not supported.

NOTE

If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if
the store was originated by other processor agents. A store from non-processor agent may not
cause the processor to exit MWAIT.

14.8 THERMAL MONITORING AND PROTECTION

The IA-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it's power
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power
management policies that reduce power consumption; this is in addition to the reduction offered by automatic
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor
feature information returned by executing CPUID with EAX = 1.

The second mechanism includes:

* Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle;
the second mode changes the processor’s frequency. Both modes are used to control the core temperature of
the processor.

* Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 14-24, the phrase ‘duty
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which the
clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the
processor is clocked, processor power consumption can be modulated.

14-28 Vol. 3B

POWER AND THERMAL MANAGEMENT

Clock Applied to Processor

I UL

Stop-Clock Duty Cycle

25% Duty Cycle (example only)

Figure 14-24. Processor Modulation Through Stop-Clock Mechanism

For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor
operating parameters to impact changes in thermal conditions. Software did not have native access to the native
thermal condition of the processor; nor could software alter the trigger condition that initiated software program

control.

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring.

14.8.1 Catastrophic Shutdown Detector

P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled.
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted
until after the next reset cycle.

14.8.2 Thermal Monitor

Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector.

14.8.2.1 Thermal Monitor 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see Chapter 2, “*Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4].
Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable only one automatic
thermal monitoring modes. Operating systems and applications must not disable the operation of these mecha-
nisms.

14.8.2.2 Thermal Monitor 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher
performance level for a given level of power reduction than TM1.

Vol. 3B 14-29

POWER AND THERMAL MANAGEMENT

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented
differently across various IA-32 processor families with different CPUID signatures in the family encoding value, but
will be uniform within an IA-32 processor family.

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.8.2.3 Two Methods for Enabling TM2

On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERM2_CTL register is set to 1 (Figure 14-25)
and bit 3 of the IA32_MISC_ENABLE register is set to 1.

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2.
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the
IA32_MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is
enabled.

31 16 0
Reserved Reserved

TM_SELECT

Figure 14-25. MSR_THERMZ2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded
as 0x69n or 0x6Dn

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value
written to MSR_THERM2_CTL, bits 15:0 (Figure 14-26). Following a power-up or reset, BIOS is required to enable
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable
TM1lor TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

63 15 0

Reserved

TM2 Transition Target

Figure 14-26. MSR_THERM2_CTL Register for Supporting TM2

14.8.2.4 Performance State Transitions and Thermal Monitoring

If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the IA32_PERF_CTL will
effect a new target operating point as follows:

® IfTM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is
disengaged.

14-30 Vol. 3B

POWER AND THERMAL MANAGEMENT

®* IfTM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the
IA32_PERF_CTL will commence after the TCC has disengaged.

14.8.2.5 Thermal Status Information

The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the thermal
status flag and thermal status log flag in the IA32_THERM_STATUS MSR (see Figure 14-27).

The functions of these flags are:

* Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip
temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the
thermal monitor trip temperature. This flag is read only.

* Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

63 210

Reserved

Thermal Status Log J

Thermal Status

Figure 14-27. IA32_THERM_STATUS MSR

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts
remain pending until clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is
tripped; this is called a thermal interrupt. The delivery mode, mask and vector for this interrupt can be
programmed through the thermal entry in the local APIC’s LVT (see Section 10.5.1, “Local Vector Table”). The low-
temperature interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR
(see Figure 14-28) control when the interrupt is generated; that is, on a transition from a temperature below the
trip point to above and/or vice-versa.

63 210

Reserved

Low-Temperature Interrupt Enable 4
High-Temperature Interrupt Enable

Figure 14-28. IA32_THERM_INTERRUPT MSR

* High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be generated on the transition
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

* Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temperature
interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared

Vol. 3B 14-31

POWER AND THERMAL MANAGEMENT

(interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be handled
either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's
internal high-resolution timer (time stamp counter).

14.8.2.6 Adaptive Thermal Monitor

The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently.
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 14.8.2.1 and
Section 14.8.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the
fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage thermal management features.
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core.

14.8.3 Software Controlled Clock Modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides
a means for operating systems to implement a power management policy to reduce the power consumption of the
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR
(see Figure 14-29).

63 543 10

Reserved

On-Demand Clock Modulation Enable J
On-Demand Clock Modulation Duty Cycle ——

D Reserved
Figure 14-29. IA32_CLOCK_MODULATION MSR

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock
modulation and to select the clock modulation duty cycle:

® On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation
when set; disables software-controlled clock modulation when clear.

* On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation
duty cycle (see Table 14-7). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

14-32 Vol. 3B

POWER AND THERMAL MANAGEMENT

Table 14-7. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle
000B Reserved
001B 12.5% (Default)
010B 25.0%
011B 37.5%
100B 50.0%
101B 63.5%
110B 75%
111B 87.5%

The on-demand clock modulation mechanism can be used to control processor power consumption. Power
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3,
“Instruction Set Reference, A-L" in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and OF_xx. For all
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the
processor core will modulate at the lowest programmed duty cycle.

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled
clock modulation through the processor’s STPCLK# pin.

14.8.3.1 Extension of Software Controlled Clock Modulation

Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25%
(compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of the
IA32_CLOCK_MODULATION MSR (see Figure 14-30).

63 543 0

Reserved

On-Demand Clock Modulation Enable J
Extended On-Demand Clock Modulation Duty Cycle ——

|:| Reserved
Figure 14-30. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[Bit 5] = 1. If
CPUID.06H:EAX[Bit 5] = 0, then bit 0 of IA32_CLOCK_MODULATION is reserved.

Vol. 3B 14-33

POWER AND THERMAL MANAGEMENT

14.8.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_ THERM_STATUS,
IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

14.8.4.1 Detection of Software Controlled Clock Modulation Extension

Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[Bit 5] = 1.

14.8.5 On Die Digital Thermal Sensors

On die digital thermal sensor can be read using an MSR (no I/0 interface). In Intel Core Duo processors, each core
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die,
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

14.8.5.1 Digital Thermal Sensor Enumeration

The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the processor supports digital thermal
sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use.

Software sets thermal thresholds by using the IA32_ THERM_INTERRUPT MSR. Software reads output of the digital
thermal sensor using the IA32_THERM_STATUS MSR.

14.8.5.2 Reading the Digital Sensor

Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set,
the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the
“Critical Temperature Status” bit is set, reliable operation is not guaranteed.

See Figure 14-31 for the layout of IA32_THERM_STATUS MSR. Bit fields include:

* Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-temperature output
signal (PROCHOT#) is currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written by
software; it reflects the state of the digital thermal sensor.

®* Thermal Status Log (bit 1, R/WCO0) — This is a sticky bit that indicates the history of the thermal sensor
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

®* PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being
asserted by another agent on the platform.

14-34 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 32 31 27 2322 1615 10987 6543 210

Reserved

Reading Valid
Resolution in Deg. Celsius
Digital Readout
Power Limit Notification Log
Power Limit Notification Status
Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log

Thermal Threshold #1 Status
Critical Temperature Log
Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

Figure 14-31. IA32_THERM_STATUS Register

PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates whether PROCHOT# or
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero.
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the critical temperature
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output
signal has been asserted. Software may clear this bit by writing a zero.

Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If

bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual
temperature can be inferred from Digital Readout, bits 22:16.

Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #1
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached.
Software may clear this bit by writing a zero.

Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be
inferred from Digital Readout, bits 22:16.

Thermal Threshold #2 Log (bit 9, R/WCO0) — Sticky bit that indicates whether the Thermal Threshold #2
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been
reached. Software may clear this bit by writing a zero.

Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below 0S-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power
limit notification can be delivered independently to IA32_PACKAGE_THERM_STATUS MSR.

Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the processor went below 0S-
requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This
field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated indepen-
dently in IA32_PACKAGE_THERM_STATUS MSR.

Vol. 3B 14-35

POWER AND THERMAL MANAGEMENT

Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC
activation temperature.

0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-32); one is set above and the other
below the current temperature. These thresholds have the capability of generating interrupts using the core's local
APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.

63 5 U B 0 16 15 1 8 5 4 3 210

Reserved

Power Limit Notification Enable;k

Threshold #2 Interrupt Enable |
Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

Figure 14-32. IA32_THERM_INTERRUPT Register

See Figure 14-32 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:

High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the generation of
an interrupt on the transition from low-temperature to a high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default)
disables interrupts; bit 1 = 1 enables interrupts.

PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = 0 disables the
interrupt; bit 3 = 1 enables the interrupt.

Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1
thermal interrupt delivery.

14-36 Vol. 3B

POWER AND THERMAL MANAGEMENT

®* Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; bit 15 =0
disables the interrupt.

®* Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2
thermal interrupt delivery.

®* Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #2 setting in any direction. Bit 23 = lenables the interrupt; bit 23 = 0
disables the interrupt.

* Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled indepen-
dently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.8.6 Power Limit Notification

Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component,
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the
existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit notification by verifying
CPUID.06H:EAX[bit 4] = 1.

If CPUID.O6H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following
facility to manage power limit notification:

® Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-
requested P-state or clock modulation duty cycle setting (see Figure 14-31).

® Bit24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went
below OS-requested P-state or clock modulation duty cycle setting (see Figure 14-32).

149 PACKAGE LEVEL THERMAL MANAGEMENT

The thermal management facilities like IA32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level thermal management facility
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] =
1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-33.

Vol. 3B 14-37

POWER AND THERMAL MANAGEMENT

63 32 31 27 2322 1615 10987 654 3 210

Reserved

PKG Digital Readout
PKG Power Limit Notification Log
PKG Power Limit Notification Status
PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log
PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

Figure 14-33. IA32_PACKAGE_THERM_STATUS Register

®* Package Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit 0 = 1 indicates the feature is
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

* Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing
a zero.

®* Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by
another agent on the platform.

* Package PROCHOT# Log (bit 3, R/WCO0) — Sticky bit that indicates whether package PROCHOT# has been
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero.

* Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal
is currently active.

®* Package Critical Temperature Log (bit 5, R/WCO0) — Sticky bit that indicates whether the package critical
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the
output signal has been asserted. Software may clear this bit by writing a zero.

* Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

* Package Thermal Threshold #1 Log (bit 7, R/WCO0) — Sticky bit that indicates whether the Package
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package
Threshold #1 has been reached. Software may clear this bit by writing a zero.

* Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual
temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

®* Package Thermal Threshold #2 Log (bit 9, R/WCO0) — Sticky bit that indicates whether the Package
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

14-38 Vol. 3B

POWER AND THERMAL MANAGEMENT

* Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to
determine if the cause originates from a processor core (see Figure 14-31).

®* Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates any processor in the package
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or
RESET.

®* Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius
relative to the package TCC activation temperature.

0: Package TCC Activation temperature,

1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.

A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.
The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-34.

63 % U B N 16 15 14 8 5 4 3 210

Reserved

Pkg Power Limit Notification EnableJ
Pkg Threshold #2 Interrupt Enable
Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

Figure 14-34. IA32_PACKAGE_THERM_INTERRUPT Register

* Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold.
Bit 0 = O (default) disables interrupts; bit 0 = 1 enables interrupts.

®* Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation).
Bit 1 = O (default) disables interrupts; bit 1 = 1 enables interrupts.

®* Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and
the Bidirectional Prochot feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

* Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended
response to this condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the
interrupt.

®* Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

®* Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt;
bit 15 = 0 disables the interrupt.

* Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared

Vol. 3B 14-39

POWER AND THERMAL MANAGEMENT

against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log
bits as well as the Package Threshold #2 thermal interrupt delivery.

* Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #2 setting in any direction. Bit 23 = 1 enables the interrupt;
bit 23 = 0 disables the interrupt.

* Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power
notification events.

14.9.1 Support for Passive and Active cooling

Passive and active cooling may be controlled by the OS power management agent through ACPI control methods.
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the
IA32_PACKAGE_THERM_INTERRUPT MSR.

Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or
(b) only the package temperature. If measured package temperature led the power management agent to choose
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is
measured using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation
details depend on the platform firmware and possible solutions include defining two different thermal zones (one
for core temperature and passive cooling and the other for package temperature and active cooling).

14.10 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT

This section covers power management interfaces that are not architectural but addresses the power management
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces provide
mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and server
platforms.

For client platform power limit control and for server platforms used in a data center, the following power and
thermal related usages are desirable:

®* Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level
thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).

®* Platform Power Limiting: More deterministic control over the system's power consumption, for example to meet
battery life targets on rack-level or container-level power consumption goals within a datacenter.

®* Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained
performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which expose multiple domains of power
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:

® Package domain is the processor die.

® Memory domain includes the directly-attached DRAM; an additional power plane may constitute a separate
domain.

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

14.10.1 RAPL Interfaces

RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities,
some of which are optional as stated below.

® Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
®* Energy Status - Power metering interface providing energy consumption information.

14-40 Vol. 3B

POWER AND THERMAL MANAGEMENT

® Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power
limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The
meaning of duration is domain specific.

®* Power Info (Optional) - Interface providing information on the range of parameters for a given domain,
minimum power, maximum power etc.

®* Policy (Optional) - 4-bit priority information that is a hint to hardware for dividing budget between sub-domains
in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time
is expressed in Seconds, and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the
information presented meaningful in a finite number of bits. Units for power, energy, and time are exposed in the
read-only MSR_RAPL_POWER_UNIT MSR.

63 2019 1615 13 12 87 43 0

Reserved
Time units
Energy status units
Power units

Figure 14-35. MSR_RAPL_POWER_UNIT Register

MSR_RAPL_POWER_UNIT (Figure 14-35) provides the following information across all RAPL domains:

®* Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2~PU; where PU is
an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts
increment.

* Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2~ESU;
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status
unit is in 15.3 micro-Joules increment.

®* Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/ 2~TU; where TU
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

14.10.2 RAPL Domains and Platform Specificity

The specific RAPL domains available in a platform vary across product segments. Platforms targeting the client
segment support the following RAPL domain hierarchy:

®* Package

®* Two power planes: PP0O and PP1 (PP1 may reflect to uncore devices)

Platforms targeting the server segment support the following RAPL domain hierarchy:
®* Package

®* Power plane: PPO

* DRAM

Each level of the RAPL hierarchy provides a respective set of RAPL interface MSRs. Table 14-8 lists the RAPL MSR
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset 0 relative
to an MSR base address which is non-architectural (see Chapter 2, “*Model-Specific Registers (MSRs)” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 4). The energy status MSR of each domain is
located at offset 1 relative to the MSR base address of respective domain.

Vol. 3B 14-41

POWER AND THERMAL MANAGEMENT

Table 14-8. RAPL MSR Interfaces and RAPL Domains

Domain Power Limit Energy Status (Offset Policy Perf Status Power Info
(Offset 0) 1) (Offset 2) (Offset 3) (Offset 4)
PKG MSR_PKG_POWER_ | MSR_PKG_ENERGY_STA | RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_|
uMmIT TUS NFO
DRAM MSR_DRAM_POWER | MSR_DRAM_ENERGY_S | RESERVED MSR_DRAM_PERF_STATUS | MSR_DRAM_POWER
_uMmit TATUS _INFO
PPO MSR_PPO_POWER_ | MSR_PPO_ENERGY_STA | MSR_PPO_POLICY | MSR_PPO_PERF_STATUS RESERVED
uMmIT TUS
PP1 MSR_PP1_POWER_ | MSR_PP1_ENERGY_STA | MSR_PP1_POLICY | RESERVED RESERVED
uMmIT TUS

The presence of the optional MSR interfaces (the three right-most columns of Table 14-8) may be model-specific.
See Chapter 2, "Model-Specific Registers (MSRs)” in the Inte/l® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for details.

14.10.3 Package RAPL Domain

The MSR interfaces defined for the package RAPL domain are:

® MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes
associated with each limit,

® MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
® MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

6362 56 55 4948 4746 3231 24 23 171615 14 0

Time window
Power Limit #1

Time window

Power Limit #2 Pkg Power Limit #2

Pkg Power Limit #1

L Enable limit #1
Pkg clamping limit #1

Enable limit #2
Pkg clamping limit #2

~00r

Figure 14-36. MSR_PKG_POWER_LIMIT Register

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT.
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides inde-
pendent clamping control that would permit the processor cores to go below OS-requested state to meet the power
limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set, the
power limit settings are static and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-36) are:

* Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-
sponding to time window # 1. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

14-42 Vol. 3B

POWER AND THERMAL MANAGEMENT

* Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

* Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time
window specified by bits 23:17.

* Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1
Time limit = 2AY * (1.0 + Z/4.0) * Time_Unit

Here “Y” is the unsigned integer value represented. by bits 21:17, *Z" is an unsigned integer represented by
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

®* Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

* Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.

* Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time
window specified by bits 23:17.

* Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2
Time limit = 22Y * (1.0 + Z/4.0) * Time_Unit

Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by
bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have
a hard-coded value in hardware and ignores values written by software.

®* Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This
MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and
may be longer otherwise.

63 3231 0

Reserved

]

Total Energy Consumed

D Reserved
Figure 14-37. MSR_PKG_ENERGY_STATUS MSR

®* Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “"Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
package domain. It also provides the largest possible time window for software to program the RAPL interface.

63 54 53 48 47 46 3231 30 1615 14 0

Maximum Time window Maximum Power Minimum Power Thermal Spec Power

Figure 14-38. MSR_PKG_POWER_INFO Register

* Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the package domain. The unit of this field is specified by the "Power Units” field of MSR_RAPL_POWER_UNIT.

Vol. 3B 14-43

POWER AND THERMAL MANAGEMENT

® Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

* Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

* Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 2, "Model-
Specific Registers (MSRs)” in the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4).

63 32 31 0
Reserved
Accumulated pkg throttled time Q
D Reserved

Figure 14-39. MSR_PKG_PERF_STATUS MSR

* Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the package has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14.10.4 PPO/PP1 RAPL Domains

The MSR interfaces defined for the PPO and PP1 domains are identical in layout. Generally, PPO refers to the
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, the PP1
domain refers to the power plane of a specific device in the uncore. For server platforms, the PP1 domain is not
supported, but its PPO domain supports the MSR_PPO_PERF_STATUS interface.

® MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective power
plane domain.

® MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
® MSR_PPO_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

MSR_PPO_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
forms.

63 323130 24 23 171615 14 0
T
o ik
K
L Enable limit
Clamping limit

Figure 14-40. MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

14-44 Vol. 3B

POWER AND THERMAL MANAGEMENT

MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow a software agent to define power limitation for the
respective power plane domain. A lock mechanism in each power plane domain allows the software agent to
enforce power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are
static and un-modifiable until next RESET.

The bit fields of MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-40) are:

* Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

* Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.

* Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window specified
by bits 23:17.

* Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
#1 will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of
2~Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit
represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

® Lock (bit 31): If set, all write attempts to the MSR and corresponding policy
MSR_PPO_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS are read-only MSRs. They report the actual energy use
for the respective power plane domains. These MSRs are updated every ~1msec.

63 32 31 0

Reserved

]

Total Energy Consumed

|:| Reserved
Figure 14-41. MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

®* Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since the last time this register was cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PPO_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing
inputs to the power budgeting management algorithm. On platforms that support PPO (IA cores) and PP1 (uncore
graphic device), the default values give priority to the non-IA power plane. These MSRs enable the PCU to balance
power consumption between the IA cores and uncore graphic device.

63 5 4 0

Priority Level

Figure 14-42. MSR_PPO_POLICY/MSR_PP1_POLICY Register

®* Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PPO covers the IA
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PPO_PERF_STATUS is a read-only MSR. It reports the total time for which the PPO domain was throttled due
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going
below the OS-requested P-state or T-state.

Vol. 3B 14-45

POWER AND THERMAL MANAGEMENT

63 3231 0
Reserved
Accumulated PPO throttled time Q
|:| Reserved

Figure 14-43. MSR_PPO_PERF_STATUS MSR

* Accumulated PPO Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time
(since the last time this register is cleared) that the PPO domain has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14.10.5 DRAM RAPL Domain

The MSR interfaces defined for the DRAM domains are supported only in the server platform. The MSR interfaces
are:

®* MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement
attributes associated with each limit.

* MSR_DRAM_ENERGY_STATUS reports measured actual energy usage.
®* MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
® MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

63 323130 24 23 171615 14 0
L
2 fime window Power Limit
K
L Enable limit
Clamping limit

Figure 14-44. MSR_DRAM_POWER_LIMIT Register

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in
MSR_DRAM_POWER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the
software agent to enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-
modifiable until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-44) are:

* DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding to
time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

* Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

* Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of 2/Y
*F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit represented
by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

®* Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

14-46 Vol. 3B

POWER AND THERMAL MANAGEMENT

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This MSR
is updated every ~1msec.

63 32 31 0

Reserved

]

Total Energy Consumed

D Reserved
Figure 14-45. MSR_DRAM_ENERGY_STATUS MSR

®* Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

63 54 53 48 47 46 3231 30 1615 14 0

Maximum Time window Maximum Power Minimum Power Thermal Spec Power

Figure 14-46. MSR_DRAM_POWER_INFO Register

* Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

* Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

* Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

* Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the "Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 2, “Model-
Specific Registers (MSRs)” in the Inte/® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4).

63 3231 0
Reserved
Accumulated DRAM throttled time—‘
|:| Reserved

Figure 14-47. MSR_DRAM_PERF_STATUS MSR

Vol. 3B 14-47

POWER AND THERMAL MANAGEMENT

* Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14-48 Vol. 3B

10.Updates to Chapter 16, Volume 3B

Change bars and green text show changes to Chapter 16 of the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.

Changes to this chapter include deleting invalid error codes from Table 16-36, “Intel IMC MC Error Codes for
IA32_MCIi_STATUS (i= 13-15, 17-19, 21-23, 25-27)".

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

CHAPTER 16
INTERPRETING MACHINE-CHECK
ERROR CODES

Encoding of the model-specific and other information fields is different across processor families. The differences
are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY O6H
MACHINE ERROR CODES FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for external bus errors relating to
processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID signa-
tures listed in Table 16-1.

Table 16-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0ODH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium 11l Xeon Processor, Intel Pentium Il Processor
06_03H, 06_05H Intel Pentium Il Xeon Processor, Intel Pentium Il Processor
06_01H Intel Pentium Pro Processor

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the
interpretation of compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type BitNo. | Bit Function Bit Description
MCA error 15:.0

codes’

Model specific | 1816 | Reserved Reserved

errors

Model specific | 24:19 | Bus queue request 000000 for BQ_DCU_READ_TYPE error
errors type 000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

Vol.3B 16-1

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type

BitNo.

Bit Function

Bit Description

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific | 27:25

errors

Bus queue error type

000 for BQ_ERR_HARD_TYPE error
001 for BQ_ERR_DOUBLE_TYPE error
010 for BQ_ERR_AERRZ_TYPE error
100 for BQ_ERR_SINGLE_TYPE error
101 for BQ_ERR_AERR1_TYPE error

Model specific | 28 FRC error 1 if FRC error active
errors

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 34:32 | Reserved Reserved
information

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error | This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this component has received a hard
error response on a split transaction one access that has needed to be split across
the 64-bit external bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCj_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.
The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit
is asserted, it cannot be overwritten by another error.

41:39 | Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus

transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

16-2 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type BitNo. | Bit Function Bit Description

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing
bus transactions which have failed due to Address Parity Errors AERR asserted).
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected
€CC errors. While this bit is asserted, the ECC syndrome field will not be
overwritten.

46 Cecc The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC
errors.

54:47 | €CC syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only

if the error was a correctable/uncorrectable ECC error and there wasn't a previous
valid ECC error syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS is indicated by
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After
processing an ECC error, machine-check handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

56:55 | Reserved Reserved.
Status register | 63:57
validity
indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its
high order bit.

16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR
FAMILY MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for external bus errors relating to
processor based on Intel Core microarchitecture, which implements the P4 bus specification. Table 16-3 lists the
CPUID signatures for Intel 64 processors that are covered by Table 16-4. These errors are reported in the
IA32_MCIi_STATUS MSRs. They are reported architecturally as compound errors with a general form of

0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the interpretation of
compound error codes.

Table 16-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core Microarchitecture

DisplayFamily_DisplayModel | Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.
06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9650.
06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,

Intel Core 2 Duo processors, Intel Pentium dual-core processors.

Vol.3B 16-3

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors

Based on Intel Core Microarchitecture

Type BitNo.

Bit Function

Bit Description

MCA error
codes’

15:0

Model specific | 18:16

errors

Reserved

Reserved

Model specific | 24:19

errors

Bus queue request
type

‘000001 for BQ_PREF_READ_TYPE error
000000 for BQ_DCU_READ_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error
011101 for BQ_DCU_LOCK_WR_TYPE error
100100 for BQ_L2_WI_RFO_TYPE error
100110 for BQ_L2_WI_ITOM_TYPE error

Model specific | 27:25

errors

Bus queue error type

‘001 for Address Parity Error
‘010 for Response Hard Error
‘011 for Response Parity Error

Model specific | 28
errors

MCE Driven

1 if MCE is driven

29

MCE Observed

1 if MCE is observed

30

Internal BINIT

1 if BINIT driven for this processor

31

BINIT Observed

1 if BINIT is observed for this processor

Other
information

33:32

Reserved

Reserved

34

PIC and FSB data
parity

Data Parity detected on either PIC or FSB access

35

Reserved

Reserved

16-4 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors
Based on Intel Core Microarchitecture (Contd.)

Type BitNo. | Bit Function Bit Description

36 Response parity error | This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCj_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its
high order bit. The timer is cleared when a micro-instruction retires, an exception is
detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.
The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit
is asserted, it cannot be overwritten by another error.

41:39 | Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

54:47 | Reserved Reserved

56:55 | Reserved Reserved.

Status register | 63:57
validity

indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally follows the description of
Chapter 15 and Section 16.2. Additional error codes specific to Intel Xeon processor 7400 series is describe in this

section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side bus errors for Intel Xeon
processor 7400 series. It supports the L3 Errors, Bus and Interconnect Errors Compound Error Codes in the MCA
Error Code Field.

Vol.3B 16-5

INTERPRETING MACHINE-CHECK ERROR CODES

16.2.1.1 Processor Machine Check Status Register
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus internal machine check
errors, L3 Errors, and Bus/Interconnect Errors. It defines incremental Machine Check error types
(IA32_MC6_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-5 lists these incremental MCA error
code types that apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS [31:16] (see
Section 16.2.2), the “Model Specific Error Code” field. The information in the “Other_Info” field
(MC4_STATUS[56:32]) is common to the three processor error types and contains a correctable event count and
specifies the MC6_MISC register format.

Table 16-5. Incremental MCA Error Code Types for Intel Xeon Processor 7400

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type | Error Code Binary Encoding Meaning

C Internal Error | 0000 0100 0000 0000 | Internal Error Type Code

B Bus and 0000 100x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
Interconnect implementations
Error 0000 101x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA

implementations

0000 110x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

000011100000 1111 | Bus and Interconnection Error Type Code

0000 11110000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16).

Table 16-6. Type B Bus and Interconnect Error Codes

Bit Num | Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail Response “Hard Failure” response received for a local transaction
21 FSB Response Parity Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 Reserved

16-6 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.2.2.2 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

Table 16-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 000TH

Inclusion Error from Core O

0000_0000_0000_0010 0002H

Inclusion Error from Core 1

0000_0000_0000_0011 0003H

Write Exclusive Error from Core O

0000_0000_0000_0100 0004H

Write Exclusive Error from Core 1

0000_0000_0000_0101 0005H

Inclusion Error from FSB

0000_0000_0000_0110 0006H

SNP Stall Error from FSB

0000_0000_0000_0111 0007H

Write Stall Error from FSB

0000_0000_0000_1000 0008H

FSB Arb Timeout Error

0000_0000_0000_1010 OO0AH

Inclusion Error from Core 2

0000_0000_0000_1011 000BH

Write Exclusive Error from Core 2

0000_0010_0000_0000 0200H

Internal Timeout error

0000_0011_0000_0000 0300H

Internal Timeout Error

0000_0100_0000_0000 0400H

Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

0000_0101_0000_0000 0500H

Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010 COO2H

Correctable ECC event on outgoing Core O data

1100_0000_0000_0100 CO04H

Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000 CO08H

Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010 EOO2H

Uncorrectable ECC error on outgoing Core O data

1110_0000_0000_0100 E004H

Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000 EOO8H

Uncorrectable ECC error on outgoing Core 2 data

— all other encodings —

Reserved

16.3 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR
3400, 3500, 5500 SERIES, MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional model-specific fields for memory
controller errors relating to the Intel® Xeon® processor 3400, 3500, 5500 series with CPUID
DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath Interconnect links. Incremental MC error
codes related to the Intel QPI links are reported in the register banks IA32_MCO and IA32_MC1, incremental error
codes for internal machine check is reported in the register bank IA32_MC7, and incremental error codes for the
memory controller unit is reported in the register banks IA32_MCS8.

Vol.3B 16-7

INTERPRETING MACHINE-CHECK ERROR CODES

16.3.1 Intel QPI Machine Check Errors
Table 16-8. Intel QPI Machine Check Error Codes for IA32_MCO_STATUS and IA32_MC1_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Bus error format: TPPTRRRRIILL
Model specific errors
16 Header Parity if 1, QPI Header had bad parity
17 Data Parity If 1, QPI Data packet had bad parity
18 Retries Exceeded If 1, number of QPI retries was exceeded
19 Received Poison if 1, Received a data packet that was marked as poisoned by the sender
21:20 | Reserved Reserved
22 Unsupported Message If 1, QPI received a message encoding it does not support
23 Unsupported Credit If 1, QPI credit type is not supported.
24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the receiver.
25 Received Failed If 1, Indicates that sender sent a failed response to receiver.
Response
26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI clocking
56:27 | Reserved Reserved
Status register 63:57
validity indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-9. Intel QPI Machine Check Error Codes for IA32_MCO_MISC and IA32_MC1_MISC

Type BitNo. | Bit Function Bit Description
Model specific errors’
7.0 QPI Opcode Message class and opcode from the packet with the error
13:8 RTId QPI Request Transaction ID
15:14 | Reserved Reserved
18:16 | RHNID QPI Requestor/Home Node ID
23:19 | Reserved Reserved
24 B QP! Interleave/Head Indication Bit

NOTES:

1. Which of these fields are valid depends on the error type.

16.3.2 Internal Machine Check Errors

Table 16-10. Machine Check Error Codes for IA32_MC7_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD

Model specific errors

16-8 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description
23:16 | Reserved Reserved
31:24 | Reserved except for | 00h - No Error
the following 03h - Reset firmware did not complete
08h - Received an invalid CMPD
0Ah - Invalid Power Management Request
ODh - Invalid S-state transition
11h - VID controller does not match POC controller selected
1Ah - MSID from POC does not match CPU MSID
56:32 | Reserved Reserved
Status register validity | 63:57
indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.3.3 Memory Controller Errors
Table 16-11. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Memory error format: 1MMMCCCC
Model specific errors
16 Read ECC error if 1, ECC occurred on a read
17 RAS ECC error If 1, ECC occurred on a scrub
18 Write parity error If 1, bad parity on a write
19 Redundancy loss if 1, Error in half of redundant memory
20 Reserved Reserved
21 Memory range error | If 1, Memory access out of range
22 RTID out of range If 1, Internal ID invalid
23 Address parity error | If 1, bad address parity
24 Byte enable parity If 1, bad enable parity
error
Other information 37:25 | Reserved Reserved
52:38 | CORE_ERR_CNT Corrected error count
56:53 | Reserved Reserved
Status register validity | 63:57
indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Vol.3B 16-9

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-12. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC

Type BitNo. | Bit Function Bit Description

Model specific errors’
7:0 RTId Transaction Tracker ID
15:8 Reserved Reserved
17:16 | DIMM DIMM ID which got the error
19:18 | Channel Channel ID which got the error
31:20 | Reserved Reserved
63:32 | Syndrome €CC Syndrome

NOTES:
1. Which of these fields are valid depends on the error type.

16.4 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-13 through Table 16-15 provide information for interpreting additional model-specific fields for memory
controller errors relating to the Intel® Xeon® processor E5 Family with CPUID DisplayFamily_DisplaySignature
06_2DH, which supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI
links are reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine
check error from PCU controller is reported in the register bank IA32_MC4, and incremental error codes for the
memory controller unit is reported in the register banks IA32_MC8-IA32_MC11.

16.4.1 Internal Machine Check Errors

Table 16-13. Machine Check Error Codes for IA32_MC4_STATUS

Type BitNo. | Bit Function Bit Description
MCA error 15:0 MCACOD
codes’

Model specific | 19:16 | Reserved except for | 0000b - No Error

errors the following 0001b - Non_IMem_Sel
0010b - I_Parity_Error
0011b - Bad_OpCode
0100b - I_Stack_Underflow
0101b - I_Stack_Overflow
0110b - D_Stack_Underflow
0111b - D_Stack_Overflow
1000b - Non-DMem_Sel
1001b - D_Parity_Error

16-10 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

23:20

Reserved

Reserved

31:24

Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

O€Eh - MC_CPD_UNCPD_ST_TIMEQOUT

OFh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT
5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE
71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER
7ah - MC_HA_FAILSTS_CHANGE_DETECTED
81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32

Reserved

Reserved

Status register
validity
indicators!

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.4.2 Intel QPI Machine Check Errors

Table 16-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS
Type BitNo. | Bit Function Bit Description
MCA error 15.0 MCACOD Bus error format: TPPTRRRRIILL
codes’
Model specific
errors

56:16 | Reserved Reserved

Status register | 63:57
validity
indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.4.3

Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type 1MMMCCCC
(see Chapter 15, "Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable additional informa-

Vol.3B 16-11

INTERPRETING MACHINE-CHECK ERROR CODES

tion logging of the IMC. The additional error information logged by the IMC is stored in IA32_MCi_STATUS and

IA32_MCi_MISC; (i = 8, 11).

Table 16-15. Intel IMC MC Error Codes for IA32_MCi_STATUS (i=8, 11)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Bus error format: TPPTRRRRIILL
Model specific 31:16 | Reserved except for | 001H - Address parity error
errors the following 002H - HA Wrt buffer Data parity error
004H - HA Wrt byte enable parity error
008H - Corrected patrol scrub error
010H - Uncorrected patrol scrub error
020H - Corrected spare error
040H - Uncorrected spare error
Model specific 36:32 | Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device
errors error when corrected error is detected during normal read.
Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,’
Status register 63:57
validity indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-16. Intel IMC MC Error Codes for IA32_MCi_MISC (i=8, 11)

Type BitNo. | Bit Function Bit Description
MCA addrinfo! | 8:0 See Chapter 15, “Machine-Check Architecture,”
Model specific | 13:9 = When MSR_ERROR_CONTROL[1] is set, allows the iMC to log second device
errors error when corrected error is detected during normal read.
= Otherwise contain parity error if MCi_Status indicates HA_WB_Data or
HA_W_BE parity error.
Model specific | 29:14 | ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
errors mask.
Model specific | 45:30 | ErrMask_2nderrDev | When MSR_ERROR_CONTROL[1] is set, allows the iMC to log second-device error
errors bit mask.
50:46 | FailRank_1stErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.
55:51 | FailRank_2nderrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.
58:56 | Reserved Reserved
61:59 | Reserved Reserved
62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from the first correctable error in a memory device.
63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-12 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.5 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V2 AND INTEL® XEON® PROCESSOR E7 V2 FAMILIES, MACHINE ERROR
CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v2 family and the Intel® Xeon® processor E7 v2 family are based on the Ivy
Bridge-EP microarchitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incre-
mental error codes for internal machine check error from PCU controller is reported in the register bank IA32_MC4,
Table lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error
codes related to the Intel QPI links are reported in the register banks IA32_MC5. Information listed in Table 16-14
for QPI MC error code apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is
reported in the register banks IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to
IA32_MCi_STATUS, i = 9-16.

16.5.1 Internal Machine Check Errors

Table 16-17. Machine Check Error Codes for IA32_MC4_STATUS
Type BitNo. | Bit Function Bit Description

MCA error codes’ 15:.0 MCACOD

Model specific errors | 19:16 | Reserved except for | 0000b - No Error

the following 0001b - Non_IMem_Sel
0010b - |_Parity_Error
0011b - Bad_OpCode
0100b - I_Stack_Underflow
0101b - I_Stack_Overflow
0110b - D_Stack_Underflow
0111b - D_Stack_Overflow
1000b - Non-DMem_Sel
1001b - D_Parity_Error

23:20 | Reserved Reserved
31:24 | Reserved except for | 00h - No Error
the following 0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

O€Eh - MC_CPD_UNCPD_ST_TIMEOUT

OFh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT
44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX-NOTSUPPORTED

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE
71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

Vol.3B 16-13

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description
7Ah - MC_HA_FAILSTS_CHANGE_DETECTED
7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT
81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
56:32 | Reserved Reserved
Status register 63:57
validity indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.5.2

Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type 1IMMMCCCC
(see Chapter 15, “Machine-Check Architecture”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

IA32_MCIi_STATUS (i=9-12) log errors from the first memory controller. The second memory controller logs into
IA32_MCIi_STATUS (i=13-16).

Table 16-18. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Memory Controller error format: 000F 0000 1TMMM CCCC
Model specific 31:16 | Reserved except for | 001H - Address parity error
errors the following 002H - HA Wrt buffer Data parity error
004H - HA Wrt byte enable parity error
008H - Corrected patrol scrub error
010H - Uncorrected patrol scrub error
020H - Corrected spare error
040H - Uncorrected spare error
080H - Corrected memory read error. (Only applicable with iMC's “Additional
Error logging” Mode-1 enabled.)
100H - iMC, WDB, parity errors
36:32 | Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.
37 Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,’
Status register 63:57
validity indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-14 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-19. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Type BitNo. | Bit Function Bit Description

MCA addrinfo! | 8:0 See Chapter 15, “Machine-Check Architecture,”

Model specific | 13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB
errors ID that has the parity error. OR if the second error logged is a correctable read

error, MC logs the second error device in this field.

Model specific | 29:14 | ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
errors mask.

Model specific | 45:30 | ErrMask_2nde€rrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
errors bit mask.

50:46 | FailRank_1stErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error

failing rank.

55:51 | FailRank_2nderrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from a correctable error from memory read associated with first error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due

to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.5.3 Home Agent Machine Check Errors

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs to IA32_MC8_{STATUS,ADDR,MISC}.

16.6 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V3 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with
CPUID DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check error from
PCU controller is reported in the register bank IA32_MC4, Table 16-20 lists model-specific fields to interpret error
codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are reported in
the register banks IA32_MC5, IA32_MC20, and IA32_MC21. Information listed in Table 16-21 for QPI MC error
codes. Incremental error codes for the memory controller unit is reported in the register banks IA32_MC9-
IA32_MC16. Table 16-22 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

Vol. 3B 16-15

INTERPRETING MACHINE-CHECK ERROR CODES

16.6.1

Internal Machine Check Errors

Table 16-20. Machine Check Error Codes for IA32_MC4_STATUS

Type

BitNo.

Bit Function

Bit Description

MCA error codes'

15:.0

MCACOD

MCACOD?

15:0

Internal Errors

0402h - PCU internal Errors

0403h - PCU internal Errors

0406h - Intel TXT Errors

0407h - Other UBOX internal Errors.

On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).

Model specific errors

19:16

Reserved except for
the following

0000b - No Error
00xxb - PCU internal error

23:20

Reserved

Reserved

31:24

Reserved except for
the following

00h - No Error

09h - MC_MESSAGE_CHANNEL_TIMEOUT

13h - MC_DMI_TRAINING_TIMEQUT

15h - MC_DMI_CPU_RESET_ACK_TIMEOUT

1€h - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX
25h - MC_SVID_COMMAND_TIMEQOUT

29h - MC_VR_VOUT_MAC_LT_FUSED_SVID

2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN
2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP

44h - MC_CRITICAL_VR_FAILED

46h - MC_VID_RAMP_DOWN_FAILED

49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED
4Bh - MC_BOOT_VID_TIMEQUT. Timeout setting boot VID for DRAM 0.
4Fh - MC_SVID_COMMAND_ERROR.

52h - MC_FIVR_CATAS_OVERVOL_FAULT.

53h - MC_FIVR_CATAS_OVERCUR_FAULT.

57h - MC_SVID_PKGC_REQUEST_FAILED

58h - MC_SVID_IMON_REQUEST_FAILED

59h - MC_SVID_ALERT_REQUEST_FAILED

62h - MC_INVALID_PKGS_RSP_QPI

64h - MC_INVALID_PKG_STATE_CONFIG

67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6Ah - MC_MSGCH_PMREQ_CMP_TIMEQUT

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32

Reserved

Reserved

Status register
validity indicators?

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-16 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

2. The internal error codes may be model-specific.

16.6.2 Intel QPI Machine Check Errors

MC error codes associated with the Intel QPI agents are reported in the MSRs IA32_MC5_STATUS,
IA32_MC20_STATUS, and IA32_MC21_STATUS. The supported error codes follow the architectural MCACOD defi-
nition type 1PPTRRRRIILL (see Chapter 15, "Machine-Check Architecture,”).

Table 16-21 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS,
IA32_MC20_STATUS, and IA32_MC21_STATUS.

Table 16-21. Intel QPI MC Error Codes for IA32_MCi_STATUS (i = 5, 20, 21)

Type BitNo. | Bit Function Bit Description

MCA error 15:0 MCACOD Bus error format: TPPTRRRRIILL

codes’

Model specific | 31:16 | MSCOD 02h - Intel QPI physical layer detected drift buffer alarm.
errors 03h - Intel QPI physical layer detected latency buffer rollover.

10h - Intel QPI link layer detected control error from R3QPI.

11h - Rx entered LLR abort state on CRC error.

12h - Unsupported or undefined packet.

13h - Intel QPI link layer control error.

15h - RBT used un-initialized value.

20h - Intel QPI physical layer detected a QPI in-band reset but aborted initialization
21h - Link failover data self-healing

22h - Phy detected in-band reset (no width change).

23h - Link failover clock failover

30h -Rx detected CRC error - successful LLR after Phy re-init.
31h -Rx detected CRC error - successful LLR without Phy re-init.
All other values are reserved.

37:32 | Reserved Reserved
52:38 | Corrected Error Cnt
56:53 | Reserved Reserved
Status register | 63:57
validity
indicators?!
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.6.3 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC (see
Chapter 15, “"Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

IA32_MCIi_STATUS (i=9-12) log errors from the first memory controller. The second memory controller logs into
IA32_MCi_STATUS (i=13-16).

Vol.3B 16-17

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-22. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - DDR3 address parity error
errors the following 0002H - Uncorrected HA write data error
0004H - Uncorrected HA data byte enable error
0008H - Corrected patrol scrub error
0010H - Uncorrected patrol scrub error
0020H - Corrected spare error
0040H - Uncorrected spare error
0080H - Corrected memory read error. (Only applicable with iMC's “Additional
Error logging” Mode-1 enabled.)
0100H - iMC, write data buffer parity errors
0200H - DDR4 command address parity error
36:32 | Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.
37 Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,”
Status register 63:57
validity indicators?

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-23. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Type BitNo. | Bit Function Bit Description
MCA addrinfo! | 8:0 See Chapter 15, “Machine-Check Architecture,’
Model specific | 13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB
errors ID that has the parity error. OR if the second error logged is a correctable read
error, MC logs the second error device in this field.
Model specific | 29:14 | ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] s set, allows the iMC to log first-device error bit
errors mask.
Model specific | 45:30 | ErrMask_2nderrDev | When MSR_ERROR_CONTROL[1] is set, allows the iMC to log second-device error
errors bit mask.
50:46 | FailRank_1stErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.
55:51 | FailRank_2nd€ErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.
61:56 Reserved
62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from a correctable error from memory read associated with first error device.
63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

16-18 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.6.4 Home Agent Machine Check Errors

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs to IA32_MC8_{STATUS,ADDR,MISC}.

16.7 INCREMENTAL DECODING INFORMATION: INTEL®* XEON® PROCESSOR D
FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor D family is based on the Broadwell microarchitecture and can be identified with CPUID
DisplayFamily_DisplaySignature 06_56H. Incremental error codes for internal machine check error from PCU
controller is reported in the register bank IA32_MC4, Table 16-24 lists model-specific fields to interpret error codes
applicable to IA32_MC4_STATUS. Incremental error codes for the memory controller unit is reported in the register
banks IA32_MC9-IA32_MC10. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-10.

16.7.1 Internal Machine Check Errors

Table 16-24. Machine Check Error Codes for IA32_MC4_STATUS

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:.0 MCACOD
MCACOD? 15:.0 internal Errors 0402h - PCU internal Errors

0403h - internal Errors
0406h - Intel TXT Errors
0407h - Other UBOX internal Errors.

On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).

Model specific errors | 19:16 | Reserved except for | 0000b - No Error
the following 00x1b - PCU internal error
001xb - PCU internal error

Vol.3B 16-19

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

23:20

Reserved except for
the following

x1xxb - UBOX error

31:24

Reserved except for
the following

00h - No Error

09h - MC_MESSAGE_CHANNEL_TIMEQUT

13h - MC_DMI_TRAINING_TIMEQOUT

15h - MC_DMI_CPU_RESET_ACK_TIMEOUT

1€h - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX
25h - MC_SVID_COMMAND_TIMEOUT

26h - MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT
29h - MC_VR_VOUT_MAC_LT_FUSED_SVID

2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN
2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP
44h - MC_CRITICAL_VR_FAILED

46h - MC_VID_RAMP_DOWN_FAILED

49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED

4Bh - MC_PP1_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 0.
4Fh - MC_SVID_COMMAND_ERROR.

52h - MC_FIVR_CATAS_OVERVOL_FAULT.

53h - MC_FIVR_CATAS_OVERCUR_FAULT.

57h - MC_SVID_PKGC_REQUEST_FAILED

58h - MC_SVID_IMON_REQUEST_FAILED

59h - MC_SVID_ALERT_REQUEST_FAILED

62h - MC_INVALID_PKGS_RSP_QPI

64h - MC_INVALID_PKG_STATE_CONFIG

67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6Ah - MC_MSGCH_PMREQ_CMP_TIMEQUT

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56:32

Reserved

Reserved

Status register
validity indicators?

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

16.7.2 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC10_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see
Chapter 15, "Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-10).

16-20 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-25. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-10)

Type BitNo. | Bit Function Bit Description

MCA error codes’ 15:.0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - DDR3 address parity error

errors the following 0002H - Uncorrected HA write data error

0004H - Uncorrected HA data byte enable error
00O08H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0100H - iMC, write data buffer parity errors
0200H - DDR4 command address parity error

36:32 | Otherinfo Reserved

37 Reserved Reserved

56:38 See Chapter 15, “Machine-Check Architecture,’
Status register 63:57

validity indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.8 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR E5
V4 FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

The Intel® Xeon® processor E5 v4 family is based on the Broadwell microarchitecture and can be identified with
CPUID DisplayFamily_DisplaySignature 06_4FH. Incremental error codes for internal machine check error from
PCU controller is reported in the register bank IA32_MC4, Table 16-20 in Section 16.6.1lists model-specific fields
to interpret error codes applicable to IA32_MC4_STATUS.

Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MCS5,
IA32_MC20, and IA32_MC21. Information listed in Table 16-21 of Section 16.6.1 covers QPI MC error codes.

16.8.1 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC (see
Chapter 15, "Machine-Check Architecture”).

Table 16-26 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

IA32_MCIi_STATUS (i=9-12) log errors from the first memory controller. The second memory controller logs into
IA32_MCi_STATUS (i=13-16).

Vol. 3B 16-21

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-26. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Type BitNo. | Bit Function Bit Description

MCA error codes’ 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - DDR3 address parity error

errors the following 0002H - Uncorrected HA write data error

0004H - Uncorrected HA data byte enable error
0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0020H - Corrected spare error

0040H - Uncorrected spare error

0100H - iMC, write data buffer parity errors
0200H - DDR4 command address parity error

36:32 | Other info Reserved
37 Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,”
Status register 63:57
validity indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.8.2 Home Agent Machine Check Errors

MC error codes associated with mirrored memory corrections are reported in the MSRs IA32_MC7_MISC and
IA32_MC8_MISC. Table 16-27 lists model-specific error codes apply to IA32_MCi_MISC, i = 7, 8.

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs to IA32_MC8_{STATUS,ADDR,MISC}.

Table 16-27. Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)

Bit No. | Bit Function Bit Description

5:0 LSB See Figure 15-8.

86 Address Mode See Table 15-3.

40:9 Reserved Reserved

41 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with
channel failover.

42 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63:43 Reserved Reserved

16.9 INCREMENTAL DECODING INFORMATION: INTEL® XEON® PROCESSOR
SCALABLE FAMILY, MACHINE ERROR CODES FOR MACHINE CHECK

In the Intel® Xeon® Processor Scalable Family with CPUID DisplayFamily_DisplaySignature 06_55H, incremental
error codes for internal machine check errors from the PCU controller are reported in the register bank IA32_MC4.
Table 16-28 in Section 16.9.1 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS.

16-22 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.9.1 Internal Machine Check Errors
Table 16-28. Machine Check Error Codes for IA32_MC4_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD
MCACOD? 15:.0 Internal Errors 0402h - PCU internal Errors
0403h - PCU internal Errors
0406h - Intel TXT Errors
0407h - Other UBOX internal Errors.
On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).
Model specific errors | 19:16 | Reserved except for | 0000b - No Error
the following 00xxb - PCU internal error
23:20 | Reserved Reserved
31:24 | Reserved except for | O0h - No Error

the following

0Dh - MCA_DMI_TRAINING_TIMEOUT

OFh - MCA_DMI_CPU_RESET_ACK_TIMEOUT

10h - MCA_MORE_THAN_ONE_LT_AGENT

1€h - MCA_BIOS_RST_CPL_INVALID_SEQ

1Fh - MCA_BIOS_INVALID_PKG_STATE_CONFIG
25h - MCA_MESSAGE_CHANNEL_TIMEOUT

27h - MCA_MSGCH_PMREQ_CMP_TIMEOUT

30h - MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT
31h - MCA_PKGC_INVALID_RSP_PCH

33h - MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN
34h - MCA_PKGC_WATCHDOG_HANG_CBZ_UP
38h - MCA_PKGC_WATCHDOG_HANG_C3_UP_SF
40h - MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE
41h - MCA_SVID_COMMAND_TIMEOUT

42h - MCA_SVID_VCCIN_VR_VOUT_MAX_FAILURE
43h - MCA_SVID_CPU_VR_CAPABILITY_ERROR
44h - MCA_SVID_CRITICAL_VR_FAILED

45h - MCA_SVID_SA_ITD_ERROR

46h - MCA_SVID_READ_REG_FAILED

47h - MCA_SVID_WRITE_REG_FAILED

48h - MCA_SVID_PKGC_INIT_FAILED

Vol. 3B 16-23

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

49h - MCA_SVID_PKGC_CONFIG_FAILED

4Ah - MCA_SVID_PKGC_REQUEST_FAILED

4Bh - MCA_SVID_IMON_REQUEST_FAILED

4Ch - MCA_SVID_ALERT_REQUEST_FAILED

4Dh - MCA_SVID_MCP_VP_ABSENT_OR_RAMP_ERROR
4€h - MCA_SVID_UNEXPECTED_MCP_VP_DETECTED
51h - MCA_FIVR_CATAS_OVERVOL_FAULT

52h - MCA_FIVR_CATAS_OVERCUR_FAULT

58h - MCA_WATCHDG_TIMEOUT_PKGC_SLAVE

59h - MCA_WATCHDG_TIMEOUT_PKGC_MASTER
5Ah - MCA_WATCHDG_TIMEOUT_PKGS_MASTER
61h - MCA_PKGS_CPD_UNPCD_TIMEOUT

63h - MCA_PKGS_INVALID_REQ_PCH

64h - MCA_PKGS_INVALID_REQ_INTERNAL

65h - MCA_PKGS_INVALID_RSP_INTERNAL

6Bh - MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT
81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

52:32

Reserved

Reserved

54:53

CORR_ERR_STATUS

Reserved

56:55

Reserved

Reserved

Status register
validity indicators?

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

16.9.2

Interconnect Machine Check Errors

MC error codes associated with the link interconnect agents are reported in the MSRs IA32_MC5_STATUS,
IA32_MC12_STATUS, IA32_MC19_STATUS. The supported error codes follow the architectural MCACOD definition
type 1PPTRRRRIILL (see Chapter 15, "Machine-Check Architecture”).

Table 16-29 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, i= 5, 12, 19.

Table 16-29. Interconnect MC Error Codes for IA32_MCi_STATUS,i=5,12,19

Type BitNo. | Bit Function Bit Description
MCA error 15:.0 MCACOD Bus error format: 1TPPTRRRRIILL
codes’

The two supported compound error codes:
- 0x0COF - Unsupported/Undefined Packet
- OXOEOQF - For all other corrected and uncorrected errors

16-24 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

Model specific
errors

21:16

MSCOD

The encoding of Uncorrectable (UC) errors are:

00h - UC Phy Initialization Failure.

01h - UC Phy detected drift buffer alarm.

02h - UC Phy detected latency buffer rollover.

10h - UC link layer Rx detected CRC error: unsuccessful LLR entered abort state
11h - UC LL Rx unsupported or undefined packet.

12h - UC LL or Phy control error.

13h - UC LL Rx parameter exchange exception.

1fh - UC LL detected control error from the link-mesh interface

The encoding of correctable (COR) errors are:

20h - COR Phy initialization abort

21h - COR Phy reset

22h - COR Phy lane failure, recovery in x8 width.

23h - COR Phy LOc error corrected without Phy reset

24h - COR Phy LOc error triggering Phy reset

25h - COR Phy LOp exit error corrected with Phy reset

30h - COR LL Rx detected CRC error - successful LLR without Phy re-init.
31h - COR LL Rx detected CRC error - successful LLR with Phy re-init.

All other values are reserved.

31:22

MSCOD_SPARE

The definition below applies to MSCOD 12h (UC LL or Phy Control Errors)
[Bit 22] : Phy Control Error

[Bit 23] : Unexpected Retry.Ack flit

[Bit 24] : Unexpected Retry.Req flit

[Bit 25] : RF parity error

[Bit 26] : Routeback Table error

[Bit 27] : unexpected Tx Protocol flit (EOP, Header or Data)

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow

[Bit 29]: Link Layer Reset still in progress when Phy enters LO (Phy training should
not be enabled until after LL reset is complete as indicated by
KTILCL LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle
[Bit 31]: Link Layer Tx Parity Error

37:32

Reserved

Reserved

52:38

Corrected Error Cnt

56:53

Reserved

Reserved

Status register
validity
indicators?

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Vol. 3B 16-25

INTERPRETING MACHINE-CHECK ERROR CODES

16.9.3 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC13_STATUS-
IA32_MC18_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC (see
Chapter 15, "Machine-Check Architecture”).

IA32_MCIi_STATUS (i=13,14,17) log errors from the first memory controller. The second memory controller logs
into IA32_MCi_STATUS (i=15,16,18).

Table 16-30. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13-18)

Type BitNo. | Bit Function Bit Description

MCA error codes’ 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - Address parity error

Eerrors the following 0002H - HA write data parity error

0004H - HA write byte enable parity error

0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0020H - Corrected spare error

0040H - Uncorrected spare error

0080H - Any HA read error

0100H - WDB read parity error

0200H - DDR4 command address parity error

0400H - Uncorrected address parity error

0800H - Unrecognized request type

0801H - Read response to an invalid scoreboard entry
0802H - Unexpected read response

0803H - DDR4 completion to an invalid scoreboard entry
0804H - Completion to an invalid scoreboard entry
0805H - Completion FIFO overflow

0806H - Correctable parity error

0807H - Uncorrectable error

0808H - Interrupt received while outstanding interrupt was not ACKed
0809H - ERID FIFO overflow

080aH - Error on Write credits

080bH - Error on Read credits

080cH - Scheduler error

080dH - Error event

36:32 | Other info MC logs the first error device. This is an encoded 5-bit value of the device.
37 Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,’

Status register 63:57

validity indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-26 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.9.4 MZ2M Machine Check Errors

MC error codes associated with M2M are reported in the MSRs IA32_MC7_STATUS, IA32_MC8_STATUS. The
supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, "Machine-
Check Architecture,”).

Table 16-31. M2M MC Error Codes for IA32_MCi_STATUS (i= 7-8)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Compound error format: 0000 0000 1TMMM CCCC
Model specific 16 MscodDataRdErr Logged an MC read data error
errors
17 Reserved Reserved
18 MscodPtIWrErr Logged an MC partial write data error
19 MscodFullwWrérr Logged a full write data error
20 MscodBgferr Logged an M2M clock-domain-crossing buffer (BGF) error
21 MscodTimeOut Logged an M2M time out
22 MscodPar€rr Logged an M2M tracker parity error
23 MscodBucket1Err Logged a fatal Bucket1 error
31:24 | Reserved Reserved
36:32 | Other info MC logs the first error device. This is an encoded 5-bit value of the device.
37 Reserved Reserved
56:38 See Chapter 15, “Machine-Check Architecture,”
Status register 63:57
validity indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.9.5 Home Agent Machine Check Errors

MC error codes associated with mirrored memory corrections are reported in the MSRs IA32_MC7_MISC and
IA32_MC8_MISC. Table 16-32 lists model-specific error codes apply to IA32_MCi_MISC, i = 7, 8.

Memory errors from the first memory controller may be logged in the IA32_MC7_{STATUS,ADDR,MISC} registers,
while the second memory controller logs to IA32_MC8_{STATUS,ADDR,MISC}.

Table 16-32. Intel HA MC Error Codes for IA32_MCi_MISC (i= 7, 8)

Bit No. | Bit Function Bit Description

5:0 LSB See Figure 15-8.

8:6 Address Mode See Table 15-3.

40:9 Reserved Reserved

61:41 Reserved Reserved

62 Mirrorcorr Error was corrected by mirroring and primary channel scrubbed successfully.

63 Failover Error occurred at a pair of mirrored memory channels. Error was corrected by mirroring with
channel failover.

Vol. 3B 16-27

INTERPRETING MACHINE-CHECK ERROR CODES

16.10 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_5FH, MACHINE ERROR
CODES FOR MACHINE CHECK

In Intel® Atom® processors based on Goldmont Microarchitecture with CPUID DisplayFamily_DisplaySignature
06_5FH (code name Denverton), incremental error codes for the memory controller unit are reported in the
register banks IA32_MC6 and IA32_MC7. Table 16-33 in Section 16.10.1 lists model-specific fields to interpret
error codes applicable to IA32_MCi_STATUS, i =6, 7.

16.10.1 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC6_STATUS and
IA32_MC7_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC (see
Chapter 15, "Machine-Check Architecture”).

Table 16-33. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 6, 7)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:.0 MCACOD
Model specific errors | 31:16 | Reserved except for | 01h - Cmd/Addr parity
the following 02h - Corrected Demand/Patrol Scrub Error

04h - Uncorrected patrol scrub error
08h - Uncorrected demand read error
10h - WDB read ECC

36:32 | Other info

37 Reserved

56:38 See Chapter 15, “Machine-Check Architecture”.
Status register 63:57
validity indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.11 INCREMENTAL DECODING INFORMATION: FUTURE INTEL® XEON®
PROCESSORS WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURES
06_6AH AND 06_6CH, MACHINE ERROR CODES FOR MACHINE CHECK

Future Intel® Xeon® processor with CPUID DisplayFamily_DisplaySignature of 06_6AH and 06_6CH, incremental
error codes for internal machine check errors from the PCU controller are reported in the register bank IA32_MC4.
Table 16-34 in Section 16.11.1 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS.

16-28 Vol. 3B

16.11.1 Internal Machine Check Errors

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-34. Machine Check Error Codes for IA32_MC4_STATUS

Type

BitNo.

Bit Function

Bit Description

Machine Check Error
Codes'

15:.0

MCCOD

MCCOD

15:.0

Internal Errors

The value of this field will be 0402h for the PCU and 0406h for internal
firmware errors.

This applies for any logged error.

Model specific errors

19:16

Reserved except for the
following

Model specific error code bits 19:16.

This logs the type of HW UC (PCU/VCU) error that has occurred. There are
7 errors defined.

01h - Instruction address out of valid space.
02h - Double bit RAM error on Instruction Fetch.
03h - Invalid OpCode seen.

04h - Stack Underflow.

05h - Stack Overflow.

06h - Data address out of valid space.

07h - Double bit RAM error on Data Fetch.

23:20

Reserved except for the
following

Model specific error code bits 23:20.

This logs the type of HW FSM error that has occurred. There are 3 errors
defined.

04h - Clock/power IP response timeout.
05h - SMBus controller raised SMI.
09h - PM controller received invalid transaction.

31:24

Reserved except for the
following

0Dh - MCA_LLC_BIST_ACTIVE_TIMEOUT

O€Eh - MCA_DMI_TRAINING_TIMEOUT

OFh - MCA_DMI_STRAP_SET_ARRIVAL_TIMEOUT
10h - MCA_DMI_CPU_RESET_ACK_TIMEOUT
11h - MCA_MORE_THAN_ONE_LT_AGENT

14h - MCA_INCOMPATIBLE_PCH_TYPE

1€h - MCA_BIOS_RST_CPL_INVALID_SEQ

1Fh - MCA_BIOS_INVALID_PKG_STATE_CONFIG
2Dh - MCA_PCU_PMAX_CALIB_ERROR

2Eh - MCA_TSC100_SYNC_TIMEOUT

3Ah - MCA_GPSB_TIMEOUT

3Bh - MCA_PMSB_TIMEOUT

3€Eh - MCA_IOSFSB_PMREQ_CMP_TIMEOUT
40h - MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE
42h - MCA_SVID_VCCIN_VR_VOUT_FAILURE
43h - MCA_SVID_CPU_VR_CAPABILITY_ERROR
44h - MCA_SVID_CRITICAL_VR_FAILED

45h - MCA_SVID_SA_ITD_ERROR

46h - MCA_SVID_READ_REG_FAILED

47h - MCA_SVID_WRITE_REG_FAILED

4Ah - MCA_SVID_PKGC_REQUEST_FAILED

Vol. 3B 16-29

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

4Bh - MCA_SVID_IMON_REQUEST_FAILED

4Ch - MCA_SVID_ALERT_REQUEST_FAILED

4Dh - MCA_SVID_MCP_VR_RAMP_ERROR

56h - MCA_FIVR_PD_HARDERR

58h - MCA_WATCHDOG_TIMEOUT_PKGC_SLAVE
59h - MCA_WATCHDOG_TIMEOUT_PKGC_MASTER
5Ah - MCA_WATCHDOG_TIMEOUT_PKGS_MASTER
5Bh - MCA_WATCHDOG_TIMEOUT_MSG_CH_FSM
5Ch - MCA_WATCHDOG_TIMEOUT_BULK_CR_FSM
5Dh - MCA_WATCHDOG_TIMEOUT_IOSFSB_FSM
60h - MCA_PKGS_SAFE_WP_TIMEOUT

61h - MCA_PKGS_CPD_UNCPD_TIMEOUT

62h - MCA_PKGS_INVALID_REQ_PCH

63h - MCA_PKGS_INVALID_REQ_INTERNAL

64h - MCA_PKGS_INVALID_RSP_INTERNAL
65h-7Ah - MCA_PKGS_RESET_PREP_TIMEOUT
7Bh - MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT
7Ch - MCA_PKGS_SMBUS_MCP_PAUSE_TIMEOUT
7Dh - MCA_PKGS_SMBUS_SPD_PAUSE_TIMEOUT
80h - MCA_PKGC_DISP_BUSY_TIMEOUT

81h - MCA_PKGC_INVALID_RSP_PCH

83h - MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN
84h - MCA_PKGC_WATCHDOG_HANG_CBZ_UP
87h - MCA_PKGC_WATCHDOG_HANG_C2_BLKMASTER
88h - MCA_PKGC_WATCHDOG_HANG_C2_PSLIMIT
89h - MCA_PKGC_WATCHDOG_HANG_SETDISP
8Bh - MCA_PKGC_ALLOW_L1_ERROR

90h - MCA_RECOVERABLE_DIE_THERMAL_TOO_HOT
AOh - MCA_ADR_SIGNAL_TIMEOUT

A1h - MCA_BCLK_FREQ_OC_ABOVE_THRESHOLD
BOh - MCA_DISPATCHER_RUN_BUSY_TIMEOUT

37:32

ENH_MCA_AVAILO

Available when Enhanced MCA is in use.

52:38

CORR_ERR_COUNT

Correctable error count.

54:53

CORRERRORSTATUSIND

These bits are used to indicate when the number of corrected errors has
exceeded the safe threshold to the point where an uncorrected error has

become more likely to happen.
Table 3 shows the encoding of these bits.

56:55

ENH_MCA_AVAIL1

Available when Enhanced MCA is in use.

Status register
validity indicators?

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-30 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.11.2 Interconnect Machine Check Errors

MC error codes associated with the link interconnect agents are reported in the MSRs IA32_MC5_STATUS,
IA32_MC7_STATUS, IA32_MC8_STATUS. The supported error codes follow the architectural MCACOD definition
type 1PPTRRRRIILL (see Chapter 15, *Machine-Check Architecture”).

NOTE

The interconnect machine check errors in this section apply only to future Intel Xeon processors
with a CPUID DisplayFamily_DisplaySignature of 06_6AH. These do not apply to future Intel Xeon
processors with a CPUID DisplayFamily_DisplaySignature of 06_6CH.

Table 16-35 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, i= 5, 7, 8.
Table 16-35. Interconnect MC Error Codes for IA32_MCi_STATUS,i=5,7,8

Type BitNo. | Bit Function Bit Description
MCA e1rror 15:.0 MCACOD Bus error format: TPPTRRRRIILL
codes The two supported compound error codes:

- 0xOCOF - Unsupported/Undefined Packet.
- OXO0EOF - For all other corrected and uncorrected errors.

Model specific | 21:16 | MSCOD The encoding of Uncorrectable (UC) errors are:

errors 00h - Phy Initialization Failure (Numinit).

01h - Phy Detected Drift Buffer Alarm.

02h - Phy Detected Latency Buffer Rollover.

10h - LL Rx detected CRC error: unsuccessful LLR (entered Abort state).
11h - LL Rx Unsupported/Undefined packet.

12h - LL or Phy Control Error.

13h - LL Rx Parameter Exception.

1Fh - LL Detected Control Error.

The encoding of correctable (COR) errors are:

20h - Phy Initialization Abort.

21h - Phy Inband Reset.

22h - Phy Lane failure, recovery in x8 width.

23h - Phy LOc error corrected without Phy reset.

24h - Phy LOc error triggering Phy reset.

25h - Phy LOp exit error corrected with reset.

30h - LL Rx detected CRC error: successful LLR without Phy Reinit.
31h - LL Rx detected CRC error: successful LLR with Phy Reinit.
32h - Tx received LLR.

All other values are reserved.

Vol. 3B 16-31

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description

31:22 | MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors).
[Bit 22] : Phy Control Error.

[Bit 23] : Unexpected Retry.Ack flit.

[Bit 24] : Unexpected Retry.Req flit.

[Bit 25] : RF parity error.

[Bit 26] : Routeback Table error.

[Bit 27] : Unexpected Tx Protocol flit (EOP, Header or Data).

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow.

[Bit 29]: Link Layer Reset still in progress when Phy enters LO (Phy training should
not be enabled until after LL reset is complete as indicated by
KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle.
[Bit 31]: Link Layer Tx Parity Error.

37:32 | OTHER_INFO Other Info.

56:38 | Corrected Error Cnt See Chapter 15, “Machine-Check Architecture”.

Status register | 63:57
validity
indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.11.3 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers for the 3rd generation Intel® Xeon® Processor Scal-
able Family based on Ice Lake microarchitecture are defined in Table 16-37.

The MSRs reporting MC error codes differ depending on the CPUID DisplayFamily_DisplaySignature of the
processor. See Table 16-36 for details.

Table 16-36. MSRs Reporting MC Error Codes by CPUID DisplayFamily_DisplaySignature

Processor CPUID MSRs Reporting MC Error Codes
DisplayFamily_DisplaySignature

3rd generation Intel® Xeon® Processor Scalable | 06_6AH IA32_MC13_STATUS - IA32_MC15_STATUS

Family based on Ice Lake microarchitecture IA32_MC17_STATUS - IA32_MC19_STATUS

[A32_MC21_STATUS - IA32_MC23_STATUS
IA32_MC25_STATUS - IA32_MC27_STATUS

3rd generation Intel® Xeon® Processor Scalable | 06_6CH IA32_MC13_STATUS - IA32_MC15_STATUS
Family based on Ice Lake microarchitecture IA32_MC17_STATUS - IA32_MC19_STATUS

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture”).

16-32 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-37. Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13-15, 17-19, 21-23, 25-27)

Type BitNo. | Bit Function Bit Description

MCA error codes’ 15:.0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - Address parity error.

errors the following 0002H - Data parity error.

0003H - Data ECC error.

0004H - Data byte enable parity error.

0007H - Transaction ID parity error.

0008H - Corrected patrol scrub error.

0010H - Uncorrected patrol scrub error.
0020H - Corrected spare error.

0040H - Uncorrected spare error.

0080H - Corrected read error.

OO0AOH - Uncorrected read error.

00COH - Uncorrected metadata.

0100H - WDB read parity error.

0103H - RPA parity error.

0104H - RPA parity error.

0105H - WPA parity error.

0106H - DDR_T_DPPP data BE error.

0107H - DDR_T_DPPP data error.

0108H - DDR link failure.

OT11H - PCLS CAM error.

O0112H - PCLS data error.

0200H - DDR4 command / address parity error.
0220H - HBM command / address parity error.
0221H - HBM data parity error.

0400H - RPQ parity (primary) error.

0401H - RPQ parity (buddy) error.

0404H - WPQ parity (primary) error.

0405H - WPQ parity (buddy) error.

0408H - RPB parity (primary) error.

0409H - RPB parity (buddy) error.

0800H - DDR-T bad request.

0801H - DDR Data response to an invalid entry.
0802H - DDR data response to an entry not expecting data.
0803H - DDR4 completion to an invalid entry.
0804H - DDR-T completion to an invalid entry.
0805H - DDR data/completion FIFO overflow.
0806H - DDR-T ERID correctable parity error.
0807H - DDR-T ERID uncorrectable error.
0808H - DDR-T interrupt received while outstanding interrupt was not ACKed.

Vol. 3B 16-33

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description

0809H - ERID FIFO overflow.

080AH - DDR-T error on FNV write credits.
080BH - DDR-T error on FNV read credits.
080CH -DDR-T scheduler error.

OBODH - DDR-T FNV error event.

080EH - DDR-T FNV thermal event.
080FH - CMI packet while idle.

0810H - DDR_T_RPQ_REQ_PARITY_ERR.
0811H - DDR_T_WPQ_REQ_PARITY_ERR.
0812H - 2LM_NMFILLWR_CAM_ERR.
0813H - CMI_CREDIT_OVERSUB_ERR.
0814H - CMI_CREDIT_TOTAL_ERR.
0815H - CMI_CREDIT_RSVD_POOL_ERR.
0816H - DDR_T_RD_ERROR.

0817H - WDB_FIFO_ERR.

0818H - CMI_REQ_FIFO_OVERFLOW.
0819H - CMI_REQ_FIFO_UNDERFLOW.
081AH - CMI_RSP_FIFO_OVERFLOW.
081BH - CMI_RSP_FIFO_UNDERFLOW.
081CH - CMI_MISC_MC_CRDT_ERRORS.
081DH - CMI_MISC_MC_ARB_ERRORS.
081€EH - DDR_T_WR_CMPL_FIFO_OVERFLOW.
081FH - DDR_T_WR_CMPL_FIFO_UNDERFLOW.
0820H - CMI_RD_CPL_FIFO_OVERFLOW.
0821H - CMI_RD_CPL_FIFO_UNDERFLOW.
0822H - TME_KEY_PAR_ERR.

0823H - TME_CMI_MISC_ERR.

0824H - TME_CMI_OVFL_ERR.

0825H - TME_CMI_UFL_ERR.

0826H - TME_TEM_SECURE_ERR.

0827H - TME_UFILL_PAR_ERR.

37:32 | Other info Other Info.
56:38 See Chapter 15, “Machine-Check Architecture”.
Status register 63:57

validity indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16-34 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Additional information is reported in the MSRs IA32_MC13_MISC —IA32_MC15_MISC, IA32_MC17_MISC —
IA32_MC19_MISC, IA32_MC21_MISC —IA32_MC23_MISC, and IA32_MC25_MISC — IA32_MC27_MISC. Table
16-37 lists the information reported in IA32_MCi_MISC, i = 13-15, 17-19, 21-23, and 25-27.

Table 16-38. Additional Information Reported in IA32_MCi_MISC (i= 13-15, 17-19, 21-23, 25-27)

Bit No.

Bit Function

Bit Description

5.0

LSB

See Figure 15-8.

8.6

Address Mode

See Table 15-3.

189

Column

Component of sub-DIMM address.
Bits 18-17: Reserved

Bit 16: Column 9

Bit 15: Column 8

Bit 14: Column 7

Bit 13: Column 6

Bit 12: Column 5

Bit 11: Column 4

Bit 10: Column 3

Bit 9: Reserved

39:19

Row

Component of sub-DIMM address.

45:40

Bank

Component of sub-DIMM address.
Bit 45: Reserved

Bit 44: Bank group 2

Bit 43: Bank address 1

Bit 42: Bank address O

Bit 41: Bank group 1

Bit 40: Bank address O

51:46

Failed Device

Failing device for correctable error (not valid for uncorrectable or transient errors).

55:52

SubRank

Logical Rank (3D Stacked SDRAM)

58:56

Rank

Rank

62:59

ECC Mode

0000b: SDDC memory mode
0001b: SDDC

0100b: ADDDC memory mode
0101b: ADDDC

1000b: Read from DDRT
Other values: Reserved

63

Transient

0Ob:
1b: Error was transient

16.11.4 MZ2M Machine Check Errors

MC error codes associated with M2M for future Intel Xeon processors with a CPUID DisplayFamily_DisplaySignature
of 06_6AH are reported in the MSRs IA32_MC12_STATUS, IA32_MC16_STATUS, IA32_MC20_STATUS, and
IA32_MC24_STATUS.

MC error codes associated with M2M for future Intel Xeon processors with a CPUID DisplayFamily_DisplaySignature
of 06_6AH are reported in the MSRs IA32_MC12_STATUS and IA32_MC16_STATUS.

Vol. 3B 16-35

INTERPRETING MACHINE-CHECK ERROR CODES

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “"Machine-

Check Architecture”).

Table 16-39. M2M MC Error Codes for IA32_MCi_STATUS (i= 12, 16, 20, 24)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD Compound error format: 0000 0000 1MMM CCCC
Model specific 16 MscodDataRdErr Logged an MC read data error.
errors
17 Reserved Reserved
18 MscodPtlWrErr Logged an MC partial write data error.
19 MscodFullwWrérr Logged a full write data error.
20 MscodBgferr Logged an M2M clock-domain-crossing buffer (BGF) error.
21 MscodTimeOut Logged an M2M time out.
22 MscodPar€rr Logged an M2M tracker parity error.
23 MscodBucket1Err Logged a fatal Bucket1 error.
25:24 | MscodDDRType Logged a DDR/DDR-T specific error.
31:26 | MscodMiscErrs Logged a miscellaneous error.
37:32 | Other info Other Info.
56:38 See Chapter 15, "Machine-Check Architecture”.
Status register 63:57
validity indicators?

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

MC error codes associated with mirrored memory corrections are reported in the MSRs IA32_MC12_MISC,
IA32_MC16_MISC, IA32_MC20_MISC, and IA32_MC24_MISC. The model-specific error codes listed in Table 16-32
also apply to IA32_MCi_MISC, i = 12, 16, 20, 24.

INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_86H, MACHINE ERROR
CODES FOR MACHINE CHECK

In Intel® Atom® processors based on Tremont microarchitecture with CPUID DisplayFamily_DisplaySignature
06_86H, incremental error codes for internal machine check errors from the PCU controller are reported in the
register bank IA32_MC4. Table 16-34 in Section 16.11.1 lists model-specific fields to interpret error codes appli-
cable to IA32_MC4_STATUS.

16.12

16.12.1 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC13_STATUS -
IA32_MC15_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC (see
Chapter 15, "Machine-Check Architecture”).

The IA32_MCi_STATUS MSR (where i = 13, 14, 15) contains information related to a machine check error if its
VAL(valid) flag is set. Bit definitions are the same as those found in Table 16-36 “Inte/ IMC MC Error Codes for
IA32_MCj_STATUS (i= 13-15, 17-19, 21-23, 25-27)".

16-36 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

The IA32_MCi_MISC MSR (where i = 13, 14, 15) contains information related memory corrections. Bit definitions
are the same as those found in Table 16-37 “Additional Information Reported in IA32_MCi_MISC (i= 13-15, 17-19,
21-23, 25-27)".

16.12.2 MZ2M Machine Check Errors

MC error codes associated with M2M are reported in the IA32_MC12_STATUS MSR. The supported error codes
follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “"Machine-Check Architecture”).

Bit definitions are the same as those found in Table 16-38 “M2M MC Error Codes for IA32_MCj_STATUS (i= 12, 16,
20, 24)".

16.13 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH

MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-39 provides information for interpreting additional family OFH model-specific fields for external bus
errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally) as compound
errors with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on
the interpretation of compound error codes.

Table 16-40. Incremental Decoding Information: Processor Family OFH Machine Error Codes For Machine Check

Type BitNo. | Bit Function Bit Description
MCA error 15.0
codes’
Model-specific | 16 FSB address parity Address parity error detected:
error codes 1 = Address parity error detected
0 = No address parity error
17 Response hard fail Hardware failure detected on response
18 Response parity Parity error detected on response
19 PIC and FSB data parity Data Parity detected on either PIC or FSB access
20 Processor Signature = Processor Signature = 00000F04H. Indicates error due to an invalid PIC
00000FO04H: Invalid PIC request access was made to PIC space with WB memory):
request 1 = Invalid PIC request error
0 = No Invalid PIC request error
Reserved
All other processors:
Reserved
21 Pad state machine The state machine that tracks P and N data-strobe relative timing has
become unsynchronized or a glitch has been detected.
22 Pad strobe glitch Data strobe glitch
23 Pad address glitch Address strobe glitch
Other 56:24 |Reserved Reserved
Information
Status register | 63:57
validity
indicators?

Vol. 3B 16-37

INTERPRETING MACHINE-CHECK ERROR CODES

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-10 provides information on interpreting additional family OFH, model specific fields for cache hierarchy
errors. These errors are reported in one of the IA32_MCi_STATUS MSRs. These errors are reported, architecturally,
as compound errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See Chapter 15 for
how to interpret the compound error code.

16.13.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information related to Machine Check
Errors. MCi_STATUS[63:0] refers to all 5 register banks. MCO_STATUS[63:0] through MC3_STATUS[63:0] is the
same as on previous generation of Intel Xeon processors within Family OFH. MC4_STATUS[63:0] is the main error
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus and Interconnect Errors
Compound Error Codes in the MCA Error Code Field.

Table 16-41. MCi_STATUS Register Bit Definition

Bit Field Name | Bits Description

MCA_Error_Code | 15:0 Specifies the machine check architecture defined error code for the machine check error condition
detected. The machine check architecture defined error codes are guaranteed to be the same for all
Intel Architecture processors that implement the machine check architecture. See tables below

Model_Specific_E | 31:16 | Specifies the model specific error code that uniquely identifies the machine check error condition
rror_Code detected. The model specific error codes may differ among Intel Architecture processors for the same
Machine Check Error condition. See tables below

Other_Info 56:32 | The functions of the bits in this field are implementation specific and are not part of the machine check
architecture. Software that is intended to be portable among Intel Architecture processors should not
rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of the processor might have been corrupted by
the error condition detected and that reliable restarting of the processor may not be possible. When
clear, this flag indicates that the error did not affect the processor’s state. This bit will always be set for
MC errors which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register contains the address where the error
occurred. When clear, this flag indicates that the MC_ADDR register does not contain the address where
the error occurred. The MC_ADDR register should not be read if the ADDRV bit is clear.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register contains additional

information regarding the error. When clear, this flag indicates that the MC_MISC register does not
contain additional information regarding the error. MC_MISC should not be read if the MISCV bit is not
set.

EN 60 Error enabled flag indicates that reporting of the machine check exception for this error was enabled by
the associated flag bit of the MC_CTL register. Note that correctable errors do not have associated
enable bits in the MC_CTL register so the EN bit should be clear when a correctable error is logged.

16-38 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-41. MCi_STATUS Register Bit Definition (Contd.)

Bit Field Name | Bits Description

uc 61 Error uncorrected flag indicates that the processor did not correct the error condition. When clear, this
flag indicates that the processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error occurred while the results of a
previous error were still in the register bank (i.e., the VAL bit was already set in the
MC_STATUS register). The processor sets the OVER flag and software is responsible for clearing it.
Enabled errors are written over disabled errors, and uncorrected errors are written over corrected
events. Uncorrected errors are not written over previous valid uncorrected errors.

VAL 63 MC_STATUS register valid flag indicates that the information within the MC_STATUS register is valid.

When this flag is set, the processor follows the rules given for the OVER flag in the MC_STATUS register
when overwriting previously valid entries. The processor sets the VAL flag and software is responsible
for clearing it.

16.13.1.1 Processor Machine Check Status Register MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its CBC internal machine check
errors, L3 Errors, and Bus/Interconnect Errors. It defines additional Machine Check error types
(IA32_MC4_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-41 lists these model-specific MCA error
codes. Error code details are specified in MC4_STATUS [31:16] (see Section 16.13.3), the “"Model Specific Error
Code” field. The information in the “Other_Info” field (MC4_STATUS[56:32]) is common to the three processor
error types and contains a correctable event count and specifies the MC4_MISC register format.

Table 16-42. Incremental MCA Error Code for Intel Xeon Processor MP 7100

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type | Error Code

Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 | Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 | L3 Tag Error Type Code

B Bus and 0000 100x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
Interconnect implementations
Error 0000 101x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA

implementations

0000 110x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

0000 11100000 1111 | Bus and Interconnection Error Type Code

0000 11110000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.13.2 Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types (A, B & C).

Vol. 3B 16-39

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-43. Other Information Field Bit Definition

Bit Field Name | Bits Description
39:32 8-bit Correctable | Holds a count of the number of correctable events since cold reset. This is a saturating counter;
Event Count the counter begins at 1 (with the first error) and saturates at a count of 255.
41:40 MC4_MISC The value in this field specifies the format of information in the MC4_MISC register. Currently,
format type only two values are defined. Valid only when MISCV is asserted.
43:42 - Reserved
51:44 ECC syndrome ECC syndrome value for a correctable ECC event when the “Valid ECC syndrome” bit is asserted
52 Valid ECC Set when correctable ECC event supplies the ECC syndrome
syndrome
54:53 Threshold-Based | 00: No tracking - No hardware status tracking is provided for the structure reporting this event.
Error Status 01: Green - Status tracking is provided for the structure posting the event; the current status is
green (below threshold).
10: Yellow - Status tracking is provided for the structure posting the event; the current status is
vellow (above threshold).
11: Reserved for future use
Valid only if Valid bit (bit 63) is set
Undefined if the UC bit (bit 61) is set
56:55 - Reserved

16.13.3 Processor Model Specific Error Code Field

16.13.3.1 MCA Error Type A: L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).
Table 16-44. Type A: L3 Error Codes
Bit Sub-Field | Description Legal Value(s)
Num Name
18:16 L3 Error Describes the L3 | 000 - No error
Code error 001 - More than one way reporting a correctable event
encountered .
010 - More than one way reporting an uncorrectable error
011 - More than one way reporting a tag hit
100 - No error
101 - One way reporting a correctable event
110 - One way reporting an uncorrectable error
111 - One or more ways reporting a correctable event while one or more ways are
reporting an uncorrectable error
20:19 - Reserved 00
31:21 - Fixed pattern 0010_0000_000

16-40 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.13.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16).

Table 16-45. Type B Bus and Interconnect Error Codes

Bit Num | Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

17 CoreQ Addr Parity Parity error detected on Core O request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response Parity Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core O detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)
25 FSB Inbound Data ECC | Data ECC event to error on inbound data (correctable or uncorrectable)
26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error)
31:28 Reserved

Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error. The Data ECC can
be correctable or uncorrectable (the MC4_STATUS.UC bit, of course, distinguishes between correctable and uncor-
rectable cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors). All other
errors for this processor MCA Error Type are uncorrectable.

16.13.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

Table 16-46. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value

Error Description

0000_0000_0000_0001 000TH

Inclusion Error from Core O

0000_0000_0000_0010 0002H

Inclusion Error from Core 1

0000_0000_0000_0011 0003H

Write Exclusive Error from Core O

0000_0000_0000_0100 0004H

Write Exclusive Error from Core 1

0000_0000_0000_0101 0005H

Inclusion Error from FSB

0000_0000_0000_0110 0006H

SNP Stall Error from FSB

0000_0000_0000_0111 0007H

Write Stall Error from FSB

0000_0000_0000_1000 0008H

FSB Arb Timeout Error

0000_0000_0000_1001 000SH

CBC 00D Queue Underflow/overflow

0000_0001_0000_0000 0100H

Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000 0200H

Internal Timeout error

0000_0011_0000_0000 0300H

Internal Timeout Error

0000_0100_0000_0000 0400H

Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

Vol. 3B 16-41

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-46. Type C Cache Bus Controller Error Codes (Contd.)

MC4_STATUS[31:16] (MSCE) Value Error Description

1100_0000_0000_0001 COO1H Correctable ECC event on outgoing FSB data
1100_0000_0000_0010 Co0o2H Correctable ECC event on outgoing Core O da