
Document Number: 252046-057

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

December 2017

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2017, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

-047 • Removed Documentation Changes 1-25
• Add Documentation Changes 1-19

June 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

§

-048 • Removed Documentation Changes 1-19
• Add Documentation Changes 1-33

September 2015

-049 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-33

December 2015

-050 • Removed Documentation Changes 1-33
• Add Documentation Changes 1-9

April 2016

-051 • Removed Documentation Changes 1-9
• Add Documentation Changes 1-20

June 2016

-052 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-22

September 2016

-053 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-26

December 2016

-054 • Removed Documentation Changes 1-26
• Add Documentation Changes 1-20

March 2017

-055 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-28

July 2017

-056 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-18

October 2017

-057 • Removed Documentation Changes 1-18
• Add Documentation Changes 1-29

December 2017

Revision Description Date

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-L 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, M-U 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference, V-Z 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D: Instruction Set
Reference 334569

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
Programming Guide, Part 4 332831

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model Specific
Registers 335592

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 3, Volume 1

2 Updates to Chapter 4, Volume 1

3 Updates to Chapter 5, Volume 1

4 Updates to Chapter 8, Volume 1

5 Updates to Chapter 11, Volume 1

6 Updates to Chapter 19, Volume 1

7 Updates to Appendix D, Volume 1

8 Updates to Appendix E, Volume 1

9 Updates to Chapter 2, Volume 2A

10 Updates to Chapter 3, Volume 2A

11 Updates to Chapter 4, Volume 2B

12 Updates to Chapter 5, Volume 2C

13 Updates to Chapter 7, Volume 2D

14 Updates to Chapter 8, Volume 3A

15 Updates to Chapter 9, Volume 3A

16 Updates to Chapter 10, Volume 3A

17 Updates to Chapter 17, Volume 3B

18 Updates to Chapter 18, Volume 3B

19 Updates to Chapter 19, Volume 3B

20 Updates to Chapter 24, Volume 3B

21 Updates to Chapter 28, Volume 3C

22 Updates to Chapter 35, Volume 3C

23 Updates to Chapter 36, Volume 3D

24 Updates to Chapter 37, Volume 3D

25 Updates to Chapter 38, Volume 3D

26 Updates to Chapter 40, Volume 3D

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

27 Updates to Chapter 41, Volume 3D

28 Updates to Appendix A, Volume 3D

29 Updates to Chapter 2, Volume 4

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

1. Updates to Chapter 3, Volume 1

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Minor correction in Section 3.4.2 “Segment Registers” and Section 3.7.4 “Specifying a
Segment Selector”.

Vol. 1 3-1

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 processor as seen by assembly-
language programmers. It describes how the processor executes instructions and how it stores and manipulates
data. The execution environment described here includes memory (the address space), general-purpose data
registers, segment registers, the flag register, and the instruction pointer register.

3.1 MODES OF OPERATION
The IA-32 architecture supports three basic operating modes: protected mode, real-address mode, and system
management mode. The operating mode determines which instructions and architectural features are accessible:
• Protected mode — This mode is the native state of the processor. Among the capabilities of protected mode

is the ability to directly execute “real-address mode” 8086 software in a protected, multi-tasking environment.
This feature is called virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

• Real-address mode — This mode implements the programming environment of the Intel 8086 processor with
extensions (such as the ability to switch to protected or system management mode). The processor is placed in
real-address mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating system or executive with a
transparent mechanism for implementing platform-specific functions such as power management and system
security. The processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is
received from the advanced programmable interrupt controller (APIC).
In SMM, the processor switches to a separate address space while saving the basic context of the currently
running program or task. SMM-specific code may then be executed transparently. Upon returning from SMM,
the processor is placed back into its state prior to the system management interrupt. SMM was introduced with
the Intel386™ SL and Intel486™ SL processors and became a standard IA-32 feature with the Pentium
processor family.

3.1.1 Intel® 64 Architecture
Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:
• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode permits most legacy 16-bit and

32-bit applications to run without re-compilation under a 64-bit operating system. For brevity, the compatibility
sub-mode is referred to as compatibility mode in IA-32 architecture. The execution environment of compati-
bility mode is the same as described in Section 3.2. Compatibility mode also supports all of the privilege levels
that are supported in 64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or use
hardware task management will not work in this mode.
Compatibility mode is enabled by the operating system (OS) on a code segment basis. This means that a single
64-bit OS can support 64-bit applications running in 64-bit mode and support legacy 32-bit applications (not
recompiled for 64-bits) running in compatibility mode.
Compatibility mode is similar to 32-bit protected mode. Applications access only the first 4 GByte of linear-
address space. Compatibility mode uses 16-bit and 32-bit address and operand sizes. Like protected mode, this
mode allows applications to access physical memory greater than 4 GByte using PAE (Physical Address Exten-
sions).

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit operating system to run applica-
tions written to access 64-bit linear address space. For brevity, the 64-bit sub-mode is referred to as 64-bit
mode in IA-32 architecture.

3-2 Vol. 1

BASIC EXECUTION ENVIRONMENT

64-bit mode extends the number of general purpose registers and SIMD extension registers from 8 to 16.
General purpose registers are widened to 64 bits. The mode also introduces a new opcode prefix (REX) to
access the register extensions. See Section 3.2.1 for a detailed description.
64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits and
its default operand size is 32 bits. The default operand size can be overridden on an instruction-by-instruction
basis using a REX opcode prefix in conjunction with an operand size override prefix.
REX prefixes allow a 64-bit operand to be specified when operating in 64-bit mode. By using this mechanism,
many existing instructions have been promoted to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT
Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for
storing code, data, and state information. These resources (described briefly in the following paragraphs and
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode).

The basic execution environment is used jointly by the application programs and the operating system or executive
running on the processor.
• Address space — Any task or program running on an IA-32 processor can address a linear address space of

up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6,
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space
greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, the six segment registers, the
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to
execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte,
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address
memory. See Section 3.4, “Basic Program Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and
the x87 FPU opcode register provide an execution environment for operating on single-precision, double-
precision, and double extended-precision floating-point values, word integers, doubleword integers, quadword
integers, and binary coded decimal (BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more
information about these registers.

• MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD)
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, “The MMX Technology
Programming Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD operations
on 128-bit packed single-precision and double-precision floating-point values and on 128-bit packed byte,
word, doubleword, and quadword integers. See Section 10.2, “SSE Programming Environment,” for more
information about these registers.

• YMM registers — The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed
single-precision and double-precision floating-point values and on 256-bit packed byte, word, doubleword, and
quadword integers.

• Bounds registers — Each of the BND0-BND3 register stores the lower and upper bounds (64 bits each)
associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions.

• BNDCFGU and BNDSTATUS— BNDCFGU configures user mode MPX operations on bounds checking.
BNDSTATUS provides additional information on the #BR caused by an MPX operation.

Vol. 1 3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

0

2^32 -1
Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM Registers
Eight 128-bit

Registers

16 bits Control Register

16 bits Status Register

48 bits FPU Instruction Pointer Register

48 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

the physical address
extension mechanism, a
physical address space of
2^36 - 1 can be addressed.

YMM Registers
Eight 256-bit

Registers

YMM Registers

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

3-4 Vol. 1

BASIC EXECUTION ENVIRONMENT

• Stack — To support procedure or subroutine calls and the passing of parameters between procedures or
subroutines, a stack and stack management resources are included in the execution environment. The stack
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the
following resources as part of its system-level architecture. They provide extensive support for operating-system
and system-development software. Except for the I/O ports, the system resources are described in detail in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.
• I/O ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See

Chapter 18, “Input/Output,” in this volume.
• Control registers — The five control registers (CR0 through CR4) determine the operating mode of the

processor and the characteristics of the currently executing task. See Chapter 2, “System Architecture
Overview,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data
structures used in protected mode memory management. See Chapter 2, “System Architecture Overview,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow monitoring of the processor’s
debugging operations. See in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of
memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A & 3B.

• Machine specific registers (MSRs) — The processor provides a variety of machine specific registers that are
used to control and report on processor performance. Virtually all MSRs handle system related functions and
are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs
are described in Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 4.

• Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 15, “Machine-
Check Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters allow processor performance
events to be monitored. See Chapter 18, “Performance Monitoring,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the
other program execution resources shown in Figure 3-1:
• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ Technology.”
• XMM registers — See Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE),”

Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” and Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI.”

• YMM registers — See Chapter 14, “Programming with AVX, FMA and AVX2”.
• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,”

and Chapter 17, “Intel® MPX”.
• Stack implementation and procedure calls — See Chapter 6, “Procedure Calls, Interrupts, and Exceptions.”

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs
describe the differences that apply.
• Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear address

space of up to 264 bytes (subject to the canonical addressing requirement described in Section 3.3.7.1) and
physical address space of up to 246 bytes. Software can query CPUID for the physical address size supported
by a processor.

• Basic program execution registers — The number of general-purpose registers (GPRs) available is 16.
GPRs are 64-bits wide and they support operations on byte, word, doubleword and quadword integers.
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64 bits.
The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32 bits
of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “SSE Programming
Environment,” for more information about these registers.

• YMM registers — There are 16 YMM data registers for SIMD operations. See Chapter 14, “Programming with
AVX, FMA and AVX2” for more information about these registers.

• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,”
and Chapter 17, “Intel® MPX”.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register (the task priority register: CR8
or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures,” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3-6 Vol. 1

BASIC EXECUTION ENVIRONMENT

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel
64 architecture. Intel 64 architecture introduces a changes in physical and linear address space; these are
described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers Floating-Point

Data Registers

Eight 64-bit
Registers MMX Registers

XMM Registers
Sixteen 128-bit

Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

YMM Registers
Sixteen 256-bit

Registers

YMM Registers

Vol. 1 3-7

BASIC EXECUTION ENVIRONMENT

Virtually any operating system or executive designed to work with an IA-32 or Intel 64 processor will use the
processor’s memory management facilities to access memory. These facilities provide features such as segmenta-
tion and paging, which allow memory to be managed efficiently and reliably. Memory management is described in
detail in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A. The following paragraphs describe the basic methods of addressing memory when
memory management is used.

3.3.1 IA-32 Memory Models
When employing the processor’s memory management facilities, programs do not directly address physical
memory. Instead, they access memory using one of three memory models: flat, segmented, or real address mode:
• Flat memory model — Memory appears to a program as a single, continuous address space (Figure 3-3). This

space is called a linear address space. Code, data, and stacks are all contained in this address space. Linear
address space is byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 64-bit
mode). An address for any byte in linear address space is called a linear address.

• Segmented memory model — Memory appears to a program as a group of independent address spaces
called segments. Code, data, and stacks are typically contained in separate segments. To address a byte in a
segment, a program issues a logical address. This consists of a segment selector and an offset (logical
addresses are often referred to as far pointers). The segment selector identifies the segment to be accessed
and the offset identifies a byte in the address space of the segment. Programs running on an IA-32 processor
can address up to 16,383 segments of different sizes and types, and each segment can be as large as 232
bytes.
Internally, all the segments that are defined for a system are mapped into the processor’s linear address space.
To access a memory location, the processor thus translates each logical address into a linear address. This
translation is transparent to the application program.
The primary reason for using segmented memory is to increase the reliability of programs and systems. For
example, placing a program’s stack in a separate segment prevents the stack from growing into the code or
data space and overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel 8086 processor. It is
supported to provide compatibility with existing programs written to run on the Intel 8086 processor. The real-
address mode uses a specific implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of up to 64 KBytes in size each.
The maximum size of the linear address space in real-address mode is 220 bytes.
See also: Chapter 20, “8086 Emulation,” Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

3-8 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.3.2 Paging and Virtual Memory
With the flat or the segmented memory model, linear address space is mapped into the processor’s physical
address space either directly or through paging. When using direct mapping (paging disabled), each linear address
has a one-to-one correspondence with a physical address. Linear addresses are sent out on the processor’s address
lines without translation.

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address space is divided into
pages which are mapped to virtual memory. The pages of virtual memory are then mapped as needed into physical
memory. When an operating system or executive uses paging, the paging mechanism is transparent to an applica-
tion program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
• Physical Address Extensions (PAE) to address physical address space greater than 4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode
Intel 64 architecture supports physical address space greater than 64 GBytes; the actual physical address size of
IA-32 processors is implementation specific. In 64-bit mode, there is architectural support for 64-bit linear address
space. However, processors supporting Intel 64 architecture may implement less than 64-bits (see Section
3.3.7.1). The linear address space is mapped into the processor physical address space through the PAE paging
mechanism.

Figure 3-3. Three Memory Management Models

Linear Address

Flat Model

Linear
Address
Space*

Segment Selector

Offset

Segment Selector

Segmented Model

Real-Address Mode Model

Linear Address

Logical

Offset (effective address)

Space Divided
Into Equal

Sized Segments

Address

Logical
Address

Linear
Address

Space*

Segments

* The linear address space
can be paged when using the
flat or segmented model.

Vol. 1 3-9

BASIC EXECUTION ENVIRONMENT

3.3.4 Modes of Operation vs. Memory Model
When writing code for an IA-32 or Intel 64 processor, a programmer needs to know the operating mode the
processor is going to be in when executing the code and the memory model being used. The relationship between
operating modes and memory models is as follows:
• Protected mode — When in protected mode, the processor can use any of the memory models described in

this section. (The real-addressing mode memory model is ordinarily used only when the processor is in the
virtual-8086 mode.) The memory model used depends on the design of the operating system or executive.
When multitasking is implemented, individual tasks can use different memory models.

• Real-address mode — When in real-address mode, the processor only supports the real-address mode
memory model.

• System management mode — When in SMM, the processor switches to a separate address space, called the
system management RAM (SMRAM). The memory model used to address bytes in this address space is similar
to the real-address mode model. See Chapter 34, “System Management Mode,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for more information on the memory model used in
SMM.

• Compatibility mode — Software that needs to run in compatibility mode should observe the same memory
model as those targeted to run in 32-bit protected mode. The effect of segmentation is the same as it is in 32-
bit protected mode semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. Specifically, the processor treats the segment base of CS, DS, ES, and SS as zero in 64-bit mode (this
makes a linear address equal an effective address). Segmented and real address modes are not available in 64-
bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes
IA-32 processors in protected mode can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232-1); operand sizes are
typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum linear address or segment offset is
FFFFH (216-1); operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment selector and a 32-bit
offset; when using 16-bit addressing, an address consists of a 16-bit segment selector and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from within a program.

When operating in protected mode, the segment descriptor for the currently executing code segment defines the
default address and operand size. A segment descriptor is a system data structure not normally visible to applica-
tion code. Assembler directives allow the default addressing and operand size to be chosen for a program. The
assembler and other tools then set up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An address-size override
can be used in real-address mode to enable 32-bit addressing. However, the maximum allowable 32-bit linear
address is still 000FFFFFH (220-1).

3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of up to 64 GBytes (236 bytes) of
physical memory. A program or task could not address locations in this address space directly. Instead, it
addresses individual linear address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an operating system can enable a
program to switch 4-GByte linear address spaces within 64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in protected mode and the operating
system to provide a virtual memory management system. See “36-Bit Physical Addressing Using the PAE Paging
Mechanism” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

3-10 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 64-bit mode (if there is no
address-size override), the size of effective address calculations is 64 bits. An effective-address calculation uses a
64-bit base and index registers and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective addresses because the base
address is zero. In the event that FS or GS segments are used with a non-zero base, this rule does not hold. In 64-
bit mode, the effective address components are added and the effective address is truncated (See for example the
instruction LEA) before adding the full 64-bit segment base. The base is never truncated, regardless of addressing
mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction pointer is called
the RIP. Table 3-1 shows the relationship between RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32
bits and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-
bit displacement and immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address
calculations are first truncated to the effective address size of the current mode (64-bit mode or compatibility
mode), as overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width.
Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low 4 GBytes of
the 64-bit mode effective addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low
4 GBytes of the 64-bit mode effective addresses.

3.3.7.1 Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation of
IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address must
have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the
most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in
canonical form, the implementation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-
related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SS.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a
canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are appli-
cable in this situation. Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also means
that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still produces
a #GP for a canonical fault (and not an #SS).

3.4 BASIC PROGRAM EXECUTION REGISTERS
IA-32 architecture provides 16 basic program execution registers for use in general system and application
programing (see Figure 3-4). These registers can be grouped as follows:

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP

Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program

being executed and allows limited (application-program level) control of the processor.
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be

executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT

The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set
Summary,” in this volume. See also: Chapter 3, Chapter 4 and Chapter 5 of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B & 2C. The following is a summary of special uses:
• EAX — Accumulator for operands and results data
• EBX — Pointer to data in the DS segment
• ECX — Counter for string and loop operations
• EDX — I/O pointer
• ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations
• EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for

string operations
• ESP — Stack pointer (in the SS segment)
• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and
DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1 General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX,
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX,
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight new general-purpose registers.
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through
compatibility mode to 64-bit mode.

Figure 3-5. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

Vol. 1 3-13

BASIC EXECUTION ENVIRONMENT

In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot reference legacy high-
bytes (for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example: the low
byte of the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL or DL)
and new byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture
enforces this limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL,
SIL: the low 8 bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destination general-purpose
register:
• 64-bit operands generate a 64-bit result in the destination general-purpose register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose

register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 bits (respectively) of the

destination general-purpose register are not modified by the operation. If the result of an 8-bit or 16-bit
operation is intended for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit modes, the upper 32 bits of
any general-purpose register are not preserved when switching from 64-bit mode to a 32-bit mode (to protected
mode or compatibility mode). Software must not depend on these bits to maintain a value after a 64-bit to 32-bit
mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

When writing application code, programmers generally create segment selectors with assembler directives and
symbols. The assembler and other tools then create the actual segment selector values associated with these
directives and symbols. If writing system code, programmers may need to create segment selectors directly. See
Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

How segment registers are used depends on the type of memory management model that the operating system or
executive is using. When using the flat (unsegmented) memory model, segment registers are loaded with segment
selectors that point to overlapping segments, each of which begins at address 0 of the linear address space (see
Figure 3-6). These overlapping segments then comprise the linear address space for the program. Typically, two
overlapping segments are defined: one for code and another for data and stacks. The CS segment register points
to the code segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily loaded with a different segment
selector so that each segment register points to a different segment within the linear address space (see
Figure 3-7). At any time, a program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load the segment selector for the
segment to be accessed into a segment register.

Table 3-2. Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, DH AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15

3-14 Vol. 1

BASIC EXECUTION ENVIRONMENT

Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example,
the CS register contains the segment selector for the code segment, where the instructions being executed are
stored. The processor fetches instructions from the code segment, using a logical address that consists of the
segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within
the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an applica-
tion program. Instead, it is loaded implicitly by instructions or internal processor operations that change program
control (such as procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits effi-
cient and secure access to different types of data structures. For example, four separate data segments might be
created: one for the data structures of the current module, another for the data exported from a higher-level
module, a third for a dynamically created data structure, and a fourth for data shared with another program. To
access additional data segments, the application program must load segment selectors for these segments into the
DS, ES, FS, and GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the
program, task, or handler currently being executed. All stack operations use the SS register to find the stack

Figure 3-6. Use of Segment Registers for Flat Memory Model

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Segment Registers

CS

SS
DS

ES
FS
GS

Linear Address
Space for Program

The segment selector in
each segment register
points to an overlapping

Overlapping
Segments

of up to
4 GBytes

segment in the linear
address space.

Beginning at
Address 0

Segment Registers

CS
DS
SS
ES
FS
GS

Code
Segment

Data
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

All segments
are mapped
to the same
linear-address
space

Vol. 1 3-15

BASIC EXECUTION ENVIRONMENT

segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set
up multiple stacks and switch among them.

See Section 3.3, “Memory Organization,” for an overview of how the segment registers are used in real-address
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and
Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386™
family of processors.

3.4.2.1 Segment Registers in 64-Bit Mode
In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated
segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions.
Both segment registers may be used as additional base registers in linear address calculations (in the addressing
of local data and certain operating system data structures).

Even though segmentation is generally disabled, segment register loads may cause the processor to perform
segment access assists. During these activities, enabled processors will still perform most of the legacy checks on
loaded values (even if the checks are not applicable in 64-bit mode). Such checks are needed because a segment
register loaded in 64-bit mode may be used by an application running in compatibility mode.

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-8
defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin or
the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described in
the following sections). There are no instructions that allow the whole register to be examined or modified directly.

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX register:
LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to
the procedure stack or EAX register, the flags can be examined and modified using the processor’s bit manipulation
instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the state
of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to a new
task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state of
the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the
state of the EFLAGS register is saved in the TSS for the task being suspended.

3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result,
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions,
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-

significant bit of the result; cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits;
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of bit
3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed

integer. (0 indicates a positive value and 1 indicates a negative value.)
OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a negative

number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

Figure 3-8. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check / Access Control (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Vol. 1 3-17

BASIC EXECUTION ENVIRONMENT

The status flags allow a single arithmetic operation to produce results for three different data types: unsigned inte-
gers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned integer,
the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s comple-
ment number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry
or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to
the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

3.4.3.2 DF Flag
The direction flag (DF, located in bit 10 of the EFLAGS register) controls string instructions (MOVS, CMPS, SCAS,
LODS, and STOS). Setting the DF flag causes the string instructions to auto-decrement (to process strings from
high addresses to low addresses). Clearing the DF flag causes the string instructions to auto-increment
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.3.3 System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They
should not be modified by application programs. The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step mode.
IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt

requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
IOPL (bits 12 and 13)

I/O privilege level field — Indicates the I/O privilege level of the currently running program
or task. The current privilege level (CPL) of the currently running program or task must be less
than or equal to the I/O privilege level to access the I/O address space. The POPF and IRET
instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the
current task is linked to the previously executed task; cleared when the current task is not
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.
VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected

mode without virtual-8086 mode semantics.
AC (bit 18) Alignment check (or access control) flag — If the AM bit is set in the CR0 register, align-

ment checking of user-mode data accesses is enabled if and only if this flag is 1.
If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode
pages are allowed if and only if this bit is 1. See Section 4.6, “Access Rights,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag.
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when no
interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used in
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for
the CPUID instruction.

3-18 Vol. 1

BASIC EXECUTION ENVIRONMENT

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3.4.3.4 RFLAGS Register in 64-Bit Mode
In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits of RFLAGS register is
reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER
The instruction pointer (EIP) register contains the offset in the current code segment for the next instruction to be
executed. It is advanced from one instruction boundary to the next in straight-line code or it is moved ahead or
backwards by a number of instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-transfer instructions
(such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way to read the EIP register is to execute a
CALL instruction and then read the value of the return instruction pointer from the procedure stack. The EIP
register can be loaded indirectly by modifying the value of a return instruction pointer on the procedure stack and
executing a return instruction (RET or IRET). See Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction address read from the
bus during an instruction load does not match the value in the EIP register. Even though different processor gener-
ations use different prefetching mechanisms, the function of the EIP register to direct program flow remains fully
compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode
In 64-bit mode, the RIP register becomes the instruction pointer. This register holds the 64-bit offset of the next
instruction to be executed. 64-bit mode also supports a technique called RIP-relative addressing. Using this tech-
nique, the effective address is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES
When the processor is executing in protected mode, every code segment has a default operand-size attribute and
address-size attribute. These attributes are selected with the D (default size) flag in the segment descriptor for the
code segment (see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A). When the D flag is set, the 32-bit operand-size and address-size attri-
butes are selected; when the flag is clear, the 16-bit size attributes are selected. When the processor is executing
in real-address mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are always
16 bits.

The operand-size attribute selects the size of operands. When the 16-bit operand-size attribute is in force, oper-
ands can generally be either 8 bits or 16 bits, and when the 32-bit operand-size attribute is in force, operands can
generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits. When the 16-
bit address-size attribute is in force, segment offsets and displacements are 16 bits. This restriction limits the size
of a segment to 64 KBytes. When the 32-bit address-size attribute is in force, segment offsets and displacements
are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular instruction by
adding an operand-size and/or address-size prefix to an instruction. See Chapter 2, “Instruction Format,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies only
to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in protected mode or compatibility mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.

Vol. 1 3-19

BASIC EXECUTION ENVIRONMENT

3.6.1 Operand Size and Address Size in 64-Bit Mode
In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. Defaults can be over-
ridden using prefixes. Address-size and operand-size prefixes allow mixing of 32/64-bit data and 32/64-bit
addresses on an instruction-by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit mode. Note that 16-bit
addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the REX prefixes is referred to as
REX.W. If the REX.W field is properly set, the prefix specifies an operand size override to 64 bits. Note that software
can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W takes prece-
dence over the operand-size prefix (66H) when both are used.

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H prefixes are mandatory for
opcode extensions. In such a case, there is no interaction between a valid REX.W prefix and a 66H opcode exten-
sion prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

3.7 OPERAND ADDRESSING
IA-32 machine-instructions act on zero or more operands. Some operands are specified explicitly and others are
implicit. The data for a source operand can be located in:
• the instruction itself (an immediate operand)
• a register
• a memory location
• an I/O port

Table 3-3. Effective Operand- and Address-Size Attributes
D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment Descriptor
1 1 1 1 1 1 1 1

REX.W Prefix 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:
Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3-20 Vol. 1

BASIC EXECUTION ENVIRONMENT

When an instruction returns data to a destination operand, it can be returned to:
• a register
• a memory location
• an I/O port

3.7.1 Immediate Operands
Some instructions use data encoded in the instruction itself as a source operand. These operands are called imme-
diate operands (or simply immediates). For example, the following ADD instruction adds an immediate value of 14
to the contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to be an immediate
value. The maximum value allowed for an immediate operand varies among instructions, but can never be greater
than the maximum value of an unsigned doubleword integer (232).

3.7.2 Register Operands
Source and destination operands can be any of the following registers, depending on the instruction being
executed:
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)
• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)
• segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• control registers (CR0, CR2, CR3, and CR4) and system table pointer registers (GDTR, LDTR, IDTR, and task

register)
• debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a pair of 32-bit
registers. Register pairs are represented with a colon separating them. For example, in the register pair EDX:EAX,
EDX contains the high order bits and EAX contains the low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store the contents of
the EFLAGS register or to set or clear individual flags in this register. Other instructions (such as the Jcc instruc-
tions) use the state of the status flags in the EFLAGS register as condition codes for branching or other decision
making operations.

The processor contains a selection of system registers that are used to control memory management, interrupt and
exception handling, task management, processor management, and debugging activities. Some of these system
registers are accessible by an application program, the operating system, or the executive through a set of system
instructions. When accessing a system register with a system instruction, the register is generally an implied
operand of the instruction.

Vol. 1 3-21

BASIC EXECUTION ENVIRONMENT

3.7.2.1 Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:
• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or R8-R15)
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or R8D-R15D)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)
• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-R15L are available using REX

prefixes; AL, BL, CL, DL, AH, BH, CH, DH are available without using REX prefixes.
• Segment registers (CS, DS, SS, ES, FS, and GS)
• RFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM15) and the MXCSR register
• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer registers (GDTR, LDTR, IDTR, and

task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers
• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment selector and an offset (see
Figure 3-9). Segment selectors specify the segment containing the operand. Offsets specify the linear or effective
address of the operand. Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented by the
notation m16:16).

3.7.3.1 Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an offset. The offset can be 16
bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most common method of specifying a
segment selector is to load it in a segment register and then allow the processor to select the register implicitly,
depending on the type of operation being performed. The processor automatically chooses a segment according to
the rules given in Table 3-5.

Figure 3-9. Memory Operand Address

Figure 3-10. Memory Operand Address in 64-Bit Mode

Offset (or Linear Address)
015

Segment
310

Selector

Offset (or Linear Address)
015

Segment
630

Selector

3-22 Vol. 1

BASIC EXECUTION ENVIRONMENT

When storing data in memory or loading data from memory, the DS segment default can be overridden to allow
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon “:”
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to
by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the
beginning of an instruction. The following default segment selections cannot be overridden:
• Instruction fetches must be made from the code segment.
• Destination strings in string instructions must be stored in the data segment pointed to by the ES register.
• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1 Segmentation in 64-Bit Mode
In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset
The offset part of a memory address can be specified directly as a static value (called a displacement) or through
an address computation made up of one or more of the following components:
• Displacement — An 8-, 16-, or 32-bit value.
• Base — The value in a general-purpose register.
• Index — The value in a general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

Table 3-5. Default Segment Selection Rules

Reference Type Register Used Segment Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base
register.

Local Data DS Data Segment All data references, except when relative to stack or string destination.

Destination Strings ES Data Segment
pointed to with the
ES register

Destination of string instructions.

Vol. 1 3-23

BASIC EXECUTION ENVIRONMENT

The offset which results from adding these components is called an effective address. Each of these components
can have either a positive or negative (2s complement) value, with the exception of the scaling factor. Figure 3-11
shows all the possible ways that these components can be combined to create an effective address in the selected
segment.

The uses of general-purpose registers as base or index components are restricted in the following manner:
• The ESP register cannot be used as an index register.
• When the ESP or EBP register is used as the base, the SS segment is the default segment. In all other cases,

the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these components can
be NULL. A scale factor may be used only when an index also is used. Each possible combination is useful for data
structures commonly used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address components.
• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset to the operand. Because the

displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The base register holds the results of a calculation
to determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

• (Index ∗ Scale) + Displacement ⎯ This address mode offers an efficient way to index into a static array
when the element size is 2, 4, or 8 bytes. The displacement locates the beginning of the array, the index
register holds the subscript of the desired array element, and the processor automatically converts the
subscript into an index by applying the scaling factor.

• Base + Index + Displacement ⎯ Using two registers together supports either a two-dimensional array (the
displacement holds the address of the beginning of the array) or one of several instances of an array of records
(the displacement is an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement ⎯ Using all the addressing components together allows efficient
indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

Figure 3-11. Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

4

8

8-bit

16-bit

32-bit

Index Scale Displacement

*
+ +

3-24 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.7.5.1 Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an address
computation made up of one or more of the following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 64-bit general-purpose register.
• Index — The value in a 64-bit general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See
Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.
• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to

calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit
value in RIP.

3.7.6 Assembler and Compiler Addressing Modes
At the machine-code level, the selected combination of displacement, base register, index register, and scale factor
is encoded in an instruction. All assemblers permit a programmer to use any of the allowable combinations of these
addressing components to address operands. High-level language compilers will select an appropriate combination
of these components based on the language construct a programmer defines.

3.7.7 I/O Port Addressing
The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. Ports that are 16-bit and
32-bit may also be defined in the I/O address space. An I/O port can be addressed with either an immediate
operand or a value in the DX register. See Chapter 18, “Input/Output,” for more information about I/O port
addressing.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

2. Updates to Chapter 4, Volume 1
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Additions to the Section 4.8.3.5 “Operating on SNaNs and QNaNs”. Small update to
Section 4.9.1.1 “Invalid Operation Exception (#I)”.

Vol. 1 4-1

CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. A section at the end of this
chapter describes the real-number and floating-point concepts used in x87 FPU, SSE, SSE2, SSE3, SSSE3, SSE4
and Intel AVX extensions.

4.1 FUNDAMENTAL DATA TYPES
The fundamental data types are bytes, words, doublewords, quadwords, and double quadwords (see Figure 4-1).
A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits),
and a double quadword is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these
fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor; the double quadword
data type was introduced in the Pentium III processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as operands in memory.
The low byte (bits 0 through 7) of each data type occupies the lowest address in memory and that address is also
the address of the operand.

Figure 4-1. Fundamental Data Types

0

63

Double

0

Word

31

0

Doubleword

15

0

Byte

7

78

Low WordHigh Word

Low DoublewordHigh Doubleword

1516

3132

N+1

N+2

N+4

Low
Byte

High
Byte

N

Low QuadwordHigh Quadword
Quadword

N

N

N

N

N+8

0

Quadword

127 6364

4-2 Vol. 1

DATA TYPES

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords
Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries. The natural
boundaries for words, double words, and quadwords are even-numbered addresses, addresses evenly divisible by
four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data
structures (especially stacks) should be aligned on natural boundaries whenever possible. The reason for this is
that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require
only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand
that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be aligned on a natural
boundary. These instructions generate a general-protection exception (#GP) if an unaligned operand is specified. A
natural boundary for a double quadword is any address evenly divisible by 16. Other instructions that operate on
double quadwords permit unaligned access (without generating a general-protection exception). However, addi-
tional memory bus cycles are required to access unaligned data from memory.

4.2 NUMERIC DATA TYPES
Although bytes, words, and doublewords are fundamental data types, some instructions support additional inter-
pretations of these data types to allow operations to be performed on numeric data types (signed and unsigned
integers, and floating-point numbers). Single-precision (32-bit) floating-point and double-precision (64-bit)
floating-point data types are supported across all generations of SSE extensions and Intel AVX extensions. Half-
precision (16-bit) floating-point data type is supported only with F16C extensions (VCVTPH2PS, VCVTPS2PH). See
Figure 4-3.

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

EH

DH7AH

CHFEH

BH06H

AH36H

9H1FH

8HA4H

7H23H

6H0BH

5H

4H

3H74H

2HCBH

1H31H

0H

Quadword at Address 6H
Contains

Doubleword at Address AH
Contains 7AFE0636H

Word at Address BH
Contains FE06H

Byte at Address 9H
Contains 1FH

Word at Address 6H
Contains 230BH

Word at Address 1H
Contains CB31H

Word at Address 2H
Contains 74CBH

Double quadword at Address 0H

45H

67H

12H

Contains

12H

7AFE06361FA4230BH

4E127AFE06361FA4230B456774CB3112

4EH FH

Vol. 1 4-3

DATA TYPES

4.2.1 Integers
The Intel 64 and IA-32 architectures define two types of integers: unsigned and signed. Unsigned integers are ordi-
nary binary values ranging from 0 to the maximum positive number that can be encoded in the selected operand
size. Signed integers are two’s complement binary values that can be used to represent both positive and negative
integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate on either unsigned or
signed integer operands. Other integer instructions (such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on
only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1 Unsigned Integers
Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and quadword. Their
values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an unsigned word integer, from 0

Figure 4-3. Numeric Data Types

0

0

022

0

Double Extended Precision

63 62

0

Word Signed Integer

0

Byte Signed Integer

7 6

Sign

Sign

Doubleword Signed Integer

15 14

Sign

31 30

Sign

Quadword Signed Integer

0

0

Word Unsigned Integer

0
Byte Unsigned Integer

7

Doubleword Unsigned Integer

15

31

Quadword Unsigned Integer

63

0

0

233031

51526263

64 63 62 79 78
Floating Point

Single Precision
Floating Point

Double Precision
Floating Point

Sign

Integer Bit

Sign

Sign

091415

Half Precision
Floating Point

Sign

4-4 Vol. 1

DATA TYPES

to 232 – 1 for an unsigned doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer. Unsigned
integers are sometimes referred to as ordinals.

4.2.1.2 Signed Integers
Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All operations on signed
integers assume a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a
word integer, bit 31 in a doubleword integer, and bit 63 in a quadword integer (see the signed integer encodings in
Table 4-1).

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values range from –128
to +127 for a byte integer, from –32,768 to +32,767 for a word integer, from –231 to +231 – 1 for a doubleword
integer, and from –263 to +263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; doubleword integers are
stored in 4 consecutive bytes; and quadword integers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when operating on integer
values. For more information, see Section 8.2.1, “Indefinites.”

4.2.2 Floating-Point Data Types
The IA-32 architecture defines and operates on three floating-point data types: single-precision floating-point,
double-precision floating-point, and double-extended precision floating-point (see Figure 4-3). The data formats
for these data types correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-Point
Arithmetic.

Half-precision (16-bit) floating-point data type is supported only for conversion operation with single-precision
floating data using F16C extensions (VCVTPH2PS, VCVTPS2PH).

Table 4-2 gives the length, precision, and approximate normalized range that can be represented by each of these
data types. Denormal values are also supported in each of these types.

Table 4-1. Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →

Vol. 1 4-5

DATA TYPES

NOTE
Section 4.8, “Real Numbers and Floating-Point Formats,” gives an overview of the IEEE Standard
754 floating-point formats and defines the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normalized finite numbers,
infinites, and NaNs for each of the three floating-point data types. It also gives the format for the QNaN floating-
point indefinite value. (See Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the significand is encoded. The
integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the double extended-
precision format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero and denormalized numbers.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types
Data Type Length Precision

(Bits)
Approximate Normalized Range

Binary Decimal

Half Precision 16 11 2–14 to 215 3.1 × 10–5 to 6.50 × 104

Single Precision 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

Double Extended
Precision

80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932

Table 4-3. Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

−Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

-∞ 1 11..11 1 00..00

4-6 Vol. 1

DATA TYPES

The exponent of each floating-point data type is encoded in biased format; see Section 4.8.2.2, “Biased Exponent.”
The biasing constant is 15 for the half-precision format, 127 for the single-precision format, 1023 for the double-
precision format, and 16,383 for the double extended-precision format.

When storing floating-point values in memory, half-precision values are stored in 2 consecutive bytes in memory;
single-precision values are stored in 4 consecutive bytes in memory; double-precision values are stored in 8
consecutive bytes; and double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on by x87 FPU, and
SSE/SSE2/SSE3/SSE4.1 and Intel AVX instructions. The double-extended-precision floating-point format is only
operated on by the x87 FPU. See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,”
for a discussion of the compatibility of single-precision and double-precision floating-point data types between the
x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES
Pointers are addresses of locations in memory.

In non-64-bit modes, the architecture defines two types of pointers: a near pointer and a far pointer. A near
pointer is a 32-bit (or 16-bit) offset (also called an effective address) within a segment. Near pointers are used
for all memory references in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied.

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit (or 16-bit) offset. Far pointers
are used for memory references in a segmented memory model where the identity of a segment being accessed
must be specified explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN Floating-
Point Indefinite

1 11..11 1 10..00

Half-Precision

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 5Bits →
← 8 Bits →
← 11 Bits →
← 15 Bits →

← 10 Bits →
← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:
1. Integer bit is implied and not stored for single-precision and double-precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

Figure 4-4. Pointer Data Types

Table 4-3. Floating-Point Number and NaN Encodings (Contd.)

047

Far Pointer or Logical Address
Segment Selector

32 31
Offset

Near Pointer

031
Offset

Vol. 1 4-7

DATA TYPES

4.3.1 Pointer Data Types in 64-Bit Mode
In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This equates to an effective address. Far
pointers in 64-bit mode can be one of three forms:
• 16-bit segment selector, 16-bit offset if the operand size is 32 bits
• 16-bit segment selector, 32-bit offset if the operand size is 32 bits
• 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

4.4 BIT FIELD DATA TYPE
A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

Figure 4-5. Pointers in 64-Bit Mode

Figure 4-6. Bit Field Data Type

16-bit Segment Selector 16-bit Offset

016 1531

16-bit Segment Selector 32-bit Offset

032 3147

16-bit Segment Selector 64-bit Offset

064 6379

64-bit Offset

063

Near Pointer

Far Pointer with 64-bit Operand Size

Far Pointer with 32-bit Operand Size

Far Pointer with 32-bit Operand Size

Bit Field

Field Length

Least

Bit
Significant

4-8 Vol. 1

DATA TYPES

4.5 STRING DATA TYPES
Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any bit position
of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes, words, or doublewords and can
range from zero to 232 – 1 bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES
Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit packed data type for use in SIMD
operations. These data types consist of fundamental data types (packed bytes, words, doublewords, and quad-
words) and numeric interpretations of fundamental types for use in packed integer and packed floating-point oper-
ations.

4.6.1 64-Bit SIMD Packed Data Types
The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel MMX technology. They
are operated on in MMX registers. The fundamental 64-bit packed data types are packed bytes, packed words, and
packed doublewords (see Figure 4-7). When performing numeric SIMD operations on these data types, these data
types are interpreted as containing byte, word, or doubleword integer values.

4.6.2 128-Bit Packed SIMD Data Types
The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the SSE extensions and used
with SSE2, SSE3 and SSSE3 extensions. They are operated on primarily in the 128-bit XMM registers and memory.
The fundamental 128-bit packed data types are packed bytes, packed words, packed doublewords, and packed
quadwords (see Figure 4-8). When performing SIMD operations on these fundamental data types in XMM registers,
these data types are interpreted as containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword integer values.

Figure 4-7. 64-Bit Packed SIMD Data Types

Packed Words

Packed Bytes

Packed Doublewords

063

063

063

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

063

063

063

Fundamental 64-Bit Packed SIMD Data Types

64-Bit Packed Integer Data Types

Vol. 1 4-9

DATA TYPES

4.7 BCD AND PACKED BCD INTEGERS
Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values ranging from 0 to 9. IA-
32 architecture defines operations on BCD integers located in one or more general-purpose registers or in one or
more x87 FPU registers (see Figure 4-9).

Figure 4-8. 128-Bit Packed SIMD Data Types

0127

Packed Words

Packed Bytes

Packed Doublewords

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

Fundamental 128-Bit Packed SIMD Data Types

128-Bit Packed Floating-Point and Integer Data Types

Packed Quadwords

0127

0127

0127

0127

0127

0127

0127

0127

0127

Packed Quadword Integers

Packed Single Precision
Floating Point

Packed Double Precision
Floating Point

4-10 Vol. 1

DATA TYPES

When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per
byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but
must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one
byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred
to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant
digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte
of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6
of byte 10 are don’t care bits). Negative decimal integers are not stored in two's complement form; they are distin-
guished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in
this format is –1018 + 1 to 1018 – 1.
The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it
is automatically converted to the double-extended-precision floating-point format. All decimal integers are exactly
representable in double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9. BCD Data Types

Table 4-4. Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed BCD Integers

BCDBCD

0

BCD Integers

7
BCDX

34

0

80-Bit Packed BCD Decimal Integers

79
D0

4 Bits = 1 BCD Digit

Sign
D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71
X

07 34

Vol. 1 4-11

DATA TYPES

The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the FBSTP instruction in
response to a masked floating-point invalid-operation exception. Attempting to load this value with the FBLD
instruction produces an undefined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS
This section describes how real numbers are represented in floating-point format in x87 FPU and
SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar
with floating-point processing techniques and the IEEE Standard 754 for Binary Floating-Point Arithmetic may wish
to skip this section.

4.8.1 Real Number System
As shown in Figure 4-10, the real-number system comprises the continuum of real numbers from minus infinity (−
∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only a subset of the real-number
continuum can be used in real-number (floating-point) calculations. As shown at the bottom of Figure 4-10, the
subset of real numbers that the IA-32 architecture supports represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the IEEE Standard 754 floating-point
formats.

4.8.2 Floating-Point Format
To increase the speed and efficiency of real-number computations, computers and microprocessors typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts: a sign, a signif-
icand, and an exponent (see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The significand has
two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary fraction. The integer-bit is often not
represented, but instead is an implied value. The exponent is a binary integer that represents the base-2 power by
which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE Standard 754 floating-
point format. The table lists a progression of real number notations that leads to the single-precision, 32-bit
floating-point format. In this format, the significand is normalized (see Section 4.8.2.1, “Normalized Numbers”)
and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For the single-precision floating-point
format, the biasing constant is +127.

Packed BCD
Integer
Indefinite

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →

Table 4-4. Packed Decimal Integer Encodings (Contd.)

4-12 Vol. 1

DATA TYPES

Figure 4-10. Binary Real Number System

Figure 4-11. Binary Floating-Point Format

Table 4-5. Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision Format Sign Biased Exponent Normalized Significand

0 10000110 01100100010000000000000

 1. (Implied)

Binary Real Number System

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

ςς ςς
-100 -10 -1 0 1 10 100

ςς ςς
-100 -10 -1 0 1 10 100

Sign

Integer or J-Bit

Exponent Significand

Fraction

Vol. 1 4-13

DATA TYPES

4.8.2.1 Normalized Numbers
In most cases, floating-point numbers are encoded in normalized form. This means that except for zero, the signif-
icand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent is decre-
mented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be accommodated
in a significand of a given width. To summarize, a normalized real number consists of a normalized significand that
represents a real number between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2 Biased Exponent
In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form. This means that
a constant is added to the actual exponent so that the biased exponent is always a positive number. The value of
the biasing constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized number can be reciprocated
without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that the IA-32 architecture uses
for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings
A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-point format. These
numbers and values are generally divided into the following classes:
• Signed zeros
• Denormalized finite numbers
• Normalized finite numbers
• Signed infinities
• NaNs
• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into the real number continuum. The
encodings shown here are for the IEEE single-precision floating-point format. The term “S” indicates the sign bit,
“E” the biased exponent, and “Sig” the significand. The exponent values are given in decimal. The integer bit is
shown for the significands, even though the integer bit is implied in single-precision floating-point format.

4-14 Vol. 1

DATA TYPES

An IA-32 processor can operate on and/or return any of these values, depending on the type of computation being
performed. The following sections describe these number and non-number classes.

4.8.3.1 Signed Zeros
Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in value. The sign of
a zero result depends on the operation being performed and the rounding mode being used. Signed zeros have
been provided to aid in implementing interval arithmetic. The sign of a zero may indicate the direction from which
underflow occurred, or it may indicate the sign of an ∞ that has been reciprocated.

4.8.3.2 Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between
zero and ∞. In the single-precision floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent range is from −12610 to
+12710).

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized numbers.
The use of leading zeros with denormalized numbers allows smaller numbers to be represented. However, this
denormalization may cause a loss of precision (the number of significant bits is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condition.
The exact conditions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of
gradual underflow in the denormalization process. Here the single-precision format is being used, so the minimum
exponent (unbiased) is −12610. The true result in this example requires an exponent of −12910 in order to have a

Figure 4-12. Real Numbers and NaNs

1 0
S E Sig1

− 0

1 0 − Denormalized
Finite

NaN

1 1...254 − Normalized
Finite

1 255 − ∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+ 0

+Denormalized
Finite

+Normalized
Finite

+ ∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

− Denormalized Finite
− Normalized Finite − 0− ∞ + ∞

+ Denormalized Finite
+ Normalized Finite+ 0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.

Vol. 1 4-15

DATA TYPES

normalized number. Since −12910 is beyond the allowable exponent range, the result is denormalized by inserting
leading zeros until the minimum exponent of −12610 is reached.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result.

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to detect cases when denormals are

created.
• It provides the floating-point denormal-operand exception to permit procedures or programs to detect when

denormals are being used as source operands for computations.

4.8.3.3 Signed Infinities
The two infinities, + ∞ and − ∞, represent the maximum positive and negative real numbers, respectively, that can
be represented in the floating-point format. Infinity is always represented by a significand of 1.00...00 (the integer
bit may be implied) and the maximum biased exponent allowed in the specified format (for example, 25510 for the
single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted in the affine
sense; that is, –∞ is less than any finite number and +∞ is greater than any finite number. Arithmetic on infinities
is always exact. Exceptions are generated only when the use of an infinity as a source operand constitutes an
invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ numbers may represent the
result of an overflow condition. Here, the normalized result of a computation has a biased exponent greater than
the largest allowable exponent for the selected result format.

4.8.3.4 NaNs
Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-12, the encoding space for
NaNs in the floating-point formats is shown above the ends of the real number line. This space includes any value
with the maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). A QNaN is a
NaN with the most significant fraction bit set; an SNaN is a NaN with the most significant fraction bit clear. QNaNs
are allowed to propagate through most arithmetic operations without signaling an exception. SNaNs generally
signal a floating-point invalid-operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by software; that is, the
processor never generates an SNaN as a result of a floating-point operation.

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.

4-16 Vol. 1

DATA TYPES

4.8.3.5 Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a
QNaN delivered to the destination operand or the generation of a floating-point invalid operation exception,
depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operation exception is not masked (see

Section 4.9.1.1, “Invalid Operation Exception (#I)”), then a floating-point invalid-operation exception is
signaled and no result is stored in the destination operand. If one of the source operands is a QNaN and the
floating-point invalid-operation exception is not masked and the operation is one that generates an invalid-
operation exception for QNaN operands as described in Section 8.5.1.2, “Invalid Arithmetic Operand Exception
(#IA),” or Section 11.5.2.1, “Invalid Operation Exception (#I)”, then a floating-point invalid-operation
exception is signaled and no result is stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked, the
result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by setting the
most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN, or when it is
is a QNaN and the operation is one that generates an invalid-operation exception for QNaN operands as
described in Section 8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” or Section 11.5.2.1, “Invalid
Operation Exception (#I)”, then the floating-point invalid-operation exception flag is set. Note that for some
combinations of source operands, the result is different for x87 FPU operations and for SSE/SSE2/SSE3/SSE4.1
operations. Intel AVX follows the same behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation
exception (see Tables 8-10 and 11-1), the result is commonly a QNaN FP Indefinite (Section 4.8.3.7).

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic Operand
Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#I).”

4.8.3.6 Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding SNaNs and QNaNs, software is
free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry and
store data, such as diagnostic information.

Table 4-7. Rules for Handling NaNs

Source Operands Result1

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand (if this operand is an
SNaN, it is converted to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger significand, converted into a
QNaN

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand converted to a QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one operand) SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one operand) QNaN source operand

NOTE:
1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that becomes the destination operand. For

AVX instructions, the first source operand is usually the 2nd operand in a non-destructive source syntax. Within the Result column,
the x87 FPU notation also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instruc-
tions.

Vol. 1 4-17

DATA TYPES

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler
can preinitialize each array element with a signaling NaN whose significand contains the index (relative position) of
the element. Then, if an application program attempts to access an element that it has not initialized, it can use the
NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the
exception handler will be invoked. The exception handler can determine which element has been accessed, since
the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index number
of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple
errors. An exception handler can be written to save diagnostic information in memory whenever it is invoked. After
storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN can
point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for each
error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery
mechanism to be used if a QNaN result is detected.

4.8.3.7 QNaN Floating-Point Indefinite
For the floating-point data type encodings (single-precision, double-precision, and double-extended-precision),
one unique encoding (a QNaN) is reserved for representing the special value QNaN floating-point indefinite. The
x87 FPU and the SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses to some
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN floating-point indefinite.

4.8.3.8 Half-Precision Floating-Point Operation
Half-precision floating-point values are not used by the processor directly for arithmetic operations. Two instruc-
tions, VCVTPH2PS, VCVTPS2PH, provide conversion only between half-precision and single-precision floating-point
values.

The SIMD floating-point exception behavior of VCVTPH2PS and VCVTPS2PH are described in Section 14.4.1.

4.8.4 Rounding
When performing floating-point operations, the processor produces an infinitely precise floating-point result in the
destination format (single-precision, double-precision, or double extended-precision floating-point) whenever
possible. However, because only a subset of the numbers in the real number continuum can be represented in IEEE
Standard 754 floating-point formats, it is often the case that an infinitely precise result cannot be encoded exactly
in the format of the destination operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this fraction (the underlined
bit) cannot be encoded exactly in the single-precision format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and c that most closely bracket a
in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the selected rounding mode. Rounding introduces an
error in a result that is less than one unit in the last place (the least significant bit position of the floating-point
value) to which the result is rounded.

4-18 Vol. 1

DATA TYPES

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round up, round down, and
round toward zero. The default rounding mode (for the Intel 64 and IA-32 architectures) is round to nearest. This
mode provides the most accurate and statistically unbiased estimate of the true result and is suitable for most
applications.

The round up and round down modes are termed directed rounding and can be used to implement interval arith-
metic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multistep computa-
tion, when the intermediate results of the computation are subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when performing integer
arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result, the floating-point
precision (inexact) flag (PE) is set (see Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that produce exact results, or operations
that produce NaN results.

4.8.4.1 Rounding Control (RC) Fields
In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit rounding-control (RC) field
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different locations:
• x87 FPU control register (bits 10 and 11)
• The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for different execution environ-
ments within the processor. The RC field in the x87 FPU control register controls rounding for computations
performed with the x87 FPU instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2 Truncation with SSE and SSE2 Conversion Instructions
The following SSE/SSE2 instructions automatically truncate the results of conversions from floating-point values to
integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI.
Here, truncation means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS
The following section provides an overview of floating-point exceptions and their handling in the IA-32 architecture.
For information specific to the x87 FPU and to the SSE/SSE2/SSE3/SSE4.1 extensions, refer to the following
sections:
• Section 8.4, “x87 FPU Floating-Point Exception Handling”

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the
result is the even value (that is, the one with the least-significant bit of zero). Default

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.

Vol. 1 4-19

DATA TYPES

• Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and detects six classes of exception
conditions:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this manual to indicate
exception conditions. It is merely a short-hand form and is not related to assembler mnemonics.

NOTE
All of the exceptions listed above except the denormal-operand exception (#D) are defined in IEEE
Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation exceptions (that is,
they are detected before any arithmetic operation occurs). The numeric-underflow, numeric-overflow and precision
exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM,
UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appro-
priate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding
mask bits:
• Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result,

while allowing program execution to continue undisturbed.
• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception
condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific
floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and
reserve the most severe exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that have occurred
since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the
exception flags to see if any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations:
• x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word

and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6).
• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are

located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for
different execution environments within the processor. The flag and mask bits in the x87 FPU status and control
words control exception reporting and masking for computations performed with the x87 FPU instructions; the
companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computa-
tions performed with the SSE/SSE2/SSE3 instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction,
because it continues executing the instruction after performing its masked response. For example, the processor
can detect a denormalized operand, perform its masked response to this exception, and then detect numeric
underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

4-20 Vol. 1

DATA TYPES

4.9.1 Floating-Point Exception Conditions
The following sections describe the various conditions that cause a floating-point exception to be generated and the
masked response of the processor when these conditions are detected. The Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for each
floating-point instruction.

4.9.1.1 Invalid Operation Exception (#I)
The processor reports an invalid operation exception in response to one or more invalid arithmetic operands. If the
invalid operation exception is masked, the processor sets the IE flag and returns an indefinite value or a QNaN. This
value overwrites the destination register specified by the instruction. If the invalid operation exception is not
masked, the IE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about the result returned when an
exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a program. These opera-
tions generally indicate a programming error, such as dividing ∞ by ∞ . See the following sections for information
regarding the invalid-operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3/SSE4.1 or
AVX instructions:
• x87 FPU; Section 8.5.1, “Invalid Operation Exception”.
• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception (#I)”.

4.9.1.2 Denormal Operand Exception (#D)
The processor reports the denormal-operand exception if an arithmetic instruction attempts to operate on a
denormal operand (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). When the exception is
masked, the processor sets the DE flag and proceeds with the instruction. Operating on denormal numbers will
produce results at least as good as, and often better than, what can be obtained when denormal numbers are
flushed to zero. Programmers can mask this exception so that a computation may proceed, then analyze any loss
of accuracy when the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception handler is invoked, and
the operands remain unaltered. When denormal operands have reduced significance due to loss of low-order bits,
it may be advisable to not operate on them. Precluding denormal operands from computations can be accom-
plished by an exception handler that responds to unmasked denormal-operand exceptions.

See the following sections for information regarding the denormal-operand exception when detected while
executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”.
• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception (#D)”.

4.9.1.3 Divide-By-Zero Exception (#Z)
The processor reports the floating-point divide-by-zero exception whenever an instruction attempts to divide a
finite non-zero operand by 0. The masked response for the divide-by-zero exception is to set the ZE flag and return
an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-zero exception is not masked,
the ZE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when detected while executing
x87 FPU or SSE/SSE2 instructions:
• x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z)”.
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z)”.

Vol. 1 4-21

DATA TYPES

4.9.1.4 Numeric Overflow Exception (#O)
The processor reports a floating-point numeric overflow exception whenever the rounded result of an instruction
exceeds the largest allowable finite value that will fit into the destination operand. Table 4-9 shows the threshold
range for numeric overflow for each of the floating-point formats; overflow occurs when a rounded result falls at or
outside this threshold range.

4-22 Vol. 1

DATA TYPES

When a numeric-overflow exception occurs and the exception is masked, the processor sets the OE flag and returns
one of the values shown in Table 4-10, according to the current rounding mode. See Section 4.8.4, “Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag is set, a software
exception handler is invoked, and the source and destination operands either remain unchanged or a biased result
is stored in the destination operand (depending whether the overflow exception was generated during an
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception when detected while executing
x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O)”
• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception (#O)”

4.9.1.5 Numeric Underflow Exception (#U)
The processor detects a potential floating-point numeric underflow condition whenever the result of rounding with
unbounded exponent (taking into account precision control for x87) is non-zero and tiny; that is, non-zero and less
than the smallest possible normalized, finite value that will fit into the destination operand. Table 4-11 shows the
threshold range for numeric underflow for each of the floating-point formats (assuming normalized results); under-
flow occurs when a rounded result falls strictly within the threshold range. The ability to detect and handle under-
flow is provided to prevent a very small result from propagating through a computation and causing another
exception (such as overflow during division) to be generated at a later time. Results which trigger underflow are
also potentially less accurate.

How the processor handles an underflow condition, depends on two related conditions:

Table 4-9. Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number

Table 4-11. Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.

Vol. 1 4-23

DATA TYPES

• creation of a tiny, non-zero result
• creation of an inexact result; that is, a result that cannot be represented exactly in the destination format

Which of these events causes an underflow exception to be reported and how the processor responds to the excep-
tion condition depends on whether the underflow exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE flag is set) only when the

result is both tiny and inexact. The processor returns a correctly signed result whose magnitude is less than or
equal to the smallest positive normal floating-point number to the destination operand, regardless of
inexactness.

• Underflow exception not masked — The underflow exception is reported when the result is non-zero tiny,
regardless of inexactness. The processor leaves the source and destination operands unaltered or stores a
biased result in the destination operand (depending whether the underflow exception was generated during an
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception when detected while
executing x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception (#U)”

4.9.1.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
floating-point form. This exception occurs frequently and indicates that some (normally acceptable) accuracy will
be lost due to rounding. The exception is supported for applications that need to perform exact arithmetic only.
Because the rounded result is generally satisfactory for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the processor sets the PE flag and stores the rounded result in the destination
operand. The current rounding mode determines the method used to round the result. See Section 4.8.4,
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has
not occurred, the PE flag is set, the rounded result is stored in the destination operand, and a software exception
handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the following operations is
carried out:
• If an inexact result occurs along with masked overflow or underflow, the OE flag or UE flag and the PE flag are

set and the result is stored as described for the overflow or underflow exceptions; see Section 4.9.1.4,
“Numeric Overflow Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the inexact
result exception is unmasked, the processor also invokes a software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination operand is a register,
the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or underflow
exceptions, and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is
cleared.

See the following sections for information regarding the inexact-result exception when detected while executing
x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z)”

4-24 Vol. 1

DATA TYPES

4.9.2 Floating-Point Exception Priority
The processor handles exceptions according to a predetermined precedence. When an instruction generates two or
more exception conditions, the exception precedence sometimes results in the higher-priority exception being
handled and the lower-priority exceptions being ignored. For example, dividing an SNaN by zero can potentially
signal an invalid-operation exception (due to the SNaN operand) and a divide-by-zero exception. Here, if both
exceptions are masked, the processor handles the higher-priority exception only (the invalid-operation exception),
returning a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can accompany a
numeric underflow or overflow exception with both exceptions being handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the double extended-precision
floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has precedence over lower-
priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues and a lower-priority exception
can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-point operation
begins. Overflow, underflow, and precision exceptions are not detected until a true result has been computed.
When an unmasked pre-operation exception is detected, the destination operand has not yet been updated, and
appears as if the offending instruction has not been executed. When an unmasked post-operation exception is
detected, the destination operand may be updated with a result, depending on the nature of the exception (except
for SSE/SSE2/SSE3 instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler
After the floating-point exception handler is invoked, the processor handles the exception in the same manner that
it handles non-floating-point exceptions. The floating-point exception handler is normally part of the operating
system or executive software, and it usually invokes a user-registered floating-point exception handle.

A typical action of the exception handler is to store state information in memory. Other typical exception handler
actions include:
• Examining the stored state information to determine the nature of the error
• Taking actions to correct the condition that caused the error
• Clearing the exception flags
• Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:
• Increment in software an exception counter for later display or printing
• Print or display diagnostic information (such as the state information)
• Halt further program execution

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

3. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Minor typo correction to introduction and added Intel SHA Extension row to Table 5-2
“Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors ”.

Vol. 1 5-1

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel® MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel® AVX extensions
• F16C, RDRAND, RDSEED, FS/GS base access
• FMA extensions
• Intel® AVX2 extensions
• Intel® Transactional Synchronization extensions
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions
• ADCX and ADOX
• Intel® Memory Protection extensions
• Intel® Security Guard extensions

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors.

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors.

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

5-2 Vol. 1

INSTRUCTION SET SUMMARY

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors.

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors.

IA-32e mode: 64-bit
mode instructions

Intel 64 processors.

System Instructions Intel 64 and IA-32 processors.

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2. Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000
series.

SSE4.2 Extensions,
CRC32, POPCNT

Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation
Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.

FMA, AVX2, BMI1, BMI2,
INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

TSX Intel Xeon processor E7 v3 product family.

Intel SHA Extensions Intel Atom processor based on Goldmont microarchitecture.

ADX, RDSEED, CLAC,
STAC

Intel Core M processor family; 5th Generation Intel Core processor family.

CLFLUSHOPT, XSAVEC,
XSAVES, MPX, SGX1

6th Generation Intel Core processor family.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

Vol. 1 5-3

INSTRUCTION SET SUMMARY

5.1 GENERAL-PURPOSE INSTRUCTIONS
The general-purpose instructions preform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations,
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and
miscellaneous subgroups. The sections that following introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions
The data transfer instructions move data between memory and the general-purpose and segment registers. They
also perform specific operations such as conditional moves, stack access, and data conversion.
MOV Move data between general-purpose registers; move data between memory and general-

purpose or segment registers; move immediates to general-purpose registers.
CMOVE/CMOVZ Conditional move if equal/Conditional move if zero.
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero.
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal.
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below.
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal.
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above.
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal.
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less.
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal.
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater.
CMOVC Conditional move if carry.
CMOVNC Conditional move if not carry.
CMOVO Conditional move if overflow.
CMOVNO Conditional move if not overflow.
CMOVS Conditional move if sign (negative).
CMOVNS Conditional move if not sign (non-negative).
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even.
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd.
XCHG Exchange.
BSWAP Byte swap.
XADD Exchange and add.
CMPXCHG Compare and exchange.
CMPXCHG8B Compare and exchange 8 bytes.
PUSH Push onto stack.
POP Pop off of stack.
PUSHA/PUSHAD Push general-purpose registers onto stack.
POPA/POPAD Pop general-purpose registers from stack.
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword.
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register.
MOVSX Move and sign extend.

5-4 Vol. 1

INSTRUCTION SET SUMMARY

MOVZX Move and zero extend.

5.1.2 Binary Arithmetic Instructions
The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.
ADCX Unsigned integer add with carry.
ADOX Unsigned integer add with overflow.
ADD Integer add.
ADC Add with carry.
SUB Subtract.
SBB Subtract with borrow.
IMUL Signed multiply.
MUL Unsigned multiply.
IDIV Signed divide.
DIV Unsigned divide.
INC Increment.
DEC Decrement.
NEG Negate.
CMP Compare.

5.1.3 Decimal Arithmetic Instructions
The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.
DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.
AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

5.1.4 Logical Instructions
The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword
values.
AND Perform bitwise logical AND.
OR Perform bitwise logical OR.
XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions
The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.
SHR Shift logical right.
SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.

Vol. 1 5-5

INSTRUCTION SET SUMMARY

SHLD Shift left double.
ROR Rotate right.
ROL Rotate left.
RCR Rotate through carry right.
RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of
a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test.
BTS Bit test and set.
BTR Bit test and reset.
BTC Bit test and complement.
BSF Bit scan forward.
BSR Bit scan reverse.
SETE/SETZ Set byte if equal/Set byte if zero.
SETNE/SETNZ Set byte if not equal/Set byte if not zero.
SETA/SETNBE Set byte if above/Set byte if not below or equal.
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry.
SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry.
SETBE/SETNA Set byte if below or equal/Set byte if not above.
SETG/SETNLE Set byte if greater/Set byte if not less or equal.
SETGE/SETNL Set byte if greater or equal/Set byte if not less.
SETL/SETNGE Set byte if less/Set byte if not greater or equal.
SETLE/SETNG Set byte if less or equal/Set byte if not greater.
SETS Set byte if sign (negative).
SETNS Set byte if not sign (non-negative).
SETO Set byte if overflow.
SETNO Set byte if not overflow.
SETPE/SETP Set byte if parity even/Set byte if parity.
SETPO/SETNP Set byte if parity odd/Set byte if not parity.
TEST Logical compare.
CRC321 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient

implementation of data integrity protocols.
POPCNT2 This instruction calculates of number of bits set to 1 in the second operand (source) and

returns the count in the first operand (a destination register).

5.1.7 Control Transfer Instructions
The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control
program flow.
JMP Jump.
JE/JZ Jump if equal/Jump if zero.
JNE/JNZ Jump if not equal/Jump if not zero.

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

5-6 Vol. 1

INSTRUCTION SET SUMMARY

JA/JNBE Jump if above/Jump if not below or equal.
JAE/JNB Jump if above or equal/Jump if not below.
JB/JNAE Jump if below/Jump if not above or equal.
JBE/JNA Jump if below or equal/Jump if not above.
JG/JNLE Jump if greater/Jump if not less or equal.
JGE/JNL Jump if greater or equal/Jump if not less.
JL/JNGE Jump if less/Jump if not greater or equal.
JLE/JNG Jump if less or equal/Jump if not greater.
JC Jump if carry.
JNC Jump if not carry.
JO Jump if overflow.
JNO Jump if not overflow.
JS Jump if sign (negative).
JNS Jump if not sign (non-negative).
JPO/JNP Jump if parity odd/Jump if not parity.
JPE/JP Jump if parity even/Jump if parity.
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero.
LOOP Loop with ECX counter.
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal.
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal.
CALL Call procedure.
RET Return.
IRET Return from interrupt.
INT Software interrupt.
INTO Interrupt on overflow.
BOUND Detect value out of range.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.8 String Instructions
The string instructions operate on strings of bytes, allowing them to be moved to and from memory.
MOVS/MOVSB Move string/Move byte string.
MOVS/MOVSW Move string/Move word string.
MOVS/MOVSD Move string/Move doubleword string.
CMPS/CMPSB Compare string/Compare byte string.
CMPS/CMPSW Compare string/Compare word string.
CMPS/CMPSD Compare string/Compare doubleword string.
SCAS/SCASB Scan string/Scan byte string.
SCAS/SCASW Scan string/Scan word string.
SCAS/SCASD Scan string/Scan doubleword string.
LODS/LODSB Load string/Load byte string.
LODS/LODSW Load string/Load word string.
LODS/LODSD Load string/Load doubleword string.
STOS/STOSB Store string/Store byte string.
STOS/STOSW Store string/Store word string.

Vol. 1 5-7

INSTRUCTION SET SUMMARY

STOS/STOSD Store string/Store doubleword string.
REP Repeat while ECX not zero.
REPE/REPZ Repeat while equal/Repeat while zero.
REPNE/REPNZ Repeat while not equal/Repeat while not zero.

5.1.9 I/O Instructions
These instructions move data between the processor’s I/O ports and a register or memory.
IN Read from a port.
OUT Write to a port.
INS/INSB Input string from port/Input byte string from port.
INS/INSW Input string from port/Input word string from port.
INS/INSD Input string from port/Input doubleword string from port.
OUTS/OUTSB Output string to port/Output byte string to port.
OUTS/OUTSW Output string to port/Output word string to port.
OUTS/OUTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions
These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions
The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag.
CLC Clear the carry flag.
CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.
LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.
CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions
The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.
LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5-8 Vol. 1

INSTRUCTION SET SUMMARY

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.
LEA Load effective address.
NOP No operation.
UD Undefined instruction.
XLAT/XLATB Table lookup translation.
CPUID Processor identification.
MOVBE1 Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.
XGETBV Reads the state of an extended control register.

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1, BMI2
ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract.
BLSI Extract lowest set bit.
BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.
BZHI Zero high bits starting from specified bit position.
LZCNT Count the number leading zero bits.
MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.
PEXT Parallel extraction of bits using a mask.
RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.
SHLX Shift logic left.
SHRX Shift logic right.
TZCNT Count the number trailing zero bits.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.

Vol. 1 5-9

INSTRUCTION SET SUMMARY

5.1.16.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers.
There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.

5.2 X87 FPU INSTRUCTIONS
The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point,
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8,
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions
The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU
registers. They also perform conditional move operations on floating-point operands.
FLD Load floating-point value.
FST Store floating-point value.
FSTP Store floating-point value and pop.
FILD Load integer.
FIST Store integer.
FISTP1 Store integer and pop.
FBLD Load BCD.
FBSTP Store BCD and pop.
FXCH Exchange registers.
FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 x87 FPU Basic Arithmetic Instructions
The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.

1. SSE3 provides an instruction FISTTP for integer conversion.

5-10 Vol. 1

INSTRUCTION SET SUMMARY

FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two
FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions
The compare instructions examine or compare floating-point or integer operands.
FCOM Compare floating-point.
FCOMP Compare floating-point and pop.
FCOMPP Compare floating-point and pop twice.
FUCOM Unordered compare floating-point.
FUCOMP Unordered compare floating-point and pop.
FUCOMPP Unordered compare floating-point and pop twice.
FICOM Compare integer.
FICOMP Compare integer and pop.
FCOMI Compare floating-point and set EFLAGS.
FUCOMI Unordered compare floating-point and set EFLAGS.
FCOMIP Compare floating-point, set EFLAGS, and pop.
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop.
FTST Test floating-point (compare with 0.0).
FXAM Examine floating-point.

Vol. 1 5-11

INSTRUCTION SET SUMMARY

5.2.4 x87 FPU Transcendental Instructions
The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point oper-
ands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions
The load constants instructions load common constants, such as π, into the x87 floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions
The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.
FINCSTP Increment FPU register stack pointer.
FDECSTP Decrement FPU register stack pointer.
FFREE Free floating-point register.
FINIT Initialize FPU after checking error conditions.
FNINIT Initialize FPU without checking error conditions.
FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.
FNSTCW Store FPU control word without checking error conditions.
FLDCW Load FPU control word.
FSTENV Store FPU environment after checking error conditions.
FNSTENV Store FPU environment without checking error conditions.
FLDENV Load FPU environment.
FSAVE Save FPU state after checking error conditions.
FNSAVE Save FPU state without checking error conditions.
FRSTOR Restore FPU state.
FSTSW Store FPU status word after checking error conditions.
FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.
FNOP FPU no operation.

5-12 Vol. 1

INSTRUCTION SET SUMMARY

5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS
Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor
family:
FXSAVE Save x87 FPU and SIMD state.
FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore,
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium III processor
family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel
64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS
Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2
extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory,
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9,
“Programming with Intel® MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each
subgroup.

5.4.1 MMX Data Transfer Instructions
The data transfer instructions move doubleword and quadword operands between MMX registers and between MMX
registers and memory.
MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions
The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.
PUNPCKHWD Unpack high-order words.
PUNPCKHDQ Unpack high-order doublewords.
PUNPCKLBW Unpack low-order bytes.
PUNPCKLWD Unpack low-order words.
PUNPCKLDQ Unpack low-order doublewords.

Vol. 1 5-13

INSTRUCTION SET SUMMARY

5.4.3 MMX Packed Arithmetic Instructions
The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.
PADDB Add packed byte integers.
PADDW Add packed word integers.
PADDD Add packed doubleword integers.
PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.
PSUBW Subtract packed word integers.
PSUBD Subtract packed doubleword integers.
PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.4.4 MMX Comparison Instructions
The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal.
PCMPEQW Compare packed words for equal.
PCMPEQD Compare packed doublewords for equal.
PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

5.4.5 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.
PAND Bitwise logical AND.
PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.
PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions
The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit
operands.
PSLLW Shift packed words left logical.
PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.
PSRLW Shift packed words right logical.
PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.

5-14 Vol. 1

INSTRUCTION SET SUMMARY

PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

5.4.7 MMX State Management Instructions
The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For
more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel®
SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its
own):
• SIMD single-precision floating-point instructions that operate on the XMM registers.
• MXCSR state management instructions.
• 64-bit SIMD integer instructions that operate on the MMX registers.
• Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions
These instructions operate on packed and scalar single-precision floating-point values located in XMM registers
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1 SSE Data Transfer Instructions
SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM
registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or

between and XMM register and memory.
MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers

or between and XMM register and memory.
MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an

XMM register and memory.
MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM

register to the low quadword of another XMM register.
MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an

XMM register and memory.
MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM

register to the high quadword of another XMM register.
MOVMSKPS Extract sign mask from four packed single-precision floating-point values.

Vol. 1 5-15

INSTRUCTION SET SUMMARY

MOVSS Move scalar single-precision floating-point value between XMM registers or between an
XMM register and memory.

5.5.1.2 SSE Packed Arithmetic Instructions
SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.
ADDPS Add packed single-precision floating-point values.
ADDSS Add scalar single-precision floating-point values.
SUBPS Subtract packed single-precision floating-point values.
SUBSS Subtract scalar single-precision floating-point values.
MULPS Multiply packed single-precision floating-point values.
MULSS Multiply scalar single-precision floating-point values.
DIVPS Divide packed single-precision floating-point values.
DIVSS Divide scalar single-precision floating-point values.
RCPPS Compute reciprocals of packed single-precision floating-point values.
RCPSS Compute reciprocal of scalar single-precision floating-point values.
SQRTPS Compute square roots of packed single-precision floating-point values.
SQRTSS Compute square root of scalar single-precision floating-point values.
RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values.
MAXPS Return maximum packed single-precision floating-point values.
MAXSS Return maximum scalar single-precision floating-point values.
MINPS Return minimum packed single-precision floating-point values.
MINSS Return minimum scalar single-precision floating-point values.

5.5.1.3 SSE Comparison Instructions
SSE compare instructions compare packed and scalar single-precision floating-point operands.
CMPPS Compare packed single-precision floating-point values.
CMPSS Compare scalar single-precision floating-point values.
COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in

EFLAGS register.
UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags

in EFLAGS register.

5.5.1.4 SSE Logical Instructions
SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision
floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values.
ORPS Perform bitwise logical OR of packed single-precision floating-point values.
XORPS Perform bitwise logical XOR of packed single-precision floating-point values.

5.5.1.5 SSE Shuffle and Unpack Instructions
SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point operands.

5-16 Vol. 1

INSTRUCTION SET SUMMARY

UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point
operands.

UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point
operands.

5.5.1.6 SSE Conversion Instructions
SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-preci-
sion floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value.
CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed double-

word integers.
CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer.
CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar double-

word integer.

5.5.2 SSE MXCSR State Management Instructions
MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status
register.
LDMXCSR Load MXCSR register.
STMXCSR Save MXCSR register state.

5.5.3 SSE 64-Bit SIMD Integer Instructions
These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4,
“MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.
PINSRW Insert word.
PMAXUB Maximum of packed unsigned byte integers.
PMAXSW Maximum of packed signed word integers.
PMINUB Minimum of packed unsigned byte integers.
PMINSW Minimum of packed signed word integers.
PMOVMSKB Move byte mask.
PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.
PSHUFW Shuffle packed integer word in MMX register.

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions
The cacheability control instructions provide control over the caching of non-temporal data when storing data from
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The
SFENCE instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.

Vol. 1 5-17

INSTRUCTION SET SUMMARY

MOVNTQ Non-temporal store of quadword from an MMX register into memory.
MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM

register into memory.
PREFETCHh Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-

archy
SFENCE Serializes store operations.

5.6 SSE2 INSTRUCTIONS
SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate
subgroups):
• Packed and scalar double-precision floating-point instructions.
• Packed single-precision floating-point conversion instructions.
• 128-bit SIMD integer instructions.
• Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions
SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1 SSE2 Data Movement Instructions
SSE2 data movement instructions move double-precision floating-point data between XMM registers and between
XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or

between and XMM register and memory.
MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers

or between and XMM register and memory.
MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an

XMM register and memory.
MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an

XMM register and memory.
MOVMSKPD Extract sign mask from two packed double-precision floating-point values.
MOVSD Move scalar double-precision floating-point value between XMM registers or between an

XMM register and memory.

5-18 Vol. 1

INSTRUCTION SET SUMMARY

5.6.1.2 SSE2 Packed Arithmetic Instructions
The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point operands.
ADDPD Add packed double-precision floating-point values.
ADDSD Add scalar double precision floating-point values.
SUBPD Subtract packed double-precision floating-point values.
SUBSD Subtract scalar double-precision floating-point values.
MULPD Multiply packed double-precision floating-point values.
MULSD Multiply scalar double-precision floating-point values.
DIVPD Divide packed double-precision floating-point values.
DIVSD Divide scalar double-precision floating-point values.
SQRTPD Compute packed square roots of packed double-precision floating-point values.
SQRTSD Compute scalar square root of scalar double-precision floating-point values.
MAXPD Return maximum packed double-precision floating-point values.
MAXSD Return maximum scalar double-precision floating-point values.
MINPD Return minimum packed double-precision floating-point values.
MINSD Return minimum scalar double-precision floating-point values.

5.6.1.3 SSE2 Logical Instructions
SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values.
ORPD Perform bitwise logical OR of packed double-precision floating-point values.
XORPD Perform bitwise logical XOR of packed double-precision floating-point values.

5.6.1.4 SSE2 Compare Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values.
CMPSD Compare scalar double-precision floating-point values.
COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags

in EFLAGS register.
UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set

flags in EFLAGS register.

5.6.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.
SHUFPD Shuffles values in packed double-precision floating-point operands.
UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point

operands.
UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point

operands.

Vol. 1 5-19

INSTRUCTION SET SUMMARY

5.6.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and
double-precision floating-point values.
CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed double-

word integers.
CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values.
CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-

point values.
CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-

point values.
CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-

point values.
CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-

point values.
CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer.
CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword

integers.
CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value.

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions
SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision
floating-point instructions.
CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values.
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers.
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed double-

word integers.

5.6.3 SSE2 128-Bit SIMD Integer Instructions
SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords
contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword.
MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.
PSUBQ Subtract packed quadword integers.
PSHUFLW Shuffle packed low words.
PSHUFHW Shuffle packed high words.
PSHUFD Shuffle packed doublewords.

5-20 Vol. 1

INSTRUCTION SET SUMMARY

PSLLDQ Shift double quadword left logical.
PSRLDQ Shift double quadword right logical.
PUNPCKHQDQ Unpack high quadwords.
PUNPCKLQDQ Unpack low quadwords.

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on
store operations.
CLFLUSH See Section 5.1.13.
LFENCE Serializes load operations.
MFENCE Serializes load and store operations.
PAUSE Improves the performance of “spin-wait loops”.
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.
MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM

register into memory.
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.
MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 SSE3 INSTRUCTIONS
The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology,
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into the
following categories:
• One x87FPU instruction used in integer conversion.
• One SIMD integer instruction that addresses unaligned data loads.
• Two SIMD floating-point packed ADD/SUB instructions.
• Four SIMD floating-point horizontal ADD/SUB instructions.
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.
• Two thread synchronization instructions.

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode

specified in the floating-point control word (FCW).

5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

Vol. 1 5-21

INSTRUCTION SET SUMMARY

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements

within the operands; single-precision subtraction on the first and third pairs.
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision

subtraction on the first pair.

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data elements. The first data element

of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by
adding the first and second elements of the second operand; and the fourth by adding the
third and fourth elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the fourth
element of the first operand from the third element of the first operand; the third by
subtracting the second element of the second operand from the first element of the second
operand; and the fourth by subtracting the fourth element of the second operand from the
third element of the second operand.

HADDPD Performs a double-precision addition on contiguous data elements. The first data element
of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the second
element of the second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.
MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.
MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in

both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from
the source.

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.
MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back

store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS
SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers.
These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.

5-22 Vol. 1

INSTRUCTION SET SUMMARY

• Six instructions that negate packed integers in the destination operand if the signs of the corresponding
element in the source operand is less than zero.

• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination

operands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination

operands and packs the signed, saturated 16-bit results to the destination operand.
PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination

operands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by

subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed 16-bit results are packed and written to the
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by
subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed, saturated 16-bit results are packed and
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by
subtracting the most significant doubleword from the least significant double word of each
pair in the source and destination operands. The signed 32-bit results are packed and
written to the destination operand.

5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce

an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are
added horizontally. The signed, saturated 16-bit results are packed to the destination
operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits.
Rounding is always performed by adding 1 to the least significant bit of the 18-bit interme-
diate result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destination
operand.

Vol. 1 5-23

INSTRUCTION SET SUMMARY

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant

three or four bits of each shuffle control byte of the control mask form the shuffle index.
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is
set, the constant zero is written in the result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-

sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right
PALIGNR Source operand is appended after the destination operand forming an intermediate value

of twice the width of an operand. The result is extracted from the intermediate value into
the destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the
byte offset specified by the immediate value.

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:
• String and text processing that can take advantage of single-instruction multiple-data programming

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5-24 Vol. 1

INSTRUCTION SET SUMMARY

5.10 SSE4.1 INSTRUCTIONS
SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe each
subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-

byte region (a streaming line) to be fetched and held in a small set of temporary buffers
(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in
the same streaming line may be supplied from the streaming load buffer and can improve
throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point data elements in the source

operand to the corresponding data elements in the destination, using an immediate byte
control.

BLENDPS Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

BLENDVPD Conditionally copies specified double-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

BLENDVPS Conditionally copies specified single-precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding
elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.

Vol. 1 5-25

INSTRUCTION SET SUMMARY

PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode
ROUNDPS Round packed single precision floating-point values into integer values and return rounded

floating-point values.
ROUNDPD Round packed double precision floating-point values into integer values and return

rounded floating-point values.
ROUNDSS Round the low packed single precision floating-point value into an integer value and return

a rounded floating-point value.
ROUNDSD Round the low packed double precision floating-point value into an integer value and

return a rounded floating-point value.

5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified offset in an XMM register

and stores the result to memory or a general-purpose register.
INSERTPS Inserts a single-precision floating-point value from either a 32-bit memory location or

selected from a specified offset in an XMM register to a specified offset in the destination
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the
destination, using a mask.

PINSRB Insert a byte value from a register or memory into an XMM register.
PINSRD Insert a dword value from 32-bit register or memory into an XMM register.
PINSRQ Insert a qword value from 64-bit register or memory into an XMM register.
PEXTRB Extract a byte from an XMM register and insert the value into a general-purpose register or

memory.
PEXTRW Extract a word from an XMM register and insert the value into a general-purpose register

or memory.
PEXTRD Extract a dword from an XMM register and insert the value into a general-purpose register

or memory.
PEXTRQ Extract a qword from an XMM register and insert the value into a general-purpose register

or memory.

5.10.8 Packed Integer Format Conversions
PMOVSXBW Sign extend the lower 8-bit integer of each packed word element into packed signed word

integers.
PMOVZXBW Zero extend the lower 8-bit integer of each packed word element into packed signed word

integers.
PMOVSXBD Sign extend the lower 8-bit integer of each packed dword element into packed signed

dword integers.
PMOVZXBD Zero extend the lower 8-bit integer of each packed dword element into packed signed

dword integers.
PMOVSXWD Sign extend the lower 16-bit integer of each packed dword element into packed signed

dword integers.
PMOVZXWD Zero extend the lower 16-bit integer of each packed dword element into packed signed

dword integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword element into packed signed
qword integers.

5-26 Vol. 1

INSTRUCTION SET SUMMARY

PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword element into packed signed
qword integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword element into packed signed
qword integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword element into packed signed
qword integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
MPSADBW Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word

integers.

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally

packed unsigned words. The resulting value and location (offset within the source) are
packed into the low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the

result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation.

5.11 SSE4.2 INSTRUCTION SET
Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit
integer SIMD instructions.
CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMM0.

Vol. 1 5-27

INSTRUCTION SET SUMMARY

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 AESNI AND PCLMULQDQ
Six AESNI instructions operate on XMM registers to provide accelerated primitives for block encryption/decryption
using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less multiplication
for two binary numbers up to 64-bit wide.
AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM
register set to use a “vector extension“ (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy
128-bit SIMD floating-point instructions to support three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:
• Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD

instruction sets.
• Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit

SIMD instruction sets.
• Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD

instruction sets.
• Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction

sets.
• Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD

instruction sets.
• Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION
Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by
VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four

single-precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into

eight/four 16-bit floating-point data.

5-28 Vol. 1

INSTRUCTION SET SUMMARY

5.15 FUSED-MULTIPLY-ADD (FMA)
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.
• Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.
• Table 14-18 lists promoted vector integer instructions in AVX2.
• Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
XABORT Abort an RTM transaction execution.
XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.
XEND Transaction end of an RTM transaction region.
XTEST Test if executing in a transactional region.

5.18 INTEL® SHA EXTENSIONS
Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants.
SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the

previous message dwords.
SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate

message dwords.
SHA1NEXTE Calculate SHA1 state E after four rounds.
SHA1RNDS4 Perform four rounds of SHA1 operations.
SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.
SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.
SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)
The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit,
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers.

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX / Intel AVX2 but with enhance-

Vol. 1 5-29

INSTRUCTION SET SUMMARY

ment provided by opmask registers not available to VEX-encoded Intel AVX / Intel AVX2. Some instruction
mnemonics in AVX / AVX2 that are promoted into AVX-512 can be replaced by new instruction mnemonics that are
available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details of EVEX instruction
encoding are discussed in Section 2.6, “Intel® AVX-512 Encoding” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A.

512-bit instruction mnemonics in AVX-512F that are not AVX/AVX2 promotions include:
VALIGND/Q Perform dword/qword alignment of two concatenated source vectors.
VBLENDMPD/PS Replace the VBLENDVPD/PS instructions (using opmask as select control).
VCOMPRESSPD/PS Compress packed DP or SP elements of a vector.
VCVT(T)PD2UDQ Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
VCVT(T)PS2UDQ Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
VCVTQQ2PD/PS Convert packed signed 64-bit integers to packed DP/SP FP elements.
VCVT(T)SD2USI Convert the low DP FP element of a vector to an unsigned integer.
VCVT(T)SS2USI Convert the low SP FP element of a vector to an unsigned integer.
VCVTUDQ2PD/PS Convert packed unsigned 32-bit integers to packed DP/SP FP elements.
VCVTUSI2USD/S Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
VEXPANDPD/PS Expand packed DP or SP elements of a vector.
VEXTRACTF32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VEXTRACTI32X4/64X4 Extract a vector from a full-length vector with 32/64-bit granular update.
VFIXUPIMMPD/PS Perform fix-up to special values in DP/SP FP vectors.
VFIXUPIMMSD/SS Perform fix-up to special values of the low DP/SP FP element.
VGETEXPPD/PS Convert the exponent of DP/SP FP elements of a vector into FP values.
VGETEXPSD/SS Convert the exponent of the low DP/SP FP element in a vector into FP value.
VGETMANTPD/PS Convert the mantissa of DP/SP FP elements of a vector into FP values.
VGETMANTSD/SS Convert the mantissa of the low DP/SP FP element of a vector into FP value.
VINSERTF32X4/64X4 Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA32/64 VMOVDQA with 32/64-bit granular conditional update.
VMOVDQU32/64 VMOVDQU with 32/64-bit granular conditional update.
VPBLENDMD/Q Blend dword/qword elements using opmask as select control.
VPBROADCASTD/Q Broadcast from general-purpose register to vector register.
VPCMPD/UD Compare packed signed/unsigned dwords using specified primitive.
VPCMPQ/UQ Compare packed signed/unsigned quadwords using specified primitive.
VPCOMPRESSQ/D Compress packed 64/32-bit elements of a vector.
VPERMI2D/Q Full permute of two tables of dword/qword elements overwriting the index vector.
VPERMI2PD/PS Full permute of two tables of DP/SP elements overwriting the index vector.
VPERMT2D/Q Full permute of two tables of dword/qword elements overwriting one source table.
VPERMT2PD/PS Full permute of two tables of DP/SP elements overwriting one source table.
VPEXPANDD/Q Expand packed dword/qword elements of a vector.
VPMAXSQ Compute maximum of packed signed 64-bit integer elements.
VPMAXUD/UQ Compute maximum of packed unsigned 32/64-bit integer elements.
VPMINSQ Compute minimum of packed signed 64-bit integer elements.
VPMINUD/UQ Compute minimum of packed unsigned 32/64-bit integer elements.
VPMOV(S|US)QB Down convert qword elements in a vector to byte elements using truncation (saturation |

unsigned saturation).
VPMOV(S|US)QW Down convert qword elements in a vector to word elements using truncation (saturation |

unsigned saturation).
VPMOV(S|US)QD Down convert qword elements in a vector to dword elements using truncation (saturation

| unsigned saturation).

5-30 Vol. 1

INSTRUCTION SET SUMMARY

VPMOV(S|US)DB Down convert dword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

VPMOV(S|US)DW Down convert dword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

VPROLD/Q Rotate dword/qword element left by a constant shift count with conditional update.
VPROLVD/Q Rotate dword/qword element left by shift counts specified in a vector with conditional

update.
VPRORD/Q Rotate dword/qword element right by a constant shift count with conditional update.
VPRORRD/Q Rotate dword/qword element right by shift counts specified in a vector with conditional

update.
VPSCATTERDD/DQ Scatter dword/qword elements in a vector to memory using dword indices.
VPSCATTERQD/QQ Scatter dword/qword elements in a vector to memory using qword indices.
VPSRAQ Shift qwords right by a constant shift count and shifting in sign bits.
VPSRAVQ Shift qwords right by shift counts in a vector and shifting in sign bits.
VPTESTNMD/Q Perform bitwise NAND of dword/qword elements of two vectors and write results to

opmask.
VPTERLOGD/Q Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional

update.
VPTESTMD/Q Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
VRCP14PD/PS Compute approximate reciprocals of packed DP/SP FP elements of a vector.
VRCP14SD/SS Compute the approximate reciprocal of the low DP/SP FP element of a vector.
VRNDSCALEPD/PS Round packed DP/SP FP elements of a vector to specified number of fraction bits.
VRNDSCALESD/SS Round the low DP/SP FP element of a vector to specified number of fraction bits.
VRSQRT14PD/PS Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.
VRSQRT14SD/SS Compute the approximate reciprocal of square root of the low DP/SP FP element of a

vector.
VSCALEPD/PS Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified

in a second vector.
VSCALESD/SS Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in

the corresponding element of a second vector.
VSCATTERDD/DQ Scatter SP/DP FP elements in a vector to memory using dword indices.
VSCATTERQD/QQ Scatter SP/DP FP elements in a vector to memory using qword indices.
VSHUFF32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
VSHUFI32X4/64X2 Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not AVX/AVX2 promotions include:
VCVT(T)PD2QQ Convert packed DP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PD2UQQ Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
VCVT(T)PS2QQ Convert packed SP FP elements of a vector to packed signed 64-bit integers.
VCVT(T)PS2UQQ Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
VCVTUQQ2PD/PS Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
VEXTRACTF64X2 Extract a vector from a full-length vector with 64-bit granular update.
VEXTRACTI64X2 Extract a vector from a full-length vector with 64-bit granular update.
VFPCLASSPD/PS Test packed DP/SP FP elements in a vector by numeric/special-value category.
VFPCLASSSD/SS Test the low DP/SP FP element by numeric/special-value category.
VINSERTF64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VINSERTI64X2 Insert a 128-bit vector into a full-length vector with 64-bit granular update.
VPMOVM2D/Q Convert opmask register to vector register in 32/64-bit granularity.

Vol. 1 5-31

INSTRUCTION SET SUMMARY

VPMOVB2D/Q2M Convert a vector register in 32/64-bit granularity to an opmask register.
VPMULLQ Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed

result.
VRANGEPD/PS Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified

range primitive in imm8.
VRANGESD/SS Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-

fied range primitive in imm8.
VREDUCEPD/PS Perform Reduction operation on packed DP/SP FP elements of a vector using specified

reduction primitive in imm8.
VREDUCESD/SS Perform Reduction operation on the low DP/SP FP element of a vector using specified

reduction primitive in imm8.

512-bit instruction mnemonics in AVX-512BW that are not AVX/AVX2 promotions include:
VDBPSADBW Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU8/16 VMOVDQU with 8/16-bit granular conditional update.
VPBLENDMB Replaces the VPBLENDVB instruction (using opmask as select control).
VPBLENDMW Blend word elements using opmask as select control.
VPBROADCASTB/W Broadcast from general-purpose register to vector register.
VPCMPB/UB Compare packed signed/unsigned bytes using specified primitive.
VPCMPW/UW Compare packed signed/unsigned words using specified primitive.
VPERMW Permute packed word elements.
VPERMI2B/W Full permute from two tables of byte/word elements overwriting the index vector.
VPMOVM2B/W Convert opmask register to vector register in 8/16-bit granularity.
VPMOVB2M/W2M Convert a vector register in 8/16-bit granularity to an opmask register.
VPMOV(S|US)WB Down convert word elements in a vector to byte elements using truncation (saturation |

unsigned saturation).
VPSLLVW Shift word elements in a vector left by shift counts in a vector.
VPSRAVW Shift words right by shift counts in a vector and shifting in sign bits.
VPSRLVW Shift word elements in a vector right by shift counts in a vector.
VPTESTNMB/W Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
VPTESTMB/W Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not AVX/AVX2 promotions include:
VPBROADCASTM Broadcast from opmask register to vector register.
VPCONFLICTD/Q Detect conflicts within a vector of packed 32/64-bit integers.
VPLZCNTD/Q Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:
KADDB/W/D/Q Add two 8/16/32/64-bit opmasks.
KANDB/W/D/Q Logical AND two 8/16/32/64-bit opmasks.
KANDNB/W/D/Q Logical AND NOT two 8/16/32/64-bit opmasks.
KMOVB/W/D/Q Move from or move to opmask register of 8/16/32/64-bit data.
KNOTB/W/D/Q Bitwise NOT of two 8/16/32/64-bit opmasks.
KORB/W/D/Q Logical OR two 8/16/32/64-bit opmasks.
KORTESTB/W/D/Q Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
KSHIFTLB/W/D/Q Shift left 8/16/32/64-bit opmask by specified count.
KSHIFTRB/W/D/Q Shift right 8/16/32/64-bit opmask by specified count.

5-32 Vol. 1

INSTRUCTION SET SUMMARY

KTESTB/W/D/Q Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.
KUNPCKBW/WD/DQ Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.
KXNORB/W/D/Q Bitwise logical XNOR of two 8/16/32/64-bit opmasks.
KXORB/W/D/Q Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:
VEXP2PD/PS Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.
VEXP2SD/SS Compute approximate base-2 exponential of the low DP/SP FP element of a vector.
VRCP28PD/PS Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector.
VRCP28SD/SS Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector.
VRSQRT28PD/PS Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements

of a vector.
VRSQRT28SD/SS Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element

of a vector.

512-bit instruction mnemonics in AVX-512PF include:
VGATHERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using dword indices.
VGATHERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint using qword indices.
VGATHERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
VGATHERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using qword indices.
VSCATTERPF0DPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using dword indices.
VSCATTERPF0QPD/PS Sparse prefetch of packed DP/SP FP vector with T0 hint to write using qword indices.
VSCATTERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
VSCATTERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using qword indices.

5.20 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.
CLAC Clear AC Flag in EFLAGS register.
STAC Set AC Flag in EFLAGS register.
LGDT Load global descriptor table (GDT) register.
SGDT Store global descriptor table (GDT) register.
LLDT Load local descriptor table (LDT) register.
SLDT Store local descriptor table (LDT) register.
LTR Load task register.
STR Store task register.
LIDT Load interrupt descriptor table (IDT) register.
SIDT Store interrupt descriptor table (IDT) register.
MOV Load and store control registers.
LMSW Load machine status word.
SMSW Store machine status word.
CLTS Clear the task-switched flag.
ARPL Adjust requested privilege level.
LAR Load access rights.
LSL Load segment limit.

Vol. 1 5-33

INSTRUCTION SET SUMMARY

VERR Verify segment for reading
VERW Verify segment for writing.
MOV Load and store debug registers.
INVD Invalidate cache, no writeback.
WBINVD Invalidate cache, with writeback.
INVLPG Invalidate TLB Entry.
INVPCID Invalidate Process-Context Identifier.
LOCK (prefix) Lock Bus.
HLT Halt processor.
RSM Return from system management mode (SMM).
RDMSR Read model-specific register.
WRMSR Write model-specific register.
RDPMC Read performance monitoring counters.
RDTSC Read time stamp counter.
RDTSCP Read time stamp counter and processor ID.
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
XSAVE Save processor extended states to memory.
XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XSAVES Save processor supervisor-mode extended states to memory.
XRSTOR Restore processor extended states from memory.
XRSTORS Restore processor supervisor-mode extended states from memory.
XGETBV Reads the state of an extended control register.
XSETBV Writes the state of an extended control register.
RDFSBASE Reads from FS base address at any privilege level.
RDGSBASE Reads from GS base address at any privilege level.
WRFSBASE Writes to FS base address at any privilege level.
WRGSBASE Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword.
CMPSQ Compare string operands.
CMPXCHG16B Compare RDX:RAX with m128.
LODSQ Load qword at address (R)SI into RAX.
MOVSQ Move qword from address (R)SI to (R)DI.
MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.
STOSQ Store RAX at address RDI.
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H.
SYSCALL Fast call to privilege level 0 system procedures.
SYSRET Return from fast systemcall.

5-34 Vol. 1

INSTRUCTION SET SUMMARY

5.22 VIRTUAL-MACHINE EXTENSIONS
The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and

current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is

stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand)
from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control

to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control

to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX

root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize

address translation in virtual machines with memory-resident EPT pages.
INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID

(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs,

transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which

is processor functionality enabled and configured by software in VMX root operation. No
VM exit occurs.

5.23 SAFER MODE EXTENSIONS
The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution

mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust

anchored to a chipset supporting Intel Trusted Execution Technology.
GETSEC[SEXIT] Exits the MLE.
GETSEC[PARAMETERS] Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.

Vol. 1 5-35

INSTRUCTION SET SUMMARY

5.24 INTEL® MEMORY PROTECTION EXTENSIONS
Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds
checking capability to memory references. Details of Intel MPX are described in Chapter 17, “Intel® MPX”.
BNDMK Create a LowerBound and a UpperBound in a register.
BNDCL Check the address of a memory reference against a LowerBound.
BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.
BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment

form.
BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.
BNDMOV Store to memory of the LowerBound and UpperBound from a register.
BNDLDX Load bounds using address translation.
BNDSTX Store bounds using address translation.

5.25 INTEL® SOFTWARE GUARD EXTENSIONS
Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in CHAPTER 36 through CHAPTER 42 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3D.
The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

5-36 Vol. 1

INSTRUCTION SET SUMMARY

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

4. Updates to Chapter 8, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

Change to this chapter: Defined the “NPX” acronym: Numeric Processor Extensions.

Vol. 1 8-1

CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capabilities for use in
graphics processing, scientific, engineering, and business applications. It supports the floating-point, integer, and
packed BCD integer data types and the floating-point processing algorithms and exception handling architecture
defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides exception
handling information that is specific to the x87 FPU. Refer to the following chapters or sections of chapters for addi-
tional information about x87 FPU instructions and floating-point operations:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed descrip-

tions of x87 FPU instructions.
• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and

Packed BCD Integers,” describe the floating-point, integer, and BCD data types.
• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-Point Exception Conditions,” and

Section 4.9.2, “Floating-Point Exception Priority,” give an overview of the floating-point exceptions that the x87
FPU can detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT
The x87 FPU represents a separate execution environment within the IA-32 architecture (see Figure 8-1). This
execution environment consists of eight data registers (called the x87 FPU data registers) and the following
special-purpose registers:
• Status register
• Control register
• Tag word register
• Last instruction pointer register
• Last data (operand) pointer register
• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of the x87 FPU is inde-
pendent from the state of the basic execution environment and from the state of SSE/SSE2/SSE3 extensions.

However, the x87 FPU and Intel MMX technology share state because the MMX registers are aliased to the x87 FPU
data registers. Therefore, when writing code that uses x87 FPU and MMX instructions, the programmer must
explicitly manage the x87 FPU and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode
In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in protected mode. Memory
operands are specified using the ModR/M, SIB encoding that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers
The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are stored in these regis-
ters in the double extended-precision floating-point format shown in Figure 4-3. When floating-point, integer, or
packed BCD integer values are loaded from memory into any of the x87 FPU data registers, the values are auto-
matically converted into double extended-precision floating-point format (if they are not already in that format).
When computation results are subsequently transferred back into memory from any of the x87 FPU registers, the

8-2 Vol. 1

PROGRAMMING WITH THE X87 FPU

results can be left in the double extended-precision floating-point format or converted back into a shorter floating-
point format, an integer format, or the packed BCD integer format. (See Section 8.2, “x87 FPU Data Types,” for a
description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure 8-2). All addressing of
the data registers is relative to the register on the top of the stack. The register number of the current top-of-stack
register is stored in the TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by one
and load a value into the new top-of-stack register, and store operations store the value from the current TOP
register in memory and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and
a store operation is equivalent to a pop.) Note that load and store operations are also available that do not push and
pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value of TOP is set to 7.
The floating-point stack-overflow exception indicates when wraparound might cause an unsaved value to be over-
written (see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to implicitly operate
on the top of the stack, or to explicitly operate on specific registers relative to the TOP. Assemblers support these

Figure 8-1. x87 FPU Execution Environment

Figure 8-2. x87 FPU Data Register Stack

079

R7
R6
R5
R4
R3
R2

R1
R0

Data Registers

Exponent Significand
78 64 63

15
Control
Register

0

Status
Register

Tag
Register

047

Last Instruction Pointer (FCS:FIP)

Last Data (Operand) Pointer (FDS:FDP)

10

Opcode

0

Sign

7
6
5
4
3
2

1
0

FPU Data Register Stack

ST(2)
ST(1)
ST(0)

Top
011B

Growth
Stack

Vol. 1 8-3

PROGRAMMING WITH THE X87 FPU

register addressing modes, using the expression ST(0), or simply ST, to represent the current stack top and ST(i)
to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top
of the stack), the following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instructions are typically used
to perform a series of computations. Here, a two-dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads the value 5.6 from
memory into ST(0). The result of this operation is shown in snap-shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and stores the result in
ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and stores the result in
ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0), shown in snap-shot
(d).

The style of programming demonstrated in this example is supported by the floating-point instruction set. In cases
where the stack structure causes computation bottlenecks, the FXCH (exchange x87 FPU register contents)
instruction can be used to streamline a computation.

8.1.2.1 Parameter Passing With the x87 FPU Register Stack
Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by procedure calls, or
in other words, the values are maintained across procedure boundaries. A calling procedure can thus use the x87
FPU data registers (as well as the procedure stack) for passing parameter between procedures. The called proce-
dure can reference parameters passed through the register stack using the current stack register pointer (TOP)
and the ST(0) and ST(i) nomenclature. It is also common practice for a called procedure to leave a return value or
result in register ST(0) when returning execution to the calling procedure or program.

Figure 8-3. Example x87 FPU Dot Product Computation

(a)

R7
R6
R5
R4
R3
R2

R1
R0

Computation

ST(0)5.6

(b)

R7
R6
R5
R4
R3
R2

R1
R0

ST(0)13.44

(c)

R7
R6
R5
R4
R3
R2

R1
R0

ST(1)
ST(0)

13.44

(d)

R7
R6
R5
R4
R3
R2

R1
R0

ST(1)
ST(0)39.14

13.44
52.58

Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1) ;(d)

8-4 Vol. 1

PROGRAMMING WITH THE X87 FPU

When mixing MMX and x87 FPU instructions in the procedures or code sequences, the programmer is responsible
for maintaining the integrity of parameters being passed in the x87 FPU data registers. If an MMX instruction is
executed before the parameters in the x87 FPU data registers have been passed to another procedure, the param-
eters may be lost (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.3 x87 FPU Status Register
The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU. The flags in the x87
FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition code flags, exception summary
status flag, stack fault flag, and exception flags. The x87 FPU sets the flags in this register to show the results of
operations.

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be stored in memory using
the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX
register of the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1 Top of Stack (TOP) Pointer
A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack is contained in bits
11 through 13 of the x87 FPU status word. This pointer, which is commonly referred to as TOP (for top-of-stack),
is a binary value from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information about the TOP
pointer.

8.1.3.2 Condition Code Flags
The four condition code flags (C0 through C3) indicate the results of floating-point comparison and arithmetic oper-
ations. Table 8-1 summarizes the manner in which the floating-point instructions set the condition code flags.
These condition code bits are used principally for conditional branching and for storage of information used in
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condition Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both the IE and SF flags
in the x87 FPU status word are set, indicating a stack overflow or underflow exception (#IS), the C1 flag distin-
guishes between overflow (C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indicating
an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the instruction was upward. The FXAM
instruction sets C1 to the sign of the value being examined.

Figure 8-4. x87 FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B I
E

P
E

O
E

U
E

Z
E

D
ETOP

Top of Stack Pointer

Exception Flags
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormalized Operand
 Invalid Operation

Stack Fault
Exception Summary Status

Condition
 Code

C
2

C
1

C
0

E
S

S
F

C
3

Vol. 1 8-5

PROGRAMMING WITH THE X87 FPU

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an incomplete reduction (or
partial remainder). When a successful reduction has been completed, the C0, C3, and C1 condition code flags are
set to the three least-significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial
Remainder” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A, for more information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the source operand is
beyond the allowable range of ±263 and clear the C2 flag if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on any specific value in
these flags.

8.1.3.3 x87 FPU Floating-Point Exception Flags
The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word indicate that one or
more floating-point exceptions have been detected since the bits were last cleared. The individual exception flags
(IE, DE, ZE, OE, UE, and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception Handling.”
Each of the exception flags can be masked by an exception mask bit in the x87 FPU control word (see Section 8.1.5,
“x87 FPU Control Word”). The exception summary status flag (ES, bit 7) is set when any of the unmasked exception
flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of the techniques
described in Section 8.7, “Handling x87 FPU Exceptions in Software.” (Note that if an exception flag is masked, the
x87 FPU will still set the appropriate flag if the associated exception occurs, but it will not set the ES flag.)

The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They can be cleared by
executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or
FSAVE/FNSAVE instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

Table 8-1. Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FTST,
FUCOM, FUCOMP, FUCOMPP

Result of Comparison Operands
are not
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, FUCOMIP Undefined. (These instructions set the
status flags in the EFLAGS register.)

#IS

FXAM Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction
complete

1 = reduction
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, FBSTP, FCMOVcc,
FIADD, FDIV, FDIVP, FDIVR, FDIVRP, FIDIV,
FIDIVR, FIMUL, FIST, FISTP, FISUB,
FISUBR,FMUL, FMULP, FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB, FSUBP, FSUBR,
FSUBRP,FSQRT, FYL2X, FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, FPTAN Undefined 0 = source
operand within
range
1 = source
operand out of
range

Roundup or #IS
(Undefined if C2 =
1)

FABS, FBLD, FCHS, FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP (ext. prec.), FXCH,
FXTRACT

Undefined 0 or #IS

8-6 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.1.3.4 Stack Fault Flag
The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack underflow has occurred
with data in the x87 FPU data register stack. The x87 FPU explicitly sets the SF flag when it detects a stack overflow
or underflow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand condi-
tion.

When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow (C1 = 1) and under-
flow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set, the processor does not clear it until it is
explicitly instructed to do so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction).

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes
The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching and performing
conditional moves according to comparisons of two floating-point values. These mechanism are referred to here as
the “old mechanism” and the “new mechanism.”

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in P6 family processors. This
mechanism uses the floating-point compare instructions (FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and
FICOMP) to compare two floating-point values and set the condition code flags (C0 through C3) according to the
results. The contents of the condition code flags are then copied into the status flags of the EFLAGS register using
a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the condition code flags, into the
lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps or conditional moves
can be performed based on the new settings of the status flags in the EFLAGS register.

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, FCLEX/FNCLEX, FNOP,
FSTCW/FNSTCW, FSTENV/FNSTENV,
FSTSW/FNSTSW,

Undefined

FINIT/FNINIT, FSAVE/FNSAVE 0 0 0 0

Figure 8-5. Moving the Condition Codes to the EFLAGS Register

Table 8-1. Condition Code Interpretation (Contd.)

0

Condition
Code

Status
Flag

C0
C1
C2
C3

CF
(none)

PF
ZF

C
F1P

F
Z
F

731 EFLAGS Register

0
C
2

C
1

C
3

AX Register

0
C

15

0
C
2

C
1

C
3

x87 FPU Status Word

0
C

15

FSTSW AX Instruction

SAHF Instruction

Vol. 1 8-7

PROGRAMMING WITH THE X87 FPU

The new mechanism is available beginning with the P6 family processors. Using this mechanism, the new floating-
point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point
values and set the ZF, PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the three
instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow conditional moves of floating-
point values (values in the x87 FPU data registers) based on the setting of the status flags (ZF, PF, and CF) in the
EFLAGS register. These instructions eliminate the need for an IF statement to perform conditional moves of
floating-point values.

8.1.5 x87 FPU Control Word
The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and rounding method used.
It also contains the x87 FPU floating-point exception mask bits. The control word is cached in the x87 FPU control
register. The contents of this register can be loaded with the FLDCW instruction and stored in memory with the
FSTCW/FNSTCW instructions.

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU control
word is set to 037FH, which masks all floating-point exceptions, sets rounding to nearest, and sets the x87 FPU
precision to 64 bits.

8.1.5.1 x87 FPU Floating-Point Exception Mask Bits
The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-point exception
flags in the x87 FPU status word. When one of these mask bits is set, its corresponding x87 FPU floating-point
exception is blocked from being generated.

8.1.5.2 Precision Control Field
The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the precision (64, 53, or 24
bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The default precision is double extended
precision, which uses the full 64-bit significand available with the double extended-precision floating-point format
of the x87 FPU data registers. This setting is best suited for most applications, because it allows applications to take
full advantage of the maximum precision available with the x87 FPU data registers.

Figure 8-6. x87 FPU Control Word

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

X I
M

P
M

O
M

U
M

Z
M

D
MRC PC

Infinity Control
Rounding Control
Precision Control

Exception Masks
 Precision
 Underflow
 Overflow
 Zero Divide
 Denormal Operand
 Invalid Operation

Reserved

8-8 Vol. 1

PROGRAMMING WITH THE X87 FPU

The double precision and single precision settings reduce the size of the significand to 53 bits and 24 bits, respec-
tively. These settings are provided to support IEEE Standard 754 and to provide compatibility with the specifica-
tions of certain existing programming languages. Using these settings nullifies the advantages of the double
extended-precision floating-point format's 64-bit significand length. When reduced precision is specified, the
rounding of the significand value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-point instructions: FADD, FADDP, FIADD,
FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR,
and FSQRT.

8.1.5.3 Rounding Control Field
The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how the results of x87 FPU
floating-point instructions are rounded. See Section 4.8.4, “Rounding,” for a discussion of rounding of floating-
point values; See Section 4.8.4.1, “Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag
The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with the Intel 287 Math
Coprocessor; it is not meaningful for later version x87 FPU coprocessors or IA-32 processors. See Section 4.8.3.3,
“Signed Infinities,” for information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word
The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU data-register
stack (one 2-bit tag per register). The tag codes indicate whether a register contains a valid number, zero, or a
special floating-point number (NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 FPU is initialized with either
an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87 FPU
data registers as empty.
.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The current top-of-
stack (TOP) pointer stored in the x87 FPU status word can be used to associate tags with registers relative to ST(0).

Table 8-2. Precision Control Field (PC)
Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B

Figure 8-7. x87 FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty

Vol. 1 8-9

PROGRAMMING WITH THE X87 FPU

The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section 8.5.1.1, “Stack
Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents of an x87 FPU data
register without performing complex decoding of the actual data in the register. To read the tag register, it must be
stored in memory using either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word
in memory after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR instructions load an
image of the tag register into the x87 FPU; however, the x87 FPU uses those tag values only to determine if the
data registers are empty (11B) or non-empty (00B, 01B, or 10B).

If the tag register image indicates that a data register is empty, the tag in the tag register for that data register is
marked empty (11B); if the tag register image indicates that the data register is non-empty, the x87 FPU reads the
actual value in the data register and sets the tag for the register accordingly. This action prevents a program from
setting the values in the tag register to incorrectly represent the actual contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed.
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illustrates
the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer is always a pointer to a memory operand. If the last non-control
instruction that was executed did not have a memory operand, the value in the data pointer is undefined
(reserved). If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the data pointer is updated only for x87 non-control
instructions that incur unmasked x87 exceptions.

The contents of the x87 FPU instruction and data pointers remain unchanged when any of the following instructions
are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and
WAIT/FWAIT.

For all the x87 FPUs and Numeric Processor Extensions (NPXs) except the 8087, the x87 FPU instruction pointer
points to any prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the
actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector:
• The x87 FPU Instruction Pointer Offset (FIP) comprises 64 bits on processors that support IA-32e mode; on

other processors, it offset comprises 32 bits.
• The x87 FPU Instruction Pointer Selector (FCS) comprises 16 bits.
• The x87 FPU Data Pointer Offset (FDP) comprises 64 bits on processors that support IA-32e mode; on other

processors, it offset comprises 32 bits.
• The x87 FPU Data Pointer Selector (FDS) comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR,
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears FIP, FCS, FDP, and FDS.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads FCS and FDS from memory; otherwise, it clears them.
• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through

8-12.

— Each instruction saves the lower 32 bits of each FIP and FDP into memory. the upper 32 bits are not saved.

— If CR0.PE = 1, each instruction saves FCS and FDS into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates FCS and FDS; it saves each as
0000H.

8-10 Vol. 1

PROGRAMMING WITH THE X87 FPU

— After saving these data into memory, FSAVE/FNSAVE clears FIP, FCS, FDP, and FDS.
• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating

mode and the REX prefix. The memory formats are given in Tables 3-43, 3-46, and 3-47 in Chapter 3,
“Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

• Each instruction loads FCS and FDS from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads FIP and FDP from memory.

• Each instruction clears FCS and FDS.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on

operating mode and the REX prefix. The memory formats are given in Tables 3-43, 3-46, and 3-47 in Chapter
3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each of FIP and FDP into memory. The upper 32 bits are not
saved.

• Each instruction saves FCS and FDS into memory. If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates FCS and FDS; it saves each as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves FIP and FDP into memory. FCS and FDS are not
saved.

8.1.9 Last Instruction Opcode
The x87 FPU stores in the 11-bit x87 FPU opcode register (FOP) the opcode of the last x87 non-control instruction
executed that incurred an unmasked x87 exception. (This information provides state information for exception
handlers.) Only the first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for
all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode register.

8.1.9.1 Fopcode Compatibility Sub-mode
Some Pentium 4 and Intel Xeon processors provide program control over the value stored into FOP. Here, bit 2 of
the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the fopcode compatibility mode.

If fopcode compatibility mode is enabled, FOP is defined as it had been in previous IA-32 implementations, as the
opcode of the last x87 non-control instruction executed (even if that instruction did not incur an unmasked x87
exception).

Vol. 1 8-11

PROGRAMMING WITH THE X87 FPU

The fopcode compatibility mode should be enabled only when x87 FPU floating-point exception handlers are
designed to use the fopcode to analyze program performance or restart a program after an exception has been
handled.

More recent Intel 64 processors do not support fopcode compatibility mode and do not allow software to set bit 2
of the IA32_MISC_ENABLE MSR.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE
The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by
exception handlers and other system and application software. The FSTENV/FNSTENV instruction saves the
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction does)
after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures
8-9 through 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. See
Chapter 34, “System Management Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87 FPU.
Here, the FLDENV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer,
and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU stack
registers.

Figure 8-8. Contents of x87 FPU Opcode Registers

Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format

0

x87 FPU Opcode Register

10

0
2nd Instruction Byte

70
1st Instruction Byte

7 2

78

031

0
4
8
12
16
20

24

32-Bit Protected Mode Format

Control Word

Bits 10:0 of opcode

Status Word

Tag Word

FPU Instruction Pointer Selector

FPU Data Pointer Selector (FDS)

FPU Data Pointer Offset (FDP)

0 0 0 0 0
FPU Instruction Pointer Offset (FIP)

16 15

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0-R7) follow the above structure in sequence.

8-12 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.1.11 Saving the x87 FPU’s State with FXSAVE
The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along with the state of the
XMM registers and the MXCSR register. Using the FXSAVE instruction to save the x87 FPU state has two benefits:
(1) FXSAVE executes faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in one
operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional information about these instruc-
tions.

Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-11. Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12. Real Mode x87 FPU State Image in Memory, 16-Bit Format

031

0
4
8
12
16
20

24

32-Bit Real-Address Mode Format

Control Word

FDP[31:16]

FIP[31:16]

Status Word

Tag Word

FOP[10:0]

0 0 0 0 0 0 0 0 0 0 0 0

FDP[15:0]

0 0 0 0
FIP[15:0]

0 0 0 0

16 15

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0-R7) follow the above structure in sequence.

0

0
2
4
6
8
10

12

16-Bit Protected Mode Format

Control Word
15

Status Word

Tag Word

FCS

FDS

FDP

FIP

0

0
2
4
6
8
10

12

16-Bit Real-Address Mode and

Control Word
15

Status Word

Tag Word

Virtual-8086 Mode Format

0 0 0 0 0 0 0 0 0 0 0 0

Bits 10:0 of opcode0
FIP[15:0]

FIP[19:16]

FDP[19:16]

FDP[15:0]

Vol. 1 8-13

PROGRAMMING WITH THE X87 FPU

8.2 X87 FPU DATA TYPES
The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13): single-precision
floating point, double-precision floating point, double extended-precision floating point, signed word integer,
signed doubleword integer, signed quadword integer, and packed BCD decimal integers.

For detailed information about these data types, see Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2,
“Signed Integers,” and Section 4.7, “BCD and Packed BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all of these data types exist in
memory only. When they are loaded into x87 FPU data registers, they are converted into double extended-preci-
sion floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE Standard 754. When a
denormal number in single-precision or double-precision floating-point format is used as a source operand and the
denormal exception is masked, the x87 FPU automatically normalizes the number when it is converted to double
extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the initial address
specified for the value. Successive bytes from the value are then stored in successively higher addresses in
memory. The floating-point instructions load and store memory operands using only the initial address of the
operand.

As a general rule, values should be stored in memory in double-precision format. This format provides sufficient
range and precision to return correct results with a minimum of programmer attention. The single-precision format
is useful for debugging algorithms, because rounding problems will manifest themselves more quickly in this
format. The double extended-precision format is normally reserved for holding intermediate results in the x87 FPU
registers and constants. Its extra length is designed to shield final results from the effects of rounding and over-
flow/underflow in intermediate calculations. However, when an application requires the maximum range and preci-
sion of the x87 FPU (for data storage, computations, and results), values can be stored in memory in double
extended-precision format.

Figure 8-13. x87 FPU Data Type Formats

0

Packed BCD Integers

79
D0

0

Quadword Integer

63

4 Bits = 1 BCD Digit

0

Doubleword Integer

31

0

Word Integer

15

Sign

D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71
X

62

14

30

0

Double Extended-Precision Floating-Point

79

Sign

78 6463

0

Double-Precision Floating-Point

63 62

0

Single-Precision Floating-Point

3130 23 22
FractionExp.Sign

Implied Integer

Implied Integer

Sign Exponent Fraction
52 51

FractionExponent
62 Integer

Sign

Sign

Sign

8-14 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.2.1 Indefinites
For each x87 FPU data type, one unique encoding is reserved for representing the special value indefinite. The x87
FPU produces indefinite values as responses to some masked floating-point invalid-operation exceptions. See
Tables 4-1, 4-3, and 4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and packed BCD
integer indefinite, respectively.

The binary integer encoding 100..00B represents either of two things, depending on the circumstances of its use:
• The largest negative number supported by the format (–215, –231, or –263)
• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the x87 FPU
interprets it as the largest negative number representable in the format being used. If the x87 FPU detects an
invalid operation when storing an integer value in memory with an FIST/FISTP instruction and the invalid-operation
exception is masked, the x87 FPU stores the integer indefinite encoding in the destination operand as a masked
response to the exception. In situations where the origin of a value with this encoding may be ambiguous, the
invalid-operation exception flag can be examined to see if the value was produced as a response to an exception.

8.2.2 Unsupported Double Extended-Precision
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do not fall into any of the cate-
gories shown in Table 4-3. Table 8-3 shows these unsupported encodings. Some of these encodings were supported
by the Intel 287 math coprocessor; however, most of them are not supported by the Intel 387 math coprocessor
and later IA-32 processors. These encodings are no longer supported due to changes made in the final version of
IEEE Standard 754 that eliminated these encodings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal
numbers are not supported and should not be used as operand values. The Intel 387 math coprocessor and later
IA-32 processors generate an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-denormal numbers are
not generated by IA-32 processors. When encountered as operands, however, they are handled correctly; that is,
they are treated as denormals and a denormal exception is generated. Pseudo-denormal numbers should not be
used as operand values. They are supported by current IA-32 processors (as described here) to support legacy
code.

Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0 01..11
.

00..01

Positive Floating Point Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Vol. 1 8-15

PROGRAMMING WITH THE X87 FPU

8.3 X87 FPU INSTRUCTION SET
The floating-point instructions that the x87 FPU supports can be grouped into six functional categories:
• Data transfer instructions
• Basic arithmetic instructions
• Comparison instructions
• Transcendental instructions
• Load constant instructions
• x87 FPU control instructions

See Section , “CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFT-
EHCHW instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports
the PREFTEHCHWT1 instruction.,” for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions of the floating-point
instructions are given in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

8.3.1 Escape (ESC) Instructions
All of the instructions in the x87 FPU instruction set fall into a class of instructions known as escape (ESC) instruc-
tions. All of these instructions have a common opcode format, where the first byte of the opcode is one of the
numbers from D8H through DFH.

8.3.2 x87 FPU Instruction Operands
Most floating-point instructions require one or two operands, located on the x87 FPU data-register stack or in
memory. (None of the floating-point instructions accept immediate operands.)

When an operand is located in a data register, it is referenced relative to the ST(0) register (the register at the top
of the register stack), rather than by a physical register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described in Section 3.7,
“Operand Addressing.”

Negative Floating Point Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative Pseudo-NaNs

Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →

Table 8-3. Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals (Contd.)

8-16 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.3.3 Data Transfer Instructions
The data transfer instructions (see Table 8-4) perform the following operations:
• Load a floating-point, integer, or packed BCD operand from memory into the ST(0) register.
• Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD format.
• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from memory onto the top of the x87 FPU
data-register stack. If the operand is in single-precision or double-precision floating-point format, it is automati-
cally converted to double extended-precision floating-point format. This instruction can also be used to push the
value in a selected x87 FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double extended-precision floating-
point format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) instruction
performs the same load operation for a packed BCD operand in memory.

Vol. 1 8-17

PROGRAMMING WITH THE X87 FPU

The FST (store floating point) and FIST (store integer) instructions store the value in register ST(0) in memory in
the destination format (floating point or integer, respectively). Again, the format conversion is carried out automat-
ically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP (store packed decimal and pop)
instructions store the value in the ST(0) registers into memory in the destination format (floating point, integer, or
packed BCD), then performs a pop operation on the register stack. A pop operation causes the ST(0) register to be
marked empty and the stack pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruc-
tion can also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in the stack [ST(i)]
with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack [ST(i)] to register
ST(0) if a condition specified with a condition code (cc) is satisfied (see Table 8-5). The condition being tested for
is represented by the status flags in the EFLAGS register. The condition code mnemonics are appended to the
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch mispredictions by the processor.

Software can check if the FCMOVcc instructions are supported by checking the processor’s feature information with
the CPUID instruction.

Table 8-4. Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating Point FIST Store Integer

FSTP Store Floating Point and
Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register
Contents

FCMOVcc Conditional Move

Table 8-5. Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered

8-18 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.3.4 Load Constant Instructions
The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and are accurate to
approximately 19 decimal digits. They are stored internally in a format more precise than double extended-preci-
sion floating point. When loading the constant, the x87 FPU rounds the more precise internal constant according
to the RC (rounding control) field of the x87 FPU control word. The inexact-result exception (#P) is not generated
as a result of this rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See
Section 8.3.8, “Approximation of Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions
The following floating-point instructions perform basic arithmetic operations on floating-point numbers. Where
applicable, these instructions match IEEE Standard 754:
FADD/FADDP Add floating point
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:
• Two x87 FPU data registers
• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are referenced on the data register
stack.

Operands in memory can be in single-precision floating-point, double-precision floating-point, word-integer, or
doubleword-integer format. They are converted to double extended-precision floating-point format automatically.

Vol. 1 8-19

PROGRAMMING WITH THE X87 FPU

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient coding. For example, the
following options are available with the FSUB and FSUBR instructions for operating on values in a specified x87 FPU
data register ST(i) and the ST(0) register:

FSUB:
ST(0) ← ST(0) − ST(i)
ST(i) ← ST(i) − ST(0)

FSUBR:
ST(0) ← ST(i) − ST(0)
ST(i) ← ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register and another x87 FPU register
to perform a subtraction or division.

The pop versions of the add, subtract, multiply, and divide instructions offer the option of popping the x87 FPU
register stack following the arithmetic operation. These instructions operate on values in the ST(i) and ST(0) regis-
ters, store the result in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the manner used by the Intel
8087 and Intel 287 math coprocessors; the FPREM1 instruction computes the remainder in the manner specified in
IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the source value in the
direction of the rounding mode specified in the RC field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The FABS instruction
produces the absolute value of the source operand. The FCHS instruction changes the sign of the source operand.
The FXTRACT instruction separates the source operand into its exponent and fraction and stores each value in a
register in floating-point format.

8.3.6 Comparison and Classification Instructions
The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because floating-point values have four
(rather than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or in an unsup-
ported format. This additional relationship is required because, by definition, NaNs are not numbers, so they
cannot have less than, equal, or greater than relationships with other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a floating-point source
operand and set the condition code flags (C0, C2, and C3) in the x87 FPU status word according to the results (see
Table 8-6).

8-20 Vol. 1

PROGRAMMING WITH THE X87 FPU

If an unordered condition is detected (one or both of the values are NaNs or in an undefined format), a floating-
point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the comparison operation is
complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, and FCOMPP instructions.
The only difference is that with the FUCOM, FUCOMP, and FUCOMPP instructions, if an unordered condition is
detected because one or both of the operands are QNaNs, the floating-point invalid-operation exception is not
generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instructions, except that the
source operand is an integer value in memory. The integer value is automatically converted into an double
extended-precision floating-point value prior to making the comparison. The FICOMP instruction pops the x87 FPU
register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value in register ST(0)
is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6 family processors. They
perform the same comparison as the FCOM and FCOMP instructions, except that they set the status flags (ZF, PF,
and CF) in the EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of the x87 FPU
condition code flags. The FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed
directly from the results of their comparison.

Software can check if the FCOMI and FCOMIP instructions are supported by checking the processor’s feature infor-
mation with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP instructions, except that they
do not generate a floating-point invalid-operation exception if the unordered condition is the result of one or both
of the operands being a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack following the
comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0) register (that is, whether
the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsupported format) or that the
register is empty. It sets the x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). It also sets the C1 flag to indicate the sign of the value.

8.3.6.1 Branching on the x87 FPU Condition Codes
The processor does not offer any control-flow instructions that branch on the setting of the condition code flags
(C0, C2, and C3) in the x87 FPU status word. To branch on the state of these flags, the x87 FPU status word must

Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons
Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

Vol. 1 8-21

PROGRAMMING WITH THE X87 FPU

first be moved to the AX register in the integer unit. The FSTSW AX (store status word) instruction can be used for
this purpose. When these flags are in the AX register, the TEST instruction can be used to control conditional
branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the AX register with the
constant 0400H (see Table 8-8). This operation will clear the ZF flag in the EFLAGS register if the condition code
flags indicate an unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then be used to
transfer control (if necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST instruction to test for a less
than, equal to, or greater than result, then use the corresponding conditional branch instruction to transfer
program control to the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for QNaN results, then it
is not necessary to check for the unordered result every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for another technique for branching on
x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU status word. To ensure
that the status word is not altered inadvertently, store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they return their
results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and FPTAN instructions must be given in
radians; the source operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It operates faster than
executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result in radians. It is
useful for converting rectangular coordinates to polar coordinates.

See Section 8.3.8, “Approximation of Pi” and Section 8.3.10, “Transcendental Instruction Accuracy” for information
regarding the accuracy of these instructions.

8.3.8 Approximation of Pi
When the argument (source operand) of a trigonometric function is within the domain of the function, the argu-
ment is automatically reduced by the appropriate multiple of 2π through the same reduction mechanism used by
the FPREM and FPREM1 instructions. The internal value of π (3.1415926…) that the x87 FPU uses for argument

Table 8-8. TEST Instruction Constants for Conditional Branching
Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ

8-22 Vol. 1

PROGRAMMING WITH THE X87 FPU

reduction and other computations, denoted as Pi in the expression below. The numerical value of Pi can be written
as:

Pi = 0.f ∗ 22

where the fraction f is expressed in binary form as:
f = C90FDAA2 2168C234 C

(The spaces in the fraction above indicate 32-bit boundaries.)

The internal approximation Pi of the value π has a 66 significant bits. Since the exact value of π represented in
binary has the next 3 bits equal to 0, it means that Pi is the value of π rounded to nearest-even to 68 bits, and also
the value of π rounded toward zero (truncated) to 69 bits.

However, accuracy problems may arise because this relatively short finite approximation Pi of the number π is used
for calculating the reduced argument of the trigonometric function approximations in the implementations of FSIN,
FCOS, FSINCOS, and FPTAN. Alternately, this means that FSIN (x), FCOS (x), and FPTAN (x) are really approxi-
mating the mathematical functions sin (x * π /Pi), cos (x * π / Pi), and tan (x * π / Pi), and not exactly sin (x), cos
(x), and tan (x). (Note that FSINCOS is the equivalent of FSIN and FCOS combined together). The period of sin (x
* π /Pi) for example is 2* Pi, and not 2π.

See also Section 8.3.10, “Transcendental Instruction Accuracy” for more information on the accuracy of these func-
tions.

8.3.9 Logarithmic, Exponential, and Scale
The following instructions provide two different logarithmic functions, an exponential function and a scale function:

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations. The FYL2X instruction
computes (y ∗ log2x). This operation permits the calculation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides optimum accuracy for values of x that
are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source values in the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architecture beginning with the
Pentium processors. These new algorithms (used in transcendental instructions FSIN, FCOS, FSINCOS, FPTAN,
FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 processors
and x87 math coprocessors. The accuracy of these instructions is measured in terms of units in the last place
(ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) function values,
respectively. The error in ulps is defined to be:

where k is an integer such that:

error f x() F x()–
2k 63–

---------------------------=

1 2 k– f x() 2.<≤

Vol. 1 8-23

PROGRAMMING WITH THE X87 FPU

With the Pentium processor and later IA-32 processors, the worst case error on transcendental functions is less
than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps when rounding in other modes. The func-
tions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported by the
instruction.

However, for FSIN, FCOS, FSINCOS, and FPTAN which approximate periodic trigonometric functions, the previous
statement about maximum ulp errors is true only when these instructions are applied to reduced argument (see
Section 8.3.8, “Approximation of Pi”). This is due to the fact that only 66 significant bits are retained in the finite
approximation Pi of the number π (3.1415926…), used internally for calculating the reduced argument in FSIN,
FCOS, FSINCOS, and FPTAN. This approximation of π is not always sufficiently accurate for good argument reduc-
tion.

For single precision, the argument of FSIN, FCOS, FSINCOS, and FPTAN must exceed 200,000 radians in order for
the error of the result to exceed 1 ulp when rounding to the nearest (even), or 1.5 ulps when rounding in other
(directed) rounding modes.

For double and double-extended precision, the ulp errors will grow above these thresholds for arguments much
smaller in magnitude. The ulp errors increase significantly when the argument approaches the value of π (or Pi) for
FSIN, and when it approaches π/2(or Pi/2) for FCOS, FSINCOS, and FPTAN.

For all three IEEE precisions supported (32-bit single precision, 64-bit double precision, and 80-bit double-
extended precision), applying FSIN, FCOS, FSINCOS, or FPTAN to arguments larger than a certain value can lead
to reduced arguments (calculated internally) that are inaccurate or even very inaccurate in some cases. This leads
to equally inaccurate approximations of the corresponding mathematical functions. In particular, arguments that
are close to certain values will lose significance when reduced, leading to increased relative (and ulp) errors in the
results of FSIN, FCOS, FSINCOS, and FPTAN. These values are:
• any non-zero multiple of π for FSIN,
• any multiple of π, plus π/2 for FCOS, and
• any non-zero multiple of π/2 for FSINCOS and FPTAN.

If the arguments passed to FSIN, FCOS, FSINCOS, and FPTAN are not close to these values then even the finite
approximation Pi of π used internally for argument reduction will allow for results that have good accuracy.

Therefore, in order to avoid such errors it is recommended to perform accurate argument reduction in software,
and to apply FSIN, FCOS, FSINCOS, and FPTAN to reduced arguments only. Regardless of the target precision
(single, double, or double-extended), it is safe to reduce the argument to a value smaller in absolute value than
about 3π/4 for FSIN, and smaller than about 3π/8 for FCOS, FSINCOS, and FPTAN.

The thresholds shown above are not exact. For example, accuracy measurements show that the double-extended
precision result of FSIN will not have errors larger than 0.72 ulp for |x| < 2.82 (so |x| < 3π/4 will ensure good accu-
racy, as 3π/4 < 2.82). On the same interval, double precision results from FSIN will have errors at most slightly
larger than 0.5 ulp, and single precision results will be correctly rounded in the vast majority of cases.

Likewise, the double-extended precision result of FCOS will not have errors larger than 0.82 ulp for |x| < 1.31 (so
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.31). On the same interval, double precision results from FCOS
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast
majority of cases.

FSINCOS behaves similarly to FSIN and FCOS, combined as a pair.

Finally, the double-extended precision result of FPTAN will not have errors larger than 0.78 ulp for |x| < 1.25 (so
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.25). On the same interval, double precision results from FPTAN
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast
majority of cases.

A recommended alternative in order to avoid the accuracy issues that might be caused by FSIN, FCOS, FSINCOS,
and FPTAN, is to use good quality mathematical library implementations of the sin, cos, sincos, and tan functions,
for example those from the Intel® Math Library available in the Intel® Compiler.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be within 1 ulp only when
y equals 1. When y is not equal to 1, the maximum ulp error is always within 1.35 ulps in round to nearest mode.
(For the two operand functions, monotonicity was proved by holding one of the operands constant.)

8-24 Vol. 1

PROGRAMMING WITH THE X87 FPU

8.3.11 x87 FPU Control Instructions
The following instructions control the state and modes of operation of the x87 FPU. They also allow the status of the
x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU

FLDCW Load x87 FPU control word

FSTCW/FNSTCW Store x87 FPU control word

FSTSW/FNSTSW Store x87 FPU status word

FCLEX/FNCLEX Clear x87 FPU exception flags

FLDENV Load x87 FPU environment

FSTENV/FNSTENV Store x87 FPU environment

FRSTOR Restore x87 FPU state

FSAVE/FNSAVE Save x87 FPU state

FINCSTP Increment x87 FPU register stack pointer

FDECSTP Decrement x87 FPU register stack pointer

FFREE Free x87 FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to default values.

The FLDCW instructions loads the x87 FPU control word register with a value from memory. The FSTCW/FNSTCW
and FSTSW/FNSTSW instructions store the x87 FPU control and status words, respectively, in memory (or for an
FSTSW/FNSTSW instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environment and state, respectively, in
memory. The x87 FPU environment includes all the x87 FPU’s control and status registers; the x87 FPU state
includes the x87 FPU environment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT instruction, after it saves the original
state of the x87 FPU.)

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, respectively, from memory into the
x87 FPU. These instructions are commonly used when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics for the same
opcode.) These instructions check the x87 FPU status word for pending unmasked x87 FPU exceptions. If any
pending unmasked x87 FPU exceptions are found, they are handled before the processor resumes execution of the
instructions (integer, floating-point, or system instruction) in the instruction stream. The WAIT/FWAIT instructions
are provided to allow synchronization of instruction execution between the x87 FPU and the processor’s integer
unit. See Section 8.6, “x87 FPU Exception Synchronization,” for more information on the use of the WAIT/FWAIT
instructions.

8.3.12 Waiting vs. Non-waiting Instructions
All of the x87 FPU instructions except a few special control instructions perform a wait operation (similar to the
WAIT/FWAIT instructions), to check for and handle pending unmasked x87 FPU floating-point exceptions, before
they perform their primary operation (such as adding two floating-point numbers). These instructions are called
waiting instructions. Some of the x87 FPU control instructions, such as FSTSW/FNSTSW, have both a waiting and
a non-waiting version. The waiting version (with the “F” prefix) executes a wait operation before it performs its
primary operation; whereas, the non-waiting version (with the “FN” prefix) ignores pending unmasked exceptions.

Non-waiting instructions allow software to save the current x87 FPU state without first handling pending exceptions
or to reset or reinitialize the x87 FPU without regard for pending exceptions.

Vol. 1 8-25

PROGRAMMING WITH THE X87 FPU

NOTES
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for a non-waiting instruction to be interrupted prior to being
executed to handle a pending x87 FPU exception. The circumstances where this can happen and
the resulting action of the processor are described in Section D.2.1.3, “No-Wait x87 FPU Instruc-
tions Can Get x87 FPU Interrupt in Window.”
When operating a P6 family, Pentium 4, or Intel Xeon processor in MS-DOS compatibility mode,
non-waiting instructions can not be interrupted in this way (see Section D.2.2, “MS-DOS* Compat-
ibility Sub-mode in the P6 Family and Pentium® 4 Processors”).

8.3.13 Unsupported x87 FPU Instructions
The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction FSETPM perform no
function in the Intel 387 math coprocessor and later IA-32 processors. If these opcodes are detected in the instruc-
tion stream, the x87 FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING
The x87 FPU detects the six classes of exception conditions described in Section 4.9, “Overview of Floating-Point
Exceptions”:
• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Denormalized operand (#D)
• Divide-by-zero (#Z)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status word and a mask bit in the x87
FPU control word (see Section 8.1.3, “x87 FPU Status Register,” and Section 8.1.5, “x87 FPU Control Word,” respec-
tively). In addition, the exception summary (ES) flag in the status word indicates when one or more unmasked
exceptions has been detected. The stack fault (SF) flag (also in the status word) distinguishes between the two
types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with either FSTCW/FNSTCW,
FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE
instruction.

NOTE
Section 4.9.1, “Floating-Point Exception Conditions,” provides a general overview of how the IA-32
processor detects and handles the various classes of floating-point exceptions. This information
pertains to x87 FPU as well as SSE/SSE2/SSE3 extensions.

The following sections give specific information about how the x87 FPU handles floating-point exceptions that are
unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions
When dealing with floating-point exceptions, it is useful to distinguish between arithmetic instructions and non-
arithmetic instructions. Non-arithmetic instructions have no operands or do not make substantial changes to
their operands. Arithmetic instructions do make significant changes to their operands; in particular, they make
changes that could result in floating-point exceptions being signaled. Table 8-9 lists the non-arithmetic and arith-

8-26 Vol. 1

PROGRAMMING WITH THE X87 FPU

metic instructions. It should be noted that some non-arithmetic instructions can signal a floating-point stack (fault)
exception, but this exception is not the result of an operation on an operand.

8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS
The following sections describe the various conditions that cause a floating-point exception to be generated by the
x87 FPU and the masked response of the x87 FPU when these conditions are detected. Intel® 64 and IA-32 Archi-

Table 8-9. Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTE:
1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Vol. 1 8-27

PROGRAMMING WITH THE X87 FPU

tectures Software Developer’s Manual, Volumes 2A & 2B, list the floating-point exceptions that can be signaled for
each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

8.5.1 Invalid Operation Exception
The floating-point invalid-operation exception occurs in response to two sub-classes of operations:
• Stack overflow or underflow (#IS)
• Invalid arithmetic operand (#IA)

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit (IM) is bit 0 of the x87 FPU
control word. The stack fault flag (SF) of the x87 FPU status word indicates the type of operation that caused the
exception. When the SF flag is set to 1, a stack operation has resulted in stack overflow or underflow; when the flag
is cleared to 0, an arithmetic instruction has encountered an invalid operand. Note that the x87 FPU explicitly sets
the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly clear the flag when it
detects an invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an invalid-
arithmetic-operation exception, if it was not cleared from the last time a stack overflow or underflow condition
occurred. See Section 8.1.3.4, “Stack Fault Flag,” for more information about the SF flag.

8.5.1.1 Stack Overflow or Underflow Exception (#IS)
The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU register stack (see Section 8.1.7,
“x87 FPU Tag Word”). It then uses this information to detect two different types of stack faults:
• Stack overflow — An instruction attempts to load a non-empty x87 FPU register from memory. A non-empty

register is defined as a register containing a zero (tag value of 01), a valid value (tag value of 00), or a special
value (tag value of 10).

• Stack underflow — An instruction references an empty x87 FPU register as a source operand, including
attempting to write the contents of an empty register to memory. An empty register has a tag value of 11.

NOTES
The term stack overflow originates from the situation where the program has loaded (pushed) eight
values from memory onto the x87 FPU register stack and the next value pushed on the stack
causes a stack wraparound to a register that already contains a value.
The term stack underflow originates from the opposite situation. Here, a program has stored
(popped) eight values from the x87 FPU register stack to memory and the next value popped from
the stack causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag (bit 6) in the x87
FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the x87 FPU status word to 1 if stack overflow
occurred or to 0 if stack underflow occurred.

If the invalid-operation exception is masked, the x87 FPU returns the floating point, integer, or packed decimal
integer indefinite value to the destination operand, depending on the instruction being executed. This value over-
writes the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see Section 8.7,
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and source operands remain
unchanged.

8.5.1.2 Invalid Arithmetic Operand Exception (#IA)
The x87 FPU is able to detect a variety of invalid arithmetic operations that can be coded in a program. These oper-
ations are listed in Table 8-10. (This list includes the invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the x87 FPU status word to 1.
If the invalid-operation exception is masked, the x87 FPU then returns an indefinite value or QNaN to the destina-

8-28 Vol. 1

PROGRAMMING WITH THE X87 FPU

tion operand and/or sets the floating-point condition codes as shown in Table 8-10. If the invalid-operation excep-
tion is not masked, a software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in
Software”) and the top-of-stack pointer (TOP) and source operands remain unchanged.

Normally, when one or both of the source operands is a QNaN (and neither is an SNaN or in an unsupported
format), an invalid-operand exception is not generated. An exception to this rule is most of the compare instruc-
tions (such as the FCOM and FCOMI instructions) and the floating-point to integer conversion instructions
(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will generate an invalid-operand excep-
tion.

8.5.2 Denormal Operand Exception (#D)
The x87 FPU signals the denormal-operand exception under the following conditions:
• If an arithmetic instruction attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and

Denormalized Finite Numbers”).
• If an attempt is made to load a denormal single-precision or double-precision floating-point value into an x87

FPU register. (If the denormal value being loaded is a double extended-precision floating-point value, the
denormal-operand exception is not reported.)

Table 8-10. Invalid Arithmetic Operations and the
Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an unsupported
format.

Return the QNaN floating-point indefinite value to the
destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see Table 4-7).

Ordered compare and test operations: one or both operands are
NaNs.

Set the condition code flags (C0, C2, and C3) in the x87 FPU
status word or the CF, PF, and ZF flags in the EFLAGS register to
111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite value to the
destination operand.

Multiplication: ∞ by 0; 0 by ∞ . Return the QNaN floating-point indefinite value to the
destination operand.

Division: ∞ by ∞ ; 0 by 0. Return the QNaN floating-point indefinite value to the
destination operand.

Remainder instructions FPREM, FPREM1: modulus (divisor) is 0 or
dividend is ∞ .

Return the QNaN floating-point indefinite; clear condition code
flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, FSINCOS: source
operand is ∞ .

Return the QNaN floating-point indefinite; clear condition code
flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0); FYL2X: negative
operand (except FYL2X (–0) = –∞); FYL2XP1: operand more
negative than –1.

Return the QNaN floating-point indefinite value to the
destination operand.

FBSTP: Converted value cannot be represented in 18 decimal digits,
or source value is an SNaN, QNaN, ± ∞ , or in an unsupported
format.

Store packed BCD integer indefinite value in the destination
operand.

FIST/FISTP: Converted value exceeds representable integer range
of the destination operand, or source value is an SNaN, QNaN, ±∞,
or in an unsupported format.

Store integer indefinite value in the destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-point indefinite
value, then perform the exchange.

Vol. 1 8-29

PROGRAMMING WITH THE X87 FPU

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit (DM) is bit 1 of the x87 FPU
control word.

When a denormal-operand exception occurs and the exception is masked, the x87 FPU sets the DE flag, then
proceeds with the instruction. The denormal operand in single- or double-precision floating-point format is auto-
matically normalized when converted to the double extended-precision floating-point format. Subsequent opera-
tions will benefit from the additional precision of the internal double extended-precision floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set and a software
exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack
pointer (TOP) and source operands remain unchanged.

For additional information about the denormal-operation exception, see Section 4.9.1.2, “Denormal Operand
Exception (#D).”

8.5.3 Divide-By-Zero Exception (#Z)
The x87 FPU reports a floating-point divide-by-zero exception whenever an instruction attempts to divide a finite
non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the x87 FPU status word, and the mask bit (ZM)
is bit 2 of the x87 FPU control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and the other
instructions that perform division internally (FYL2X and FXTRACT) can report the divide-by-zero exception.

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU sets the ZE flag and returns the
values shown in Table 8-10. If the divide-by-zero exception is not masked, the ZE flag is set, a software exception
handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack pointer
(TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)
The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the rounded result of an arith-
metic instruction exceeds the largest allowable finite value that will fit into the floating-point format of the destina-
tion operand. (See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where the result is stored in an x87
FPU data register. It can also occur on store floating-point operations (using the FST and FSTP instructions), where
a within-range value in a data register is stored in memory in a single-precision or double-precision floating-point
format. The numeric overflow exception cannot occur when storing values in an integer or BCD integer format.
Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, and the mask bit (OM) is bit
3 of the x87 FPU control word.

When a numeric-overflow exception occurs and the exception is masked, the x87 FPU sets the OE flag and returns
one of the values shown in Table 4-10. The value returned depends on the current rounding mode of the x87 FPU
(see Section 8.1.5.3, “Rounding Control Field”).

The action that the x87 FPU takes when numeric overflow occurs and the numeric-overflow exception is not
masked, depends on whether the instruction is supposed to store the result in memory or on the register stack.
• Destination is a memory location — The OE flag is set and a software exception handler is invoked (see

Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source and
destination operands remain unchanged. Because the data in the stack is in double extended-precision format,

Table 8-11. Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation with a
0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two operands to the
destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero operand to the destination
operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the source operand.

8-30 Vol. 1

PROGRAMMING WITH THE X87 FPU

the exception handler has the option either of re-executing the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as the standard requires. The
exception handler should ultimately store a value into the destination location in memory if the program is to
continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted
by dividing it by 224576. (For instructions not affected by the precision field, the significand is rounded to
double-extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in
the x87 FPU status word (called in this situation the “round-up bit”) is set if the significand was rounded upward
and cleared if the result was rounded toward 0. After the result is stored, the OE flag is set and a software
exception handler is invoked. The scaling bias value 24,576 is equal to 3 ∗ 213. Biasing the exponent by 24,576
normally translates the number as nearly as possible to the middle of the double extended-precision floating-
point exponent range so that, if desired, it can be used in subsequent scaled operations with less risk of causing
further exceptions.
When using the FSCALE instruction, massive overflow can occur, where the result is too large to be repre-
sented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the result has been biased, a
properly signed ∞ is stored in the destination operand.

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a potential floating-point numeric underflow condition whenever the result of an arithmetic
instruction is non-zero and tiny; that is, the magnitude of the rounded result with unbounded exponent is non-zero
and less than the smallest possible normalized, finite value that will fit into the floating-point format of the destina-
tion operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for additional information about the
numeric underflow exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result is stored in an x87
FPU data register. It can also occur on store floating-point operations (with the FST and FSTP instructions), where
a within-range value in a data register is stored in memory in the smaller single-precision or double-precision
floating-point formats. A numeric underflow exception cannot occur when storing values in an integer or BCD
integer format, because a value with magnitude less than 1 is always rounded to an integral value of 0 or 1,
depending on the rounding mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the mask bit (UM) is bit
4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU performs the operation
described in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the instruction is supposed to
store the result in a memory location or on the x87 FPU resister stack.
• Destination is a memory location — (Can occur only with a store instruction.) The UE flag is set and a

software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-
of-stack pointer (TOP) and source and destination operands remain unchanged, and no result is stored in
memory.
Because the data in the stack is in double extended-precision format, the exception handler has the option
either of re-exchanges the store instruction after proper adjustment of the operand or of rounding the
significand on the stack to the destination's precision as the standard requires. The exception handler should
ultimately store a value into the destination location in memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted
by multiplying it by 224576. (For instructions not affected by the precision field, the significand is rounded to
double extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in
the x87 FPU status register (acting here as a “round-up bit”) is set if the significand was rounded upward and
cleared if the result was rounded toward 0. After the result is stored, the UE flag is set and a software exception
handler is invoked. The scaling bias value 24,576 is the same as is used for the overflow exception and has the
same effect, which is to translate the result as nearly as possible to the middle of the double extended-precision
floating-point exponent range.

Vol. 1 8-31

PROGRAMMING WITH THE X87 FPU

When using the FSCALE instruction, massive underflow can occur, where the magnitude of the result is too
small to be represented, even with a bias-adjusted exponent. Here, if underflow occurs again after the result
has been biased, a properly signed 0 is stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. (See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for
additional information about the numeric overflow exception.) Note that the transcendental instructions (FSIN,
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce inexact results.

The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the mask bit (PM) is bit 5 of the x87
FPU control word.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the x87 FPU handles the exception as describe in Section 4.9.1.6, “Inexact-Result
(Precision) Exception (#P),” with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the “not
rounded up” case, the least-significant bits of the inexact result are truncated so that the result fits in the destina-
tion format.

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has
not occurred, the x87 FPU handles the exception as described in the previous paragraph and, in addition, invokes
a software exception handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 FPU carries out one of the
following operations:
• If an inexact result occurs in conjunction with masked overflow or underflow, the OE or UE flag and the PE flag

are set and the result is stored as described for the overflow or underflow exceptions (see Section 8.5.4,
“Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the inexact
result exception is unmasked, the x87 FPU also invokes a software exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow and the destination operand is
a register, the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or
underflow exceptions (see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric
Underflow Exception (#U)”) and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is
cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION
Because the integer unit and x87 FPU are separate execution units, it is possible for the processor to execute
floating-point, integer, and system instructions concurrently. No special programming techniques are required to
gain the advantages of concurrent execution. (Floating-point instructions are placed in the instruction stream along
with the integer and system instructions.) However, concurrent execution can cause problems for floating-point
exception handlers.

This problem is related to the way the x87 FPU signals the existence of unmasked floating-point exceptions.
(Special exception synchronization is not required for masked floating-point exceptions, because the x87 FPU
always returns a masked result to the destination operand.)

When a floating-point exception is unmasked and the exception condition occurs, the x87 FPU stops further execu-
tion of the floating-point instruction and signals the exception event. On the next occurrence of a floating-point
instruction or a WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in the x87 FPU
status word for pending floating-point exceptions. If floating-point exceptions are pending, the x87 FPU makes an
implicit call (traps) to the floating-point software exception handler. The exception handler can then execute
recovery procedures for selected or all floating-point exceptions.

8-32 Vol. 1

PROGRAMMING WITH THE X87 FPU

Synchronization problems occur in the time between the moment when the exception is signaled and when it is
actually handled. Because of concurrent execution, integer or system instructions can be executed during this time.
It is thus possible for the source or destination operands for a floating-point instruction that faulted to be over-
written in memory, making it impossible for the exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction or a WAIT/FWAIT
instruction) can be placed immediately after any floating-point instruction that might present a situation where
state information pertaining to a floating-point exception might be lost or corrupted. Floating-point instructions
that store data in memory are prime candidates for synchronization. For example, the following three lines of code
have the potential for exception synchronization problems:

FILD COUNT ;Floating-point instruction
INC COUNT ;Integer instruction
FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point instruction, FILD. If an
exception is signaled during the execution of the FILD instruction, the INC instruction would be allowed to overwrite
the value stored in the COUNT memory location before the floating-point exception handler is called. With the
COUNT variable modified, the floating-point exception handler would not be able to recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD instruction, synchronizes
floating-point exception handling and eliminates the possibility of the COUNT variable being overwritten before the
floating-point exception handler is invoked.

FILD COUNT ;Floating-point instruction
FSQRT ;Subsequent floating-point instruction synchronizes

 ;any exceptions generated by the FILD instruction.
INC COUNT ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruction are stored in
the x87 FPU data registers and will remain there, undisturbed, until the next floating-point or WAIT/FWAIT instruc-
tion is executed. To absolutely insure that any exceptions emanating from the FSQRT instruction are handled (for
example, prior to a procedure call), a WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending unmasked excep-
tions (see Section 8.3.11, “x87 FPU Control Instructions”). They include the FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW, and FNCLEX instructions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all
pending exceptions are essentially lost (either the x87 FPU status register is cleared or all exceptions are masked).
The FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not modify the x87 FPU
status and control registers. A subsequent “waiting” floating-point instruction can then handle any pending excep-
tions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE
The x87 FPU in Pentium and later IA-32 processors provides two different modes of operation for invoking a soft-
ware exception handler for floating-point exceptions: native mode and MS-DOS compatibility mode. The mode of
operation is selected by CR0.NE[bit 5]. (See Chapter 2, “System Architecture Overview,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the NE flag.)

8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting CR0.NE[bit 5] to 1. In this mode, if the
x87 FPU detects an exception condition while executing a floating-point instruction and the exception is unmasked
(the mask bit for the exception is cleared), the x87 FPU sets the flag for the exception and the ES flag in the x87
FPU status word. It then invokes the software exception handler through the floating-point-error exception (#MF,
exception vector 16), immediately before execution of any of the following instructions in the processor’s instruc-
tion stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions (FNINIT, FNCLEX, FNSTSW,

FNSTCW, FNSTENV, and FNSAVE).

Vol. 1 8-33

PROGRAMMING WITH THE X87 FPU

• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the x87 FPU executes the
instruction without invoking the software exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode
If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point exceptions is selected. In this
mode, the software exception handler for floating-point exceptions is invoked externally using the processor’s
FERR#, INTR, and IGNNE# pins. This method of reporting floating-point errors and invoking an exception handler
is provided to support the floating-point exception handling mechanism used in PC systems that are running the
MS-DOS or Windows* 95 operating system.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems, this
approach also limits newer processors to operate with one logical processor active.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for the exception and the ES flag
in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either immediately, or else delayed
(deferred) until just before the execution of the next waiting floating-point instruction or MMX instruction.
Whether the FERR# pin is asserted immediately or delayed depends on the type of processor, the instruction,
and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked x87 FPU exception, the
processor freezes just before executing the next WAIT instruction, waiting floating-point instruction, or MMX
instruction. Whether the FERR# pin was asserted at the preceding floating-point instruction or is just now being
asserted, the freezing of the processor assures that the x87 FPU exception handler will be invoked before the
new floating-point (or MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, programmable interrupt
controller (PIC). When the FERR# pin is asserted, the PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 02H (NMI) interrupt
handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI interrupt or a floating-point
exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to the floating-point exception
handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is provided to inhibit
floating-point exceptions from being generated while the floating-point exception handler is servicing a previously
signaled floating-point exception.

Appendix D, “Guidelines for Writing x87 FPU Exception Handlers,” describes the MS-DOS compatibility mode in
much greater detail. This mode is somewhat more complicated in the Intel486 and Pentium processor implemen-
tations, as described in Appendix D.

8.7.3 Handling x87 FPU Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a
floating-point exception handler. The state of the x87 FPU can be saved with the FSTENV/FNSTENV or
FSAVE/FNSAVE instructions (see Section 8.1.10, “Saving the x87 FPU’s State with FSTENV/FNSTENV and
FSAVE/FNSAVE”).

8-34 Vol. 1

PROGRAMMING WITH THE X87 FPU

If the faulting floating-point instruction is followed by one or more non-floating-point instructions, it may not be
useful to re-execute the faulting instruction. See Section 8.6, “x87 FPU Exception Synchronization,” for more infor-
mation on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the IRET instruction
cannot be used directly. The reason for this is that because the exception is not generated until the next floating-
point or WAIT/FWAIT instruction following the faulting floating-point instruction, the return instruction pointer on
the stack may not point to the faulting instruction. To restart program execution at the faulting instruction, the
exception handler must obtain a pointer to the instruction from the saved x87 FPU state information, load it into the
return instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4, “x87 FPU Exception Handling Examples,” for general examples of floating-point exception
handlers and for specific examples of how to write a floating-point exception handler when using the MS-DOS
compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

5. Updates to Chapter 11, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Changes to this chapter: Update to Section 11.4.4.3 “Memory Ordering Instructions”.

Vol. 1 11-1

CHAPTER 11
PROGRAMMING WITH INTEL®

STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in the Pentium 4 and Intel
Xeon processors. These extensions enhance the performance of IA-32 processors for advanced 3-D graphics, video
decoding/encoding, speech recognition, E-commerce, Internet, scientific, and engineering applications.

This chapter describes the SSE2 extensions and provides information to assist in writing application programs that
use these and the SSE extensions.

11.1 OVERVIEW OF SSE2 EXTENSIONS
SSE2 extensions use the single instruction multiple data (SIMD) execution model that is used with MMX technology
and SSE extensions. They extend this model with support for packed double-precision floating-point values and for
128-bit packed integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while maintaining backward compatibility
with all existing IA-32 processors, applications and operating systems.
• Six data types:

— 128-bit packed double-precision floating-point (two IEEE Standard 754 double-precision floating-point
values packed into a double quadword)

— 128-bit packed byte integers
— 128-bit packed word integers
— 128-bit packed doubleword integers
— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD integer operations:
— Packed and scalar double-precision floating-point instructions
— Additional 64-bit and 128-bit SIMD integer instructions
— 128-bit versions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:
— Extensions and modifications to the CPUID instruction
— Modifications to the RDPMC instruction

These new features extend the IA-32 architecture’s SIMD programming model in three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double-precision floating-point values.

This permits higher precision computations to be carried out in XMM registers, which enhances processor
performance in scientific and engineering applications and in applications that use advanced 3-D geometry
techniques (such as ray tracing). Additional flexibility is provided with instructions that operate on single
(scalar) double-precision floating-point values located in the low quadword of an XMM register.

• They provide the ability to operate on 128-bit packed integers (bytes, words, doublewords, and quadwords) in
XMM registers. This provides greater flexibility and greater throughput when performing SIMD operations on
packed integers. The capability is particularly useful for applications such as RSA authentication and RC5
encryption. Using the full set of SIMD registers, data types, and instructions provided with the MMX technology
and SSE/SSE2 extensions, programmers can develop algorithms that finely mix packed single- and double-
precision floating-point data and 64- and 128-bit packed integer data.

• SSE2 extensions enhance the support introduced with SSE extensions for controlling the cacheability of SIMD
data. SSE2 cache control instructions provide the ability to stream data in and out of the XMM registers without
polluting the caches and the ability to prefetch data before it is actually used.

11-2 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

SSE2 extensions are fully compatible with all software written for IA-32 processors. All existing software continues
to run correctly, without modification, on processors that incorporate SSE2 extensions, as well as in the presence
of applications that incorporate these extensions. Enhancements to the CPUID instruction permit detection of the
SSE2 extensions. Also, because the SSE2 extensions use the same registers as the SSE extensions, no new oper-
ating-system support is required for saving and restoring program state during a context switch beyond that
provided for the SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode, real address mode, virtual 8086
mode.

The following sections in this chapter describe the programming environment for SSE2 extensions including: the
128-bit XMM floating-point register set, data types, and SSE2 instructions. It also describes exceptions that can be
generated with the SSE and SSE2 instructions and gives guidelines for writing applications with SSE and SSE2
extensions.

For additional information about SSE2 extensions, see:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed

description of individual SSE3 instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating
the SSE and SSE2 extensions into an operating-system environment.

11.2 SSE2 PROGRAMMING ENVIRONMENT
Figure 11-1 shows the programming environment for SSE2 extensions. No new registers or other instruction
execution state are defined with SSE2 extensions. SSE2 instructions use the XMM registers, the MMX registers,
and/or IA-32 general-purpose registers, as follows:
• XMM registers — These eight registers (see Figure 10-2) are used to operate on packed or scalar double-

precision floating-point data. Scalar operations are operations performed on individual (unpacked) double-
precision floating-point values stored in the low quadword of an XMM register. XMM registers are also used to
perform operations on 128-bit packed integer data. They are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and control bits used in floating-point
operations. The denormals-are-zeros and flush-to-zero flags in this register provide a higher performance
alternative for the handling of denormal source operands and denormal (underflow) results. For more

Figure 11-1. Steaming SIMD Extensions 2 Execution Environment

0

232 -1

Eight 32-Bit

32 BitsEFLAGS Register

Address Space

General-Purpose

Eight 64-Bit
MMX Registers

Eight 128-Bit
XMM Registers

32 BitsMXCSR Register

Registers

Vol. 1 11-3

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

information on the functions of these flags see Section 10.2.3.4, “Denormals-Are-Zeros,” and Section 10.2.3.3,
“Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed
integer data. They are also used to hold operands for some operations performed between MMX and XMM
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the
existing IA-32 addressing modes to address operands in memory. MMX and XMM registers cannot be used to
address memory. The general-purpose registers are also used to hold operands for some SSE2 instructions.
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the results of some compare
operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode
In compatibility mode, SSE2 extensions function like they do in protected mode. In 64-bit mode, eight additional
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes.

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment beyond that of SSE. SSE2
extensions represent an enhancement of SSE extensions; they are fully compatible and share the same state infor-
mation. SSE and SSE2 instructions can be executed together in the same instruction stream without the need to
save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2 operations performed on XMM
registers can be performed in parallel with x87 FPU or MMX technology operations (see Section 11.6.7, “Interaction
of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states along with the x87 FPU and MMX
states.

11.2.3 Denormals-Are-Zeros Flag
The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the IA-32 architecture with the
SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-Zeros,” for a description of this flag.

11.3 SSE2 DATA TYPES
SSE2 extensions introduced one 128-bit packed floating-point data type and four 128-bit SIMD integer data types
to the IA-32 architecture (see Figure 11-2).
• Packed double-precision floating-point — This 128-bit data type consists of two IEEE 64-bit double-

precision floating-point values packed into a double quadword. (See Figure 4-3 for the layout of a 64-bit
double-precision floating-point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can contain 16 byte integers, 8 word
integers, 4 doubleword integers, or 2 quadword integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data
Types,” for a detailed description of the 128-bit packed integers.)

11-4 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

All of these data types are operated on in XMM registers or memory. Instructions are provided to convert between
these 128-bit data types and the 64-bit and 32-bit data types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following
cases:
• a MOVUPD instruction which supports unaligned accesses
• scalar instructions that use an 8-byte memory operand that is not subject to alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quadword) data types in memory.

11.4 SSE2 INSTRUCTIONS
The SSE2 instructions are divided into four functional groups:
• Packed and scalar double-precision floating-point instructions
• 64-bit and 128-bit SIMD integer instructions
• 128-bit extensions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions
The packed and scalar double-precision floating-point instructions are divided into the following sub-groups:
• Data movement instructions
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations similarly to the packed single-
precision floating-point instructions (see Figure 11-3). Each source operand contains two double-precision floating-

Figure 11-2. Data Types Introduced with the SSE2 Extensions

128-Bit Packed Word Integers

128-Bit Packed Byte Integers

128-Bit Packed Doubleword
Integers

0127

0127

0127

0127

0127

128-Bit Packed Quadword
Integers

128-Bit Packed Double-
Precision Floating-Point

64 63

Vol. 1 11-5

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

point values, and the destination operand contains the results of the operation (OP) performed in parallel on the
corresponding values (X0 and Y0, and X1 and Y1) in each operand.

The scalar double-precision floating-point instructions operate on the low (least significant) quadwords of two
source operands (X0 and Y0), as shown in Figure 11-4. The high quadword (X1) of the first source operand is
passed through to the destination. The scalar operations are similar to the floating-point operations performed in
x87 FPU data registers with the precision control field in the x87 FPU control word set for double precision (53-bit
significand), except that x87 stack operations use a 15-bit exponent range for the result while SSE2 operations use
an 11-bit exponent range.

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for more information about
obtaining compatible results when performing both scalar double-precision floating-point operations in XMM regis-
ters and in x87 FPU data registers.

11.4.1.1 Data Movement Instructions
Data movement instructions move double-precision floating-point data between XMM registers and between XMM
registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction transfers a 128-bit packed double-
precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. The
memory address must be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is gener-
ated.

Figure 11-3. Packed Double-Precision Floating-Point Operations

Figure 11-4. Scalar Double-Precision Floating-Point Operations

X1 X0

 X1 OP Y1 X0 OP Y0

OP

Y1 Y0

OP

X1 X0

 X1 X0 OP Y0

OP

Y1 Y0

11-6 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MOVUPD (move unaligned packed double-precision floating-point) instruction transfers a 128-bit packed
double-precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers.
Alignment of the memory address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 64-bit double-precision floating-
point operand from memory to the low quadword of an XMM register or vice versa, or between XMM registers.
Alignment of the memory address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction transfers a 64-bit double-precision
floating-point operand from memory to the high quadword of an XMM register or vice versa. The low quadword of
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is
enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers a 64-bit double-precision
floating-point operand from memory to the low quadword of an XMM register or vice versa. The high quadword of
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction extracts the sign bit of each of the
two packed double-precision floating-point numbers in an XMM register and saves them in a general-purpose
register. This 2-bit value can then be used as a condition to perform branching.

11.4.1.2 SSE2 Arithmetic Instructions
SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double-precision floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD (subtract packed double-precision
floating-point values) instructions add and subtract, respectively, two packed double-precision floating-point oper-
ands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract scalar double-precision
floating-point values) instructions add and subtract, respectively, the low double-precision floating-point values of
two operands and stores the result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction multiplies two packed double-
precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multiplies the low double-precision
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides two packed double-precision
floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides the low double-precision
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point values) instruction computes the
square roots of the values in a packed double-precision floating-point operand.

The SQRTSD (compute square root of scalar double-precision floating-point values) instruction computes the
square root of the low double-precision floating-point value in the source operand and stores the result in the low
quadword of the destination operand.

The MAXPD (return maximum of packed double-precision floating-point values) instruction compares the corre-
sponding values in two packed double-precision floating-point operands and returns the numerically greater value
from each comparison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) instruction compares the low
double-precision floating-point values from two packed double-precision floating-point operands and returns the
numerically higher value from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) instruction compares the corre-
sponding values from two packed double-precision floating-point operands and returns the numerically lesser value
from each comparison to the destination operand.

Vol. 1 11-7

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MINSD (return minimum of scalar double-precision floating-point values) instruction compares the low values
from two packed double-precision floating-point operands and returns the numerically lesser value from the
comparison to the low quadword of the destination operand.

11.4.1.3 SSE2 Logical Instructions
SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.

The ANDPD (bitwise logical AND of packed double-precision floating-point values) instruction returns the logical
AND of two packed double-precision floating-point operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point values) instruction returns the
logical AND NOT of two packed double-precision floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) instruction returns the logical OR of
two packed double-precision floating-point operands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) instruction returns the logical
XOR of two packed double-precision floating-point operands.

11.4.1.4 SSE2 Comparison Instructions
SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.

The CMPPD (compare packed double-precision floating-point values) instruction compares the corresponding
values from two packed double-precision floating-point operands, using an immediate operand as a predicate, and
returns a 64-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the
immediate operand allows the selection of any of eight compare conditions: equal, less than, less than equal, unor-
dered, not equal, not less than, not less than or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction compares the low values from two
packed double-precision floating-point operands, using an immediate operand as a predicate, and returns a 64-bit
mask result of all 1s or all 0s for the comparison to the low quadword of the destination operand. The immediate
operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) and UCOMISD (unordered
compare scalar double-precision floating-point values and set EFLAGS) instructions compare the low values of two
packed double-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISD instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN;
the UCOMISD instruction only signals an invalid-operation exception when a source operand is an SNaN.

11.4.1.5 SSE2 Shuffle and Unpack Instructions
SSE2 shuffle instructions shuffle the contents of two packed double-precision floating-point values and store the
results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction places either of the two packed
double-precision floating-point values from the destination operand in the low quadword of the destination
operand, and places either of the two packed double-precision floating-point values from source operand in the
high quadword of the destination operand (see Figure 11-5). By using the same register for the source and desti-
nation operands, the SHUFPD instruction can swap two packed double-precision floating-point values.

11-8 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The UNPCKHPD (unpack and interleave high packed double-precision floating-point values) instruction performs an
interleaved unpack of the high values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point values) instruction performs an
interleaved unpack of the low values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-7).

Figure 11-5. SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6. UNPCKHPD Instruction, High Unpack and Interleave Operation

Figure 11-7. UNPCKLPD Instruction, Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

DEST

SRC

DEST

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST

Vol. 1 11-9

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.1.6 SSE2 Conversion Instructions
SSE2 conversion instructions (see Figure 11-8) support packed and scalar conversions between:
• Double-precision and single-precision floating-point formats
• Double-precision floating-point and doubleword integer formats
• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points values — The following
instructions convert operands between double-precision and single-precision floating-point formats. The operands
being operated on are contained in XMM registers or memory (at most, one operand can reside in memory; the
destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed double-precision floating-point
values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed single-precision floating-point
values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a conversion is inexact, the
result is rounded according to the rounding mode selected in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-precision floating-point value)
instruction converts a single-precision floating-point value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-precision floating-point value)
instruction converts a double-precision floating-point value to a single-precision floating-point value. When the
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

Conversion between double-precision floating-point values and doubleword integers — The following
instructions convert operands between double-precision floating-point and doubleword integer formats. Operands

Figure 11-8. SSE and SSE2 Conversion Instructions

CVTPS2P
I

CVTTPS2DQ

CVTDQ2PS

CVTPI2P
S

C
VT

PD
2P

S C
VTPS2PD

CVTPD2D
QCVTDQ2P

D

CVTTPD2PI

CVTPI2PD

CVTSS2S
I

CVTSI2S
S

CVTSI2SD
CVTTSD2SI

C
VT

SD
2S

S C
VTSS2SD

CVTPS2DQ

4 Doubleword
Integer

Floating-Point

Doubleword
Integer

2 Doubleword
Integer

Single-Precision
Floating Point

CVTSD2SI

CVTPD2PI CVTTPD2D
Q

CVTTPS2P
ICVTTSS2S

I

2 Doubleword
Integer (r32/mem) (MMX/mem)

(XMM/mem)

Double-Precision

 (XMM/mem)

(XMM/mem)

(XMM/mem)

11-10 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

are housed in XMM registers, MMX registers, general registers or memory (at most one operand can reside in
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed doubleword integers) instruction
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the
result stored in an MMX register. When rounding to an integer value, the source value is rounded according to the
rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation packed double-precision floating-
point values to packed doubleword integers) instruction is similar to the CVTPD2PI instruction except that trunca-
tion is used to round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2
Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction
converts two packed signed doubleword integers to two double-precision floating-point values.

The CVTPD2DQ (convert packed double-precision floating-point values to packed doubleword integers) instruction
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the
result stored in the low quadword of an XMM register. When rounding an integer value, the source value is rounded
according to the rounding mode selected in the MXCSR register. The CVTTPD2DQ (convert with truncation packed
double-precision floating-point values to packed doubleword integers) instruction is similar to the CVTPD2DQ
instruction except that truncation is used to round a source value to an integer value (see Section 4.8.4.2, “Trun-
cation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction
converts two packed signed doubleword integers located in the low-order doublewords of an XMM register to two
double-precision floating-point values.

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword integer) instruction converts a
double-precision floating-point value to a doubleword integer, and stores the result in a general-purpose register.
When rounding an integer value, the source value is rounded according to the rounding mode selected in the
MXCSR register. The CVTTSD2SI (convert with truncation scalar double-precision floating-point value to double-
word integer) instruction is similar to the CVTSD2SI instruction except that truncation is used to round the source
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point value) instruction converts a
signed doubleword integer in a general-purpose register to a double-precision floating-point number, and stores
the result in an XMM register.

Conversion between single-precision floating-point and doubleword integer formats — These instruc-
tions convert between packed single-precision floating-point and packed doubleword integer formats. Operands
are housed in XMM registers, MMX registers, general registers, or memory (the latter for at most one source
operand). The destination is always an XMM, MMX, or general register. These SSE2 instructions supplement
conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced
with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed doubleword integers) instruction
converts four packed single-precision floating-point values to four packed signed doubleword integers, with the
source and destination operands in XMM registers or memory (the latter for at most one source operand). When
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is
returned. The CVTTPS2DQ (convert with truncation packed single-precision floating-point values to packed double-
word integers) instruction is similar to the CVTPS2DQ instruction except that truncation is used to round a source
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction
converts four packed signed doubleword integers to four packed single-precision floating-point numbers, with the
source and destination operands in XMM registers or memory (the latter for at most one source operand). When
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is
returned.

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions
SSE2 extensions add several 128-bit packed integer instructions to the IA-32 architecture. Where appropriate, a
64-bit version of each of these instructions is also provided. The 128-bit versions of instructions operate on data in
XMM registers; 64-bit versions operate on data in MMX registers. The instructions follow.

Vol. 1 11-11

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

The MOVDQA (move aligned double quadword) instruction transfers a double quadword operand from memory to
an XMM register or vice versa; or between XMM registers. The memory address must be aligned to a 16-byte
boundary; otherwise, a general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same operations as the MOVDQA
instruction, except that 16-byte alignment of a memory address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer operands or two single quad-
word integer operands, and stores the results in an XMM or MMX register, respectively. This instruction can operate
on either unsigned or signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword integer operands or two single
quadword integer operands, and stores the results in an XMM or MMX register, respectively. Like the PADDQ
instruction, PSUBQ can operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs an unsigned multiply of
unsigned doubleword integers and returns a quadword result. Both 64-bit and 128-bit versions of this instruction
are available. The 64-bit version operates on two doubleword integers stored in the low doubleword of each source
operand, and the quadword result is returned to an MMX register. The 128-bit version performs a packed multiply
of two pairs of doubleword integers. Here, the doublewords are packed in the first and third doublewords of the
source operands, and the quadword results are stored in the low and high quadwords of an XMM register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers packed into the low quadword of
the source operand and stores the shuffled result in the low quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers packed into the high quadword of
the source operand and stores the shuffled result in the high quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFD (shuffle packed doubleword integers) instruction shuffles the doubleword integers packed into the
source operand and stores the shuffled result in the destination operand. An 8-bit immediate operand specifies the
shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the source operand to the left by
the amount of bytes specified by an immediate operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of the source operand to the right
by the amount of bytes specified by an immediate operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quadword of the source operand and
the high quadword of the destination operand and writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quadwords of the source operand and
the low quadwords of the destination operand and writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the XMM registers.

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction moves the quadword integer from
an MMX source register to an XMM destination register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction moves the low quadword integer
from an XMM source register to an MMX destination register.

11.4.3 128-Bit SIMD Integer Instruction Extensions
All of 64-bit SIMD integer instructions introduced with MMX technology and SSE extensions (with the exception of
the PSHUFW instruction) have been extended by SSE2 extensions to operate on 128-bit packed integer operands
located in XMM registers. The 128-bit versions of these instructions follow the same SIMD conventions regarding
packed operands as the 64-bit versions. For example, where the 64-bit version of the PADDB instruction operates
on 8 packed bytes, the 128-bit version operates on 16 packed bytes.

11-12 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.4 Cacheability Control and Memory Ordering Instructions
SSE2 extensions that give programs more control over the caching, loading, and storing of data. are described
below.

11.4.4.1 FLUSH Cache Line
The CLFLUSH (flush cache line) instruction writes and invalidates the cache line associated with a specified linear
address. The invalidation is for all levels of the processor’s cache hierarchy, and it is broadcast throughout the
cache coherency domain.

NOTE
CLFLUSH was introduced with the SSE2 extensions. However, the instruction can be implemented
in IA-32 processors that do not implement the SSE2 extensions. Detect CLFLUSH using the feature
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2 Cacheability Control Instructions
The following four instructions enable data from XMM and general-purpose registers to be stored to memory using
a non-temporal hint. The non-temporal hint directs the processor to store data to memory without writing the data
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for more information
about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed integer data from an
XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-temporal hint) instruction stores
packed double-precision floating-point data from an XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from a general-purpose
register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected byte integers from an
XMM register to memory, using a byte mask to selectively write the individual bytes. The memory location does not
need to be aligned on a natural boundary. This instruction also uses a non-temporal hint.

11.4.4.3 Memory Ordering Instructions
SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as companions to the SFENCE
instruction introduced with SSE extensions.

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering between two loads and
prevents speculative loads from passing the load fence (that is, no speculative loads are allowed until all loads
specified before the load fence have been carried out).

The MFENCE instruction establishes a memory fence for both loads and stores. The processor ensures that no load
or store after MFENCE will become globally visible until all loads and stores before MFENCE are globally visible.1
Note that the sequences LFENCE;SFENCE and SFENCE;LFENCE are not equivalent to MFENCE because neither
ensures that older stores are globally observed prior to younger loads.

11.4.4.4 Pause
The PAUSE instruction is provided to improve the performance of “spin-wait loops” executed on a Pentium 4 or Intel
Xeon processor. On a Pentium 4 processor, it also provides the added benefit of reducing processor power
consumption while executing a spin-wait loop. It is recommended that a PAUSE instruction always be included in
the code sequence for a spin-wait loop.

1. A load is considered to become globally visible when the value to be loaded is determined.

Vol. 1 11-13

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.4.5 Branch Hints
SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch hints to the processor (see
“Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). These prefixes can only be used with the Jcc instruction and only at the machine code level (that is, there are
no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS
SSE/SSE2/SSE3 extensions generate two general types of exceptions:
• Non-numeric exceptions
• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and non-numeric exceptions as other
IA-32 architecture instructions. Existing exception handlers can generally handle these exceptions without any
code modification. See “Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE, SSE2
and SSE3 Instructions” in Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for a list of the non-numeric exceptions that can be generated by SSE/SSE2/SSE3 instructions and for
guidelines for handling these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer operations; however, they can
generate numeric (SIMD floating-point) exceptions on packed single-precision and double-precision floating-point
operations. These SIMD floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-Point
Arithmetic and are the same exceptions that are generated for x87 FPU instructions. See Section 11.5.1, “SIMD
Floating-Point Exceptions,” for a description of these exceptions.

11.5.1 SIMD Floating-Point Exceptions
SIMD floating-point exceptions are those exceptions that can be generated by SSE/SSE2/SSE3 instructions that
operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE Standard 754, and they are
the same exceptions that are generated with the x87 floating-point instructions. Section 4.9, “Overview of
Floating-Point Exceptions,” gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, and PE) and mask bit (IM, DM,
ZM, OM, UM, and PM) in the MXCSR register (see Figure 10-3). The mask bits can be set with the LDMXCSR or
FXRSTOR instruction; the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control over generation of SIMD
floating-point exceptions by allowing the operating system to indicate whether or not it supports software excep-
tion handlers for SIMD floating-point exceptions. If an unmasked SIMD floating-point exception is generated and
the OSXMMEXCEPT flag is set, the processor invokes a software exception handler by generating a SIMD floating-

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can generate x87 FPU floating-point excep-
tions.

11-14 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

point exception (#XM). If the OSXMMEXCEPT bit is clear, the processor generates an invalid-opcode exception
(#UD) on the first SSE or SSE2 instruction that detects a SIMD floating-point exception condition. See Section
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions
The following sections describe the conditions that cause a SIMD floating-point exception to be generated and the
masked response of the processor when these conditions are detected.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

11.5.2.1 Invalid Operation Exception (#I)
The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The flag
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN floating-point indefinite, integer
indefinite, one of the source operands to the destination operand, or it sets the EFLAGS, depending on the operation
being performed. When a value is returned to the destination operand, it overwrites the destination register specified
by the instruction. Table 11-1 lists the invalid-arithmetic operations that the processor detects for instructions and
the masked responses to these operations.

If the invalid operation exception is not masked, a software exception handler is invoked and the operands remain
unchanged. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software.”

Table 11-1. Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD,
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD,
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, HSUBPD or HSUBPS
instruction with an SNaN operand

Return the SNaN converted to a QNaN; Refer to Table 4-7 for
more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with SNaN operands Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with negative operands
(except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, MINSS, MINPD, or
MINSD instruction with QNaN or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction with QNaN or SNaN
operands

Return a mask of all 0s (except for the predicates “not-equal,”
“unordered,” “not-less-than,” or “not-less-than-or-equal,” which
returns a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD with SNaN
operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN operand(s) Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or subtraction of like-signed
infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or (∞ / ∞) Return the QNaN floating-point Indefinite

Conversion to integer when the value in the source register is a
NaN, ∞, or exceeds the representable range for CVTPS2PI,
CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI,
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, CVTTPD2DQ, CVTPS2DQ,
or CVTTPS2DQ

Return the integer Indefinite

Vol. 1 11-15

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported
format), an invalid-operation exception is not generated. The following instructions are exceptions to this rule: the
COMISS and COMISD instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the predicate
is less than, less-than or equal, not less-than, or not less-than or equal). With these instructions, a QNaN source
operand will generate an invalid-operation exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11.5.2.2 Denormal-Operand Exception (#D)
The processor signals the denormal-operand exception if an arithmetic instruction attempts to operate on a
denormal operand. The flag (DE) and mask (DM) bits for the denormal-operand exception are bits 1 and 8, respec-
tively, in the MXCSR register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, CVTSI2SD, CVTSD2SI, CVTTSD2SI,
CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ
conversion instructions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and RSQRTPS instruc-
tions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional option for handling denormal-
operand exceptions. When this flag is set, denormal source operands are automatically converted to zeros with the
sign of the source operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand exception is not
affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information about the denormal exception.
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked
exceptions.

11.5.2.3 Divide-By-Zero Exception (#Z)
The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or DIVSD instruction attempts to
divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the divide-by-zero exception are bits 2
and 9, respectively, in the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about the divide-by-zero exception.
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked
exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode at a single-instruction boundary.

While DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have
different results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions -
including the divide-by-zero exception - when observed for a given operation involving denormal inputs.

11.5.2.4 Numeric Overflow Exception (#O)
The processor reports a numeric overflow exception whenever the rounded result of an arithmetic instruction
exceeds the largest allowable finite value that fits in the destination operand. This exception can be generated with
the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS,
DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS
instructions. The flag (OE) and mask (OM) bits for the numeric overflow exception are bits 3 and 10, respectively,
in the MXCSR register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about the numeric-overflow excep-
tion. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11-16 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.5.2.5 Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the magnitude of the rounded result of an arith-
metic instruction, with unbounded exponent, is less than the smallest possible normalized, finite value that will fit
in the destination operand and the numeric-underflow exception is not masked. If the numeric underflow exception
is masked, both underflow and the inexact-result condition must be detected before numeric underflow is reported.
This exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD,
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS,
HADDPD, HADDPS, HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the numeric under-
flow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results are returned as a zero
with the sign of the true result (see Section 10.2.3.3, “Flush-To-Zero”).

Underflow will occur when a tiny non-zero result is detected (the result has to be also inexact if underflow excep-
tions are masked), as described in the IEEE Standard 754-2008. While DAZ does not affect the rules for signaling
IEEE exceptions, operations on denormal inputs might have different results when DAZ=1. As a consequence, DAZ
can have an effect on the floating-point exceptions - including the underflow exception - when observed for a given
operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

11.5.2.6 Inexact-Result (Precision) Exception (#P)
The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost. The
exception is supported for applications that need to perform exact arithmetic only. Because the rounded result is
generally satisfactory for most applications, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, respectively, in the MXCSR
register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more information about the inexact-result
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling
unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported.

11.5.3 Generating SIMD Floating-Point Exceptions
When the processor executes a packed or scalar floating-point instruction, it looks for and reports on SIMD
floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-operand, divide-by-zero, and
denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions (numeric overflow, numeric
underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the processor to generate a SIMD
floating-point exception (#XM) twice during the execution of an SSE, SSE2 or SSE3 instruction: once when it
detects and handles a pre-computational exception and when it detects a post-computational exception.

11.5.3.1 Handling Masked Exceptions
If all exceptions are masked, the processor handles the exceptions it detects by placing the masked result (or
results for packed operands) in a destination operand and continuing program execution. The masked result may
be a rounded normalized value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefinite, or

Vol. 1 11-17

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

a QNaN depending on the exception condition detected. In most cases, the corresponding exception flag bit in
MXCSR is also set. The one situation where an exception flag is not set is when an underflow condition is detected
and it is not accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked result for each of the sub-
operand computations and sets a separate set of internal exception flags for each computation. It then performs a
logical-OR on the internal exception flag settings and sets the exception flags in the MXCSR register according to
the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, all SIMD floating-point excep-
tions are masked. Assume that a denormal exception condition is detected prior to the multiplication of sub-oper-
ands X0 and Y0, no exception condition is detected for the multiplication of X1 and Y1, a numeric overflow
exception condition is detected for the multiplication of X2 and Y2, and another denormal exception is detected
prior to the multiplication of sub-operands X3 and Y3. Because denormal exceptions are masked, the processor
uses the denormal source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the results of the
multiplications through to the destination operand. With the denormal operand, the result of the X0 and Y0 compu-
tation is a normalized finite value, with no exceptions detected. However, the X3 and Y3 computation produces a
tiny and inexact result. This causes the corresponding internal numeric underflow and inexact-result exception
flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the destination operand, and sets
the corresponding internal sub-operand numeric overflow flag. The result of the X1 and Y1 multiplication is passed
through to the destination operand, with no internal sub-operand exception flags being set. Following the compu-
tations, the individual sub-operand exceptions flags for denormal operand, numeric underflow, inexact result, and
numeric overflow are OR’d and the corresponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result
• Denormal operand, numeric underflow, numeric underflow, and inexact result flags are set in the MXCSR

register

11.5.3.2 Handling Unmasked Exceptions
If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the appropriate exception flags,
leaves the source and destination operands unaltered, and goes to step 2. If it does not detect any pre-
computation exceptions, it goes to step 5.

Figure 11-9. Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite

11-18 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 3; if the flag is clear, it
generates an invalid-opcode exception (#UD) and makes an implicit call to the invalid-opcode exception
handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to the SIMD floating-point
exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-computation exceptions or
mask the condition in such a way as to allow the processor to continue executing the instruction, the processor
resumes instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions were detected), the processor
checks for post-computation exceptions. If the processor detects any post-computation exceptions: it ORs
those exceptions, sets the appropriate exception flags, leaves the source and destination operands unaltered,
and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation exceptions were detected), the
processor completes the execution of the instruction.

The implication of this procedure is that for unmasked exceptions, the processor can generate a SIMD floating-
point exception (#XM) twice: once if it detects pre-computation exception conditions and a second time if it detects
post-computation exception conditions. For example, if SIMD floating-point exceptions are unmasked for the
computation shown in Figure 11-9, the processor would generate one SIMD floating-point exception for denormal
operand conditions and a second SIMD floating-point exception for overflow and underflow (no inexact result
exception would be generated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3 Handling Combinations of Masked and Unmasked Exceptions
In situations where both masked and unmasked exceptions are detected, the processor will set exception flags for
the masked and the unmasked exceptions. However, it will not return masked results until after the processor has
detected and handled unmasked post-computation exceptions and returned from the exception handler (as in step
6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software
Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a
SIMD floating-point exception handler. The SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section
11.6.5, “Saving and Restoring the SSE/SSE2 State”).

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions
SIMD floating-point exceptions are generated independently from x87 FPU floating-point exceptions. SIMD
floating-point exceptions do not cause assertion of the FERR# pin (independent of the value of CR0.NE[bit 5]).
They ignore the assertion and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in the same task or program),
consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU floating-point exceptions. SIMD

and x87 FPU floating-point exceptions can be unmasked independently. Separate x87 FPU and SIMD floating-
point exception handlers must be provided if the same exception is unmasked for x87 FPU and for
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU instructions. Likewise, the rounding
mode specified in the x87 FPU control word does not affect the SSE/SSE2/SSE3 instructions. To use the same
rounding mode, the rounding control bits in the MXCSR register and in the x87 FPU control word must be set
explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart in the
x87 FPU. For compatibility with the x87 FPU, set the flush-to-zero bit to 0.

Vol. 1 11-19

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart
in the x87 FPU. For compatibility with the x87 FPU, set the denormals-are-zeros bit to 0.

• An application that expects to detect x87 FPU exceptions that occur during the execution of x87 FPU instruc-
tions will not be notified if exceptions occurs during the execution of corresponding SSE/SSE2/SSE31 instruc-
tions, unless the exception masks that are enabled in the x87 FPU control word have also been enabled in the
MXCSR register and the application is capable of handling SIMD floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot be detected by unmasking the
exceptions after the call (in an attempt to generate the fault based on the fact that an exception flag is set).
A SIMD floating-point exception flag that is set when the corresponding exception is unmasked will not
generate a fault; only the next occurrence of that unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any masked exception flags were set
during an x87 FPU library call will also need to check the MXCSR register to detect a similar occurrence of a
masked exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONS
The following sections give some guidelines for writing application programs and operating-system code that uses
the SSE and SSE2 extensions. Because SSE and SSE2 extensions share the same state and perform companion
operations, these guidelines apply to both sets of extensions.

Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, discusses the inter-
face to the processor for context switching as well as other operating system considerations when writing code that
uses SSE/SSE2/SSE3 extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions
The following guidelines describe how to take full advantage of the performance gains available with the SSE and
SSE2 extensions:
• Ensure that the processor supports the SSE and SSE2 extensions.
• Ensure that your operating system supports the SSE and SSE2 extensions. (Operating system support for the

SSE extensions implies support for SSE2 extension and vice versa.)
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Use the non-temporal store instructions offered with the SSE and SSE2 extensions.
• Employ the optimization and scheduling techniques described in the Intel Pentium 4 Optimization Reference

Manual (see Section 1.4, “Related Literature,” for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support
Before an application attempts to use the SSE and/or SSE2 extensions, it should check that they are present on the
processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS register can be used to check
processor’s support the CPUID instruction.

2. Check that the processor supports the SSE and/or SSE2 extensions (true if CPUID.01H:EDX.SSE[bit 25] = 1
and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, exceptions before an application can
use the SSE and/or SSE2 extensions (see Chapter 13 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other SSE3 instruction that can raise
floating-point exceptions is FISTTP: it can generate x87 FPU invalid operation and inexact result exceptions.

11-20 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

If the processor attempts to execute an unsupported SSE or SSE2 instruction, the processor will generate an
invalid-opcode exception (#UD). If an operating system did not provide adequate system level support for SSE,
executing an SSE or SSE2 instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register
The denormals-are-zero flag in the MXCSR register is available in most of the Pentium 4 processors and in the Intel
Xeon processor, with the exception of some early steppings. To check for the presence of the DAZ flag in the MXCSR
register, do the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and the
layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and denormals-are-zero mode are not
supported.

— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ flag and denormals-are-zero
mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 to it will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for general guide-
lines for preventing general-protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SSE2 Extensions
The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hardware reset of the processor, this
state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 0). If the denormals-are-zeros

mode is not supported, this bit is reserved and will be set to 0 on initialization.
• Each of the XMM registers is cleared (set to all zeros).

If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not changed.

11.6.5 Saving and Restoring the SSE/SSE2 State
The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which includes the contents of eight XMM
registers and the MXCSR registers) in a 512-byte block of memory. The FXRSTOR instruction restores the saved
SSE and SSE2 state from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A, for the layout of the 512-byte state block.

Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or Reset INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged

Vol. 1 11-21

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR also save and restore the x87
FPU state (because MMX registers are aliased to the x87 FPU data registers this includes saving and restoring the
MMX state). For greater code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the FSAVE,
FNSAVE and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology computations (without a context
switch or a call to an interrupt or exception), the FSAVE/FNSAVE and FRSTOR instructions are more efficient than
the FXSAVE and FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register
The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protec-
tion exception (#GP) to be generated. To allow software to identify these reserved bits, the MXCSR_MASK value is
provided. Software can determine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK value is the default value of
0000FFBFH. Note that this value indicates that bit 6 of the MXCSR register is reserved; this setting indicates
that the denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value should be used as the
MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register. Thus, if the MXCSR_MASK
value is AND’d with a value to be written into the MXCSR register, the resulting value will be assured of having all
its reserved bits set to 0, preventing the possibility of a general-protection exception being generated when the
value is written to the MXCSR register.

For example, the default MXCSR_MASK value when 00000000H is returned in the FXSAVE image is 0000FFBFH. If
software AND’s a value to be written to MXCSR register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be
ensured of being set to 0, which is the required setting to prevent general-protection exceptions on processors that
do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d with the value to be written
into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program and then write that value to

the MXCSR register (either with an FXRSTOR or LDMXCSR instruction)
• Any application program that writes to the MXCSR register and that needs to run robustly on several different

IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that are supported by the MXCSR
register; they can be treated as feature flags for identifying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions
The XMM registers and the x87 FPU and MMX registers represent separate execution environments, which has
certain ramifications when executing SSE, SSE2, MMX, and x87 FPU instructions in the same code module or when
mixing code modules that contain these instructions:

11-22 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

• Those SSE and SSE2 instructions that operate only on XMM registers (such as the packed and scalar floating-
point instructions and the 128-bit SIMD integer instructions) in the same instruction stream with 64-bit SIMD
integer or x87 FPU instructions without any restrictions. For example, an application can perform the majority
of its floating-point computations in the XMM registers, using the packed and scalar floating-point instructions,
and at the same time use the x87 FPU to perform trigonometric and other transcendental computations.
Likewise, an application can perform packed 64-bit and 128-bit SIMD integer operations together without
restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI, CVTTPS2PI, CVTPI2PS,
CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be
executed in the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, however, here they are
subject to the restrictions on the simultaneous use of MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 instructions that operate on MMX
registers should be preceded by saving the state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instructions that operate on MMX
registers to x87 FPU instructions should be preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types
SSE and SSE2 extensions operate on the same single-precision and double-precision floating-point data types that
the x87 FPU operates on. However, when operating on these data types, the SSE and SSE2 extensions operate on
them in their native format (single-precision or double-precision), in contrast to the x87 FPU which extends them
to double extended-precision floating-point format to perform computations and then rounds the result back to a
single-precision or double-precision format before writing results to memory. Because the x87 FPU operates on a
higher precision format and then rounds the result to a lower precision format, it may return a slightly different
result when performing the same operation on the same single-precision or double-precision floating-point values
than is returned by the SSE and SSE2 extensions. The difference occurs only in the least-significant bits of the
significand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and
Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-point data types and on 128-bit
SIMD integer data types, but IA-32 processors do not enforce this typing at the architectural level. They only
enforce it at the microarchitectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or
scalar floating-point operand or a 128-bit packed integer operand from memory into an XMM register, it does not
check that the actual data being loaded matches the data type specified in the instruction. Likewise, when the
processor performs an arithmetic operation on the data in an XMM register, it does not check that the data being
operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types is not enforced at the archi-
tectural level, it is the responsibility of the programmer, assembler, or compiler to insure that code enforces data
typing. Failure to enforce correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point operands are moved from
memory into XMM registers (using MOVAPS instructions); then a double-precision packed add operation (using the
ADDPD instruction) is performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating an invalid-operand exception
(#UD) and will produce the expected results in register XMM0 (that is, the high and low 64-bits of each register will
be treated as a double-precision floating-point value and the processor will operate on them accordingly). Because
the data types operated on and the data type expected by the ADDPD instruction were inconsistent, the instruction

Vol. 1 11-23

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

may result in a SIMD floating-point exception (such as numeric overflow [#O] or invalid operation [#I]) being
generated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent with the typing of the instruction
being executed, permits some valid operations to be performed. For example, the following instructions load a
packed double-precision floating-point operand from memory to register XMM0, and a mask to register XMM1;
then they use XORPD to toggle the sign bits of the two packed values in register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same correct result. However,
because of the type mismatch between the operand data type and the instruction data type, a latency penalty will
be incurred due to implementations of the instructions at the microarchitecture level.

Latency penalties can also be incurred by using move instructions of the wrong type. For example, MOVAPS and
MOVAPD can both be used to move a packed single-precision operand from memory to an XMM register. However,
if MOVAPD is used, a latency penalty will be incurred when a correctly typed instruction attempts to use the data in
the register.

Note that these latency penalties are not incurred when moving data from XMM registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions
SSE and SSE2 extensions allow direct access to XMM registers. This means that all existing interface conventions
between procedures and functions that apply to the use of the general-purpose registers (EAX, EBX, etc.) also
apply to XMM register usage.

11.6.10.1 Passing Parameters in XMM Registers
The state of XMM registers is preserved across procedure (or function) boundaries. Parameters can be passed from
one procedure to another using XMM registers.

11.6.10.2 Saving XMM Register State on a Procedure or Function Call
The state of XMM registers can be saved in two ways: using an FXSAVE instruction or a move instruction. FXSAVE
saves the state of all XMM registers (along with the state of MXCSR and the x87 FPU registers). This instruction is
typically used for major changes in the context of the execution environment, such as a task switch. FXRSTOR
restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers need to be saved, move
instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used.
These instructions can also be used to restore the contents of XMM registers. To avoid performance degradation
when saving XMM registers to memory or when loading XMM registers from memory, be sure to use the appropri-
ately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the stack. Here, the stack pointer
(in the ESP register) can be used as the memory address to the next available byte in the stack. Note that the stack
pointer is not automatically incremented when using a move instruction (as it is with PUSH).

A move-instruction procedure that saves the contents of an XMM register to the stack is responsible for decre-
menting the value in the ESP register by 16. Likewise, a move-instruction procedure that loads an XMM register
from the stack needs also to increment the ESP register by 16. To avoid performance degradation when moving the
contents of XMM registers, use the appropriately typed move instructions.

11-24 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the contents of the MXCSR register
on a procedure call and return.

11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls
When making procedure (or function) calls from SSE or SSE2 code, a caller-save convention is recommended for
saving the state of the calling procedure. Using this convention, any register whose content must survive intact
across a procedure call must be stored in memory by the calling procedure prior to executing the call.

The primary reason for using the caller-save convention is to prevent performance degradation. XMM registers can
contain packed or scalar double-precision floating-point, packed single-precision floating-point, and 128-bit packed
integer data types. The called procedure has no way of knowing the data types in XMM registers following a call; so
it is unlikely to use the correctly typed move instruction to store the contents of XMM registers in memory or to
restore the contents of XMM registers from memory.

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions
and Data,” executing a move instruction that does not match the type for the data being moved to/from XMM regis-
ters will be carried out correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions
SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-bit SIMD integers using XMM
registers. The extended 128-bit SIMD integer instructions operate like the 64-bit SIMD integer instructions; this
simplifies the porting of MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology code must be recompiled to

reference the XMM registers instead of MMX registers.
• Computation instructions that reference memory operands that are not aligned on 16-byte boundaries should

be replaced with an unaligned 128-bit load (MOVUDQ instruction) followed by a version of the same
computation operation that uses register instead of memory operands. Use of 128-bit packed integer
computation instructions with memory operands that are not 16-byte aligned results in a general protection
exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-bit operand
is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations.

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double quadword operand by bytes)
• Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on twice the amount

of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations
There are no condition codes in SSE or SSE2 states. A packed-data comparison instruction generates a mask which
can then be transferred to an integer register. The following code sequence provides an example of how to perform
a conditional branch, based on the result of an SSE2 arithmetic operation.

cmppd XMM0, XMM1 ; generates a mask in XMM0
movmskpd EAX, XMM0 ; moves a 2 bit mask to eax
test EAX, 0 ; compare with desired result
jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar comparison. A conditional
branch can then be scheduled immediately following COMISD/UCOMISD.

Vol. 1 11-25

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.6.13 Cacheability Hint Instructions
SSE and SSE2 cacheability control instructions enable the programmer to control prefetching, caching, loading and
storing of data. When correctly used, these instructions improve application performance.

To make efficient use of the processor’s super-scalar microarchitecture, a program needs to provide a steady
stream of data to the executing program to avoid stalling the processor. PREFETCHh instructions minimize the
latency of data accesses in performance-critical sections of application code by allowing data to be fetched into the
processor cache hierarchy in advance of actual usage.

PREFETCHh instructions do not change the user-visible semantics of a program, although they may affect perfor-
mance. The operation of these instructions is implementation-dependent. Programmers may need to tune code for
each IA-32 processor implementation. Excessive usage of PREFETCHh instructions may waste memory bandwidth
and reduce performance. For more detailed information on the use of prefetch hints, refer to Chapter 7, “Opti-
mizing Cache Usage,”, in the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, MOVNTQ, MASKMOVQ, and
MASKMOVDQU) minimize cache pollution when writing non-temporal data to memory (see Section 10.4.6.1,
“Cacheability Control Instructions” and Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). They
prevent non-temporal data from being written into processor caches on a store operation.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important under certain data
sharing relationships, such as a producer-consumer relationship. The use of weakly ordered memory can make the
assembling of data more efficient; but care must be taken to ensure that the consumer obtains the data that the
producer intended. Some common usage models that may be affected in this way by weakly-ordered stores are:
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can vary for these cases. As a
result, the SFENCE or MFENCE instruction should be used to ensure ordering between routines that produce
weakly-ordered data and routines that consume the data. SFENCE and MFENCE provide a performance-efficient
way to ensure ordering by guaranteeing that every store instruction that precedes SFENCE/MFENCE in program
order is globally visible before a store instruction that follows the fence.

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions
Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions. (Table 11-3 also applies to
SIMD integer and SIMD floating-point instructions in SSE3.) Unpredictable behavior can range from prefixes being
treated as a reserved operation on one generation of IA-32 processors to generating an invalid opcode exception
on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for complete description of instruction prefixes.

NOTE
Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are either 2 bytes or 3 bytes in
length. Two-byte opcodes that are 3 bytes in length consist of: a mandatory prefix (F2H, F3H, or
66H), 0FH, and an opcode byte. See Table 11-3.

11-26 Vol. 1

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

Table 11-3. Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable
behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable
behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and E3H) Reserved and may result in unpredictable behavior.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

6. Updates to Chapter 19, Volume 1
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Defined the “NPX” acronym: Numeric Processor Extensions.

Vol. 1 19-1

CHAPTER 19
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify the type of processor present
in a system and the processor features that are available to an application.

19.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor family, Pentium 4 processor
family, Intel Xeon processor family, P6 family, Pentium processor, and later Intel486 processors. This instruction
returns the family, model and (for some processors) a brand string for the processor that executes the instruction.
It also indicates the features that are present in the processor and gives information about the processor’s caches
and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. The CPUID instruc-
tion will cause the invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the EAX register to select the
type of information to be returned. When the CPUID instruction is executed, selected information is returned in the
EAX, EBX, ECX, and EDX registers. For a complete description of the CPUID instruction, tables indicating values
returned, and example code, see CPUID—CPU Identification in Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

19.1.1 Notes on Where to Start
The following guidelines are among the most important, and should always be followed when using the CPUID
instruction to determine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and ECX registers when the CPUID

instruction is executed with EAX equal to 0. If the processor is not genuine Intel, the feature identification flags
may have different meanings than are described in Intel documentation.

• Test feature identification flags individually and do not make assumptions about undefined bits.

19.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the earlier Intel486 processors. For
these processors, several other architectural features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register are different for Intel’s 32-
bit processors than for the Intel 8086 and Intel 286 processors. By examining the settings of these bits (with the
PUSHF/PUSHFD and POPF/POPFD instructions), an application program can determine whether the processor is an
8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14 have the last value

loaded into them. In protected mode, bit 15 is always clear, bit 14 has the last value loaded into it, and the IOPL
bits depend on the current privilege level (CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAGS register bits that can be used to differentiate between the 32-bit processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.

The inability to set or clear this bit distinguishes an Intel386 processor from the later IA-32 processors.
• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The ability to set and clear

this bit indicates that it is a Pentium 4, Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.

19-2 Vol. 1

PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

To determine whether an x87 FPU or Numeric Processor Extension (NPX) is present in a system, applications can
write to the x87 FPU status and control registers using the FNINIT instruction and then verify that the correct
values are read back using the FNSTENV instruction.
After determining that an x87 FPU or NPX is present, its type can then be determined. In most cases, the processor
type will determine the type of FPU or NPX; however, an Intel386 processor is compatible with either an Intel 287
or Intel 387 math coprocessor.
The method the coprocessor uses to represent ∞ (after the execution of the FINIT, FNINIT, or RESET instruction)
indicates which coprocessor is present. The Intel 287 math coprocessor uses the same bit representation for +∞
and −∞; whereas, the Intel 387 math coprocessor uses different representations for +∞ and −∞.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

7. Updates to Appendix D, Volume 1
Change bars show changes to Appendix D of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Defined the “NPX” acronym: Numeric Processor Extensions.

Vol. 1 D-1

APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, “Programming with the x87 FPU,” the IA-32 Architecture supports two mechanisms for
accessing exception handlers to handle unmasked x87 FPU exceptions: native mode and MS-DOS compatibility
mode. The primary purpose of this appendix is to provide detailed information to help software engineers design
and write x87 FPU exception-handling facilities to run on PC systems that use the MS-DOS compatibility mode1 for
handling x87 FPU exceptions. Some of the information in this appendix will also be of interest to engineers who are
writing native-mode x87 FPU exception handlers. The information provided is as follows:
• Discussion of the origin of the MS-DOS x87 FPU exception handling mechanism and its relationship to the x87

FPU’s native exception handling mechanism.
• Description of the IA-32 flags and processor pins that control the MS-DOS x87 FPU exception handling

mechanism.
• Description of the external hardware typically required to support MS-DOS exception handling mechanism.
• Description of the x87 FPU’s exception handling mechanism and the typical protocol for x87 FPU exception

handlers.
• Code examples that demonstrate various levels of x87 FPU exception handlers.
• Discussion of x87 FPU considerations in multitasking environments.
• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32 processors, starting with the
Intel486. It is intended to augment the reference information given in Chapter 8, “Programming with the x87 FPU.”

A more extensive version of this appendix is available in the application note AP-578, Software and Hardware
Considerations for x87 FPU Exception Handlers for Intel Architecture Processors (Order Number 243291), which is
available from Intel.

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU EXCEPTIONS
The first generations of IA-32 processors (starting with the Intel 8086 and 8088 processors and going through the
Intel 286 and Intel386 processors) did not have an on-chip floating-point unit. Instead, floating-point capability
was provided on a separate numeric coprocessor chip. The first of these numeric coprocessors was the Intel 8087,
which was followed by the Intel 287 and Intel 387 numeric coprocessors.

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, the 8087 has an output pin,
INT, which it asserts when an unmasked floating-point exception occurs. The designers of the 8087 recommended
that the output from this pin be routed through a programmable interrupt controller (PIC) such as the Intel 8259A
to the INTR pin of the 8086 or 8088. The handler for the resulting interrupt could then be used to access the
floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different mechanism for handling the
INT output from the 8087. It connected the INT pin directly to the NMI input pin of the 8086 or 8088. The NMI inter-
rupt handler then had to determine if the interrupt was caused by a floating-point exception or another NMI event.
This mechanism is the origin of what is now called the “MS-DOS compatibility mode.” The decision to use this latter
floating-point exception handling mechanism came about because when the IBM PC was first designed, the 8087
was not available. When the 8087 did become available, other functions had already been assigned to the eight
inputs to the PIC. One of these functions was a BIOS video interrupt, which was assigned vector 16 for the 8086
and 8088.

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost the same x87 FPU exception handling
interface as MS-DOS. The recommendations in this appendix for a MS-DOS compatible exception handler thus apply to all three oper-
ating systems.

D-2 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

The Intel 286 processor created the “native mode” for handling floating-point exceptions by providing a dedicated
input pin (ERROR#) for receiving floating-point exception signals and a dedicated interrupt vector, 16. Interrupt 16
was used to signal floating-point errors (also called math faults). It was intended that the ERROR# pin on the Intel
286 be connected to a corresponding ERROR# pin on the Intel 287 numeric coprocessor. When the Intel 287
signals a floating-point exception using this mechanism, the Intel 286 generates an interrupt 16, to invoke the
floating-point exception handler.

To maintain compatibility with existing PC software, the native floating-point exception handling mode of the Intel
286 and 287 was not used in the IBM PC AT system design. Instead, the ERROR# pin on the Intel 286 was tied
permanently high, and the ERROR# pin from the Intel 287 was routed to a second (cascaded) PIC. The resulting
output of this PIC was routed through an exception handler and eventually caused an interrupt 2 (NMI interrupt).
Here the NMI interrupt was shared with IBM PC AT’s new parity checking feature. Interrupt 16 remained assigned
to the BIOS video interrupt handler. The external hardware for the MS-DOS compatibility mode must prevent the
Intel 286 processor from executing past the next x87 FPU instruction when an unmasked exception has been gener-
ated. To do this, it asserts the BUSY# signal into the Intel 286 when the ERROR# signal is asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided the same hardware mechanism
for signaling and handling floating-point exceptions as the Intel 286 and 287 processors. And again, to maintain
compatibility with existing MS-DOS software, basically the same MS-DOS compatibility floating-point exception
handling mechanism that was used in the IBM PC AT was used in PCs based on the Intel386 processor.

D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY SUB-MODE IN THE
INTEL486™, PENTIUM®, AND P6 PROCESSOR FAMILY, AND PENTIUM® 4
PROCESSORS

Beginning with the Intel486™ processor, the IA-32 architecture provided a dedicated mechanism for enabling the
MS-DOS compatibility mode for x87 FPU exceptions and for generating external x87 FPU-exception signals while
operating in this mode. The following sections describe the implementation of the MS-DOS compatibility mode in
the Intel486 and Pentium processors and in the P6 family and Pentium 4 processors. Also described is the recom-
mended external hardware to support this mode of operation.

D.2.1 MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors
In the Intel486 processor, several things were done to enhance and speed up the numeric coprocessor, now called
the floating-point unit (x87 FPU). The most important enhancement was that the x87 FPU was included in the same
chip as the processor, for increased speed in x87 FPU computations and reduced latency for x87 FPU exception
handling. Also, for the first time, the MS-DOS compatibility mode was built into the chip design, with the addition
of the NE bit in control register CR0 and the addition of the FERR# (Floating-point ERRor) and IGNNE# (IGNore
Numeric Error) pins.

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the MS-DOS compatibility mode (NE =
0). When native mode is selected, all signaling of floating-point exceptions is handled internally in the Intel486
chip, resulting in the generation of an interrupt 16.

When MS-DOS compatibility mode is selected, the FERRR# and IGNNE# pins are used to signal floating-point
exceptions. The FERR# output pin, which replaces the ERROR# pin from the previous generations of IA-32 numeric
coprocessors, is connected to a PIC. A new input signal, IGNNE#, is provided to allow the x87 FPU exception
handler to execute x87 FPU instructions, if desired, without first clearing the error condition and without triggering
the interrupt a second time. This IGNNE# feature is needed to replicate the capability that was provided on MS-
DOS compatible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the BUSY# signal, when
inside the x87 FPU exception handler, before clearing the error condition.

Note that Intel, in order to provide Intel486 processors for market segments that had no need for an x87 FPU,
created the “SX” versions. These Intel486 SX processors did not contain the floating-point unit. Intel also produced
Intel 487 SX processors for end users who later decided to upgrade to a system with an x87 FPU. These Intel 487
SX processors are similar to standard Intel486 processors with a working x87 FPU on board.

Thus, the external circuitry necessary to support the MS-DOS compatibility mode for Intel 487 SX processors is the
same as for standard Intel486 DX processors.

Vol. 1 D-3

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE bit and the FERR# and
IGNNE# pins) as the Intel486 processors for generating x87 FPU exceptions in MS-DOS compatibility mode. The
actions of these mechanisms are slightly different and more straightforward for the P6 family and Pentium 4
processors, as described in Section D.2.2, “MS-DOS* Compatibility Sub-mode in the P6 Family and Pentium® 4
Processors.”

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the special DP (Dual Processing)
mode for Pentium processors and also the more general Intel MultiProcessor Specification for systems with
multiple Pentium, P6 family, or Pentium 4 processors support x87 FPU exception handling only in the native mode.
Intel does not recommend using the MS-DOS compatibility x87 FPU mode for systems using more than one
processor.

D.2.1.1 Basic Rules: When FERR# Is Generated
When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors (NE bit is set to 0) and the
IGNNE# input pin is de-asserted, the FERR# signal is generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the processor (in most cases) uses a
“deferred” method of reporting the error. This means that the processor does not respond immediately, but
rather freezes just before executing the next WAIT or x87 FPU instruction (except for “no-wait” instructions,
which the x87 FPU executes regardless of an error condition).

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by external hardware in response
to the FERR# assertion.

4. In MS-DOS compatibility systems, FERR# is fed to the IRQ13 input in the cascaded PIC. The PIC generates
interrupt 75H, which then branches to interrupt 2, as described earlier in this appendix for systems using the
Intel 286 and Intel 287 or Intel386 and Intel 387 processors.

The deferred method of error reporting is used for all exceptions caused by the basic arithmetic instructions
(including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and FUCOM), for precision exceptions caused by all types of x87
FPU instructions, and for numeric underflow and overflow exceptions caused by all types of x87 FPU instructions
except stores to memory.

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate” method of reporting errors. Here,
the FERR# is asserted immediately, at the time that the exception occurs. The immediate method of error
reporting is used for x87 FPU stack fault, invalid operation and denormal exceptions caused by all transcendental
instructions, FSCALE, FXTRACT, FPREM and others, and all exceptions (except precision) when caused by x87 FPU
store instructions. Like deferred error reporting, immediate error reporting will cause the processor to freeze just
before executing the next WAIT or x87 FPU instruction if the error condition has not been cleared by that time.

Note that in general, whether deferred or immediate error reporting is used for an x87 FPU exception depends both
on which exception occurred and which instruction caused that exception. A complete specification of these cases,
which applies to both the Pentium and the Intel486 processors, is given in Section 5.1.21 in the Pentium Processor
Family Developer’s Manual: Volume 1.

If NE = 0 but the IGNNE# input is active while an unmasked x87 FPU exception is in effect, the processor disre-
gards the exception, does not assert FERR#, and continues. If IGNNE# is then de-asserted and the x87 FPU excep-
tion has not been cleared, the processor will respond as described above. (That is, an immediate exception case
will assert FERR# immediately. A deferred exception case will assert FERR# and freeze just before the next x87
FPU or WAIT instruction.) The assertion of IGNNE# is intended for use only inside the x87 FPU exception handler,
where it is needed if one wants to execute non-control x87 FPU instructions for diagnosis, before clearing the
exception condition. When IGNNE# is asserted inside the exception handler, a preceding x87 FPU exception has
already caused FERR# to be asserted, and the external interrupt hardware has responded, but IGNNE# assertion
still prevents the freeze at x87 FPU instructions. Note that if IGNNE# is left active outside of the x87 FPU exception
handler, additional x87 FPU instructions may be executed after a given instruction has caused an x87 FPU excep-
tion. In this case, if the x87 FPU exception handler ever did get invoked, it could not determine which instruction
caused the exception.

To properly manage the interface between the processor’s FERR# output, its IGNNE# input, and the IRQ13 input
of the PIC, additional external hardware is needed. A recommended configuration is described in the following
section.

D-4 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.2.1.2 Recommended External Hardware to Support the MS-DOS* Compatibility Sub-mode
Figure D-1 provides an external circuit that will assure proper handling of FERR# and IGNNE# when an x87 FPU
exception occurs. In particular, it assures that IGNNE# will be active only inside the x87 FPU exception handler
without depending on the order of actions by the exception handler. Some hardware implementations have been
less robust because they have depended on the exception handler to clear the x87 FPU exception interrupt request
to the PIC (FP_IRQ signal) before the handler causes FERR# to be de-asserted by clearing the exception from the
x87 FPU itself. Figure D-2 shows the details of how IGNNE# will behave when the circuit in Figure D-1 is imple-
mented. The temporal regions within the x87 FPU exception handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt request through the PIC to the
processor’s INTR pin.

2. During the x87 FPU interrupt service routine (exception handler) the processor will need to clear the interrupt
request latch (Flip Flop #1). It may also want to execute non-control x87 FPU instructions before the exception
is cleared from the x87 FPU. For this purpose the IGNNE# must be driven low. Typically in the PC environment
an I/O access to Port 0F0H clears the external x87 FPU exception interrupt request (FP_IRQ). In the
recommended circuit, this access also is used to activate IGNNE#. With IGNNE# active, the x87 FPU exception
handler may execute any x87 FPU instruction without being blocked by an active x87 FPU exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be deactivated and then there is no
further need for IGNNE# to be active. In the recommended circuit, the deactivation of FERR# is used to
deactivate IGNNE#. If another circuit is used, the software and circuit together must assure that IGNNE# is
deactivated no later than the exit from the x87 FPU exception handler.

Figure D-1. Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handling

I/O Port F0H
Address Decode

FERR#

IGNNE#

INTR
Interrupt

Controller

RESET

FP_IRQ

+5V

PR

+5V

+5V

+5V

PR

CLR

FF #1

FF #2

In
te

l4
8

6
™

 P
ro

c
e

s
s
o

r

P
e

n
ti
u

m
®

 P
ro

c
e

s
s
o

r

P
e

n
ti
u

m
®

 P
ro

 P
ro

c
e

s
s
o

r

LEGEND:

FF #n Flip Flop #n

CLR Clear or Reset

Vol. 1 D-5

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port 0F0H it clears the IRQ13 inter-
rupt request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from Flip Flop #2. So the
handler can activate IGNNE#, if needed, by doing this 0F0H access before clearing the x87 FPU exception condition
(which de-asserts FERR#).

However, the circuit does not depend on the order of actions by the x87 FPU exception handler to guarantee the
correct hardware state upon exit from the handler. Flip Flop #2, which drives IGNNE# to the processor, has its
CLEAR input attached to the inverted FERR#. This ensures that IGNNE# can never be active when FERR# is inac-
tive. So if the handler clears the x87 FPU exception condition before the 0F0H access, IGNNE# does not get acti-
vated and left on after exit from the handler.

D.2.1.3 No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window
The Pentium and Intel486 processors implement the “no-wait” floating-point instructions (FNINIT, FNCLEX,
FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or FNSETPM) in the MS-DOS compatibility mode in the
following manner. (See Section 8.3.11, “x87 FPU Control Instructions,” and Section 8.3.12, “Waiting vs. Non-
waiting Instructions,” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction, a member of the no-wait class
of instructions will, at the beginning of its execution, assert the FERR# pin in response to that exception just like
other x87 FPU instructions, but then, unlike the other x87 FPU instructions, FERR# will be de-asserted. This de-
assertion was implemented to allow the no-wait class of instructions to proceed without an interrupt due to any
pending numeric exception. However, the brief assertion of FERR# is sufficient to latch the x87 FPU exception
request into most hardware interface implementations (including Intel’s recommended circuit).

All the x87 FPU instructions are implemented such that during their execution, there is a window in which the
processor will sample and accept external interrupts. If there is a pending interrupt, the processor services the
interrupt first before resuming the execution of the instruction. Consequently, it is possible that the no-wait
floating-point instruction may accept the external interrupt caused by it’s own assertion of the FERR# pin in the
event of a pending unmasked numeric exception, which is not an explicitly documented behavior of a no-wait
instruction. This process is illustrated in Figure D-3.

Figure D-2. Behavior of Signals During x87 FPU Exception Handling

0F0H Address
 Decode

D-6 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

Figure D-3 assumes that a floating-point instruction that generates a “deferred” error (as defined in the Section
D.2.1.1, “Basic Rules: When FERR# Is Generated”), which asserts the FERR# pin only on encountering the next
floating-point instruction, causes an unmasked numeric exception. Assume that the next floating-point instruction
following this instruction is one of the no-wait floating-point instructions. The FERR# pin is asserted by the
processor to indicate the pending exception on encountering the no-wait floating-point instruction. After the asser-
tion of the FERR# pin the no-wait floating-point instruction opens a window where the pending external interrupts
are sampled.

Then there are two cases possible depending on the timing of the receipt of the interrupt via the INTR pin (asserted
by the system in response to the FERR# pin) by the processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait floating-point instruction via
the INTR pin during this window then the interrupt is serviced first, before resuming the execu-
tion of the no-wait floating-point instruction.

Case 2 If the system responds via the INTR pin after the window has closed then the interrupt is recognized
only at the next instruction boundary.

There are two other ways, in addition to Case 1 above, in which a no-wait floating-point instruction can service a
numeric exception inside its interrupt window. First, the first floating-point error condition could be of the “imme-
diate” category (as defined in Section D.2.1.1, “Basic Rules: When FERR# Is Generated”) that asserts FERR#
immediately. If the system delay before asserting INTR is long enough, relative to the time elapsed before the no-
wait floating-point instruction, INTR can be asserted inside the interrupt window for the latter. Second, consider
two no-wait x87 FPU instructions in close sequence, and assume that a previous x87 FPU instruction has caused an
unmasked numeric exception. Then if the INTR timing is too long for an FERR# signal triggered by the first no-wait
instruction to hit the first instruction’s interrupt window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot happen if the instruction is being
used in the manner for which Intel originally designed it. The no-wait instructions were intended to be used inside
the x87 FPU exception handler, to allow manipulation of the x87 FPU before the error condition is cleared, without
hanging the processor because of the x87 FPU error condition, and without the need to assert IGNNE#. They will
perform this function correctly, since before the error condition is cleared, the assertion of FERR# that caused the
x87 FPU error handler to be invoked is still active. Thus the logic that would assert FERR# briefly at a no-wait
instruction causes no change since FERR# is already asserted. The no-wait instructions may also be used without
problem in the handler after the error condition is cleared, since now they will not cause FERR# to be asserted at
all.

Figure D-3. Timing of Receipt of External Interrupt

Assertion of FERR#

Exception Generating
Floating-Point

Instruction

by the Processor

System

Assertion of INTR Pin
by the System

Case 1

Case 2

Start of the “No-Wait”
Floating-Point

Instruction

External Interrupt
Sampling Window

Window Closed

Dependent
Delay

Vol. 1 D-7

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

If a no-wait instruction is used outside of the x87 FPU exception handler, it may malfunction as explained above,
depending on the details of the hardware interface implementation and which particular processor is involved. The
actual interrupt inside the window in the no-wait instruction may be blocked by surrounding it with the instructions:
PUSHFD, CLI, no-wait, then POPFD. (CLI blocks interrupts, and the push and pop of flags preserves and restores
the original value of the interrupt flag.) However, if FERR# was triggered by the no-wait, its latched value and the
PIC response will still be in effect. Further code can be used to check for and correct such a condition, if needed.
Section D.3.6, “Considerations When x87 FPU Shared Between Tasks,” discusses an important example of this type
of problem and gives a solution.

D.2.2 MS-DOS* Compatibility Sub-mode in the P6 Family
and Pentium® 4 Processors

When bit NE = 0 in CR0, the MS-DOS compatibility mode of the P6 family and Pentium 4 processors provides
FERR# and IGNNE# functionality that is almost identical to the Intel486 and Pentium processors. The same
external hardware described in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS*
Compatibility Sub-mode,” is recommended for the P6 family and Pentium 4 processors as well as the two previous
generations. The only change to MS-DOS compatibility x87 FPU exception handling with the P6 family and Pentium
4 processors is that all exceptions for all x87 FPU instructions cause immediate error reporting. That is, FERR# is
asserted as soon as the x87 FPU detects an unmasked exception; there are no cases in which error reporting is
deferred to the next x87 FPU or WAIT instruction.

(As is discussed in Section D.2.1.1, “Basic Rules: When FERR# Is Generated,” most exception cases in the Intel486
and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU error, this certainly does not
mean that the requested interrupt will always be serviced before the next instruction in the code sequence is
executed. To begin with, the P6 family and Pentium 4 processors execute several instructions simultaneously.
There also will be a delay, which depends on the external hardware implementation, between the FERR# assertion
from the processor and the responding INTR assertion to the processor. Further, the interrupt request to the PICs
(IRQ13) may be temporarily blocked by the operating system, or delayed by higher priority interrupts, and
processor response to INTR itself is blocked if the operating system has cleared the IF bit in EFLAGS. Note that
Streaming SIMD Extensions numeric exceptions will not cause assertion of FERR# (independent of the value of
CR0.NE). In addition, they ignore the assertion/deassertion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is inactive, a floating-point excep-
tion which occurred in the previous x87 FPU instruction and is unmasked causes the processor to freeze immedi-
ately when encountering the next WAIT or x87 FPU instruction (except for no-wait instructions). This means that if
the x87 FPU exception handler has not already been invoked due to the earlier exception (and therefore, the
handler not has cleared that exception state from the x87 FPU), the processor is forced to wait for the handler to
be invoked and handle the exception, before the processor can execute another WAIT or x87 FPU instruction.

As explained in Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” if a no-wait
instruction is used outside of the x87 FPU exception handler, in the Intel486 and Pentium processors, it may accept
an unmasked exception from a previous x87 FPU instruction which happens to fall within the external interrupt
sampling window that is opened near the beginning of execution of all x87 FPU instructions. This will not happen in
the P6 family and Pentium 4 processors, because this sampling window has been removed from the no-wait group
of x87 FPU instructions.

D.3 RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS
The activities of numeric programs can be split into two major areas: program control and arithmetic. The program
control part performs activities such as deciding what functions to perform, calculating addresses of numeric oper-
ands, and loop control. The arithmetic part simply adds, subtracts, multiplies, and performs other operations on
the numeric operands. The processor is designed to handle these two parts separately and efficiently. An x87 FPU
exception handler, if a system chooses to implement one, is often one of the most complicated parts of the program
control code.

D-8 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.3.1 Floating-Point Exceptions and Their Defaults
The x87 FPU can recognize six classes of floating-point exception conditions while executing floating-point instruc-
tions:

1. #I — Invalid operation
 #IS — Stack fault
 #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4, “x87 FPU Floating-Point Exception
Handling,” and Section 8.5, “x87 FPU Floating-Point Exception Conditions.”

D.3.2 Two Options for Handling Numeric Exceptions
Depending on options determined by the software system designer, the processor takes one of two possible
courses of action when a numeric exception occurs:

1. The x87 FPU can handle selected exceptions itself, producing a default fix-up that is reasonable in most
situations. This allows the numeric program execution to continue undisturbed. Programs can mask individual
exception types to indicate that the x87 FPU should generate this safe, reasonable result whenever the
exception occurs. The default exception fix-up activity is treated by the x87 FPU as part of the instruction
causing the exception; no external indication of the exception is given (except that the instruction takes longer
to execute when it handles a masked exception.) When masked exceptions are detected, a flag is set in the
numeric status register, but no information is preserved regarding where or when it was set.

2. A software exception handler can be invoked to handle the exception. When a numeric exception is unmasked
and the exception occurs, the x87 FPU stops further execution of the numeric instruction and causes a branch
to a software exception handler. The exception handler can then implement any sort of recovery procedures
desired for any numeric exception detectable by the x87 FPU.

D.3.2.1 Automatic Exception Handling: Using Masked Exceptions
Each of the six exception conditions described above has a corresponding flag bit in the x87 FPU status word and a
mask bit in the x87 FPU control word. If an exception is masked (the corresponding mask bit in the control word =
1), the processor takes an appropriate default action and continues with the computation.

The processor has a default fix-up activity for every possible exception condition it may encounter. These masked-
exception responses are designed to be safe and are generally acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can specify whether the x87 FPU
should handle a result that cannot be represented exactly by one of four modes of rounding: rounding it normally,
chopping it toward zero, always rounding it up, or always down. If the Underflow exception is masked, the x87 FPU
will store a number that is too small to be represented in normalized form as a denormal (or zero if it’s smaller than
the smallest denormal). Note that when exceptions are masked, the x87 FPU may detect multiple exceptions in a
single instruction, because it continues executing the instruction after performing its masked response. For
example, the x87 FPU could detect a denormalized operand, perform its masked response to this exception, and
then detect an underflow.

As an example of how even severe exceptions can be handled safely and automatically using the default exception
responses, consider a calculation of the parallel resistance of several values using only the standard formula (see
Figure D-4). If R1 becomes zero, the circuit resistance becomes zero. With the divide-by-zero and precision excep-
tions masked, the processor will produce the correct result. FDIV of R1 into 1 gives infinity, and then FDIV of
(infinity +R2 +R3) into 1 gives zero.

Vol. 1 D-9

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

By masking or unmasking specific numeric exceptions in the x87 FPU control word, programmers can delegate
responsibility for most exceptions to the processor, reserving the most severe exceptions for programmed excep-
tion handlers. Exception-handling software is often difficult to write, and the masked responses have been tailored
to deliver the most reasonable result for each condition. For the majority of applications, masking all exceptions
yields satisfactory results with the least programming effort. Certain exceptions can usefully be left unmasked
during the debugging phase of software development, and then masked when the clean software is actually run.
An invalid-operation exception for example, typically indicates a program error that must be corrected.

The exception flags in the x87 FPU status word provide a cumulative record of exceptions that have occurred since
these flags were last cleared. Once set, these flags can be cleared only by executing the FCLEX/FNCLEX (clear
exceptions) instruction, by reinitializing the x87 FPU with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the
flags with an FRSTOR or FLDENV instruction. This allows a programmer to mask all exceptions, run a calculation,
and then inspect the status word to see if any exceptions were detected at any point in the calculation.

D.3.2.2 Software Exception Handling
If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an unmasked exception condition,
with the system operated in the MS-DOS compatibility mode and with IGNNE# not asserted, a software exception
handler is invoked through a PIC and the processor’s INTR pin. The FERR# (or ERROR#) output from the x87 FPU
that begins the process of invoking the exception handler may occur when the error condition is first detected, or
when the processor encounters the next WAIT or x87 FPU instruction. Which of these two cases occurs depends on
the processor generation and also on which exception and which x87 FPU instruction triggered it, as discussed
earlier in Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 FPU Exceptions,” and Section D.2,
“Implementation of the MS-DOS* Compatibility Sub-mode in the Intel486™, Pentium®, and P6 Processor Family,
and Pentium® 4 Processors.” The elapsed time between the initial error signal and the invocation of the x87 FPU
exception handler depends of course on the external hardware interface, and also on whether the external inter-
rupt for x87 FPU errors is enabled. But the architecture ensures that the handler will be invoked before execution
of the next WAIT or floating-point instruction since an unmasked floating-point exception causes the processor to
freeze just before executing such an instruction (unless the IGNNE# input is active, or it is a no-wait x87 FPU
instruction).

The frozen processor waits for an external interrupt, which must be supplied by external hardware in response to
the FERR# (or ERROR#) output of the processor (or coprocessor), usually through IRQ13 on the “slave” PIC, and
then through INTR. Then the external interrupt invokes the exception handling routine. Note that if the external
interrupt for x87 FPU errors is disabled when the processor executes an x87 FPU instruction, the processor will
freeze until some other (enabled) interrupt occurs if an unmasked x87 FPU exception condition is in effect. If NE =
0 but the IGNNE# input is active, the processor disregards the exception and continues. Error reporting via an
external interrupt is supported for MS-DOS compatibility. Chapter 22, “IA-32 Architecture Compatibility,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, contains further discussion of compat-
ibility issues.

Figure D-4. Arithmetic Example Using Infinity

Equivalent Resistance =
1

1
R1

++

R1

1
R2

1
R3

R2 R3

D-10 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

The references above to the ERROR# output from the x87 FPU apply to the Intel 387 and Intel 287 math coproces-
sors (Numeric Processor Extension, or NPX, chips). If one of these coprocessors encounters an unmasked excep-
tion condition, it signals the exception to the Intel 286 or Intel386 processor using the ERROR# status line between
the processor and the coprocessor. See Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 FPU
Exceptions,” in this appendix, and Chapter 22, “IA-32 Architecture Compatibility,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B, for differences in x87 FPU exception handling.

The exception-handling routine is normally a part of the systems software. The routine must clear (or disable) the
active exception flags in the x87 FPU status word before executing any floating-point instructions that cannot
complete execution when there is a pending floating-point exception. Otherwise, the floating-point instruction will
trigger the x87 FPU interrupt again, and the system will be caught in an endless loop of nested floating-point
exceptions, and hang. In any event, the routine must clear (or disable) the active exception flags in the x87 FPU
status word after handling them, and before IRET(D). Typical exception responses may include:
• Incrementing an exception counter for later display or printing.
• Printing or displaying diagnostic information (e.g., the x87 FPU environment and registers).
• Aborting further execution, or using the exception pointers to build an instruction that will run without

exception and executing it.

Applications programmers should consult their operating system's reference manuals for the appropriate system
response to numerical exceptions. For systems programmers, some details on writing software exception handlers
are provided in Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, as well as in Section D.3.4, “x87 FPU Exception Handling Examples,” in this
appendix.

As discussed in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* Compatibility Sub-
mode,” some early FERR# to INTR hardware interface implementations are less robust than the recommended
circuit. This is because they depended on the exception handler to clear the x87 FPU exception interrupt request to
the PIC (by accessing port 0F0H) before the handler causes FERR# to be de-asserted by clearing the exception
from the x87 FPU itself. To eliminate the chance of a problem with this early hardware, Intel recommends that x87
FPU exception handlers always access port 0F0H before clearing the error condition from the x87 FPU.

D.3.3 Synchronization Required for Use of x87 FPU Exception Handlers
Concurrency or synchronization management requires a check for exceptions before letting the processor change
a value just used by the x87 FPU. It is important to remember that almost any numeric instruction can, under the
wrong circumstances, produce a numeric exception.

D.3.3.1 Exception Synchronization: What, Why, and When
Exception synchronization means that the exception handler inspects and deals with the exception in the context
in which it occurred. If concurrent execution is allowed, the state of the processor when it recognizes the exception
is often not in the context in which it occurred. The processor may have changed many of its internal registers and
be executing a totally different program by the time the exception occurs. If the exception handler cannot recap-
ture the original context, it cannot reliably determine the cause of the exception or recover successfully from the
exception. To handle this situation, the x87 FPU has special registers updated at the start of each numeric instruc-
tion to describe the state of the numeric program when the failed instruction was attempted.

This provides tools to help the exception handler recapture the original context, but the application code must also
be written with synchronization in mind. Overall, exception synchronization must ensure that the x87 FPU and
other relevant parts of the context are in a well defined state when the handler is invoked after an unmasked
numeric exception occurs.

When the x87 FPU signals an unmasked exception condition, it is requesting help. The fact that the exception was
unmasked indicates that further numeric program execution under the arithmetic and programming rules of the
x87 FPU will probably yield invalid results. Thus the exception must be handled, and with proper synchronization,
or the program will not operate reliably.

For programmers using higher-level languages, all required synchronization is automatically provided by the
appropriate compiler. However, for assembly language programmers exception synchronization remains the
responsibility of the programmer. It is not uncommon for a programmer to expect that their numeric program will

Vol. 1 D-11

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

not cause numeric exceptions after it has been tested and debugged, but in a different system or numeric environ-
ment, exceptions may occur regularly nonetheless. An obvious example would be use of the program with some
numbers beyond the range for which it was designed and tested. Example D-1 and Example D-2 in Section D.3.3.2,
“Exception Synchronization Examples,” show a subtle way in which unexpected exceptions can occur.

As described in Section D.3.1, “Floating-Point Exceptions and Their Defaults,” depending on options determined by
the software system designer, the processor can perform one of two possible courses of action when a numeric
exception occurs.
• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the x87 FPU performs its default

action for all exceptions, then the need for exception synchronization is not manifest. However, code is often
ported to contexts and operating systems for which it was not originally designed. Example D-1 and Example
D-2, below, illustrate that it is safest to always consider exception synchronization when designing code that
uses the x87 FPU.

• Alternatively, a software exception handler can be invoked to handle the exception. When a numeric exception
is unmasked and the exception occurs, the x87 FPU stops further execution of the numeric instruction and
causes a branch to a software exception handler. When an x87 FPU exception handler will be invoked, synchro-
nization must always be considered to assure reliable performance.

Example D-1 and Example D-2, below, illustrate the need to always consider exception synchronization when
writing numeric code, even when the code is initially intended for execution with exceptions masked.

D.3.3.2 Exception Synchronization Examples
In the following examples, three instructions are shown to load an integer, calculate its square root, then increment
the integer. The synchronous execution of the x87 FPU will allow both of these programs to execute correctly, with
INC COUNT being executed in parallel in the processor, as long as no exceptions occur on the FILD instruction.
However, if the code is later moved to an environment where exceptions are unmasked, the code in Example D-1
will not work correctly:

Example D-1. Incorrect Error Synchronization

FILD COUNT ;x87 FPU instruction
INC COUNT ;integer instruction alters operand
FSQRT ;subsequent x87 FPU instruction -- error

;from previous x87 FPU instruction detected here

Example D-2. Proper Error Synchronization

FILD COUNT ;x87 FPU instruction
FSQRT ;subsequent x87 FPU instruction -- error from

;previous x87 FPU instruction detected here
INC COUNT ;integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is extended to memory. To extend
the x87 FPU stack to memory, the invalid exception is unmasked. A push to a full register or pop from an empty
register sets SF (Stack Fault flag) and causes an invalid operation exception. The recovery routine for the exception
must recognize this situation, fix up the stack, then perform the original operation. The recovery routine will not
work correctly in Example D-1. The problem is that the value of COUNT increments before the exception handler is
invoked, so that the recovery routine will load an incorrect value of COUNT, causing the program to fail or behave
unreliably.

D.3.3.3 Proper Exception Synchronization
As explained in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* Compatibility Sub-
mode,” if the x87 FPU encounters an unmasked exception condition a software exception handler is invoked before
execution of the next WAIT or floating-point instruction. This is because an unmasked floating-point exception
causes the processor to freeze immediately before executing such an instruction (unless the IGNNE# input is

D-12 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

active, or it is a no-wait x87 FPU instruction). Exactly when the exception handler will be invoked (in the interval
between when the exception is detected and the next WAIT or x87 FPU instruction) is dependent on the processor
generation, the system, and which x87 FPU instruction and exception is involved.

To be safe in exception synchronization, one should assume the handler will be invoked at the end of the interval.
Thus the program should not change any value that might be needed by the handler (such as COUNT in Example
D-1 and Example D-2) until after the next x87 FPU instruction following an x87 FPU instruction that could cause
an error. If the program needs to modify such a value before the next x87 FPU instruction (or if the next x87 FPU
instruction could also cause an error), then a WAIT instruction should be inserted before the value is modified. This
will force the handling of any exception before the value is modified. A WAIT instruction should also be placed after
the last floating-point instruction in an application so that any unmasked exceptions will be serviced before the task
completes.

D.3.4 x87 FPU Exception Handling Examples
There are many approaches to writing exception handlers. One useful technique is to consider the exception
handler procedure as consisting of “prologue,” “body,” and “epilogue” sections of code.

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, external interrupts have been
disabled by hardware. The prologue performs all functions that must be protected from possible interruption by
higher-priority sources. Typically, this involves saving registers and transferring diagnostic information from the
x87 FPU to memory. When the critical processing has been completed, the prologue may re-enable interrupts to
allow higher-priority interrupt handlers to preempt the exception handler. The standard “prologue” not only saves
the registers and transfers diagnostic information from the x87 FPU to memory but also clears the floating-point
exception flags in the status word. Alternatively, when it is not necessary for the handler to be re-entrant, another
technique may also be used. In this technique, the exception flags are not cleared in the “prologue” and the body
of the handler must not contain any floating-point instructions that cannot complete execution when there is a
pending floating-point exception. (The no-wait instructions are discussed in Section 8.3.12, “Waiting vs. Non-
waiting Instructions.”) Note that the handler must still clear the exception flag(s) before executing the IRET. If the
exception handler uses neither of these techniques, the system will be caught in an endless loop of nested floating-
point exceptions, and hang.

The body of the exception handler examines the diagnostic information and makes a response that is necessarily
application-dependent. This response may range from halting execution, to displaying a message, to attempting to
repair the problem and proceed with normal execution. The epilogue essentially reverses the actions of the
prologue, restoring the processor so that normal execution can be resumed. The epilogue must not load an
unmasked exception flag into the x87 FPU or another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception handlers, with the save
spaces given as correct for 32-bit protected mode. They show how prologues and epilogues can be written for
various situations, but the application-dependent exception handling body is just indicated by comments showing
where it should be placed.

The first two are very similar; their only substantial difference is their choice of instructions to save and restore the
x87 FPU. The trade-off here is between the increased diagnostic information provided by FNSAVE and the faster
execution of FNSTENV. (Also, after saving the original contents, FNSAVE re-initializes the x87 FPU, while FNSTENV
only masks all x87 FPU exceptions.) For applications that are sensitive to interrupt latency or that do not need to
examine register contents, FNSTENV reduces the duration of the “critical region,” during which the processor does
not recognize another interrupt request. (See the Section 8.1.10, “Saving the x87 FPU’s State with
FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the x87 FPU save image.) If the processor
supports Streaming SIMD Extensions and the operating system supports it, the FXSAVE instruction should be used
instead of FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512 bytes and aligned
to 16 bytes to save the entire state. These steps will ensure that the complete context is saved.

After the exception handler body, the epilogues prepare the processor to resume execution from the point of inter-
ruption (for example, the instruction following the one that generated the unmasked exception). Notice that the
exception flags in the memory image that is loaded into the x87 FPU are cleared to zero prior to reloading (in fact,
in these examples, the entire status word image is cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not cause an unmasked exception.
Where this is a possibility, the general approach shown in Example D-5 can be employed. The basic technique is to

Vol. 1 D-13

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

save the full x87 FPU state and then to load a new control word in the prologue. Note that considerable care should
be taken when designing an exception handler of this type to prevent the handler from being reentered endlessly.

Example D-3. Full-State Exception Handler

SAVE_ALL PROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example D-4. Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 28 ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP - 28]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED ENVIRONMENT IMAGE

MOV BYTE PTR [EBP-24], 0H

D-14 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

FLDENV [EBP-28]
;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example D-5. Reentrant Exception Handler

.

.
LOCAL_CONTROL DW ?; ASSUME INITIALIZED

.

.
REENTRANTPROC
;
;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ;ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS] ;COPY OLD EFLAGS TO STACK TOP
POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.
;
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE
;GOES HERE - AN UNMASKED EXCEPTION
;GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED
;IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK

.
;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
;RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP

Vol. 1 D-15

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.3.5 Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMM
The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU exception handling for Intel486
processors and beyond contains two flip flops. When the x87 FPU exception handler accesses I/O port 0F0H it
clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from
Flip Flop #2.

The assertion of IGNNE# may be used by the handler if needed to execute any x87 FPU instruction while ignoring
the pending x87 FPU errors. The problem here is that the state of Flip Flop #2 is effectively an additional (but
hidden) status bit that can affect processor behavior, and so ideally should be saved upon entering SMM, and
restored before resuming to normal operation. If this is not done, and also the SMM code saves the x87 FPU state,
AND an x87 FPU error handler is being used which relies on IGNNE# assertion, then (very rarely) the x87 FPU
handler will nest inside itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the x87 FPU status word
; using a no-wait x87 FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

FLDCW new_cw ; loads new CW ignoring x87 FPU errors,

 ; since IGNNE# is assumed active; or any
; other x87 FPU instruction that is not a no-wait
; type will cause the same problem

FCLEX ; clear the x87 FPU error conditions & thus

; turn off FERR# & reset the IGNNE# FF

The problem will only occur if the processor enters SMM between the OUT and the FLDCW instructions. But if that
happens, AND the SMM code saves the x87 FPU state using FNSAVE, then the IGNNE# Flip Flop will be cleared
(because FNSAVE clears the x87 FPU errors and thus de-asserts FERR#). When the processor returns from SMM it
will restore the x87 FPU state with FRSTOR, which will re-assert FERR#, but the IGNNE# Flip Flop will not get set.
Then when the x87 FPU error handler executes the FLDCW instruction, the active error condition will cause the
processor to re-enter the x87 FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power management, and sometimes
security, functions provided by SMM have no need for x87 FPU calculations; if they are needed for some special
case, use scaling or emulation instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM code,
except when going into a 0 V suspend state (in which, in order to save power, the CPU is turned off completely,
requiring its complete state to be saved).

2. The system should not call upon SMM code to put the processor into 0 V suspend while the processor is running
x87 FPU calculations, or just after an interrupt has occurred. Normal power management protocol avoids this
by going into power down states only after timed intervals in which no system activity occurs.

D.3.6 Considerations When x87 FPU Shared Between Tasks
The IA-32 architecture allows speculative deferral of floating-point state swaps on task switches. This feature
allows postponing an x87 FPU state swap until an x87 FPU instruction is actually encountered in another task. Since
kernel tasks rarely use floating-point, and some applications do not use floating-point or use it infrequently, the
amount of time saved by avoiding unnecessary stores of the floating-point state is significant. Speculative deferral
of x87 FPU saves does, however, place an extra burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be different from the currently
executing thread.

2. The kernel must associate any floating-point exceptions with the generating task. This requires special
handling since floating-point exceptions are delivered asynchronous with other system activity.

D-16 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

3. There are conditions under which spurious floating-point exception interrupts are generated, which the kernel
must recognize and discard.

D.3.6.1 Speculatively Deferring x87 FPU Saves, General Overview
In order to support multitasking, each thread in the system needs a save area for the general-purpose registers,
and each task that is allowed to use floating-point needs an x87 FPU save area large enough to hold the entire x87
FPU stack and associated x87 FPU state such as the control word and status word. (See Section 8.1.10, “Saving the
x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the x87 FPU save
image.) If the processor and the operating system support Streaming SIMD Extensions, the save area should be
large enough and aligned correctly to hold x87 FPU and Streaming SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area for the suspending thread, and
the registers of the resuming thread are loaded. The x87 FPU state does not need to be saved at this point. If the
resuming thread does not use the x87 FPU before it is itself suspended, then both a save and a load of the x87 FPU
state has been avoided. It is often the case that several threads may be executed without any usage of the x87
FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device Not Available” (DNA), used in
conjunction with CR0 bit 3, the “Task Switched” bit (TS). (See “Control Registers” in Chapter 2 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.) Every task switch via the hardware supported task
switching mechanism (see “Task Switching” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A) sets TS. Multi-threaded kernels that use software task switching1 can set the TS bit by
reading CR0, ORing a “1” into2 bit 3, and writing back CR0. Any subsequent floating-point instructions (now being
executed in a new thread context) will fault via interrupt 7 before execution.

This allows a DNA handler to save the old floating-point context and reload the x87 FPU state for the current
thread. The handler should clear the TS bit before exit using the CLTS instruction. On return from the handler the
faulting thread will proceed with its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically because they also change the
linear address space between tasks. The problem and solution discussed in the following sections apply to these
operating systems also.

D.3.6.2 Tracking x87 FPU Ownership
Since the contents of the x87 FPU may not belong to the currently executing thread, the thread identifier for the
last x87 FPU user needs to be tracked separately. This is not complicated; the kernel should simply provide a vari-
able to store the thread identifier of the x87 FPU owner, separate from the variable that stores the identifier for the
currently executing thread. This variable is updated in the DNA exception handler, and is used by the DNA excep-
tion handler to find the x87 FPU save areas of the old and new threads. A simplified flow for a DNA exception
handler is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread to use the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an FNSAVE or FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an FRSTOR or FXSTOR
instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred x87 FPU state swaps, there are some addi-
tional subtleties that need to be handled in a robust implementation.

1 In a software task switch, the operating system uses a sequence of instructions to save the suspending thread’s state and restore
the resuming thread’s state, instead of the single long non-interruptible task switch operation provided by the IA-32 architecture.

2 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit as a surrogate for TS. EM means that
no x87 FPU is available and that floating-point instructions must be emulated. Using EM to trap on task switches is not compatible
with the MMX technology. If the EM flag is set, MMX instructions raise the invalid opcode exception.

Vol. 1 D-17

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.3.6.3 Interaction of x87 FPU State Saves and Floating-Point Exception Association
Recall these key points from earlier in this document: When considering floating-point exceptions across all imple-
mentations of the IA-32 architecture, and across all floating-point instructions, a floating-point exception can be
initiated from any time during the excepting floating-point instruction, up to just before the next floating-point
instruction. The “next” floating-point instruction may be the FNSAVE used to save the x87 FPU state for a task
switch. In the case of “no-wait:” instructions such as FNSAVE, the interrupt from a previously excepting instruc-
tion (NE = 0 case) may arrive just before the no-wait instruction, during, or shortly thereafter with a system
dependent delay.

Note that this implies that an floating-point exception might be registered during the state swap process itself, and
the kernel and floating-point exception interrupt handler must be prepared for this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is to allow the kernel to be one
of the x87 FPU owning threads. A reserved thread identifier is used to indicate kernel ownership of the x87 FPU.
During an floating-point state swap, the “x87 FPU owner” variable should be set to indicate the kernel as the
current owner. At the completion of the state swap, the variable should be set to indicate the new owning thread.
The numeric exception handler needs to check the x87 FPU owner and discard any numeric exceptions that occur
while the kernel is the x87 FPU owner. A more general flow for a DNA exception handler that handles this case is
shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap must be discarded in the kernel
without being dispatched to a handler. A flow for a numeric exception dispatch routine is shown in Figure D-6.

It may at first glance seem that there is a possibility of floating-point exceptions being lost because of exceptions
that are discarded during state swaps. This is not the case, as the exception will be re-issued when the floating-
point state is reloaded. Walking through state swaps both with and without pending numeric exceptions will clarify
the operation of these two handlers.

Figure D-5. General Program Flow for DNA Exception Handler

DNA Handler Entry

Current Thread
same as

FPU Owner?

FPU Owner := Kernel

FNSAVE to Old Thread’s
FP Save Area

(may cause numeric exception)

<other handler set up code>

<other handler code>

FPU Owner := Current Thread

FRSTOR from Current Thread’s
FP Save Area

CLTS (clears CR0.TS)

Exit DNA Handler

No

Yes

<handler final clean-up>

D-18 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

Case #1: x87 FPU State Swap Without Numeric Exception
Assume two threads A and B, both using the floating-point unit. Let A be the thread to have most recently executed
a floating-point instruction, with no pending numeric exceptions. Let B be the currently executing thread. CR0.TS
was set when thread A was suspended.

When B starts to execute a floating-point instruction the instruction will fault with the DNA exception because TS is
set.

At this point the handler is entered, and eventually it finds that the current x87 FPU Owner is not the currently
executing thread. To guard the x87 FPU state swap from extraneous numeric exceptions, the x87 FPU Owner is set
to be the kernel. The old owner’s x87 FPU state is saved with FNSAVE, and the current thread’s x87 FPU state is
restored with FRSTOR. Before exiting, the x87 FPU owner is set to thread B, and the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception
Again, assume two threads A and B, both using the floating-point unit. Let A be the thread to have most recently
executed a floating-point instruction, but this time let there be a pending numeric exception. Let B be the currently
executing thread. When B starts to execute a floating-point instruction the instruction will fault with the DNA
exception and enter the DNA handler. (If both numeric and DNA exceptions are pending, the DNA exception takes
precedence, in order to support handling the numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the pending numeric exception. After
some system dependent delay, the numeric exception handler is entered. It may be entered before the FNSAVE
starts to execute, or it may be entered shortly after execution of the FNSAVE. Since the x87 FPU Owner is the
kernel, the numeric exception handler simply exits, discarding the exception. The DNA handler resumes execution,
completing the FNSAVE of the old floating-point context of thread A and the FRSTOR of the floating-point context
for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded during the task switch. After
some time, thread B is suspended, and thread A resumes execution. When thread A starts to execute an floating-
point instruction, once again the DNA exception handler is entered. B’s x87 FPU state is saved with FNSAVE, and A’s
x87 FPU state is restored with FRSTOR. Note that in restoring the x87 FPU state from A’s save area, the pending
numeric exception flags are reloaded into the floating-point status word. Now when the DNA exception handler
returns, thread A resumes execution of the faulting floating-point instruction just long enough to immediately
generate a numeric exception, which now gets handled in the normal way. The net result is that the task switch and
resulting x87 FPU state swap via the DNA exception handler causes an extra numeric exception which can be safely
discarded.

D.3.6.4 Interrupt Routing From the Kernel
In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 16 by placing its handler
address in the interrupt vector table, and exiting via a jump to the previous interrupt 16 handler. Protected mode
systems that run MS-DOS programs under a subsystem can emulate this exception delivery mechanism. For
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that runs MS-DOS programs in a

Figure D-6. Program Flow for a Numeric Exception Dispatch Routine

Numeric Exception Entry

Is Kernel
FPU Owner?

Normal Dispatch to
Numeric Exception Handler Exit

No

Yes

Vol. 1 D-19

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

virtual machine subsystem. The MS-DOS program is set up in a virtual machine that provides a virtualized inter-
rupt table. The MS-DOS application hooks interrupt 16 in the virtual machine in the normal way. A numeric excep-
tion will trap to the kernel via the real INT 16 residing in the kernel at ring 0.

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, and reflects the interrupt to the
virtual machine monitor. The virtual machine monitor then emulates an interrupt by jumping through the address
in the virtualized interrupt table, eventually reaching the application’s numeric exception handler.

D.3.6.5 Special Considerations for Operating Systems that Support Streaming SIMD Extensions
Operating systems that support Streaming SIMD Extensions instructions introduced with the Pentium III processor
should use the FXSAVE and FXRSTOR instructions to save and restore the new SIMD floating-point instruction
register state as well as the floating-point state. Such operating systems must consider the following issues:

1. Enlarged state save area — FNSAVE/FRSTOR instructions operate on a 94-byte or 108-byte memory region,
depending on whether they are executed in 16-bit or 32-bit mode. The FXSAVE/FXRSTOR instructions operate
on a 512-byte memory region.

2. Alignment requirements — FXSAVE/FXRSTOR instructions require the memory region on which they operate
to be 16-byte aligned (refer to the individual instruction instructions descriptions in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information about exceptions generated
if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries — The operating system changes to
support Streaming SIMD Extensions must be invisible to legacy applications or libraries that deal only with
floating-point instructions. The layout of the memory region operated on by the FXSAVE/FXRSTOR instructions
is different from the layout for the FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag
word and the length of the various fields in the memory region is different. Care must be taken to return the
x87 FPU state to a legacy application (e.g., when reporting FP exceptions) in the format it expects.

4. Instruction semantic differences — There are some semantic differences between the way the FXSAVE and
FSAVE/FNSAVE instructions operate. The FSAVE/FNSAVE instructions clear the x87 FPU after they save the
state while the FXSAVE instruction saves the x87 FPU/Streaming SIMD Extensions state but does not clear it.
Operating systems that use FXSAVE to save the x87 FPU state before making it available for another thread
(e.g., during thread switch time) should take precautions not to pass a “dirty” x87 FPU to another application.

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE
The 8087 has an INT pin which it asserts when an unmasked exception occurs. But there is no interrupt input pin
in the 8086 or 8088 dedicated to its attachment, nor an interrupt vector in the 8086 or 8088 specific for an x87 FPU
error assertion. Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to support the
x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors
The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs are each provided with
ERROR# pins that are recommended to be connected between the processor and x87 FPU. If this is done, when an
unmasked x87 FPU exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin. The
processor recognizes this active condition of the ERROR# status line immediately before execution of the next
WAIT or x87 FPU instruction (except for the no-wait type) in its instruction stream, and branches to the handler of
interrupt 16. Thus an x87 FPU exception will be handled before any other x87 FPU instruction (after the one
causing the error) is executed (except for no-wait instructions, which will be executed without triggering the x87
FPU exception interrupt, but it will remain pending).

Using the dedicated INT 16 for x87 FPU exception handling is referred to as the native mode. It is the simplest
approach, and the one recommended most highly by Intel.

D-20 Vol. 1

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.4.2 Changes with Intel486, Pentium and Pentium Pro Processors with CR0.NE[bit 5] = 1
With these three generations of the IA-32 architecture, more enhancements and speedup features have been
added to the corresponding x87 FPUs. Also, the x87 FPU is now built into the same chip as the processor, which
allows further increases in the speed at which the x87 FPU can operate as part of the integrated system. This also
means that the native mode of x87 FPU exception handling, selected by setting bit NE of register CR0 to 1, is now
entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records the exception internally, and
triggers the exception handler through interrupt 16 immediately before execution of the next WAIT or x87 FPU
instruction (except for no-wait instructions, which will be executed as described in Section D.4.1, “Origin with the
Intel 286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even with NE = 1, and at exactly the
same point in the program flow as it would have been asserted if NE were zero. However, the system would not
connect FERR# to a PIC to generate INTR when operating in the native, internal mode. (If the hardware of a system
has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an operating system using the native mode
is actually running the system, it is the operating system’s responsibility to make sure that IRQ13 is not enabled in
the slave PIC.) With this configuration a system is immune to the problem discussed in Section D.2.1.3, “No-Wait
x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” where for Intel486 and Pentium processors a no-wait
x87 FPU instruction can get an x87 FPU exception.

D.4.3 Considerations When x87 FPU Shared Between Tasks Using Native Mode
The protocols recommended in Section D.3.6, “Considerations When x87 FPU Shared Between Tasks,” for MS-DOS
compatibility x87 FPU exception handlers that are shared between tasks may be used without change with the
native mode. However, the protocols for a handler written specifically for native mode can be simplified, because
the problem of a spurious floating-point exception interrupt occurring while the kernel is executing cannot happen
in native mode.

The problem as actually found in practical code in a MS-DOS compatibility system happens when the DNA handler
uses FNSAVE to switch x87 FPU contexts. If an x87 FPU exception is active, then FNSAVE triggers FERR# briefly,
which usually will cause the x87 FPU exception handler to be invoked inside the DNA handler. In native mode,
neither FNSAVE nor any other no-wait instructions can trigger interrupt 16. (As discussed above, FERR# gets
asserted independent of the value of the NE bit, but when NE = 1, the operating system should not enable its path
through the PIC.) Another possible (very rare) way a floating-point exception interrupt could occur while the kernel
is executing is by an x87 FPU immediate exception case having its interrupt delayed by the external hardware until
execution has switched to the kernel. This also cannot happen in native mode because there is no delay through
external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel is the x87 FPU owner, and
the DNA handler for a native mode system can omit the step of setting the kernel as the x87 FPU owner at the
handler’s beginning. Since however these simplifications are minor and save little code, it would be a reasonable
and conservative habit (as long as the MS-DOS compatibility mode is widely used) to include these steps in all
systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also the more general Intel MultiPro-
cessor Specification for systems with multiple Pentium, P6 family, or Pentium 4 processors, support x87 FPU
exception handling only in the native mode. Intel does not recommend using the MS-DOS compatibility mode for
systems using more than one processor.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

8. Updates to Appendix E, Volume 1
Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
Change to this chapter: Correction to CVTPS2PD/CVTSS2SD and CVTPD2PS/CVTSD2SS rows in Table E-13 “#I -
Invalid Operations”.

Vol. 1 E-1

APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION

HANDLERS

See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of SIMD floating-point exceptions.

This appendix considers only SSE/SSE2/SSE3 instructions that can generate numeric (SIMD floating-point) excep-
tions, and gives an overview of the necessary support for handling such exceptions. This appendix does not
address instructions that do not generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, or
RCPPS), any x87 instructions, or any unlisted instruction.

For detailed information on which instructions generate numeric exceptions, and a listing of those exceptions, refer
to Appendix C, “Floating-Point Exceptions Summary.” Non-numeric exceptions are handled in a way similar to that
for the standard IA-32 instructions.

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS
Just as for x87 FPU floating-point exceptions, the processor takes one of two possible courses of action when an
SSE/SSE2/SSE3 instruction raises a floating-point exception:
• If the exception being raised is masked (by setting the corresponding mask bit in the MXCSR to 1), then a

default result is produced which is acceptable in most situations. No external indication of the exception is
given, but the corresponding exception flags in the MXCSR are set and may be examined later. Note though
that for packed operations, an exception flag that is set in the MXCSR will not tell which of the sub-operands
caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask bit in the MXCSR to 0), a
software exception handler previously registered by the user with operating system support will be invoked
through the SIMD floating-point exception (#XM, exception 19). This case is discussed below in Section E.2,
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING
The #XM handler is usually part of the system software (the operating system kernel). Note that an interrupt
descriptor table (IDT) entry must have been previously set up for exception 19 (refer to Chapter 6, “Interrupt and
Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Some
compilers use specific run-time libraries to assist in floating-point exception handling. If any x87 FPU floating-point
operations are going to be performed that might raise floating-point exceptions, then the exception handling
routine must either disable all floating-point exceptions (for example, loading a local control word with FLDCW), or
it must be implemented as re-entrant (for the case of x87 FPU exceptions, refer to Example D-1 in Appendix D,
“Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the routine has to clear the status flags
for x87 FPU exceptions or to mask all x87 FPU floating-point exceptions. For SIMD floating-point exceptions
though, the exception flags in MXCSR do not have to be cleared, even if they remain unmasked (but they may still
be cleared). Exceptions are in this case precise and occur immediately, and a SIMD floating-point exception status
flag that is set when the corresponding exception is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing
• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)
• Aborting further execution, or using the exception pointers to build an instruction that will run without

exception and executing it
• Storing information about the exception in a data structure that will be passed to a higher level user exception

handler

E-2 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be three main components of a low-
level floating-point exception handler: a prologue, a body, and an epilogue.

The prologue performs functions that must be protected from possible interruption by higher-priority sources -
typically saving registers and transferring diagnostic information from the processor to memory. When the critical
processing has been completed, the prologue may re-enable interrupts to allow higher-priority interrupt handlers
to preempt the exception handler (assuming that the interrupt handler was called through an interrupt gate,
meaning that the processor cleared the interrupt enable (IF) flag in the EFLAGS register - refer to Section 6.4.1,
“Call and Return Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a response that is application-
dependent. It may range from halting execution, to displaying a message, to attempting to fix the problem and
then proceeding with normal execution, to setting up a data structure, calling a higher-level user exception handler
and continuing execution upon return from it. This latter case will be assumed in Section E.4, “SIMD Floating-Point
Exceptions and the IEEE Standard 754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the processor state so that normal
execution can be resumed.

The following example represents a typical exception handler. To link it with Example E-2 that will follow in Section
E.4.3, “Example SIMD Floating-Point Emulation Implementation,” assume that the body of the handler (not shown
here in detail) passes the saved state to a routine that will examine in turn all the sub-operands of the excepting
instruction, invoking a user floating-point exception handler if a particular set of sub-operands raises an unmasked
(enabled) exception, or emulating the instruction otherwise.

Example E-1. SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE
;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER
 PUSH EBP ;SAVE EBP
 PUSH EAX ;SAVE EAX
 ...
 MOV EBP, ESP ;SAVE ESP in EBP
 SUB ESP, 512 ;ALLOCATE 512 BYTES
 AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED
 FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE
 PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP
 POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY
;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
 LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED
 ...
 ...
;EPILOGUE
 FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE
 MOV ESP, EBP ;DE-ALLOCATE STACK SPACE
 ...
 POP EAX ;RESTORE EAX
 POP EBP ;RESTORE EBP
 IRET ;RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP

Vol. 1 E-3

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

E.3 EXCEPTION SYNCHRONIZATION
An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions, with integer instructions, and
with floating-point or MMX instructions. Unlike for x87 instructions, special precaution for exception synchroniza-
tion is not necessary in this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions occur
immediately and are not delayed until a subsequent floating-point instruction is executed. However, floating-
point emulation may be necessary when unmasked floating-point exceptions are generated.

E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754
SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for Binary Floating-Point Arithmetic,
satisfying all of its mandatory requirements (when the flush-to-zero or denormals-are-zeros modes are not
enabled). But a programming environment that includes SSE/SSE2/SSE3 instructions will comply with both the
obligatory and the strongly recommended requirements of the IEEE Standard 754 regarding floating-point excep-
tion handling, only as a combination of hardware and software (which is acceptable). The standard states that a
user should be able to request a trap on any of the five floating-point exceptions (note that the denormal exception
is an IA-32 addition), and it also specifies the values (operands or result) to be delivered to the exception handler.

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation exceptions (traps: overflow,
underflow, or inexact), unlike for x87 FPU instructions, the processor does not provide the result recommended by
IEEE Standard 754 to the user handler. If a user program needs the result of an instruction that generated a post-
computation exception, it is the responsibility of the software to produce this result by emulating the faulting
SSE/SSE2/SSE3 instruction. Another issue is that the standard does not specify explicitly how to handle multiple
floating-point exceptions that occur simultaneously. For packed operations, a logical OR of the flags that would be
set by each sub-operation is used to set the exception flags in the MXCSR. The following subsections present one
possible way to solve these problems.

E.4.1 Floating-Point Emulation
Every operating system must provide a kernel level floating-point exception handler (a template was presented in
Section E.2, “Software Exception Handling” above). In the following discussion, assume that a user mode floating-
point exception filter is supplied for SIMD floating-point exceptions (for example as part of a library of C functions),
that a user program can invoke in order to handle unmasked exceptions. The user mode floating-point exception
filter (not shown here) has to be able to emulate the subset of SSE/SSE2/SSE3 instructions that can generate
numeric exceptions, and has to be able to invoke a user provided floating-point exception handler for floating-point
exceptions. When a floating-point exception that is not masked is raised by an SSE/SSE2/SSE3 instruction, the
low-level floating-point exception handler will be called. This low-level handler may in turn call the user mode
floating-point exception filter. The filter function receives the original operands of the excepting instruction as no
results are provided by the hardware, whether a pre-computation or a post-computation exception has occurred.
The filter will unpack the operands into up to four sets of sub-operands, and will submit them one set at a time to
an emulation function (See Example E-2 in Section E.4.3, “Example SIMD Floating-Point Emulation Implementa-
tion”). The emulation function will examine the sub-operands, and will possibly redo the necessary calculation.

Two cases are possible:
• If an unmasked (enabled) exception would occur in this process, the emulation function will return to its caller

(the filter function) with the appropriate information. The filter will invoke a (previously registered) user
floating-point exception handler for this set of sub-operands, and will record the result upon return from the
user handler (provided the user handler allows continuation of the execution).

• If no unmasked (enabled) exception would occur, the emulation function will determine and will return to its
caller the result of the operation for the current set of sub-operands (it has to be IEEE Standard 754
compliant). The filter function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of sub-operands (if any). When
done with all the operand sets, the partial results will be packed (if the excepting instruction has a packed floating-
point result, which is true for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-level
exception handler, which in turn will return from the interruption, allowing execution to continue. Note that the

E-4 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

instruction pointer (EIP) has to be altered to point to the instruction following the excepting instruction, in order to
continue execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for decoding the excepting instruc-
tion, reading its operands, emulating the instruction for the components of the result that do not correspond to
unmasked floating-point exceptions, and providing the compounded result will have to be performed by the user-
provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for scalar operations, and for all sub-
operands or pairs of sub-operands for packed operations. The steps to perform are the following:
• The excepting instruction has to be decoded and the operands have to be read from the saved context.
• The instruction has to be emulated for each (pair of) sub-operand(s); if no floating-point exception occurs, the

partial result has to be saved; if a masked floating-point exception occurs, the masked result has to be
produced through emulation and saved, and the appropriate status flags have to be set; if an unmasked
floating-point exception occurs, the result has to be generated by the user provided floating-point exception
handler, and the appropriate status flags have to be set.

• The partial results have to be combined and written to the context that will be restored upon application
program resumption.

A diagram of the control flow in handling an unmasked floating-point exception is presented below.

From the user-level floating-point filter, Example E-2 in Section E.4.3, “Example SIMD Floating-Point Emulation
Implementation,” will present only the floating-point emulation part. In order to understand the actions involved,
the expected response to exceptions has to be known for all SSE/SSE2/SSE3 numeric instructions in two situa-
tions: with exceptions enabled (unmasked result), and with exceptions disabled (masked result). The latter can be
found in Section 6.4, “Interrupts and Exceptions.” The response to NaN operands that do not raise an exception is
specified in Section 4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response is also
discussed in more detail in the next subsection, along with the unmasked and masked responses to floating-point
exceptions.

E.4.2 SSE/SSE2/SSE3 Response To Floating-Point Exceptions
This subsection specifies the unmasked response expected from the SSE/SSE2/SSE3 instructions that raise
floating-point exceptions. The masked response is given in parallel, as it is necessary in the emulation process of

Figure E-1. Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler

Vol. 1 E-5

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

the instructions that raise unmasked floating-point exceptions. The response to NaN operands is also included in
more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority, refer to “Priority Among Simulta-
neous Exceptions and Interrupts” in Chapter 6, “Interrupt and Exception Handling,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

E.4.2.1 Numeric Exceptions
There are six classes of numeric (floating-point) exception conditions that can occur: Invalid operation (#I),
Divide-by-Zero (#Z), Denormal Operand (#D), Numeric Overflow (#O), Numeric Underflow (#U), and Inexact
Result (precision) (#P). #I, #Z, #D are pre-computation exceptions (floating-point faults), detected before the
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point traps).

Users can control how the SSE/SSE2/SSE3 floating-point exceptions are handled by setting the mask/unmask bits
in MXCSR. Masked exceptions are handled by the processor, or by software if they are combined with unmasked
exceptions occurring in the same instruction. Unmasked exceptions are usually handled by the low-level exception
handler, in conjunction with user-level software.

E.4.2.2 Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3 Numeric
Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3 instructions to NaN inputs, or to
other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations do not raise an invalid excep-
tion for quiet NaN operands, but even so, they will have higher precedence over raising floating-point exceptions
other than invalid operation.

Note that the single precision QNaN Indefinite value is FFC00000H, the double precision QNaN Indefinite value is
FFF8000000000000H, and the Integer Indefinite value is 80000000H (not a floating-point number, but it can be
the result of a conversion instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user handler. If a user registered
floating-point exception handler is invoked, it may provide a result for the excepting instruction, that will be used
if execution of the application code is continued after returning from the interruption.

In Tables E-1 through Table E-12, the specified operands cause an invalid exception, unless the unmasked result is
marked with “not an exception”. In this latter case, the unmasked and masked results are the same.

Table E-1. ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD,
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

E-6 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Neither source operand is SNaN,
but #I is signaled (e.g. for Inf - Inf,
Inf ∗ 0, Inf / Inf, 0/0)

Single precision or double precision QNaN
Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a

quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.
3. Operations involving only quiet NaNs do not raise floating-point exceptions.

Table E-2. CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD,
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1
(not an exception)

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1
(not an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-3. CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ,
CMPPD.UNORD, CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not
an exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not
an exception)

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-4. CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE, CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 None

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-1. ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD,
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD (Contd.)

Source Operands Masked Result Unmasked Result

Vol. 1 E-7

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Table E-5. CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, CMPPD.NLE, CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-6. COMISS, COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

Table E-7. UCOMISS, UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000
ZF, PF, CF = 111

None

QNaN op Opd2
(any Opd2 ≠ SNaN)

OF, SF, AF = 000
ZF, PF, CF = 111

OF, SF, AF = 000
ZF, PF, CF = 111 (not an exception)

Opd1 op QNaN
(any Opd1 ≠ SNaN)

OF, SF, AF = 000
ZF, PF, CF = 111

OF, SF, AF = 000
ZF, PF, CF = 111 (not an exception)

Table E-8. CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, CVTTPD2PI, CVTTSD2SI,
CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or 80000000000000001
(Integer Indefinite)

None

QNaN 80000000H or 80000000000000001
(Integer Indefinite)

None

NOTE:
1. 32-bit results are for single, and 64-bit results for double precision operations.

E-8 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Table E-9. MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:
1. SNaN and QNaN operands raise an Invalid Operation fault.

Table E-10. SQRTPS, SQRTSS, SQRTPD, SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN | 0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g. for
sqrt (-1.0))

Single precision or
double precision QNaN Indefinite

None

NOTE:
1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a

quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.

Table E-11. CVTPS2PD, CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The double precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit

exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by appending
29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit
exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by pending
29 bits equal to 0. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a
quiet NaN.

Table E-12. CVTPD2PS, CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:
1. The single precision output QNaN1 is created from the double precision input QNaN as follows: the sign bit is preserved, the 11-bit

exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its
29 least significant bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows: the sign bit is preserved, the 11-bit
exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its
29 least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into
a quiet NaN.

Vol. 1 E-9

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

E.4.2.3 Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric
Exceptions

In the following, the masked response is what the processor provides when a masked exception is raised by an
SSE/SSE2/SSE3 numeric instruction. The same response is provided by the floating-point emulator for
SSE/SSE2/SSE3 numeric instructions, when certain components of the quadruple input operands generate excep-
tions that are masked (the emulator also generates the correct answer, as specified by IEEE Standard 754 wher-
ever applicable, in the case when no floating-point exception occurs). The unmasked response is what the
emulator provides to the user handler for those components of the packed operands of SSE/SSE2/SSE3 instruc-
tions that raise unmasked exceptions. Note that for pre-computation exceptions (floating-point faults), no result is
provided to the user handler. For post-computation exceptions (floating-point traps), a result is provided to the
user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for the actual instruction, the
destination coincides with the first source operand (except for COMISS, UCOMISS, COMISD, and UCOMISD, whose
destination is the EFLAGS register).

Table E-13. #I - Invalid Operations

Instruction Condition Masked Response
Unmasked Response
and Exception Code

ADDPS
ADDPD
ADDSS
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2 unchanged; #IA
= 1

ADDSUBPS (the
addition component)
ADDSUBPD (the
addition component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table E-1 for NaN
operands, #IA = 1

src1, src2 unchanged; #IA
= 1

ADDSUBPS (the
subtraction
component)
ADDSUBPD (the
subtraction
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite,
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2 unchanged;
#IA = 1

MULSS
MULSD

src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table E-1 for
NaN operands, #IA = 1

src1, src2 unchanged;
#IA = 1

DIVSS
DIVSD

src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite,
#IA = 1

SQRTPS
SQRTPD
SQRTSS
SQRTSD

src = SNaN Refer to Table E-10 for
NaN operands, #IA = 1

src unchanged,
#IA = 1

src < 0
(note that -0 < 0 is false)

res = QNaN Indefinite,
#IA = 1

E-10 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA
= 1

MINPS
MINSS
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA
= 1

CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and Table E-5 for
NaN operands; #IA = 1

src1, src2 unchanged; #IA
= 1

COMISS
COMISD

src1 = NaN or src2 = NaN Refer to Table E-6 for NaN operands src1, src2, EFLAGS
unchanged; #IA = 1

UCOMISS
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN operands src1, src2, EFLAGS
unchanged; #IA = 1

CVTPS2PI
CVTSS2SI
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and (src)rnd ≠
80000000H

See Note2 for information
on rnd.

res = Integer Indefinite,
#IA = 1

src unchanged,
#IA = 1

CVTTPS2PI
CVTTSS2SI
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and (src)rz ≠
80000000H

See Note2 for information
on rz.

res = Integer Indefinite,
#IA = 1

src unchanged,
#IA = 1

Table E-13. #I - Invalid Operations (Contd.)

Instruction Condition Masked Response
Unmasked Response
and Exception Code

Vol. 1 E-11

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

CVTPS2PD
CVTSS2SD

src = SNAN Refer to Table E-11 for
NaN operands

src unchanged,
#IA = 1

CVTPD2PS
CVTSD2SS

src = SNAN Refer to Table E-12 for
NaN operands

src unchanged,
#IA = 1

NOTES:
1. For Tables E-13 to E-18:

- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward zero. (truncate), when rounding a
floating-point value to an integer. For more information, refer to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table E-14. #Z - Divide-by-Zero

Instruction Condition Masked Response
Unmasked Response
and Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal, or
denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2 unchanged;
#ZE = 1

Table E-13. #I - Invalid Operations (Contd.)

Instruction Condition Masked Response
Unmasked Response
and Exception Code

E-12 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Table E-15. #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response and
Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CVTPS2PD
CVTSS2SD
CVTPD2PS
CVTSD2SS

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

res = Result rounded to the
destination precision and using the
bounded exponent, but only if no
unmasked post-computation
exception occurs;
#DE = 1.

src1, src2 unchanged;
#DE = 1

Note that SQRT, CVTPS2PD,
CVTSS2SD, CVTPD2PS, CVTSD2SS
have only 1 src.

CMPPS
CMPPD
CMPSS
CMPSD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the
destination register;
#DE = 1

src1, src2 unchanged;
#DE = 1

COMISS
COMISD
UCOMISS
UCOMISD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the
EFLAGS register;
#DE = 1

src1, src2 unchanged;
#DE = 1

NOTE:
1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”

Vol. 1 E-13

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Table E-16. #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response and
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result >
largest single
precision finite
normal value

Rounding Sign Result & Status Flags res = (result calculated with
unbounded exponent and rounded
to the destination precision) / 2192

#OE = 1
#PE = 1 if the result is inexact

To
nearest +

-

#OE = 1, #PE = 1
res =
res =

Toward
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res =

Toward
+
-

#OE = 1, #PE = 1
res =
res = -1.11…1 * 2127

Toward
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result >
largest double
precision finite
normal value

Rounding Sign Result & Status Flags res = (result calculated with
unbounded exponent and rounded
to the destination precision) / 21536

• #OE = 1
• #PE = 1 if the result is inexact

To
nearest +

-

#OE = 1, #PE = 1
res =
res =

Toward
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res =

Toward
+
-

#OE = 1, #PE = 1
res =
res = -1.11…1 * 21023

Toward
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res = -1.11…1 * 21023

∞+
∞–

∞–

∞–

∞+
∞+

∞+
∞–

∞–

∞–

∞+
∞+

E-14 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

Table E-17. #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response and
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with unbounded
exponent and rounded to the
destination precision < smallest
single precision finite normal value.

res = ±0, denormal, or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with
unbounded exponent and rounded
to the destination precision) * 2192

• #UE = 1
• #PE = 1 if the result is inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with unbounded
exponent and rounded to the
destination precision < smallest
double precision finite normal value.

res = ±0, denormal or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with
unbounded exponent and rounded
to the destination precision) * 21536

• #UE = 1
• #PE = 1 if the result is inexact

Vol. 1 E-15

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

E.4.3 Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level floating-point exception filter for the
SSE/SSE2/SSE3 numeric instructions. It is assumed that the filter function is invoked by a low-level exception
handler (invoked for exception 19 when an unmasked floating-point exception occurs), and that it operates as
explained in Section E.4.1, “Floating-Point Emulation.” The sample code does the emulation only for the SSE
instructions for addition, subtraction, multiplication, and division. For this, it uses C code and x87 FPU operations.
Operations corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated similarly. The example
assumes that the emulation function receives a pointer to a data structure specifying a number of input parame-
ters: the operation that caused the exception, a set of sub-operands (unpacked, of type float), the rounding mode

Table E-18. #P - Inexact Result (Precision)

Instruction Condition Masked Response Unmasked Response and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not exactly
representable in the
destination format.

res = Result rounded to the
destination precision and
using the bounded
exponent, but only if no
unmasked underflow or
overflow conditions occur
(this exception can occur in
the presence of a masked
underflow or overflow); #PE
= 1.

Only if no underflow/overflow condition occurred, or
if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as

described above for masked overflow.
• Set #UE if masked underflow and set result as

described above for masked underflow.
If neither underflow nor overflow, res equals the
result rounded to the destination precision and using
the bounded exponent set #PE = 1.

E-16 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

(the precision is always single), exception masks (having the same relative bit positions as in the MXCSR but
starting from bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators.

The output parameters are a floating-point result (of type float), the cause of the exception (identified by constants
not explicitly defined below), and the exception status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

 unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

 float result_fval; // result value (if any)
 unsigned int rounding_mode; //rounding mode
 unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
 unsigned int exception_cause; //exception cause
 unsigned int status_flag_inexact; //inexact status flag
 unsigned int status_flag_underflow; //underflow status flag
 unsigned int status_flag_overflow; //overflow status flag
 unsigned int status_flag_divide_by_zero;

//divide by zero status flag
 unsigned int status_flag_denormal_operand;

//denormal operand status flag
 unsigned int status_flag_invalid_operation;

//invalid operation status flag
 unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all the denormal inputs
with zeroes of the same sign (the denormal flag is not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original user rounding mode,
and single precision. This reveals invalid, denormal, or divide-by-zero exceptions (if there are any) and stores
the result in memory as a double precision value (whose exponent range is large enough to look like
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the magnitude of the result is less than the smallest
normal number that can be represented in single precision format, or greater than the largest normal number
that can be represented in single precision format (huge). If an unmasked overflow or underflow occurs,
calculate the scaled result that will be handed to the user exception handler, as specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is tiny, it requires
denormalization (shifting the significand right while incrementing the exponent to bring it into the admissible
range of [-126,+127] for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error (it was rounded to
24 bits in step 2, and might have to be rounded again in the denormalization process). To overcome this is,
calculate the result as a double precision value, and store it to memory in single precision format.

Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding error (exact
properties exist that state when double-rounding error occurs, but for the elementary arithmetic operations,
the rule of thumb is that if an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the result
is the same as when rounding directly to p bits, which means that no double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will be delivered to the
user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

Vol. 1 E-17

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception has to be raised (the
exception_cause field indicates the cause). Otherwise, the emulation function returns DO_NOT_
RAISE_EXCEPTION. In the first case, the result is provided by the user exception handler called by the filter
function. In the second case, it is provided by the emulation function. The filter function has to collect all the
partial results, and to assemble the scalar or packed result that is used if execution is to continue.

Example E-2. SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 20H
#define UNDERFLOW_MASK 10H
#define OVERFLOW_MASK 08H
#define ZERODIVIDE_MASK 04H
#define DENORMAL_MASK 02H
#define INVALID_MASK 01H

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {00000000H};
#define ZEROF *(float *) ZEROF_ARRAY
 // +0.0
static unsigned NZEROF_ARRAY[] = {80000000H};
#define NZEROF *(float *) NZEROF_ARRAY
 // -0.0
static unsigned POSINFF_ARRAY[] = {7f800000H};
#define POSINFF *(float *)POSINFF_ARRAY
 // +Inf
static unsigned NEGINFF_ARRAY[] = {ff800000H};
#define NEGINFF *(float *)NEGINFF_ARRAY
 // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {00000000H, 38100000H};
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
 // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {70000000H, 47efffffH};
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
 // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {00000000H, 4bf00000H};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
 // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {00000000H, 33f00000H};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
 // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int); // converts a signaling NaN to a quiet

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int); // converts denormals

// to zeros of the same sign;
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

 int uiopd1; // first operand of the add, subtract, multiply, or divide
 int uiopd2; // second operand of the add, subtract, multiply, or divide
 float res; // result of the add, subtract, multiply, or divide
 double dbl_res24; // result with 24-bit significand, but "unbounded" exponent

E-18 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 // (needed to check tininess, to provide a scaled result to
 // an underflow/overflow trap handler, and in flush-to-zero mode)
 double dbl_res; // result in double precision format (needed to avoid a
 // double rounding error when denormalizing)
 unsigned int result_tiny;
 unsigned int result_huge;
 unsigned short int sw; // 16 bits
 unsigned short int cw; // 16 bits

 // have to check first for faults (V, D, Z), and then for traps (O, U, I)

 // initialize x87 FPU (floating-point exceptions are masked)
 _asm {
 fninit;
 }

 result_tiny = 0;
 result_huge = 0;

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 case SUBPS:
 case SUBSS:
 case MULPS:
 case MULSS:
 case DIVPS:
 case DIVSS:

 uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion
// of SNaN to QNaN by compiled code

 uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is
// denormal and DAZ=1

 uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is
// denormal and DAZ=1

 // execute the operation and check whether the invalid, denormal, or
 // divide by zero flags are set and the respective exceptions enabled

 // set control word with rounding mode set to exc_env->rounding_mode,
 // single precision, and all exceptions disabled
 switch (exc_env->rounding_mode) {
 case ROUND_TO_NEAREST:
 cw = 003fH; // round to nearest, single precision, exceptions masked
 break;
 case ROUND_DOWN:
 cw = 043fH; // round down, single precision, exceptions masked
 break;
 case ROUND_UP:
 cw = 083fH; // round up, single precision, exceptions masked
 break;
 case ROUND_TO_ZERO:
 cw = 0c3fH; // round to zero, single precision, exceptions masked
 break;
 default:
 ;
 }
 __asm {
 fldcw WORD PTR cw;

Vol. 1 E-19

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 }

 // compute result and round to the destination precision, with
 // "unbounded" exponent (first IEEE rounding)
 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 faddp st(1), st(0); // may set inexact or invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fsubp st(1), st(0); // may set the inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fmulp st(1), st(0); // may set inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fdivp st(1), st(0); // may set the inexact, divide by zero, or
 // invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

E-20 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 default:
 ; // will never occur

 }

 // read status word
 __asm {
 fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

 // if invalid flag is set, and invalid exceptions are enabled, take trap
 if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
 exc_env->status_flag_invalid_operation = 1;
 exc_env->exception_cause = INVALID_OPERATION;
 return (RAISE_EXCEPTION);
 }

// checking for NaN operands has priority over denormal exceptions;
// also fix for the SSE and SSE2
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

 if (isnanf (uiopd1) && isnanf (uiopd2))
 exc_env->result_fval = quietf (uiopd1);
 else
 exc_env->result_fval = (float)dbl_res24; // exact

 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

 // if denormal flag set, and denormal exceptions are enabled, take trap
 if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
 exc_env->status_flag_denormal_operand = 1;
 exc_env->exception_cause = DENORMAL_OPERAND;
 return (RAISE_EXCEPTION);
 }

 // if divide by zero flag set, and divide by zero exceptions are
 // enabled, take trap (for divide only)
 if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
 exc_env->status_flag_divide_by_zero = 1;
 exc_env->exception_cause = DIVIDE_BY_ZERO;
 return (RAISE_EXCEPTION);
 }

 // done if the result is a NaN (QNaN Indefinite)
 res = (float)dbl_res24;
 if (isnanf (*(unsigned int *)&res)) {
 exc_env->result_fval = res; // exact
 exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

 // dbl_res24 is not a NaN at this point

 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

 // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
 if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
 0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {

Vol. 1 E-21

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 result_tiny = 1;
 }

 // check if the result is huge
 if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL ||
 MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) {
 result_huge = 1;
 }

 // at this point, there are no enabled I,D, or Z exceptions
 // to take; the instr.

 // might lead to an enabled underflow, enabled underflow and inexact,
 // enabled overflow, enabled overflow and inexact, enabled inexact, or
 // none of these; if there are no U or O enabled exceptions, re-execute
 // the instruction using IA-32 double precision format, and the
 // user's rounding mode; exceptions must have

// been disabled before calling
 // this function; an inexact exception may be reported on the 53-bit
 // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an
 // overflow or underflow (with traps disabled) may be reported on the
 // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is
// tiny, take underflow trap

 if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
 dbl_res24 = TWO_TO_192 * dbl_res24; // exact
 exc_env->status_flag_underflow = 1;
 exc_env->exception_cause = UNDERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

 // if overflow traps are enabled and the result is huge, take
 // overflow trap
 if (!(exc_env->exc_masks & OVERFLOW_MASK) && result_huge) {
 dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
 exc_env->status_flag_overflow = 1;
 exc_env->exception_cause = OVERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

 // set control word with rounding mode set to exc_env->rounding_mode,
 // double precision, and all exceptions disabled
 cw = cw | 0200H; // set precision to double
 __asm {
 fldcw WORD PTR cw;
 }

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 faddp st(1), st(0); // rounded to 53 bits, may set the inexact
 // status flag

E-22 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
 // status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 default:
 ; // will never occur

 }

 // calculate result for the case an inexact trap has to be taken, or
 // when no trap occurs (second IEEE rounding)
 res = (float)dbl_res;
 // may set P, U or O; may also involve denormalizing the result

 // read status word
 __asm {
 fstsw WORD PTR sw;
 }

 // if inexact traps are enabled and result is inexact, take inexact trap
 if (!(exc_env->exc_masks & PRECISION_MASK) &&
 ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
 exc_env->status_flag_inexact = 1;

Vol. 1 E-23

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 exc_env->exception_cause = INEXACT;
 if (result_tiny) {
 exc_env->status_flag_underflow = 1;

 // if ftz = 1 and result is tiny, result = 0.0
 // (no need to check for underflow traps disabled: result tiny and
 // underflow traps enabled would have caused taking an underflow
 // trap above)
 if (exc_env->ftz) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged
 }
 }
 if (result_huge) exc_env->status_flag_overflow = 1;
 exc_env->result_fval = res;
 return (RAISE_EXCEPTION);
 }

 // if it got here, then there is no trap to be taken; the following must
 // hold: ((the MXCSR U exceptions are disabled or
 //
 // the MXCSR underflow exceptions are enabled and the underflow flag is
 // clear and (the inexact flag is set or the inexact flag is clear and
 // the 24-bit result with unbounded exponent is not tiny)))
 // and (the MXCSR overflow traps are disabled or the overflow flag is
 // clear) and (the MXCSR inexact traps are disabled or the inexact flag
 // is clear)
 //
 // in this case, the result has to be delivered (the status flags are
 // sticky, so they are all set correctly already)

 // read status word to see if result is inexact
 __asm {
 fstsw WORD PTR sw;
 }

 if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
 if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

 // if ftz = 1, and result is tiny (underflow traps must be disabled),
 // result = 0.0
 if (exc_env->ftz && result_tiny) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged

 exc_env->status_flag_inexact = 1;
 exc_env->status_flag_underflow = 1;
 }

 exc_env->result_fval = res;
 if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);

 break;

 case CMPPS:

E-24 Vol. 1

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

 case CMPSS:

 ...

 break;

 case COMISS:
 case UCOMISS:

 ...

 break;

 case CVTPI2PS:
 case CVTSI2SS:

 ...

 break;

 case CVTPS2PI:
 case CVTSS2SI:
 case CVTTPS2PI:
 case CVTTSS2SI:

 ...

 break;

 case MAXPS:
 case MAXSS:
 case MINPS:
 case MINSS:

 ...

 break;

 case SQRTPS:
 case SQRTSS:

 ...

 break;

...

case UNSPEC:

 ...

 break;

 default:
 ...

 }

}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

9. Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

Changes to this chapter: Correction to Effective Address ECX/CX/CL/MM1/XMM1 row of Table 2-1 “16-Bit
Addressing Forms with the ModR/M Byte”. Minor update to Section 2.6.1 “Instruction Format and EVEX”.
Corrections in Table 2-43 “EVEX Instructions in each Exception Class ”.

Vol. 2A 2-1

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE,
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H.

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and
input/output instructions. (F2H is also used as a mandatory prefix for some instructions.)

• REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output
instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none3

Address
displacement
of 1, 2, or 4
bytes or none3

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Prefixes of
1 byte each
(optional)1, 2

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” for additional information.
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)”.
3. Some rare instructions can take an 8B immediate or 8B displacement.

2-2 Vol. 2A

INSTRUCTION FORMAT

— BND prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, a short Jcc, or a near Jcc instruction
(see Chapter 17, “Intel® MPX,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints1:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).

• Group 4

• 67H—Address-size override prefix.
The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-L,” for a description
of this prefix.
Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality.
Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for
a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.
Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes
may use 66H as a mandatory prefix to express distinct functionality.
Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.
The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

1. Some earlier microarchitectures used these as branch hints, but recent generations have not and they are reserved for future hint
usage.

Vol. 2A 2-3

INSTRUCTION FORMAT

2.1.2 Opcodes
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of opera-
tion, size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.
Two-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode and a second opcode byte.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous

bullet).
For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not
considered as a repeat prefix).
Three-byte opcode formats for general-purpose and SIMD instructions consist of one of the following:
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes.
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as

previous bullet).
For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the
mandatory prefix.
Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes
Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an

addressing mode. Sometimes, certain combinations of the mod field and the r/m field are used to express
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes
Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is
present). If a displacement is required, it can be 1, 2, or 4 bytes.
If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.

2-4 Vol. 2A

INSTRUCTION FORMAT

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes
The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.
In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX
technology and XMM registers.
The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M =
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.
Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute.
If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six
are represented in decimal form.
The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by
8 array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the
column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below
demonstrates interpretation of one table value.

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);

Vol. 2A 2-5

INSTRUCTION FORMAT

NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the

index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

2-6 Vol. 2A

INSTRUCTION FORMAT

NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is

sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field.
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling
factor (determined by SIB byte bits 6 and 7).

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

Vol. 2A 2-7

INSTRUCTION FORMAT

NOTES:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the

following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE
IA-32e mode has two sub-modes. These are:
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software

unmodified.
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space.

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

2-8 Vol. 2A

INSTRUCTION FORMAT

2.2.1 REX Prefixes
REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.
Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.
Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode
byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a
mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding
the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and
0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX
prefix. See Figure 2-3.

2.2.1.1 Encoding
Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte.
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base)

byte.
• Instructions without ModR/M: the reg field of the opcode.
In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the
addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.
The single-byte-opcode forms of the INC/DEC instructions are not available in 64-bit mode. INC/DEC functionality
is still available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1).
See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations.
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored.
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

Figure 2-3. Prefix Ordering in 64-bit Mode

REX

Immediate data
of 1, 2, or 4
bytes or none

Address
displacement of
1, 2, or 4 bytes

1 byte
(if required)

1 byte
(if required)

1-, 2-, or
3-byte
opcode

(optional)Grp 1, Grp
2, Grp 3,
Grp 4
(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes

Vol. 2A 2-9

INSTRUCTION FORMAT

• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is
ignored when ModR/M specifies other registers or defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field

used for accessing GPRs.

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX

0100WR0B

Opcode mod

≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX

0100WR0B

Opcode mod

11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4

2-10 Vol. 2A

INSTRUCTION FORMAT

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.
Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each
case behaves.

Figure 2-6. Memory Addressing With a SIB Byte

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

mod

≠ 11

ModRM Byte

r/m

100

reg

rrr

scale

ss

SIB Byte

REX PREFIX

0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index

xxx

OM17Xfig1-5

REX PREFIX

0100W00B

Opcode

Bbbb

reg

bbb

OM17Xfig1-6

Vol. 2A 2-11

INSTRUCTION FORMAT

2.2.1.3 Displacement
Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4 Direct Memory-Offset MOVs
In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See
Table 2-6.

2.2.1.5 Immediates
In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the
processor sign-extends all immediates to 64 bits prior to their use.
Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to
a 64-bit operand size.
For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

Table 2-5. Special Cases of REX Encodings
ModR/M or
SIB

Sub-field
Encodings

Compatibility Mode
Operation

Compatibility Mode
Implications Additional Implications

ModR/M Byte mod ≠ 11 SIB byte present. SIB byte required for
ESP-based addressing.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

SIB byte also required for R12-based addressing.
r/m =
b*100(ESP)

ModR/M Byte mod = 0 Base register not
used.

EBP without a
displacement must be
done using

mod = 01 with
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded
(don't care).

Using RBP or R13 without displacement must be done
using mod = 01 with a displacement of 0.

r/m =
b*101(EBP)

SIB Byte index =
0100(ESP)

Index register not
used.

ESP cannot be used as
an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded
index field allows distinguishing RSP from R12,
therefore R12 can be used as an index.

SIB Byte base =
0101(EBP)

Base register is
unused if mod = 0.

Base register depends
on mod encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with
EBP/RBP or R13.

NOTES:
* Don’t care about value of REX.B

Table 2-6. Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX

2-12 Vol. 2A

INSTRUCTION FORMAT

2.2.1.6 RIP-Relative Addressing
A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.
In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative
addressing. Without RIP-relative addressing, all ModR/M modes address memory relative to zero.
RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative
addressing is encoded using a redundant form.
In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using a prefix. Specifically, the r/m bit field
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode
R13 + 0 using a 1-byte displacement of zero.
RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the
computed effective address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size
In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this
operand size). These are:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP.

2.2.2 Additional Encodings for Control and Debug Registers
In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. CR8
becomes the Task Priority Register (TPR).
In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7. RIP-Relative Addressing
ModR/M and SIB Sub-field Encodings Compatibility Mode

Operation
64-bit Mode
Operation

Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 Must use SIB form with normal (zero-based)
displacement addressing r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4

Vol. 2A 2-13

INSTRUCTION FORMAT

2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)
Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field,
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers).
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a
subset of SIMD instructions need them.

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax.
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX
prefix provides substantially richer capability than the REX prefix.

Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes

2-14 Vol. 2A

INSTRUCTION FORMAT

2.3.5 The VEX Prefix
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields
providing specific capability, they are shown in Figure 2-9.
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to
distinguish encoded values of other VEX bit fields.

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any other
prefixes. If VEX prefix is present a REX prefix is not supported.
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by
one byte. This may be helpful in some situations for code alignment.
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations.

Vol. 2A 2-15

INSTRUCTION FORMAT

Figure 2-9. VEX bit fields

The following subsections describe the various fields in two or three-byte VEX prefix.

2.3.5.1 VEX Byte 0, bits[7:0]
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2 VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

vvvv

1 03 2

L

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm:

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form

2-16 Vol. 2A

INSTRUCTION FORMAT

This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3 3-byte VEX byte 1, bit[6] - ‘X’
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5 3-byte VEX byte 2, bit[7] - ‘W’
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending
on the specific opcode.
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has same
meaning in the corresponding AVX equivalent form. In 32-bit modes for these instructions, VEX.W is silently
ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and
setting to other than zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or Dest
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits.
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source
register specifier stored in inverted (1’s complement) form.
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte
VEX version will ignore this bit).

Vol. 2A 2-17

INSTRUCTION FORMAT

Table 2-8. VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded
instructions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one
source operand and one destination operand).
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for

instructions with 2 or more source operands.
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts.

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode”
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.

Table 2-9. Instructions with a VEX.vvvv destination

VEX.vvvv Dest Register Valid in Legacy/Compatibility 32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

2-18 Vol. 2A

INSTRUCTION FORMAT

The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are
reserved for future use and will #UD unless 0.

Table 2-10. VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector
operations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits
255:128 of all YMM registers accessible in the current operating mode.
See the following table.

Table 2-11. VEX.L interpretation

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.
See the following table.

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

Vol. 2A 2-19

INSTRUCTION FORMAT

Table 2-12. VEX.pp interpretation

2.3.7 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color.
Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and
PBLENDVB use imm8[7:4] to encode one of the source registers.

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits
(above bit 128) of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations
An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any
future extensions to the vector registers. A calling function that uses such extensions should save their state before
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is
recommended that software handling involuntary calls accommodate this by not executing instructions encoded
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions,
then software must take special care to avoid actions that would, on future processors, zero the upper bits of
vector registers.
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the
XSAVE and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software
that handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with
save/restore masks that set bits that correspond to all vector-register extensions. Ideally, software should rely on
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2

2-20 Vol. 2A

INSTRUCTION FORMAT

if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported
extensions to the vector registers.)

2.3.11 AVX Instruction Length
The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing
In Intel® Advanced Vector Extensions 2 (Intel® AVX2), an SIB byte that follows the ModR/M byte can support VSIB
memory addressing to an array of linear addresses. VSIB addressing is only supported in a subset of Intel AVX2
instructions. VSIB memory addressing requires 32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing
is not supported when address size attribute is overridden to 16 bits. In 16-bit protected mode, VSIB memory
addressing is permitted if address size attribute is overridden to 32 bits. Additionally, VSIB memory addressing is
supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.
Table 2-3 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8L-R15L applicable only in 64-bit
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-3). In 32-bit mode,
R8L-R15L does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-
most column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in
64-bit mode and does not apply if encoding in 32-bit mode.

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte
r32

(In decimal) Base =
(In binary) Base =

EAX/
R8L
0
000

ECX/
R9L
1
001

EDX/
R10L
2
010

EBX/
R11L
3
011

ESP/
R12L
4
100

EBP/
R13L1

5
101

ESI/
R14L
6
110

EDI/
R15L
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

Vol. 2A 2-21

INSTRUCTION FORMAT

2.3.12.1 64-bit Mode VSIB Memory Addressing
In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one
of the 16 vector registers as the vector index register.
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register.

2.4 AVX AND SSE INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-14.
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the
exception classes defined in this section. For instructions that operate on MMX registers, see
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the

base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

Table 2-13. 32-Bit VSIB Addressing Forms of the SIB Byte (Contd.)

2-22 Vol. 2A

INSTRUCTION FORMAT

Table 2-14. Exception class description

See Table 2-15 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point

Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly

aligned
None

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
Yes

Type 3
AVX,

Legacy SSE
< 16 byte Yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
No

Type 5
AVX,

Legacy SSE
< 16 byte No

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7
AVX,

Legacy SSE
None None

Type 8 AVX None None

Type 11
F16C 8 or 16 byte, Not explicitly

aligned, no AC#
Yes

Type 12
AVX2 Not explicitly aligned, no

AC#
No

Vol. 2A 2-23

INSTRUCTION FORMAT

Table 2-15. Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits of all 1s, i.e. no

alignment checks are performed.

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW,
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB,
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD,
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD,
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB,
(V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ,
(V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD,
(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ,
(V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD,
(V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, VPSLLVD, VPSLLVQ,
VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**,
VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ

2-24 Vol. 2A

INSTRUCTION FORMAT

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not
aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are
listed in Table 2-18 through Table 2-27, certain subsets of AVX instructions may be subject to #UD exception
depending on the encoded value of the VEX.L field. Table 2-17 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-16. #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD,
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128,
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128,
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12

Vol. 2A 2-25

INSTRUCTION FORMAT

Table 2-17. #UD Exception and VEX.L Field Encoding
Exception

Class
#UD If VEX.L = 0

#UD If (VEX.L = 1 && AVX2 not present && AVX
present)

#UD If (VEX.L = 1 && AVX2
present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D,
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D,
VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND,
VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW,
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q,
VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W,
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D,
VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD,
VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D,
VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D,
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

VPCMP(E/I)STRI/M,
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD,
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW,
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128,
VPERM2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ,
VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD,
VPSRLW, VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12

2-26 Vol. 2A

INSTRUCTION FORMAT

2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-18. Type 1 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Vol. 2A 2-27

INSTRUCTION FORMAT

2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)

Table 2-19. Type 2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception,
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-28 Vol. 2A

INSTRUCTION FORMAT

2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-20. Type 3 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 Bytes or
less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

Vol. 2A 2-29

INSTRUCTION FORMAT

2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-21. Type 4 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:
1. PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not aligned to

16-Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

2-30 Vol. 2A

INSTRUCTION FORMAT

2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22. Type 5 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Vol. 2A 2-31

INSTRUCTION FORMAT

2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23. Type 6 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault
#PF(fault-code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

2-32 Vol. 2A

INSTRUCTION FORMAT

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24. Type 7 Class Exception Conditions

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25. Type 8 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ≠ 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Vol. 2A 2-33

INSTRUCTION FORMAT

2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26. Type 11 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF
(fault-code)

X X X For a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

2-34 Vol. 2A

INSTRUCTION FORMAT

2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS
VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15)

for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only.
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27. Type 12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix.

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm ≠ ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

Vol. 2A 2-35

INSTRUCTION FORMAT

Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD.
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.5.1 Exception Conditions for VEX-Encoded GPR Instructions
The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions.
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details.

2.6 INTEL® AVX-512 ENCODING
The majority of the Intel AVX-512 family of instructions (operating on 512/256/128-bit vector register operands)
are encoded using a new prefix (called EVEX). Opmask instructions (operating on opmask register operands) are
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using
the VEX prefix, and many other capabilities not available with the VEX prefix.
The significant feature differences between EVEX and VEX are summarized below.

Table 2-28. VEX-Encoded GPR Instructions

Exception Class Instruction

See Table 2-29 ANDN, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29. Exception Definition (VEX-Encoded GPR Instructions)

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

2-36 Vol. 2A

INSTRUCTION FORMAT

• EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte
(C4H is the first byte) prefix.

• EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
• EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded

vector instructions. Opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.

• EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve the encoding
density of the instruction byte stream.

• EVEX prefix can encode functionality that are specific to instruction classes (e.g., packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).

2.6.1 Instruction Format and EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 2-10. Note that the values contained
within brackets are optional.

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 2-11. The first byte must be 62H, followed
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 2-11).

Figure 2-10. AVX-512 Instruction Format and the EVEX Prefix

Figure 2-11. Bit Field Layout of the EVEX Prefix

[Immediate][Prefixes] [Disp16,32][SIB]ModR/MOpcodeEVEX

of bytes: 4 1 1 1 2, 4 1

[Disp8*N]

1

EVEX 62H P0 P1 P2

P0

7 6 5 4 3 2 01
R X B R’ 0 0 mm

P1

7 6 5 4 3 2 01
W v v v v 1 pp

P2

7 6 5 4 3 2 01
z L’ L b V’ a aa

P[7:0]

P[15:8]

P[23:16]

Vol. 2A 2-37

INSTRUCTION FORMAT

The bit fields in P[23:0] are divided into the following functional groups (Table 2-30 provides a tabular summary):
• Reserved bits: P[3:2] must be 0, otherwise #UD.
• Fixed-value bit: P[10] must be 1, otherwise #UD.
• Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is

identical to VEX.pp.
• Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows

access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.
• Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register

set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.

• Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].

• Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector
registers.

• EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.

• Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.

• Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the
following instruction classes are:

— Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+Op semantic where one of the source operand is from memory.

— Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.

Table 2-30. EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment

-- Reserved P[3 : 2] Must be 0.

-- Fixed Value P[10] Must be 1.

EVEX.mm Compressed legacy escape P[1: 0] Identical to low two bits of VEX.mmmmm.

EVEX.pp Compressed legacy prefix P[9 : 8] Identical to VEX.pp.

EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx).

EVEXR’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg.

EVEXX High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent.

EVEX.vvvv NDS register specifier P[14 : 11] Same as VEX.vvvv.

EVEXV’ High-16 NDS/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present.

EVEX.aaa Embedded opmask register specifier P[18 : 16]

EVEX.W Osize promotion/Opcode extension P[15]

EVEX.z Zeroing/Merging P[23]

EVEX.b Broadcast/RC/SAE Context P[20]

EVEX.L’L Vector length/RC P[22 : 21]

2-38 Vol. 2A

INSTRUCTION FORMAT

• Vector length/rounding control specifier: P[22:21] can serve one of three options.

— Vector length information for packed vector instructions.

— Ignored for instructions operating on vector register content as a single data element.

— Rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.

2.6.2 Register Specifier Encoding and EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 2-31. Opmask register encoding is described in
Section 2.6.3.

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 2-32.

2.6.3 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
• Opmask registers that are the source or destination operands of an instruction treating the content of opmask

register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support
conditional update of the destination operand.

• An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 2.6.4).

Table 2-31. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

41

NOTES:
1. Not applicable for accessing general purpose registers.

3 [2:0] Reg. Type Common Usages

REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source

NDS/NDD EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination

RM EVEX.X EVEX.B modrm.r/m GPR, Vector 1st Source or Destination

BASE 0 EVEX.B modrm.r/m GPR memory addressing

INDEX 0 EVEX.X sib.index GPR memory addressing

VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing

Table 2-32. EVEX Encoding Register Specifiers in 32-bit Mode

[2:0] Reg. Type Common Usages

REG modrm.reg GPR, Vector Destination or Source

NDS/NDD EVEX.vvv GPR, Vector 2nd Source or Destination

RM modrm.r/m GPR, Vector 1st Source or Destination

BASE modrm.r/m GPR Memory Addressing

INDEX sib.index GPR Memory Addressing

VIDX sib.index Vector VSIB Memory Addressing

Vol. 2A 2-39

INSTRUCTION FORMAT

• An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.

2.6.4 Masking Support in EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand.
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:
• Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old

value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.

• Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.

AVX-512 Foundation instructions can be divided into the following groups:
• Instructions which support “zeroing-masking”.

— Also allow merging-masking.
• Instructions which require aaa = 000.

— Do not allow any form of masking.
• Instructions which allow merging-masking but do not allow zeroing-masking.

— Require EVEX.z to be set to 0.

— This group is mostly composed of instructions that write to memory.
• Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

— Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

2.6.5 Compressed Displacement (disp8*N) Support in EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 2-34 and Table 2-35 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 2-34 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of

Table 2-33. Opmask Register Specifier Encoding

[2:0] Register Access Common Usages

REG modrm.reg k0-k7 Source

NDS VEX.vvvv k0-k7 2nd Source

RM modrm.r/m k0-7 1st Source

{k1} EVEX.aaa k01-k7

NOTES:
1. Instructions that overwrite the conditional mask in opmask do not permit using k0 as the embedded mask.

Opmask

2-40 Vol. 2A

INSTRUCTION FORMAT

numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword (see Section 2.6.11).
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 2-35. Table 2-35
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 2-35. Instruc-
tion classified in Table 2-35 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 2-34. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 2-35. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple2
32bit 0 8 8 8

Broadcast (2 elements)
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements)
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)

Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

Vol. 2A 2-41

INSTRUCTION FORMAT

2.6.6 EVEX Encoding of Broadcast/Rounding/SAE Support
EVEX.b can provide three types of encoding context, depending on the instruction classes:
• Embedded broadcasting of one data element from a source memory operand to the destination for vector

instructions with “load+op” semantic.
• Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
• “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that

do not have rounding semantic.

2.6.7 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.
The following instruction classes do not support embedded broadcasting:
• Instructions with only one scalar result is written to the vector destination.
• Instructions with explicit broadcast functionality provided by its opcode.
• Instruction semantic is a pure load or a pure store operation.

2.6.8 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set.

2.6.9 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set.

2.6.10 Vector Length Orthogonality
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in
Table 2-36.

2-42 Vol. 2A

INSTRUCTION FORMAT

2.6.11 #UD Equations for EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and
opcode dependent.

2.6.11.1 State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 2-37 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCR0 shown in Table 2-37 will cause #UD.

2.6.11.2 Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns
listed in Table 2-38.

Table 2-36. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]

Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC

Reg-reg, FP Instructions w/ rounding semantic Enable static rounding
control (SAE implied)

Vector length Implied
(512 bit or scalar)

00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ

FP Instructions w/o rounding semantic, can cause #XF SAE control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)

NA

Load+op Instructions w/ memory source Broadcast Control NA

Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)

Must be 0 (otherwise
#UD)

NA

Table 2-37. OS XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]

Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b

VEX-encoded instructions operating on YMM YMM xxxxx111b

EVEX-encoded 128-bit instructions ZMM 111xx111b

EVEX-encoded 256-bit instructions ZMM 111xx111b

EVEX-encoded 512-bit instructions ZMM 111xx111b

VEX-encoded instructions operating on opmask k-reg xx1xxx11b

Table 2-38. Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD

P[3 : 2] -- if > 0 if > 0

P[10] -- if 0 if 0

P[1: 0] EVEX.mm if 00b if 00b

P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)

Vol. 2A 2-43

INSTRUCTION FORMAT

2.6.11.3 Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 2-39 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.

Table 2-40 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 2-39. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.R P[7] ModRM.reg encodes k-reg if EVEX.R = 0 None (BOUND if
EVEX.RX != 11b)ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)

ModRM.r/m encodes k-reg or GPR None (ignored)

ModRM.r/m without SIB/VSIB None (ignored)

ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)

ModRM.r/m encodes other registers None (valid)

ModRM.r/m base present None (valid)

ModRM.r/m base not present None (ignored)

EVEXR’ P[4] ModRM.reg encodes k-reg or GPR if 0 None (ignored)

ModRM.reg is opcode extension None (ignored)

ModRM.reg encodes ZMM/YMM/XMM None (valid)

EVEX.vvvv P[14 : 11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored

Otherwise if != 1111b if != 1111b

EVEXV’ P[19] Encodes ZMM/YMM/XMM None (valid) None (ignored)

Otherwise if 0 None (ignored)

Table 2-40. #UD Conditions of Opmask Related Encoding Field

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.aaa P[18 : 16] Instructions do not use opmask for conditional processing1.

NOTES:
1. E.g., VBROADCASTMxxx, VPMOVM2x, VPMOVx2M.

if aaa != 000b if aaa != 000b

Opmask used as conditional processing mask and updated
at completion2.

2. E.g., Gather/Scatter family.

if aaa = 000b if aaa = 000b;

Opmask used as conditional processing. None (valid3)

3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all elements will be pro-
cessed as if there was a mask of ‘all ones’ regardless of the actual value in K0.

None (valid1)

EVEX.z P[23] Vector instruction using opmask as source or destination4. if EVEX.z != 0 if EVEX.z != 0

Store instructions or gather/scatter instructions. if EVEX.z != 0 if EVEX.z != 0

Instruction supporting conditional processing mask with
EVEX.aaa = 000b.

if EVEX.z != 0 if EVEX.z != 0

VEX.vvvv Varies K-regs are instruction operands not mask control. if vvvv = 0xxxb None

2-44 Vol. 2A

INSTRUCTION FORMAT

Table 2-41 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

2.6.12 Device Not Available
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.

2.6.13 Scalar Instructions
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support
masking (using the least significant bit of the opmask register), but broadcasting is not supported.

2.7 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named
“E##NF”. A summary table of exception classes by class names are shown below.

4. E.g., VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M.

Table 2-41. #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEX.L’Lb P[22 : 20] Reg-reg, FP instructions with rounding semantic. None (valid1)

NOTES:
1. L’L specifies rounding control, see Table 2-36, supports {er} syntax.

None (valid1)

Other reg-reg, FP instructions that can cause #XF. None (valid2)

2. L’L specifies vector length, see Table 2-36, supports {sae} syntax.

None (valid2)

Other reg-mem instructions in Table 2-34. None (valid3)

3. L’L specifies vector length, see Table 2-36, supports embedded broadcast syntax

None (valid3)

Other instruction classes4 in Table 2-35.

4. L’L specifies either vector length or ignored.

If EVEX.b > 0 If EVEX.b > 0

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

Type E1 Vector Moves/Load/Stores Explicitly aligned, w/ fault suppression None

Type E1NF Vector Non-temporal Stores Explicitly aligned, no fault suppression None

Type E2 FP Vector Load+op Support fault suppression Yes

Type E2NF FP Vector Load+op No fault suppression Yes

Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression Yes

Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression Yes

Type E4 Integer Vector Load+op Support fault suppression No

Type E4NF Integer Vector Load+op No fault suppression No

Type E5 Legacy-like Promotion Varies, Support fault suppression No

Vol. 2A 2-45

INSTRUCTION FORMAT

Table 2-43 lists EVEX-encoded instruction mnemonic by exception classes.

Type E5NF Legacy-like Promotion Varies, No fault suppression No

Type E6 Post AVX Promotion Varies, w/ fault suppression No

Type E6NF Post AVX Promotion Varies, no fault suppression No

Type E7NM Register-to-register op None None

Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression None

Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression None

Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression None

Type E11 VCVTPH2PS Half Vector Length, w/ fault suppression Yes

Type E11NF VCVTPS2PH Half Vector Length, no fault suppression Yes

Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression None

Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault None

Table 2-43. EVEX Instructions in each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64

Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

Type E2

VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPS2DQ, VCVTTPD2DQ,
VCVTTPS2DQ, VDIVPD, VDIVPS, VFMADDxxxPD, VFMADDxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS,
VFMSUBxxxPD, VFMSUBxxxPS, VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VMAXPD,
VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS

VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ,
VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD,
VCVTUQQ2PS, VFIXUPIMMPD, VFIXUPIMMPS, VGETEXPPD, VGETEXPPS, VGETMANTPD, VGETMANTPS, VRANGEPD,
VRANGEPS, VREDUCEPD, VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, VSCALEFPD, VSCALEFPS, VRCP28PD,
VRCP28PS, VRSQRT28PD, VRSQRT28PS

Type E3

VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2PD, VCVTSD2SS, VCVTSS2SD, VDIVSD, VDIVSS, VMAXSD, VMAXSS,
VMINSD, VMINSS, VMULSD, VMULSS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS

VCVTPS2QQ, VCVTPS2UQQ, VCVTTPS2QQ, VCVTTPS2UQQ, VFMADDxxxSD, VFMADDxxxSS, VFMSUBxxxSD,
VFMSUBxxxSS, VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD,
VFIXUPIMMSS, VGETEXPSD, VGETEXPSS, VGETMANTSD, VGETMANTSS, VRANGESD, VRANGESS, VREDUCESD,
VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD,
VRSQRT28SS

Type E3NF

VCOMISD, VCOMISS, VCVTSD2SI, VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VCVTTSD2SI, VCVTTSS2SI, VUCOMISD,
VUCOMISS

VCVTSD2USI, VCVTTSD2USI, VCVTSS2USI, VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SS

Table 2-42. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)

2-46 Vol. 2A

INSTRUCTION FORMAT

Type E4

VANDPD, VANDPS, VANDNPD, VANDNPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ,
VPANDND, VPANDNQ, VPCMPEQD, VPCMPEQQ, VPCMPGTD, VPCMPGTQ, VPMAXSD, VPMAXSQ, VPMAXUD,
VPMAXUQ, VPMINSD, VPMINSQ, VPMINUD, VPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD,
VPORQ, VPSUBD, VPSUBQ, VPXORD, VPXORQ, VXORPD, VXORPS, VPSLLVD, VPSLLVQ,

VBLENDMPD, VBLENDMPS, VPBLENDMD, VPBLENDMQ, VFPCLASSPD, VFPCLASSPS, VPCMPD, VPCMPQ, VPCMPUD,
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPROLD, VPROLQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)1,
VPTERNLOGD, VPTERNLOGQ, VPTESTMD, VPTESTMQ, VPTESTNMD, VPTESTNMQ, VRCP14PD, VRCP14PS,
VRSQRT14PD, VRSQRT14PS, VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ, VPMADD52LUQ, VPMADD52HUQ

E4.nb2

VMOVUPD, VMOVUPS, VMOVDQU8, VMOVDQU16, VMOVDQU32, VMOVDQU64, VPCMPB, VPCMPW, VPCMPUB,
VPCMPUW, VEXPANDPD, VEXPANDPS, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ,
VCOMPRESSPD, VCOMPRESSPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,
VPADDUSW, VPAVGB, VPAVGW, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPMAXSB, VPMAXSW,
VPMAXUB, VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW,
VPMULLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, VPTESTMW, VPTESTNMB, VPTESTNMW, VPSLLW,
VPSRAW, VPSRLW, VPSLLVW, VPSRLVW

Type E4NF

VPACKSSDW, VPACKUSDW VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, VPUNPCKLQDQ, VSHUFPD,
VSHUFPS, VUNPCKHPD, VUNPCKHPS, VUNPCKLPD, VUNPCKLPS, VPERMD, VPERMPS, VPERMPD, VPERMQ,

VALIGND, VALIGNQ, VPCONFLICTD, VPCONFLICTQ, VPERMI2D, VPERMI2PS, VPERMI2PD, VPERMI2Q, VPERMT2D,
VPERMT2PS, VPERMT2Q, VPERMT2PD, VPERMILPD, VPERMILPS, VSHUFI32X4, VSHUFI64X2, VSHUFF32X4,
VSHUFF64X2, VPMULTISHIFTQB

E4NF.nb2

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMI2W, VPERMT2W

Type E5

VCVTDQ2PD, PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ,
PMOVZXBW, PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ

VCVTUDQ2PD

Type E5NF VMOVDDUP

Type E6

VBROADCASTSS, VBROADCASTSD, VBROADCASTF32X4, VBROADCASTI32X4, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ,

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VFPCLASSSD, VFPCLASSSS, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW, VPMOVWB, VPMOVSWB, VPMOVUSWB

Type E6NF
VEXTRACTF32X4, VEXTRACTF64X2, VEXTRACTF32X8, VINSERTF32X4, VINSERTF64X2, VINSERTF64X4,
VINSERTF32X8, VINSERTI32X4, VINSERTI64X2, VINSERTI64X4, VINSERTI32X8, VEXTRACTI32X4,
VEXTRACTI64X2, VEXTRACTI32X8, VEXTRACTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D

Type
E7NM.1284

VMOVLHPS, VMOVHLPS

Type E7NM.
(VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVM2B, VPMOVM2D, VPMOVM2Q,
VPMOVM2W, VPMOVB2M, VPMOVD2M, VPMOVQ2M, VPMOVW2M

Table 2-43. EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction

Vol. 2A 2-47

INSTRUCTION FORMAT

Type E9NF
VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS,

Type E10NF (VCVTSI2SD, VCVTUSI2SD)6

Type E11 VCVTPH2PS, VCVTPS2PH

Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS

Type E12NP
 VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS,
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD,
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:
1. Operand encoding Full tupletype with immediate.
2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding Mem128 tupletype.
4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.

Table 2-43. EVEX Instructions in each Exception Class (Contd.)

Exception Class Instruction

2-48 Vol. 2A

INSTRUCTION FORMAT

2.7.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.

Table 2-44. Type E1 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in
a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Vol. 2A 2-49

INSTRUCTION FORMAT

EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1NF.

Table 2-45. Type E1NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

2-50 Vol. 2A

INSTRUCTION FORMAT

2.7.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 2-46. Type E2 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.

General Protec-
tion, #GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If EVEX.B=1, alignment checking is enabled, and an unaligned memory reference of 8
bytes or less is made while the current privilege level is 3.

SIMD Floating-
point Exception,
#XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

Vol. 2A 2-51

INSTRUCTION FORMAT

2.7.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception
class E3.

Table 2-47. Type E3 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

2-52 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow
exception class E3NF.

Table 2-48. Type E3NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X EVEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.

Vol. 2A 2-53

INSTRUCTION FORMAT

2.7.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow
exception class E4.

Table 2-49. Type E4 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4.nb subclass (see E4.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If EVEX.B=1, alignment checking is enabled, and an unaligned memory reference
of 8 bytes or less is made while the current privilege level is 3.

2-54 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.

Table 2-50. Type E4NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 2-43).
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Vol. 2A 2-55

INSTRUCTION FORMAT

2.7.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault
suppression follow exception class E5.

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class E5NF.

Table 2-51. Type E5 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

2-56 Vol. 2A

INSTRUCTION FORMAT

Table 2-52. Type E5NF Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-57

INSTRUCTION FORMAT

2.7.6 Exceptions Type E6 and E6NF

Table 2-53. Type E6 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.

2-58 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow
exception class E6NF.

Table 2-54. Type E6NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault #PF(fault-
code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.

Vol. 2A 2-59

INSTRUCTION FORMAT

2.7.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class
E7NM.

Table 2-55. Type E7NM Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• Instruction specific EVEX.L’L restriction not met.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

2-60 Vol. 2A

INSTRUCTION FORMAT

2.7.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory
fault suppression follow exception class E9.

Table 2-56. Type E9 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-61

INSTRUCTION FORMAT

EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class E9NF.

Table 2-57. Type E9NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 00b (VL=128).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X If an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

2-62 Vol. 2A

INSTRUCTION FORMAT

2.7.9 Exceptions Type E10
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.

Table 2-58. Type E10 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Vol. 2A 2-63

INSTRUCTION FORMAT

EVEX-encoded scalar instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP exception nor
support memory fault suppression follow exception class E10NF.

Table 2-59. Type E10NF Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X If EVEX prefix present.

X X

If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)

X If fault suppression not set, and an illegal address in the SS segment.

X
If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X
If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X
If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

X X X If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

2-64 Vol. 2A

INSTRUCTION FORMAT

2.7.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do
not cause #AC follow exception class E11.

Table 2-60. Type E11 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X If fault suppression not set, and an illegal address in the SS segment.

X If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.

General Protection,
#GP(0)

X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.

X If fault suppression not set, and the memory address is in a non-canonical form.

X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF (fault-
code)

X X X If fault suppression not set, and a page fault.

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.

Vol. 2A 2-65

INSTRUCTION FORMAT

2.7.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

Table 2-61. Type E12 Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).
• If vvvv != 1111b.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

X X X X If index = destination register (gather operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF (fault-
code)

X X X For a page fault.

2-66 Vol. 2A

INSTRUCTION FORMAT

EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 2-62. Type E12NP Class Exception Conditions

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X If EVEX prefix present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.
• Opmask encoding #UD condition of Table 2-40.
• If EVEX.b != 0.
• If EVEX.L’L != 10b (VL=512).

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X NA If address size attribute is 16 bit.

X X X X If ModR/M.mod = ‘11b’.

X X X X If ModR/M.rm != ‘100b’.

X X X X If any corresponding CPUID feature flag is ‘0’.

X X X X If k0 is used (gather or scatter operation).

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0) X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Vol. 2A 2-67

INSTRUCTION FORMAT

2.8 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS
The exception behavior of VEX-encoded opmask instructions are listed below.
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 2-63. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If ModRM:[7:6] != 11b.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

2-68 Vol. 2A

INSTRUCTION FORMAT

Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 2-64. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.

X X If a VEX prefix is present.

X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
• State requirement, Table 2-37 not met.
• Opcode independent #UD condition in Table 2-38.
• Operand encoding #UD conditions in Table 2-39.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

Stack, SS(0) X X X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault #PF(fault-
code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

10.Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

--

Changes to this chapter: Define “m80bcd” in Section 3.1.1.3. Updated Figure 3-2 “Memory Bit Indexing” with
missing numbers.
Updates to the following instructions are covered here with change bars: ADC, ADD, AND, BNDLDX, BNDSTX, BSF,
BSR, CMP, CPUID, and FBLD.

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-5

— 66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH and 0F38H.
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either 0FH, 0F3AH or
0F38H.

— W0: EVEX.W=0.

— W1: EVEX.W=1.

— WIG: EVEX.W bit ignored
• opcode — Instruction opcode.
• In general, the encoding of EVEX.R and R’, EVEX.X and X’, and EVEX.B and B’ fields are not shown explicitly in

the opcode column.

3.1.1.3 Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program.
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions
with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one
of the byte registers (R8L - R15L) available when using REX.R and 64-bit mode.

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers
(R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15.
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive.
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

INSTRUCTION SET REFERENCE, A-L

3-6 Vol. 2A

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8L - R15L are available using REX.R in
64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of
memory are found at the address provided by the effective address computation. Word registers R8W - R15W
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
EDI. The contents of memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m64 — A memory quadword operand in memory.
• m128 — A memory double quadword operand in memory.
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The

number to the left of the colon corresponds to the pointer's segment selector. The number to the right
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR
registers.

• m80bcd— A Binary Coded Decimal (BCD) operand in memory, 80 bits.
• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or

doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4,
and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands for
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-7

• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers
are: MM0 through MM7. The contents of memory are found at the address provided by the effective address
computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• <XMM0>— Indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second
source operand using an XMM register.
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — A YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are
available in 64-bit mode.

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — A YMM register or 256-bit memory operand.
• <YMM0>— Indicates use of the YMM0 register as an implicit argument.
• bnd — A 128-bit bounds register. BND0 through BND3.
• mib — A memory operand using SIB addressing form, where the index register is not used in address calcu-

lation, Scale is ignored. Only the base and displacement are used in effective address calculation.
• m512 — A 64-byte operand in memory.
• zmm/m512 — A ZMM register or 512-bit memory operand.
• {k1}{z} — A mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.

Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.

• {k1} — Without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking.

• k1 — A mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0
through k7.

• mV — A vector memory operand; the operand size is dependent on the instruction.
• vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of

memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).

• vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).

INSTRUCTION SET REFERENCE, A-L

3-8 Vol. 2A

• zmm/m512/m32bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.

• zmm/m512/m64bcst — An operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.

• <ZMM0> — Indicates use of the ZMM0 register as an implicit argument.
• {er} — Indicates support for embedded rounding control, which is only applicable to the register-register form

of the instruction. This also implies support for SAE (Suppress All Exceptions).
• {sae} — Indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE,

but do not support embedded rounding control.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the

VEX/EVEX prefix and having three source operands.
• SRC — The source in a single-source instruction.
• DST — the destination in an instruction. This field is encoded by reg_field.

3.1.1.4 Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.
EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 2-34 and Table 2-35, according to tupletypes. The tupletype for an instruction is listed in the operand
encoding definition table where applicable.

NOTES
• The letters in the Op/En column of an instruction apply ONLY to the encoding definition table

immediately following the instruction summary table.
• In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of

the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the
content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table
The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated specific
instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of

valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not

supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-13

If BitBase is a memory address, the BitOffset has different ranges depending on the operand size (see Table
3-2).

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where
DIV is signed division with rounding towards negative infinity and MOD returns a positive number (see
Figure 3-2).

3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section
The Intel C/C++ compiler intrinsic functions give access to the full power of the Intel Architecture Instruction Set,
while allowing the compiler to optimize register allocation and instruction scheduling for faster execution. Most of
these functions are associated with a single IA instruction, although some may generate multiple instructions or
different instructions depending upon how they are used. In particular, these functions are used to invoke instruc-
tions that perform operations on vector registers that can hold multiple data elements. These SIMD instructions
use the following data types.
• __m128, __m256 and __m512 can represent 4, 8 or 16 packed single-precision floating-point values, and are

used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128 data
type is also used with various single-precision floating-point scalar instructions that perform calculations using
only the lowest 32 bits of a vector register; the remaining bits of the result come from one of the sources or are
set to zero depending upon the instruction.

• __m128d, __m256d and __m512d can represent 2, 4 or 8 packed double-precision floating-point values, and
are used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128d
data type is also used with various double-precision floating-point scalar instructions that perform calculations
using only the lowest 64 bits of a vector register; the remaining bits of the result come from one of the sources
or are set to zero depending upon the instruction.

• __m128i, __m256i and __m512i can represent integer data in bytes, words, doublewords, quadwords, and
occasionally larger data types.

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1

32 0 to 31 − 231 to 231 − 1

64 0 to 63 − 263 to 263 − 1

Figure 3-2. Memory Bit Indexing

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ← +13

BitBase − 1 BitBase

BitOffset ← −11

ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-27

ADC—Add with Carry

Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and
stores the result in the destination operand. The destination operand can be a register or a memory location; the
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate
value is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-
bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to r/m8.

81 /2 iw ADC r/m16, imm16 MI Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32, imm32 MI Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64, imm32 MI Valid N.E. Add with CF imm32 sign extended to 64-bits
to r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to byte register.

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

I AL/AX/EAX/RAX imm8/16/32 NA NA

ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

3-28 Vol. 2A

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result,
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is
followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC: extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);

ADC: extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short
*sum_out);

ADC: extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);

ADC: extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64
*sum_out);

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-29

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

ADD—Add

INSTRUCTION SET REFERENCE, A-L

3-32 Vol. 2A

ADD—Add

Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result
in the destination operand. The destination operand can be a register or a memory location; the source operand
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the CF and OF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The
SF flag indicates the sign of the signed result.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to r/m8.

81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 id ADD r/m64, imm32 MI Valid N.E. Add imm32 sign-extended to 64-bits to
r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

I AL/AX/EAX/RAX imm8/16/32 NA NA

ADD—Add

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-33

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

AND—Logical AND

INSTRUCTION SET REFERENCE, A-L

3-62 Vol. 2A

AND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in
the destination operand location. The source operand can be an immediate, a register, or a memory location; the
destination operand can be a register or a memory location. (However, two memory operands cannot be used in
one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1;
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 I Valid Valid AL AND imm8.

25 iw AND AX, imm16 I Valid Valid AX AND imm16.

25 id AND EAX, imm32 I Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 I Valid N.E. RAX AND imm32 sign-extended to 64-bits.

80 /4 ib AND r/m8, imm8 MI Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8*, imm8 MI Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, imm16 MI Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 MI Valid Valid r/m32 AND imm32.

REX.W + 81 /4 id AND r/m64, imm32 MI Valid N.E. r/m64 AND imm32 sign extended to 64-bits.

83 /4 ib AND r/m16, imm8 MI Valid Valid r/m16 AND imm8 (sign-extended).

83 /4 ib AND r/m32, imm8 MI Valid Valid r/m32 AND imm8 (sign-extended).

REX.W + 83 /4 ib AND r/m64, imm8 MI Valid N.E. r/m64 AND imm8 (sign-extended).

20 /r AND r/m8, r8 MR Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8*, r8* MR Valid N.E. r/m64 AND r8 (sign-extended).

21 /r AND r/m16, r16 MR Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MR Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MR Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 RM Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*, r/m8* RM Valid N.E. r/m64 AND r8 (sign-extended).

23 /r AND r16, r/m16 RM Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 RM Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 RM Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

I AL/AX/EAX/RAX imm8/16/32 NA NA

AND—Logical AND

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-63

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is
undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

BNDLDX—Load Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

3-96 Vol. 2A

BNDLDX—Load Extended Bounds Using Address Translation

Instruction Operand Encoding

Description
BNDLDX uses the linear address constructed from the base register and displacement of the SIB-addressing form
of the memory operand (mib) to perform address translation to access a bound table entry and conditionally load
the bounds in the BTE to the destination. The destination register is updated with the bounds in the BTE, if the
content of the index register of mib matches the pointer value stored in the BTE.
If the pointer value comparison fails, the destination is updated with INIT bounds (lb = 0x0, ub = 0x0) (note: as
articulated earlier, the upper bound is represented using 1's complement, therefore, the 0x0 value of upper bound
allows for access to full memory).
This instruction does not cause memory access to the linear address of mib nor the effective address referenced by
the base, and does not read or write any flags.
Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.
The base of mib will not be checked for canonical address violation as it does not access memory.
Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded is
implementation specific.

Operation
base mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value mib.SIB.index ? mib.SIB.index : 0;

Outside 64-bit mode
A_BDE[31:0] (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12);
A_BT[31:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_BTE[31:0] (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2);
Temp_lb[31:0] LoadFrom(A_BTE);
Temp_ub[31:0] LoadFrom(A_BTE + 4);
Temp_ptr[31:0] LoadFrom(A_BTE + 8);
IF Temp_ptr equal ptr_value Then

BND.LB Temp_lb;
BND.UB Temp_ub;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 1A /r
BNDLDX bnd, mib

RM V/V MPX Load the bounds stored in a bound table entry (BTE) into bnd with
address translation using the base of mib and conditional on the
index of mib matching the pointer value in the BTE.

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w)
SIB.base (r): Address of pointer

SIB.index(r)
NA

BNDLDX—Load Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-97

ELSE
BND.LB 0;
BND.UB 0;

FI;

In 64-bit mode
A_BDE[63:0] (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12);1

A_BT[63:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_BTE[63:0] (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3);
Temp_lb[63:0] LoadFrom(A_BTE);
Temp_ub[63:0] LoadFrom(A_BTE + 8);
Temp_ptr[63:0] LoadFrom(A_BTE + 16);
IF Temp_ptr equal ptr_value Then

BND.LB Temp_lb;
BND.UB Temp_ub;

ELSE
BND.LB 0;
BND.UB 0;

FI;

Intel C/C++ Compiler Intrinsic Equivalent
BNDLDX: Generated by compiler as needed.

Flags Affected
None

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is 0. If CPL = 3, the user MAWA (MAWAU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Section 17.3.1 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

BNDLDX—Load Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

3-98 Vol. 2A

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
#PF(fault code) If a page fault occurs.

BNDSTX—Store Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

3-104 Vol. 2A

BNDSTX—Store Extended Bounds Using Address Translation

Instruction Operand Encoding

Description
BNDSTX uses the linear address constructed from the displacement and base register of the SIB-addressing form
of the memory operand (mib) to perform address translation to store to a bound table entry. The bounds in the
source operand bnd are written to the lower and upper bounds in the BTE. The content of the index register of mib
is written to the pointer value field in the BTE.
This instruction does not cause memory access to the linear address of mib nor the effective address referenced by
the base, and does not read or write any flags.
Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.
The base of mib will not be checked for canonical address violation as it does not access memory.
Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded is
implementation specific.

Operation
base mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value mib.SIB.index ? mib.SIB.index : 0;

Outside 64-bit mode
A_BDE[31:0] (Zero_extend32(base[31:12] « 2) + (BNDCFG[31:12] «12);
A_BT[31:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_DEST[31:0] (Zero_extend32(base[11:2] « 4) + (A_BT[31:2] « 2); // address of Bound table entry
A_DEST[8][31:0] ptr_value;
A_DEST[0][31:0] BND.LB;
A_DEST[4][31:0] BND.UB;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 1B /r
BNDSTX mib, bnd

MR V/V MPX Store the bounds in bnd and the pointer value in the index regis-
ter of mib to a bound table entry (BTE) with address translation
using the base of mib.

Op/En Operand 1 Operand 2 Operand 3

MR
SIB.base (r): Address of pointer

SIB.index(r)
ModRM:reg (r) NA

BNDSTX—Store Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-105

In 64-bit mode
A_BDE[63:0] (Zero_extend64(base[47+MAWA:20] « 3) + (BNDCFG[63:12] «12);1

A_BT[63:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_DEST[63:0] (Zero_extend64(base[19:3] « 5) + (A_BT[63:3] « 3); // address of Bound table entry
A_DEST[16][63:0] ptr_value;
A_DEST[0][63:0] BND.LB;
A_DEST[8][63:0] BND.UB;

Intel C/C++ Compiler Intrinsic Equivalent
BNDSTX: _bnd_store_ptr_bounds(const void **ptr_addr, const void *ptr_val);

Flags Affected
None

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

1. If CPL < 3, the supervisor MAWA (MAWAS) is used; this value is 0. If CPL = 3, the user MAWA (MAWAU) is used; this value is enumer-
ated in CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17]. See Section 17.3.1 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

BNDSTX—Store Extended Bounds Using Address Translation

INSTRUCTION SET REFERENCE, A-L

3-106 Vol. 2A

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-109

BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the content of the source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
OD;
DEST ← temp;

FI;

Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags
are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC /r BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L

3-110 Vol. 2A

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-111

BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the content source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;
WHILE Bit(SRC, temp) = 0
DO

temp ← temp - 1;
OD;
DEST ← temp;

FI;

Flags Affected

The ZF flag is set to 1 if the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF flags
are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD /r BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE, A-L

3-112 Vol. 2A

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L

3-154 Vol. 2A

CMP—Compare Two Operands

Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the status flags in the EFLAGS register
according to the results. The comparison is performed by subtracting the second operand from the first operand
and then setting the status flags in the same manner as the SUB instruction. When an immediate value is used as
an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruction.
Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, shows the relationship of the status flags and the condition codes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-extended to 64-bits
with RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8*, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16, imm16 MI Valid Valid Compare imm16 with r/m16.

81 /7 id CMP r/m32, imm32 MI Valid Valid Compare imm32 with r/m32.

REX.W + 81 /7 id CMP r/m64, imm32 MI Valid N.E. Compare imm32 sign-extended to 64-bits
with r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 ib CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8*, r8* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*, r/m8* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8/16/32 NA NA

I AL/AX/EAX/RAX (r) imm8/16/32 NA NA

CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-155

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-191

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-8 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on
that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID ZO Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-192 Vol. 2A

Table 3-8. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information.

EBX “Genu”

ECX “ntel”

EDX “ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).

EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31 - 24: Initial APIC ID.

ECX Feature Information (see Figure 3-7 and Table 3-10).

EDX Feature Information (see Figure 3-8 and Table 3-11).

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX Cache and TLB Information (see Table 3-12).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 217.

EAX Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-193

Bits 07 - 05: Cache Level (starts at 1).
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13 - 10: Reserved.
Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***.
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****.

EBX Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.

ECX Bits 31-00: S = Number of Sets**.

EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31 - 03: Reserved = 0.

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15 - 00: Smallest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31 - 16: Reserved = 0.

EBX Bits 15 - 00: Largest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31 - 16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.

Bits 31 - 02: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-194 Vol. 2A

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel Turbo Boost Technology available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bits 31 - 15: Reserved.

EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved.

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0.

EDX Reserved = 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-195

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bit 30: AVX512BW.
Bit 31: AVX512VL.

ECX Bit 00: PREFETCHWT1.
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bits 16 - 5: Reserved.
Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID. Supports Read Processor ID if 1.
Bits 29 - 23: Reserved.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-196 Vol. 2A

EDX Reserved.

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring.
Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events.

EBX Bit 00: Core cycle event not available if 1.
Bit 01: Instruction retired event not available if 1.
Bit 02: Reference cycles event not available if 1.
Bit 03: Last-level cache reference event not available if 1.
Bit 04: Last-level cache misses event not available if 1.
Bit 05: Branch instruction retired event not available if 1.
Bit 06: Branch mispredict retired event not available if 1.
Bits 31 - 07: Reserved = 0.

ECX Reserved = 0.

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1).
Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14 - 13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31 - 16: Reserved = 0.

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a higher-
level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-197

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3-255: Reserved.

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state.
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04 - 03: MPX state.
Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 31 - 10: Reserved.

EBX Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in
XCR0.

EDX Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bits 31 - 04: Reserved.

EBX Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-198 Vol. 2A

ECX Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07 - 00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bits 31 - 10: Reserved.

EDX Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n.

EBX Bits 31 - 0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCR0.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).
Bits 31 - 02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31 - 02: Reserved.

L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-199

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31 - 03: Reserved.

Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31 - 04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01- 00: Reserved.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31 - 00: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 11 - 00: Reports the maximum MBA throttling value supported for the corresponding ResID using
minus-one notation.
Bits 31 - 12: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-200 Vol. 2A

EBX Bits 31 - 00: Reserved.

ECX Bits 01 - 00: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Intel SGX Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04 - 02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, and
ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and ELDUC.
Bits 31 - 02: Reserved.

EBX Bits 31 - 00: MISCSELECT. Bit vector of supported extended SGX features.

ECX Bits 31 - 00: Reserved.

EDX Bits 07 - 00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2^(EDX[7:0]).
Bits 15 - 08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2^(EDX[15:8]).
Bits 31 - 16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below.

EAX Bit 03 - 00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.

EDX:ECX:EBX:EAX return 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-201

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved
Memory.
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bit 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bit 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and
IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.
Bit 31 - 06: Reserved.

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31 - 00: Reserved.

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.

EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.

ECX Bits 31 - 00: Reserved.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-202 Vol. 2A

EDX Bits 31 - 00: Reserved.

Time Stamp Counter and Nominal Core Crystal Clock Information Leaf

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
If ECX is 0, the nominal core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31 - 00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31 - 00: Reserved = 0.

Processor Frequency Information Leaf

16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.

EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

EDX Reserved.

NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.

ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-203

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31 - 00: Reserved = 0.

EBX Bits 31 - 00: Reserved = 0.

ECX Bits 31 - 00: Reserved = 0.

EDX Bits 31 - 00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translation structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-204 Vol. 2A

EDX Bits 04 - 00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB*.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
Each sub-leaf enumerates a different address translation structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0] returns 0.
Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf may be in a
higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level struc-
ture.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction fetches.
Others will require separate entries (e.g., one loaded on data read/write and another loaded on an
instruction fetch) . Please see the Intel® 64 and IA-32 Architectures Optimization Reference Manual for
details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31 - 00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB*.
All other encodings are reserved.

Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation cache**
Bits 31 - 26: Reserved.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-205

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

ECX Bit 00: LAHF/SAHF available in 64-bit mode.
Bits 04 - 01: Reserved.
Bit 05: LZCNT.
Bits 07 - 06: Reserved.
Bit 08: PREFETCHW.
Bits 31 - 09: Reserved.

EDX Bits 10 - 00: Reserved.
Bit 11: SYSCALL/SYSRET available in 64-bit mode.
Bits 19 - 12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25 - 21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX
EBX

Reserved = 0.
Reserved = 0.

ECX

EDX

Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
Reserved = 0.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-206 Vol. 2A

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX ← 756e6547h (* “Genu”, with G in the low eight bits of BL *)
EDX ← 49656e69h (* “ineI”, with i in the low eight bits of DL *)
ECX ← 6c65746eh (* “ntel”, with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

NOTES:
* L2 associativity field encodings:

00H - Disabled.
01H - Direct mapped.
02H - 2-way.
04H - 4-way.
06H - 8-way.
08H - 16-way.
0FH - Fully associative.

80000007H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.

80000008H EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.

EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-8. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-207

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-9 for available processor type values. Stepping IDs are provided as needed.

NOTE
See Chapter 19 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

Figure 3-6. Version Information Returned by CPUID in EAX

Table 3-9. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-208 Vol. 2A

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-7 and Table 3-10 show encodings for ECX.
• Figure 3-8 and Table 3-11 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-209

Figure 3-7. Feature Information Returned in the ECX Register

Table 3-10. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 6, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-210 Vol. 2A

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-10. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-211

Figure 3-8. Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-212 Vol. 2A

Table 3-11. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-213

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form
and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value

and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-12. Table
3-12 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and processor event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-11. More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-214 Vol. 2A

Table 3-12. Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-215

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte
pages, 4-way set associative, 4 entries

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-216 Vol. 2A

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FEH General CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other address
translation parameters.

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-12. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-217

Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-8.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-8.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-8.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-218 Vol. 2A

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-8.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-8),
the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest
leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 3-8.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see Table
3-8) is greater than Pn 0. See Table 3-8.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-8.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 3-8.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 3-8. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-219

1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-8.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 3-8.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 3-8.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 3-8.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 3-8.

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 3-8.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 3-8.

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 3-8.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 3-8.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 19 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor
Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-220 Vol. 2A

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Figure 3-9. Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-221

Table 3-13 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

Table 3-13. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Figure 3-10. Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-222 Vol. 2A

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-14 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Table 3-14. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-223

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-7. *)
EDX ← Feature flags; (* See Figure 3-8. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-8. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-8. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-224 Vol. 2A

EAX = 6H:
EAX ← Thermal and Power Management Leaf; (* See Table 3-8. *)

 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-8. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf;

 ECX ← Structured Extended Feature Flags Enumeration Leaf;
EDX ← Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-8. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-8. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-8. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-8. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-225

EAX = FH:
EAX ← Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 3-8. *)

 EBX ← Intel Resource Director Technology Monitoring Enumeration Leaf;
 ECX ← Intel Resource Director Technology Monitoring Enumeration Leaf;

EDX ← Intel Resource Director Technology Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX ← Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 3-8. *)
 EBX ← Intel Resource Director Technology Allocation Enumeration Leaf;
 ECX ← Intel Resource Director Technology Allocation Enumeration Leaf;

EDX ← Intel Resource Director Technology Allocation Enumeration Leaf;
BREAK;

EAX = 12H:
EAX ← Intel SGX Enumeration Leaf; (* See Table 3-8. *)

 EBX ← Intel SGX Enumeration Leaf;
 ECX ← Intel SGX Enumeration Leaf;

EDX ← Intel SGX Enumeration Leaf;
BREAK;
EAX = 14H:

EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 3-8. *)
 EBX ← Intel Processor Trace Enumeration Leaf;
 ECX ← Intel Processor Trace Enumeration Leaf;

EDX ← Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:

EAX ← Time Stamp Counter and Nominal Core Crystal Clock Information Leaf; (* See Table 3-8. *)
 EBX ← Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
 ECX ← Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;

EDX ← Time Stamp Counter and Nominal Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 3-8. *)
 EBX ← Processor Frequency Information Enumeration Leaf;
 ECX ← Processor Frequency Information Enumeration Leaf;

EDX ← Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:

EAX ← System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-8. *)
 EBX ← System-On-Chip Vendor Attribute Enumeration Leaf;
 ECX ← System-On-Chip Vendor Attribute Enumeration Leaf;

EDX ← System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;

EAX = 18H:
EAX ← Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 3-8. *)

 EBX ← Deterministic Address Translation Parameters Enumeration Leaf;
 ECX ←Deterministic Address Translation Parameters Enumeration Leaf;

EDX ← Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

3-226 Vol. 2A

EAX = 80000001H:
EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-8.*);
EDX ← Extended Feature Bits (* See Table 3-8. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information;
EBX ← Reserved = Virtual Address Size Information;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-227

EDX ← Reserved; (* Information returned for highest basic information leaf. *)
BREAK;

ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.

FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-L

3-318 Vol. 2A

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point format and pushes the value onto
the FPU stack. The source operand is loaded without rounding errors. The sign of the source operand is preserved,
including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not check for invalid digits
(AH through FH). Attempting to load an invalid encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

DF /4 FBLD m80bcd Valid Valid Convert BCD value to floating-point and push onto the
FPU stack.

FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-319

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

11.Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, M-U.

--
Changes to this chapter:
Updates to the following instructions are covered here with change bars: MOV, MOVDQU/VMOVDQU8/16/32/64,
MOVNTDQA, MOVQ, MOVQ2DQ, PADDB/PADDW/PADDD/PADDQ, PCMPGTB/PCMPGTW/PCMPGTD, PMADDUBSW,
PMADDWD, PSLLW/PSLLD/PSLLQ, PSRLW/PSRLD/PSRLQ, RDTSC, RDTSCP, SFENCE, SUB, SYSRET, and UD.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-35

MOV—Move
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r16/r32/m16, Sreg** MR Valid Valid Move zero extended 16-bit segment register
to r16/r32/r64/m16.

REX.W + 8C /r MOV r64/m16, Sreg** MR Valid Valid Move zero extended 16-bit segment register
to r64/m16.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 ib MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 id MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to
r/m64.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

4-36 Vol. 2B

Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can be
an immediate value, general-purpose register, segment register, or memory location; the destination register can
be a general-purpose register, segment register, or memory location. Both operands must be the same size, which
can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode excep-
tion (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid
segment selector. In protected mode, moving a segment selector into a segment register automatically causes the
segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part
of the segment register. While loading this information, the segment selector and segment descriptor information
is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruction.
This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP, stack-
pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient method of
loading the SS and ESP registers.

When executing MOV Reg, Sreg, the processor copies the content of Sreg to the 16 least significant bits of the
general-purpose register. The upper bits of the destination register are zero for most IA-32 processors (Pentium

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64

refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-37

Pro processors and later) and all Intel 64 processors, with the exception that bits 31:16 are undefined for Intel
Quark X1000 processors, Pentium and earlier processors.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the
following listing. These checks are performed on the segment selector and the segment descriptor to which it
points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment) AND ((RPL > DPL) or (CPL > DPL)))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None

MOV—Move

INSTRUCTION SET REFERENCE, M-U

4-38 Vol. 2B

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, and either the RPL or the CPL is greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

MOV—Move

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-39

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment selector when CPL = 3.
If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL
≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-67

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values
Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F3 0F 6F /r
MOVDQU xmm1, xmm2/m128

A V/V SSE2 Move unaligned packed integer values from
xmm2/m128 to xmm1.

F3 0F 7F /r
MOVDQU xmm2/m128, xmm1

B V/V SSE2 Move unaligned packed integer values from
xmm1 to xmm2/m128.

VEX.128.F3.0F.WIG 6F /r
VMOVDQU xmm1, xmm2/m128

A V/V AVX Move unaligned packed integer values from
xmm2/m128 to xmm1.

VEX.128.F3.0F.WIG 7F /r
VMOVDQU xmm2/m128, xmm1

B V/V AVX Move unaligned packed integer values from
xmm1 to xmm2/m128.

VEX.256.F3.0F.WIG 6F /r
VMOVDQU ymm1, ymm2/m256

A V/V AVX Move unaligned packed integer values from
ymm2/m256 to ymm1.

VEX.256.F3.0F.WIG 7F /r
VMOVDQU ymm2/m256, ymm1

B V/V AVX Move unaligned packed integer values from
ymm1 to ymm2/m256.

EVEX.128.F2.0F.W0 6F /r
VMOVDQU8 xmm1 {k1}{z}, xmm2/m128

C V/V AVX512VL
AVX512BW

Move unaligned packed byte integer values
from xmm2/m128 to xmm1 using writemask
k1.

EVEX.256.F2.0F.W0 6F /r
VMOVDQU8 ymm1 {k1}{z}, ymm2/m256

C V/V AVX512VL
AVX512BW

Move unaligned packed byte integer values
from ymm2/m256 to ymm1 using writemask
k1.

EVEX.512.F2.0F.W0 6F /r
VMOVDQU8 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512BW Move unaligned packed byte integer values
from zmm2/m512 to zmm1 using writemask
k1.

EVEX.128.F2.0F.W0 7F /r
VMOVDQU8 xmm2/m128 {k1}{z}, xmm1

D V/V AVX512VL
AVX512BW

Move unaligned packed byte integer values
from xmm1 to xmm2/m128 using writemask
k1.

EVEX.256.F2.0F.W0 7F /r
VMOVDQU8 ymm2/m256 {k1}{z}, ymm1

D V/V AVX512VL
AVX512BW

Move unaligned packed byte integer values
from ymm1 to ymm2/m256 using writemask
k1.

EVEX.512.F2.0F.W0 7F /r
VMOVDQU8 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512BW Move unaligned packed byte integer values
from zmm1 to zmm2/m512 using writemask
k1.

EVEX.128.F2.0F.W1 6F /r
VMOVDQU16 xmm1 {k1}{z}, xmm2/m128

C V/V AVX512VL
AVX512BW

Move unaligned packed word integer values
from xmm2/m128 to xmm1 using writemask
k1.

EVEX.256.F2.0F.W1 6F /r
VMOVDQU16 ymm1 {k1}{z}, ymm2/m256

C V/V AVX512VL
AVX512BW

Move unaligned packed word integer values
from ymm2/m256 to ymm1 using writemask
k1.

EVEX.512.F2.0F.W1 6F /r
VMOVDQU16 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512BW Move unaligned packed word integer values
from zmm2/m512 to zmm1 using writemask
k1.

EVEX.128.F2.0F.W1 7F /r
VMOVDQU16 xmm2/m128 {k1}{z}, xmm1

D V/V AVX512VL
AVX512BW

Move unaligned packed word integer values
from xmm1 to xmm2/m128 using writemask
k1.

EVEX.256.F2.0F.W1 7F /r
VMOVDQU16 ymm2/m256 {k1}{z}, ymm1

D V/V AVX512VL
AVX512BW

Move unaligned packed word integer values
from ymm1 to ymm2/m256 using writemask
k1.

EVEX.512.F2.0F.W1 7F /r
VMOVDQU16 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512BW Move unaligned packed word integer values
from zmm1 to zmm2/m512 using writemask
k1.

EVEX.128.F3.0F.W0 6F /r
VMOVDQU32 xmm1 {k1}{z},
xmm2/mm128

C V/V AVX512VL
AVX512F

Move unaligned packed doubleword integer
values from xmm2/m128 to xmm1 using
writemask k1.

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

4-68 Vol. 2B

Instruction Operand Encoding

Description

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed byte/word/doubleword/quadword integer values from the source operand
(the second operand) to the destination operand (first operand). This instruction can be used to load a vector
register from a memory location, to store the contents of a vector register into a memory location, or to move data
between two vector registers.

EVEX.256.F3.0F.W0 6F /r
VMOVDQU32 ymm1 {k1}{z}, ymm2/m256

C V/V AVX512VL
AVX512F

Move unaligned packed doubleword integer
values from ymm2/m256 to ymm1 using
writemask k1.

EVEX.512.F3.0F.W0 6F /r
VMOVDQU32 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F Move unaligned packed doubleword integer
values from zmm2/m512 to zmm1 using
writemask k1.

EVEX.128.F3.0F.W0 7F /r
VMOVDQU32 xmm2/m128 {k1}{z}, xmm1

D V/V AVX512VL
AVX512F

Move unaligned packed doubleword integer
values from xmm1 to xmm2/m128 using
writemask k1.

EVEX.256.F3.0F.W0 7F /r
VMOVDQU32 ymm2/m256 {k1}{z}, ymm1

D V/V AVX512VL
AVX512F

Move unaligned packed doubleword integer
values from ymm1 to ymm2/m256 using
writemask k1.

EVEX.512.F3.0F.W0 7F /r
VMOVDQU32 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F Move unaligned packed doubleword integer
values from zmm1 to zmm2/m512 using
writemask k1.

EVEX.128.F3.0F.W1 6F /r
VMOVDQU64 xmm1 {k1}{z}, xmm2/m128

C V/V AVX512VL
AVX512F

Move unaligned packed quadword integer
values from xmm2/m128 to xmm1 using
writemask k1.

EVEX.256.F3.0F.W1 6F /r
VMOVDQU64 ymm1 {k1}{z}, ymm2/m256

C V/V AVX512VL
AVX512F

Move unaligned packed quadword integer
values from ymm2/m256 to ymm1 using
writemask k1.

EVEX.512.F3.0F.W1 6F /r
VMOVDQU64 zmm1 {k1}{z}, zmm2/m512

C V/V AVX512F Move unaligned packed quadword integer
values from zmm2/m512 to zmm1 using
writemask k1.

EVEX.128.F3.0F.W1 7F /r
VMOVDQU64 xmm2/m128 {k1}{z}, xmm1

D V/V AVX512VL
AVX512F

Move unaligned packed quadword integer
values from xmm1 to xmm2/m128 using
writemask k1.

EVEX.256.F3.0F.W1 7F /r
VMOVDQU64 ymm2/m256 {k1}{z}, ymm1

D V/V AVX512VL
AVX512F

Move unaligned packed quadword integer
values from ymm1 to ymm2/m256 using
writemask k1.

EVEX.512.F3.0F.W1 7F /r
VMOVDQU64 zmm2/m512 {k1}{z}, zmm1

D V/V AVX512F Move unaligned packed quadword integer
values from zmm1 to zmm2/m512 using
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (w) ModRM:reg (r) NA NA

C Full Mem ModRM:reg (w) ModRM:r/m (r) NA NA

D Full Mem ModRM:r/m (w) ModRM:reg (r) NA NA

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-69

The destination operand is updated at 8-bit (VMOVDQU8), 16-bit (VMOVDQU16), 32-bit (VMOVDQU32), or 64-bit
(VMOVDQU64) granularity according to the writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.
Bits (MAXVL-1:256) of the destination register are zeroed.

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned to any alignment
without causing a general-protection exception (#GP) to be generated
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.

Operation

VMOVDQU8 (EVEX encoded versions, register-copy form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1

i j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SRC[i+7:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU8 (EVEX encoded versions, store-form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1

i j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i]
SRC[i+7:i]

ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

4-70 Vol. 2B

VMOVDQU8 (EVEX encoded versions, load-form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1

i j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SRC[i+7:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU16 (EVEX encoded versions, register-copy form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1

i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] SRC[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU16 (EVEX encoded versions, store-form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1

i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i]
SRC[i+15:i]

ELSE *DEST[i+15:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-71

VMOVDQU16 (EVEX encoded versions, load-form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1

i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] SRC[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU32 (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU32 (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i]
SRC[i+31:i]

ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;

ENDFOR;

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

4-72 Vol. 2B

VMOVDQU32 (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU64 (EVEX encoded versions, register-copy form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU64 (EVEX encoded versions, store-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking

FI;
ENDFOR;

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-73

VMOVDQU64 (EVEX encoded versions, load-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] 0

VMOVDQU (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAXVL-1:256] 0

VMOVDQU (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[MAXVL-1:128] 0

VMOVDQU (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)

(V)MOVDQU (128-bit store-form version)
DEST[127:0] SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQU16 __m512i _mm512_mask_loadu_epi16(__m512i s, __mmask32 k, void * sa);
VMOVDQU16 __m512i _mm512_maskz_loadu_epi16(__mmask32 k, void * sa);
VMOVDQU16 void _mm512_mask_storeu_epi16(void * d, __mmask32 k, __m512i a);
VMOVDQU16 __m256i _mm256_mask_loadu_epi16(__m256i s, __mmask16 k, void * sa);
VMOVDQU16 __m256i _mm256_maskz_loadu_epi16(__mmask16 k, void * sa);
VMOVDQU16 void _mm256_mask_storeu_epi16(void * d, __mmask16 k, __m256i a);
VMOVDQU16 __m128i _mm_mask_loadu_epi16(__m128i s, __mmask8 k, void * sa);
VMOVDQU16 __m128i _mm_maskz_loadu_epi16(__mmask8 k, void * sa);
VMOVDQU16 void _mm_mask_storeu_epi16(void * d, __mmask8 k, __m128i a);
VMOVDQU32 __m512i _mm512_loadu_epi32(void * sa);
VMOVDQU32 __m512i _mm512_mask_loadu_epi32(__m512i s, __mmask16 k, void * sa);
VMOVDQU32 __m512i _mm512_maskz_loadu_epi32(__mmask16 k, void * sa);
VMOVDQU32 void _mm512_storeu_epi32(void * d, __m512i a);
VMOVDQU32 void _mm512_mask_storeu_epi32(void * d, __mmask16 k, __m512i a);
VMOVDQU32 __m256i _mm256_mask_loadu_epi32(__m256i s, __mmask8 k, void * sa);
VMOVDQU32 __m256i _mm256_maskz_loadu_epi32(__mmask8 k, void * sa);
VMOVDQU32 void _mm256_storeu_epi32(void * d, __m256i a);
VMOVDQU32 void _mm256_mask_storeu_epi32(void * d, __mmask8 k, __m256i a);
VMOVDQU32 __m128i _mm_mask_loadu_epi32(__m128i s, __mmask8 k, void * sa);
VMOVDQU32 __m128i _mm_maskz_loadu_epi32(__mmask8 k, void * sa);

MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values

INSTRUCTION SET REFERENCE, M-U

4-74 Vol. 2B

VMOVDQU32 void _mm_storeu_epi32(void * d, __m128i a);
VMOVDQU32 void _mm_mask_storeu_epi32(void * d, __mmask8 k, __m128i a);
VMOVDQU64 __m512i _mm512_loadu_epi64(void * sa);
VMOVDQU64 __m512i _mm512_mask_loadu_epi64(__m512i s, __mmask8 k, void * sa);
VMOVDQU64 __m512i _mm512_maskz_loadu_epi64(__mmask8 k, void * sa);
VMOVDQU64 void _mm512_storeu_epi64(void * d, __m512i a);
VMOVDQU64 void _mm512_mask_storeu_epi64(void * d, __mmask8 k, __m512i a);
VMOVDQU64 __m256i _mm256_mask_loadu_epi64(__m256i s, __mmask8 k, void * sa);
VMOVDQU64 __m256i _mm256_maskz_loadu_epi64(__mmask8 k, void * sa);
VMOVDQU64 void _mm256_storeu_epi64(void * d, __m256i a);
VMOVDQU64 void _mm256_mask_storeu_epi64(void * d, __mmask8 k, __m256i a);
VMOVDQU64 __m128i _mm_mask_loadu_epi64(__m128i s, __mmask8 k, void * sa);
VMOVDQU64 __m128i _mm_maskz_loadu_epi64(__mmask8 k, void * sa);
VMOVDQU64 void _mm_storeu_epi64(void * d, __m128i a);
VMOVDQU64 void _mm_mask_storeu_epi64(void * d, __mmask8 k, __m128i a);
VMOVDQU8 __m512i _mm512_mask_loadu_epi8(__m512i s, __mmask64 k, void * sa);
VMOVDQU8 __m512i _mm512_maskz_loadu_epi8(__mmask64 k, void * sa);
VMOVDQU8 void _mm512_mask_storeu_epi8(void * d, __mmask64 k, __m512i a);
VMOVDQU8 __m256i _mm256_mask_loadu_epi8(__m256i s, __mmask32 k, void * sa);
VMOVDQU8 __m256i _mm256_maskz_loadu_epi8(__mmask32 k, void * sa);
VMOVDQU8 void _mm256_mask_storeu_epi8(void * d, __mmask32 k, __m256i a);
VMOVDQU8 __m128i _mm_mask_loadu_epi8(__m128i s, __mmask16 k, void * sa);
VMOVDQU8 __m128i _mm_maskz_loadu_epi8(__mmask16 k, void * sa);
VMOVDQU8 void _mm_mask_storeu_epi8(void * d, __mmask16 k, __m128i a);
MOVDQU __m256i _mm256_loadu_si256 (__m256i * p);
MOVDQU _mm256_storeu_si256(_m256i *p, __m256i a);
MOVDQU __m128i _mm_loadu_si128 (__m128i * p);
MOVDQU _mm_storeu_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.

MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-U

4-92 Vol. 2B

MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding1

Description

MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand (first
operand) using a non-temporal hint if the memory source is WC (write combining) memory type. For WC memory
type, the nontemporal hint may be implemented by loading a temporary internal buffer with the equivalent of an
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any
time for any reason, for example:
• A load operation other than a MOVNTDQA which references memory already resident in a temporary internal
buffer.
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to a single temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of
a mis-speculation condition, and various fault conditions
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when reading the
data from memory. Using this protocol, the processor
does not read the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into
the cache hierarchy. The memory type of the region being read can override the non-temporal hint, if the memory
address specified for the non-temporal read is not a WC memory region. Information on non-temporal reads and
writes can be found in “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32
Architecture Software Developer’s Manual, Volume 3A.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with
a MFENCE instruction should be used in conjunction with MOVNTDQA instructions if multiple processors might use
different memory types for the referenced memory locations or to synchronize reads of a processor with writes by
other agents in the system. A processor’s implementation of the streaming load hint does not override the effective
memory type, but the implementation of the hint is processor dependent. For example, a processor implementa-

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature Flag

Description

66 0F 38 2A /r
MOVNTDQA xmm1, m128

A V/V SSE4_1 Move double quadword from m128 to xmm1 using non-
temporal hint if WC memory type.

VEX.128.66.0F38.WIG 2A /r
VMOVNTDQA xmm1, m128

A V/V AVX Move double quadword from m128 to xmm using non-
temporal hint if WC memory type.

VEX.256.66.0F38.WIG 2A /r
VMOVNTDQA ymm1, m256

A V/V AVX2 Move 256-bit data from m256 to ymm using non-temporal
hint if WC memory type.

EVEX.128.66.0F38.W0 2A /r
VMOVNTDQA xmm1, m128

B V/V AVX512VL
AVX512F

Move 128-bit data from m128 to xmm using non-temporal
hint if WC memory type.

EVEX.256.66.0F38.W0 2A /r
VMOVNTDQA ymm1, m256

B V/V AVX512VL
AVX512F

Move 256-bit data from m256 to ymm using non-temporal
hint if WC memory type.

EVEX.512.66.0F38.W0 2A /r
VMOVNTDQA zmm1, m512

B V/V AVX512F Move 512-bit data from m512 to zmm using non-temporal
hint if WC memory type.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

B Full Mem ModRM:reg (w) ModRM:r/m (r) NA NA

1. ModRM.MOD = 011B required

MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-93

tion may choose to ignore the hint and process the instruction as a normal MOVDQA for any memory type. Alter-
natively, another implementation may optimize cache reads generated by MOVNTDQA on WB memory type to
reduce cache evictions.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.
The 512-bit VMOVNTDQA addresses must be 64-byte aligned or the instruction will cause a #GP.

Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST SRC
DEST[MAXVL-1:128] (Unmodified)

VMOVNTDQA (VEX.128 and EVEX.128 encoded form)
DEST SRC
DEST[MAXVL-1:128] 0

VMOVNTDQA (VEX.256 and EVEX.256 encoded forms)
DEST[255:0] SRC[255:0]
DEST[MAXVL-1:256] 0

VMOVNTDQA (EVEX.512 encoded form)
DEST[511:0] SRC[511:0]
DEST[MAXVL-1:512] 0

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTDQA __m512i _mm512_stream_load_si512(__m512i const* p);
MOVNTDQA __m128i _mm_stream_load_si128 (const __m128i *p);
VMOVNTDQA __m256i _mm256_stream_load_si256 (__m256i const* p);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type1;
EVEX-encoded instruction, see Exceptions Type E1NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-103

MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination operand (first operand). The
source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations.
This instruction can be used to move a quadword between two MMX technology registers or between an MMX tech-
nology register and a 64-bit memory location, or to move data between two XMM registers or between an XMM
register and a 64-bit memory location. The instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the destination operand is an XMM
register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 0s.

In 64-bit mode and if not encoded using VEX/EVEX, use of the REX prefix in the form of REX.R permits this instruc-
tion to access additional registers (XMM8-XMM15).
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
If VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an
#UD exception.

Opcode/
Instruction

Op/ En 64/32-bit
Mode

CPUID
Feature
Flag

Description

NP 0F 6F /r

MOVQ mm, mm/m64

A V/V MMX Move quadword from mm/m64 to mm.

NP 0F 7F /r

MOVQ mm/m64, mm

B V/V MMX Move quadword from mm to mm/m64.

F3 0F 7E /r

MOVQ xmm1, xmm2/m64

A V/V SSE2 Move quadword from xmm2/mem64 to xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, xmm2/m64

A V/V AVX Move quadword from xmm2 to xmm1.

EVEX.128.F3.0F.W1 7E /r
VMOVQ xmm1, xmm2/m64

C V/V AVX512F Move quadword from xmm2/m64 to xmm1.

66 0F D6 /r

MOVQ xmm2/m64, xmm1

B V/V SSE2 Move quadword from xmm1 to xmm2/mem64.

VEX.128.66.0F.WIG D6 /r

VMOVQ xmm1/m64, xmm2

B V/V AVX Move quadword from xmm2 register to xmm1/m64.

EVEX.128.66.0F.W1 D6 /r
VMOVQ xmm1/m64, xmm2

D V/V AVX512F Move quadword from xmm2 register to xmm1/m64.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (w) ModRM:reg (r) NA NA

C Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) NA NA

D Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) NA NA

MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-U

4-104 Vol. 2B

Operation

MOVQ instruction when operating on MMX technology registers and memory locations
DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers
DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 0000000000000000H;

MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63:0] ← SRC;
DEST[127:64] ← 0000000000000000H;

VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination
DEST[63:0] ← SRC[63:0]
DEST[MAXVL-1:64] ← 0

VMOVQ (VEX.128.66.0F D6) with XMM register source and destination
DEST[63:0] ← SRC[63:0]
DEST[MAXVL-1:64] ← 0

VMOVQ (7E - EVEX encoded version) with XMM register source and destination
DEST[63:0] SRC[63:0]
DEST[MAXVL-1:64] 0

VMOVQ (D6 - EVEX encoded version) with XMM register source and destination
DEST[63:0] SRC[63:0]
DEST[MAXVL-1:64] 0

VMOVQ (7E) with memory source
DEST[63:0] ← SRC[63:0]
DEST[MAXVL-1:64] ← 0

VMOVQ (7E - EVEX encoded version) with memory source
DEST[63:0] SRC[63:0]
DEST[:MAXVL-1:64] 0

VMOVQ (D6) with memory dest
DEST[63:0] ← SRC2[63:0]

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent
VMOVQ __m128i _mm_loadu_si64(void * s);
VMOVQ void _mm_storeu_si64(void * d, __m128i s);

MOVQ m128i _mm_move_epi64(__m128i a)

MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-105

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

INSTRUCTION SET REFERENCE, M-U

4-106 Vol. 2B

MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword of the destination operand
(first operand). The source operand is an MMX technology register and the destination operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU
floating-point exception is pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_epi64 (__m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F D6 /r MOVQ2DQ xmm, mm RM Valid Valid Move quadword from mmx to low quadword
of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

4-204 Vol. 2B

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers
Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F FC /r1

PADDB mm, mm/m64

A V/V MMX Add packed byte integers from mm/m64 and mm.

NP 0F FD /r1

PADDW mm, mm/m64

A V/V MMX Add packed word integers from mm/m64 and mm.

NP 0F FE /r1

PADDD mm, mm/m64
A V/V MMX Add packed doubleword integers from mm/m64 and

mm.
NP 0F D4 /r1

PADDQ mm, mm/m64
A V/V MMX Add packed quadword integers from mm/m64 and

mm.
66 0F FC /r
PADDB xmm1, xmm2/m128

A V/V SSE2 Add packed byte integers from xmm2/m128 and
xmm1.

66 0F FD /r
PADDW xmm1, xmm2/m128

A V/V SSE2 Add packed word integers from xmm2/m128 and
xmm1.

66 0F FE /r
PADDD xmm1, xmm2/m128

A V/V SSE2 Add packed doubleword integers from xmm2/m128
and xmm1.

66 0F D4 /r
PADDQ xmm1, xmm2/m128

A V/V SSE2 Add packed quadword integers from xmm2/m128
and xmm1.

VEX.NDS.128.66.0F.WIG FC /r
VPADDB xmm1, xmm2, xmm3/m128

B V/V AVX Add packed byte integers from xmm2, and
xmm3/m128 and store in xmm1.

VEX.NDS.128.66.0F.WIG FD /r
VPADDW xmm1, xmm2, xmm3/m128

B V/V AVX Add packed word integers from xmm2, xmm3/m128
and store in xmm1.

VEX.NDS.128.66.0F.WIG FE /r
VPADDD xmm1, xmm2, xmm3/m128

B V/V AVX Add packed doubleword integers from xmm2,
xmm3/m128 and store in xmm1.

VEX.NDS.128.66.0F.WIG D4 /r
VPADDQ xmm1, xmm2, xmm3/m128

B V/V AVX Add packed quadword integers from xmm2,
xmm3/m128 and store in xmm1.

VEX.NDS.256.66.0F.WIG FC /r
VPADDB ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed byte integers from ymm2, and
ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FD /r
VPADDW ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed word integers from ymm2, ymm3/m256
and store in ymm1.

VEX.NDS.256.66.0F.WIG FE /r
VPADDD ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed doubleword integers from ymm2,
ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG D4 /r
VPADDQ ymm1, ymm2, ymm3/m256

B V/V AVX2 Add packed quadword integers from ymm2,
ymm3/m256 and store in ymm1.

EVEX.NDS.128.66.0F.WIG FC /r
VPADDB xmm1 {k1}{z}, xmm2,
xmm3/m128

C V/V AVX512VL
AVX512BW

Add packed byte integers from xmm2, and
xmm3/m128 and store in xmm1 using writemask k1.

EVEX.NDS.128.66.0F.WIG FD /r
VPADDW xmm1 {k1}{z}, xmm2,
xmm3/m128

C V/V AVX512VL
AVX512BW

Add packed word integers from xmm2, and
xmm3/m128 and store in xmm1 using writemask k1.

EVEX.NDS.128.66.0F.W0 FE /r
VPADDD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst

D V/V AVX512VL
AVX512F

Add packed doubleword integers from xmm2, and
xmm3/m128/m32bcst and store in xmm1 using
writemask k1.

EVEX.NDS.128.66.0F.W1 D4 /r
VPADDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

D V/V AVX512VL
AVX512F

Add packed quadword integers from xmm2, and
xmm3/m128/m64bcst and store in xmm1 using
writemask k1.

EVEX.NDS.256.66.0F.WIG FC /r
VPADDB ymm1 {k1}{z}, ymm2,
ymm3/m256

C V/V AVX512VL
AVX512BW

Add packed byte integers from ymm2, and
ymm3/m256 and store in ymm1 using writemask k1.

EVEX.NDS.256.66.0F.WIG FD /r
VPADDW ymm1 {k1}{z}, ymm2,
ymm3/m256

C V/V AVX512VL
AVX512BW

Add packed word integers from ymm2, and
ymm3/m256 and store in ymm1 using writemask k1.

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-205

Instruction Operand Encoding

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation.
Overflow is handled with wraparound, as described in the following paragraphs.
The PADDB and VPADDB instructions add packed byte integers from the first source operand and second source
operand and store the packed integer results in the destination operand. When an individual result is too large to
be represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to the destination
operand (that is, the carry is ignored).
The PADDW and VPADDW instructions add packed word integers from the first source operand and second source
operand and store the packed integer results in the destination operand. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written to the destination
operand (that is, the carry is ignored).
The PADDD and VPADDD instructions add packed doubleword integers from the first source operand and second
source operand and store the packed integer results in the destination operand. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are written to the
destination operand (that is, the carry is ignored).
The PADDQ and VPADDQ instructions add packed quadword integers from the first source operand and second
source operand and store the packed integer results in the destination operand. When a quadword result is too

EVEX.NDS.256.66.0F.W0 FE /r
VPADDD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst

D V/V AVX512VL
AVX512F

Add packed doubleword integers from ymm2,
ymm3/m256/m32bcst and store in ymm1 using
writemask k1.

EVEX.NDS.256.66.0F.W1 D4 /r
VPADDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

D V/V AVX512VL
AVX512F

Add packed quadword integers from ymm2,
ymm3/m256/m64bcst and store in ymm1 using
writemask k1.

EVEX.NDS.512.66.0F.WIG FC /r
VPADDB zmm1 {k1}{z}, zmm2,
zmm3/m512

C V/V AVX512BW Add packed byte integers from zmm2, and
zmm3/m512 and store in zmm1 using writemask k1.

EVEX.NDS.512.66.0F.WIG FD /r
VPADDW zmm1 {k1}{z}, zmm2,
zmm3/m512

C V/V AVX512BW Add packed word integers from zmm2, and
zmm3/m512 and store in zmm1 using writemask k1.

EVEX.NDS.512.66.0F.W0 FE /r
VPADDD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst

D V/V AVX512F Add packed doubleword integers from zmm2,
zmm3/m512/m32bcst and store in zmm1 using
writemask k1.

EVEX.NDS.512.66.0F.W1 D4 /r
VPADDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst

D V/V AVX512F Add packed quadword integers from zmm2,
zmm3/m512/m64bcst and store in zmm1 using
writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX
Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

D Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

4-206 Vol. 2B

large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the
destination operand (that is, the carry is ignored).
Note that the (V)PADDB, (V)PADDW, (V)PADDD and (V)PADDQ instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
values operated on.
EVEX encoded VPADDD/Q: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the
writemask.
EVEX encoded VPADDB/W: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM
register updated according to the writemask.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. the upper bits (MAXVL-1:256) of the
destination are cleared.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of
the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

Operation

PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];

PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDQ (with 64-Bit operands)
DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDB (Legacy SSE instruction)
DEST[7:0]← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120]← DEST[127:120] + SRC[127:120];
DEST[MAXVL-1:128] (Unmodified)

PADDW (Legacy SSE instruction)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]← DEST[127:112] + SRC[127:112];
DEST[MAXVL-1:128] (Unmodified)

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-207

PADDD (Legacy SSE instruction)
DEST[31:0]← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96]← DEST[127:96] + SRC[127:96];
DEST[MAXVL-1:128] (Unmodified)

PADDQ (Legacy SSE instruction)
DEST[63:0]← DEST[63:0] + SRC[63:0];
DEST[127:64]← DEST[127:64] + SRC[127:64];
DEST[MAXVL-1:128] (Unmodified)

VPADDB (VEX.128 encoded instruction)
DEST[7:0]← SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120]← SRC1[127:120] + SRC2[127:120];
DEST[MAXVL-1:128] ← 0;

VPADDW (VEX.128 encoded instruction)
DEST[15:0] ← SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]← SRC1[127:112] + SRC2[127:112];
DEST[MAXVL-1:128] ← 0;

VPADDD (VEX.128 encoded instruction)
DEST[31:0]← SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← SRC1[127:96] + SRC2[127:96];
DEST[MAXVL-1:128] ← 0;

VPADDQ (VEX.128 encoded instruction)
DEST[63:0]← SRC1[63:0] + SRC2[63:0];
DEST[127:64] ← SRC1[127:64] + SRC2[127:64];
DEST[MAXVL-1:128] ← 0;

VPADDB (VEX.256 encoded instruction)
DEST[7:0]← SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248]← SRC1[255:248] + SRC2[255:248];

VPADDW (VEX.256 encoded instruction)
DEST[15:0] ← SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240]← SRC1[255:240] + SRC2[255:240];

VPADDD (VEX.256 encoded instruction)
DEST[31:0]← SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] ← SRC1[255:224] + SRC2[255:224];

VPADDQ (VEX.256 encoded instruction)
DEST[63:0]← SRC1[63:0] + SRC2[63:0];
DEST[127:64] ← SRC1[127:64] + SRC2[127:64];
DEST[191:128]← SRC1[191:128] + SRC2[191:128];
DEST[255:192] ← SRC1[255:192] + SRC2[255:192];

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

4-208 Vol. 2B

VPADDB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SRC1[i+7:i] + SRC2[i+7:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] 0

VPADDW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] SRC1[i+15:i] + SRC2[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] 0

VPADDD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+31:i] SRC1[i+31:i] + SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] + SRC2[i+31:i]

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] 0

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-209

VPADDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN DEST[i+63:i] SRC1[i+63:i] + SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] + SRC2[i+63:i]

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] 0

Intel C/C++ Compiler Intrinsic Equivalents

VPADDB__m512i _mm512_add_epi8 (__m512i a, __m512i b)
VPADDW__m512i _mm512_add_epi16 (__m512i a, __m512i b)
VPADDB__m512i _mm512_mask_add_epi8 (__m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_mask_add_epi16 (__m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDB__m512i _mm512_maskz_add_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_maskz_add_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDB__m256i _mm256_mask_add_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_mask_add_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDB__m256i _mm256_maskz_add_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_maskz_add_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDB__m128i _mm_mask_add_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_mask_add_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDB__m128i _mm_maskz_add_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_maskz_add_epi16 (__mmask8 m, __m128i a, __m128i b)
VPADDD __m512i _mm512_add_epi32(__m512i a, __m512i b);
VPADDD __m512i _mm512_mask_add_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPADDD __m512i _mm512_maskz_add_epi32(__mmask16 k, __m512i a, __m512i b);
VPADDD __m256i _mm256_mask_add_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDD __m256i _mm256_maskz_add_epi32(__mmask8 k, __m256i a, __m256i b);
VPADDD __m128i _mm_mask_add_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDD __m128i _mm_maskz_add_epi32(__mmask8 k, __m128i a, __m128i b);
VPADDQ __m512i _mm512_add_epi64(__m512i a, __m512i b);
VPADDQ __m512i _mm512_mask_add_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPADDQ __m512i _mm512_maskz_add_epi64(__mmask8 k, __m512i a, __m512i b);
VPADDQ __m256i _mm256_mask_add_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDQ __m256i _mm256_maskz_add_epi64(__mmask8 k, __m256i a, __m256i b);
VPADDQ __m128i _mm_mask_add_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDQ __m128i _mm_maskz_add_epi64(__mmask8 k, __m128i a, __m128i b);
PADDB __m128i _mm_add_epi8 (__m128i a,__m128i b);
PADDW __m128i _mm_add_epi16 (__m128i a, __m128i b);
PADDD __m128i _mm_add_epi32 (__m128i a, __m128i b);
PADDQ __m128i _mm_add_epi64 (__m128i a, __m128i b);

PADDB/PADDW/PADDD/PADDQ—Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

4-210 Vol. 2B

VPADDB __m256i _mm256_add_epi8 (__m256ia,__m256i b);
VPADDW __m256i _mm256_add_epi16 (__m256i a, __m256i b);
VPADDD __m256i _mm256_add_epi32 (__m256i a, __m256i b);
VPADDQ __m256i _mm256_add_epi64 (__m256i a, __m256i b);
PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)
PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)
PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)
PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPADDD/Q, see Exceptions Type E4.
EVEX-encoded VPADDB/W, see Exceptions Type E4.nb.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-257

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 64 /r1

PCMPGTB mm, mm/m64

A V/V MMX Compare packed signed byte integers in mm and
mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

A V/V SSE2 Compare packed signed byte integers in xmm1
and xmm2/m128 for greater than.

NP 0F 65 /r1

PCMPGTW mm, mm/m64

A V/V MMX Compare packed signed word integers in mm and
mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

A V/V SSE2 Compare packed signed word integers in xmm1
and xmm2/m128 for greater than.

NP 0F 66 /r1

PCMPGTD mm, mm/m64

A V/V MMX Compare packed signed doubleword integers in
mm and mm/m64 for greater than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

A V/V SSE2 Compare packed signed doubleword integers in
xmm1 and xmm2/m128 for greater than.

VEX.NDS.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed byte integers in xmm2
and xmm3/m128 for greater than.

VEX.NDS.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed word integers in xmm2
and xmm3/m128 for greater than.

VEX.NDS.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2, xmm3/m128

B V/V AVX Compare packed signed doubleword integers in
xmm2 and xmm3/m128 for greater than.

VEX.NDS.256.66.0F.WIG 64 /r

VPCMPGTB ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed byte integers in ymm2
and ymm3/m256 for greater than.

VEX.NDS.256.66.0F.WIG 65 /r

VPCMPGTW ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed word integers in ymm2
and ymm3/m256 for greater than.

VEX.NDS.256.66.0F.WIG 66 /r

VPCMPGTD ymm1, ymm2, ymm3/m256

B V/V AVX2 Compare packed signed doubleword integers in
ymm2 and ymm3/m256 for greater than.

EVEX.NDS.128.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, xmm2,
xmm3/m128/m32bcst

C V/V AVX512VL
AVX512F

Compare Greater between int32 vector xmm2 and
int32 vector xmm3/m128/m32bcst, and set
vector mask k1 to reflect the zero/nonzero status
of each element of the result, under writemask.

EVEX.NDS.256.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, ymm2,
ymm3/m256/m32bcst

C V/V AVX512VL
AVX512F

Compare Greater between int32 vector ymm2 and
int32 vector ymm3/m256/m32bcst, and set
vector mask k1 to reflect the zero/nonzero status
of each element of the result, under writemask.

EVEX.NDS.512.66.0F.W0 66 /r
VPCMPGTD k1 {k2}, zmm2,
zmm3/m512/m32bcst

C V/V AVX512F Compare Greater between int32 elements in
zmm2 and zmm3/m512/m32bcst, and set
destination k1 according to the comparison results
under writemask. k2.

EVEX.NDS.128.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, xmm2, xmm3/m128

D V/V AVX512VL
AVX512BW

Compare packed signed byte integers in xmm2
and xmm3/m128 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

EVEX.NDS.256.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, ymm2, ymm3/m256

D V/V AVX512VL
AVX512BW

Compare packed signed byte integers in ymm2
and ymm3/m256 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

4-258 Vol. 2B

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or doubleword integers in the
destination operand (first operand) and the source operand (second operand). If a data element in the destination
operand is greater than the corresponding date element in the source operand, the corresponding data element in
the destination operand is set to all 1s; otherwise, it is set to all 0s.

The PCMPGTB instruction compares the corresponding signed byte integers in the destination and source oper-
ands; the PCMPGTW instruction compares the corresponding signed word integers in the destination and source
operands; and the PCMPGTD instruction compares the corresponding signed doubleword integers in the destination
and source operands.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

EVEX.NDS.512.66.0F.WIG 64 /r
VPCMPGTB k1 {k2}, zmm2, zmm3/m512

D V/V AVX512BW Compare packed signed byte integers in zmm2 and
zmm3/m512 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

EVEX.NDS.128.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, xmm2, xmm3/m128

D V/V AVX512VL
AVX512BW

Compare packed signed word integers in xmm2
and xmm3/m128 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

EVEX.NDS.256.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, ymm2, ymm3/m256

D V/V AVX512VL
AVX512BW

Compare packed signed word integers in ymm2
and ymm3/m256 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

EVEX.NDS.512.66.0F.WIG 65 /r
VPCMPGTW k1 {k2}, zmm2, zmm3/m512

D V/V AVX512BW Compare packed signed word integers in zmm2
and zmm3/m512 for greater than, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

D Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-259

EVEX encoded VPCMPGTD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated
according to the writemask k2.
EVEX encoded VPCMPGTB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand
(first operand) is a mask register updated according to the writemask k2.

Operation

PCMPGTB (with 64-bit operands)
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

COMPARE_BYTES_GREATER (SRC1, SRC2)
IF SRC1[7:0] > SRC2[7:0]
THEN DEST[7:0] FFH;
ELSE DEST[7:0] 0; FI;

(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] > SRC2[127:120]
THEN DEST[127:120] FFH;
ELSE DEST[127:120] 0; FI;

COMPARE_WORDS_GREATER (SRC1, SRC2)
IF SRC1[15:0] > SRC2[15:0]
THEN DEST[15:0] FFFFH;
ELSE DEST[15:0] 0; FI;

(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] > SRC2[127:112]
THEN DEST[127:112] FFFFH;
ELSE DEST[127:112] 0; FI;

COMPARE_DWORDS_GREATER (SRC1, SRC2)
IF SRC1[31:0] > SRC2[31:0]
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 0; FI;

(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] > SRC2[127:96]
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 0; FI;

PCMPGTB (with 128-bit operands)
DEST[127:0] COMPARE_BYTES_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPGTB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] 0

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

4-260 Vol. 2B

VPCMPGTB (VEX.256 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] 0

VPCMPGTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1

i j * 8
IF k2[j] OR *no writemask*

THEN
/* signed comparison */
CMP SRC1[i+7:i] > SRC2[i+7:i];
IF CMP = TRUE

THEN DEST[j] 1;
ELSE DEST[j] 0; FI;

ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] 0

PCMPGTW (with 64-bit operands)
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW (with 128-bit operands)
DEST[127:0] COMPARE_WORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] 0

VPCMPGTW (VEX.256 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] 0

VPCMPGTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1

i j * 16
IF k2[j] OR *no writemask*

THEN
/* signed comparison */
CMP SRC1[i+15:i] > SRC2[i+15:i];
IF CMP = TRUE

THEN DEST[j] 1;
ELSE DEST[j] 0; FI;

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-261

ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;

ENDFOR
DEST[MAX_KL-1:KL] 0

PCMPGTD (with 64-bit operands)
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPGTD (with 128-bit operands)
DEST[127:0] COMPARE_DWORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAXVL-1:128] (Unmodified)

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[MAXVL-1:128] 0

VPCMPGTD (VEX.256 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAXVL-1:256] 0

VPCMPGTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (8, 512)
FOR j 0 TO KL-1

i j * 32
IF k2[j] OR *no writemask*

THEN
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)

THEN CMP SRC1[i+31:i] > SRC2[31:0];
ELSE CMP SRC1[i+31:i] > SRC2[i+31:i];

FI;
IF CMP = TRUE

THEN DEST[j] 1;
ELSE DEST[j] 0; FI;

ELSE DEST[j] 0 ; zeroing-masking only
FI;

ENDFOR
DEST[MAX_KL-1:KL] 0

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, M-U

4-262 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalents
VPCMPGTB __mmask64 _mm512_cmpgt_epi8_mask(__m512i a, __m512i b);
VPCMPGTB __mmask64 _mm512_mask_cmpgt_epi8_mask(__mmask64 k, __m512i a, __m512i b);
VPCMPGTB __mmask32 _mm256_cmpgt_epi8_mask(__m256i a, __m256i b);
VPCMPGTB __mmask32 _mm256_mask_cmpgt_epi8_mask(__mmask32 k, __m256i a, __m256i b);
VPCMPGTB __mmask16 _mm_cmpgt_epi8_mask(__m128i a, __m128i b);
VPCMPGTB __mmask16 _mm_mask_cmpgt_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPGTD __mmask16 _mm512_cmpgt_epi32_mask(__m512i a, __m512i b);
VPCMPGTD __mmask16 _mm512_mask_cmpgt_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPGTD __mmask8 _mm256_cmpgt_epi32_mask(__m256i a, __m256i b);
VPCMPGTD __mmask8 _mm256_mask_cmpgt_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPGTD __mmask8 _mm_cmpgt_epi32_mask(__m128i a, __m128i b);
VPCMPGTD __mmask8 _mm_mask_cmpgt_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPGTW __mmask32 _mm512_cmpgt_epi16_mask(__m512i a, __m512i b);
VPCMPGTW __mmask32 _mm512_mask_cmpgt_epi16_mask(__mmask32 k, __m512i a, __m512i b);
VPCMPGTW __mmask16 _mm256_cmpgt_epi16_mask(__m256i a, __m256i b);
VPCMPGTW __mmask16 _mm256_mask_cmpgt_epi16_mask(__mmask16 k, __m256i a, __m256i b);
VPCMPGTW __mmask8 _mm_cmpgt_epi16_mask(__m128i a, __m128i b);
VPCMPGTW __mmask8 _mm_mask_cmpgt_epi16_mask(__mmask8 k, __m128i a, __m128i b);
PCMPGTB:__m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)
PCMPGTW:__m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)
PCMPGTD:__m64 _mm_cmpgt_pi32 (__m64 m1, __m64 m2)
(V)PCMPGTB:__m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)
(V)PCMPGTW:__m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)
(V)DCMPGTD:__m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)
VPCMPGTB: __m256i _mm256_cmpgt_epi8 (__m256i a, __m256i b)
VPCMPGTW: __m256i _mm256_cmpgt_epi16 (__m256i a, __m256i b)
VPCMPGTD: __m256i _mm256_cmpgt_epi32 (__m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPCMPGTD, see Exceptions Type E4.
EVEX-encoded VPCMPGTB/W, see Exceptions Type E4.nb.

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-U

4-298 Vol. 2B

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description

(V)PMADDUBSW multiplies vertically each unsigned byte of the destination operand (first operand) with the corre-
sponding signed byte of the source operand (second operand), producing intermediate signed 16-bit integers. Each
adjacent pair of signed words is added and the saturated result is packed to the destination operand. For example,
the lowest-order bytes (bits 7-0) in the source and destination operands are multiplied and the intermediate signed
word result is added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination register (15-0). The same oper-
ation is performed on the other pairs of adjacent bytes. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 38 04 /r1

PMADDUBSW mm1, mm2/m64

A V/V SSSE3 Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to mm1.

66 0F 38 04 /r

PMADDUBSW xmm1, xmm2/m128

A V/V SSSE3 Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to xmm1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to xmm1.

VEX.NDS.256.66.0F38.WIG 04 /r

VPMADDUBSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to ymm1.

EVEX.NDS.128.66.0F38.WIG 04 /r
VPMADDUBSW xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V AVX512VL
AVX512BW

Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to xmm1 under
writemask k1.

EVEX.NDS.256.66.0F38.WIG 04 /r
VPMADDUBSW ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V AVX512VL
AVX512BW

Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to ymm1 under
writemask k1.

EVEX.NDS.512.66.0F38.WIG 04 /r
VPMADDUBSW zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack
saturated signed-words to zmm1 under
writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-299

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source and destination operands are XMM registers. The
second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding
destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand can be an YMM register or a 256-bit memory
location. The first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding
ZMM register are zeroed.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The
first source and destination operands are ZMM registers.

Operation

PMADDUBSW (with 64 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (with 128 bit operands)
DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word
SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)
DEST[15:0] SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word
DEST[127:112] SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])
DEST[MAXVL-1:128] 0

VPMADDUBSW (VEX.256 encoded version)
DEST[15:0] SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 15th word
DEST[255:240] SaturateToSignedWord(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])
DEST[MAXVL-1:256] 0

VPMADDUBSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] SaturateToSignedWord(SRC2[i+15:i+8]* SRC1[i+15:i+8] + SRC2[i+7:i]*SRC1[i+7:i])
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR;
DEST[MAXVL-1:VL] 0

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, M-U

4-300 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalents
VPMADDUBSW __m512i _mm512_maddubs_epi16(__m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_mask_maddubs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_maskz_maddubs_epi16(__mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m256i _mm256_mask_maddubs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m256i _mm256_maskz_maddubs_epi16(__mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m128i _mm_mask_maddubs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMADDUBSW __m128i _mm_maskz_maddubs_epi16(__mmask8 k, __m128i a, __m128i b);
PMADDUBSW: __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
(V)PMADDUBSW: __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)
VPMADDUBSW: __m256i _mm256_maddubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.

PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-301

PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by the corresponding signed words
of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-
word results are then summed and stored in the destination operand. For example, the corresponding low-order
words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-
word results are added together and stored in the low doubleword of the destination register (31-0). The same
operation is performed on the other pairs of adjacent words. (Figure 4-11 shows this operation when using 64-bit
operands).

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F F5 /r1

PMADDWD mm, mm/m64

A V/V MMX Multiply the packed words in mm by the packed
words in mm/m64, add adjacent doubleword
results, and store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

A V/V SSE2 Multiply the packed word integers in xmm1 by
the packed word integers in xmm2/m128, add
adjacent doubleword results, and store in
xmm1.

VEX.NDS.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2, xmm3/m128

B V/V AVX Multiply the packed word integers in xmm2 by
the packed word integers in xmm3/m128, add
adjacent doubleword results, and store in
xmm1.

VEX.NDS.256.66.0F.WIG F5 /r

VPMADDWD ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply the packed word integers in ymm2 by
the packed word integers in ymm3/m256, add
adjacent doubleword results, and store in
ymm1.

EVEX.NDS.128.66.0F.WIG F5 /r
VPMADDWD xmm1 {k1}{z}, xmm2, xmm3/m128

C V/V AVX512VL
AVX512BW

Multiply the packed word integers in xmm2 by
the packed word integers in xmm3/m128, add
adjacent doubleword results, and store in
xmm1 under writemask k1.

EVEX.NDS.256.66.0F.WIG F5 /r
VPMADDWD ymm1 {k1}{z}, ymm2, ymm3/m256

C V/V AVX512VL
AVX512BW

Multiply the packed word integers in ymm2 by
the packed word integers in ymm3/m256, add
adjacent doubleword results, and store in
ymm1 under writemask k1.

EVEX.NDS.512.66.0F.WIG F5 /r
VPMADDWD zmm1 {k1}{z}, zmm2, zmm3/m512

C V/V AVX512BW Multiply the packed word integers in zmm2 by
the packed word integers in zmm3/m512, add
adjacent doubleword results, and store in
zmm1 under writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, M-U

4-302 Vol. 2B

The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in
a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).
Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an
MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The
first source and destination operands are ZMM registers.

Operation

PMADDWD (with 64-bit operands)
DEST[31:0] � (DEST[15:0] � SRC[15:0]) + (DEST[31:16] � SRC[31:16]);
DEST[63:32] � (DEST[47:32] � SRC[47:32]) + (DEST[63:48] � SRC[63:48]);

PMADDWD (with 128-bit operands)
DEST[31:0] � (DEST[15:0] � SRC[15:0]) + (DEST[31:16] � SRC[31:16]);
DEST[63:32] � (DEST[47:32] � SRC[47:32]) + (DEST[63:48] � SRC[63:48]);
DEST[95:64] � (DEST[79:64] � SRC[79:64]) + (DEST[95:80] � SRC[95:80]);
DEST[127:96] � (DEST[111:96] � SRC[111:96]) + (DEST[127:112] � SRC[127:112]);

VPMADDWD (VEX.128 encoded version)
DEST[31:0] (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[MAXVL-1:128] 0

Figure 4-11. PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 � Y3 X2 � Y2 X1 � Y1 X0 � Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1�Y1) + (X0�Y0)(X3�Y3) + (X2�Y2)

TEMP

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-429

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F F1 /r1

PSLLW mm, mm/m64

A V/V MMX Shift words in mm left mm/m64 while shifting in
0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 left by xmm2/m128 while
shifting in 0s.

NP 0F 71 /6 ib

PSLLW mm1, imm8

B V/V MMX Shift words in mm left by imm8 while shifting in
0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 left by imm8 while shifting
in 0s.

NP 0F F2 /r1

PSLLD mm, mm/m64

A V/V MMX Shift doublewords in mm left by mm/m64 while
shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 left by xmm2/m128
while shifting in 0s.

NP 0F 72 /6 ib1

PSLLD mm, imm8

B V/V MMX Shift doublewords in mm left by imm8 while
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 left by imm8 while
shifting in 0s.

NP 0F F3 /r1

PSLLQ mm, mm/m64

A V/V MMX Shift quadword in mm left by mm/m64 while
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128
while shifting in 0s.

NP 0F 73 /6 ib1

PSLLQ mm, imm8

B V/V MMX Shift quadword in mm left by imm8 while
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 left by imm8 while
shifting in 0s.

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-430 Vol. 2B

VEX.NDS.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 72 /6 ib

VPSLLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 left by imm8 while
shifting in 0s.

VEX.NDS.256.66.0F.WIG F3 /r

VPSLLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 73 /6 ib

VPSLLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 left by imm8 while
shifting in 0s.

EVEX.NDS.128.66.0F.WIG F1 /r
VPSLLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDS.256.66.0F.WIG F1 /r
VPSLLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDS.512.66.0F.WIG F1 /r
VPSLLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 left by amount specified in
xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDD.128.66.0F.WIG 71 /6 ib
VPSLLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 left by imm8 while
shifting in 0s using writemask k1.

EVEX.NDD.256.66.0F.WIG 71 /6 ib
VPSLLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 left by imm8 while
shifting in 0s using writemask k1.

EVEX.NDD.512.66.0F.WIG 71 /6 ib
VPSLLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 left by imm8 while
shifting in 0 using writemask k1.

EVEX.NDS.128.66.0F.W0 F2 /r
VPSLLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.NDS.256.66.0F.W0 F2 /r
VPSLLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.NDS.512.66.0F.W0 F2 /r
VPSLLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 left by amount
specified in xmm3/m128 while shifting in 0s
under writemask k1.

EVEX.NDD.128.66.0F.W0 72 /6 ib
VPSLLD xmm1 {k1}{z}, xmm2/m128/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.NDD.256.66.0F.W0 72 /6 ib
VPSLLD ymm1 {k1}{z}, ymm2/m256/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.NDD.512.66.0F.W0 72 /6 ib
VPSLLD zmm1 {k1}{z}, zmm2/m512/m32bcst,
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.NDS.128.66.0F.W1 F3 /r
VPSLLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.256.66.0F.W1 F3 /r
VPSLLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.512.66.0F.W1 F3 /r
VPSLLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 left by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-431

Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand
is set to all 0s. Figure 4-17 gives an example of shifting words in a 64-bit operand.

The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-
ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and
the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count
operand can be either an MMX technology register or an 64-bit memory location.

EVEX.NDD.128.66.0F.W1 73 /6 ib
VPSLLQ xmm1 {k1}{z}, xmm2/m128/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.NDD.256.66.0F.W1 73 /6 ib
VPSLLQ ymm1 {k1}{z}, ymm2/m256/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst left
by imm8 while shifting in 0s using writemask k1.

EVEX.NDD.512.66.0F.W1 73 /6 ib
VPSLLQ zmm1 {k1}{z}, zmm2/m512/m64bcst,
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst left
by imm8 while shifting in 0s using writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-17. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-432 Vol. 2B

128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (MAXVL-1:128) of the
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are
ignored.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6, or EVEX.128.66.0F 71-73 /6),
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSLLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-433

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[15:0] ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ZeroExtend(SRC[127:112] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] 0
ELSE

DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] ZeroExtend(SRC[127:96] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] 0
ELSE

DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] << COUNT);

FI;
LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H

ELSE
DEST[15:0] ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-434 Vol. 2B

DEST[255:240] ZeroExtend(SRC[255:240] << COUNT);
FI;

LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H

ELSE
DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] ZeroExtend(SRC[255:224] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H

ELSE
DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] ZeroExtend(SRC[255:192] << COUNT);

FI;

VPSLLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-435

VPSLLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSLLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSLLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_WORD_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;

VPSLLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSLLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-436 Vol. 2B

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSLLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-437

VPSLLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSLLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;

VPSLLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSLLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSLLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR

VPSLLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-438 Vol. 2B

FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSLLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSLLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;

VPSLLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSLLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSLLD __m512i _mm512_slli_epi32(__m512i a, unsigned int imm);
VPSLLD __m512i _mm512_mask_slli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m512i _mm512_maskz_slli_epi32(__mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m256i _mm256_mask_slli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m256i _mm256_maskz_slli_epi32(__mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m128i _mm_mask_slli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m128i _mm_maskz_slli_epi32(__mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m512i _mm512_sll_epi32(__m512i a, __m128i cnt);
VPSLLD __m512i _mm512_mask_sll_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m512i _mm512_maskz_sll_epi32(__mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m256i _mm256_mask_sll_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m256i _mm256_maskz_sll_epi32(__mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m128i _mm_mask_sll_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLD __m128i _mm_maskz_sll_epi32(__mmask8 k, __m128i a, __m128i cnt);

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-439

VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_maskz_slli_epi64(__mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m256i _mm256_mask_slli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m256i _mm256_maskz_slli_epi64(__mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m128i _mm_mask_slli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m128i _mm_maskz_slli_epi64(__mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_maskz_sll_epi64(__mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m256i _mm256_mask_sll_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m256i _mm256_maskz_sll_epi64(__mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m128i _mm_mask_sll_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m128i _mm_maskz_sll_epi64(__mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m512i _mm512_slli_epi16(__m512i a, unsigned int imm);
VPSLLW __m512i _mm512_mask_slli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m512i _mm512_maskz_slli_epi16(__mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m256i _mm256_mask_slli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m256i _mm256_maskz_slli_epi16(__mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m128i _mm_mask_slli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m128i _mm_maskz_slli_epi16(__mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m512i _mm512_sll_epi16(__m512i a, __m128i cnt);
VPSLLW __m512i _mm512_mask_sll_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m512i _mm512_maskz_sll_epi16(__mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m256i _mm256_mask_sll_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m256i _mm256_maskz_sll_epi16(__mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m128i _mm_mask_sll_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m128i _mm_maskz_sll_epi16(__mmask8 k, __m128i a, __m128i cnt);
PSLLW:__m64 _mm_slli_pi16 (__m64 m, int count)
PSLLW:__m64 _mm_sll_pi16(__m64 m, __m64 count)
(V)PSLLW:__m128i _mm_slli_epi16(__m64 m, int count)
(V)PSLLW:__m128i _mm_sll_epi16(__m128i m, __m128i count)
VPSLLW:__m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW:__m256i _mm256_sll_epi16 (__m256i m, __m128i count)
PSLLD:__m64 _mm_slli_pi32(__m64 m, int count)
PSLLD:__m64 _mm_sll_pi32(__m64 m, __m64 count)
(V)PSLLD:__m128i _mm_slli_epi32(__m128i m, int count)
(V)PSLLD:__m128i _mm_sll_epi32(__m128i m, __m128i count)
VPSLLD:__m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD:__m256i _mm256_sll_epi32 (__m256i m, __m128i count)
PSLLQ:__m64 _mm_slli_si64(__m64 m, int count)
PSLLQ:__m64 _mm_sll_si64(__m64 m, __m64 count)
(V)PSLLQ:__m128i _mm_slli_epi64(__m128i m, int count)
(V)PSLLQ:__m128i _mm_sll_epi64(__m128i m, __m128i count)
VPSLLQ:__m256i _mm256_slli_epi64 (__m256i m, int count)
VPSLLQ:__m256i _mm256_sll_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, M-U

4-440 Vol. 2B

Other Exceptions
VEX-encoded instructions:

Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSLLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSLLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-453

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F D1 /r1

PSRLW mm, mm/m64

A V/V MMX Shift words in mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

A V/V SSE2 Shift words in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.

NP 0F 71 /2 ib1

PSRLW mm, imm8

B V/V MMX Shift words in mm right by imm8 while shifting
in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

B V/V SSE2 Shift words in xmm1 right by imm8 while
shifting in 0s.

NP 0F D2 /r1

PSRLD mm, mm/m64

A V/V MMX Shift doublewords in mm right by amount
specified in mm/m64 while shifting in 0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

A V/V SSE2 Shift doublewords in xmm1 right by amount
specified in xmm2 /m128 while shifting in 0s.

NP 0F 72 /2 ib1

PSRLD mm, imm8

B V/V MMX Shift doublewords in mm right by imm8 while
shifting in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

B V/V SSE2 Shift doublewords in xmm1 right by imm8
while shifting in 0s.

NP 0F D3 /r1

PSRLQ mm, mm/m64

A V/V MMX Shift mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

A V/V SSE2 Shift quadwords in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.

NP 0F 73 /2 ib1

PSRLQ mm, imm8

B V/V MMX Shift mm right by imm8 while shifting in 0s.

66 0F 73 /2 ib

PSRLQ xmm1, imm8

B V/V SSE2 Shift quadwords in xmm1 right by imm8 while
shifting in 0s.

VEX.NDS.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, xmm3/m128

C V/V AVX Shift words in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

D V/V AVX Shift words in xmm2 right by imm8 while
shifting in 0s.

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

C V/V AVX Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

D V/V AVX Shift doublewords in xmm2 right by imm8
while shifting in 0s.

VEX.NDS.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

C V/V AVX Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

D V/V AVX Shift quadwords in xmm2 right by imm8 while
shifting in 0s.

VEX.NDS.256.66.0F.WIG D1 /r

VPSRLW ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift words in ymm2 right by amount specified
in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 71 /2 ib

VPSRLW ymm1, ymm2, imm8

D V/V AVX2 Shift words in ymm2 right by imm8 while
shifting in 0s.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-454 Vol. 2B

VEX.NDS.256.66.0F.WIG D2 /r

VPSRLD ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 72 /2 ib

VPSRLD ymm1, ymm2, imm8

D V/V AVX2 Shift doublewords in ymm2 right by imm8
while shifting in 0s.

VEX.NDS.256.66.0F.WIG D3 /r

VPSRLQ ymm1, ymm2, xmm3/m128

C V/V AVX2 Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 73 /2 ib

VPSRLQ ymm1, ymm2, imm8

D V/V AVX2 Shift quadwords in ymm2 right by imm8 while
shifting in 0s.

EVEX.NDS.128.66.0F.WIG D1 /r
VPSRLW xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in xmm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDS.256.66.0F.WIG D1 /r
VPSRLW ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512BW

Shift words in ymm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDS.512.66.0F.WIG D1 /r
VPSRLW zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512BW Shift words in zmm2 right by amount specified
in xmm3/m128 while shifting in 0s using
writemask k1.

EVEX.NDD.128.66.0F.WIG 71 /2 ib
VPSRLW xmm1 {k1}{z}, xmm2/m128, imm8

E V/V AVX512VL
AVX512BW

Shift words in xmm2/m128 right by imm8
while shifting in 0s using writemask k1.

EVEX.NDD.256.66.0F.WIG 71 /2 ib
VPSRLW ymm1 {k1}{z}, ymm2/m256, imm8

E V/V AVX512VL
AVX512BW

Shift words in ymm2/m256 right by imm8
while shifting in 0s using writemask k1.

EVEX.NDD.512.66.0F.WIG 71 /2 ib
VPSRLW zmm1 {k1}{z}, zmm2/m512, imm8

E V/V AVX512BW Shift words in zmm2/m512 right by imm8
while shifting in 0s using writemask k1.

EVEX.NDS.128.66.0F.W0 D2 /r
VPSRLD xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.256.66.0F.W0 D2 /r
VPSRLD ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.512.66.0F.W0 D2 /r
VPSRLD zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift doublewords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDD.128.66.0F.W0 72 /2 ib
VPSRLD xmm1 {k1}{z}, xmm2/m128/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.NDD.256.66.0F.W0 72 /2 ib
VPSRLD ymm1 {k1}{z}, ymm2/m256/m32bcst,
imm8

F V/V AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.NDD.512.66.0F.W0 72 /2 ib
VPSRLD zmm1 {k1}{z}, zmm2/m512/m32bcst,
imm8

F V/V AVX512F Shift doublewords in zmm2/m512/m32bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.NDS.128.66.0F.W1 D3 /r
VPSRLQ xmm1 {k1}{z}, xmm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.256.66.0F.W1 D3 /r
VPSRLQ ymm1 {k1}{z}, ymm2, xmm3/m128

G V/V AVX512VL
AVX512F

Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

EVEX.NDS.512.66.0F.W1 D3 /r
VPSRLQ zmm1 {k1}{z}, zmm2, xmm3/m128

G V/V AVX512F Shift quadwords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s
using writemask k1.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-455

Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data
elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand
is set to all 0s. Figure 4-19 gives an example of shifting words in a 64-bit operand.

Note that only the low 64-bits of a 128-bit count operand are checked to compute the count.

The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits
specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand;
and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Legacy SSE instruction 64-bit operand: The destination operand is an MMX technology register; the count operand
can be either an MMX technology register or an 64-bit memory location.

EVEX.NDD.128.66.0F.W1 73 /2 ib
VPSRLQ xmm1 {k1}{z}, xmm2/m128/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.NDD.256.66.0F.W1 73 /2 ib
VPSRLQ ymm1 {k1}{z}, ymm2/m256/m64bcst,
imm8

F V/V AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

EVEX.NDD.512.66.0F.W1 73 /2 ib
VPSRLQ zmm1 {k1}{z}, zmm2/m512/m64bcst,
imm8

F V/V AVX512F Shift quadwords in zmm2/m512/m64bcst
right by imm8 while shifting in 0s using
writemask k1.

NOTES:

1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:r/m (r, w) imm8 NA NA

C NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

D NA VEX.vvvv (w) ModRM:r/m (r) imm8 NA

E Full Mem EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

F Full EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA

G Mem128 ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-19. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-456 Vol. 2B

128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the corresponding YMM destination register
remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits
are loaded but the upper 64 bits are ignored. Bits (MAXVL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit imme-
diate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2, or EVEX.128.66.0F 71-73 /2),
VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRLW (with 64-bit operand)
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[31:0] 0
ELSE

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-457

DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
FI;

LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[63:0] 0
ELSE

DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[255:0] 0
ELSE

DEST[15:0] ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] ZeroExtend(SRC[255:240] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[15:0] ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ZeroExtend(SRC[127:112] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[255:0] 0
ELSE

DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] ZeroExtend(SRC[255:224] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] ZeroExtend(SRC[127:96] >> COUNT);

FI;

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-458 Vol. 2B

LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[255:0] 0
ELSE

DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] ZeroExtend(SRC[191:128] >> COUNT);
DEST[255:192] ZeroExtend(SRC[255:192] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] 00000000000000000000000000000000H
ELSE

DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] >> COUNT);

FI;

VPSRLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-459

VPSRLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)

FI;

FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+15:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSRLW (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSRLW (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;

VPSRLW (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSRLW (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-460 Vol. 2B

VPSRLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128

TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)

FI;

FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSRLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSRLD (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSRLD (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-461

VPSRLD (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSRLD (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

VPSRLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128

TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512

TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)

FI;
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-462 Vol. 2B

VPSRLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPSRLQ (ymm, ymm, xmm/m128) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAXVL-1:256] 0;

VPSRLQ (ymm, imm8) - VEX.256 encoding
DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAXVL-1:256] 0;
VPSRLQ (xmm, xmm, xmm/m128) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAXVL-1:128] 0

VPSRLQ (xmm, imm8) - VEX.128 encoding
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAXVL-1:128] 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAXVL-1:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalents
VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32(__mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m256i _mm256_maskz_srli_epi32(__mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32(__mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32(__mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-463

VPSRLD __m256i _mm256_maskz_srl_epi32(__mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64(__mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64(__mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64(__mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64(__mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16(__mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srli_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16(__mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16(__mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m512i _mm512_maskz_srl_epi16(__mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16(__mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16(__mmask8 k, __m128i a, __m128i cnt);
PSRLW:__m64 _mm_srli_pi16(__m64 m, int count)
PSRLW:__m64 _mm_srl_pi16 (__m64 m, __m64 count)
(V)PSRLW:__m128i _mm_srli_epi16 (__m128i m, int count)
(V)PSRLW:__m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW:__m256i _mm256_srli_epi16 (__m256i m, int count)
VPSRLW:__m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD:__m64 _mm_srli_pi32 (__m64 m, int count)
PSRLD:__m64 _mm_srl_pi32 (__m64 m, __m64 count)
(V)PSRLD:__m128i _mm_srli_epi32 (__m128i m, int count)
(V)PSRLD:__m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD:__m256i _mm256_srli_epi32 (__m256i m, int count)
VPSRLD:__m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ:__m64 _mm_srli_si64 (__m64 m, int count)
PSRLQ:__m64 _mm_srl_si64 (__m64 m, __m64 count)
(V)PSRLQ:__m128i _mm_srli_epi64 (__m128i m, int count)
(V)PSRLQ:__m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ:__m256i _mm256_srli_epi64 (__m256i m, int count)
VPSRLQ:__m256i _mm256_srl_epi64 (__m256i m, __m128i count)

Flags Affected

None.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, M-U

4-464 Vol. 2B

Numeric Exceptions

None.

Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding (A/C in the operand encoding table), see Exceptions Type 4.
Syntax with MI/VMI operand encoding (B/D in the operand encoding table), see Exceptions Type 7.

EVEX-encoded VPSRLW (E in the operand encoding table), see Exceptions Type E4NF.nb.

EVEX-encoded VPSRLD/Q:
Syntax with Mem128 tuple type (G in the operand encoding table), see Exceptions Type E4NF.nb.
Syntax with Full tuple type (F in the operand encoding table), see Exceptions Type E4.

RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-541

RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers. The EDX
register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits.
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever
the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction as follows. When the
flag is clear, the RDTSC instruction can be executed at any privilege level; when the flag is set, the instruction can
only be executed at privilege level 0.

The time-stamp counter can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait until all previous instructions
have been executed before reading the counter. Similarly, subsequent instructions may begin execution before the
read operation is performed. The following items may guide software seeking to order executions of RDTSC:
• If software requires RDTSC to be executed only after all previous instructions have executed and all previous

loads are globally visible,1 it can execute LFENCE immediately before RDTSC.
• If software requires RDTSC to be executed only after all previous instructions have executed and all previous

loads and stores are globally visible, it can execute the sequence MFENCE;LFENCE immediately before RDTSC.
• If software requires RDTSC to be executed prior to execution of any subsequent instruction (including any

memory accesses), it can execute the sequence LFENCE immediately after RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC ZO Valid Valid Read time-stamp counter into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. A load is considered to become globally visible when the value to be loaded is determined.

RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, M-U

4-542 Vol. 2B

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-543

RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers and also
reads the value of the IA32_TSC_AUX MSR (address C0000103H) into the ECX register. The EDX register is loaded
with the high-order 32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of the
IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of IA32_TSC_AUX MSR. On processors
that support the Intel 64 architecture, the high-order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever
the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSCP instruction as follows. When the
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the flag is set, the instruction can
only be executed at privilege level 0.

The RDTSCP instruction is not a serializing instruction, but it does wait until all previous instructions have executed
and all previous loads are globally visible.1 But it does not wait for previous stores to be globally visible, and subse-
quent instructions may begin execution before the read operation is performed. The following items may guide
software seeking to order executions of RDTSCP:
• If software requires RDTSCP to be executed only after all previous stores are globally visible, it can execute

MFENCE immediately before RDTSCP.
• If software requires RDTSCP to be executed prior to execution of any subsequent instruction (including any

memory accesses), it can execute LFENCE immediately after RDTSCP.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN

EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP ZO Valid Valid Read 64-bit time-stamp counter and
IA32_TSC_AUX value into EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. A load is considered to become globally visible when the value to be loaded is determined.

RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, M-U

4-544 Vol. 2B

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

SFENCE—Store Fence

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-595

SFENCE—Store Fence

Instruction Operand Encoding

Description

Orders processor execution relative to all memory stores prior to the SFENCE instruction. The processor ensures
that every store prior to SFENCE is globally visible before any store after SFENCE becomes globally visible. The
SFENCE instruction is ordered with respect to memory stores, other SFENCE instructions, MFENCE instructions,
and any serializing instructions (such as the CPUID instruction). It is not ordered with respect to memory loads or
the LFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as
out-of-order issue, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or
knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data.
The SFENCE instruction provides a performance-efficient way of ensuring store ordering between routines that
produce weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F8. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, SFENCE is encoded by any opcode of the form 0F AE Fx, where x
is in the range 8-F.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

NP 0F AE F8 SFENCE ZO Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

SUB—Subtract

INSTRUCTION SET REFERENCE, M-U

4-650 Vol. 2B

SUB—Subtract

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result
in the destination operand. The destination operand can be a register or a memory location; the source operand
can be an immediate, register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-extended to 64-bits
from RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, imm16 MI Valid Valid Subtract imm16 from r/m16.

81 /5 id SUB r/m32, imm32 MI Valid Valid Subtract imm32 from r/m32.

REX.W + 81 /5 id SUB r/m64, imm32 MI Valid N.E. Subtract imm32 sign-extended to 64-bits
from r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r64 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

SUB—Subtract

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-651

The SUB instruction performs integer subtraction. It evaluates the result for both signed and unsigned integer
operands and sets the OF and CF flags to indicate an overflow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-U

4-672 Vol. 2B

SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler to user
code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With a 64-bit operand
size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the low 32 bits of the regis-
ters are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However, the CS
and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSRET instruction does not ensure this
correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for software
to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing
SYSRET; alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control
from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the
user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt
Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET ZO Valid Invalid Return to compatibility mode from fast
system call

REX.W + 0F 07 SYSRET ZO Valid Invalid Return to 64-bit mode from fast system call

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

1. Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all reserved bits
in RFLAGS retain the fixed values.

SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-673

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

IF (RCX is not canonical) THEN #GP(0);
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
RIP ← ECX;

FI;
RFLAGS ← (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit)
THEN CS.Selector ← IA32_STAR[63:48]+16;
ELSE CS.Selector ← IA32_STAR[63:48];

FI;
CS.Selector ← CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 3;
CS.P ← 1;
IF (operand size is 64-bit)

THEN (* Return to 64-Bit Mode *)
CS.L ← 1; (* 64-bit code segment *)
CS.D ← 0; (* Required if CS.L = 1 *)

ELSE (* Return to Compatibility Mode *)
CS.L ← 0; (* Compatibility mode *)
CS.D ← 1; (* 32-bit code segment *)

FI;
CS.G ← 1; (* 4-KByte granularity *)
CPL ← 3;

SS.Selector ← (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 3;
SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment*)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions
#UD The SYSRET instruction is not recognized in protected mode.

SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, M-U

4-674 Vol. 2B

Real-Address Mode Exceptions
#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.
#GP(0) If CPL ≠ 0.

If the return is to 64-bit mode and RCX contains a non-canonical address.

UD—Undefined Instruction

INSTRUCTION SET REFERENCE, M-U

Vol. 2B 4-683

UD—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software testing to explicitly generate an
invalid opcode exception. The opcodes for this instruction are reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on processor state or memory.

Even though it is the execution of the UD instruction that causes the invalid opcode exception, the instruction
pointer saved by delivery of the exception references the UD instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F FF /r UD01 r32, r/m32

NOTES:
1. Some older processors decode the UD0 instruction without a ModR/M byte. As a result, those processors would deliver an invalid-

opcode exception instead of a fault on instruction fetch when the instruction with a ModR/M byte (and any implied bytes) would
cross a page or segment boundary.

RM Valid Valid Raise invalid opcode exception.

0F B9 /r UD1 r32, r/m32 RM Valid Valid Raise invalid opcode exception.

0F 0B UD2 ZO Valid Valid Raise invalid opcode exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

12.Updates to Chapter 5, Volume 2C
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Instruction Set Reference, V-Z.

--
Changes to this chapter:
Updates to the following instructions are covered here with change bars: VBROADCAST, VCVTQQ2PD, VGATH-
ERDPS/VGATHERQPS, VMASKMOV, VPBROADCAST, VPCONFLICTD/Q, VPGATHERDD/VPGATHERQD, VPMOVWB/
VPMOVSWB/VPMOVUSWB, VPMULTISHIFTQB, VSCALEFPD, VSCALEFPS, XRSTOR, XRSTORS, XSAVE, XSAVEC,
XSAVEOPT, XSAVES, and XTEST.

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

5-12 Vol. 2C

VBROADCAST—Load with Broadcast Floating-Point Data
Opcode/
Instruction

Op /
En

64/32
bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1, m32

A V/V AVX Broadcast single-precision floating-point element in
mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1, m32

A V/V AVX Broadcast single-precision floating-point element in
mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r
VBROADCASTSD ymm1, m64

A V/V AVX Broadcast double-precision floating-point element in
mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r
VBROADCASTF128 ymm1, m128

A V/V AVX Broadcast 128 bits of floating-point data in mem to
low and high 128-bits in ymm1.

VEX.128.66.0F38.W0 18/r

VBROADCASTSS xmm1, xmm2

A V/V AVX2 Broadcast the low single-precision floating-point
element in the source operand to four locations in
xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, xmm2

A V/V AVX2 Broadcast low single-precision floating-point element
in the source operand to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, xmm2

A V/V AVX2 Broadcast low double-precision floating-point element
in the source operand to four locations in ymm1.

EVEX.256.66.0F38.W1 19 /r
VBROADCASTSD ymm1 {k1}{z},
xmm2/m64

B V/V AVX512VL
AVX512F

Broadcast low double-precision floating-point element
in xmm2/m64 to four locations in ymm1 using
writemask k1.

EVEX.512.66.0F38.W1 19 /r
VBROADCASTSD zmm1 {k1}{z},
xmm2/m64

B V/V AVX512F Broadcast low double-precision floating-point element
in xmm2/m64 to eight locations in zmm1 using
writemask k1.

EVEX.256.66.0F38.W0 19 /r
VBROADCASTF32X2 ymm1 {k1}{z},
xmm2/m64

C V/V AVX512VL
AVX512DQ

Broadcast two single-precision floating-point elements
in xmm2/m64 to locations in ymm1 using writemask
k1.

EVEX.512.66.0F38.W0 19 /r
VBROADCASTF32X2 zmm1 {k1}{z},
xmm2/m64

C V/V AVX512DQ Broadcast two single-precision floating-point elements
in xmm2/m64 to locations in zmm1 using writemask
k1.

EVEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1 {k1}{z},
xmm2/m32

B V/V AVX512VL
AVX512F

Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in xmm1 using
writemask k1.

EVEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1 {k1}{z},
xmm2/m32

B V/V AVX512VL
AVX512F

Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in ymm1 using
writemask k1.

EVEX.512.66.0F38.W0 18 /r
VBROADCASTSS zmm1 {k1}{z},
xmm2/m32

B V/V AVX512F Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in zmm1 using
writemask k1.

EVEX.256.66.0F38.W0 1A /r
VBROADCASTF32X4 ymm1 {k1}{z},
m128

D V/V AVX512VL
AVX512F

Broadcast 128 bits of 4 single-precision floating-point
data in mem to locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 1A /r
VBROADCASTF32X4 zmm1 {k1}{z},
m128

D V/V AVX512F Broadcast 128 bits of 4 single-precision floating-point
data in mem to locations in zmm1 using writemask k1.

EVEX.256.66.0F38.W1 1A /r
VBROADCASTF64X2 ymm1 {k1}{z},
m128

C V/V AVX512VL
AVX512DQ

Broadcast 128 bits of 2 double-precision floating-point
data in mem to locations in ymm1 using writemask k1.

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-13

Instruction Operand Encoding

Description

VBROADCASTSD/VBROADCASTSS/VBROADCASTF128 load floating-point values as one tuple from the source
operand (second operand) in memory and broadcast to all elements of the destination operand (first operand).

VEX256-encoded versions: The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will #UD. Bits (MAXVL-1:256) of the
destination register are zeroed.

EVEX-encoded versions: The destination operand is a ZMM/YMM/XMM register and updated according to the
writemask k1. The source operand is either a 32-bit, 64-bit memory location or the low doubleword/quadword
element of an XMM register.
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2/VBROADCASTF32X8/VBROADCASTF64X4 load
floating-point values as tuples from the source operand (the second operand) in memory or register and broadcast
to all elements of the destination operand (the first operand). The destination operand is a YMM/ZMM register
updated according to the writemask k1. The source operand is either a register or 64-bit/128-bit/256-bit memory
location.
VBROADCASTSD and VBROADCASTF128,F32x4 and F64x2 are only supported as 256-bit and 512-bit wide
versions and up. VBROADCASTSS is supported in 128-bit, 256-bit and 512-bit wide versions. F32x8 and F64x4 are
only supported as 512-bit wide versions.
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF32X8 have 32-bit granularity. VBROADCASTF64X2 and
VBROADCASTF64X4 have 64-bit granularity.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded
with VEX.L= 0 will cause an #UD exception.

EVEX.512.66.0F38.W1 1A /r
VBROADCASTF64X2 zmm1 {k1}{z},
m128

C V/V AVX512DQ Broadcast 128 bits of 2 double-precision floating-point
data in mem to locations in zmm1 using writemask k1.

EVEX.512.66.0F38.W0 1B /r
VBROADCASTF32X8 zmm1 {k1}{z},
m256

E V/V AVX512DQ Broadcast 256 bits of 8 single-precision floating-point
data in mem to locations in zmm1 using writemask k1.

EVEX.512.66.0F38.W1 1B /r
VBROADCASTF64X4 zmm1 {k1}{z},
m256

D V/V AVX512F Broadcast 256 bits of 4 double-precision floating-point
data in mem to locations in zmm1 using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) NA NA

C Tuple2 ModRM:reg (w) ModRM:r/m (r) NA NA

D Tuple4 ModRM:reg (w) ModRM:r/m (r) NA NA

E Tuple8 ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op /
En

64/32
bit
Mode
Support

CPUID
Feature
Flag

Description

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

5-14 Vol. 2C

Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version)

Figure 5-2. VBROADCASTSS Operation (VEX.128-bit version)

Figure 5-3. VBROADCASTSD Operation (VEX.256-bit version)

Figure 5-4. VBROADCASTF128 Operation (VEX.256-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-15

Operation

VBROADCASTSS (128 bit version VEX and legacy)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[MAXVL-1:128] 0

VBROADCASTSS (VEX.256 encoded version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp
DEST[MAXVL-1:256] 0

VBROADCASTSS (EVEX encoded versions)
(KL, VL) (4, 128), (8, 256),= (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[31:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Figure 5-5. VBROADCASTF64X4 Operation (512-bit version with writemask all 1s)

DEST

m256 X0

X0X0

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

5-16 Vol. 2C

VBROADCASTSD (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp
DEST[MAXVL-1:256] 0

VBROADCASTSD (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[63:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCASTF32x2 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
n (j mod 2) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCASTF128 (VEX.256 encoded version)
temp SRC[127:0]
DEST[127:0] temp
DEST[255:128] temp
DEST[MAXVL-1:256] 0

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-17

VBROADCASTF32X4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1

i j* 32
n (j modulo 4) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCASTF64X2 (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
n (j modulo 2) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[n+63:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR;

VBROADCASTF32X8 (EVEX.U1.512 encoded version)
FOR j 0 TO 15

i j * 32
n (j modulo 8) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

5-18 Vol. 2C

VBROADCASTF64X4 (EVEX.512 encoded version)
FOR j 0 TO 7

i j * 64
n (j modulo 4) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[n+63:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTF32x2 __m512 _mm512_broadcast_f32x2(__m128 a);
VBROADCASTF32x2 __m512 _mm512_mask_broadcast_f32x2(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x2 __m512 _mm512_maskz_broadcast_f32x2(__mmask16 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_broadcast_f32x2(__m128 a);
VBROADCASTF32x2 __m256 _mm256_mask_broadcast_f32x2(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_maskz_broadcast_f32x2(__mmask8 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_broadcast_f32x4(__m128 a);
VBROADCASTF32x4 __m512 _mm512_mask_broadcast_f32x4(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_maskz_broadcast_f32x4(__mmask16 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_broadcast_f32x4(__m128 a);
VBROADCASTF32x4 __m256 _mm256_mask_broadcast_f32x4(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_maskz_broadcast_f32x4(__mmask8 k, __m128 a);
VBROADCASTF32x8 __m512 _mm512_broadcast_f32x8(__m256 a);
VBROADCASTF32x8 __m512 _mm512_mask_broadcast_f32x8(__m512 s, __mmask16 k, __m256 a);
VBROADCASTF32x8 __m512 _mm512_maskz_broadcast_f32x8(__mmask16 k, __m256 a);
VBROADCASTF64x2 __m512d _mm512_broadcast_f64x2(__m128d a);
VBROADCASTF64x2 __m512d _mm512_mask_broadcast_f64x2(__m512d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m512d _mm512_maskz_broadcast_f64x2(__mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_broadcast_f64x2(__m128d a);
VBROADCASTF64x2 __m256d _mm256_mask_broadcast_f64x2(__m256d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_maskz_broadcast_f64x2(__mmask8 k, __m128d a);
VBROADCASTF64x4 __m512d _mm512_broadcast_f64x4(__m256d a);
VBROADCASTF64x4 __m512d _mm512_mask_broadcast_f64x4(__m512d s, __mmask8 k, __m256d a);
VBROADCASTF64x4 __m512d _mm512_maskz_broadcast_f64x4(__mmask8 k, __m256d a);
VBROADCASTSD __m512d _mm512_broadcastsd_pd(__m128d a);
VBROADCASTSD __m512d _mm512_mask_broadcastsd_pd(__m512d s, __mmask8 k, __m128d a);
VBROADCASTSD __m512d _mm512_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcastsd_pd(__m128d a);
VBROADCASTSD __m256d _mm256_mask_broadcastsd_pd(__m256d s, __mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcast_sd(double *a);
VBROADCASTSS __m512 _mm512_broadcastss_ps(__m128 a);
VBROADCASTSS __m512 _mm512_mask_broadcastss_ps(__m512 s, __mmask16 k, __m128 a);
VBROADCASTSS __m512 _mm512_maskz_broadcastss_ps(__mmask16 k, __m128 a);
VBROADCASTSS __m256 _mm256_broadcastss_ps(__m128 a);
VBROADCASTSS __m256 _mm256_mask_broadcastss_ps(__m256 s, __mmask8 k, __m128 a);
VBROADCASTSS __m256 _mm256_maskz_broadcastss_ps(__mmask8 k, __m128 a);

VBROADCAST—Load with Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-19

VBROADCASTSS __m128 _mm_broadcastss_ps(__m128 a);
VBROADCASTSS __m128 _mm_mask_broadcastss_ps(__m128 s, __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_maskz_broadcastss_ps(__mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcast_ss(float *a);
VBROADCASTSS __m256 _mm256_broadcast_ss(float *a);
VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 * a);
VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d * a);

Exceptions

VEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, see Exceptions Type E6.
#UD If VEX.L = 0 for VBROADCASTSD or VBROADCASTF128.

If EVEX.L’L = 0 for VBROADCASTSD/VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2.
If EVEX.L’L < 10b for VBROADCASTF32X8/VBROADCASTF64X4.

VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-49

VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double-Precision Floating-Point
Values

Instruction Operand Encoding

Description

Converts packed quadword integers in the source operand (second operand) to packed double-precision floating-
point values in the destination operand (first operand).
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation
is a ZMM/YMM/XMM register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTQQ2PD (EVEX2 encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;

FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i]
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.F3.0F.W1 E6 /r
VCVTQQ2PD xmm1 {k1}{z},
xmm2/m128/m64bcst

A V/V AVX512VL
AVX512DQ

Convert two packed quadword integers from
xmm2/m128/m64bcst to packed double-precision floating-
point values in xmm1 with writemask k1.

EVEX.256.F3.0F.W1 E6 /r
VCVTQQ2PD ymm1 {k1}{z},
ymm2/m256/m64bcst

A V/V AVX512VL
AVX512DQ

Convert four packed quadword integers from
ymm2/m256/m64bcst to packed double-precision floating-
point values in ymm1 with writemask k1.

EVEX.512.F3.0F.W1 E6 /r
VCVTQQ2PD zmm1 {k1}{z},
zmm2/m512/m64bcst{er}

A V/V AVX512DQ Convert eight packed quadword integers from
zmm2/m512/m64bcst to eight packed double-precision
floating-point values in zmm1 with writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, V-Z

5-50 Vol. 2C

VCVTQQ2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b == 1)

THEN
DEST[i+63:i]

Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[63:0])
ELSE

DEST[i+63:i]
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
FI;

ELSE
IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Intel C/C++ Compiler Intrinsic Equivalent

VCVTQQ2PD __m512d _mm512_cvtepi64_pd(__m512i a);
VCVTQQ2PD __m512d _mm512_mask_cvtepi64_pd(__m512d s, __mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_maskz_cvtepi64_pd(__mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_cvt_roundepi64_pd(__m512i a, int r);
VCVTQQ2PD __m512d _mm512_mask_cvt_roundepi64_pd(__m512d s, __mmask8 k, __m512i a, int r);
VCVTQQ2PD __m512d _mm512_maskz_cvt_roundepi64_pd(__mmask8 k, __m512i a, int r);
VCVTQQ2PD __m256d _mm256_mask_cvtepi64_pd(__m256d s, __mmask8 k, __m256i a);
VCVTQQ2PD __m256d _mm256_maskz_cvtepi64_pd(__mmask8 k, __m256i a);
VCVTQQ2PD __m128d _mm_mask_cvtepi64_pd(__m128d s, __mmask8 k, __m128i a);
VCVTQQ2PD __m128d _mm_maskz_cvtepi64_pd(__mmask8 k, __m128i a);

SIMD Floating-Point Exceptions

Precision

Other Exceptions

EVEX-encoded instructions, see Exceptions Type E2
#UD If EVEX.vvvv != 1111B.

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

5-250 Vol. 2C

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 single-precision floating-point values from memory addresses spec-
ified by the memory operand (the second operand) and using dword indices. The memory operand uses the VSIB
form of the SIB byte to specify a general purpose register operand as the common base, a vector register for an
array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using qword indices, the instruction conditionally loads up to 2 or 4 single-precision floating-point values from the
VSIB addressing memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits
of the destination register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 92 /r
VGATHERDPS xmm1, vm32x, xmm2

A V/V AVX2 Using dword indices specified in vm32x, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

VEX.DDS.128.66.0F38.W0 93 /r
VGATHERQPS xmm1, vm64x, xmm2

A V/V AVX2 Using qword indices specified in vm64x, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

VEX.DDS.256.66.0F38.W0 92 /r
VGATHERDPS ymm1, vm32y, ymm2

A V/V AVX2 Using dword indices specified in vm32y, gather single-preci-
sion FP values from memory conditioned on mask specified
by ymm2. Conditionally gathered elements are merged into
ymm1.

VEX.DDS.256.66.0F38.W0 93 /r
VGATHERQPS xmm1, vm64y, xmm2

A V/V AVX2 Using qword indices specified in vm64y, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-251

VEX.128 version: For dword indices, the instruction will gather four single-precision floating-point values. For
qword indices, the instruction will gather two values and zero the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight single-precision floating-point values. For
qword indices, the instruction will gather four values and zero the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does

is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

5-252 Vol. 2C

VGATHERDPS (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[MAXVL-1:128] 0;
FOR j 0 to 3

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
DEST[MAXVL-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPS (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[MAXVL-1:128] 0;
FOR j 0 to 1

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[127:64] 0;
DEST[MAXVL-1:64] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-253

VGATHERDPS (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 7

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPS (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[MAXVL-1:128] 0;
DEST[MAXVL-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

5-254 Vol. 2C

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPS: __m128 _mm_i32gather_ps (float const * base, __m128i index, const int scale);

VGATHERDPS: __m128 _mm_mask_i32gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERDPS: __m256 _mm256_i32gather_ps (float const * base, __m256i index, const int scale);

VGATHERDPS: __m256 _mm256_mask_i32gather_ps (__m256 src, float const * base, __m256i index, __m256 mask, const int
scale);

VGATHERQPS: __m128 _mm_i64gather_ps (float const * base, __m128i index, const int scale);

VGATHERQPS: __m128 _mm_mask_i64gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERQPS: __m128 _mm256_i64gather_ps (float const * base, __m256i index, const int scale);

VGATHERQPS: __m128 _mm256_mask_i64gather_ps (__m128 src, float const * base, __m256i index, __m128 mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12.

VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-291

VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element
of the destination operand, depending on the mask bits associated with each data element. The mask bits are
specified in the first source operand.
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in
the store form.
The second source operand is a memory address for the load form of these instruction. The destination operand is
a memory address for the store form of these instructions. The other operands are both XMM registers (for
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to
these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits
of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached memory as the access and the
ordering of the individual loads or stores it does is implementation specific.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed single-precision values from
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed single-precision values from
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed double-precision values from
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed double-precision values from
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed single-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed single-precision values from
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed double-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed double-precision values from
ymm2 using mask in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA

VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, V-Z

5-292 Vol. 2C

In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field,
and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in
reg_field, and the destination memory location is encoded in rm_field.

Operation

VMASKMOVPS -128-bit load
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:97] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[MAXVL-1:128] 0

VMASKMOVPS - 256-bit load
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:96] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[159:128] IF (SRC1[159]) Load_32(mem + 16) ELSE 0
DEST[191:160] IF (SRC1[191]) Load_32(mem + 20) ELSE 0
DEST[223:192] IF (SRC1[223]) Load_32(mem + 24) ELSE 0
DEST[255:224] IF (SRC1[255]) Load_32(mem + 28) ELSE 0

VMASKMOVPD - 128-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[MAXVL-1:128] 0

VMASKMOVPD - 256-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 8) ELSE 0
DEST[195:128] IF (SRC1[191]) Load_64(mem + 16) ELSE 0
DEST[255:196] IF (SRC1[255]) Load_64(mem + 24) ELSE 0

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]
IF (SRC1[159]) DEST[159:128] SRC2[159:128]
IF (SRC1[191]) DEST[191:160] SRC2[191:160]
IF (SRC1[223]) DEST[223:192] SRC2[223:192]
IF (SRC1[255]) DEST[255:224] SRC2[255:224]

VMASKMOV—Conditional SIMD Packed Loads and Stores

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-293

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]
IF (SRC1[191]) DEST[191:128] SRC2[191:128]
IF (SRC1[255]) DEST[255:192] SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_maskload_ps(float const *a, __m256i mask)

void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm_maskload_ps(float const *a, __m128i mask)

void _mm_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm_maskload_pd(double *a, __m128i mask);

void _mm_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

5-304 Vol. 2C

VPBROADCAST—Load Integer and Broadcast
Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 78 /r
VPBROADCASTB xmm1, xmm2/m8

A V/V AVX2 Broadcast a byte integer in the source operand
to sixteen locations in xmm1.

VEX.256.66.0F38.W0 78 /r
VPBROADCASTB ymm1, xmm2/m8

A V/V AVX2 Broadcast a byte integer in the source operand
to thirty-two locations in ymm1.

EVEX.128.66.0F38.W0 78 /r
VPBROADCASTB xmm1{k1}{z}, xmm2/m8

B V/V AVX512VL
AVX512BW

Broadcast a byte integer in the source operand
to locations in xmm1 subject to writemask k1.

EVEX.256.66.0F38.W0 78 /r
VPBROADCASTB ymm1{k1}{z}, xmm2/m8

B V/V AVX512VL
AVX512BW

Broadcast a byte integer in the source operand
to locations in ymm1 subject to writemask k1.

EVEX.512.66.0F38.W0 78 /r
VPBROADCASTB zmm1{k1}{z}, xmm2/m8

B V/V AVX512BW Broadcast a byte integer in the source operand
to 64 locations in zmm1 subject to writemask
k1.

VEX.128.66.0F38.W0 79 /r
VPBROADCASTW xmm1, xmm2/m16

A V/V AVX2 Broadcast a word integer in the source
operand to eight locations in xmm1.

VEX.256.66.0F38.W0 79 /r
VPBROADCASTW ymm1, xmm2/m16

A V/V AVX2 Broadcast a word integer in the source
operand to sixteen locations in ymm1.

EVEX.128.66.0F38.W0 79 /r
VPBROADCASTW xmm1{k1}{z}, xmm2/m16

B V/V AVX512VL
AVX512BW

Broadcast a word integer in the source
operand to locations in xmm1 subject to
writemask k1.

EVEX.256.66.0F38.W0 79 /r
VPBROADCASTW ymm1{k1}{z}, xmm2/m16

B V/V AVX512VL
AVX512BW

Broadcast a word integer in the source
operand to locations in ymm1 subject to
writemask k1.

EVEX.512.66.0F38.W0 79 /r
VPBROADCASTW zmm1{k1}{z}, xmm2/m16

B V/V AVX512BW Broadcast a word integer in the source
operand to 32 locations in zmm1 subject to
writemask k1.

VEX.128.66.0F38.W0 58 /r
VPBROADCASTD xmm1, xmm2/m32

A V/V AVX2 Broadcast a dword integer in the source
operand to four locations in xmm1.

VEX.256.66.0F38.W0 58 /r
VPBROADCASTD ymm1, xmm2/m32

A V/V AVX2 Broadcast a dword integer in the source
operand to eight locations in ymm1.

EVEX.128.66.0F38.W0 58 /r
VPBROADCASTD xmm1 {k1}{z}, xmm2/m32

B V/V AVX512VL
AVX512F

Broadcast a dword integer in the source
operand to locations in xmm1 subject to
writemask k1.

EVEX.256.66.0F38.W0 58 /r
VPBROADCASTD ymm1 {k1}{z}, xmm2/m32

B V/V AVX512VL
AVX512F

Broadcast a dword integer in the source
operand to locations in ymm1 subject to
writemask k1.

EVEX.512.66.0F38.W0 58 /r
VPBROADCASTD zmm1 {k1}{z}, xmm2/m32

B V/V AVX512F Broadcast a dword integer in the source
operand to locations in zmm1 subject to
writemask k1.

VEX.128.66.0F38.W0 59 /r
VPBROADCASTQ xmm1, xmm2/m64

A V/V AVX2 Broadcast a qword element in source operand
to two locations in xmm1.

VEX.256.66.0F38.W0 59 /r
VPBROADCASTQ ymm1, xmm2/m64

A V/V AVX2 Broadcast a qword element in source operand
to four locations in ymm1.

EVEX.128.66.0F38.W1 59 /r
VPBROADCASTQ xmm1 {k1}{z}, xmm2/m64

B V/V AVX512VL
AVX512F

Broadcast a qword element in source operand
to locations in xmm1 subject to writemask k1.

EVEX.256.66.0F38.W1 59 /r
VPBROADCASTQ ymm1 {k1}{z}, xmm2/m64

B V/V AVX512VL
AVX512F

Broadcast a qword element in source operand
to locations in ymm1 subject to writemask k1.

EVEX.512.66.0F38.W1 59 /r
VPBROADCASTQ zmm1 {k1}{z}, xmm2/m64

B V/V AVX512F Broadcast a qword element in source operand
to locations in zmm1 subject to writemask k1.

EVEX.128.66.0F38.W0 59 /r
VBROADCASTI32x2 xmm1 {k1}{z}, xmm2/m64

C V/V AVX512VL
AVX512DQ

Broadcast two dword elements in source
operand to locations in xmm1 subject to
writemask k1.

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-305

Instruction Operand Encoding

Description

Load integer data from the source operand (the second operand) and broadcast to all elements of the destination
operand (the first operand).
VEX256-encoded VPBROADCASTB/W/D/Q: The source operand is 8-bit, 16-bit, 32-bit, 64-bit memory location or
the low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. The destination operand is a YMM register.
VPBROADCASTI128 support the source operand of 128-bit memory location. Register source encodings for
VPBROADCASTI128 is reserved and will #UD. Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX-encoded VPBROADCASTD/Q: The source operand is a 32-bit, 64-bit memory location or the low 32-bit, 64-
bit data in an XMM register. The destination operand is a ZMM/YMM/XMM register and updated according to the
writemask k1.
VPBROADCASTI32X4 and VPBROADCASTI64X4: The destination operand is a ZMM register and updated according
to the writemask k1. The source operand is 128-bit or 256-bit memory location. Register source encodings for
VBROADCASTI32X4 and VBROADCASTI64X4 are reserved and will #UD.

EVEX.256.66.0F38.W0 59 /r
VBROADCASTI32x2 ymm1 {k1}{z}, xmm2/m64

C V/V AVX512VL
AVX512DQ

Broadcast two dword elements in source
operand to locations in ymm1 subject to
writemask k1.

EVEX.512.66.0F38.W0 59 /r
VBROADCASTI32x2 zmm1 {k1}{z}, xmm2/m64

C V/V AVX512DQ Broadcast two dword elements in source
operand to locations in zmm1 subject to
writemask k1.

VEX.256.66.0F38.W0 5A /r
VBROADCASTI128 ymm1, m128

A V/V AVX2 Broadcast 128 bits of integer data in mem to
low and high 128-bits in ymm1.

EVEX.256.66.0F38.W0 5A /r
VBROADCASTI32X4 ymm1 {k1}{z}, m128

D V/V AVX512VL
AVX512F

Broadcast 128 bits of 4 doubleword integer
data in mem to locations in ymm1 using
writemask k1.

EVEX.512.66.0F38.W0 5A /r
VBROADCASTI32X4 zmm1 {k1}{z}, m128

D V/V AVX512F Broadcast 128 bits of 4 doubleword integer
data in mem to locations in zmm1 using
writemask k1.

EVEX.256.66.0F38.W1 5A /r
VBROADCASTI64X2 ymm1 {k1}{z}, m128

C V/V AVX512VL
AVX512DQ

Broadcast 128 bits of 2 quadword integer data
in mem to locations in ymm1 using writemask
k1.

EVEX.512.66.0F38.W1 5A /r
VBROADCASTI64X2 zmm1 {k1}{z}, m128

C V/V AVX512DQ Broadcast 128 bits of 2 quadword integer data
in mem to locations in zmm1 using writemask
k1.

EVEX.512.66.0F38.W0 5B /r
VBROADCASTI32X8 zmm1 {k1}{z}, m256

E V/V AVX512DQ Broadcast 256 bits of 8 doubleword integer
data in mem to locations in zmm1 using
writemask k1.

EVEX.512.66.0F38.W1 5B /r
VBROADCASTI64X4 zmm1 {k1}{z}, m256

D V/V AVX512F Broadcast 256 bits of 4 quadword integer data
in mem to locations in zmm1 using writemask
k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

B Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) NA NA

C Tuple2 ModRM:reg (w) ModRM:r/m (r) NA NA

D Tuple4 ModRM:reg (w) ModRM:r/m (r) NA NA

E Tuple8 ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

5-306 Vol. 2C

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VPBROADCASTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will
cause an #UD exception.

Figure 5-16. VPBROADCASTD Operation (VEX.256 encoded version)

Figure 5-17. VPBROADCASTD Operation (128-bit version)

Figure 5-18. VPBROADCASTQ Operation (256-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00

DEST

m64 X0

X0X0X0X0

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-307

Operation

VPBROADCASTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1

i j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SRC[7:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+7:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Figure 5-19. VBROADCASTI128 Operation (256-bit version)

Figure 5-20. VBROADCASTI256 Operation (512-bit version)

DEST

m128 X0

X0X0

DEST

m256 X0

X0X0

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

5-308 Vol. 2C

VPBROADCASTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1

i j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] SRC[15:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+15:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPBROADCASTD (128 bit version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[MAXVL-1:128] 0

VPBROADCASTD (VEX.256 encoded version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp
DEST[MAXVL-1:256] 0

VPBROADCASTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[31:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-309

VPBROADCASTQ (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp
DEST[MAXVL-1:256] 0

VPBROADCASTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[63:0]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0
VBROADCASTI32x2 (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 32
n (j mod 2) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCASTI128 (VEX.256 encoded version)
temp SRC[127:0]
DEST[127:0] temp
DEST[255:128] temp
DEST[MAXVL-1:256] 0

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

5-310 Vol. 2C

VBROADCASTI32X4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1

i j* 32
n (j modulo 4) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VBROADCASTI64X2 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1

i j * 64
n (j modulo 2) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[n+63:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] = 0
FI

FI;
ENDFOR;

VBROADCASTI32X8 (EVEX.U1.512 encoded version)
FOR j 0 TO 15

i j * 32
n (j modulo 8) * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] SRC[n+31:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-311

VBROADCASTI64X4 (EVEX.512 encoded version)
FOR j 0 TO 7

i j * 64
n (j modulo 4) * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] SRC[n+63:n]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTB __m512i _mm512_broadcastb_epi8(__m128i a);
VPBROADCASTB __m512i _mm512_mask_broadcastb_epi8(__m512i s, __mmask64 k, __m128i a);
VPBROADCASTB __m512i _mm512_maskz_broadcastb_epi8(__mmask64 k, __m128i a);
VPBROADCASTB __m256i _mm256_broadcastb_epi8(__m128i a);
VPBROADCASTB __m256i _mm256_mask_broadcastb_epi8(__m256i s, __mmask32 k, __m128i a);
VPBROADCASTB __m256i _mm256_maskz_broadcastb_epi8(__mmask32 k, __m128i a);
VPBROADCASTB __m128i _mm_mask_broadcastb_epi8(__m128i s, __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_maskz_broadcastb_epi8(__mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_broadcastb_epi8(__m128i a);
VPBROADCASTD __m512i _mm512_broadcastd_epi32(__m128i a);
VPBROADCASTD __m512i _mm512_mask_broadcastd_epi32(__m512i s, __mmask16 k, __m128i a);
VPBROADCASTD __m512i _mm512_maskz_broadcastd_epi32(__mmask16 k, __m128i a);
VPBROADCASTD __m256i _mm256_broadcastd_epi32(__m128i a);
VPBROADCASTD __m256i _mm256_mask_broadcastd_epi32(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTD __m256i _mm256_maskz_broadcastd_epi32(__mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_broadcastd_epi32(__m128i a);
VPBROADCASTD __m128i _mm_mask_broadcastd_epi32(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_maskz_broadcastd_epi32(__mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m512i _mm512_mask_broadcastq_epi64(__m512i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_maskz_broadcastq_epi64(__mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m256i _mm256_mask_broadcastq_epi64(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_maskz_broadcastq_epi64(__mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m128i _mm_mask_broadcastq_epi64(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_maskz_broadcastq_epi64(__mmask8 k, __m128i a);
VPBROADCASTW __m512i _mm512_broadcastw_epi16(__m128i a);
VPBROADCASTW __m512i _mm512_mask_broadcastw_epi16(__m512i s, __mmask32 k, __m128i a);
VPBROADCASTW __m512i _mm512_maskz_broadcastw_epi16(__mmask32 k, __m128i a);
VPBROADCASTW __m256i _mm256_broadcastw_epi16(__m128i a);
VPBROADCASTW __m256i _mm256_mask_broadcastw_epi16(__m256i s, __mmask16 k, __m128i a);
VPBROADCASTW __m256i _mm256_maskz_broadcastw_epi16(__mmask16 k, __m128i a);
VPBROADCASTW __m128i _mm_broadcastw_epi16(__m128i a);
VPBROADCASTW __m128i _mm_mask_broadcastw_epi16(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTW __m128i _mm_maskz_broadcastw_epi16(__mmask8 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_broadcast_i32x2(__m128i a);

VPBROADCAST—Load Integer and Broadcast

INSTRUCTION SET REFERENCE, V-Z

5-312 Vol. 2C

VBROADCASTI32x2 __m512i _mm512_mask_broadcast_i32x2(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_maskz_broadcast_i32x2(__mmask16 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_broadcast_i32x2(__m128i a);
VBROADCASTI32x2 __m256i _mm256_mask_broadcast_i32x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_maskz_broadcast_i32x2(__mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_broadcast_i32x2(__m128i a);
VBROADCASTI32x2 __m128i _mm_mask_broadcast_i32x2(__m128i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_maskz_broadcast_i32x2(__mmask8 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_broadcast_i32x4(__m128i a);
VBROADCASTI32x4 __m512i _mm512_mask_broadcast_i32x4(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_maskz_broadcast_i32x4(__mmask16 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_broadcast_i32x4(__m128i a);
VBROADCASTI32x4 __m256i _mm256_mask_broadcast_i32x4(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_maskz_broadcast_i32x4(__mmask8 k, __m128i a);
VBROADCASTI32x8 __m512i _mm512_broadcast_i32x8(__m256i a);
VBROADCASTI32x8 __m512i _mm512_mask_broadcast_i32x8(__m512i s, __mmask16 k, __m256i a);
VBROADCASTI32x8 __m512i _mm512_maskz_broadcast_i32x8(__mmask16 k, __m256i a);
VBROADCASTI64x2 __m512i _mm512_broadcast_i64x2(__m128i a);
VBROADCASTI64x2 __m512i _mm512_mask_broadcast_i64x2(__m512i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m512i _mm512_maskz_broadcast_i64x2(__mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_broadcast_i64x2(__m128i a);
VBROADCASTI64x2 __m256i _mm256_mask_broadcast_i64x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_maskz_broadcast_i64x2(__mmask8 k, __m128i a);
VBROADCASTI64x4 __m512i _mm512_broadcast_i64x4(__m256i a);
VBROADCASTI64x4 __m512i _mm512_mask_broadcast_i64x4(__m512i s, __mmask8 k, __m256i a);
VBROADCASTI64x4 __m512i _mm512_maskz_broadcast_i64x4(__mmask8 k, __m256i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, syntax with reg/mem operand, see Exceptions Type E6.
#UD If VEX.L = 0 for VPBROADCASTQ, VPBROADCASTI128.

If EVEX.L’L = 0 for VBROADCASTI32X4/VBROADCASTI64X2.
If EVEX.L’L < 10b for VBROADCASTI32X8/VBROADCASTI64X4.

VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense Memory/ Register

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-331

VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense
Memory/ Register

Instruction Operand Encoding

Description

Test each dword/qword element of the source operand (the second operand) for equality with all other elements in
the source operand closer to the least significant element. Each element’s comparison results form a bit vector,
which is then zero extended and written to the destination according to the writemask.
EVEX.512 encoded version: The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a ZMM register, conditionally updated
using writemask k1.
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a YMM register, conditionally updated
using writemask k1.
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a XMM register, conditionally updated
using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F38.W0 C4 /r
VPCONFLICTD xmm1 {k1}{z},
xmm2/m128/m32bcst

A V/V AVX512VL
AVX512CD

Detect duplicate double-word values in
xmm2/m128/m32bcst using writemask k1.

EVEX.256.66.0F38.W0 C4 /r
VPCONFLICTD ymm1 {k1}{z},
ymm2/m256/m32bcst

A V/V AVX512VL
AVX512CD

Detect duplicate double-word values in
ymm2/m256/m32bcst using writemask k1.

EVEX.512.66.0F38.W0 C4 /r
VPCONFLICTD zmm1 {k1}{z},
zmm2/m512/m32bcst

A V/V AVX512CD Detect duplicate double-word values in
zmm2/m512/m32bcst using writemask k1.

EVEX.128.66.0F38.W1 C4 /r
VPCONFLICTQ xmm1 {k1}{z},
xmm2/m128/m64bcst

A V/V AVX512VL
AVX512CD

Detect duplicate quad-word values in
xmm2/m128/m64bcst using writemask k1.

EVEX.256.66.0F38.W1 C4 /r
VPCONFLICTQ ymm1 {k1}{z},
ymm2/m256/m64bcst

A V/V AVX512VL
AVX512CD

Detect duplicate quad-word values in
ymm2/m256/m64bcst using writemask k1.

EVEX.512.66.0F38.W1 C4 /r
VPCONFLICTQ zmm1 {k1}{z},
zmm2/m512/m64bcst

A V/V AVX512CD Detect duplicate quad-word values in
zmm2/m512/m64bcst using writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) ModRM:r/m (r) NA NA

VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense Memory/ Register

INSTRUCTION SET REFERENCE, V-Z

5-332 Vol. 2C

Operation

VPCONFLICTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1

i j*32
IF MaskBit(j) OR *no writemask*THEN

FOR k 0 TO j-1
m k*32
IF ((SRC[i+31:i] = SRC[m+31:m])) THEN

DEST[i+k] 1
ELSE

DEST[i+k] 0
FI

ENDFOR
DEST[i+31:i+j] 0

ELSE
IF *merging-masking* THEN

DEST[i+31:i] remains unchanged
ELSE

DEST[i+31:i] 0
FI

FI
ENDFOR

DEST[MAXVL-1:VL] ← 0

VPCONFLICTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1

i j*64
IF MaskBit(j) OR *no writemask*THEN

FOR k 0 TO j-1

m k*64

IF ((SRC[i+63:i] = SRC[m+63:m])) THEN
DEST[i+k] 1

ELSE
DEST[i+k] 0

FI
ENDFOR
DEST[i+63:i+j] 0

ELSE
IF *merging-masking* THEN

DEST[i+63:i] remains unchanged
ELSE

DEST[i+63:i] 0
 FI

FI
ENDFOR
DEST[MAXVL-1:VL] 0

VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense Memory/ Register

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-333

Intel C/C++ Compiler Intrinsic Equivalent

VPCONFLICTD __m512i _mm512_conflict_epi32(__m512i a);
VPCONFLICTD __m512i _mm512_mask_conflict_epi32(__m512i s, __mmask16 m, __m512i a);
VPCONFLICTD __m512i _mm512_maskz_conflict_epi32(__mmask16 m, __m512i a);
VPCONFLICTQ __m512i _mm512_conflict_epi64(__m512i a);
VPCONFLICTQ __m512i _mm512_mask_conflict_epi64(__m512i s, __mmask8 m, __m512i a);
VPCONFLICTQ __m512i _mm512_maskz_conflict_epi64(__mmask8 m, __m512i a);
VPCONFLICTD __m256i _mm256_conflict_epi32(__m256i a);
VPCONFLICTD __m256i _mm256_mask_conflict_epi32(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTD __m256i _mm256_maskz_conflict_epi32(__mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_conflict_epi64(__m256i a);
VPCONFLICTQ __m256i _mm256_mask_conflict_epi64(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_maskz_conflict_epi64(__mmask8 m, __m256i a);
VPCONFLICTD __m128i _mm_conflict_epi32(__m128i a);
VPCONFLICTD __m128i _mm_mask_conflict_epi32(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTD __m128i _mm_maskz_conflict_epi32(__mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_conflict_epi64(__m128i a);
VPCONFLICTQ __m128i _mm_mask_conflict_epi64(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_maskz_conflict_epi64(__mmask8 m, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E4NF.

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-381

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword
Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte
to specify a general purpose register operand as the common base, a vector register for an array of indices relative
to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using qword indices, the instruction conditionally loads up to 2 or 4 qword values from the VSIB addressing
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the destina-
tion register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four dword values. For qword indices, the instruc-
tion will gather two values and zero the upper 64 bits of the destination.

Opcode/
Instruction

Op/
En

64/32
-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 90 /r
VPGATHERDD xmm1, vm32x, xmm2

RMV V/V AVX2 Using dword indices specified in vm32x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VEX.DDS.128.66.0F38.W0 91 /r
VPGATHERQD xmm1, vm64x, xmm2

RMV V/V AVX2 Using qword indices specified in vm64x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VEX.DDS.256.66.0F38.W0 90 /r
VPGATHERDD ymm1, vm32y, ymm2

RMV V/V AVX2 Using dword indices specified in vm32y, gather dword
from memory conditioned on mask specified by ymm2.
Conditionally gathered elements are merged into ymm1.

VEX.DDS.256.66.0F38.W0 91 /r
VPGATHERQD xmm1, vm64y, xmm2

RMV V/V AVX2 Using qword indices specified in vm64y, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

5-382 Vol. 2C

VEX.256 version: For dword indices, the instruction will gather eight dword values. For qword indices, the instruc-
tion will gather four values and zero the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does

is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VPGATHERDD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[MAXVL-1:128] 0;
FOR j 0 to 3

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
DEST[MAXVL-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-383

VPGATHERQD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[MAXVL-1:128] 0;
FOR j 0 to 1

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[127:64] 0;
DEST[MAXVL-1:64] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 7

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword Indices

INSTRUCTION SET REFERENCE, V-Z

5-384 Vol. 2C

VPGATHERQD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[MAXVL-1:128] 0;
DEST[MAXVL-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i _mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i _mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERDD: __m256i _mm256_i32gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERDD: __m256i _mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int
scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i _mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERQD: __m128i _mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i _mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12.

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-431

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

Instruction Operand Encoding

Description

VPMOVWB down converts 16-bit integers into packed bytes using truncation. VPMOVSWB converts signed 16-bit
integers into packed signed bytes using signed saturation. VPMOVUSWB convert unsigned word values into
unsigned byte values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a
256/128/64-bit memory location.

Down-converted byte elements are written to the destination operand (the first operand) from the least-significant
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAXVL-
1:256/128/64) of the register destination are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.F3.0F38.W0 30 /r
VPMOVWB xmm1/m64 {k1}{z}, xmm2

A V/V AVX512VL
AVX512BW

Converts 8 packed word integers from xmm2 into 8
packed bytes in xmm1/m64 with truncation under
writemask k1.

EVEX.128.F3.0F38.W0 20 /r
VPMOVSWB xmm1/m64 {k1}{z},
xmm2

A V/V AVX512VL
AVX512BW

Converts 8 packed signed word integers from xmm2
into 8 packed signed bytes in xmm1/m64 using
signed saturation under writemask k1.

EVEX.128.F3.0F38.W0 10 /r
VPMOVUSWB xmm1/m64 {k1}{z},
xmm2

A V/V AVX512VL
AVX512BW

Converts 8 packed unsigned word integers from
xmm2 into 8 packed unsigned bytes in 8mm1/m64
using unsigned saturation under writemask k1.

EVEX.256.F3.0F38.W0 30 /r
VPMOVWB xmm1/m128 {k1}{z},
ymm2

A V/V AVX512VL
AVX512BW

Converts 16 packed word integers from ymm2 into
16 packed bytes in xmm1/m128 with truncation
under writemask k1.

EVEX.256.F3.0F38.W0 20 /r
VPMOVSWB xmm1/m128 {k1}{z},
ymm2

A V/V AVX512VL
AVX512BW

Converts 16 packed signed word integers from ymm2
into 16 packed signed bytes in xmm1/m128 using
signed saturation under writemask k1.

EVEX.256.F3.0F38.W0 10 /r
VPMOVUSWB xmm1/m128 {k1}{z},
ymm2

A V/V AVX512VL
AVX512BW

Converts 16 packed unsigned word integers from
ymm2 into 16 packed unsigned bytes in xmm1/m128
using unsigned saturation under writemask k1.

EVEX.512.F3.0F38.W0 30 /r
VPMOVWB ymm1/m256 {k1}{z},
zmm2

A V/V AVX512BW Converts 32 packed word integers from zmm2 into
32 packed bytes in ymm1/m256 with truncation
under writemask k1.

EVEX.512.F3.0F38.W0 20 /r
VPMOVSWB ymm1/m256 {k1}{z},
zmm2

A V/V AVX512BW Converts 32 packed signed word integers from zmm2
into 32 packed signed bytes in ymm1/m256 using
signed saturation under writemask k1.

EVEX.512.F3.0F38.W0 10 /r
VPMOVUSWB ymm1/m256 {k1}{z},
zmm2

A V/V AVX512BW Converts 32 packed unsigned word integers from
zmm2 into 32 packed unsigned bytes in ymm1/m256
using unsigned saturation under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Half Mem ModRM:r/m (w) ModRM:reg (r) NA NA

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

INSTRUCTION SET REFERENCE, V-Z

5-432 Vol. 2C

Operation

VPMOVWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] TruncateWordToByte (SRC[m+15:m])
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] 0;

VPMOVWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] TruncateWordToByte (SRC[m+15:m])
ELSE

DEST[i+7:i] remains unchanged ; merging-masking
FI;

ENDFOR

VPMOVSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SaturateSignedWordToByte (SRC[m+15:m])
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] 0;

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-433

VPMOVSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SaturateSignedWordToByte (SRC[m+15:m])
ELSE

DEST[i+7:i] remains unchanged ; merging-masking
FI;

ENDFOR

VPMOVUSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking

DEST[i+7:i] = 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL/2] 0;

VPMOVUSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1

i j * 8
m j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE

DEST[i+7:i] remains unchanged ; merging-masking
FI;

ENDFOR

VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte

INSTRUCTION SET REFERENCE, V-Z

5-434 Vol. 2C

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVUSWB __m256i _mm512_cvtusepi16_epi8(__m512i a);
VPMOVUSWB __m256i _mm512_mask_cvtusepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVUSWB __m256i _mm512_maskz_cvtusepi16_epi8(__mmask32 k, __m512i b);
VPMOVUSWB void _mm512_mask_cvtusepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_cvtsepi16_epi8(__m512i a);
VPMOVSWB __m256i _mm512_mask_cvtsepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_maskz_cvtsepi16_epi8(__mmask32 k, __m512i b);
VPMOVSWB void _mm512_mask_cvtsepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_cvtepi16_epi8(__m512i a);
VPMOVWB __m256i _mm512_mask_cvtepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_maskz_cvtepi16_epi8(__mmask32 k, __m512i b);
VPMOVWB void _mm512_mask_cvtepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVUSWB __m128i _mm256_cvtusepi16_epi8(__m256i a);
VPMOVUSWB __m128i _mm256_mask_cvtusepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm256_maskz_cvtusepi16_epi8(__mmask16 k, __m256i b);
VPMOVUSWB void _mm256_mask_cvtusepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm_cvtusepi16_epi8(__m128i a);
VPMOVUSWB __m128i _mm_mask_cvtusepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSWB __m128i _mm_maskz_cvtusepi16_epi8(__mmask8 k, __m128i b);
VPMOVUSWB void _mm_mask_cvtusepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm256_cvtsepi16_epi8(__m256i a);
VPMOVSWB __m128i _mm256_mask_cvtsepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm256_maskz_cvtsepi16_epi8(__mmask16 k, __m256i b);
VPMOVSWB void _mm256_mask_cvtsepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm_cvtsepi16_epi8(__m128i a);
VPMOVSWB __m128i _mm_mask_cvtsepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm_maskz_cvtsepi16_epi8(__mmask8 k, __m128i b);
VPMOVSWB void _mm_mask_cvtsepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVWB __m128i _mm256_cvtepi16_epi8(__m256i a);
VPMOVWB __m128i _mm256_mask_cvtepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVWB __m128i _mm256_maskz_cvtepi16_epi8(__mmask16 k, __m256i b);
VPMOVWB void _mm256_mask_cvtepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVWB __m128i _mm_cvtepi16_epi8(__m128i a);
VPMOVWB __m128i _mm_mask_cvtepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVWB __m128i _mm_maskz_cvtepi16_epi8(__mmask8 k, __m128i b);
VPMOVWB void _mm_mask_cvtepi16_storeu_epi8(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-435

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

Instruction Operand Encoding

Description

This instruction selects eight unaligned bytes from each input qword element of the second source operand (the
third operand) and writes eight assembled bytes for each qword element in the destination operand (the first
operand). Each byte result is selected using a byte-granular shift control within the corresponding qword element
of the first source operand (the second operand). Each byte result in the destination operand is updated under the
writemask k1.
Only the low 6 bits of each control byte are used to select an 8-bit slot to extract the output byte from the qword
data in the second source operand. The starting bit of the 8-bit slot can be unaligned relative to any byte boundary
and is extracted from the input qword source at the location specified in the low 6-bit of the control byte. If the 8-
bit slot would exceed the qword boundary, the out-of-bound portion of the 8-bit slot is wrapped back to start from
bit 0 of the input qword element.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register.

Opcode /
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.NDS.128.66.0F38.W1 83 /r
VPMULTISHIFTQB xmm1 {k1}{z},
xmm2,xmm3/m128/m64bcst

A V/V AVX512_VBMI
AVX512VL

Select unaligned bytes from qwords in
xmm3/m128/m64bcst using control bytes in
xmm2, write byte results to xmm1 under k1.

EVEX.NDS.256.66.0F38.W1 83 /r
VPMULTISHIFTQB ymm1 {k1}{z},
ymm2,ymm3/m256/m64bcst

A V/V AVX512_VBMI
AVX512VL

Select unaligned bytes from qwords in
ymm3/m256/m64bcst using control bytes in
ymm2, write byte results to ymm1 under k1.

EVEX.NDS.512.66.0F38.W1 83 /r
VPMULTISHIFTQB zmm1 {k1}{z},
zmm2,zmm3/m512/m64bcst

A V/V AVX512_VBMI Select unaligned bytes from qwords in
zmm3/m512/m64bcst using control bytes in
zmm2, write byte results to zmm1 under k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources

INSTRUCTION SET REFERENCE, V-Z

5-436 Vol. 2C

Operation

VPMULTISHIFTQB DEST, SRC1, SRC2 (EVEX encoded version)
(KL, VL) = (2, 128),(4, 256), (8, 512)
FOR i ← 0 TO KL-1

IF EVEX.b=1 AND src2 is memory THEN
tcur ← src2.qword[0]; //broadcasting

ELSE
tcur ← src2.qword[i];

FI;
FOR j ← 0 to 7

ctrl ← src1.qword[i].byte[j] & 63;
FOR k ← 0 to 7

res.bit[k] ← tcur.bit[(ctrl+k) mod 64];
ENDFOR
IF k1[i*8+j] or no writemask THEN

DEST.qword[i].byte[j] ← res;
ELSE IF zeroing-masking THEN

DEST.qword[i].byte[j] ← 0;
ENDFOR

ENDFOR
DEST.qword[MAX_VL-1:VL] ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPMULTISHIFTQB __m512i _mm512_multishift_epi64_epi8(__m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_mask_multishift_epi64_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_maskz_multishift_epi64_epi8(__mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m256i _mm256_multishift_epi64_epi8(__m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_mask_multishift_epi64_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_maskz_multishift_epi64_epi8(__mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m128i _mm_multishift_epi64_epi8(__m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_mask_multishift_epi64_epi8(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_maskz_multishift_epi64_epi8(__mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4NF.

VSCALEFPD—Scale Packed Float64 Values With Float64 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-527

VSCALEFPD—Scale Packed Float64 Values With Float64 Values

Instruction Operand Encoding

Description

Performs a floating-point scale of the packed double-precision floating-point values in the first source operand by
multiplying it by 2 power of the double-precision floating-point values in second source operand.
The equation of this operation is given by:

zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value ≤ zmm3.
If the result cannot be represented in double precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a
512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The
destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 5-21 and Table 5-22.

Table 5-21. \VSCALEFPD/SD/PS/SS Special Cases

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.128.66.0F38.W1 2C /r
VSCALEFPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst

A V/V AVX512VL
AVX512F

Scale the packed double-precision floating-point values in
xmm2 using values from xmm3/m128/m64bcst. Under
writemask k1.

EVEX.NDS.256.66.0F38.W1 2C /r
VSCALEFPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst

A V/V AVX512VL
AVX512F

Scale the packed double-precision floating-point values in
ymm2 using values from ymm3/m256/m64bcst. Under
writemask k1.

EVEX.NDS.512.66.0F38.W1 2C /r
VSCALEFPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}

A V/V AVX512F Scale the packed double-precision floating-point values in
zmm2 using values from zmm3/m512/m64bcst. Under
writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Src2 Set IE

±NaN +Inf -Inf 0/Denorm/Norm

Src1 ±QNaN QNaN(Src1) +INF +0 QNaN(Src1) IF either source is SNAN

±SNaN QNaN(Src1) QNaN(Src1) QNaN(Src1) QNaN(Src1) YES

±Inf QNaN(Src2) Src1 QNaN_Indefinite Src1 IF Src2 is SNAN or -INF

±0 QNaN(Src2) QNaN_Indefinite Src1 Src1 IF Src2 is SNAN or +INF

Denorm/Norm QNaN(Src2) ±INF (Src1 sign) ±0 (Src1 sign) Compute Result IF Src2 is SNAN

VSCALEFPD—Scale Packed Float64 Values With Float64 Values

INSTRUCTION SET REFERENCE, V-Z

5-528 Vol. 2C

Operation

SCALE(SRC1, SRC2)
{
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 64 bits floating-point value */
DEST[63:0] TMP_SRC1[63:0] * POW(2, Floor(TMP_SRC2[63:0]))
}
VSCALEFPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;
FOR j 0 TO KL-1

i j * 64
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SCALE(SRC1[i+63:i], SRC2[63:0]);
ELSE DEST[i+63:i] SCALE(SRC1[i+63:i], SRC2[i+63:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+63:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0

Table 5-22. Additional VSCALEFPD/SD Special Cases

Special Case Returned value Faults

|result| < 2-1074 ±0 or ±Min-Denormal (Src1 sign) Underflow

|result| ≥ 21024 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow

VSCALEFPD—Scale Packed Float64 Values With Float64 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-529

Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFPD __m512d _mm512_scalef_round_pd(__m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_mask_scalef_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_maskz_scalef_round_pd(__mmask8 k, __m512d a, __m512d b, int rounding);
VSCALEFPD __m512d _mm512_scalef_pd(__m512d a, __m512d b);
VSCALEFPD __m512d _mm512_mask_scalef_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VSCALEFPD __m512d _mm512_maskz_scalef_pd(__mmask8 k, __m512d a, __m512d b);
VSCALEFPD __m256d _mm256_scalef_pd(__m256d a, __m256d b);
VSCALEFPD __m256d _mm256_mask_scalef_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VSCALEFPD __m256d _mm256_maskz_scalef_pd(__mmask8 k, __m256d a, __m256d b);
VSCALEFPD __m128d _mm_scalef_pd(__m128d a, __m128d b);
VSCALEFPD __m128d _mm_mask_scalef_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VSCALEFPD __m128d _mm_maskz_scalef_pd(__mmask8 k, __m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.

Other Exceptions

See Exceptions Type E2.

VSCALEFPS—Scale Packed Float32 Values With Float32 Values

INSTRUCTION SET REFERENCE, V-Z

5-532 Vol. 2C

VSCALEFPS—Scale Packed Float32 Values With Float32 Values

Instruction Operand Encoding

Description

Performs a floating-point scale of the packed single-precision floating-point values in the first source operand by
multiplying it by 2 power of the float32 values in second source operand.
The equation of this operation is given by:

zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value ≤ zmm3.

If the result cannot be represented in single precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destination
operand is a ZMM register conditionally updated with writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Handling of special-case input values are listed in Table 5-21 and Table 5-23.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.128.66.0F38.W0 2C /r
VSCALEFPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512VL
AVX512F

Scale the packed single-precision floating-point values in
xmm2 using values from xmm3/m128/m32bcst. Under
writemask k1.

EVEX.NDS.256.66.0F38.W0 2C /r
VSCALEFPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512VL
AVX512F

Scale the packed single-precision values in ymm2 using
floating point values from ymm3/m256/m32bcst. Under
writemask k1.

EVEX.NDS.512.66.0F38.W0 2C /r
VSCALEFPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}

A V/V AVX512F Scale the packed single-precision floating-point values in
zmm2 using floating-point values from
zmm3/m512/m32bcst. Under writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Table 5-23. Additional VSCALEFPS/SS Special Cases

Special Case Returned value Faults

|result| < 2-149 ±0 or ±Min-Denormal (Src1 sign) Underflow

|result| ≥ 2128 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow

VSCALEFPS—Scale Packed Float32 Values With Float32 Values

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-533

Operation

SCALE(SRC1, SRC2)
{ ; Check for denormal operands
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 32 bits floating-point value */
DEST[31:0] TMP_SRC1[31:0] * POW(2, Floor(TMP_SRC2[31:0]))
}

VSCALEFPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)

THEN
SET_RM(EVEX.RC);

ELSE
SET_RM(MXCSR.RM);

FI;
FOR j 0 TO KL-1

i j * 32
IF k1[j] OR *no writemask* THEN

IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SCALE(SRC1[i+31:i], SRC2[31:0]);
ELSE DEST[i+31:i] SCALE(SRC1[i+31:i], SRC2[i+31:i]);

FI;
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking

DEST[i+31:i] 0
FI

FI;
ENDFOR
DEST[MAXVL-1:VL] 0;

Intel C/C++ Compiler Intrinsic Equivalent

VSCALEFPS __m512 _mm512_scalef_round_ps(__m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_mask_scalef_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_maskz_scalef_round_ps(__mmask16 k, __m512 a, __m512 b, int rounding);
VSCALEFPS __m512 _mm512_scalef_ps(__m512 a, __m512 b);
VSCALEFPS __m512 _mm512_mask_scalef_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VSCALEFPS __m512 _mm512_maskz_scalef_ps(__mmask16 k, __m512 a, __m512 b);
VSCALEFPS __m256 _mm256_scalef_ps(__m256 a, __m256 b);
VSCALEFPS __m256 _mm256_mask_scalef_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VSCALEFPS __m256 _mm256_maskz_scalef_ps(__mmask8 k, __m256 a, __m256 b);
VSCALEFPS __m128 _mm_scalef_ps(__m128 a, __m128 b);
VSCALEFPS __m128 _mm_mask_scalef_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VSCALEFPS __m128 _mm_maskz_scalef_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.

VSCALEFPS—Scale Packed Float32 Values With Float32 Values

INSTRUCTION SET REFERENCE, V-Z

5-534 Vol. 2C

Other Exceptions

See Exceptions Type E2.

XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

5-586 Vol. 2C

XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.8, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:
• Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BV field in the

XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies the
compacted form.

• If RFBM[i] = 0, XRSTOR does not update state component i.1

• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTOR initializes state
component i.

• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTOR loads state component i from the XSAVE area.
• The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the

XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception
(#GP) occurs.

• XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of
XSAVEOPT or XSAVES.

• Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) any
state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /5

XRSTOR mem

M V/V XSAVE Restore state components specified by EDX:EAX from
mem.

NP REX.W + 0F AE /5

XRSTOR64 mem

M V/N.E. XSAVE Restore state components specified by EDX:EAX from
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory,
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.

XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-587

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK ← XCOMP_BV field from XSAVE header;
RSTORMASK ← XSTATE_BV field from XSAVE header;

IF COMPMASK[63] = 0
THEN

/* Standard form of XRSTOR */
TO_BE_RESTORED ← RFBM AND RSTORMASK;
TO_BE_INITIALIZED ← RFBM AND NOT RSTORMASK;

IF TO_BE_RESTORED[0] = 1
THEN

load x87 state from legacy region of XSAVE area;
XINUSE[0] ← 1;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

initialize x87 state;
XINUSE[0] ← 0;

FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN load MXCSR from legacy region of XSAVE area;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

load XMM registers from legacy region of XSAVE area; // this step does not load MXCSR
XINUSE[1] ← 1;

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0; // this step does not initialize MXCSR
XINUSE[1] ← 0;

FI;

FOR i ← 2 TO 62
IF TO_BE_RESTORED[i] = 1

THEN
load XSAVE state component i at offset n from base of XSAVE area;

// n enumerated by CPUID(EAX=0DH,ECX=i):EBX)
XINUSE[i] ← 1;

ELSIF TO_BE_INITIALIZED[i] = 1
THEN

initialize XSAVE state component i;
XINUSE[i] ← 0;

FI;
ENDFOR;

ELSE
/* Compacted form of XRSTOR */
IF CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0

THEN /* compacted form not supported */
#GP(0);

XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

5-588 Vol. 2C

FI;

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED ← RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT ← RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

load x87 state from legacy region of XSAVE area;
XINUSE[0] ← 1;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

initialize x87 state;
XINUSE[0] ← 0;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR
XINUSE[1] ← 1;

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
MXCSR ← 1F80H;
XINUSE[1] ← 0;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i ← 2 TO 62

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
XINUSE[i] ← 1;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
initialize XSAVE state component i;
XINUSE[i] ← 0;

FI;
ENDFOR;

FI;

XMODIFIED_BV ← NOT RFBM;

IF in VMX non-root operation
THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;

XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-589

LAXA ← linear address of XSAVE area;
XRSTOR_INFO ← CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR: void _xrstor(void * , unsigned __int64);

XRSTOR: void _xrstor64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.

XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

5-590 Vol. 2C

If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If a memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-591

XRSTORS—Restore Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask.
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which
is the logical-AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XRSTORS may be executed only
if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.12, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a
high-level outline:
• Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an

XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “Extended Region of an
XSAVE Area”).

• XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the
IA32_XSS MSR.

• If RFBM[i] = 0, XRSTORS does not update state component i.
• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTORS initializes state

component i.
• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component i from the XSAVE area.
• If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.
• XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of

XSAVEOPT or XSAVES.
• Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration)

any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmaps XINUSE and XMODIFIED and of the quantity
XRSTOR_INFO.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /3

XRSTORS mem

M V/V XSS Restore state components specified by EDX:EAX from
mem.

NP REX.W + 0F C7 /3

XRSTORS64 mem

M V/N.E. XSS Restore state components specified by EDX:EAX from
mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

5-592 Vol. 2C

Operation

RFBM ← (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
COMPMASK ← XCOMP_BV field from XSAVE header;
RSTORMASK ← XSTATE_BV field from XSAVE header;

FORMAT = COMPMASK AND 7FFFFFFF_FFFFFFFFH;
RESTORE_FEATURES = FORMAT AND RFBM;
TO_BE_RESTORED ← RESTORE_FEATURES AND RSTORMASK;
FORCE_INIT ← RFBM AND NOT FORMAT;
TO_BE_INITIALIZED = (RFBM AND NOT RSTORMASK) OR FORCE_INIT;

IF TO_BE_RESTORED[0] = 1
THEN

load x87 state from legacy region of XSAVE area;
XINUSE[0] ← 1;

ELSIF TO_BE_INITIALIZED[0] = 1
THEN

initialize x87 state;
XINUSE[0] ← 0;

FI;

IF TO_BE_RESTORED[1] = 1
THEN

load SSE state from legacy region of XSAVE area; // this step loads the XMM registers and MXCSR
XINUSE[1] ← 1;

ELSIF TO_BE_INITIALIZED[1] = 1
THEN

set all XMM registers to 0;
MXCSR ← 1F80H;
XINUSE[1] ← 0;

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i ← 2 TO 62

IF FORMAT[i] = 1
THEN

IF TO_BE_RESTORED[i] = 1
THEN

load XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
XINUSE[i] ← 1;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
IF TO_BE_INITIALIZED[i] = 1

THEN
initialize XSAVE state component i;
XINUSE[i] ← 0;

FI;
ENDFOR;

XMODIFIED_BV ← NOT RFBM;

IF in VMX non-root operation

XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-593

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
XRSTOR_INFO ← CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS: void _xrstors(void * , unsigned __int64);

XRSTORS64: void _xrstors64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a #GP
is signaled in its place. In addition, the width of the alignment check may also vary with imple-
mentation. For instance, for a given implementation, an alignment check exception might be
signaled for a 2-byte misalignment, whereas a #GP might be signaled for all other misalign-
ments (4-, 8-, or 16-byte misalignments).

XRSTORS—Restore Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

5-594 Vol. 2C

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-595

XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.7, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1
provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level
outline:
• XSAVE saves state component i if and only if RFBM[i] = 1.1

• XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a
modified value back to memory as follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of
XINUSE[i]. (XINUSE is a bitmap by which the processor tracks the status of various state components. See
Section 13.6, “Processor Tracking of XSAVE-Managed State.”) If RFBM[i] = 0, XSAVE writes XSTATE_BV[i] with
the value that it read from memory (it does not modify the bit). XSAVE does not write to any part of the XSAVE
header other than the XSTATE_BV field.

• XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV ← XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF RFBM[1] = 1

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /4

XSAVE mem

M V/V XSAVE Save state components specified by EDX:EAX to mem.

NP REX.W + 0F AE /4

XSAVE64 mem

M V/N.E. XSAVE Save state components specified by EDX:EAX to mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.

XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

5-596 Vol. 2C

THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK
FI;

IF RFBM[1] = 1 OR RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i ← 2 TO 62
IF RFBM[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header ← (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE: void _xsave(void * , unsigned __int64);

XSAVE: void _xsave64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-597

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEC—Save Processor Extended States with Compaction

INSTRUCTION SET REFERENCE, V-Z

5-598 Vol. 2C

XSAVEC—Save Processor Extended States with Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.10, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and that

it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which

the processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State.”)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See
Section 13.4.2, “XSAVE Header.”) XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to
RFBM[62:0]. XSAVEC does not write to any parts of the XSAVE header other than the XSTATE_BV and
XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
TO_BE_SAVED ← RFBM AND XINUSE; /* bitwise logical AND */
If MXCSR ≠ 1F80H AND RFBM[1]

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /4

XSAVEC mem

M V/V XSAVEC Save state components specified by EDX:EAX to mem with
compaction.

NP REX.W + 0F C7 /4

XSAVEC64 mem

M V/N.E. XSAVEC Save state components specified by EDX:EAX to mem with
compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVEC—Save Processor Extended States with Compaction

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-599

TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i ← 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

XSTATE_BV field in XSAVE header ← TO_BE_SAVED;
XCOMP_BV field in XSAVE header ← RFBM OR 80000000_00000000H;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC: void _xsavec(void * , unsigned __int64);

XSAVEC64: void _xsavec64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEC—Save Processor Extended States with Compaction

INSTRUCTION SET REFERENCE, V-Z

5-600 Vol. 2C

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-601

XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.9, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide
a high-level outline:
• Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it may use the init and

modified optimizations. The performance of XSAVEOPT will be equal to or better than that of XSAVE.
• XSAVEOPT saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVEOPT may optimize and not save state component i if (1) state
component i has not been modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of
XSAVES corresponds to that last execution of XRSTOR or XRSTORS as determined by the internal value
XRSTOR_INFO (see the Operation section below).

• XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a
modified value back to memory as follows. If RFBM[i] = 1, XSAVEOPT writes XSTATE_BV[i] with the value of
XINUSE[i]. If RFBM[i] = 0, XSAVEOPT writes XSTATE_BV[i] with the value that it read from memory (it does
not modify the bit). XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save state components specified by EDX:EAX
to mem, optimizing if possible.

NP REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save state components specified by EDX:EAX
to mem, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.

XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, V-Z

5-602 Vol. 2C

OLD_BV ← XSTATE_BV field from XSAVE header;
TO_BE_SAVED ← RFBM AND XINUSE;

IF in VMX non-root operation
THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,00000000_00000000H

THEN TO_BE_SAVED ← TO_BE_SAVED AND XMODIFIED;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1]
THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK

FI;

IF RFBM[1] = 1 or RFBM[2] = 1
THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

FOR i ← 2 TO 62
IF TO_BE_SAVED[i] = 1

THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
FI;

ENDFOR;

XSTATE_BV field in XSAVE header ← (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT: void _xsaveopt(void * , unsigned __int64);

XSAVEOPT: void _xsaveopt64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-603

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] =

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

XSAVES—Save Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

5-604 Vol. 2C

XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.11, “Operation of XSAVES,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVES instruction. The following items provide a high-
level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVES may optimize and not save state component i if (1) state
component i has not been modified since the last execution of XRSTOR or XRSTORS; and (2) this execution of
XSAVES correspond to that last execution of XRSTOR or XRSTORS as determined by XRSTOR_INFO (see the
Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See Section
13.4.2, “XSAVE Header.”) XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to
RFBM[62:0]. XSAVES does not write to any parts of the XSAVE header other than the XSTATE_BV and
XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F C7 /5

XSAVES mem

M V/V XSS Save state components specified by EDX:EAX to
mem with compaction, optimizing if possible.

NP REX.W + 0F C7 /5

XSAVES64 mem

M V/N.E. XSS Save state components specified by EDX:EAX to
mem with compaction, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as RFBM[1] =
1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

XSAVES—Save Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-605

Operation

RFBM ← (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
COMPMASK ← RFBM OR 80000000_00000000H;
TO_BE_SAVED ← RFBM AND XINUSE;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN TO_BE_SAVED ← TO_BE_SAVED AND XMODIFIED;
FI;
If MXCSR ≠ 1F80H AND RFBM[1]

TO_BE_SAVED[1] = 1;
FI;

IF TO_BE_SAVED[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;

IF TO_BE_SAVED[1] = 1
THEN store SSE state into legacy region of XSAVE area; // this step saves the XMM registers, MXCSR, and MXCSR_MASK

FI;

NEXT_FEATURE_OFFSET = 576; // Legacy area and XSAVE header consume 576 bytes
FOR i ← 2 TO 62

IF RFBM[i] = 1
THEN

IF TO_BE_SAVED[i]
THEN

save XSAVE state component i at offset NEXT_FEATURE_OFFSET from base of XSAVE area;
IF i = 8 // state component 8 is for PT state

THEN IA32_RTIT_CTL.TraceEn[bit 0] ← 0;
FI;

FI;
NEXT_FEATURE_OFFSET = NEXT_FEATURE_OFFSET + n (n enumerated by CPUID(EAX=0DH,ECX=i):EAX);

FI;
ENDFOR;

XSTATE_BV field in XSAVE header ← TO_BE_SAVED;
XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES: void _xsaves(void * , unsigned __int64);

XSAVES64: void _xsaves64(void * , unsigned __int64);

XSAVES—Save Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

5-606 Vol. 2C

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

XSAVES—Save Processor Extended States Supervisor

INSTRUCTION SET REFERENCE, V-Z

Vol. 2C 5-607

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 64-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

XTEST — Test If In Transactional Execution

INSTRUCTION SET REFERENCE, V-Z

5-610 Vol. 2C

XTEST — Test If In Transactional Execution

Instruction Operand Encoding

Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation
XTEST
IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)

THEN
ZF ← 0

ELSE
ZF ← 1

FI;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and
AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

XTEST: int _xtest(void);

SIMD Floating-Point Exceptions

None

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] =

0.
If LOCK prefix is used.

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D6
XTEST

A V/V HLE or
RTM

Test if executing in a transactional region

Op/En Operand 1 Operand2 Operand3 Operand4

A NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

13.Updates to Chapter 7, Volume 2D
Change bars show changes to Chapter 7of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2D: Instruction Set Reference.

--
Changes to this chapter:
Updates to the following instructions are covered here with change bars: VRSQRT28SD and VRSQRT28SS.

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision
Floating-Point Value with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand (the
second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SD (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

 DEST[63: 0] (1.0/ SQRT(SRC[63: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[63: 0] 0
FI;

FI;
ENDFOR;
DEST[127:64] SRC1[127: 64]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W1 CD /r
VRSQRT28SD xmm1 {k1}{z},
xmm2, xmm3/m64 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar double-precision floating-point
value from xmm3/m64 and stores result in xmm1with
writemask k1. Also, upper double-precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-287-22 Vol. 2D

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_mask_rsqrt28_round_sd(__m128d s, __mmask8 m,__m128d a, __m128d b, int rounding);
VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_sd(__mmask8 m,__m128d a, __m128d b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-8. VRSQRT28SD Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Vol. 2D 7-23

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-
Point Value with Less Than 2^-28 Relative Error

Instruction Operand Encoding

Description

Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of
the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti-
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SS (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN

 DEST[31: 0] (1.0/ SQRT(SRC[31: 0]));
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking

DEST[31: 0] 0
FI;

FI;
ENDFOR;
DEST[127:32] SRC1[127: 32]
DEST[MAXVL-1:128] 0

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.NDS.LIG.66.0F38.W0 CD /r
VRSQRT28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}

A V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar single-precision floating-point
value from xmm3/m32 and stores result in xmm1with
writemask k1. Also, upper 3 single-precision floating-point
value (bits[127:32]) from xmm2 is copied to
xmm1[127:32].

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Rel-7-26 Vol. 2D

https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2

INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS
Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int rounding);
VRSQRT28SS __m128 _mm_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRT28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

Table 6-10. VRSQRT28SS Special Cases

Input value Result value Comments

NAN QNAN(input) If (SRC = SNaN) then #I

X = 2-2n 2n

X < 0 QNaN_Indefinite Including -INF

X = -0 or negative denormal -INF #Z

X = +0 or positive denormal +INF #Z

X = +INF +0
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Rel- Vol. 2D 7-27

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

14.Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
Changes to this chapter: Updated Figure 8-6 “Conceptual Six-Level Topology and 32-bit APIC ID Composition”
(previously this was a five-level topology). Additional information provided in Section 8.9.4 “Algorithm for Three-
Level Mappings of APIC_ID”. Updated Example 8-19 “Support Routines for Identifying Package, Core and Logical
Processors from 32-bit x2APIC ID”. Correction to Example 8-25 “An OS Idle Loop with MONITOR/MWAIT in the C0
Idle Loop” and Example 8-26 “An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop”.

Vol. 3A 8-1

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and improving the performance of multiple
processors connected to the same system bus. These include:
• Bus locking and/or cache coherency management for performing atomic operations on system memory.
• Serializing instructions.
• An advance programmable interrupt controller (APIC) located on the processor chip (see Chapter 10,

“Advanced Programmable Interrupt Controller (APIC)”). This feature was introduced by the Pentium processor.
• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family processors, the L2 cache is

included in the processor package and is tightly coupled to the processor. For the Pentium and Intel486
processors, pins are provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is included in the processor package
and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 architectures enables a single
processor core to execute two or more threads concurrently (see Section 8.5, “Intel® Hyper-Threading
Technology and Intel® Multi-Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems. However, they can also be
used when an Intel 64 or IA-32 processor and a special-purpose processor (such as a communications, graphics,
or video processor) share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are attempting simultaneously to

access the same address in system memory, some communication mechanism or memory access protocol
must be available to promote data coherency and, in some instances, to allow one processor to temporarily lock
a memory location.

• To maintain cache consistency — When one processor accesses data cached on another processor, it must not
receive incorrect data. If it modifies data, all other processors that access that data must receive the modified
data.

• To allow predictable ordering of writes to memory — In some circumstances, it is important that memory writes
be observed externally in precisely the same order as programmed.

• To distribute interrupt handling among a group of processors — When several processors are operating in a
system in parallel, it is useful to have a centralized mechanism for receiving interrupts and distributing them to
available processors for servicing.

• To increase system performance by exploiting the multi-threaded and multi-process nature of contemporary
operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are discussed in Chapter 11. The
APIC architecture is described in Chapter 10. Bus and memory locking, serializing instructions, memory ordering,
and Intel Hyper-Threading Technology are discussed in the following sections.

8.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system memory. These operations
are typically used to manage shared data structures (such as semaphores, segment descriptors, system segments,
or page tables) in which two or more processors may try simultaneously to modify the same field or flag. The
processor uses three interdependent mechanisms for carrying out locked atomic operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix

8-2 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• Cache coherency protocols that ensure that atomic operations can be carried out on cached data structures
(cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory transactions (such as reading
or writing a byte in system memory) are always guaranteed to be handled atomically. That is, once started, the
processor guarantees that the operation will be completed before another processor or bus agent is allowed access
to the memory location. The processor also supports bus locking for performing selected memory operations (such
as a read-modify-write operation in a shared area of memory) that typically need to be handled atomically, but are
not automatically handled this way. Because frequently used memory locations are often cached in a processor’s L1
or L2 caches, atomic operations can often be carried out inside a processor’s caches without asserting the bus lock.
Here the processor’s cache coherency protocols ensure that other processors that are caching the same memory
locations are managed properly while atomic operations are performed on cached memory locations.

NOTE
Where there are contested lock accesses, software may need to implement algorithms that ensure
fair access to resources in order to prevent lock starvation. The hardware provides no resource that
guarantees fairness to participating agents. It is the responsibility of software to manage the
fairness of semaphores and exclusive locking functions.

The mechanisms for handling locked atomic operations have evolved with the complexity of IA-32 processors. More
recent IA-32 processors (such as the Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more
refined locking mechanism than earlier processors. These mechanisms are described in the following sections.

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following basic memory operations will
always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following additional memory operations
will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following additional memory operation
will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache line

Accesses to cacheable memory that are split across cache lines and page boundaries are not guaranteed to be
atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors. The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel
Xeon, and P6 family processors provide bus control signals that permit external memory subsystems to make split
accesses atomic; however, nonaligned data accesses will seriously impact the performance of the processor and
should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword may be implemented using
multiple memory accesses. If such an instruction stores to memory, some of the accesses may complete (writing
to memory) while another causes the operation to fault for architectural reasons (e.g. due an page-table entry that
is marked “not present”). In this case, the effects of the completed accesses may be visible to software even
though the overall instruction caused a fault. If TLB invalidation has been delayed (see Section 4.10.4.4), such
page faults may occur even if all accesses are to the same page.

Vol. 3A 8-3

MULTIPLE-PROCESSOR MANAGEMENT

8.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically during certain critical memory
operations to lock the system bus or equivalent link. While this output signal is asserted, requests from other
processors or bus agents for control of the bus are blocked. Software can specify other occasions when the LOCK
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will result in the asser-
tion of the LOCK# signal. It is the responsibility of the hardware designer to make the LOCK# signal available in
system hardware to control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is cached internally in the
processor, the LOCK# signal is generally not asserted; instead, locking is only applied to the processor’s caches
(see Section 8.1.4, “Effects of a LOCK Operation on Internal Processor Caches”).

8.1.2.1 Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests and sets the busy flag in the

type field of the TSS descriptor when switching to a task. To ensure that two processors do not switch to the
same task simultaneously, the processor follows the LOCK semantics while testing and setting this flag.

• When updating segment descriptors — When loading a segment descriptor, the processor will set the
accessed flag in the segment descriptor if the flag is clear. During this operation, the processor follows the LOCK
semantics so that the descriptor will not be modified by another processor while it is being updated. For this
action to be effective, operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is not-
present, and specify a value for the type field that indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several memory accesses;
therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is valid and
present.

• The Intel386 processor always updates the accessed flag in the segment descriptor, whether it is clear or not.
The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors only update this flag if it is not already
set.

• When updating page-directory and page-table entries — When updating page-directory and page-table
entries, the processor uses locked cycles to set the accessed and dirty flag in the page-directory and page-table
entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller may use the data bus to send
the interrupt’s vector to the processor. The processor follows the LOCK semantics during this time to ensure
that no other data appears on the data bus while the vector is being transmitted.

8.1.2.2 Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the following instructions when they
are used to modify a memory location. An invalid-opcode exception (#UD) is generated when the LOCK prefix is
used with any other instruction or when no write operation is made to memory (that is, when the destination
operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB, AND, OR, and XOR.

8-4 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may be
interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple processors) using iden-
tical addresses and operand lengths. For example, if one processor accesses a semaphore using a word access,
other processors should not access the semaphore using a byte access.

NOTE
Do not implement semaphores using the WC memory type. Do not perform non-temporal stores to
a cache line containing a location used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK semantics are followed
for as many bus cycles as necessary to update the entire operand. However, it is recommend that locked accesses
be aligned on their natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all externally visible events. Only
instruction fetch and page table accesses can pass locked instructions. Locked instructions can be used to synchro-
nize data written by one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and store operations (that is, wait for
them to complete). This rule is also true for the Pentium 4 and Intel Xeon processors, with one exception. Load
operations that reference weakly ordered memory types (such as the WC memory type) may not be serialized.

Locked instructions should not be used to ensure that data written can be fetched as instructions.

NOTE
The locked instructions for the current versions of the Pentium 4, Intel Xeon, P6 family, Pentium,
and Intel486 processors allow data written to be fetched as instructions. However, Intel
recommends that developers who require the use of self-modifying code use a different synchro-
nizing mechanism, described in the following sections.

8.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with the intent of executing that data
as code is called self-modifying code. IA-32 processors exhibit model-specific behavior when executing self-
modified code, depending upon how far ahead of the current execution pointer the code has been modified.

As processor microarchitectures become more complex and start to speculatively execute code ahead of the retire-
ment point (as in P6 and more recent processor families), the rules regarding which code should execute, pre- or
post-modification, become blurred. To write self-modifying code and ensure that it is compliant with current and
future versions of the IA-32 architectures, use one of the following coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

The use of one of these options is not required for programs intended to run on the Pentium or Intel486 processors,
but are recommended to ensure compatibility with the P6 and more recent processor families.

Vol. 3A 8-5

MULTIPLE-PROCESSOR MANAGEMENT

Self-modifying code will execute at a lower level of performance than non-self-modifying or normal code. The
degree of the performance deterioration will depend upon the frequency of modification and specific characteristics
of the code.

The act of one processor writing data into the currently executing code segment of a second processor with the
intent of having the second processor execute that data as code is called cross-modifying code. As with self-
modifying code, IA-32 processors exhibit model-specific behavior when executing cross-modifying code,
depending upon how far ahead of the executing processors current execution pointer the code has been modified.

To write cross-modifying code and ensure that it is compliant with current and future versions of the IA-32 archi-
tecture, the following processor synchronization algorithm must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 processor, but is recommended
to ensure compatibility with the Pentium 4, Intel Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance than non-cross-modi-
fying (normal) code, depending upon the frequency of modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during a LOCK operation,
even if the area of memory being locked is cached in the processor.

For the P6 and more recent processor families, if the area of memory being locked during a LOCK operation is
cached in the processor that is performing the LOCK operation as write-back memory and is completely contained
in a cache line, the processor may not assert the LOCK# signal on the bus. Instead, it will modify the memory loca-
tion internally and allow it’s cache coherency mechanism to ensure that the operation is carried out atomically. This
operation is called “cache locking.” The cache coherency mechanism automatically prevents two or more proces-
sors that have cached the same area of memory from simultaneously modifying data in that area.

8.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads (loads) and writes (stores)
through the system bus to system memory. The Intel 64 and IA-32 architectures support several memory-ordering
models depending on the implementation of the architecture. For example, the Intel386 processor enforces
program ordering (generally referred to as strong ordering), where reads and writes are issued on the system
bus in the order they occur in the instruction stream under all circumstances.

To allow performance optimization of instruction execution, the IA-32 architecture allows departures from strong-
ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family processors. These processor-
ordering variations (called here the memory-ordering model) allow performance enhancing operations such as
allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase instruction execu-
tion speeds, while maintaining memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by Intel486, Pentium, Intel Core 2
Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors. Section 8.2.3 gives examples

8-6 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

illustrating the behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 8.2.4 considers
the special treatment of stores for string operations and Section 8.2.5 discusses how memory-ordering behavior
may be modified through the use of specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors
The Pentium and Intel486 processors follow the processor-ordered memory model; however, they operate as
strongly-ordered processors under most circumstances. Reads and writes always appear in programmed order at
the system bus—except for the following situation where processor ordering is exhibited. Read misses are
permitted to go ahead of buffered writes on the system bus when all the buffered writes are cache hits and, there-
fore, are not directed to the same address being accessed by the read miss.

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4, Intel Xeon, and P6
family processors) should not depend on the relatively strong ordering of the Pentium or Intel486 processors.
Instead, it should ensure that accesses to shared variables that are intended to control concurrent execution
among processors are explicitly required to obey program ordering through the use of appropriate locking or seri-
alizing operations (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family processors also use a processor-ordered
memory-ordering model that can be further defined as “write ordered with store-buffer forwarding.” This model can
be characterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the memory-ordering model
respects the following principles (Note the memory-ordering principles for single-processor and multiple-
processor systems are written from the perspective of software executing on the processor, where the term
“processor” refers to a logical processor. For example, a physical processor supporting multiple cores and/or Intel
Hyper-Threading Technology is treated as a multi-processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following exceptions:

— streaming stores (writes) executed with the non-temporal move instructions (MOVNTI, MOVNTQ,
MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• No write to memory may be reordered with an execution of the CLFLUSH instruction; a write may be reordered

with an execution of the CLFLUSHOPT instruction that flushes a cache line other than the one being written.1
Executions of the CLFLUSH instruction are not reordered with each other. Executions of CLFLUSHOPT that
access different cache lines may be reordered with each other. An execution of CLFLUSHOPT may be reordered
with an execution of CLFLUSH that accesses a different cache line.

• Reads may be reordered with older writes to different locations but not with older writes to the same location.
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes and executions of CLFLUSH and CLFLUSHOPT cannot pass earlier LFENCE, SFENCE, and MFENCE

instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes or executions of CLFLUSH and CLFLUSHOPT.
• MFENCE instructions cannot pass earlier reads, writes, or executions of CLFLUSH and CLFLUSHOPT.

1. Earlier versions of this manual specified that writes to memory may be reordered with executions of the CLFLUSH instruction. No
processors implementing the CLFLUSH instruction allow such reordering.

Vol. 3A 8-7

MULTIPLE-PROCESSOR MANAGEMENT

In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes from other processors.
• Memory ordering obeys causality (memory ordering respects transitive visibility).
• Any two stores are seen in a consistent order by processors other than those performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each processor performs three writes,
one to each of three defined locations (A, B, and C). Individually, the processors perform the writes in the same
program order, but because of bus arbitration and other memory access mechanisms, the order that the three
processors write the individual memory locations can differ each time the respective code sequences are executed
on the processors. The final values in location A, B, and C would possibly vary on each execution of the write
sequence.

The processor-ordering model described in this section is virtually identical to that used by the Pentium and
Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering principles above.
• Store-buffer forwarding, when a read passes a write to the same memory location.
• Out of order store from long string store and string move operations (see Section 8.2.4, “Fast-String Operation

and Out-of-Order Stores,” below).

NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from streaming stores to the same address
does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-ordering principles introduced in
Section 8.2.2. They are designed to give software writers an understanding of how memory ordering may affect
the results of different sequences of instructions.

Figure 8-1. Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3
Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to
individual processes.

Example of order of actual writes
from all processors to memory

8-8 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

These examples are limited to accesses to memory regions defined as write-back cacheable (WB). (Section 8.2.3.1
describes other limitations on the generality of the examples.) The reader should understand that they describe
only software-visible behavior. A logical processor may reorder two accesses even if one of examples indicates that
they may not be reordered. Such an example states only that software cannot detect that such a reordering
occurred. Similarly, a logical processor may execute a memory access more than once as long as the behavior
visible to software is consistent with a single execution of the memory access.

8.2.3.1 Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory regions defined as write-back
cacheable (WB). They apply only to ordinary loads stores and to locked read-modify-write instructions. They do not
necessarily apply to any of the following: out-of-order stores for string instructions (see Section 8.2.4); accesses
with a non-temporal hint; reads from memory by the processor as part of address translation (e.g., page walks);
and updates to segmentation and paging structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory accesses and to locked read-
modify-write instructions. The Intel-64 memory-ordering model guarantees that, for each of the following
memory-access instructions, the constituent memory operation appears to execute as a single memory access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write instruction with a LOCK prefix)
appears to execute as an indivisible and uninterruptible sequence of load(s) followed by store(s) regardless of
alignment.

Other instructions may be implemented with multiple memory accesses. From a memory-ordering point of view,
there are no guarantees regarding the relative order in which the constituent memory accesses are made. There is
also no guarantee that the constituent operations of a store are executed in the same order as the constituent
operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction. The principles that underlie
these examples apply to load and store accesses in general and to other instructions that load from or store to
memory. Section 8.2.3.8 and Section 8.2.3.9 give examples using the XCHG instruction. The principles that
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples are written using Intel-64
assembly-language syntax and use the following notational conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) visible only to the processor

being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [_x], val, which implies that val is being stored into the memory location x.
• Loads are written as mov r, [_x], which implies that the contents of the memory location x are being loaded

into the register r.

As noted earlier, the examples refer only to software visible behavior. When the succeeding sections make state-
ment such as “the two stores are reordered,” the implication is only that “the two stores appear to be reordered
from the point of view of software.”

Vol. 3A 8-9

MULTIPLE-PROCESSOR MANAGEMENT

8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered with the same kind of opera-
tion. That is, it ensures that loads are seen in program order and that stores are seen in program order. This is illus-
trated by the following example:

The disallowed return values could be exhibited only if processor 0’s two stores are reordered (with the two loads
occurring between them) or if processor 1’s two loads are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-ordering model does not allow
stores to be reordered, the earlier store to x occurs before the load from y. Because the Intel-64 memory-ordering
model does not allow loads to be reordered, the store to x also occurs before the later load from x. This r2 = 1.

8.2.3.3 Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not occur before a previous load by
the same processor. This is illustrated by the following example:

Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being reordered with the earlier load

by the same processor, processor 1’s load from y occurs before its store to x.
• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying r2 = 0.

8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations
The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following
example:

Example 8-1. Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [_x], 1 mov r1, [_y]

mov [_y], 1 mov r2, [_x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2. Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [_x] mov r2, [_y]

mov [_y], 1 mov [_x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed

Example 8-3. Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_y] mov r2, [_x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

8-10 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

At each processor, the load and the store are to different locations and hence may be reordered. Any interleaving
of the operations is thus allowed. One such interleaving has the two loads occurring before the two stores. This
would result in each load returning value 0.

The fact that a load may not be reordered with an earlier store to the same location is illustrated by the following
example:

The Intel-64 memory-ordering model does not allow the load to be reordered with the earlier store because the
accesses are to the same location. Therefore, r1 = 1 must hold.

8.2.3.5 Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen in different orders by those two
processors; specifically, each processor may perceive its own store occurring before that of the other. This is illus-
trated by the following example:

The memory-ordering model imposes no constraints on the order in which the two stores appear to execute by the
two processors. This fact allows processor 0 to see its store before seeing processor 1's, while processor 1 sees its
store before seeing processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer forwarding. While a store is tempo-
rarily held in a processor's store buffer, it can satisfy the processor's own loads but is not visible to (and cannot
satisfy) loads by other processors.

8.2.3.6 Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are causally related appear to all
processors to occur in an order consistent with the causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.

Example 8-4. Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [_x], 1

mov r1, [_x]

Initially x = 0

r1 = 0 is not allowed

Example 8-5. Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6. Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [_x], 1 mov r1, [_x]

mov [_y], 1 mov r2, [_y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed

Vol. 3A 8-11

MULTIPLE-PROCESSOR MANAGEMENT

• Because the memory-ordering model prevents a store from being reordered with an earlier load (see Section
8.2.3.3), processor 1’s load occurs before its store. Thus, processor 0’s store causally precedes processor 1’s
store.

• Because processor 0’s store causally precedes processor 1’s store, the memory-ordering model ensures that
processor 0’s store appears to occur before processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 8.2.3.2),

processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s load from x. This implies that

r3 = 1.

8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two processors to be seen in different
orders by those two processors. However, any two stores must appear to execute in the same order to all proces-
sors other than those performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2,
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered.
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store with respect to processor 2.
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede processor 0’s store with respect

to processor 1.

Because the memory-ordering model ensures that any two stores appear to execute in the same order to all
processors (other than those performing the stores), this set of return values is not allowed

8.2.3.8 Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution order of all locked instruc-
tions, including those that are larger than 8 bytes or are not naturally aligned. This is illustrated by the following
example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. Without loss of generality,
suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.

Example 8-7. Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [_x], 1 mov [_y], 1 mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed

Example 8-8. Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [_x], r1 xchg [_y], r2

mov r3, [_x] mov r5, [_y]

mov r4, [_y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

8-12 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 8.2.3.2),
processor 3’s loads occur in order and, therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by assumption), it occurs before
processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s XCHG occurs before
processor 0’s XCHG.

8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with locked instructions that execute
earlier or later. The examples in this section illustrate only cases in which a locked instruction is executed before a
load or a store. The reader should note that reordering is prevented also if the locked instruction is executed after
a load or a store.

The first example illustrates that loads may not be reordered with earlier locked instructions:

As explained in Section 8.2.3.8, there is a total order of the executions of locked instructions. Without loss of
generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from being reordered with its earlier
XCHG, processor 0’s XCHG occurs before processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if processor 1’s XCHG occurs before
processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with an earlier locked instruction,

processor 0’s XCHG into x occurs before its store to y. Thus, processor 0’s XCHG into x occurs before
processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see Section 8.2.3.2), processor 1’s
loads occur in order and, therefore, processor 1’s XCHG into x occurs before processor 1’s load from x. Thus,
r3 = 1.

8.2.4 Fast-String Operation and Out-of-Order Stores
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 described an optimi-
zation of repeated string operations called fast-string operation.

Example 8-9. Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 xchg [_y], r3

mov r2, [_y] mov r4, [_x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed

Example 8-10. Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 mov r2, [_y]

mov [_y], 1 mov r3, [_x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed

Vol. 3A 8-13

MULTIPLE-PROCESSOR MANAGEMENT

As explained in that section, the stores produced by fast-string operation may appear to execute out of order. Soft-
ware dependent upon sequential store ordering should not use string operations for the entire data structure to be
stored. Data and semaphores should be separated. Order-dependent code should write to a discrete semaphore
variable after any string operations to allow correctly ordered data to be seen by all processors. Atomicity of load
and store operations is guaranteed only for native data elements of the string with native data size, and only if they
are included in a single cache line.

Section 8.2.4.1 and Section 8.2.4.2 provide further explain and examples.

8.2.4.1 Memory-Ordering Model for String Operations on Write-Back (WB) Memory
This section deals with the memory-ordering model for string operations on write-back (WB) memory for the Intel
64 architecture.

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive string operations) do not execute
out of order. All the stores from an earlier string operation will complete before any store from a later string
operation.

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instructions and the REP prefix) may be
interrupted by exceptions or interrupts. The interrupts are precise but may be delayed - for example, the interrup-
tions may be taken at cache line boundaries, after every few iterations of the loop, or after operating on every few
bytes. Different implementations may choose different options, or may even choose not to delay interrupt
handling, so software should not rely on the delay. When the interrupt/trap handler is reached, the source/destina-
tion registers point to the next string element to be operated on, while the EIP stored in the stack points to the
string instruction, and the ECX register has the value it held following the last successful iteration. The return from
that trap/interrupt handler should cause the string instruction to be resumed from the point where it was inter-
rupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be interpreted by taking the incor-
ruptibility of fast string operations into account. For example, if a fast string operation gets interrupted after k iter-
ations, then stores performed by the interrupt handler will become visible after the fast string stores from iteration
0 to k, and before the fast string stores from the (k+1)th iteration onward.

Stores within a single string operation may execute out of order (item 1 above) only if fast string operation is
enabled. Fast string operations are enabled/disabled through the IA32_MISC_ENABLE model specific register.

8.2.4.2 Examples Illustrating Memory-Ordering Principles for String Operations
The following examples uses the same notation and convention as described in Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd,
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order.
Since each operation stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). The block
of memory initially contained 0. Processor 1 is reading two memory locations that are part of the memory block
being updated by processor 0, i.e, reading locations in the range _x to (_x+511).

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed

8-14 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

It is possible for processor 1 to perceive that the repeated string stores in processor 0 are happening out of order.
Assume that fast string operations are enabled on processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128 doubleword stores, writing
the value 1 (value in EAX) into the first block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It
then writes 1 into a second block of memory from (_x+512) to (_x+1023). All of the memory locations initially
contain 0. The block of memory initially contained 0. Processor 1 performs two load operations from the two blocks
of memory.

It is not possible in the above example for processor 1 to perceive any of the stores from the later string operation
(to the second 512 block) in processor 0 before seeing the stores from the earlier string operation to the first 512
block.

The above example assumes that writes to the second block (_x+512 to _x+1023) does not get executed while
processor 0’s string operation to the first block has been interrupted. If the string operation to the first block by
processor 0 is interrupted, and a write to the second memory block is executed by the interrupt handler, then that
change in the second memory block will be visible before the string operation to the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd,
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It
then writes to a second memory location outside the memory block of the previous string operation. Processor 1
performs two read operations, the first read is from an address outside the 512-byte block but to be updated by
processor 0, the second ready is from inside the block of memory of string operation.

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores from the string operation.
Example 8-13 assumes that processor 0’s store to [_z] is not executed while the string operation has been inter-
rupted. If the string operation is interrupted and the store to [_z] by processor 0 is executed by the interrupt
handler, then changes to [_z] will become visible before the string operation resumes.

Example 8-14 illustrates the visibility principle when a string operation is interrupted.

Example 8-12. Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [_x]

mov r1, [_z]

mov ecx, $128

mov r2, [_y]

rep:stosd 512[_x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 8-13. String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov [_z], $1 mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Vol. 3A 8-15

MULTIPLE-PROCESSOR MANAGEMENT

In Example 8-14, processor 0 started a string operation to write to a memory block of 512 bytes starting at address
_x. Processor 0 got interrupted after k iterations of store operations. The address _y has not yet been updated by
processor 0 when processor 0 got interrupted. The interrupt handler that took control on processor 0 writes to the
address _z. Processor 1 may see the store to _z from the interrupt handler, before seeing the remaining stores to
the 512-byte memory block that are executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No store from a string operation can
be visible before all prior stores are visible.

8.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations. These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions force stronger ordering

on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III processor) and the LFENCE and

MFENCE instructions (introduced in the Pentium 4 processor) provide memory-ordering and serialization
capabilities for specific types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken memory ordering for specific
area of physical memory (see Section 11.11, “Memory Type Range Registers (MTRRs)”). MTRRs are available
only in the Pentium 4, Intel Xeon, and P6 family processors.

• The page attribute table (PAT) can be used to strengthen memory ordering for a specific page or group of pages
(see Section 11.12, “Page Attribute Table (PAT)”). The PAT is available only in the Pentium 4, Intel Xeon, and
Pentium III processors.

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of writes to their I/O
buffers. I/O instructions can be used to (the IN and OUT instructions) impose strong write ordering on such
accesses as follows. Prior to executing an I/O instruction, the processor waits for all previous instructions in the
program to complete and for all buffered writes to drain to memory. Only instruction fetch and page tables walks
can pass I/O instructions. Execution of subsequent instructions do not begin until the processor determines that
the I/O instruction has been completed.

Example 8-14. Interrupted String Operation
Processor 0 Processor 1

rep:stosd [_x] // interrupted before es:edi reach _y mov r1, [_z]

mov [_z], $1 // interrupt handler mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed

Example 8-15. String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [_y]

rep:stosd [_x] mov r2, [_z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

8-16 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

Synchronization mechanisms in multiple-processor systems may depend upon a strong memory-ordering model.
Here, a program can use a locking instruction such as the XCHG instruction or the LOCK prefix to ensure that a
read-modify-write operation on memory is carried out atomically. Locking operations typically operate like I/O
operations in that they wait for all previous instructions to complete and for all buffered writes to drain to memory
(see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see Section 8.3). These instructions
are typically used at critical procedure or task boundaries to force completion of all previous instructions before a
jump to a new section of code or a context switch occurs. Like the I/O and locking instructions, the processor waits
until all previous instructions have been completed and all buffered writes have been drained to memory before
executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of ensuring load and store
memory ordering between routines that produce weakly-ordered results and routines that consume that data. The
functions of these instructions are as follows:
• SFENCE — Serializes all store (write) operations that occurred prior to the SFENCE instruction in the program

instruction stream, but does not affect load operations.
• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE instruction in the program

instruction stream, but does not affect store operations.2

• MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the
program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method of controlling memory
ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for specified areas of
physical memory. The following are two examples of how memory types set up with MTRRs can be used strengthen
or weaken memory ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on memory accesses. Here, all reads

and writes to the UC memory region appear on the bus and out-of-order or speculative accesses are not
performed. This memory type can be applied to an address range dedicated to memory mapped I/O devices to
force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) memory type can be chosen.
Here, reads can be performed speculatively and writes can be buffered and combined. For this type of memory,
cache locking is performed on atomic (locked) operations that do not split across cache lines, which helps to
reduce the performance penalty associated with the use of the typical synchronization instructions, such as
XCHG, that lock the bus during the entire read-modify-write operation. With the WB memory type, the XCHG
instruction locks the cache instead of the bus if the memory access is contained within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching characteristics that can be assigned to
pages or groups of pages. The PAT mechanism typically used to strengthen caching characteristics at the page level
with respect to the caching characteristics established by the MTRRs. Table 11-7 shows the interaction of the PAT
with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel
Xeon, and P6 family processors assume the processor-ordering model or a weaker memory-ordering model. The
Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not implement a
strong memory-ordering model, except when using the UC memory type. Despite the fact that Pentium 4, Intel
Xeon, and P6 family processors support processor ordering, Intel does not guarantee that future processors will
support this model. To make software portable to future processors, it is recommended that operating systems
provide critical region and resource control constructs and API’s (application program interfaces) based on I/O,
locking, and/or serializing instructions be used to synchronize access to shared areas of memory in multiple-
processor systems. Also, software should not depend on processor ordering in situations where the system hard-
ware does not support this memory-ordering model.

2. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruction begins execution
until LFENCE completes. As a result, an instruction that loads from memory and that precedes an LFENCE receives data from mem-
ory prior to completion of the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before the data
being stored have become globally visible. Instructions following an LFENCE may be fetched from memory before the LFENCE, but
they will not execute until the LFENCE completes.

Vol. 3A 8-17

MULTIPLE-PROCESSOR MANAGEMENT

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These instructions force the
processor to complete all modifications to flags, registers, and memory by previous instructions and to drain all
buffered writes to memory before the next instruction is fetched and executed. For example, when a MOV to
control register instruction is used to load a new value into control register CR0 to enable protected mode, the
processor must perform a serializing operation before it enters protected mode. This serializing operation ensures
that all operations that were started while the processor was in real-address mode are completed before the switch
to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the Pentium processor to
support parallel instruction execution. Serializing instructions have no meaning for the Intel486 and earlier proces-
sors that do not implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more recent processor families constrain
speculative execution because the results of speculatively executed instructions are discarded. The following
instructions are serializing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT, LLDT, LTR, MOV (to

control register, with the exception of MOV CR83), MOV (to debug register), WBINVD, and WRMSR4.
• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory transactions are
completed (including writes stored in its store buffer) before it executes the next instruction. Nothing can pass a
serializing instruction and a serializing instruction cannot pass any other instruction (read, write, instruction fetch,
or I/O). For example, CPUID can be executed at any privilege level to serialize instruction execution with no effect
on program flow, except that the EAX, EBX, ECX, and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instructions. These drain the data
memory subsystem. They do not serialize the instruction execution stream:5

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the serialization of memory
loads and stores (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instructions:
• The processor does not write back the contents of modified data in its data cache to external memory when it

serializes instruction execution. Software can force modified data to be written back by executing the WBINVD
instruction, which is a serializing instruction. The amount of time or cycles for WBINVD to complete will vary
due to the size of different cache hierarchies and other factors. As a consequence, the use of the WBINVD
instruction can have an impact on interrupt/event response time.

• When an instruction is executed that enables or disables paging (that is, changes the PG flag in control register
CR0), the instruction should be followed by a jump instruction. The target instruction of the jump instruction is
fetched with the new setting of the PG flag (that is, paging is enabled or disabled), but the jump instruction
itself is fetched with the previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require
the jump operation following the move to register CR0 (because any use of the MOV instruction in a Pentium 4,
Intel Xeon, or P6 family processor to write to CR0 is completely serializing). However, to maintain backwards
and forward compatibility with code written to run on other IA-32 processors, it is recommended that the jump
operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging is enabled, the next
instruction is fetched using the translation tables that correspond to the new value of CR3. Therefore the next
instruction and the sequentially following instructions should have a mapping based upon the new value of
CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4, “Invalidation of TLBs and Paging-
Structure Caches.”)

3. MOV CR8 is not defined architecturally as a serializing instruction.

4. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

5. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior instructions have completed locally,
and no later instruction begins execution until LFENCE completes.

8-18 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• The Pentium processor and more recent processor families use branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch instruction is executed.
Consequently, instruction execution is not deterministically serialized when a branch instruction is executed.

8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor (MP) initialization
protocol called the Multiprocessor Specification Version 1.4. This specification defines the boot protocol to be used
by IA-32 processors in multiple-processor systems. (Here, multiple processors is defined as two or more proces-
sors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated system hardware.
• It allows hardware to initiate the booting of a system without the need for a dedicated signal or a predefined

boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those supporting Intel Hyper-

Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64 processors.

The mechanism for carrying out the MP initialization protocol differs depending on the Intel processor generations.
The following bullets summarizes the evolution of the changes:
• For P6 family or older processors supporting MP operations— The selection of the BSP and APs (see

Section 8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, using BIPI and FIPI
messages. These processor generations have CPUID signatures of (family=06H, extended_model=0,
model<=0DH), or family <06H. See Section 8.11.1, “Overview of the MP Initialization Process For P6 Family
Processors” for a complete discussion of MP initialization for P6 family processors.

• Early generations of IA processors with family 0FH — The selection of the BSP and APs (see Section
8.4.1, “BSP and AP Processors”) is handled through arbitration on the system bus, using BIPI and FIPI
messages (see Section 8.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These processor
generations have CPUID signatures of family=0FH, model=0H, stepping<=09H.

• Later generations of IA processors with family 0FH, and IA processors with system bus — The
selection of the BSP and APs is handled through a special system bus cycle, without using BIPI and FIPI
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These
processor generations have CPUID signatures of family=0FH with (model=0H, stepping>=0AH) or (model >0,
all steppings); or family=06H, extended_model=0, model>=0EH.

• All other modern IA processor generations supporting MP operations— The selection of the BSP and
APs in the system is handled by platform-specific arrangement of the combination of hardware, BIOS, and/or
configuration input options. The basis of the selection mechanism is similar to those of the Later generations of
family 0FH and other Intel processor using system bus (see Section 8.4.3, “MP Initialization Protocol Algorithm
for MP Systems”). These processor generations have CPUID signatures of family=06H, extended_model>0.

The family, model, and stepping ID for a processor is given in the EAX register when the CPUID instruction is
executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP) and the application
processors (APs). Following a power-up or RESET of an MP system, system hardware dynamically selects one of the
processors on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE MSR (see Figure 10-5) of the
BSP, indicating that it is the BSP. This flag is cleared for all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up system-wide data struc-
tures, and starts and initializes the APs. When the BSP and APs are initialized, the BSP then begins executing the
operating-system initialization code.

Vol. 3A 8-19

MULTIPLE-PROCESSOR MANAGEMENT

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a startup signal (a SIPI
message) from the BSP processor. Upon receiving a SIPI message, an AP executes the BIOS AP configuration code,
which ends with the AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the MP initialization protocol treats
each of the logical processors on the system bus or coherent link domain as a separate processor (with a unique
APIC ID). During boot-up, one of the logical processors is selected as the BSP and the remainder of the logical
processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on the system:
• The MP protocol is executed only after a power-up or RESET. If the MP protocol has completed and a BSP is

chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP protocol to be
repeated. Instead, each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to determine
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP
responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for MP Systems
Following a power-up or RESET of an MP system, the processors in the system execute the MP initialization protocol
algorithm to initialize each of the logical processors on the system bus or coherent link domain. In the course of
executing this algorithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. The unique ID is a 32-bit value
if the processor supports CPUID leaf 0BH, otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identi-
fying Logical Processors in an MP System”).

2. Each logical processor is assigned a unique arbitration priority based on its APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other logical processors in the
system.

4. Upon completion of the BIST, the logical processors use a hardware-defined selection mechanism to select the
BSP and the APs from the available logical processors on the system bus. The BSP selection mechanism differs
depending on the family, model, and stepping IDs of the processors, as follows:

— Later generations of IA processors within family 0FH (see Section 8.4), IA processors with system bus
(family=06H, extended_model=0, model>=0EH), or all other modern Intel processors (family=06H,
extended_model>0):

• The logical processors begin monitoring the BNR# signal, which is toggling. When the BNR# pin stops
toggling, each processor attempts to issue a NOP special cycle on the system bus.

• The logical processor with the highest arbitration priority succeeds in issuing a NOP special cycle and is
nominated the BSP. This processor sets the BSP flag in its IA32_APIC_BASE MSR, then fetches and
begins executing BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special cycle) are designated as APs. They
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

— Early generations of IA processors within family 0FH (family=0FH, model=0H, stepping<=09H), P6 family
or older processors supporting MP operations (family=06H, extended_model=0, model<=0DH; or family
<06H):

• Each processor broadcasts a BIPI to “all including self.” The first processor that broadcasts a BIPI (and
thus receives its own BIPI vector), selects itself as the BSP and sets the BSP flag in its IA32_APIC_BASE

8-20 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

MSR. (See Section 8.11.1, “Overview of the MP Initialization Process For P6 Family Processors” for a
description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are designated as APs. They
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including self,” which the BSP and APs
treat as an end of MP initialization signal. Only the processor with its BSP flag set responds to the FIPI
message. It responds by fetching and executing the BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and/or an MP table and adds its initial APIC ID to
these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then broadcasts a SIPI message
to all the APs in the system. Here, the SIPI message contains a vector to the BIOS AP initialization code (at
000VV000H, where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS initialization
semaphore. The first AP to the semaphore begins executing the initialization code. (See Section 8.4.4, “MP
Initialization Example,” for semaphore implementation details.) As part of the AP initialization procedure, the
AP adds its APIC ID number to the ACPI and/or MP tables as appropriate and increments the processor counter
by 1. At the completion of the initialization procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP initialization code, the BSP
establishes a count for the number of processors connected to the system bus, completes executing the BIOS
boot-strap code, and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state.
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions
of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for of multiple processors oper-
ating in an MP configuration.

Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 describes how to program the LINT[0:1] pins of the processor’s local APICs after an MP configu-
ration has been completed.

8.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to initialize processors in an MP
system after the BSP and APs have been established. The code runs on Intel 64 or IA-32 processors that use a
protocol. This includes P6 Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel Xeon
processors.

The following constants and data definitions are used in the accompanying
code examples. They are based on the addresses of the APIC registers defined in Table 10-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H

Vol. 3A 8-21

MULTIPLE-PROCESSOR MANAGEMENT

8.4.4.1 Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see Section 8.4.3, “MP Initialization
Protocol Algorithm for MP Systems”), the BSP begins executing BIOS boot-strap code (POST) at the normal IA-32
architecture starting address (FFFF FFF0H). The boot-strap code typically performs the following operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX
registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX,
and EDX registers in a system configuration space in RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable
(UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the code snippet below is an
example that applies to logical processors in a system whose local APIC units operate in xAPIC mode that APIC
registers are accessed using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and/or MP tables and optionally in the system configuration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector. The 8-bit vector
defines the address of a 4-KByte page in the real-address mode address space (1-MByte space). For example,
a vector of 0BDH specifies a start-up memory address of 000BD000H.

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler.
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to determine the order in
which they execute BIOS AP initialization code.

14. Performs the following operation to set up the BSP to detect the presence of APs in the system and the number
of processors (within a finite duration, minimally 100 milliseconds):

— Sets the value of the COUNT variable to 1.

— In the AP BIOS initialization code, the AP will increment the COUNT variable to indicate its presence. The
finite duration while waiting for the COUNT to be updated can be accomplished with a timer. When the timer
expires, the BSP checks the value of the COUNT variable. If the timer expires and the COUNT variable has
not been incremented, no APs are present or some error has occurred.

8-22 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize them. If software knows
how many logical processors it expects to wake up, it may choose to poll the COUNT variable. If the expected
processors show up before the 100 millisecond timer expires, the timer can be canceled and skip to step 16.
The left-hand-side of the procedure illustrated in Table 8-1 provides an algorithm when the expected processor
count is unknown. The right-hand-side of Table 8-1 can be used when the expected processor count is known.

16. Reads and evaluates the COUNT variable and establishes a processor count.

17. If necessary, reconfigures the APIC and continues with the remaining system diagnostics as appropriate.

8.4.4.2 Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector encoded in the SIPI. The
AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is attained, initialization
continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX
registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX,
and EDX registers in a system configuration space in RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable
(UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and ACPI tables and
optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up the LVT3 (error LVT)
for error handling (as described in steps 9 and 10 in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

Table 8-1. Broadcast INIT-SIPI-SIPI Sequence and Choice of Timeouts
INIT-SIPI-SIPI when the expected processor count is unknown INIT-SIPI-SIPI when the expected processor count is known

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

;Waits for the timer interrupt until the timer expires

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200 microsecond delay loop with check to see if COUNT has

; reached the expected processor count. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; Wait for the timer interrupt polling COUNT. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

; If timer expires, go to step 16.

Vol. 3A 8-23

MULTIPLE-PROCESSOR MANAGEMENT

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes one of the following:

— the CLI and HLT instructions (if MONITOR/MWAIT is not supported), or

— the CLI, MONITOR and MWAIT sequence to enter a deep C-state.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor can be uniquely identified by its
local APIC ID. Software can access these APIC IDs in either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read APIC ID in one of two ways

depending on the local APIC unit is operating in x2APIC mode (see Intel® 64 Architecture x2APIC Specifi-
cation)or in xAPIC mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-bit APIC ID can be read by
executing a RDMSR instruction to read the processor’s x2APIC ID register. This method is equivalent to
executing CPUID leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by executing a MOV instruction
to read the processor’s local APIC ID register (see Section 10.4.6, “Local APIC ID”). This is the ID to use for
directing physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS creates an ACPI table and an MP
table. These tables are defined in the Multiprocessor Specification Version 1.4 and provide software with a list
of the processors in the system and their local APIC IDs. The format of the ACPI table is derived from the ACPI
specification, which is an industry standard power management and platform configuration specification for MP
systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An APIC ID is assigned to a logical
processor during power up. This is the initial APIC ID reported by CPUID.1:EBX[31:24] and may be different
from the current value read from the local APIC. The initial APIC ID can be used to determine the topological
relationship between logical processors for multi-processor systems that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each bit mask can be used to extract
an identifier to represent a hierarchical level of the multi-threading resource topology in an MP system (See
Section 8.9.1, “Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of up to four bit-
fields. In a non-clustered MP system, the field consists of up to three bit fields.

• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID leaf 0BH) — A unique APIC ID
is assigned to a logical processor during power up. This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-
bit value. Use the 32-bit APIC ID and CPUID leaf 0BH to determine the topological relationship between logical
processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH parameters. (See Section
8.9.1, “Hierarchical Mapping of Shared Resources”).

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors. In single-core Intel Xeon
processors, the APIC ID assigned to a logical processor during power-up and initialization is 8 bits. Bits 2:1 form a
2-bit physical package identifier (which can also be thought of as a socket identifier). In systems that configure
physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used in the Intel Xeon processor MP to iden-
tify the two logical processors within the package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP
System”). For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 0 is always set to 0;
for Intel Xeon processors supporting Intel Hyper-Threading Technology, bit 0 performs the same function as it does
for Intel Xeon processor MP.

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of Shared Resources” for a
complete description of the topological relationships between logical processors and bit field locations within an
initial APIC ID across Intel 64 and IA-32 processor families.

8-24 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

Note the number of bit fields and the width of bit-fields are dependent on processor and platform hardware capa-
bilities. Software should determine these at runtime. When initial APIC IDs are assigned to logical processors, the
value of APIC ID assigned to a logical processor will respect the bit-field boundaries corresponding core, physical
package, etc. Additional examples of the bit fields in the initial APIC ID of multi-threading capable systems are
shown in Section 8.9.

For P6 family processors, the APIC ID that is assigned to a processor during power-up and initialization is 4 bits
(see Figure 8-2). Here, bits 0 and 1 form a 2-bit processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster
ID.

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE
TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to Intel 64 and IA-32 architec-
tures that enable a single physical processor to execute two or more separate code streams (called threads)
concurrently. In Intel Hyper-Threading Technology, a single processor core provides two logical processors that
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology Architecture”). In Intel multi-core
technology, a physical processor package provides two or more processor cores. Both configurations require chip-
sets and a BIOS that support the technologies.

Software should not rely on processor names to determine whether a processor supports Intel Hyper-Threading
Technology or Intel multi-core technology. Use the CPUID instruction to determine processor capability (see
Section 8.6.2, “Initializing Multi-Core Processors”).

8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY
Use the CPUID instruction to detect the presence of hardware multi-threading support in a physical processor.
Hardware multi-threading can support several varieties of multigrade and/or Intel Hyper-Threading Technology.
CPUID instruction provides several sets of parameter information to aid software enumerating topology informa-
tion. The relevant topology enumeration parameters provided by CPUID include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — Indicates when set that the physical

package is capable of supporting Intel Hyper-Threading Technology and/or multiple cores.
• Processor topology enumeration parameters for 8-bit APIC ID:

Figure 8-2. Interpretation of APIC ID in Early MP Systems

0

Processor ID

17 4 3 2

Cluster

Reserved

0

Processor ID

17 4 3 25

Cluster

Reserved

APIC ID Format for Intel Xeon Processors that

APIC ID Format for P6 Family Processors

0

do not Support Intel Hyper-Threading Technology

Vol. 3A 8-25

MULTIPLE-PROCESSOR MANAGEMENT

— Addressable IDs for Logical processors in the same Package (CPUID.1:EBX[23:16]) — Indicates
the maximum number of addressable ID for logical processors in a physical package. Within a physical
package, there may be addressable IDs that are not occupied by any logical processors. This parameter
does not represents the hardware capability of the physical processor.6

• Addressable IDs for processor cores in the same Package7 (CPUID.(EAX=4, ECX=08):EAX[31:26] +
1 = Y) — Indicates the maximum number of addressable IDs attributable to processor cores (Y) in the physical
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC ID: Intel 64 processors
supporting CPUID leaf 0BH will assign unique APIC IDs to each logical processor in the system. CPUID leaf 0BH
reports the 32-bit APIC ID and provide topology enumeration parameters. See CPUID instruction reference
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only one logical processor avail-
able in the package. In this case, the decimal value represented by bits 16 through 23 in the EBX register will have
a value of 1.

Software should note that the number of logical processors enabled by system software may be less than the value
of “Addressable IDs for Logical processors”. Similarly, the number of cores enabled by system software may be less
than the value of “Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf (0BH) by performing two
steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is

greater than or equal or 11 (0BH), then proceed to next step,
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is available. Note the presence of
CPUID leaf 0BH in a processor does not guarantee support that the local APIC supports x2APIC. If
CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for basic CPUID information is greater
than 0BH, then CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors Supporting Hyper-Threading Technology
The initialization process for an MP system that contains processors supporting Intel Hyper-Threading Technology
is the same as for conventional MP systems (see Section 8.4, “Multiple-Processor (MP) Initialization”). One logical
processor in the system is selected as the BSP and other processors (or logical processors) are designated as APs.
The initialization process is identical to that described in Section 8.4.3, “MP Initialization Protocol Algorithm for MP
Systems,” and Section 8.4.4, “MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in the local APIC ID register for
each logical processor. If two or more processors supporting Intel Hyper-Threading Technology are present, each
logical processor on the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical Proces-
sors in an MP System”). Once logical processors have APIC IDs, software communicates with them by sending APIC
IPI messages.

6. Operating system and BIOS may implement features that reduce the number of logical processors available in a platform to applica-
tions at runtime to less than the number of physical packages times the number of hardware-capable logical processors per pack-
age.

7. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If CPUID leaf 4 is not available at
runtime, software should handle the situation as if there is only one core per package.

8. Maximum number of cores in the physical package must be queried by executing CPUID with EAX=4 and a valid ECX input value.
Valid ECX input values start from 0.

8-26 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

8.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32 processors is the same as for
conventional MP systems (see Section 8.4, “Multiple-Processor (MP) Initialization”). A logical processor in one core
is selected as the BSP; other logical processors are designated as APs.

During initialization, each logical processor is assigned an APIC ID. Once logical processors have APIC IDs, software
may communicate with them by sending APIC IPI messages.

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware
Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor (BSP) executes operating
system code. Other logical processors are placed in the halt state. To execute a code stream (thread) on a halted
logical processor, the operating system issues an interprocessor interrupt (IPI) addressed to the halted logical
processor. In response to the IPI, the processor wakes up and begins executing the code identified by the vector
received as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system can use conventional
symmetric multiprocessing (SMP) techniques. For example, the operating-system can use a time-slice or load
balancing mechanism to periodically interrupt each of the active logical processors. Upon interrupting a logical
processor, the operating system checks its run queue for a thread waiting to be executed and dispatches the thread
to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading
Interrupts are handled on processors supporting Intel Hyper-Threading Technology as they are on conventional MP
systems. External interrupts are received by the I/O APIC, which distributes them as interrupt messages to specific
logical processors (see Figure 8-3).

Logical processors can also send IPIs to other logical processors by writing to the ICR register of its local APIC (see
Section 10.6, “Issuing Interprocessor Interrupts”). This also applies to dual-core processors.

Vol. 3A 8-27

MULTIPLE-PROCESSOR MANAGEMENT

8.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE
Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-Threading Technology, using the
original Intel Xeon processor MP as an example. This implementation of the Intel Hyper-Threading Technology
consists of two logical processors (each represented by a separate architectural state) which share the processor’s
execution engine and the bus interface. Each logical processor also has its own advanced programmable interrupt
controller (APIC).

Figure 8-3. Local APICs and I/O APIC in MP System Supporting Intel HT Technology

I/O APIC External
Interrupts

System Chip Set

Bridge

PCI

Interrupt Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs Interrupt
Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs Interrupt
Messages

8-28 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

8.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within Intel 64 or IA-32 processors
supporting Intel Hyper-Threading Technology. The features can be subdivided into three groups:
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical processor point to the

instruction stream for the thread being executed by the logical processor.
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability (IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), control register, IA32_EFER on

Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)

Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT Technology

Logical
Processor 0
Architectural

State

Bus Interface

Local APICLocal APIC

Logical
Processor 1
Architectural

State

Execution Engine

System Bus

Vol. 3A 8-29

MULTIPLE-PROCESSOR MANAGEMENT

• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized, each logical processor is
assigned a local APIC ID (see Table 10-1). The local APIC ID serves as an ID for the logical processor and is stored
in the logical processor’s APIC ID register. If two or more processors supporting Intel Hyper-Threading Technology
are present in a dual processor (DP) or MP system, each logical processor on the system bus is assigned a unique
local APIC ID (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPI) messaging facility.
Setup and programming for APICs is identical in processors that support and do not support Intel Hyper-Threading
Technology. See Chapter 10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by logical processors. When one
logical processor updates the setting of the MTRRs, settings are automatically shared with the other logical proces-
sors in the same physical package.

The architectures require that all MP systems based on Intel 64 and IA-32 processors (this includes logical proces-
sors) must use an identical MTRR memory map. This gives software a consistent view of memory, independent of
the processor on which it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for information
on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in Section 11.12, “Page Attribute
Table (PAT),” the PAT MSR settings must be the same for all processors in a system, including the logical proces-
sors.

8.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel NetBurst® microarchitecture, all
of the machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are
duplicated for each logical processor. This permits logical processors to initialize, configure, query, and handle
machine-check exceptions simultaneously within the same physical processor. The design is compatible with
machine check exception handlers that follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its machine check in progress bit field
(MCIP) can be used to detect recursion on the part of MCA handlers. In addition, the MSR allows each logical
processor to determine that a machine-check exception is in progress independent of the actions of another logical
processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with respect to shared hardware
resources, both logical processors are notified of machine check errors that occur within a given physical processor.
If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical
package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the
logical processors enter the shutdown state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical
processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the MCA facilities are shared
between all logical processors on the same processor core.

8-30 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

8.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and its own debug
control MSR. These can be set to control and record debug information for each logical processor independently.
Each logical processor also has its own last branch records (LBR) stack.

8.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the logical processors within a
processor core for processors based on Intel NetBurst microarchitecture. As a result, software must manage the
use of these resources. The performance counter interrupts, events, and precise event monitoring support can be
set up and allocated on a per thread (per logical processor) basis.

See Section 18.6.4, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel
NetBurst® Microarchitecture,” for a discussion of performance monitoring in the Intel Xeon processor MP.

In Intel Atom processor family that support Intel Hyper-Threading Technology, the performance counters (general-
purpose and fixed-function counters) and their companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the logical processors in a
processor core supporting Intel Hyper-Threading Technology. However, some bit fields within IA32_MISC_ENABLE
MSR may be duplicated per logical processor. The partition of shared or duplicated bit fields within
IA32_MISC_ENABLE is implementation dependent. Software should program duplicated fields carefully on all
logical processors in the system to ensure consistent behavior.

8.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology obey the
same rules for memory ordering as Intel 64 or IA-32 processors without Intel HT Technology (see Section 8.2,
“Memory Ordering”). Each logical processor uses a processor-ordered memory model that can be further defined
as “write-ordered with store buffer forwarding.” All mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations apply to each logical processor.

8.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-Threading Technology executes a
serializing instruction, only that logical processor is affected by the operation. An exception to this rule is the execu-
tion of the WBINVD, INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD flag in
control register CR0 is modified. Here, both logical processors are serialized.

8.7.11 Microcode Update Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode update facilities are shared
between the logical processors; either logical processor can initiate an update. Each logical processor has its own
BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an update for
the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical
information. If logical processors initiate an update simultaneously, the processor core provides the necessary
synchronization needed to ensure that only one update is performed at a time.

Vol. 3A 8-31

MULTIPLE-PROCESSOR MANAGEMENT

NOTE
Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical
processors in the same core. All other processors support logical processors initiating an update
simultaneously. Intel recommends a common approach that the microcode loader use the
sequential technique described in Section 9.11.6.3.

8.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying code, where data writes
modify instructions cached or currently in flight. They also support cross-modifying code, where on an MP system
writes generated by one processor modify instructions cached or currently in flight on another. See Section 8.1.3,
“Handling Self- and Cross-Modifying Code,” for a description of the requirements for self- and cross-modifying code
in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 processors supporting Intel Hyper-
Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1 Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared. Any cache manipulation
instruction that is executed on one logical processor has a global effect on the cache hierarchy of the physical
processor. Note the following:
• WBINVD instruction — The entire cache hierarchy is invalidated after modified data is written back to

memory. All logical processors are stopped from executing until after the write-back and invalidate operation is
completed. A special bus cycle is sent to all caching agents. The amount of time or cycles for WBINVD to
complete will vary due to the size of different cache hierarchies and other factors. As a consequence, the use of
the WBINVD instruction can have an impact on interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing back modified data to memory.
All logical processors are stopped from executing until after the invalidate operation is completed. A special bus
cycle is sent to all caching agents.

• CLFLUSH and CLFLUSHOPT instructions — The specified cache line is invalidated from the cache hierarchy
after any modified data is written back to memory and a bus cycle is sent to all caching agents, regardless of
which logical processor caused the cache line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 control register, and thus its own
CD flag in CR0. The CD flags for the two logical processors are ORed together, such that when any logical
processor sets its CD flag, the entire cache is nominally disabled.

8.7.13.2 Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are shared. The instruction cache TLB
may be duplicated or shared in each logical processor, depending on implementation specifics of different
processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the translation. This tag
applies even for translations that are marked global using the page-global feature for memory paging. See Section
4.10, “Caching Translation Information,” for information about global translations.

8-32 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

When a logical processor performs a TLB invalidation operation, only the TLB entries that are tagged for that logical
processor are guaranteed to be flushed. This protocol applies to all TLB invalidation operations, including writes to
control registers CR3 and CR4 and uses of the INVLPG instruction.

8.7.13.3 Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors share the catastrophic shutdown
detector and the automatic thermal monitoring mechanism (see Section 14.7, “Thermal Monitoring and Protec-
tion”). Sharing results in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown temperature, the processor

core halts execution, which causes both logical processors to stop execution.
• When the processor’s core temperature rises above the preset automatic thermal monitor trip temperature, the

frequency of the processor core is automatically modulated, which effects the execution speed of both logical
processors.

For software controlled clock modulation, each logical processor has its own IA32_CLOCK_MODULATION MSR,
allowing clock modulation to be enabled or disabled on a logical processor basis. Typically, if software controlled
clock modulation is going to be used, the feature must be enabled for all the logical processors within a physical
processor and the modulation duty cycle must be set to the same value for each logical processor. If the duty cycle
values differ between the logical processors, the processor clock will be modulated at the highest duty cycle
selected.

8.7.13.4 External Signal Compatibility
This section describes the constraints on external signals received through the pins of a processor supporting Intel
Hyper-Threading Technology and how these signals are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the Intel Xeon processor MP. External

control logic uses this pin for power management within the system. When the STPCLK# signal is asserted, the
processor core transitions to the stop-grant state, where instruction execution is halted but the processor core
continues to respond to snoop transactions. Regardless of whether the logical processors are active or halted
when the STPCLK# signal is asserted, execution is stopped on both logical processors and neither will respond
to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together. As a result this signal
affects all the logical processors within the system simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading Technology has only one set of LINT0
and LINT1 pins, which are shared between the logical processors. When one of these pins is asserted, both
logical processors respond unless the pin has been masked in the APIC local vector tables for one or both of the
logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver interrupts to the logical processors.
Instead all interrupts are delivered to the local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for compatibility with the Intel 286
processor. Asserting this pin causes bit 20 of the physical address to be masked (forced to zero) for all external
bus memory accesses. Processors supporting Intel Hyper-Threading Technology provide one A20M# pin, which
affects the operation of both logical processors within the physical processor.
The functionality of A20M# is used primarily by older operating systems and not used by modern operating
systems. On newer Intel 64 processors, A20M# may be absent.

8.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting dual-core and quad-core tech-
nology. The discussion is applicable to the Intel Pentium processor Extreme Edition, Pentium D, Intel Core Duo,
Intel Core 2 Duo, Dual-core Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon proces-
sors. Features vary across different microarchitectures and are detectable using CPUID.

Vol. 3A 8-33

MULTIPLE-PROCESSOR MANAGEMENT

In general, each processor core has dedicated microarchitectural resources identical to a single-processor imple-
mentation of the underlying microarchitecture without hardware multi-threading capability. Each logical processor
in a dual-core processor (whether supporting Intel Hyper-Threading Technology or not) has its own APIC function-
ality, PAT, machine check architecture, debug registers and extensions. Each logical processor handles serialization
instructions or self-modifying code on its own. Memory order is handled the same way as in Intel Hyper-Threading
Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is shared by one or more
processor cores or by all logical processors in the physical package) depends on the processor implementation.
Software must use the deterministic cache parameter leaf of CPUID instruction to discover the cache-sharing
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core processor can be discovered
using CPUID. Within each processor core, one or more logical processors may be available.

System software must follow the requirement MP initialization sequences (see Section 8.4, “Multiple-Processor
(MP) Initialization”) to recognize and enable logical processors. At runtime, software can enumerate those logical
processors enabled by system software to identify the topological relationships between these logical processors.
(See Section 8.9.5, “Identifying Topological Relationships in a MP System”).

8.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the physical processor supports Intel
Hyper-Threading Technology. MTRR is not shared between logical processors located in different cores or different
physical packages.

The Intel 64 and IA-32 architectures require that all logical processors in an MP system use an identical MTRR
memory map. This gives software a consistent view of memory, independent of the processor on which it is
running.

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two logical processors sharing a
processor core if the processor core supports Intel Hyper-Threading Technology and is based on Intel NetBurst
microarchitecture. They are not shared between logical processors in different cores or different physical packages.
As a result, software must manage the use of these resources, based on the topology of performance monitoring
resources. Performance counter interrupts, events, and precise event monitoring support can be set up and allo-
cated on a per thread (per logical processor) basis.

See Section 18.6.4, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel
NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared between two logical processors
sharing a processor core, or may be shared between different cores in a physical processor. See Chapter 2, “Model-
Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

8.8.5 Microcode Update Resources
Microcode update facilities are shared between two logical processors sharing a processor core if the physical
package supports Intel Hyper-Threading Technology. They are not shared between logical processors in different

8-34 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

cores or different physical packages. Either logical processor that has access to the microcode update facility can
initiate an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical
processor performs an update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical
processors are updated with identical information.

All microcode update steps during processor initialization should use the same update data on all cores in all phys-
ical packages of the same stepping. Any subsequent microcode update must apply consistent update data to all
cores in all physical packages of the same stepping. If the processor detects an attempt to load an older microcode
update when a newer microcode update had previously been loaded, it may reject the older update to stay with the
newer update.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical
processors in the same core. All other processors support logical processors initiating an update
simultaneously. Intel recommends a common approach that the microcode loader use the
sequential technique described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING
CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are physically shared at some
level of the hardware topology. In the multi-processor systems, typically bus and memory sub-systems are physi-
cally shared between multiple sockets. Within a hardware multi-threading capable processors, certain resources
are provided for each processor core, while other resources may be provided for each logical processors (see
Section 8.7, “Intel® Hyper-Threading Technology Architecture,” and Section 8.8, “Multi-Core Architecture”).

From a software programming perspective, control transfer of processor operation is managed at the granularity of
logical processor (operating systems dispatch a runnable task by allocating an available logical processor on the
platform). To manage the topology of shared resources in a multi-threading environment, it may be useful for soft-
ware to understand and manage resources that are shared by more than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor system is unique (see Section 8.6,
“Detecting Hardware Multi-Threading Support and Topology”). This 8-bit or 32-bit value can be decomposed into
sub-fields, where each sub-field corresponds a hierarchical level of the topological mapping of hardware resources.

The decomposition of an APIC_ID may consist of several sub fields representing the topology within a physical
processor package, the higher-order bits of an APIC ID may also be used by cluster vendors to represent the
topology of cluster nodes of each coherent multiprocessor systems. If the processor does not support CPUID leaf
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of multi-processor systems. The

CLUSTER_ID sub-field is usually supported by vendor firmware to distinguish different clusters. For non-
clustered systems, CLUSTER_ID is usually 0 and system topology is reduced to three levels of hierarchy.

• Package — A multi-processor system consists of two or more sockets, each mates with a physical processor
package. The PACKAGE_ID sub-field distinguishes different physical packages within a cluster.

• Core — A physical processor package consists of one or more processor cores. The CORE_ID sub-field distin-
guishes processor cores in a package. For a single-core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing execution resources. The SMT_ID
sub-field distinguishes logical processors in a core. The width of this bit field is non-zero if a processor core
provides more than one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see Figure 8-5).

Vol. 3A 8-35

MULTIPLE-PROCESSOR MANAGEMENT

If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster plus several levels of topology
within the physical processor package. The exact number of hierarchical levels within a physical processor package
must be enumerated through CPUID leaf 0BH. Common processor families may employ topology similar to that
represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can support topology enumeration algorithm that
decompose a 32-bit APIC ID into more than four sub-fields (see Figure 8-6).

The width of each sub-field depends on hardware and software configurations. Field widths can be determined at
runtime using the algorithm discussed below (Example 8-16 through Example 8-20).

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypothetical MP system. The value of
valid APIC_IDs need not be contiguous across package boundary or core boundaries.

8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf
CPUID leaf 0BH provides enumeration parameters for software to identify each hierarchy of the processor topology
in a deterministic manner. Each hierarchical level of the topology starting from the SMT level is represented numer-
ically by a sub-leaf index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field in the APIC
ID, following the general relationship depicted in Figure 8-6. This mechanism allows software to query the exact
number of levels within a physical processor package and the bit-width of each sub-field of x2APIC ID directly. For
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH, ECX=N):ECX[15:8] returns an

invalid “level type” encoding. The number of levels within the physical processor package is “N” (excluding
PACKAGE). Using Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report 00H, indicating
sub leaf 03H is invalid. This is also depicted by a pseudo code example:

Figure 8-5. Generalized Four level Interpretation of the APIC ID

Figure 8-6. Conceptual Six-Level Topology and 32-bit APIC ID Composition

0

Package ID

SMT ID

X

Cluster ID

Reserved

Core ID

X=31 if x2APIC is supported

Otherwise X= 7

0

Package ID

R ID

31

Cluster ID

Reserved

Q ID

CORE ID

R

SMT

Q

PACKAGE

Physical Processor Topology 32-bit APIC ID Composition

SMT ID

CORE

8-36 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-16. Number of Levels Below the Physical Processor Package

Byte type = 1;
s = 0;
While (type) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH
ECX = s;
CPUID;
type = ECX[15:8]; // examine level type encoding
s ++;

}
N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract the SMT sub-field of x2APIC
ID. If EAX = 0BH, and ECX =0 is specified as input when executing CPUID, CPUID.(EAX=0BH,
ECX=0):EAX[4:0] reports a value (a right-shift count) that allow software to extract part of x2APIC ID to
distinguish the next higher topological entities above the SMT level. This value also corresponds to the bit-width
of the sub-field of x2APIC ID corresponding the hierarchical level with sub-leaf index 0.

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH, ECX=m):EAX[4:0] reports the right-shift
count that will allow software to extract part of x2APIC ID to distinguish higher-level topological entities. This
means the right-shift value at of sub-leaf m, corresponds to the least significant (m+1) subfields of the 32-bit
x2APIC ID.

Example 8-17. BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0 (invalid), 1 (SMT), and 2 (core). Soft-
ware must not assume any “level type“ encoding value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID leaf 0BH to enumerate processor
topology of more than two levels of hierarchy inside a physical package. Most processor families to date requires
only “SMT” and “CORE” levels within a physical package. The examples in later sections will focus on these three-
level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC ID (or 32-bit APIC ID if the
processor supports CPUID leaf 0BH) that is unique for each logical processor following power-up or RESET (see
Section 8.6.1). Each logical processor on the system is allocated an initial APIC ID. BIOS may implement features
that tell the OS to support less than the total number of logical processors on the system bus. Those logical proces-
sors that are not available to applications at runtime are halted during the OS boot process. As a result, the number
valid local APIC_IDs that can be queried by affinitizing-current-thread-context (See Example 8-22) is limited to the
number of logical processors enabled at runtime by the OS boot process.

Table 8-2 shows an example of the 8-bit APIC IDs that are initially reported for logical processors in a system with
four Intel Xeon MP processors that support Intel Hyper-Threading Technology (a total of 8 logical processors, each
physical package has two processor cores and supports Intel Hyper-Threading Technology). Of the two logical
processors within a Intel Xeon processor MP, logical processor 0 is designated the primary logical processor and
logical processor 1 as the secondary logical processor.

Vol. 3A 8-37

MULTIPLE-PROCESSOR MANAGEMENT

Table 8-3 shows the initial APIC IDs for a hypothetical situation with a dual processor system. Each physical
package providing two processor cores, and each processor core also supporting Intel Hyper-Threading Tech-
nology.

Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP Platform

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors Supporting
Intel Hyper-Threading Technology1

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available in early single-core processors sup-

porting Intel Hyper-Threading Technology, the core ID can be treated as 0.

Table 8-3. Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting Dual-
Core and Intel Hyper-Threading Technology

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID

8-38 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID
Table 8-4 shows an example of possible x2APIC ID assignments for a dual processor system that support x2APIC.
Each physical package providing four processor cores, and each processor core also supporting Intel Hyper-
Threading Technology. Note that the x2APIC ID need not be contiguous in the system.

8.9.4 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the operating system at runtime9
and extract identifiers corresponding to the three levels of sharing topology (package, core, and SMT). The three-
level algorithms below focus on a non-clustered MP system for simplicity. They do not assume APIC IDs are contig-
uous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical values in CPUID leaf 0BH,
CPUID.1:EBX[23:16]), CPUID.410:EAX[31:26], and CPUID.411:EAX[25:14]. The algorithms below assume the
target system has symmetry across physical package boundaries with respect to the number of logical processors
per package, number of cores per package, and cache topology within a package.

Software can choose to assume three level hierarchy if it was developed to understand only three levels. However,
software implementation needs to ensure it does not break if it runs on systems that have more levels in the hier-
archy even if it does not recognize them.

Table 8-4. Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting
x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

9. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS at runtime may be less than the
total number logical processors available in the platform hardware.

10. Maximum number of addressable ID for processor cores in a physical processor is obtained by executing CPUID with EAX=4 and a
valid ECX index, The ECX index start at 0.

11. Maximum number addressable ID for processor cores sharing the target cache level is obtained by executing CPUID with EAX = 4
and the ECX index corresponding to the target cache level.

Vol. 3A 8-39

MULTIPLE-PROCESSOR MANAGEMENT

The extraction algorithm (for three-level mappings from an APIC ID) uses the general procedure depicted in
Example 8-18, and is supplemented by more detailed descriptions on the derivation of topology enumeration
parameters for extraction bit masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of the topology. The algorithm to
derive extraction bit masks for SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3
below) or 8-bit (see step 4 below):

3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value, the topology enumeration
parameters needed to derive three-level extraction bit masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf 0BH with ECX =0H as input.
The number of bits to shift-right on x2APIC ID (EAX[4:0]) can distinguish different higher-level entities
above SMT (e.g. processor cores) in the same physical package. This is also the width of the bit mask to
extract the SMT_ID.

b. Enumerate until the desired level is found (i.e. processor cores). Determine if the next level is the expected
level. If the next level is not known to the software, keep enumerating until the next known or the last level.
Software should use the previous level before this to represent the last previously known level (i.e.
processor cores). If the software does not recognize or implement certain hierarchical levels, it should
assume these unknown levels as an extension of the last known level.

c. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-level entities (e.g. physical
processor packages) in the system. This describes an explicit three-level-topology situation for commonly
available processors. Consult Example 8-17 to adapt to situations beyond three-level topology of a physical
processor. The width of the extraction bit mask can be used to derive the cumulative extraction bitmask to
extract the sub IDs of logical processors (including different processor cores) in the same physical package.
The extraction bit mask to distinguish merely different processor cores can be derived by xor’ing the SMT
extraction bit mask from the cumulative extraction bit mask.

d. Query the 32-bit x2APIC ID for the logical processor where the current thread is executing.

e. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and PACKAGE_ID, starting from
SMT_ID.

f. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains an 8-bit value, the topology
enumeration parameters needed to derive extraction bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical processors in a physical
processor package. This size parameters (CPUID.1:EBX[23:16]) can be used to derive the width of an
extraction bitmask to enumerate the sub IDs of different logical processors in the same physical package.

b. Query the size of address space for sub IDs that can accommodate processor cores in a physical processor
package. This size parameters can be used to derive the width of an extraction bitmask to enumerate the
sub IDs of processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding to SMT_ID, CORE_ID, and
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field IDs.

8-40 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-18. Support Routines for Detecting Hardware Multi-Threading and Identifying the Relationships Between Package,
Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading
// support in the physical package where the current logical processor is located.
// This does not guarantee BIOS or OS will enable all logical processors in the physical
// package and make them available to applications.
// Returns zero if hardware multi-threading is not present.

#define HWMT_BIT 10000000H

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 8-19. Support Routines for Identifying Package, Core and Logical Processors from 32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and associated mask offset for different
cores.

int DeriveSMT_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~((-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return 0;

}

Vol. 3A 8-41

MULTIPLE-PROCESSOR MANAGEMENT

b. Derive the extraction bitmask for processor cores in a physical processor package and associated mask offset for
different packages.

int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while(ECX[15:8]) { // level type encoding is valid
Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages

 ECX ++;
 execute cpuid with eax = 11;
 }

COREPlusSMT_MASK = ~((-1) << Mask_Core_shift);
// treat levels between core and physical package as a core for software choosing not to implement or recognize
// these unknown levels
CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 8-20. Support Routines for Identifying Package, Core and Logical Processors from 8-bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor package.

#define NUM_LOGICAL_BITS 00FF0000H
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package,

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.

unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

8-42 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS FF000000H // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code.
// Software can use OS services to affinitize the current thread to each logical processor
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

Vol. 3A 8-43

MULTIPLE-PROCESSOR MANAGEMENT

d. Find the width of an extraction bitmask from the maximum count of the bit-field (address size).

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(),
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov mask_width, ecx
next:
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (FFH << Shift_Count)) ^ ((uchar) (FFH << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

Software must not assume local APIC_ID values in an MP system are consecutive. Non-consecutive local APIC_IDs
may be the result of hardware configurations or debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using the support routines illus-
trated in Example 8-20. The appropriate bit mask and shift value to construct the appropriate bit mask for each
level must be determined dynamically at runtime.

8.9.5 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological relationships in a MP system, the
following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor enabled by system software. The

sequence is as follows (See the pseudo code shown in Example 8-21 and support routines shown in Example
8-18):

8-44 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• The extraction start from the right-most bit field, corresponding to SMT_ID, the innermost hierarchy in
a three-level topology (See Figure 8-7). For the right-most bit field, the shift value of the working mask
is zero. The width of the bit field is determined dynamically using the maximum number of logical
processor per core, which can be derived from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is determined from the width of the bit
mask of the previous step. The width of the bit field is determined dynamically using the maximum
number of cores per package.

• To extract the remaining bit-field, the shift value of the working mask is determined from the maximum
number of logical processor per package. So the remaining bits in the APIC ID (excluding those bits
already extracted in the two previous steps) are extracted as the third identifier. This applies to a non-
clustered MP system, or if there is no need to distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, PACKAGE_ID can be extracted
using an algorithm similar to the extraction of CORE_ID, assuming the number of physical packages in
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into arrays for each enabled logical
processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those logical processors that reside in
the same physical package. This is shown in Example 8-22b. This example also depicts a technique to construct
a mask to represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical processors that reside in the
same core. This is shown in Example 8-22. This example also depicts a technique to construct a mask to
represent the logical processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted with the mask by shifting it right
by shift count. Algorithms below do not shift the value. The assumption is that the SubID values can be compared
for equivalence without the need to shift.

Example 8-21. Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID,
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 8-19);
// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit 0, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:
// Assume single cluster.
// Shift out the mask width for maximum logical processors per package
// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}

Vol. 3A 8-45

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-22. Compute the Number of Packages, Cores, and Processor Relationships in a MP System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications
// after system boot. The below algorithm will compute topology for the processors visible
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.

ThreadAffinityMask = 1;
 ProcessorNum = 0;

while (ThreadAffinityMask ≠ 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example 8-20
Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction

algorithm of Example 8-21
PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and construct, for each package, a multi-bit
mask corresponding to those logical processors residing in the same package.

// Compute the number of packages by counting the number of processors
// with unique PACKAGE_IDs in the PackageID array.
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID
The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
PackageProcessorMask[0] = ProcessorMask;

8-46 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {
ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each core, a multi-bit mask corresponding
to those logical processors residing in the same core.

Processors in the same core can be determined by bucketing the processors with the same PACKAGE_ID and CORE_ID. Note that code
below can BIT OR the values of PACKGE and CORE ID because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be computed from set operations of the
PackageProcessorMask[] and CoreProcessorMask[].

Vol. 3A 8-47

MULTIPLE-PROCESSOR MANAGEMENT

The algorithm shown above can be adapted to work with earlier generations of single-core IA-32 processors that
support Intel Hyper-Threading Technology and in situations that the deterministic cache parameter leaf is not
supported (provided CPUID supports initial APIC ID). A reference code example is available (see Intel® 64 Archi-
tecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or processors supporting Intel Hyper-
Threading Technology) is idle (no work to do) or blocked (on a lock or semaphore), additional management of the
core execution engine resource can be accomplished by using the HLT (halt), PAUSE, or the MONITOR/MWAIT
instructions.

8.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is executed and places it in a halted
state until further notice (see the description of the HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A). When a logical processor is halted, active logical processors
continue to have full access to the shared resources within the physical package. Here shared resources that were
being used by the halted logical processor become available to active logical processors, allowing them to execute
at greater efficiency. When the halted logical processor resumes execution, shared resources are again shared
among all active logical processors. (See Section 8.10.6.3, “Halt Idle Logical Processors,” for more information
about using the HLT instruction with processors supporting Intel Hyper-Threading Technology.)

8.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel Hyper-Threading Technology
when executing “spin-wait loops” and other routines where one thread is accessing a shared lock or semaphore in
a tight polling loop. When executing a spin-wait loop, the processor can suffer a severe performance penalty when
exiting the loop because it detects a possible memory order violation and flushes the core processor’s pipeline. The
PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor uses
this hint to avoid the memory order violation and prevent the pipeline flush. In addition, the PAUSE instruction de-
pipelines the spin-wait loop to prevent it from consuming execution resources excessively and consume power
needlessly. (See Section 8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information about
using the PAUSE instruction with IA-32 processors supporting Intel Hyper-Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to help multithreaded software
improve thread synchronization. In the initial implementation, MONITOR and MWAIT are available to software at
ring 0. The instructions are conditionally available at levels greater than 0. Use the following steps to detect the
availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception handler and trap for an

exception. If an exception occurs, MONITOR and MWAIT are not supported at a privilege level greater than 0.
See Example 8-23.

8-48 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

Example 8-23. Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}

 // Use monitor
} except (UNWIND) {
 // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}

8.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In a typical idle-loop scenario,
there could be several “busy loops” and they would use a set of memory locations. An impacted processor waits in
a loop and poll a memory location to determine if there is available work to execute. The posting of work is typically
a write to memory (the work-queue of the waiting processor). The time for initiating a work request and getting it
scheduled is on the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution resources), use of the HLT instruction in
an OS idle loop is desirable but has implications. Executing the HLT instruction on a idle logical processor puts the
targeted processor in a non-execution state. This requires another processor (when posting work for the halted
logical processor) to wake up the halted processor using an inter-processor interrupt. The posting and servicing of
such an interrupt introduces a delay in the servicing of new work requests.

In a shared memory configuration, exits from busy loops usually occur because of a state change applicable to a
specific memory location; such a change tends to be triggered by writes to the memory location by another agent
(typically a processor).

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient partitioning and un-partitioning of
shared resources among logical processors sharing physical resources. MONITOR sets up an effective address
range that is monitored for write-to-memory activities; MWAIT places the processor in an optimized state (this may
vary between different implementations) until a write to the monitored address range occurs.

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor hardware can be either armed
(by executing the MONITOR instruction) or triggered (due to a variety of events, including a store to the monitored
memory region). If upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves as a NOP
and execution continues at the next instruction in the execution stream. The state of monitor hardware is not archi-
tecturally visible except through the behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a processor that executed MWAIT to
wake up. These include events that would lead to voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR writes; execution of LMSW

(occurring prior to issuing MWAIT but after setting the monitor)
• Voluntary transitions due to fast system call and far calls (occurring prior to issuing MWAIT but after setting the

monitor)

Power management related events (such as Thermal Monitor 2 or chipset driven STPCLK# assertion) will not cause
the monitor event pending flag to be cleared. Faults will not cause the monitor event pending flag to be cleared.

Vol. 3A 8-49

MULTIPLE-PROCESSOR MANAGEMENT

Software should not allow for voluntary context switches in between MONITOR/MWAIT in the instruction flow. Note
that execution of MWAIT does not re-arm the monitor hardware. This means that MONITOR/MWAIT need to be
executed in a loop. Also note that exits from the MWAIT state could be due to a condition other than a write to the
triggering address; software should explicitly check the triggering data location to determine if the write occurred.
Software should also check the value of the triggering address following the execution of the monitor instruction
(and prior to the execution of the MWAIT instruction). This check is to identify any writes to the triggering address
that occurred during the course of MONITOR execution.

The address range provided to the MONITOR instruction must be of write-back caching type. Only write-back
memory type stores to the monitored address range will trigger the monitor hardware. If the address range is not
in memory of write-back type, the address monitor hardware may not be set up properly or the monitor hardware
may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a location within the address region

being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due to a write to the intended data
location). These have negative performance implications. It might be necessary for software to use padding to
prevent false wakeups. CPUID provides a mechanism for determining the size data locations for monitoring as well
as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the region monitored by the
MONITOR/MWAIT instructions and the size of the coherence line size for cache-snoop traffic in a multiprocessor
system. This information can be queried using the CPUID monitor leaf function (EAX = 05H). You will need the
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor writes fits within the smallest

monitor line-size. Otherwise, the processor may not wake up after a write intended to trigger an exit from
MWAIT.

• To avoid false wake-ups; use the largest monitor line size to pad the data structure used to monitor writes.
Software must make sure that beyond the data structure, no unrelated data variable exists in the triggering
area for MWAIT. A pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and software should not make any
assumptions to that effect. Within a single-cluster system, the two parameters should default to be the same (the
size of the monitor triggering area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically allocate structures with appro-
priate padding. If static data structures must be used by an OS, attempt to adapt the data structure and use a
dynamically allocated data buffer for thread synchronization. When the latter technique is not possible, consider
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered systems: interaction between
processors, chipsets, and the BIOS is required (system coherence line size may depend on the chipset used in the
system; the size could be different from the processor’s monitor triggering area). The BIOS is responsible to set the
correct value for system coherence line size using the IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the
relative magnitude of the size of the monitor triggering area versus the value written into the
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be reported as the Smallest Monitor
Line Size. The larger of the parameters will be reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on processors supporting Intel
Hyper-Threading Technology. It also describes optimizations that can help an operating system make more effi-
cient use of the logical processors sharing execution resources. The required changes and suggested optimizations
are representative of the types of modifications that appear in Windows* XP and Linux* kernel 2.4.0 operating
systems for Intel processors supporting Intel Hyper-Threading Technology. Additional optimizations for processors

8-50 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

supporting Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architectures Optimization
Reference Manual.

8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel processors supporting
Intel Hyper-Threading Technology and multi-core processors.

Software routines that use spin-wait loops include multiprocessor synchronization primitives (spin-locks, sema-
phores, and mutex variables) and idle loops. Such routines keep the processor core busy executing a load-compare-
branch loop while a thread waits for a resource to become available. Including a PAUSE instruction in such a loop
greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The following routine gives an example of a
spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of the synchroniza-
tion variable. This technique is recommended when writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is treated as a NOP
instruction.

8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A typical OS idle loop on an ACPI-
compatible OS is shown in Example 8-24:

Example 8-24. A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler

Vol. 3A 8-51

MULTIPLE-PROCESSOR MANAGEMENT

// shown below
}

}
}
// C1 handler uses a Halt instruction
VOID C1Handler()
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if MONITOR and MWAIT are supported.

Example 8-25. An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated.
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress,
// ECX, EDX = 0

IF (WorkQueue = 0) THEN {
MWAIT
}

}
}

}
// C1 handler uses a Halt instruction.
VOID C1Handler()
{ STI

HLT
}

8.10.6.3 Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that processor by means
of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that continuously checks the run queue
for runnable software tasks. Logical processors that execute idle loops consume a significant amount of core’s
execution resources that might otherwise be used by the other logical processors in the physical package. For this
reason, halting idle logical processors optimizes the performance.12 If all logical processors within a physical
package are halted, the processor will enter a power-saving state.

8-52 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 idle loop. An example is
shown in Example 8-26:

Example 8-26. An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue
}

ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated
IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
}

}
}

VOID C1Handler()

{ MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,
// ECX, EDX = 0

IF (WorkQueue = 0) THEN {
STI
MWAIT // EAX, ECX = 0
}

}

8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources
Because the logical processors, the order in which threads are dispatched to logical processors for execution can
affect the overall efficiency of a system. The following guidelines are recommended for scheduling threads for
execution.
• Dispatch threads to one logical processor per processor core before dispatching threads to the other logical

processor sharing execution resources in the same processor core.
• In an MP system with two or more physical packages, distribute threads out over all the physical processors,

rather than concentrate them in one or two physical processors.
• Use processor affinity to assign a thread to a specific processor core or package, depending on the cache-

sharing topology. The practice increases the chance that the processor’s caches will contain some of the
thread’s code and data when it is dispatched for execution after being suspended.

12. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating systems should evaluate the
performance trade-offs for their operating system.

Vol. 3A 8-53

MULTIPLE-PROCESSOR MANAGEMENT

8.10.6.6 Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution speed to measure time. There are
several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor running at one frequency and then

executed on a processor running at another frequency.
• Routines for calibrating execution-based timing loops produce unpredictable results when run on an IA-32

processor supporting Intel Hyper-Threading Technology. This is due to the sharing of execution resources
between the logical processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism for the loop that does not
depend on the execution speed of the logical processors in the system. The following sources are generally avail-
able:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory
When software uses locks or semaphores to synchronize processes, threads, or other code sections; Intel recom-
mends that only one lock or semaphore be present within a cache line (or 128 byte sector, if 128-byte sector is
supported). In processors based on Intel NetBurst microarchitecture (which support 128-byte sector consisting of
two cache lines), following this recommendation means that each lock or semaphore should be contained in a 128-
byte block of memory that begins on a 128-byte boundary. The practice minimizes the bus traffic required to
service locks.

8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS
This section describes the MP initialization process for systems that use multiple P6 family processors. This process
uses the MP initialization protocol that was introduced with the Pentium Pro processor (see Section 8.4, “Multiple-
Processor (MP) Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4 processors
that reside on single system bus; however, it can support from 2 to 15 processors in a multi-clustered system when
the APIC busses are tied together. Larger systems are not supported.

8.11.1 Overview of the MP Initialization Process For P6 Family Processors
During the execution of the MP initialization protocol, one processor is selected as the bootstrap processor (BSP)
and the remaining processors are designated as application processors (APs), see Section 8.4.1, “BSP and AP
Processors.” Thereafter, the BSP manages the initialization of itself and the APs. This initialization includes
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP protocol has been completed and a

BSP has been chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP
protocol to be repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR) to determine
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP
responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the boot phase of the MP initializa-
tion protocol. These IPIs are broadcast on the APIC bus.

8-54 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the group of processors on the
system bus and designates the remainder of the processors as APs. Each processor on the system bus
broadcasts a BIPI to all the processors following a power-up or RESET.

• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This IPI is broadcast to all the
processors on the system bus, but only the BSP responds to it. The BSP responds by beginning execution of the
BIOS initialization code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI message contains a vector to the AP
initialization code in the BIOS.

Table 8-5 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the processor issuing the message and
the upper 4 bits contain the “generation ID” of the message. All P6 family processor will have a generation ID of 4H.
BIPIs will therefore use vector values ranging from 40H to 4EH (4FH can not be used because FH is not a valid APIC
ID).

8.11.2 MP Initialization Protocol Algorithm
Following a power-up or RESET of a system, the P6 family processors in the system execute the MP initialization
protocol algorithm to initialize each of the processors on the system bus. In the course of executing this algorithm,
the following boot-up and initialization operations are carried out:

1. Each processor on the system bus is assigned a unique APIC ID, based on system topology (see Section 8.4.5,
“Identifying Logical Processors in an MP System”). This ID is written into the local APIC ID register for each
processor.

2. Each processor executes its internal BIST simultaneously with the other processors on the system bus. Upon
completion of the BIST (at T0), each processor broadcasts a BIPI to “all including self” (see Figure 8-1).

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a time (at T1, T2, T3, and T4).

4. When the first BIPI is received (at time T1), each APIC compares the four least significant bits of the BIPI’s
vector field with its APIC ID. If the vector and APIC ID match, the processor selects itself as the BSP by setting
the BSP flag in its IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor selects itself
as an AP by entering the “wait for SIPI” state. (Note that in Figure 8-1, the BIPI from processor 1 is the first
BIPI to be handled, so processor 1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The FIPI is guaranteed to be
handled only after the completion of the BIPIs that were issued by the non-BSP processors.

Table 8-5. Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding self Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.

Vol. 3A 8-55

MULTIPLE-PROCESSOR MANAGEMENT

6. After the BSP has been established, the outstanding BIPIs are received one at a time (at T2, T3, and T4) and
ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds by fetching and executing
BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its initial APIC ID to
these tables as appropriate.

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all the APs in the system. Here,
the SIPI message contains a vector to the BIOS AP initialization code (at 000V V000H, where VV is the vector
contained in the SIPI message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore. The first one to the
semaphore begins executing the initialization code. (See MP init code for semaphore implementation details.)
As part of the AP initialization procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-
priate. At the completion of the initialization procedure, the AP executes a CLI instruction (to clear the IF flag in
the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP initialization code and all
written their APIC IDs into the appropriate places in the ACPI and MP tables, the BSP establishes a count for the
number of processors connected to the system bus, completes executing the BIOS boot-strap code, and then
begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state.
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions
of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of the MP protocol to boot IA-32
processors in an MP. This code should run on any IA-32 processor that used the MP protocol.

8.11.2.1 Error Detection and Handling During the MP Initialization Protocol
Errors may occur on the APIC bus during the MP initialization phase. These errors may be transient or permanent
and can be caused by a variety of failure mechanisms (for example, broken traces, soft errors during bus usage,
etc.). All serial bus related errors will result in an APIC checksum or acceptance error.

The MP initialization protocol makes the following assumptions regarding errors that occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization protocol, the processors that

detect the errors are shut down.

Figure 8-1. MP System With Multiple Pentium III Processors

Pentium III
Processor 0

Pentium III
Processor 1

Pentium III
Processor 2

Pentium III
Processor 3

BIPI.1 BIPI.0 BIPI.3 BIPI.2 FIPI

T0 T1 T2 T3 T4 T5

System (CPU) Bus

APIC Bus

Serial Bus Activity

Processor 1
Becomes BSP

8-56 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT

• The MP initialization protocol will be executed by processors even if they fail their BIST sequences.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

15.Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
Changes to this chapter: Minor update to Section 9.8.5 “Initializing IA-32e Mode”.

Vol. 3A 9-1

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for initializing the
processor. The subjects covered include: processor initialization, x87 FPU initialization, processor configuration,
feature determination, mode switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system bus performs a hardware
initialization of the processor (known as a hardware reset) and an optional built-in self-test (BIST). A hardware
reset sets each processor’s registers to a known state and places the processor in real-address mode. It also inval-
idates the internal caches, translation lookaside buffers (TLBs) and the branch target buffer (BTB). At this point,
the action taken depends on the processor family:
• Pentium 4 processors (CPUID DisplayFamily 0FH) — All the processors on the system bus (including a

single processor in a uniprocessor system) execute the multiple processor (MP) initialization protocol. The
processor that is selected through this protocol as the bootstrap processor (BSP) then immediately starts
executing software-initialization code in the current code segment beginning at the offset in the EIP register.
The application (non-BSP) processors (APs) go into a Wait For Startup IPI (SIPI) state while the BSP is
executing initialization code. See Section 8.4, “Multiple-Processor (MP) Initialization,” for more details. Note
that in a uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically becomes the BSP.

• IA-32 and Intel 64 processors (CPUID DisplayFamily 06H) — The action taken is the same as for the
Pentium 4 processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single Pentium processor is always
pre-designated as the primary processor. Following a reset, the primary processor behaves as follows in both
single- and dual-processor systems. Using the dual-processor (DP) ready initialization protocol, the primary
processor immediately starts executing software-initialization code in the current code segment beginning at
the offset in the EIP register. The secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a uniprocessor system) immediately
starts executing software-initialization code in the current code segment beginning at the offset in the EIP
register. (The Intel486 does not automatically execute a DP or MP initialization protocol to determine which
processor is the primary processor.)

The software-initialization code performs all system-specific initialization of the BSP or primary processor and the
system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or secondary) processor
to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor begins executing
an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initialization code can then
be executed to perform operations such as setting the precision of the x87 FPU and the exception masks. No special
initialization of the x87 FPU is required to switch operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The major difference is
that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state are left unchanged (although, the TLBs
and BTB are invalidated as with a hardware reset). An INIT provides a method for switching from protected to real-
address mode while maintaining the contents of the internal caches.

9-2 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.1.1 Processor State After Reset
Following power-up, The state of control register CR0 is 60000010H (see Figure 9-1). This places the processor is
in real-address mode with paging disabled.

The state of the flags and other registers following power-up for the Pentium 4, Pentium Pro, and Pentium proces-
sors are shown in Section 22.39, “Initial State of Pentium, Pentium Pro and Pentium 4 Processors” of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 9-1 shows processor states of IA-32 and Intel 64 processors with CPUID DisplayFamily signature of 06H at
the following events: power-up, RESET, and INIT. In a few cases, the behavior of some registers behave slightly
different across warm RESET, the variant cases are marked in Table 9-1 and described in more detail in Table 9-2.

Figure 9-1. Contents of CR0 Register after Reset

Table 9-1. IA-32 and Intel 64 Processor States Following Power-up, Reset, or INIT

Register Power up Reset INIT

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 000n06xxH3 000n06xxH3 000n06xxH3

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, ESP 00000000H 00000000H 00000000H

ST0 through ST75 +0.0 +0.0 FINIT/FNINIT: Unchanged

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

31 19 16 15 0

P
E

1234561718282930

M
P

E
M1N

E
T
S

P
G

C
D

N
W

W
P

A
M

Paging disabled: 0

Alignment check disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

Reserved Reserved

Vol. 3A 9-3

PROCESSOR MANAGEMENT AND INITIALIZATION

x87 FPU Control Word5 0040H 0040H FINIT/FNINIT: 037FH

x87 FPU Status Word5 0000H 0000H FINIT/FNINIT: 0000H

x87 FPU Tag Word5 5555H 5555H FINIT/FNINIT: FFFFH

x87 FPU Data Operand and
CS Seg. Selectors5

0000H 0000H FINIT/FNINIT: 0000H

x87 FPU Data Operand and
Inst. Pointers5

00000000H 00000000H FINIT/FNINIT: 00000000H

MM0 through MM75 0000000000000000H 0000000000000000H INIT or FINIT/FNINIT: Unchanged

XMM0 through XMM7 0H 0H Unchanged

MXCSR 1F80H 1F80H Unchanged

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

R8-R15 0000000000000000H 0000000000000000H 0000000000000000H

XMM8-XMM15 0H 0H Unchanged

XCR0 1H 1H Unchanged

IA32_XSS 0H 0H 0H

YMM_H[255:128] 0H 0H Unchanged

BNDCFGU 0H 0H 0H

BND0-BND3 0H 0H 0H

IA32_BNDCFGS 0H 0H 0H

OPMASK 0H 0H Unchanged

ZMM_H[511:256] 0H 0H Unchanged

ZMMHi16[511:0] 0H 0H Unchanged

PKRU 0H 0H Unchanged

Intel Processor Trace MSRs 0H 0HW Unchanged

Time-Stamp Counter 0H 0HW Unchanged

IA32_TSC_AUX 0H 0H Unchanged

IA32_TSC_ADJUST 0H 0H Unchanged

IA32_TSC_DEADLINE 0H 0H Unchanged

IA32_SYSENTER_CS/ESP/EIP 0H 0H Unchanged

IA32_EFER 0000000000000000H 0000000000000000H 0000000000000000H

IA32_STAR/LSTAR 0H 0H Unchanged

IA32_FS_BASE/GS_BASE 0H 0H 0H

Table 9-1. IA-32 and Intel 64 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Power up Reset INIT

9-4 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

IA32_PMCx,
IA32_PERFEVTSELx

0H 0H Unchanged

IA32_FIXED_CTRx,
IA32_FIXED_CTR_CTRL,

Global Perf Counter Controls

0H 0H Unchanged

Data and Code Cache, TLBs Invalid6 Invalid6 Unchanged

Fixed MTRRs Disabled Disabled Unchanged

Variable MTRRs Disabled Disabled Unchanged

Machine-Check Banks Undefined UndefinedW Unchanged

Last Branch Record Stack 0 0W Unchanged

APIC Enabled Enabled Unchanged

X2APIC Disabled Disabled Unchanged

IA32_DEBUG_INTERFACE 0 0W Unchanged

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor, and “xx” = don’t care.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
W: Warm RESET behavior differs from power-on RESET with details listed in Table 9-2.

Table 9-2. Variance of RESET Values in Selected Intel Architecture Processors

State XREF Value Feature Flag or DisplayFamily_DisplayModel Signatures

Time-Stamp Counter Warm RESET Unmodified across warm
Reset

06_2DH, 06_3EH

Machine-Check Banks Warm RESET IA32_MCi_Status banks are
unmodified across warm
Reset

06_2DH, 06_3EH, 06_3FH, 06_4FH, 06_56H

Last Branch Record Stack Warm RESET LBR stack MSRs are
unmodified across warm
Reset

06_1AH, 06_1CH, DisplayFamiy= 06 and DisplayModel >1DH

Intel Processor Trace
MSRs

Warm RESET Clears
IA32_RTIT_CTL.TraceEn,
the rest of MSRs are
unmodified

If CPUID.(EAX=14H, ECX=0H):EBX[bit 2] = 1

IA32_DEBUG_INTERFACE Warm RESET Unmodified across warm
Reset

If CPUID.01H:ECX.[11] = 1

Table 9-1. IA-32 and Intel 64 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Power up Reset INIT

Vol. 3A 9-5

PROCESSOR MANAGEMENT AND INITIALIZATION

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is cleared (0H) if the processor
passes the BIST. A nonzero value in the EAX register after the BIST indicates that a processor fault was detected.
If the BIST is not requested, the contents of the EAX register after a hardware reset is 0H.

The overhead for performing a BIST varies between processor families. For example, the BIST takes approximately
30 million processor clock periods to execute on the Pentium 4 processor. This clock count is model-specific; Intel
reserves the right to change the number of periods for any Intel 64 or IA-32 processor, without notification.

9.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and revision information (see
Figure 9-2). For example, the model, family, and processor type returned for the first processor in the Intel
Pentium 4 family is as follows: model (0000B), family (1111B), and processor type (00B).

The stepping ID field contains a unique identifier for the processor’s stepping ID or revision level. The extended
family and extended model fields were added to the IA-32 architecture in the Pentium 4 processors.

9.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is located at physical address
FFFFFFF0H. This address is 16 bytes below the processor’s uppermost physical address. The EPROM containing the
software-initialization code must be located at this address.

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor while in real-address mode. The
processor is initialized to this starting address as follows. The CS register has two parts: the visible segment
selector part and the hidden base address part. In real-address mode, the base address is normally formed by
shifting the 16-bit segment selector value 4 bits to the left to produce a 20-bit base address. However, during a
hardware reset, the segment selector in the CS register is loaded with F000H and the base address is loaded with
FFFF0000H. The starting address is thus formed by adding the base address to the value in the EIP register (that
is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the processor will follow the normal
rule for address translation in real-address mode (that is, [CS base address = CS segment selector * 16]). To
insure that the base address in the CS register remains unchanged until the EPROM based software-initialization
code is completed, the code must not contain a far jump or far call or allow an interrupt to occur (which would
cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an x87 FPU by using the CPUID
instruction. The code must then initialize the x87 FPU and set flags in control register CR0 to reflect the state of the
x87 FPU environment.

Figure 9-2. Version Information in the EDX Register after Reset

31 12 11 8 7 4 3 0

EDX

Family (1111B for the Pentium 4 Processor Family)
Model (Beginning with 0000B)

1314

Processor Type

ModelFamily
Stepping

ID

15

Model
ExtendedExtended

Family

1619202728

Reserved

9-6 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is different from the state the x87
FPU is placed in following the execution of an FINIT or FNINIT instruction (also shown in Table 9-1). If the x87 FPU
is to be used, the software-initialization code should execute an FINIT/FNINIT instruction following a hardware
reset. These instructions, tag all data registers as empty, clear all the exception masks, set the TOP-of-stack value
to 0, and select the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of control register CR0. These bits
are cleared on hardware reset of the processor. Figure 9-3 shows the suggested settings for these flags, depending
on the IA-32 processor being initialized. Initialization code can test for the type of processor present before setting
or clearing these flags.

The EM flag determines whether floating-point instructions are executed by the x87 FPU (EM is cleared) or a
device-not-available exception (#NM) is generated for all floating-point instructions so that an exception handler
can emulate the floating-point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math
coprocessor is present and set if they are not present. If the EM flag is set and no x87 FPU, math coprocessor, or
floating-point emulator is present, the processor will hang when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag. If the MP flag is clear,
WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP flag is set, they will generate a device-not-
available exception (#NM) if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a math coprocessor present.
However, an operating system can choose to save the floating-point context at every context switch, in which case
there would be no need to set the MP bit.

Table 2-2 shows the actions taken for floating-point and WAIT/FWAIT instructions based on the settings of the EM,
MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating a floating-point
error exception internally (NE is set, native mode) or through an external interrupt (NE is cleared). In systems
where an external interrupt controller is used to invoke numeric exception handlers (such as MS-DOS-based
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available exception (#NM) and trap to a software
exception handler whenever it encounters a floating-point instruction. (Table 9-3 shows when it is appropriate to
use this flag.) Setting this flag has two functions:
• It allows x87 FPU code to run on an IA-32 processor that has neither an integrated x87 FPU nor is connected to

an external math coprocessor, by using a floating-point emulator.
• It allows floating-point code to be executed using a special or nonstandard floating-point emulator, selected for

a particular application, regardless of whether an x87 FPU or math coprocessor is present.

Table 9-3. Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors only, without the presence of a math
coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and Intel 487 SX processors, and
Intel386 DX and Intel386 SX processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.

Vol. 3A 9-7

PROCESSOR MANAGEMENT AND INITIALIZATION

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 should be set as shown in
Table 9-4.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-not-available exception (#NM)
upon encountering any floating-point instruction.

9.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors contain internal instruction and
data caches. These caches are enabled by clearing the CD and NW flags in control register CR0. (They are set
during a hardware reset.) Because all internal cache lines are invalid following reset initialization, it is not neces-
sary to invalidate the cache before enabling caching. Any external caches may require initialization and invalidation
using a system-specific initialization and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional configuration of the
processor’s caching facilities will probably be required. Beginning with the Intel486 processor, page-level caching
can be controlled with the PCD and PWT flags in page-directory and page-table entries. Beginning with the P6
family processors, the memory type range registers (MTRRs) control the caching characteristics of the regions of
physical memory. (For the Intel486 and Pentium processors, external hardware can be used to control the caching
characteristics of regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed information
on configuration of the caching facilities in the Pentium 4, Intel Xeon, and P6 family processors and system
memory.

9.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors contain a model-specific regis-
ters (MSRs). A given MSR may not be supported across all families and models for Intel 64 and IA-32 processors.
Some MSRs are designated as architectural to simplify software programming; a feature introduced by an architec-
tural MSR is expected to be supported in future processors. Non-architectural MSRs are not guaranteed to be
supported or to have the same functions on future processors.

MSRs that provide control for a number of hardware and software-related features, include:
• Performance-monitoring counters (see Chapter 23, “Introduction to Virtual Machine Extensions”).
• Debug extensions (see Chapter 23, “Introduction to Virtual Machine Extensions.”).
• Machine-check exception capability and its accompanying machine-check architecture (see Chapter 15,

“Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER, IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of the MSRs will need to be initial-
ized to set up things like performance-monitoring events, run-time machine checks, and memory types for phys-
ical memory.

Table 9-4. Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1

9-8 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Lists of available performance-monitoring events are given in Chapter 19, “Performance Monitoring Events”, and
lists of available MSRs are given in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 4. The references earlier in this section show where the functions of
the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture with the Pentium Pro processor.
They allow the type of caching (or no caching) to be specified in system memory for selected physical address
ranges. They allow memory accesses to be optimized for various types of memory such as RAM, ROM, frame buffer
memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization code or BIOS and is not an oper-
ating system or executive function. At the very least, all the MTRRs must be cleared to 0, which selects the
uncached (UC) memory type. See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken when initializing the
processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 extensions (respectively: EDX
bits 25 and 26, ECX bit 0 and 9) and support for the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check
for support for the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the EDX and ECX
registers when the CPUID instruction is executed with a 1 in the EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system supports saving and
restoring the SSE/SSE2/SSE3/SSSE3 execution environment (XMM and MXCSR registers) with the FXSAVE and
FXRSTOR instructions, respectively. See Section 2.5, “Control Registers,” for a description of the OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the operating system supports the
handling of SSE/SSE2/SSE3 SIMD floating-point exceptions (#XM). See Section 2.5, “Control Registers,” for a
description of the OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of operation desired for
SSE/SSE2/SSE3 SIMD floating-point instructions. See “MXCSR Control and Status Register” in Chapter 10,
“Programming with Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for a detailed description of the bits and flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION
Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the processor is placed
in real-address mode and begins executing software initialization code from physical address FFFFFFF0H. Software
initialization code must first set up the necessary data structures for handling basic system functions, such as a
real-mode IDT for handling interrupts and exceptions. If the processor is to remain in real-address mode, software
must then load additional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data structures to operate
in protected mode and then switch to protected mode. The protected-mode data structures that must be loaded
are described in Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into memory is the IDT (also called the
“interrupt vector table”). By default, the address of the base of the IDT is physical address 0H. This address can be

Vol. 3A 9-9

PROCESSOR MANAGEMENT AND INITIALIZATION

changed by using the LIDT instruction to change the base address value in the IDTR. Software initialization code
needs to load interrupt- and exception-handler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM; however, the code
must be located within the 1-MByte addressable range of the processor in real-address mode. If the handler code
is to be stored in RAM, it must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and the NMI interrupt
handler need to be loaded into RAM, there will be a period of time following hardware reset when an NMI interrupt
cannot be handled. During this time, hardware must provide a mechanism to prevent an NMI interrupt from halting
code execution until the IDT and the necessary NMI handler software is loaded. Here are two examples of how
NMIs can be handled during the initial states of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI interrupt to be handled

immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by passing the NMI# signal through

an AND gate controlled by a flag in an I/O port. Hardware can clear the flag when the processor is reset, and
software can set the flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION
The processor is placed in real-address mode following a hardware reset. At this point in the initialization process,
some basic data structures and code modules must be loaded into physical memory to support further initialization
of the processor, as described in Section 9.7, “Software Initialization for Real-Address Mode Operation.” Before the
processor can be switched to protected mode, the software initialization code must load a minimum number of
protected mode data structures and code modules into memory to support reliable operation of the processor in
protected mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the processor can be switched
to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after switching to protected mode, prior

to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range registers (MTRRs).

With these data structures, code modules, and system registers initialized, the processor can be switched to
protected mode by loading control register CR0 with a value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory during software initialization,
depend largely on the type of memory management the protected-mode operating-system or executive is going to
support: flat, flat with paging, segmented, or segmented with paging.

9-10 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

To implement a flat memory model without paging, software initialization code must at a minimum load a GDT with
one code and one data-segment descriptor. A null descriptor in the first GDT entry is also required. The stack can
be placed in a normal read/write data segment, so no dedicated descriptor for the stack is required. A flat memory
model with paging also requires a page directory and at least one page table (unless all pages are 4 MBytes in
which case only a page directory is required). See Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded into the GDTR register using
an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as segments and LDTs
for each application program. LDTs require segment descriptors in the GDT. Some operating systems allocate new
segments and LDTs as they are needed. This provides maximum flexibility for handling a dynamic programming
environment. However, many operating systems use a single LDT for all tasks, allocating GDT entries in advance.
An embedded system, such as a process controller, might pre-allocate a fixed number of segments and LDTs for a
fixed number of application programs. This would be a simple and efficient way to structure the software environ-
ment of a real-time system.

9.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate descriptor for each exception
vector that the processor can generate. If interrupt or trap gates are used, the gate descriptors can all point to the
same code segment, which contains the necessary exception handlers. If task gates are used, one TSS and accom-
panying code, data, and task segments are required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for one or more inter-
rupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR register using an
LIDT instruction. This operation is typically carried out immediately after switching to protected mode.

9.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its state following a hardware
reset), the paging mechanism is turned off; when it is set, paging is enabled. Before setting the PG flag, the
following data structures and registers must be initialized:
• Software must load at least one page directory and one page table into physical memory. The page table can

be eliminated if the page directory contains a directory entry pointing to itself (here, the page directory and
page table reside in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical base address of the page
directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT or in an LDT for supervisor
mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to protected mode at the
same time by loading control register CR0 with an image in which the PG and PE flags are set. (Paging cannot be
enabled before the processor is switched to protected mode.)

9.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege levels are not allowed, it is
not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are allowed, software
initialization code must load at least one TSS and an accompanying TSS descriptor. (A TSS is required to change
privilege levels because pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for these
stacks are obtained from the TSS.) TSS descriptors must not be marked as busy when they are created; they
should be marked busy by the processor only as a side-effect of performing a task switch. As with descriptors for
LDTs, TSS descriptors reside in the GDT.

Vol. 3A 9-11

PROCESSOR MANAGEMENT AND INITIALIZATION

After the processor has switched to protected mode, the LTR instruction can be used to load a segment selector for
a TSS descriptor into the task register. This instruction marks the TSS descriptor as busy, but does not perform a
task switch. The processor can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The
segment selector for the TSS must be loaded before software performs its first task switch in protected mode,
because a task switch copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are performed by task
switching. As with other segments and LDTs, TSSs and TSS descriptors can be either pre-allocated or allocated as
needed.

9.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The operating system must be in protected
mode with paging enabled before attempting to initialize IA-32e mode. IA-32e mode operation also requires phys-
ical-address extensions with four levels of enhanced paging structures (see Section 4.5, “4-Level Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the MOV CR0 instruction to disable
paging (the instruction must be located in an identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to enable PAE will result in a #GP
fault when an attempt is made to initialize IA-32e mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the IA32_EFER.LMA bit to 1. The MOV
CR0 instruction that enables paging and the following instructions must be located in an identity-mapped page
(until such time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address space prior to activating IA-32e
mode. This is necessary because the MOV CR3 instruction used to initialize the page-directory base must be
executed in legacy mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). Because MOV CR3
is executed in protected mode, only the lower 32 bits of the register are written, limiting the table location to the
low 4 GBytes of memory. Software can relocate the page tables anywhere in physical memory after IA-32e mode
is activated.

The processor performs 64-bit mode consistency checks whenever software attempts to modify any of the enable
bits directly involved in activating IA-32e mode (IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general
protection fault (#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the processor does
not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to enabling physical-address extensions

(PAE).
• IA-32e mode is active and an attempt is made to disable physical-address extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS on an attempt to activate IA-32e mode.

9.8.5.1 IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, IDTR, TR) continue to reference
legacy protected-mode descriptor tables. Tables referenced by the descriptors all reside in the lower 4 GBytes of
linear-address space. After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, LIDT,
and LTR instructions to load the system-descriptor-table registers with references to 64-bit descriptor tables.

9-12 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.8.5.2 IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e mode is activated and the
update of the interrupt-descriptor-table register (IDTR) that establishes references to a 64-bit interrupt-descriptor
table (IDT). This is because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit interrupt gate will be referenced and
interpreted as a 64-bit interrupt gate with unpredictable results. External interrupts can be disabled by using the
CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.

9.8.5.3 64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) to control the operating modes
after IA-32e mode is initialized. If CS.L = 1 and CS.D = 0, the processor is running in 64-bit mode. With this
encoding, the default operand size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits.

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility mode. In this mode, CS.D
controls default operand and address sizes exactly as it does in the IA-32 architecture. Setting CS.D = 1 specifies
default operand and address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size as 16
bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows legacy applications to coexist
with 64-bit applications running in 64-bit mode. An operating system running in IA-32e mode can execute existing
16-bit and 32-bit applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate using the IA-32e-mode archi-
tectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using the IA-32e mode

mechanisms.

9.8.5.4 Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation operating systems must use the following
sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set IA32_EFER.LMA = 0. The
MOV CR0 instruction used to disable paging and subsequent instructions must be located in an identity-mapped
page.

3. Load CR3 with the physical base address of the legacy page-table-directory base address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV CR0 and the branch
instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through
compatibility mode to 64-bit mode.

Vol. 3A 9-13

PROCESSOR MANAGEMENT AND INITIALIZATION

9.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode switch must be performed from
real-address mode. Once in protected mode, software generally does not need to return to real-address mode. To
run software written to run in real-address mode (8086 mode), it is generally more convenient to run the software
in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data structures and code modules
must be loaded into memory, as described in Section 9.8, “Software Initialization for Protected-Mode Operation.”
Once these tables are created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag in the CR0 register. (In the
same instruction, the PG flag in register CR0 can be set to enable paging.) Execution in protected mode begins with
a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to protected mode. To insure
upwards and downwards code compatibility with Intel 64 and IA-32 processors, we recommend that you follow
these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled
with external circuitry. (Software must guarantee that no exceptions or interrupts are generated during the
mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL instruction. (This operation is
typically a far jump or call to the next instruction in the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes the flow of execution and
serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL instruction must come from a
page that is identity mapped (that is, the linear address before the jump is the same as the physical address
after paging and protected mode is enabled). The target instruction for the JMP or CALL instruction does not
need to be identity mapped.

7. If a local descriptor table is going to be used, execute the LLDT instruction to load the segment selector for the
LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to the initial protected-mode task
or to a writable area of memory that can be used to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the contents they had in real-address
mode. The JMP or CALL instruction in step 4 resets the CS register. Perform one of the following operations to
update the contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers are not going to be
used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets the values of the segment
registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware
operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will be readily seen in
some situations, such as when instructions that reference memory are inserted between steps 3 and 4 while in
system management mode.

9-14 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software clears the PE bit in the CR0
register with a MOV CR0 instruction. A procedure that re-enters real-address mode should perform the following
steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled
with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical addresses (that is, linear
addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH). This operation loads the
CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing the following values,
which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the segment registers will be
unusable in real-address mode. Note that if the segment registers are not reloaded, execution continues using
the descriptor attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is within the 1-MByte real-
address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This operation flushes the instruction
queue and loads the appropriate base-address value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any of the registers are
not going to be used in real-address mode, write 0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware
operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single page and the linear addresses
in that page must be identity mapped to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incorporated into an application.
This code was originally written to initialize the Intel386 processor, but it will execute successfully on the Pentium
4, Intel Xeon, P6 family, Pentium, and Intel486 processors. The code in this example is intended to reside in EPROM
and to run following a hardware reset of the processor. The function of the code is to do the following:
• Establish a basic real-address mode operating environment.

Vol. 3A 9-15

PROCESSOR MANAGEMENT AND INITIALIZATION

• Load the necessary protected-mode system data structures into RAM.
• Load the system registers with the necessary pointers to the data structures and the appropriate flag settings

for protected-mode operation.
• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware reset and the starting point of
this example. The EPROM that contains the initialization code resides at the upper end of the processor’s physical
memory address range, starting at address FFFFFFFFH and going down from there. The address of the first instruc-
tion to be executed is at FFFFFFF0H, the default starting address for the processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-5. The source listing for the example (with
the filename STARTUP.ASM) is given in Example 9-1. The line numbers given in Table 9-5 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment base-address value of

FFFF0000H (located in the hidden part of the CS register) is retained and execution continues from the current
offset in the EIP register. The processor will thus continue to execute code in the EPROM until a far jump or call
is made to a new code segment, at which time, the base address in the CS register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should remain disabled until the
necessary interrupt handlers have been installed. The NMI interrupt is not disabled following a reset. The NMI#
pin must thus be inhibited from being asserted until an NMI handler has been loaded and made available to the
processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to anywhere in the RAM area. A
GDT entry is constructed with its base pointing to address 0 and a limit of 4 GBytes. When the DS and ES
registers are loaded with this descriptor, the temporary GDT is no longer needed and can be replaced by the
application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be loaded into RAM. If
there are LDTs they may be loaded as well.

Figure 9-3. Processor State After Reset

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H

9-16 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and build the initializa-
tion code module. The following assumptions are used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-segment attribute. The

attribute is assigned either by the ASM386 invocation controls or in the code-segment definition.
• If a code segment that is going to run in real-address mode is defined, it must be set to a USE 16 attribute. If

a 32-bit operand is used in an instruction in this code segment (for example, MOV EAX, EBX), the assembler
automatically generates an operand prefix for the instruction that forces the processor to execute a 32-bit
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for example, LGDTW, LGDTD,
IRETD. If the generic instruction LGDT is used, the default- segment attribute will be used to generate the right
opcode.

9.10.2 STARTUP.ASM Listing
Example 9-1 provides high-level sample code designed to move the processor into protected mode. This listing
does not include any opcode and offset information.

Table 9-5. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire physical memory space

188 195 Perform specific board initialization that is imposed by the new protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Vol. 3A 9-17

PROCESSOR MANAGEMENT AND INITIALIZATION

Example 9-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92 PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132)

LINE SOURCE

 1 NAME STARTUP

 2

 3 ;;

 4 ;

 5 ; ASSUMPTIONS:

 6 ;

 7 ; 1. The bottom 64K of memory is ram, and can be used for

 8 ; scratch space by this module.

 9 ;

 10 ; 2. The system has sufficient free usable ram to copy the

 11 ; initial GDT, IDT, and TSS

 12 ;

 13 ;;

 14

 15 ; configuration data - must match with build definition

 16

 17 CS_BASE EQU 0FFFF0000H

 18

 19 ; CS_BASE is the linear address of the segment STARTUP_CODE

 20 ; - this is specified in the build language file

 21

 22 RAM_START EQU 400H

 23

 24 ; RAM_START is the start of free, usable ram in the linear

 25 ; memory space. The GDT, IDT, and initial TSS will be

 26 ; copied above this space, and a small data segment will be

 27 ; discarded at this linear address. The 32-bit word at

 28 ; RAM_START will contain the linear address of the first

 29 ; free byte above the copied tables - this may be useful if

 30 ; a memory manager is used.

 31

 32 TSS_INDEX EQU 10

 33

 34 ; TSS_INDEX is the index of the TSS of the first task to

 35 ; run after startup

 36

 37

 38 ;;

 39

 40 ; ------------------------- STRUCTURES and EQU ---------------

 41 ; structures for system data

 42

 43 ; TSS structure

 44 TASK_STATE STRUC

 45 link DW ?

9-18 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

 46 link_h DW ?

 47 ESP0 DD ?

 48 SS0 DW ?

 49 SS0_h DW ?

 50 ESP1 DD ?

 51 SS1 DW ?

 52 SS1_h DW ?

 53 ESP2 DD ?

 54 SS2 DW ?

 55 SS2_h DW ?

 56 CR3_reg DD ?

 57 EIP_reg DD ?

 58 EFLAGS_regDD ?

 59 EAX_reg DD ?

 60 ECX_reg DD ?

 61 EDX_reg DD ?

 62 EBX_reg DD ?

 63 ESP_reg DD ?

 64 EBP_reg DD ?

 65 ESI_reg DD ?

 66 EDI_reg DD ?

 67 ES_reg DW ?

 68 ES_h DW ?

 69 CS_reg DW ?

 70 CS_h DW ?

 71 SS_reg DW ?

 72 SS_h DW ?

 73 DS_reg DW ?

 74 DS_h DW ?

 75 FS_reg DW ?

 76 FS_h DW ?

 77 GS_reg DW ?

 78 GS_h DW ?

 79 LDT_reg DW ?

 80 LDT_h DW ?

 81 TRAP_reg DW ?

 82 IO_map_baseDW ?

 83 TASK_STATE ENDS

 84

 85 ; basic structure of a descriptor

 86 DESC STRUC

 87 lim_0_15 DW ?

 88 bas_0_15 DW ?

 89 bas_16_23DB ?

 90 access DB ?

 91 gran DB ?

 92 bas_24_31DB ?

 93 DESC ENDS

 94

 95 ; structure for use with LGDT and LIDT instructions

 96 TABLE_REG STRUC

 97 table_limDW ?

 98 table_linearDD ?

 99 TABLE_REG ENDS

Vol. 3A 9-19

PROCESSOR MANAGEMENT AND INITIALIZATION

 100

 101 ; offset of GDT and IDT descriptors in builder generated GDT

 102 GDT_DESC_OFF EQU 1*SIZE(DESC)

 103 IDT_DESC_OFF EQU 2*SIZE(DESC)

 104

 105 ; equates for building temporary GDT in RAM

 106 LINEAR_SEL EQU 1*SIZE (DESC)

 107 LINEAR_PROTO_LO EQU 00000FFFFH ; LINEAR_ALIAS

 108 LINEAR_PROTO_HI EQU 000CF9200H

 109

 110 ; Protection Enable Bit in CR0

 111 PE_BIT EQU 1B

 112

 113 ; --

 114

 115 ; ------------------------- DATA SEGMENT----------------------

 116

 117 ; Initially, this data segment starts at linear 0, according

 118 ; to the processor’s power-up state.

 119

 120 STARTUP_DATA SEGMENT RW

 121

 122 free_mem_linear_base LABEL DWORD

 123 TEMP_GDT LABEL BYTE ; must be first in segment

 124 TEMP_GDT_NULL_DESC DESC <>

 125 TEMP_GDT_LINEAR_DESC DESC <>

 126

 127 ; scratch areas for LGDT and LIDT instructions

 128 TEMP_GDT_SCRATCH TABLE_REG <>

 129 APP_GDT_RAM TABLE_REG <>

 130 APP_IDT_RAM TABLE_REG <>

 131 ; align end_data

 132 fill DW ?

 133

 134 ; last thing in this segment - should be on a dword boundary

 135 end_data LABEL BYTE

 136

 137 STARTUP_DATA ENDS

 138 ; --

 139

 140

 141 ; ------------------------- CODE SEGMENT----------------------

 142 STARTUP_CODE SEGMENT ER PUBLIC USE16

 143

 144 ; filled in by builder

 145 PUBLIC GDT_EPROM

 146 GDT_EPROM TABLE_REG <>

 147

 148 ; filled in by builder

 149 PUBLIC IDT_EPROM

 150 IDT_EPROM TABLE_REG <>

 151

 152 ; entry point into startup code - the bootstrap will vector

 153 ; here with a near JMP generated by the builder. This

9-20 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

 154 ; label must be in the top 64K of linear memory.

 155

 156 PUBLIC STARTUP

 157 STARTUP:

 158

 159 ; DS,ES address the bottom 64K of flat linear memory

 160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA

 161 ; See Figure 9-4

 162 ; load GDTR with temporary GDT

 163 LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,

 164 MOV DWORD PTR [EBX],0 ; where we can address

 165 MOV DWORD PTR [EBX]+4,0

 166 MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO

 167 MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI

 168 MOV TEMP_GDT_scratch.table_linear,EBX

 169 MOV TEMP_GDT_scratch.table_lim,15

 170

 171 DB 66H; execute a 32 bit LGDT

 172 LGDT TEMP_GDT_scratch

 173

 174 ; enter protected mode

 175 MOV EBX,CR0

 176 OR EBX,PE_BIT

 177 MOV CR0,EBX

 178

 179 ; clear prefetch queue

 180 JMP CLEAR_LABEL

 181 CLEAR_LABEL:

 182

 183 ; make DS and ES address 4G of linear memory

 184 MOV CX,LINEAR_SEL

 185 MOV DS,CX

 186 MOV ES,CX

 187

 188 ; do board specific initialization

 189 ;

 190 ;

 191 ;

 192 ;

 193

 194

 195 ; See Figure 9-5

 196 ; copy EPROM GDT to ram at:

 197 ; RAM_START + size (STARTUP_DATA)

 198 MOV EAX,RAM_START

 199 ADD EAX,OFFSET (end_data)

 200 MOV EBX,RAM_START

 201 MOV ECX, CS_BASE

 202 ADD ECX, OFFSET (GDT_EPROM)

 203 MOV ESI, [ECX].table_linear

 204 MOV EDI,EAX

 205 MOVZX ECX, [ECX].table_lim

 206 MOV APP_GDT_ram[EBX].table_lim,CX

Vol. 3A 9-21

PROCESSOR MANAGEMENT AND INITIALIZATION

 207 INC ECX

 208 MOV EDX,EAX

 209 MOV APP_GDT_ram[EBX].table_linear,EAX

 210 ADD EAX,ECX

 211 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 212

 213 ; fixup GDT base in descriptor

 214 MOV ECX,EDX

 215 MOV [EDX].bas_0_15+GDT_DESC_OFF,CX

 216 ROR ECX,16

 217 MOV [EDX].bas_16_23+GDT_DESC_OFF,CL

 218 MOV [EDX].bas_24_31+GDT_DESC_OFF,CH

 219

 220 ; copy EPROM IDT to ram at:

 221 ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)

 222 MOV ECX, CS_BASE

 223 ADD ECX, OFFSET (IDT_EPROM)

 224 MOV ESI, [ECX].table_linear

 225 MOV EDI,EAX

 226 MOVZX ECX, [ECX].table_lim

 227 MOV APP_IDT_ram[EBX].table_lim,CX

 228 INC ECX

 229 MOV APP_IDT_ram[EBX].table_linear,EAX

 230 MOV EBX,EAX

 231 ADD EAX,ECX

 232 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 233

 234 ; fixup IDT pointer in GDT

 235 MOV [EDX].bas_0_15+IDT_DESC_OFF,BX

 236 ROR EBX,16

 237 MOV [EDX].bas_16_23+IDT_DESC_OFF,BL

 238 MOV [EDX].bas_24_31+IDT_DESC_OFF,BH

 239

 240 ; load GDTR and IDTR

 241 MOV EBX,RAM_START

 242 DB 66H ; execute a 32 bit LGDT

 243 LGDT APP_GDT_ram[EBX]

 244 DB 66H ; execute a 32 bit LIDT

 245 LIDT APP_IDT_ram[EBX]

 246

 247 ; move the TSS

 248 MOV EDI,EAX

 249 MOV EBX,TSS_INDEX*SIZE(DESC)

 250 MOV ECX,GDT_DESC_OFF ;build linear address for TSS

 251 MOV GS,CX

 252 MOV DH,GS:[EBX].bas_24_31

 253 MOV DL,GS:[EBX].bas_16_23

 254 ROL EDX,16

 255 MOV DX,GS:[EBX].bas_0_15

 256 MOV ESI,EDX

 257 LSL ECX,EBX

 258 INC ECX

 259 MOV EDX,EAX

 260 ADD EAX,ECX

9-22 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

 261 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 262

 263 ; fixup TSS pointer

 264 MOV GS:[EBX].bas_0_15,DX

 265 ROL EDX,16

 266 MOV GS:[EBX].bas_24_31,DH

 267 MOV GS:[EBX].bas_16_23,DL

 268 ROL EDX,16

 269 ;save start of free ram at linear location RAMSTART

 270 MOV free_mem_linear_base+RAM_START,EAX

 271

 272 ;assume no LDT used in the initial task - if necessary,

 273 ;code to move the LDT could be added, and should resemble

 274 ;that used to move the TSS

 275

 276 ; load task register

 277 LTR BX ; No task switch, only descriptor loading

 278 ; See Figure 9-6

 279 ; load minimal set of registers necessary to simulate task

 280 ; switch

 281

 282

 283 MOV AX,[EDX].SS_reg ; start loading registers

 284 MOV EDI,[EDX].ESP_reg

 285 MOV SS,AX

 286 MOV ESP,EDI ; stack now valid

 287 PUSH DWORD PTR [EDX].EFLAGS_reg

 288 PUSH DWORD PTR [EDX].CS_reg

 289 PUSH DWORD PTR [EDX].EIP_reg

 290 MOV AX,[EDX].DS_reg

 291 MOV BX,[EDX].ES_reg

 292 MOV DS,AX ; DS and ES no longer linear memory

 293 MOV ES,BX

294

 295 ; simulate far jump to initial task

 296 IRETD

 297

 298 STARTUP_CODE ENDS

*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)

 299

 300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

 301

 302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.

Vol. 3A 9-23

PROCESSOR MANAGEMENT AND INITIALIZATION

Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of List File)

FFFF FFFFH

Base=0, Limit=4G

START: [CS.BASE+EIP]

TEMP_GDT

• Jump near start

FFFF 0000H

• Construct TEMP_GDT
• LGDT
• Move to protected mode

DS, ES = GDT[1] 4 GB

0
GDT [1]
GDT [0]

GDT_SCRATCH
Base
Limit

9-24 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Figure 9-5. Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)

FFFF FFFFH

GDT RAM

• Move the GDT, IDT, TSS

• Fix Aliases
• LTR

0

RAM_START

TSS
IDT
GDT

TSS RAM
IDT RAM

from ROM to RAM

Vol. 3A 9-25

PROCESSOR MANAGEMENT AND INITIALIZATION

9.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for this application and can be
substituted with the main module task written in a high-level language that is invoked by the IRET instruction
executed by STARTUP.ASM.

Example 9-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS

stack stackseg 800

CODE SEGMENT ER use32 PUBLIC
main_start:

nop
nop
nop

CODE ENDS

END main_start, ds:data, ss:stack

9.10.4 Supporting Files
The batch file shown in Example 9-3 can be used to assemble the source code files STARTUP.ASM and MAIN.ASM
and build the final application.

Figure 9-6. Task Switching (Lines 282-296 of List File)

GDT RAM
RAM_START

TSS RAM
IDT RAM

GDT Alias
IDT Alias

DS

EIP
EFLAGS

CS
SS

0

ES

ESP

•

•
•

•
•
•

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

GDT

9-26 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Example 9-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) Bootload

BLD386 performs several operations in this example:

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above functions.

Example 9-4. Build File

INIT_BLD_EXAMPLE;

SEGMENT

 *SEGMENTS(DPL = 0)

 , startup.startup_code(BASE = 0FFFF0000H)

 ;

TASK

 BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,

NOT INTENABLED)

, PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0,

NOT INTENABLED)

 ;

TABLE

 GDT (

 LOCATION = GDT_EPROM

 , ENTRY = (

 10: PROTECTED_MODE_TASK

 , startup.startup_code

 , startup.startup_data

 , main_module.data

 , main_module.code

 , main_module.stack

)

),

 IDT (

 LOCATION = IDT_EPROM

);

MEMORY

 (

 RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from ROM

 , 60000H..0FFFEFFFFH)

 , RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH))

-- Eprom size 64K

 , RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

Vol. 3A 9-27

PROCESSOR MANAGEMENT AND INITIALIZATION

);

END

Table 9-6 shows the relationship of each build item with an ASM source file.

9.11 MICROCODE UPDATE FACILITIES
The P6 family and later processors have the capability to correct errata by loading an Intel-supplied data block into
the processor. The data block is called a microcode update. This section describes the mechanisms the BIOS needs
to provide in order to use this feature during system initialization. It also describes a specification that permits the
incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a processor stepping
and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader, is responsible
for loading the update on processors during system initialization (Figure 9-7). There are two steps to this process:
the first is to incorporate the necessary update data blocks into the BIOS; the second is to load update data blocks
into the processor.

Table 9-6. Relationship Between BLD Item and ASM Source File

Item ASM386 and Startup.A58 BLD386 Controls
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H to
start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT will be
programmed into the
GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT will be
programmed into the
IDT_EPROM location.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as the ram
destination for moving the
tables. It must be excluded from
the application's segment area.

Location of the
application TSS in
the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10: PROTECTED_MODE_
TASK))

Put the descriptor of the
application TSS in GDT entry 10.

EPROM size and
location

size and location of the initialization
code

SEGMENT startup.code (base =
0FFFF0000H) ...memory (RANGE(
ROM_AREA = ROM(x..y))

Initialization code size must be
less than 64K and resides at
upper most 64K of the 4-GByte
memory space.

9-28 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive header and data. No executable
code resides within the update. Each microcode update is tailored for a specific list of processor signatures. A
mismatch of the processor’s signature with the signature contained in the update will result in a failure to load. A
processor signature includes the extended family, extended model, type, family, model, and stepping of the
processor (starting with processor family 0fH, model 03H, a given microcode update may be associated with one of
multiple processor signatures; see Section 9.11.2 for details).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then by an optional
extended signature table. Table 9-7 provides a definition of the fields; Table 9-8 shows the format of an update.

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update header and its
reserved fields are interpreted by software based upon the header version. An encoding scheme guards against
tampering and provides a means for determining the authenticity of any given update. For microcode updates with
a data size field equal to 00000000H, the size of the microcode update is 2048 bytes. The first 48 bytes contain the
microcode update header. The remaining 2000 bytes contain encrypted data.

For microcode updates with a data size not equal to 00000000H, the total size field specifies the size of the micro-
code update. The first 48 bytes contain the microcode update header. The second part of the microcode update is
the encrypted data. The data size field of the microcode update header specifies the encrypted data size, its value
must be a multiple of the size of DWORD. The total size field of the microcode update header specifies the
encrypted data size plus the header size; its value must be in multiples of 1024 bytes (1 KBytes). The optional
extended signature table if implemented follows the encrypted data, and its size is calculated by (Total Size – (Data
Size + 48)).

NOTE
The optional extended signature table is supported starting with processor family 0FH, model 03H.

.

Figure 9-7. Applying Microcode Updates

Table 9-7. Microcode Update Field Definitions

Field Name Offset (bytes) Length
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the update
signature provided by the processor to indicate the current update
functioning within the processor. Used by the BIOS to authenticate
the update and verify that the processor loads successfully. The
value in this field cannot be used for processor stepping identification
alone. This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy (e.g.
07/18/98 is 07181998H).

CPU

BIOS

Update
BlocksNew Update

Update
Loader

Vol. 3A 9-29

PROCESSOR MANAGEMENT AND INITIALIZATION

Processor Signature 12 4 Extended family, extended model, type, family, model, and stepping
of processor that requires this particular update revision (e.g.,
00000650H). Each microcode update is designed specifically for a
given extended family, extended model, type, family, model, and
stepping of the processor.

Software should use the processor signature field in conjunction with
the CPUID instruction to determine whether or not an update is
appropriate to load on a processor. The information encoded within
this field exactly corresponds to the bit representations returned by
the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the integrity of
the update header and data. Checksum is correct when the
summation of all the DWORDs (including the extended Processor
Signature Table) that comprise the microcode update result in
00000000H.

Loader Revision 20 4 Version number of the loader program needed to correctly load this
update. The initial version is 00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits of this 4-
byte field. Each bit represents a particular platform type for a given
CPUID. Software should use the processor flags field in conjunction
with the platform Id bits in MSR (17H) to determine whether or not
an update is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and must be a
multiple of DWORDs. If this value is 00000000H, then the microcode
update encrypted data is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes. It is the
summation of the header size, the encrypted data size and the size of
the optional extended signature table. This value is always a multiple
of 1024.

Reserved 36 12 Reserved fields for future expansion.

Update Data 48 Data Size or
2000

Update data.

Extended Signature
Count

Data Size + 48 4 Specifies the number of extended signature structures (Processor
Signature[n], processor flags[n] and checksum[n]) that exist in this
microcode update.

Extended Checksum Data Size + 52 4 Checksum of update extended processor signature table. Used to
verify the integrity of the extended processor signature table.
Checksum is correct when the summation of the DWORDs that
comprise the extended processor signature table results in
00000000H.

Reserved Data Size + 56 12 Reserved fields.

Table 9-7. Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length
(bytes)

Description

9-30 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Processor Signature[n] Data Size + 68 +
(n * 12)

4 Extended family, extended model, type, family, model, and stepping
of processor that requires this particular update revision (e.g.,
00000650H). Each microcode update is designed specifically for a
given extended family, extended model, type, family, model, and
stepping of the processor.

Software should use the processor signature field in conjunction with
the CPUID instruction to determine whether or not an update is
appropriate to load on a processor. The information encoded within
this field exactly corresponds to the bit representations returned by
the CPUID instruction.

Processor Flags[n] Data Size + 72 +
(n * 12)

4 Platform type information is encoded in the lower 8 bits of this 4-
byte field. Each bit represents a particular platform type for a given
CPUID. Software should use the processor flags field in conjunction
with the platform Id bits in MSR (17H) to determine whether or not
an update is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Checksum[n] Data Size + 76 +
(n * 12)

4 Used by utility software to decompose a microcode update into
multiple microcode updates where each of the new updates is
constructed without the optional Extended Processor Signature
Table.

To calculate the Checksum, substitute the Primary Processor
Signature entry and the Processor Flags entry with the
corresponding Extended Patch entry. Delete the Extended Processor
Signature Table entries. The Checksum is correct when the
summation of all DWORDs that comprise the created Extended
Processor Patch results in 00000000H.

Table 9-8. Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Table 9-7. Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length
(bytes)

Description

Vol. 3A 9-31

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the encrypted data when the
encrypted data only supports a single processor signature (optional case). The extended signature table will always
be present when the encrypted data supports multiple processor steppings and/or models (required case).

The extended signature table consists of a 20-byte extended signature header structure, which contains the
extended signature count, the extended processor signature table checksum, and 12 reserved bytes (Table 9-9).
Following the extended signature header structure, the extended signature table contains 0-to-n extended
processor signature structures.

Each processor signature structure consist of the processor signature, processor flags, and a checksum
(Table 9-10).

The extended signature count in the extended signature header structure indicates the number of processor signa-
ture structures that exist in the extended signature table.

The extended processor signature table checksum is a checksum of all DWORDs that comprise the extended signa-
ture table. That includes the extended signature count, extended processor signature table checksum, 12 reserved
bytes and the n processor signature structures. A valid extended signature table exists when the result of a
DWORD checksum is 00000000H.

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size +
48

Extended Processor Signature Table Checksum Data Size +
52

Reserved (12 Bytes) Data Size +
56

Processor Signature[n] Data Size +
68 +
(n * 12)

Processor Flags[n] Data Size +
72 +
(n * 12)

Checksum[n] Data Size +
76 +
(n * 12)

Table 9-9. Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-10. Processor Signature Structure

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)

Table 9-8. Microcode Update Format (Contd.)
31 24 16 8 0 Bytes

9-32 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To determine the correct micro-
code update to load, software must ensure that one of the processor signatures embedded in the microcode update
matches the 32-bit processor signature returned by the CPUID instruction when executed by the target processor
with EAX = 1. Attempting to load a microcode update that does not match a processor signature embedded in the
microcode update with the processor signature returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the processor and microcode
update.

Example 9-5. Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND
 (ProcessorSignature ≠ Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type must be determined to prop-
erly target the microcode update. The intended processor platform type is determined by reading the
IA32_PLATFORM_ID register, (MSR 17H). This 64-bit register must be read using the RDMSR instruction.

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate the bit position in the
microcode update header’s processor flags field associated with the installed processor. The processor flags in the
48-byte header and the processor flags field associated with the extended processor signature structures may have
multiple bits set. Each set bit represents a different platform ID that the update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H

Vol. 3A 9-33

PROCESSOR MANAGEMENT AND INITIALIZATION

Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to the algorithms in
Example 9-6.

Example 9-6. Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update
}
Else
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It is software’s responsibility to
ensure that a microcode update is not corrupt. To check for a corrupt microcode update, software must perform a
unsigned DWORD (32-bit) checksum of the microcode update. Even though some fields are signed, the checksum

Table 9-11. Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for the processor. See also Table 9-8.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

9-34 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

procedure treats all DWORDs as unsigned. Microcode updates with a header version equal to 00000001H must sum
all DWORDs that comprise the microcode update. A valid checksum check will yield a value of 00000000H. Any
other value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the microcode update as an array of
unsigned DWORDs. If the data size DWORD field at byte offset 32 equals 00000000H, the size of the encrypted
data is 2000 bytes, resulting in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4),
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7. Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize ≠ 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a P6 family or later processors. It also discusses
the requirements placed on the BIOS to ensure proper loading. The update loader described contains the minimal
instructions needed to load an update. The specific instruction sequence that is required to load an update is
dependent upon the loader revision field contained within the update header. This revision is expected to change
infrequently (potentially, only when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 00000001H. Note that the microcode
update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Example 9-8. Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to write in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode update (header and data)
embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The
data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within its
current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:

Vol. 3A 9-35

PROCESSOR MANAGEMENT AND INITIALIZATION

• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode, EAX
contains the full 32-bit linear address of the microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode,
EDX equals zero.

• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• The addresses for the microcode update data must be in canonical form.
• If paging is enabled, the microcode update data must map that data as present.
• The microcode update data must start at a 16-byte aligned linear address.

9.11.6.1 Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each time a hard reset
is asserted during the BIOS POST, the update must be reloaded on all processors that observed the reset. The
effects of a loaded update are, however, maintained across a processor INIT. There are no side effects caused by
loading an update into a processor multiple times.

9.11.6.2 Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data appropriate for its CPUID and plat-
form ID bits. The BIOS is responsible for ensuring that this requirement is met and that the loader is located in a
module executed by all processors in the system. If a system design permits multiple steppings of Pentium 4, Intel
Xeon, and P6 family processors to exist concurrently; then the BIOS must verify individual processors against the
update header information to ensure appropriate loading. Given these considerations, it is most practical to load
the update during MP initialization.

9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology
Intel Hyper-Threading Technology has implications on the loading of the microcode update. The update must be
loaded for each core in a physical processor. Thus, for a processor supporting Intel Hyper-Threading Technology,
only one logical processor per core is required to load the microcode update. Each individual logical processor can
independently load the update. However, MP initialization must provide some mechanism (e.g. a software sema-
phore) to force serialization of microcode update loads and to prevent simultaneous load attempts to the same
core.

9.11.6.4 Update in a System Supporting Dual-Core Technology
Dual-core technology has implications on the loading of the microcode update. The microcode update facility is not
shared between processor cores in the same physical package. The update must be loaded for each core in a phys-
ical processor.

If processor core supports Intel Hyper-Threading Technology, the guideline described in Section 9.11.6.3 also
applies.

9.11.6.5 Update Loader Enhancements
The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a minimal implementation that can
be enhanced to provide additional functionality. Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4, Intel Xeon, and P6

family processors. This feature provides for operating in a mixed stepping environment on an MP system and
enables a user to upgrade to a later version of the processor. In this case, modify the loader to check the CPUID
and platform ID bits of the processor that it is running on against the available headers before loading a
particular update. The number of updates is only limited by available BIOS space.

9-36 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

• A loader can load the update and test the processor to determine if the update was loaded correctly. See
Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on the double words of the
update summing to zero. See Section 9.11.5, “Microcode Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an update.

9.11.7 Update Signature and Verification
The P6 family and later processors provide capabilities to verify the authenticity of a particular update and to iden-
tify the current update revision. This section describes the model-specific extensions of processors that support
this feature. The update verification method below assumes that the BIOS will only verify an update that is more
recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values. The semantics of
CPUID cause it to deposit an update ID value in the 64-bit model-specific register at address 08BH
(IA32_BIOS_SIGN_ID). If no update is present in the processor, the value in the MSR remains unmodified. The
BIOS must pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still returns zero after
executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the revision of the update loaded
in the processor. This value, in combination with the CPUID value returned in the EAX register, uniquely identifies a
particular update. The signature ID can be directly compared with the update revision field in a microcode update
header for verification of a correct load. No consecutive updates released for a given stepping of a processor may
share the same signature. The processor signature returned by CPUID differentiates updates for different step-
pings.

9.11.7.1 Determining the Signature
An update that is successfully loaded into the processor provides a signature that matches the update revision of
the currently functioning revision. This signature is available any time after the actual update has been loaded.
Requesting the signature does not have a negative impact upon a loaded update.

The procedure for determining this signature shown in Example 9-9.

Example 9-9. Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

XOR EAX, EAX ;clear EAX

XOR EDX, EDX ;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX register after the RDMSR instruction
executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature when CPUID executes. The
signature is returned in the upper DWORD (Table 9-12).

Vol. 3A 9-37

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.7.2 Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive, described above, and the algorithm in
Example 9-10.

Example 9-10. Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a numerically larger revision than the
currently loaded revision, where Current Signature (X) < New Update Revision (Z). A processor with no loaded
update is considered to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to verify an update from a poten-
tially hostile source. As an example, this mechanism in conjunction with other safeguards provides security for
dynamically incorporating field updates into the BIOS.

9.11.8 Optional Processor Microcode Update Specifications
This section an interface that an OEM-BIOS may provide to its client system software to manage processor micro-
code updates. System software may choose to build its own facility to manage microcode updates (e.g. similar to
the facility described in Section 9.11.6) or rely on a facility provided by the BIOS to perform microcode updates.

Sections 9.11.8.1-9.11.8.9 describes an extension (Function 0D042H) to the real mode INT 15H service. INT 15H
0D042H function is one of several alternatives that a BIOS may choose to implement microcode update facility and
offer to its client application (e.g. an OS). Other alternative microcode update facility that BIOS can choose are
dependent on platform-specific capabilities, including the Capsule Update mechanism from the UEFI specification
(www.uefi.org). In this discussion, the application is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This extension allows
an application to read and modify the contents of the microcode update data in NVRAM. The update loader, which
is part of the system BIOS, cannot be updated by the interface. All of the functions defined in the specification must
be implemented for a system to be considered compliant with the specification. The INT15 functions are accessible
only from real mode.

Table 9-12. Microcode Update Signature
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded microcode update when read following
the execution of the CPUID instruction, function 1. It is required that this register field be pre-loaded with zero prior to
executing the CPUID, function 1. If the field remains equal to zero, then there is no microcode update loaded. Another non-
zero value will be the signature.

31:0 Reserved.

9-38 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.8.1 Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must implement all of the sub-functions
defined in the INT 15H, AX = 0D042H specification. There are no optional functions. BIOS must load the appropriate
update for each processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that the update block is unused and
available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for each potential processor step-
ping within a system. This storage unit consists of one or more update blocks. An update block is a contiguous
2048-byte block of memory. The BIOS for a single processor system need only provide update blocks to store one
microcode update. If the BIOS for a multiple processor system is intended to support mixed processor steppings,
then the BIOS needs to provide enough update blocks to store each unique microcode update or for each processor
socket on the OEM’s system board.

The BIOS is responsible for managing the NVRAM update blocks. This includes garbage collection, such as
removing microcode updates that exist in NVRAM for which a corresponding processor does not exist in the system.
This specification only provides the mechanism for ensuring security, the uniqueness of an entry, and that stale
entries are not loaded. The actual update block management is implementation specific on a per-BIOS basis.

As an example, the BIOS may use update blocks sequentially in ascending order with CPU signatures sorted versus
the first available block. In addition, garbage collection may be implemented as a setup option to clear all NVRAM
slots or as BIOS code that searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and Intel 64 processors, the
microcode update may be as large as 16 KBytes. Thus, BIOS must allocate 8 update blocks for each
microcode update. In a MP system, a common microcode update may be sufficient for each socket
in the system.
For IA-32 processors earlier than family 0FH and model 03H, the microcode update is 2 KBytes. An
MP-capable BIOS that supports multiple steppings must allocate a block for each socket in the
system.
A single-processor BIOS that supports variable-sized microcode update and fixed-sized microcode
update must allocate one 16-KByte region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS initialization used to load the
updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version or loader version that does not

match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.

These requirements are checked by the BIOS during the execution of the write update function of this interface.
The BIOS sequentially scans through all of the update blocks in NVRAM starting with index 0. The BIOS scans until
it finds an update where the processor fields in the header match the processor signature (extended family,
extended model, type, family, model, and stepping) as well as the platform bits of the current processor.

Example 9-11. Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 00000001H)
{

Vol. 3A 9-39

PROCESSOR MANAGEMENT AND INITIALIZATION

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] =
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}
}

}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-bit binary coded decimal field.
The platform bits in the microcode update header are individually bit encoded. The algorithm must
do a translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has no knowledge of plat-
form specific requirements. It is the responsibility of BIOS calls to manage all chipset and platform specific prereq-
uisites for managing the NVRAM device. When writing the update data using the Write Update sub-function, the
BIOS must maintain implementation specific data requirements (such as the update of NVRAM checksum). The
BIOS should also attempt to verify the success of write operations on the storage device used to record the update.

9.11.8.2 Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the interface specifications to load
microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real mode program and should be

executing on a system that is running in pure real mode.
• The caller should issue the presence test function (sub function 0) and verify the signature and return codes of

that function.
• It is important that the calling program provides the required scratch RAM buffers for the BIOS and the proper

stack size as specified in the interface definition.
• The calling program should read any update data that already exists in the BIOS in order to make decisions

about the appropriateness of loading the update. The BIOS must refuse to overwrite a newer update with an

9-40 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

older version. The update header contains information about version and processor specifics for the calling
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple updates for the same CPU to exist
at the same time; it also must refuse to load updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the update write function success-
fully completes. This function reads back the update and verifies that the BIOS returned an image identical to
the one that was written.

Example 9-12 represents a calling program.

Example 9-12. INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
// Do we have enough update slots for all CPUs?
//

Vol. 3A 9-41

PROCESSOR MANAGEMENT AND INITIALIZATION

If there are more blocks required to support the unique processor steppings than update blocks
provided by the BIOS exit
//
// Do we need any update blocks at all? If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit

}
//
// Compare the Update read to that written
//
If (Update read ≠ Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user

9-42 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

//
Issue the Update Control function with Task = Enable.

9.11.8.3 Microcode Update Functions
Table 9-13 defines the processor microcode update functions that implementations of INT 15H 0D042H must
support.

9.11.8.4 INT 15H-based Interface
If an OEM-BIOS is implementing INT 15H 0D042H interface and offer to its client, the BIOS should allow additional
microcode updates to be added to system flash.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for BIOS use during
calls to the read and write functions. These RAM scratch pads can be used by the BIOS for any purpose, but only
for the duration of the function call. The calling routine places real mode segments pointing to the RAM blocks in
the CX, DX and SI registers. Calls to functions in this interface must be made with a minimum of 32 kilobytes of
stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general return codes
and other constant definitions are listed in Section 9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error information specific to the platform. If
the BIOS provides no additional information about the error, OEM error must be set to SUCCESS. The OEM error
field is undefined if AH contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must be
set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5 Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update functions. Table 9-14 lists the
parameters and return codes for the function.

Table 9-13. Microcode Update Functions
Microcode Update Function Function

Number
Description Required/Optional

Presence test 00H Returns information about the supported functions. Required

Write update data 01H Writes one of the update data areas (slots). Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas (slots). Required

Table 9-14. Parameters for the Presence Test

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

Vol. 3A 9-43

PROCESSOR MANAGEMENT AND INITIALIZATION

In order to assure that the BIOS function is present, the caller must verify the carry flag, the return code, and the
64-bit signature. The update count reflects the number of 2048-byte blocks available for storage within one non-
volatile RAM.

The loader version number refers to the revision of the update loader program that is included in the system BIOS
image.

9.11.8.6 Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table 9-15 lists the parameters and
return codes for the function.

SI Update Count Number of 2048 update blocks in NVRAM the BIOS allocated to storing
microcode updates

Return Codes (see Table 9-19 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.

Table 9-15. Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is 2048 bytes in
length if the processor supports only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This buffer is 64 KBytes in
length if the processor supports a variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-19 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.

WRITE_FAILURE A failure occurred because of the inability to write the storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the storage device.

READ_FAILURE A failure occurred because of the inability to read the storage device.

Table 9-14. Parameters for the Presence Test (Contd.)

Input

9-44 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for storing the new
update. This BIOS is also responsible for ensuring the integrity of the information provided by the caller, including
authenticating the proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update structure meets the following
criteria in the following order:

1. The update header version should be equal to an update header version recognized by the BIOS.

2. The update loader version in the update header should be equal to the update loader version contained within
the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit summation of all double words in the
structure, including the header, data, and processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate update. The BIOS can select any
available update block as long as it guarantees that only a single update exists for any given processor stepping in
non-volatile storage. If the update block selected already contains an update, the following additional criteria apply
to overwrite it:
• The processor signature in the proposed update must be equal to the processor signature in the header of the

current update in NVRAM (Processor Signature + platform ID bits).
• The update revision in the proposed update should be greater than the update revision in the header of the

current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can overwrite update
block(s) for a processor stepping that is no longer present in the system. This can be done by scanning the update
blocks and comparing the processor steppings, identified in the MP Specification table, to the processor steppings
that currently exist in the system.

Finally, before storing the proposed update in NVRAM, the BIOS must verify the authenticity of the update via the
mechanism described in Section 9.11.6, “Microcode Update Loader.” This includes loading the update into the
current processor, executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated value with the
update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, including the header, the
update data, and the extended processor signature table (if applicable). When writing an update, the original
contents may be overwritten, assuming the above criteria have been met. It is the responsibility of the BIOS to
ensure that more recent updates are not overwritten through the use of this BIOS call, and that only a single
update exists within the NVRAM for any processor stepping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update block and ensure the integrity of
the data when it stores the new microcode update.

STORAGE_FULL The BIOS non-volatile storage area is unable to accommodate the update
because all available update blocks are filled with updates that are needed for
processors in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the system.

INVALID_HEADER The update header contains a header or loader version that is not recognized by
the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in the storage device.

Table 9-15. Parameters for the Write Update Data Function (Contd.)

Input

Vol. 3A 9-45

PROCESSOR MANAGEMENT AND INITIALIZATION

Figure 9-8. Microcode Update Write Operation Flow [1]

1

Valid Update
Header Version?

Loader Revision Match
BIOS’s Loader?

Does Update Match A
CPU in The System

Write Microcode Update

Does Update
Checksum Correctly?

Yes

Yes

Yes

No
Return

CPU_NOT_PRESENT

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER_CS

9-46 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

9.11.8.7 Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 9-16 lists the parameters and return codes
for the function.

Figure 9-9. Microcode Update Write Operation Flow [2]

Return
INVALID_REVISION

Yes

1

Update Revision Newer
Than NVRAM Update?

Update Pass
Authenticity Test?

Return
SECURITY_FAILURE

Yes

Update NMRAM Record

Return
SUCCESS

Update Matching CPU
Already In NVRAM?

Space Available in
NVRAM?

Yes

No

Return
STORAGE_FULL

Replacement
policy implemented?

No

No

No Yes Yes

Vol. 3A 9-47

PROCESSOR MANAGEMENT AND INITIALIZATION

This control is provided on a global basis for all updates and processors. The caller can determine the current status
of update loading (enabled or disabled) without changing the state. The function does not allow the caller to disable
loading of binary updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 9-17 in the BH register. After
successfully completing this function, the BL register contains either the enable or the disable designator. Note that
if the function fails, the update status return value is undefined.

The READ_FAILURE error code returned by this function has meaning only if the control function is implemented in
the BIOS NVRAM. The state of this feature (enabled/disabled) can also be implemented using CMOS RAM bits
where READ failure errors cannot occur.

9.11.8.8 Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into a caller-provided RAM buffer.
Table 9-18 lists the parameters and return codes.

Table 9-16. Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information.

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-19 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the storage device.

Table 9-17. Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without changing its status.

Table 9-18. Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that
will be written with the binary data

9-48 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

The read function enables the caller to read any microcode update data that already exists in a BIOS and make
decisions about the addition of new updates. As a result of a successful call, the BIOS copies the microcode update
into the location pointed to by ES:DI, with the contents of all Update block(s) that are used to store the specified
microcode update.

If the specified block is not a header block, but does contain valid data from a microcode update that spans multiple
update blocks, then the BIOS must return Failure with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its Header Version contains the
value 0FFFFFFFFH after return from this function call. The actual implementation of NVRAM storage management
is not specified here and is BIOS dependent. As an example, the actual data value used to represent an empty
block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is responsible for translating this information
into the header provided by this function.

9.11.8.9 Return Codes
After the call has been made, the return codes listed in Table 9-19 are available in the AH register.

ECX Scratch Pad1 Real Mode Segment address of 64 KBytes of RAM
Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 KBytes of RAM
Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 KBytes of RAM
Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update block to be
read. This value is zero based and must be less than
the update count returned from the presence test
function.

Output

CF Carry Flag Carry Set - Failure - AH contains Status

Carry Clear - All return values are
valid.

AH Return Code Status of the Call

AL OEM Error Additional OEM Information

Return Codes (see Table 9-19 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the inability to read the
storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of
update blocks implemented by the BIOS.

NOT_EMPTY The specified update block is a subsequent block in use
to store a valid microcode update that spans multiple
blocks.

The specified block is not a header block and is not
empty.

Table 9-18. Parameters for the Read Microcode Update Data Function (Contd.)

Vol. 3A 9-49

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-19. Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage device.

WRITE_FAILURE 91H A failure because of the inability to write the storage device.

READ_FAILURE 92H A failure because of the inability to read the storage device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to accommodate the update
because all available update blocks are filled with updates that are needed
for processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the system.

INVALID_HEADER 95H The update header contains a header or loader version that is not
recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of update blocks
implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use to store a valid
microcode update that spans multiple blocks.

The specified block is not a header block and is not empty.

9-50 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

16.Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

Changes to this chapter: Update to Section 10.12.3 “MSR Access in x2APIC Mode”.

Vol. 3A 10-1

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC,
was introduced into the IA-32 processors with the Pentium processor (see Section 22.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of the Local APIC”). The local
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the
processors in the system or to execute system wide functions (such as, booting up processors or distributing
work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive external interrupt events
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected
processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and
exception handling mechanism described in Chapter 6, “Interrupt and Exception Handling.” See Section 6.1, “Inter-
rupt and Exception Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated hardware that control the
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt
another processor or group of processors on the system bus. IPIs are used for software self-interrupts,
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its
associated processor when a programmed count is reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see
Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to
themselves when the internal thermal sensor has been tripped (see Section 14.7.2, “Thermal Monitor”).

10-2 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its
associated processor (see Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources.
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector
table or LVT (see Section 10.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs)
through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section
10.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6
family processors). See Section 10.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target
processor receives an IPI message, its local APIC handles the message automatically (using information included
in the message such as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor Interrupts,”
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see
Figure 10-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt
controller. Note that the local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local APIC”).
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Vol. 3A 10-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 10-2 and 10-3). Each
local APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated inter-
rupts. Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this
mechanism is commonly not used in MP systems.

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number)
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI and
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section
10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”).

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems

I/O APIC External
Interrupts

System Chip Set

Processor System Bus

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

CPU

Local APIC

Processor #3

Bridge

PCI

IPIs IPIs IPIs

Interrupt
Messages

IPIsInterrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

Interrupt
Messages

I/O APICExternal
Interrupts

System Chip Set

3-wire APIC Bus

CPU

Local APIC

Processor #4

IPIsIPIsIPIsIPIs Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

10-4 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 10-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its
messages are invisible to software and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 10-2). The I/O APIC sends interrupt requests to the
processors on the system bus through bridge hardware that is part of the Intel chip set. The bridge hardware
generates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on
the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external
APIC. See Section 22.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the
system bus. With the APIC architecture, they communication through the APIC bus (see Section 10.2, “System Bus
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its
status. Descriptions of how to program the local APIC are given in Section 10.5.1, “Local Vector Table,” and Section
10.6.1, “Interrupt Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 11.3,
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to
its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended
processor addressability (see Section 10.12).

Vol. 3A 10-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to
addresses within the 4-KByte APIC register space internally and no external bus cycles are
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses
to the APIC register space. Thus, for software intended to run on Pentium processors, system
software should explicitly not map the APIC register space to regular system memory. Doing so can
result in an invalid opcode exception (#UD) being generated or unpredictable execution.

Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits,
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any

Figure 10-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4

10-6 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned.

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated with the programming of the
local APIC is the IA32_APIC_BASE MSR (see Section 10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem1 the Local APIC ID Register is
no longer Read/Write; it is Read Only.

1. See Table 2-1, “CPUID Signature Values of DisplayFamily_DisplayModel,” on page 1, and Section 2.7, “MSRs In the Intel® Microarchi-
tecture Code Name Nehalem” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 to determine which
processors are based on Nehalem microarchitecture.

Table 10-1 Local APIC Register Address Map

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section
10.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

Vol. 3A 10-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128 Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT Corrected Machine Check Interrupt (CMCI) Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-

ing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-

dent and may not be present in future IA-32 or Intel 64 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not

be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write

10-8 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 9
of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local
APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an
on-chip APIC. The CPUID feature flag for the APIC (see Section 10.4.2, “Presence of the Local APIC”) is also
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return
to the state described in Section 10.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC
software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23). The state of the
local APIC when in this software-disabled state is described in Section 10.4.7.2, “Local APIC State After It
Has Been Software Disabled.”

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, the thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 10-5). MSR bit
functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). See Section 8.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see Section 10.4.3, “Enabling or
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC registers. This 24-bit value is
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR2 through 63 in the IA32_APIC_BASE MSR are reserved.

Vol. 3A 10-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the base address field of the
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to
different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID
is based on system topology and includes encoding for socket position and cluster information (see Figure 8-2 and
Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3#
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID
register (see Figure 10-6), and is used as the Initial APIC ID for the processor.

2. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP
APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved

10-10 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to
identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following a power-up or reset, after the
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1 Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s.

• IRR, ISR, TMR, ICR, LDR, and TPR.

• Timer initial count and timer current count registers.

• Divide configuration register.
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 8.4.1, “BSP

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only,
an AP will not respond to a STPCLK# signal.

Figure 10-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID
Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H
31 0

x2APIC ID

x2APIC Mode

xAPIC Mode

Vol. 3A 10-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.4.7.2 Local APIC State After It Has Been Software Disabled
When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 10.4.3,
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception of any interrupt or transmission of any IPIs that are in progress when the local APIC is disabled

are completed before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep

its arbitration ID synchronized with the rest of the system.

10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This
state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register.

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to identify the APIC version
(see Figure 10-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a
specific implementation.

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT
entries), the value returned is 3. For processors based on the Intel microarchitecture code
name Nehalem (which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the
Spurious Interrupt Vector Register; see Section 10.8.5 and Section 10.9.

10-12 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for handling local interrupts. These
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the thermal
sensor, and the internal APIC error detector. Local interrupt handling facilities include: the LVT, the error status
register (ESR), the divide configuration register (DCR), and the initial count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see
Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor
generates an interrupt (see Section 14.7.2, “Thermal Monitor”). This LVT entry is implementation specific, not
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance
counter generates an interrupt on overflow (see Section 18.6.3.5.8, “Generating an Interrupt on Overflow”).
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Figure 10-7. Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported

Vol. 3A 10-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only
operate as intended when used in conjunction with a specific trigger mode. The allowable
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should
be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored.

101 (INIT) Delivers an INIT request to the processor core, which causes the processor
to perform an INIT. When using this delivery mode, the vector field should

Figure 10-8. Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†
0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H

10-14 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller.
A special INTA bus cycle corresponding to ExtINT, is routed to the external
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system,
usually contained in the compatibility bridge. Only one processor in the
system should have an LVT entry configured to use the ExtINT delivery
mode. Not supported for the LVT CMCI register, the LVT thermal monitor
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 10.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the
interrupt for servicing and is reset when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always
treated as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive).
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset.
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see
Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 6.2,
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) as
valid interrupts.

Vol. 3A 10-15

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an
illegal vector in its Error Status Register (see Section 10.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table
6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0),
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is
actually seen on the input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of
the ESR is given in Figure 10-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus,
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors.
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should
be avoided.

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.

10-16 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending.
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectable IPI” error bit. The interrupt is
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not delivered
to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one
of these instructions to access a reserved register cause a general-protection exception (see Section
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt.
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations.
This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the initial-
count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

Figure 10-10. Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

Vol. 3A 10-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, an timer interrupt is generated and the timer
remains at its 0 value until reprogrammed.

In periodic mode, the current-count register is automatically reloaded from the initial-count register when the
count reaches 0 and a timer interrupt is generated, and the count-down is repeated. If during the count-down
process the initial-count register is set, counting will restart, using the new initial-count value. The initial-count
register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the
timer interrupt.

10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically:
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register.
• If CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If

CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.)

A write to the LVT Timer Register that changes the timer mode disarms the local APIC timer. The supported timer
modes are given in Table 10-2. The three modes of the local APIC timer are mutually exclusive.

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead,
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.3 When the timer generates an interrupt, it disarms itself and clears the
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning
between TSC-deadline mode and other timer modes also disarms the timer.

Figure 10-11. Initial Count and Current Count Registers

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

10-18 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the
IA32_TSC_DEADLINE and other MSR registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR.
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a spurious

timer interrupt. Software is expected to detect such spurious interrupts by checking the current value of the
time-stamp counter to confirm that the interrupt was desired.4

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after the
memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write to
the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the deadline; no
fencing is required.)

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt
acceptance flow chart in Figure 10-17. If the interrupt is accepted, it is logged into the IRR register and handled by
the processor according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the
interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs)
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can
be used for the following functions:

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

4. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the
time-stamp counter and the IA32_TSC_DEADLINE MSR.

Vol. 3A 10-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors.

Interrupts generated with this facility are delivered to the other processors in the system through the system bus
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit5 local APIC register (see Figure 10-12) that allows software
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

5. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H). In x2APIC mode,
the ICR uses MSR 830H.

Figure 10-12. Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

10-20 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor or
processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the processor
executing at the lowest priority among the set of processors specified in
the destination field. The ability for a processor to send a lowest priority
IPI is model specific and should be avoided by BIOS and operating system
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector
information is ignored.

101 (INIT) Delivers an INIT request to the target processor or processors, which
causes them to perform an INIT. As a result of this IPI message, all the tar-
get processors perform an INIT. The vector field must be programmed to
00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs
(see Section 10.7, “System and APIC Bus Arbitration”). For this delivery
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is
sent to all processors, regardless of the value in the destination field or the
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand.

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or
processors. The vector typically points to a start-up routine that is part of
the BIOS boot-strap code (see Section 8.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 10.6.2, “Determining
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors,
and will always be issued as a 1.)

Vol. 3A 10-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel
Xeon processors, and will always be issued as a 0.)

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and,
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR.
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors
in the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message
internally or to issue the message to the bus and “snoop” it as with any
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination
field set to FH for Pentium and P6 family processors and to FFH for Pentium
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical
destination mode and destination field set to FH for Pentium and P6 family
processors and to FFH for Pentium 4 and Intel Xeon processors. Support
for this destination shorthand in conjunction with the lowest-priority deliv-
ery mode is model specific. For Pentium 4 and Intel Xeon processors, when
this shorthand is used together with lowest priority delivery mode, the IPI
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination
shorthand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid combinations for the fields in the
ICR for the Pentium 4 and Intel Xeon processors; Table 10-4 shows the valid combinations for the fields in the ICR
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

10-22 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an

edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing

APIC, which is essentially the same as the “all including self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’ Local APIC Interrupt Command Register
Destination Shorthand Valid/Invalid Trigger Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self Valid2 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert).

Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Vol. 3A 10-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.6.2 Determining IPI Destination
The destination of an IPI6 can be one, all, or a subset (group) of the processors on the system bus. The sender of
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI.

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination
processor; in logical destination mode, used to specify a message destination address (MDA) that can be
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism
be used to select a destination processor from a specified group of processors. The ability of a processor to
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical,
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following
sections.

10.6.2.1 Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC ID (see Section 10.4.6, “Local
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH)
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that
APICs defined in the interrupt address are present and enabled to receive interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local
APICs is specified with 0FH.

NOTE
The number of local APICs that can be addressed on the system bus may be restricted by
hardware.

10.6.2.2 Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which
is entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this
register is used to create an identifier that can be compared with the MDA.

6. Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10-24 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

NOTE
The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC
ID register.

Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA.
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition (non-zero) is
detected, the local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to
identify a local APICs within the cluster.
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration ID
supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported in
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium
processors. With this model, a hierarchical network can be created by connecting different flat clusters via

Figure 10-13. Logical Destination Register (LDR)

Figure 10-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B

Vol. 3A 10-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents.
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-
chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC
units.

NOTES
All processors that have their APIC software enabled (using the spurious vector enable/disable bit)
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed
before the APIC is software enabled. Since some chipsets do not accurately track a system view of
the logical mode, program DFRs as soon as possible after starting the processor.

10.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI
to all the processors on the system bus and/or back to itself (see Section 10.6.1, “Interrupt Command Register
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination
mode is ignored when a destination shorthand is used.

10.6.2.4 Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus,
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the
IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in
the arbitration priority register (APR) in each local APIC. Figure 10-15 shows the layout of the APR.

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] ← TPR[7:0]
ELSE

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Figure 10-15. Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class
Arbitration Priority Class

4 3

10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV value is the vector number
for the highest priority bit that is set in the IRR (see Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value
is the vector number for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitration
among the destination processors, the processor with the lowest value in its APR handles the IPI and the other
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt,
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issues in
described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC
bus), the order in which the messages are sent and handled is determined through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15,
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus.
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID)
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and
Intel Xeon processors do not implement the Arb ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes the
APIC bus arbitration protocols and bus message formats, while Section 10.6.1, “Interrupt Command Register
(ICR),” describes the INIT level de-assert IPI message.

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register (ICR)”), all bus messages that
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly. Additionally, interrupt sources that target the APIC should be masked or changed to no longer target the APIC.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or an IPI, the
manner in which it handles the message depends on processor implementation, as described in the following
sections.

Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the specified destination, it
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)
register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and
IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) The local APIC examines the IPI message to determines if it is the specified destination for the IPI
as described in Section 10.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its
acceptance procedure; if it is not the destination, it discards the IPI message. When the message specifies
lowest-priority delivery mode, the local APIC will arbitrate with the other processors that were designated as
recipients of the IPI message (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt
queues contained in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4,
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time,
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI)

Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message
No Accept

Message

Yes

10-28 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts)
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in
greater detail.

10.8.3 Interrupt, Task, and Processor Priority
Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor,
including the servicing of other interrupts.

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector.
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the

Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/INIT

/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowest
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

Vol. 3A 10-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that determine the order in which interrupts
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be
written by software (TPR is a read/write register); see Figure 10-18.

NOTE
In this discussion, the term “task” refers to a software defined task, process, thread, program, or
routine that is dispatched to run on the processor by the operating system. It does not refer to an
IA-32 architecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls
the value of the processor-priority register (PPR).7

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority
register (PPR); see Figure 10-19. The PPR is a read-only register. The processor-priority class represents the
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 10.8.4 for more details on the ISR.)
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

Figure 10-18. Task-Priority Register (TPR)

7. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest Priority Delivery Mode.”

Figure 10-19. Processor-Priority Register (PPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task-Priority Sub-Class
Task-Priority Class

4 3

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor-Priority Sub-Class
Processor-Priority Class

4 3

10-30 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The processor-priority class determines the priority threshold for interrupting the processor. The processor will
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to delivery and which to
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in
Figure 10-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved
by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR is
then dispatched to the processor core for servicing.

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 10.8.5,
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per
interrupt vector and will reject other interrupts that are received within the same vector.

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-priority
interrupt has been completed, the servicing of the interrupted interrupt is resumed.

Figure 10-20. IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H

Vol. 3A 10-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 10-20). Upon acceptance
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an
EOI message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 10-21). This
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR.

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an
end-of-interrupt message to all I/O APICs.
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see
Section 10.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see
Section 10.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in
the system.

10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 10.8.3, “Interrupt,
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be
blocked. For example:
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts.
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8

Figure 10-21. EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H

10-32 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

instruction completes execution. Software does not need to force serialization after loading the TPR using MOV
CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged.

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must
be written with zeros. Failure to do this causes a general-protection exception.

10.8.6.1 Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see
Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates

a spurious vector.
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by
software.
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through
3 have no effect.

APIC Software Enable/Disable

Figure 10-22. CR8 Register

63 0

Value after reset: 0H

34

Reserved

Vol. 3A 10-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3,
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not
support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all
interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus.

Figure 10-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors. See bit 24 of Local APIC Version Register.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled

10-34 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous
winner’s arbitration priority, incremented by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, “Lowest Priority Delivery Mode”)
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest
priority arbitration.

10.10.1 Bus Message Formats
See Section 10.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit
messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts.
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request
service by writing a system-specified message to a system-specified address (PCI DWORD memory
write transaction). The transaction address specifies the message destination while the transaction
data specifies the message. System software is expected to initialize the message destination and
message during device configuration, allocating one or more non-shared messages to each MSI
capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address
Register. To request service, the PCI device function writes the contents of the Message Data Register to the
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message
addresses).

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address Register and the Message Data
Register. The operation issued by the device is a PCI write command to the Message Address Register with the
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a
DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

Figure 10-24. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX

Vol. 3A 10-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s).
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — When this bit is set, the message is directed to the processor with the
lowest interrupt priority among processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field.

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to FFH;
it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model,
then Destination ID field must not be set to FFH; the processors identified with this field must be
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical
or physical APIC ID for delivery of the lowest priority interrupt.

• If RH is 1 and DM is 0, the Destination ID field is in physical destination mode and only the processor in
the system that has the matching APIC ID is considered for delivery of that interrupt (this means no re-
direction).

• If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical destination mode and the
redirection is limited to only those processors that are part of the logical group of processors based on
the processor’s logical APIC ID and the Destination ID field in the message. The logical group of
processors consists of those identified by matching the 8-bit Destination ID with the logical destination
identified by the Destination Format Register and the Logical Destination Register in each local APIC.
The details are similar to those described in Section 10.6.2, “Determining IPI Destination.”

• If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the
physical or logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility.

10-36 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message.

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 10.4) in a backward compatible
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following.
• Retains all key elements of compatibility to the xAPIC architecture.

— Delivery modes.

— Interrupt and processor priorities.

— Interrupt sources.

— Interrupt destination types.
• Provides extensions to scale processor addressability for both the logical and physical destination modes.

Figure 10-25. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16 15 14 13 11 10 8 7 0

63 32

Vol. 3A 10-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

• Adds new features to enhance performance of interrupt delivery.
• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit
21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the
x2APIC mode.

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would
require system software to disable the local APIC unit. Specifically, attempting to write a value to the
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode
using IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC
State Transitions” provides a detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for
accessing the x2APIC registers are architecturally defined and specified in Section 10.12.1.2, “x2APIC Register
Address Space”. Executing the RDMSR instruction with the APIC register address specified in ECX returns the
content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these
bits are reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with
the APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If
the register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The

Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations

xAPIC global enable
(IA32_APIC_BASE[11])

x2APIC enable
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode

10-38 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of
handling reserved bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2 x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated for accessing APIC registers
in x2APIC mode. Table 10-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in
xAPIC mode.
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is
no register defined at offset 3F0H.

MSR addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH and 831H) are reserved.
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all
x2APIC MSRs (except for the ICR) are reserved.

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode) Register Name

MSR R/W
Semantics Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for initial
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes
#GP(0).

80DH 0D0H Logical Destination Register
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector
Register (SVR)

Read/write See Section 10.9 for reserved bits.

810H 100H In-Service Register (ISR); bits
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

Vol. 3A 10-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR);
bits 31:0

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes
#GP(0). See Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register
(ICR)

Read/write See Figure 10-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 10-8 for reserved bits.

834H 340H LVT Performance Monitoring
register

Read/write See Figure 10-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for reserved bits.

838H 380H Initial Count register (for
Timer)

Read/write

839H 390H Current Count register (for
Timer)

Read-only

83EH 3E0H Divide Configuration Register
(DCR; for Timer)

Read/write See Figure 10-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments

10-40 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.1.3 Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on reads by software.
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local
APIC ID register in the system are reserved and cannot be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H.
Each logical processor in the system (including clusters with a communication fabric) must be configured with an
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the
disconnected components into a single system.

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the
x2APIC mode as described in Section 10.12.1. Accessing any APIC register in the MSR address range 0800H
through 0BFFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface
will behave similar to that of a legacy xAPIC in globally disabled state. Table 10-7 provides the interactions between
the legacy & extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this
by inserting a serializing instruction or the sequence MFENCE;LFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.
4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset

310H are accessible in x2APIC mode through the MSR at address 830H.
5. SELF IPI register is supported only in x2APIC mode.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available

Vol. 3A 10-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has speci-
fied that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range
used for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition
MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression:
“ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading
host state) and causes an associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these
states as well as interactions of these states with INIT and reset.

10.12.5.1 x2APIC States
The valid states for a local x2APIC unit are listed in Table 10-5.
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0.
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0.
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1.
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1.
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a
general-protection exception. Figure 10-27 shows the comprehensive state transition diagram for a local x2APIC
unit.
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as follows.
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID are

the legacy local xAPIC ID, and are stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode.

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Section 10.4 through Section 10.6 for
details of individual APIC registers).

— Timer initial count and timer current count registers.
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH.
• The DFR (available only in xAPIC mode) is reset to all 1s.
• SELF IPI register is reset to zero.

10-42 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 10-6)

is preserved across this transition and the logical x2APIC ID (see Figure 10-29) is initialized by hardware during
this transition as documented in Section 10.12.10.2. The state of the extended fields in other APIC registers,
which was not initialized at reset, is not architecturally defined across this transition and system software
should explicitly initialize those programmable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC
registers are initialized as a result of INIT.
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is
initialized as described in Section 10.12.5.1. All the other APIC registers are initialized described in Section
10.12.5.1.

x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception.
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are
initialized as described in Section 10.12.5.1.
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0

Extd = 1

EN = 0

Vol. 3A 10-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1,
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process:
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved
across mode transitions.
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID
register) are initialized as described in Section 10.12.5.1.
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved.

10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express
(PCIe) devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only
the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to
IOxAPIC units. This made possible through use of the interrupt-remapping architecture specified in the Intel®
Virtualization Technology for Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping
architecture specified in the Intel® Virtualization Technology for Directed I/O (Revision 1.3 and/or later versions).
Because of this, BIOS must enumerate support for and software must enable this interrupt remapping with
Extended Interrupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting
an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH).

10-44 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is

10-46 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

In the xAPIC mode, the Destination Format Register (DFR) through the MMIO interface determines the choice of a
flat logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the
Destination Format Register (DFR) is eliminated in x2APIC mode.
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by

LDR[31:16].
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability
of ((2^20) - 16) processors in logical destination mode.
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to
identify the logical address of a processor within a cluster without needing to know the number of implemented bits
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 10.12.10.2.

10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e.
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical
x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a
socket/package then multiple cluster IDs can exist within the package.
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 10.12.5).

Figure 10-29. Logical Destination Register in x2APIC Mode

MSR Address: 80DH

31 0

Logical x2APIC ID

Vol. 3A 10-47

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs.

Figure 10-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a
general-protection exception.
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

10.13 APIC BUS MESSAGE FORMATS
This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

10.13.1 Bus Message Formats
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message,
and non-focused lowest priority message. The purpose of each type of message and its format are described
below.

10.13.2 EOI Message
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local
APIC. Table 10-1 shows the cycles in an EOI message.

Figure 10-30. SELF IPI register

Table 10-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

MSR Address: 083FH

31 8 7 0

Reserved Vector

10-48 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values.
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case,
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section
10.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 10-4.

10.13.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT and lowest-priority-with-
focus interrupts. Table 10-2 shows the cycles in a short message.

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 10-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-1. EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0

Vol. 3A 10-49

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the
8-bit logical destination field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see
Section 10.5.3, “Error Handling”) terminate after cycle 21.

10.13.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery mode when a focus processor is
not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the state
of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see Table
10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-focused
lowest priority message are competed. For other combinations of status flags, refer to Section 10.13.2.3, “APIC
Bus Status Cycles.”

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-2. Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0

10-50 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the arbi-
tration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots participate
in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried at a
later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the
error status register (see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not affected by
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error
in cycle 33 will force the sender to resend the message.

10.13.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and
(A1:A1) are examined. Table 10-4 shows how these status flags are interpreted, depending on the current delivery
mode and existence of a focus processor.

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1

Vol. 3A 10-51

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Table 10-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update ArbID
and Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

10-52 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

17.Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

Changes to this chapter: Corrected FREEZE_WHILE_SMM name. Minor update to Section 17.4.8.1 “LBR Stack
and Intel® 64 Processors ”. Correction to Table 17-11 “ MSR_LBR_SELECT for Intel microarchitecture code name
Nehalem”, Table 17-12 “MSR_LBR_SELECT for Intel® microarchitecture code name Sandy Bridge”, and Table 17-
13 “MSR_LBR_SELECT for Intel® microarchitecture code name Haswell”. Various updates throughout the rest of
the chapter to add L2 CDP updates.

Vol. 3B 17-1

CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR

TECHNOLOGY (INTEL® RDT) FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made
to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.17, “Time-Stamp Counter”.
• Features which allow monitoring of shared platform resources such as the L3 cache are described in Section

17.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features”.
• Features which enable control over shared platform resources are described in Section 17.19, “Intel® Resource

Director Technology (Intel® RDT) Allocation Features”.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an

instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) that transfers program control to

the debugger procedure or task. This instruction is an alternative way to set code breakpoints. It is especially
useful when more than four breakpoints are desired, or when breakpoints are being placed in the source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.

17-2 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug
operation of the processor. These registers can be written to and read using the move to/from debug register form
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions.

Figure 17-1. Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0

Reserved (set to 1)

1R
T
M

R
T
M

Vol. 3B 17-3

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

17.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug
register DR7 further specifies breakpoint conditions.

17.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD).
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers
DR6 and DR7.

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its

associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this
exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if
the processor does not support RTM.

17-4 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except
bit 16, which they should set) before returning to the interrupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1).
The flags and fields in this register control the following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint

condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM is
also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3).
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

Vol. 3B 17-5

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with
an of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other
processors.

17.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for
comparison with the breakpoint address in the selected debug register). These requirements are enforced by the
processor; it uses LENn field bits to mask the lower address bits in the debug registers. Unaligned data or I/O
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Code
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must
point to the first prefix.

17-6 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size
prefixes are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DR0–DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of
the processor implementation (address matching is supported only on valid addresses generated by the processor
implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

17.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions
are generated and typical exception handler operations.

Table 17-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Vol. 3B 17-7

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger software system. The processor
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-Detect Exception Condition”)
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at
one time. The following sections describe each class of debug exception.

Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)

63 0

DR3Breakpoint 3 Linear Address

63 0

DR2Breakpoint 2 Linear Address

63 0

DR1Breakpoint 1 Linear Address

63 0

DR0Breakpoint 0 Linear Address

63 0

DR5

63 0

DR4

17-8 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

17.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception
(#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions
detected during the decoding or execution of an instruction. However, if a code instruction breakpoint is placed on
an instruction located immediately after a POP SS/MOV SS instruction, the breakpoint may not be triggered. In
most situations, POP SS/MOV SS will inhibit such interrupts (see “MOV—Move” and “POP—Pop a Value from the
Stack” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction
after the check for code breakpoint, CS limit violation and FP exceptions. Task Switches and IRETD/IRETQ instruc-
tions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image
pushed on the stack:
• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the

value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value

pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration,

the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was

called. This includes:

— Debug exceptions generated in response to instruction breakpoints

Table 17-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and
LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify
debug registers (usually in conjunction with in-circuit
emulation)

BD = 1 Fault

Task switch BT = 1 Trap

Vol. 3B 17-9

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

— Hardware-generated interrupts arriving between instructions (including those arriving after the last
iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those generated after the last
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as,
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a
page fault), the processor may generate one spurious debug exception after the second exception has been
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

17.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the
access, so these breakpoint condition causes a trap-class exception to be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint
matching does not occur unless it is enabled by setting the LE and/or the GE flags.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor gener-
ates the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

17.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The
debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The
processor generates the exception before it executes the MOV instruction that accesses a debug register, which
causes a fault-class exception to be generated.

17.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated
after the instruction is executed. The processor will not generate this exception after the instruction that sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after
the instruction that follows the POPF instruction.

17-10 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and INTO instructions, however,
do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n or INTO
instructions rather than executing them directly. To maintain protection, the operating system should check the
CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an external
interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This operation
clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler,
single step an INT n instruction that calls the interrupt handler.

17.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe
this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. See Chapter 6, “Interrupt
3—Breakpoint Exception (#BP).” Debuggers use break exceptions in the same way that they use the breakpoint
registers; that is, as a mechanism for suspending program execution to examine registers and memory locations.
With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers,
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the
source code of a program under development.

17.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory
(RTM)

Chapter 16, “Programming with Intel® Transactional Synchronization Extensions,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 describes Restricted Transactional Memory (RTM). This is an
instruction-set interface that allows software to identify transactional regions (or critical sections) using the
XBEGIN and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region successfully
reaches an XEND instruction, the processor ensures that all memory operations performed within the region
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM transac-
tion region does not succeed if the processor cannot commit the updates atomically. When this happens, the
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor
discards all updates performed in the region, restores architectural state to appear as if the execution had not
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within an
RTM transaction region does not resume execution at the fallback instruction address specified with the XBEGIN
instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is delivered.

Vol. 3B 17-11

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

(A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear DR6.RTM[bit 16]
(all other debug exceptions set DR6[16]).

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™
Processors)”

— Section 17.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Goldmont Microarchitecture”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Sandy Bridge”

— Section 17.11, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Haswell Microarchitecture”

— Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on
Skylake Microarchitecture”

— Section 17.14, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™

Duo Processors)”

— Section 17.15, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.16, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.9.1, “LBR Stack” (processors
based on Intel® Microarchitecture code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about the
TR flag.

17-12 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS),” for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 17.13.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 17.13.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.
when a counter overflows and is configured to trigger PMI). See Section 17.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and
IA32_FIXED_CTRx) are frozen on a PMI request. See Section 17.4.7 for details.

• FREEZE_WHILE_SMM (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all the
enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF,
TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the enable
bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI delivery will
be restored, after the SMI handler issues RSM to complete its service. Note that system software must check if
the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM control bit.
IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit
12] is reporting 1. See Section 18.8 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is
also set. See Section 17.3.3.

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

Figure 17-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM

15

RTM

Vol. 3B 17-13

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

17.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register,
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before
resuming program execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM.
A debugging device that is monitoring the system bus can read these messages and synchronize operations with
taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus,
as described in Section 17.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and LBR
bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when TR is
set.

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor families that do not provide an externally visible system

bus (i.e., processors based on the Silvermont microarchitecture or later).

17.4.4.1 Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to systems with a front side bus
(FSB). BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional
FSB.

17.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an interrupt when the buffer is
nearly full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation
of interrupt when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for additional details.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task.
See Section 7.2.1, “Task-State Segment (TSS).”

17-14 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

17.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System software can selectively specify
CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two bit fields,
BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the CPL of
BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and
performance monitoring are available for processors supporting architectural performance monitoring version 2 or
greater (i.e. CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL to
reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on the
version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.LBR to resume recording branches. When using this feature, software should be careful
about writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance
counters are associated with the target workload and not polluted by the PMI and activities within the PMI
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two
flavors are supported:

— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 18-3). The
PMCs affected include both general-purpose counters and fixed-function counters (see Section 18.6.2.1,
“Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the corre-
sponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue counter
operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition, but
does not change the IA32_PERF_GLOBAL_CTRL MSR.

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx
register.

Vol. 3B 17-15

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR
(see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

Table 17-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined
Freeza_Perfmon_On_PMI interface.

Table 17-3. Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed

17.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can
vary between different processor families. Table 17-4 lists the LBR stack size and TOS pointer range for several
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID instruc-
tion in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on overflow Processor freezes the counters on overflow Unchanged

Processor clears IA32_PERF_GLOBAL_CTRL Processor set
IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads IA32_PERF_GLOBAL_STATUS
(0x38E) to examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to
IA32_PERF_GLOBAL_OVF_CTL (0x390)

Handler writes mask into
IA32_PERF_GLOBAL_OVF_RESET (0x390)

Processor clears IA32_PERF_GLOBAL_STATUS Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables IA32_PERF_GLOBAL_CTRL None Reduced software overhead

Table 17-4. LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH, 06_55H,
06_66H, 06_7AH

32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 17.12.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H, 06_3CH,
06_45H, 06_46H, 06_3FH, 06_2AH, 06_2DH,
06_3AH, 06_3EH, 06_1AH, 06_1EH, 06_1FH,
06_2EH, 06_25H, 06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH, 06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH,
06_5DH, 06_1CH, 06_26H, 06_27H, 06_35H,
06_36H

8 FROM_IP, TO_IP 0 to 7

17-16 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR)
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 2, “Model-Specific
Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4 for model-
specific MSR addresses).
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size

column of Table 17-4) that store source and destination address of recent branches (see Figure 17-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR
address store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next consecutive (N-1) MSR address
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is
given in Table 17-4.

17.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the upper
32-bits of branch addresses will be stored as 0.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective
source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR stack. See
LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ registers
in the LBR stack.

— 000101B (64-bit EIP record format), Flags, TSX, LBR_INFO — Stores 64-bit offset (effective
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR update
are reported in the LBR_INFO MSR stack.

— 000110B (64-bit LIP record format), Flags, Cycles — Stores 64-bit linear address (CS.Base +
effective address) of respective source/destination. Misprediction info is reported in the upper bits of

Figure 17-4. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP

Vol. 3B 17-17

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 bits
of the 'TO' registers in the LBR stack (see Section 17.6).

— 000111B (64-bit LIP record format), Flags, LBR_INFO — Stores 64-bit linear address (CS.Base +
effective address) of respective source/destination. Misprediction, and elapsed cycles since the last LBR
update are reported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17.4.8.2 LBR Stack and IA-32 Processors
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and
“From Linear Address“ using the high and low half of each 64-bit MSR.

17.4.8.3 Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides
the debug store (DS) mechanism. The DS mechanism allows:
• BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The

capability of PEBS varies across different microarchitectures. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 18, “Perfor-
mance Monitoring.”

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear)

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected.
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence
of the PEBS event that caused the counter to overflow. When the state information has been logged, the
counter is automatically reset to a specified value, and event counting begins again. The content layout of a
PEBS record varies across different implementations that support PEBS. See Section 18.6.2.4.2 for details of
enumerating PEBS record format.

17-18 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset
of implementation-specific precise events. See Section 18.5.3.1 for a PEBS enhancement that can
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on INIT, processor Reset or transition to
system-management mode (SMM) or IA-32e mode. It is similarly disabled on the generation of a
machine-check exception on 45nm and 32nm Intel Atom processors and on processors with
Netburst or Intel Core microarchitecture.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the
IA32_MISC_ENABLE MSR (see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4).

The DS save area is divided into three parts: buffer management area, branch trace store (BTS) buffer, and PEBS
buffer (see Figure 17-5). The buffer management area is used to define the location and size of the BTS and PEBS
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in
their respective buffers and to record the performance counter reset value. The linear address of the first byte of
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should

be a multiple of the BTS record size (12 bytes) plus 1.
• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This

address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it
must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 64-bit value that the counter is to be set to when a PEBS record is written. Bits
beyond the size of the counter are ignored. This value allows state information to be collected regularly every
time the specified number of events occur.

Vol. 3B 17-19

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Figure 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not

predicted (clear).

Figure 17-5. DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

17-20 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Figure 17-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the begin-
ning of the instruction that caused the event. However, there are cases where the registers may be logged in a
partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

17.4.9.1 64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 17-8.

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown in
Figure 17-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 17-5.

Figure 17-6. 32-bit Branch Trace Record Format

Figure 17-7. PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

Vol. 3B 17-21

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The
structure of a branch trace record is similar to that shown in Figure 17-6, but each field is 8 bytes in length. This
makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in
Figure 17-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This makes
the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

Figure 17-8. IA-32e Mode DS Save Area Example1

NOTES:
1. This example represents the format for a system that supports PEBS on only one counter.

Figure 17-9. 64-bit Branch Trace Record Format

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

17-22 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Fields in the buffer management area of a DS save area are described in Section 17.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures
17-9 and Figures 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all
operating modes.

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described
in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting architec-
tural performance monitoring should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or
general-purpose counting (specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the
following procedure (See Section 18.6.2.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 17.4.9, “BTS and DS Save Area,”
and Section 17.4.9.1, “64 Bit Format of the DS Save Area”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section
10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the
xAPIC LVT.

Figure 17-10. 64-bit PEBS Record Format

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H

Vol. 3B 17-23

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, “Writing the DS Interrupt
Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and marked accessed and dirty. It

is the responsibility of the operating system to keep the pages that contain the buffer present and to mark
them accessed and dirty. The implication is that the operating system cannot do “lazy” page-table entry
propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses.
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary.

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any
change to control register CR3 will not change the DS addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

17.4.9.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 17-5), IA32_DEBUGCTL (see Figure 17-3), or
MSR_DEBUGCTLB (see Figure 17-16) control the generation of branch records and storing of them in the BTS
buffer; these are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines
whether the BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simul-
taneously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or
MSR_DEBUGCTLB for Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB)
if a circular BTS buffer is desired.

Table 17-5. IA32_DEBUGCTL Flag Encodings
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full

17-24 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. BTS absolute maximum < 1
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

17.4.9.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The
encoding of these five bits are shown in Table 17-6.

17.4.9.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the
appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR)
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be
restored to their original values when exiting the ISR.

• The processor will not disable the DS save area when the buffer is full and the circular mode has not been
selected. The current DS setting must be retained and restored by the ISR on exit.

Table 17-6. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

Vol. 3B 17-25

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition
before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2
DUO AND INTEL® ATOM™ PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 17.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4.
• Last exception records — See Section 17.13.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom
processor families, and Intel processors based on Intel NetBurst microarchitecture.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store
destination addresses

17-26 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H)
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1. The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
P6 family processors.

17.5.2 LBR Stack in Intel Atom Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based on
the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

17.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Processors based on the Goldmont microarchitecture extend the capabilities described in Section 17.5.2 with the
following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0].
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 0x680..0x69f)

and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df).

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 17-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 17-7.

• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is
shown in Table 17-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 17.12.2.

• LBR MSRs may be cleared when MWAIT is used to request a C-state that is numerically higher than C1; see
Section 17.12.3.

Table 17-7. MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to“ address. See Section 17.4.8.1 for address format.
Cycle Count
(Saturating)

63:48 R/W Elapsed core clocks since last update to the LBR stack.

Vol. 3B 17-27

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.7 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON GOLDMONT PLUS MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont Plus microarchitecture. Processors based on the
Goldmont Plus microarchitecture extend the capabilities described in Section 17.6 with the following changes:

• Enumeration of new LBR format: encoding 00111b in IA32_PERF_CAPABILITIES[5:0] is supported, see
Section 17.4.8.1.

• Each LBR stack entry consists of three MSRs:
— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data. Layout is the same as
Table 17-16.

17.8 LAST BRANCH, INTERRUPT AND EXCEPTION RECORDING FOR INTEL®
XEON PHI™ PROCESSOR 7200/5200/3200

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in the Intel® Xeon Phi™ processor
7200/5200/3200 series based on the Knights Landing microarchitecture. Eight pairs of MSRs are supported in the
LBR stack, per thread:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 680H) through MSR_LASTBRANCH_7_FROM_IP (address 687H)
store source addresses.

— MSR_LASTBRANCH_0_TO_IP (address 6C0H) through MSR_LASTBRANCH_7_TO_IP (address 6C7H) store
destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is supported.
When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1.The behavior of the MSR_LER_TO_LIP and the
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in
the P6 family processors.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in
Intel Core 2 processors and adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout.

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses
related to recently executed branches. See Section 17.9.1.

17-28 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are
observable using the Intel® QPI link.

• Last exception records — See Section 17.13.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow

interrupt form the uncore.
• FREEZE_WHILE_SMM (bit 14) — FREEZE_WHILE_SMM is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11) for

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR

based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only
captures the subset of branches that are specified by MSR_LBR_SELECT.

Figure 17-11. IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM
UNCORE_PMI_EN

13

Vol. 3B 17-29

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.9.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is shown in Table 17-8 and Table 17-9.

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-10.

Table 17-10. LBR Stack Size and TOS Pointer Range

17.9.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all branches will be captured.
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in
the LBR. The layout of MSR_LBR_SELECT is shown in Table 17-11.

Table 17-8. MSR_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.
SIGN_EXt 62:48 R/W Signed extension of bit 47 of this register.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-9. MSR_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch to” address. See Section 17.4.8.1 for address format
SIGN_EXt 63:48 R/W Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-11. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

17-30 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.9, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name
Nehalem”, apply to processors based on Intel microarchitecture code name Sandy Bridge. For processors based on
Intel microarchitecture code name Ivy Bridge, the same holds true.

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In Intel
microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The filtering
semantics for “Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 17-12.

17.11 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.10, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-13. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.10.

Table 17-12. MSR_LBR_SELECT for Intel® microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-13. MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches ending in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches ending in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

Vol. 3B 17-31

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become
less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution flow is
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions
would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.11.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is
shown in Table 17-14 and Table 17-9.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are

undefined.

Table 17-14. MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/W This is the “branch from” address. See Section 17.4.8.1 for address format.

SIGN_EXT 60:48 R/W Signed extension of bit 47 of this register.

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region

Table 17-13. MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

17-32 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.12 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch
records:
• enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see Section

17.4.8.1.
• Each LBR stack entry consists of a triplets of MSRs:

— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32.

Processors based on the Skylake microarchitecture supports the same LBR filtering capabilities as described in
Table 17-13.

Table 17-15. LBR Stack Size and TOS Pointer Range

17.12.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 17-16.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 17-16. MSR_LBR_INFO_x
Bit Field Bit Offset Access Description

Cycle Count
(saturating)

15:0 R/W Elapsed core clocks since last update to the LBR stack.

Reserved 60:16 R/W Reserved

TSX_ABORT 61 R/W When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region OR
 EIP of the RTM Abort Handler

IN_TSX 62 R/W When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/W When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-14. MSR_LASTBRANCH_x_FROM_IP with TSX Information (Contd.)
Bit Field Bit Offset Access Description

Vol. 3B 17-33

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.12.2 Streamlined Freeze_LBRs_On_PMI Operation
The FREEZE_LBRS_ON_PMI feature causes the LBRs to be frozen on a hardware request for a PMI. This prevents
the LBRs from being overwritten by new branches, allowing the PMI handler to examine the control flow that
preceded the PMI generation. Architectural performance monitoring version 4 and above supports a streamlined
FREEZE_LBRs_ON_PMI operation for PMI service routine that replaces the legacy FREEZE_LBRs_ON_PMI opera-
tion (see Section 17.4.7).

While the legacy FREEZE_LBRS_ON_PMI clear the LBR bit in the IA32_DEBUGCTL MSR on a PMI request, the
streamlined FREEZE_LBRS_ON_PMI will set the LBR_FRZ bit in IA32_PERF_GLOBAL_STATUS. Branches will not
cause the LBRs to be updated when LBR_FRZ is set. Software can clear LBR_FRZ at the same time as it clears over-
flow bits by setting the LBR_FRZ bit as well as the needed overflow bit when writing to
IA32_PERF_GLOBAL_STATUS_RESET MSR.

This streamlined behavior avoids race conditions between software and processor writes to IA32_DEBUGCTL that
are possible with FREEZE_LBRS_ON_PMI clearing of the LBR enable.

17.12.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the
FROM, TO, INFO, LAST_BRANCH, LER and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero.

17.13 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for
recording taken branches, interrupts and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches,

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction
address.

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs

(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family
[CPUID family 0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs
(MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and
MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the

17-34 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also:
Table 17-17, Figure 17-12, and Section 17.13.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 17.13.3, “Last Exception Records.”

17.13.1 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to
this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example,
when an instruction or data breakpoint or a single-step trap occurs). See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.13.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

Figure 17-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS

Vol. 3B 17-35

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in
Figure 17-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.13.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last)
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1.
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-17 and Figure 17-12.

Table 17-17. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the
RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction

and the “to” address is the target instruction of the branch.
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that
caused the exception to be generated and the “to” address is the address of the first instruction in the
exception handler routine.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15

17-36 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch record
for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the
branch instruction followed by a record for the interrupt.

17.13.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7
and Intel® Atom™ processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors.
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the
processor took prior to an exception or interrupt being generated.

17.14 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in
some MSR names and locations.

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR
is located at register address 01D9H.
See Figure 17-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism

Figure 17-13. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP

Vol. 3B 17-37

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a
memory-resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start
at 40H). See Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 17.12, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based
on Skylake Microarchitecture,” and Section 2.19, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

Figure 17-14. IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

Figure 17-15. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

17-38 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.15 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M
PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors.
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable,

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M
processors, this MSR is located at register address 01D9H. See Figure 17-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

Figure 17-16. MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags

Vol. 3B 17-39

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M
Processors, these pairs are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For
Pentium M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 17.13.3, “Last Exception Records,” and Section 2.20, “MSRs In
the Pentium M Processor” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4.

17.16 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP.
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4 for a detailed description of each of the last branch recording MSRs.

17.16.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode.
A protected-mode operating system procedure is required to provide user access to this register. Figure 17-18
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data
breakpoint or single-step trap occurs.

Figure 17-17. LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address
32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

17-40 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag. See Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set,
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear,
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section
17.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP,
and LastExceptionFromIP MSRs are undefined.

17.16.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads
the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception
or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for the
last branch that the processor took prior to an exception or interrupt being generated. When an exception or inter-
rupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers before
the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranchFromIP
MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch
records for the Pentium 4 and Intel Xeon processors.

17.16.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP
MSRs prior to recording the to and from addresses of the interrupt or exception.

Figure 17-18. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved

Vol. 3B 17-41

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch,
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3),
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs
are offsets into a code segment, software must determine the segment base address of the code segment associ-
ated with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The
segment base address can be determined by reading the segment selector for the code segment from the stack
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

17.17 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments
with every internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel®
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H],
DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at
which the processor is booted. The maximum resolved frequency may differ from the processor base
frequency, see Section 18.7.2 for more detail. On certain processors, the TSC frequency may not be the same
as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core
changes frequency. This is the architectural behavior moving forward.

17-42 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

NOTE
To determine average processor clock frequency, Intel recommends the use of performance
monitoring logic to count processor core clocks over the period of time for which the average is
required. See Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading
Technology in Processors Based on Intel NetBurst® Microarchitecture,” and Chapter 19, “Perfor-
mance Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4,
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as an
ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-stamp
counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter on
processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can be
written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]],
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.17.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC.
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with
a ring transition or access to a platform resource.

17.17.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary TSC register, IA32_TSC_AUX
that is designed to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized
by privileged software with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation.
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is
controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC.
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

Vol. 3B 17-43

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.17.3 Time-Stamp Counter Adjustment
Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these
writes on each logical processor. It may be difficult for software to do this in a way than ensures that all logical
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC,

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST
(bit 1).

17.17.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that runs
at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0])/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent2.

When ART hardware is reset, both invariant TSC and K are also reset.

17.18 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 v3
family introduced resource monitoring capability in each logical processor to measure specific platform shared
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is
described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring
Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent
to determine the usage of cache by applications running on the platform. The initial implementation is directed at
L3 cache monitoring (currently the last level cache in most server platforms).

Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case

2. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that priv-
ileged software can use to manage the time stamp counter for keeping time

17-44 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation,
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature

bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via

CPUID leaves and sub-leaves).
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as
Resource Monitoring IDs (RMIDs).

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product
generation on a per software-id basis.

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory
Bandwidth for a given software ID at any point during runtime.

17.18.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active
at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor.
Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. Before
reading back monitored data software must configure an event selection MSR (IA32_QM_EVTSEL) to specify which
metric is to be reported, and the specific RMID for which the data should be returned.

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID.
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory
controllers on the same package).

17.18.2 Enabling Monitoring: Usage Flow
Figure 17-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such as
CMT and enable resource monitoring for available resource types and monitoring events.

Vol. 3B 17-45

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available

resource types (see Section 17.18.4), and monitoring capabilities for each resource type (see Section
17.18.5). Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration
infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign
an RMID to each logical processor, see Section 17.18.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and
provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 17.18.7.

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to
check for error conditions and verify data validity.

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H,
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query
available resource types that support monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position
of CPUID.(EAX=0FH, ECX=0):EDX.

17.18.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0)
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e. executing CPUID

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each

Figure 17-19. Platform Shared Resource Monitoring Usage Flow

CPUID.(7,0):EBX.12

On OS/VMM Initialization

CPUID.(0FH,0):EDX[31:1]

PQM Capability
Enumeration

IA32_PQR_ASSOC.RMID

On Context Switch

Set RMID to monitor
the scheduled app

Periodical Resource

IA32_QM_EVTSEL

Configure event type
Read monitored data

CPUID.(0FH,1):ECX[31:0]
CPUID.(0FH,1):EDX[31:0]
CPUID.(0FH,1):EBX[31:0]

CPUID[WRMSR RDMSR/WRMSR

Selection/Reporting

IA32_QM_CTR

CPUID.(0FH,0):EBX[31:0]

17-46 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability
of that resource type (see Figure 17-21 and Figure 17-22). Reserved bits of CPUID.(EAX=0FH,
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally,
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports monitoring
in the processor.

17.18.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program
Monitoring MSRs using the resource type associated with the given ResID.

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs.
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource
type, see Figure 17-21.

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and
Table 17-18) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR.
The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH,
ECX=1H).EBX, see Figure 17-21.

Figure 17-20. CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

Figure 17-21. L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H))

0231

CPUID.(EAX=0FH, ECX=0H) Output: (EAX: Reserved; ECX: Reserved)

EDX L

EBX
031

Highest RMID Value of Any Resource Type (Zero-Based)

3

1

Reserved

CPUID.(EAX=0FH, ECX=1H) Output: (EAX: Reserved)

ECX
031

Highest RMID Value of This Resource Type (Zero-Based)

EBX
031

Upscaling Factor to Total Occupancy (Bytes) Upscaling Factor

MaxRMID

Vol. 3B 17-47

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.5.1 Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH,
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-18. The
L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) by multiplying
with CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

17.18.5.2 Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits will
be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy,
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that
support this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting local from total
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be
tracked by subtraction).

The corresponding Event ID can be looked up from Table 17-18. The L3 bandwidth data accumulated in
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-18. Monitoring Supported Event IDs

17.18.6 Monitoring Resource RMID Association
After Monitoring and sub-features has been enumerated, software can begin using the monitoring features. The
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID.

Note that the process of associating an RMID with a given software thread is the same for all shared resource moni-
toring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical
processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that

Figure 17-22. L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H))

Event Type Event ID Context

L3 Cache Occupancy 01H Cache Monitoring Technology

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

0231
EDX

1

Reserved

EventTypeBitMask
3

L3 Occupancy
L3 Total BW
L3 Local BW

17-48 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later
with monitoring event codes (retrieving data is discussed in a previous section).

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in
Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 (1 + CPUID.(EAX=0FH,
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded.
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be
reassigned by the OS or VMM scheduler when an application is migrated across LLCs.

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g. RMID
31) may only be supported by one resource type but not by another resource type.

17.18.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as
an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT)
and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported
back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g. no
Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly.

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon
counters.

Access to the aggregated monitoring information is accomplished through the following programmable monitoring
MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-24. Bits
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the
IA32_QM_EVTSEL register are shown in Table 17-18. Note that valid event codes may not necessarily map
directly to the bit position used to enumerate support for the resource via CPUID.
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed
in Section 17.18.5, which covers feature-specific details.

Figure 17-23. IA32_PQR_ASSOC MSR

01063

Width of IA32_PQR_ASSOC.RMID field: Log2 (CPUID.(EAX=0FH, ECX=0H).EBX[31:0] +1)

RMID

9

Reserved IA32_PQR_ASSOCReserved for CLOS*

32 31

*See Section 17.18

Vol. 3B 17-49

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations
where one thread changes the RMID/EvtID just before another thread reads monitoring data from
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore,
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring Technology,
software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by
multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

17.18.8 Monitoring Programming Considerations
Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits are
used. With Cache Monitoring Technology for instance, the number of bits used will be proportional to the base-two
logarithm of the total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is suffi-
cient to ensure at most one rollover per sampling period. Any future changes to counter width will be enumerated
to software.

Figure 17-24. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Figure 17-25. Software Usage of Cache Monitoring Resources

063

IA32_QM_CTRU

61

E Resource Monitoring Data

03163

RMID

7

Reserved IA32_QM_EVTSELReserved

41 3242 8

EvtID

RMID

063

Monitoring Data

IA32_QM_CTR MSR

62

Availability
Error

763

Reserved

41

RMID

Resource Monitoring ID

0

EvtID

32

Reserved

Event ID

IA32_QOSEVTSEL MSR

System Software

Event ID Counter Data

17-50 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.18.8.1 Monitoring Dynamic Configuration
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used.

17.18.8.2 Monitoring Operation With Power Saving Features
Note that some advanced power management features such as deep package C-states may shrink the L3 cache
and cause CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data
out of L3.

17.18.8.3 Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data.

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to
the prev-SMM RMID upon exit.

17.18.8.4 Monitoring Operation with RAS Features
In general the Reliability, Availability and Serviceability (RAS) features present in Intel Platforms are not expected
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory
copies or cache accesses these may be tracked and may influence the shared resource monitoring counter values.

17.19 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) capa-
bilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon
processor E5 v4 family (and a subset of communication-focused processors in the Intel Xeon E5 v3 family) intro-
duce capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache.
Certain Intel Atom processors also provide support for control over the L2 cache, with capabilities as described
below. The programming interface for Cache Allocation Technology and for the more general allocation capabilities
are described in the rest of this chapter. The CAT and CDP capabilities, where architecturally supported, may be
detected and enumerated in software using the CPUID instruction, as described in this chapter.

The Intel Xeon Processor Scalable Family introduces the Memory Bandwidth Allocation (MBA) feature which
provides indirect control over the memory bandwidth available to CPU cores, and is discussed later in this chapter.

17.19.1 Introduction to Cache Allocation Technology (CAT)
Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or
similar system service management agent to specify the amount of cache space into which an application can fill
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized user-
level implementations with minimal OS support are also possible, though not necessarily recommended (see notes
below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor family, L2
or L3 cache allocation capability may be provided, and the technology is designed to scale across multiple cache
levels and technology generations.

Vol. 3B 17-51

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Software can determine which levels are supported in a given platform programmatically using CPUID as described
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that

provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT
capabilities, such as the max allocation bitmask size,

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of
Service via a list of allocation bitmasks,

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mechanisms
to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available for
high priority applications based on guidance from the execution environment as shown in Figure 17-26. The archi-
tecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high
priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for
system throughput benefit across uses cases of OSes, VMMs, containers and other scenarios by managing the
CPUID and MSR interfaces. This section describes the hardware and software support required in the platform
including what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that
in Figure 17-26 the L3 Cache is shown as an example resource.

17.19.2 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted
based on the class with which they are associated. Each Class of Service can be configured using capacity bitmasks
(CBMs) which represent capacity and indicate the degree of overlap and isolation between classes. For each logical
processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM
to specify a COS when an application, thread or VM is scheduled.

The usage of Classes of Service (COS) are consistent across resources and a COS may have multiple resource
control attributes attached, which reduces software overhead at context swap time. Rather than adding new types
of COS tags per resource for instance, the COS management overhead is constant. Cache allocation for the indi-
cated application/thread/container/VM is then controlled automatically by the hardware based on the class and the
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where
resourceType indicates a resource type (e.g. “L3” for the L3 cache) and “n” indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:

Figure 17-26. Cache Allocation Technology Enables Allocation of More Resources to High Priority Applications

Without CAT

Core 0

Shared LLC, Low priority got more cache

Lo Pri AppHi Pri App

Core 1 Core 0

Shared LLC, High priority got more cache

Lo Pri AppHi Pri App

Core 1

With CAT

17-52 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource
types are available which can be controlled,

• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length
of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior
of different classes of service using the bitmasks available,

• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an
executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bit length of the capacity mask available generally depends on the configuration
of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a
processor family as well). Similarly, other parameters such as the number of supported COS may vary for each
resource type, and these details can be enumerated via CPUID.

Sample cache capacity bitmasks for a bit length of 8 are shown in Figure 17-27. Please note that all (and only)
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). Attempts to program a value without
contiguous '1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in
way-based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service
can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of

Figure 17-27. Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask

Vol. 3B 17-53

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is
usually beneficial to its performance.

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of
COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case,
which would allow some lower-priority threads share cache space with the highest priority threads. The third case
shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility COS0 should
typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is
no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which
has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on
the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition to
the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of
service or is entirely isolated in terms of cache space used.

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of
a CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID.
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are
selected and associated with different classes of service. For the available Classes of Service the associated CBMs
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementations
supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated other-
wise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor,

Figure 17-28. Class of Service and Cache Capacity Bitmasks

Set 1
Set 2

....

Cache Subsystem

Config

Tag with Cache

Enforcement

Set n

way 1

......

way 16

Enforce Mask

Capacity bitmask 3COS 3

Capacity bitmask 3COS 2

Capacity bitmask 3COS 1

Capacity bitmask 3COS 0

Cache Allocation

TransactionCOS

COS = 2 Mem Request

Class of Service

Application
Memory Request

Set Class of Service

Association

in IA32_PQR

OS Context
Switch

Configure CBM for

Enum/Confg

each Class of Service

Enumerate
Enforcement

17-54 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to
the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application
thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can
be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement
implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details
on specific features such as L3 CAT, L3 CDP, L2 CAT, and L2 CDP. Depending on the specific processor a mix of
features may be supported, and CPUID provides enumeration capabilities to enable software to dynamically detect
the set of supported features.

17.19.3 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of
code and data fetches to the L2 or L3 cache in a software configurable manner, depending on hardware support,
which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP
extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service (COS).
Support for the L2 CDP feature and the L3 CDP features are separately enumerated (via CPUID) and separately
controlled (via remapping the L2 CAT MSRs or L3 CAT MSRs respectively). Section 17.19.6.3 and Section 17.19.7
provide details on enumerating, controlling and enabling L3 and L2 CDP respectively, while this section provides a
general overview.

The L3 CDP feature was first introduced on the Intel Xeon E5 v4 family of server processors, as an extension to L3
CAT. The L2 CDP feature is first introduced on future Intel Atom family processors, as an extension to L2 CAT.

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled,
• the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see

Figure 17-29),
• the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP.

Using the CDP feature, virtual isolation between code and data can be configured on the L2 or L3 cache if desired,
similar to how some processor cache levels provide separate L1 data and L1 instruction caches.

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system
operation, including dynamically enabling or disabling the feature provided that certain software configuration
requirements are met (see Section 17.19.5).

An example of the operating mode of CDP is shown in Figure 17-29. Shown at the top are traditional CAT usage
models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given
COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations
where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables
code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis,
depending on application and system needs.

Vol. 3B 17-55

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports
16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond
to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data masks are defined
per-COS and interleaved in the MSR space as described in subsequent sections.

In cases where CPUID exposes a non-even number of supported Classes of Service for the CAT or CDP features,
software using CDP should use the lower matched pairs of code/data masks, and any upper unpaired masks should
not be used. As an example, if CPUID exposes 5 CLOS, when CDP is enabled then two code/data pairs are available
(masks 0/1 for CLOS[0] data/code and masks 2/3 for CLOS[1] data/code), however the upper un-paired mask
should not be used (mask 4 in this case) or undefined behavior may result.

17.19.4 Enabling Cache Allocation Technology Usage Flow
Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable
priority-based resource allocation for a CAT-capable resource.

Figure 17-29. Code and Data Capacity Bitmasks of CDP

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

COS0.Data

COS0.Code

COS1.Data

COS1.Code

CAT with

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

COS0

COS1

COS2

COS3

Traditional
CAT

CDP

Other COS.Data

Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

Example of CAT-Only Usage - 16 bit Capacity Masks

Other COS.Code

2

17-56 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ.
Common CLOS are used across the features.

17.19.4.1 Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX =
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control over
shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Alloca-
tion Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide

information on available resource types, and CAT capability for each resource type (see Section 17.19.4.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive.
See Section 17.19.4.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number
reported for L2 CAT in CPUID. See Section 17.19.4.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at the
same level as the L3 cache). Software may determine which logical processors share an MSR (for instance local
to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which logical
threads observe the change. Example flows for a similar method to determine register scope are described in
Section 15.5.2, “System Software Recommendation for Managing CMCI and Machine Check Resources”.
Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs that may share
a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. The set of COS are common across all allocation features, meaning that
multiple features may be supported in the same processor without additional software COS management
overhead at context swap time. See Section 17.19.4.4 for details.

17.19.4.2 Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e.

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in

Figure 17-30. Cache Allocation Technology Usage Flow

CPUID.(7,0):EBX.15

On OS/VMM Initialization

CPUID.(10H,0):EBX[31:1]

CQE Capability
Enumeration

IA32_L3_QOS_MASK_0

Cache Allocation Configuration

...

Configure CBM
per COS

On Context Switch

IA32_PQR_ASSOC

Set COS for scheduled
thread context

IA32_L3_QOS_MASK_n
CPUID.(10H,1):EAX[4:0]
CPUID.(10H,1):EDX[15:0]
CPUID.(10H,1):EBX[

CPUID[WRMSR WRMSR

Vol. 3B 17-57

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID),
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see
Figure 17-31).

— For ECX>0, EAX[4:0] reports the length of the capacity bitmask length (ECX=1 or 2 for L2 CAT or L3 CAT
respectively) using minus-one notation, e.g., a value of 15 corresponds to the capacity bitmask having
length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the capability
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain additional feature
details.

• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-32. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an

Figure 17-31. CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Figure 17-32. L3 Cache Allocation Technology and CDP Enumeration

M
B
A

L
2

L
3

4 3 2 1 0

EBX

31
CPUID.(EAX=10H, ECX=0) Output: (EAX: Reserved; ECX: Reserved; EDX: Reserved)

Reserved

01631

CPUID.(EAX=10H, ECX=ResID=1) Output:

EDX

ECX
031

Reserved

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_MAX

0531
EAX

4

Reserved CBM_LEN

12

CDP

17-58 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates L3 Code and Data Prioritization Technology is
supported (see Section 17.19.5). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 17-33. The specific CAT
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2]: If 1, indicates L2 Code and Data Prioritization Technology is
supported (see Section 17.19.6). Other bits of CPUID.(EAX=10H, ECX=2):ECX are reserved.

— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature
may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnec-
essary thread migrations across processor cores in order to avoid excessive time spent warming up processor
caches after a migration. In general, for best performance, minimize thread migration and COS migration across
processor logical threads and processor cores.

Figure 17-33. L2 Cache Allocation Technology

01631

CPUID.(EAX=10H, ECX=ResID=2) Output:

EDX

ECX
031

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_MAX

0531
EAX

4

Reserved CBM_LEN

Reserved

CDP

12

Vol. 3B 17-59

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.4.3 Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see
Section 17.19.4.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported
range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H,
ECX=0):EAX[31:1], for instance, ‘L2’ or ‘L3’ cache.

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form
IA32_resourceType_MASK_n:
• From 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource

types. The first supported resourceType is 'L3', corresponding to the L3 cache in a platform. The MSRs range
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service.

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H
through 0D4FH (inclusive).

Figure 17-34 and Figure 17-35 provide an overview of the relevant registers.

All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (COS) using the
IA32_PQR_ASSOC MSR as described in Chapter 17, “Class of Service to Cache Mask Association: Common Across
Allocation Features”.

17.19.4.4 Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread

Figure 17-34. IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

Figure 17-35. IA32_L2_MASK_n MSRs

01063

RMID

9

Reserved IA32_PQR_ASSOC

IA32_L3_MASK_n

03163

Reserved IA32_L3_MASK_0

32

Bit_Mask

31

COS

....
03163

Reserved

32

Bit_Mask

IA32_L2_MASK_n

03163

Reserved IA32_L2_MASK_0

32

Bit_Mask

....
03163

Reserved

32

Bit_Mask

17-60 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and
Figure 17-34 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor.

Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency.

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =(
CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.
In all cases, code and data masks for L2 and L3 CDP should be programmed with at least one bit set.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the
enforcement feature by default or for legacy operating systems and software.

See Section 17.19.7, “Introduction to Memory Bandwidth Allocation” for important COS programming consider-
ations including maximum values when using CAT and CDP.

17.19.5 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology
L3 CDP is an extension of L3 CAT. The presence of the L3 CDP feature is enumerated via CPUID.(EAX=10H,
ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H,
ECX=1):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-36. The bit field
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence, all logical processors are
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP. The scope
of the IA32_L3_QOS_CFG MSR is defined to be the same scope as the L3 cache (e.g., typically per processor
socket). Refer to Section 17.19.7 for software considerations while enabling or disabling L3 CDP.

17.19.5.1 Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. The re-mapping is shown in Table 17-19.

Figure 17-36. Layout of IA32_L3_QOS_CFG

0263 1

Reserved

IA32_L3_QOS_CFG
3

L3 CDP Enable

Vol. 3B 17-61

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Table 17-19. Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control
over data fill location and one mask enabling control over code placement. A variety of overlapped and isolated
mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length
of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks
on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001,
0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of
invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0).

17.19.6 Code and Data Prioritization (CDP): Enumerating and Enabling L2 CDP Technology
L2 CDP is an extension of the L2 CAT feature. The presence of the L2 CDP feature is enumerated via
CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] (see Figure 17-33). Most of the CPUID.(EAX=10H, ECX=2) sub-leaf
data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT specifies the
maximum COS applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to
(CPUID.(EAX=10H, ECX=2):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=2):ECX.CDP[bit 2] =1, the processor supports L2 CDP and provides a new MSR
IA32_L2_QOS_CFG at address 0C82H. The layout of IA32_L2_QOS_CFG is shown in Figure 17-37. The bit field
definition of IA32_L2_QOS_CFG are:
• Bit 0: L2 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code

Figure 17-37. Layout of IA32_L2_QOS_CFG

0263 1

Reserved

IA32_L2_QOS_CFG
3

L2 CDP Enable

17-62 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

IA32_L2_QOS_CFG default values are all 0s at RESET, and the mask MSRs are all 1s. Hence all logical processors
are initialized in COS0 allocated with the entire L2 available and with CDP disabled, until software programs CAT
and CDP. The IA32_L2_QOS_CFG MSR is defined at the same scope as the L2 cache, typically at the module level
for Intel Atom processors for instance. In processors with multiple modules present it is recommended to program
the IA32_L2_QOS_CFG MSR consistently across all modules for simplicity.

17.19.6.1 Mapping Between L2 CDP Masks and L2 CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per
COS. This remapping is the same as the remapping shown in Table 17-19 for L3 CDP, but for the L2 MSR block
(IA32_L2_QOS_MASK_n) instead of the L3 MSR block (IA32_L3_QOS_MASK_n). The same code / data mask
mapping algorithm applies to remapping the MSR block between code and data masks.

As with L3 CDP, when L2 CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling
programmatic control over data fill location and one mask enabling control over code placement. A variety of over-
lapped and isolated mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions for L2 CDP remain the same as for L2 CAT. Capacity masks must be formed of contiguous
set bits, with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As
examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF,
0x00F0, 0x0001, 0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or
disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate
#GP(0).

17.19.6.2 Common L2 and L3 CDP Programming Considerations
Before enabling or disabling L2 or L3 CDP, software should write all 1's to all of the corresponding CAT/CDP masks
to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs for the L3 CAT feature). When enabling
CDP, software should also ensure that only COS number which are valid in CDP operation is used, otherwise unde-
fined behavior may result. For instance in a case with 16 CAT COS, since COS are reduced by half when CDP is
enabled, software should ensure that only COS 0-7 are in use before enabling CDP (along with writing 1's to all
mask bits before enabling or disabling CDP).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled,
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should
consider resetting all threads to COS[0] before enabling or disabling CDP.

17.19.6.3 Cache Allocation Technology Dynamic Configuration
All Resource Director Technology (RDT) interfaces including the IA32_PQR_ASSOC MSR, CAT/CDP masks, MBA
delay values and CQM/MBM registers are accessible and modifiable at any time during execution using
RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the
following conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in

CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H,

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a COS value in IA32_PQR_ASSOC.COS outside of the lower half of the COS space
will cause undefined performance impact to code and data fetches due to MSR space re-indexing into code/data
masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently.

Vol. 3B 17-63

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.19.6.4 Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some
advanced power management features such as C-states which may shrink or power off various caches within the
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C.

If software requires differentiation between threads but not absolute determinism then in many cases it is possible
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to
remain in the cache. If differentiation between threads is the goal of system software then this model allows
substantial power savings while continuing to deliver performance differentiation. If system software needs
optimal determinism then power saving modes which flush portions of the caches and power them off should be
disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents
are saved across package C-state entry/exit and are not lost.

17.19.6.5 Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of
SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-
determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power
management practices that affect CAT operation.

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon
entering SMM, and switching back to the previously running COS upon exit.

17.19.6.6 Associating Threads with CAT/CDP Classes of Service
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The
same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP
is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The
mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled,

— Two mask sets exist for each COS number, one for code, one for data.

— Masks for code/data are interleaved in the MSR address space (see Table 17-19).

17-64 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7 Introduction to Memory Bandwidth Allocation
The Memory Bandwidth Allocation (MBA) feature provides indirect and approximate control over memory band-
width available per-core, and was introduced on the Intel Xeon Processor Scalable Family. This feature provides a
method to control applications which may be over-utilizing bandwidth relative to their priority in environments such
as the data-center.

The MBA feature uses existing constructs from the Resource Director Technology (RDT) feature set including
Classes of Service (CLOS). A given CLOS used for L3 CAT for instance means the same thing as a CLOS used for
MBA. Infrastructure such as the MSR used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and
some elements of the CPUID enumeration (such as CPUID leaf 10H) are shared.
• The high-level implementation of Memory Bandwidth Allocation is shown in Figure 17-38.

As shown in Figure 17-38 the MBA feature introduces a programmable request rate controller between the cores
and the high-speed interconnect, enabling indirect control over memory bandwidth for cores over-utilizing band-
width relative to their priority. For instance, high-priority cores may be run un-throttled, but lower priority cores
generating an excessive amount of traffic may be throttled to enable more bandwidth availability for the high-
priority cores.

Since MBA uses a programmable rate controller between the cores and the interconnect, higher-level shared
caches and memory controller, bandwidth to these caches may also be reduced, so care should be taken to throttle
only bandwidth-intense applications which do not use the off-core caches effectively.

The throttling values exposed by MBA are approximate, and are calibrated to specific traffic patterns. As work-load
characteristics vary, the throttling values provided may affect each workload differently. In cases where precise
control is needed, the Memory Bandwidth Monitoring (MBM) feature can be used as input to a software controller
which makes decisions about the MBA throttling level to apply.

Enumeration and configuration details are discussed below followed by usage model considerations.

Figure 17-38. A High-Level Overview of the MBA Feature

Shared L3 Cache – With CAT Cache space available to
high-priority application
Cache space available to
low-priority application

High-Speed Interconnect

Core[n]

Private L2
Programmable
Request Rate

Controller

Core[0]

Private L2
Programmable
Request Rate

Controller

Chip Multiprocessor Platform

Memory
Controller

New MBA Feature

...

Vol. 3B 17-65

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7.1 Memory Bandwidth Allocation Enumeration
Similar to other RDT features, enumeration of the presence and details of the MBA feature is provided via a sub-
leaf of the CPUID instruction.

Key components of the enumeration are as follows.
• Support for the MBA feature on the processor, and if MBA is supported, the following details:

— Number of supported Classes of Service (CLOS) for the processor.

— The maximum MBA delay value supported (which also implicitly provides a definition of the granularity).

— An indication of whether the delay values which can be programmed are linearly spaced or not.

The presence of any of the RDT features which enable control over shared platform resources is enumerated by
executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15]
reports 1, the processor supports software control over shared processor resources. Software may then use CPUID
leaf 10H to enumerate additional details on the specific controls provided.

Through CPUID leaf 10H software may determine whether MBA is supported on the platform. Specifically, as shown
in Figure 17-31, bit 3 of the EBX register indicates whether MBA is supported on the processor, and the bit position
(3) constitutes a Resource ID (ResID) which allows enumeration of MBA details. For instance, if bit 3 is supported
this implies the presence of CPUID.10H.[ResID=3] as shown in Figure 17-38 which provides the following details.
• CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] reports the maximum MBA throttling value supported, minus

one. For instance, a value of 89 indicates that a maximum throttling value of 90 is supported. Additionally, in
cases where a linear interface (see below) is supported then one hundred minus the maximum throttling value
indicates the granularity, 10% in this example.

• CPUID.(EAX=10H, ECX=ResID=3):EBX is reserved.
• CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports whether the response of the delay values is linear (see

text).
• CPUID.(EAX=10H, ECX=ResID=3):EDX[15:0] reports the number of Classes of Service (CLOS) supported for

the feature (minus one). For instance, a reported value of 15 implies a maximum of 16 supported MBA CLOS.

The number of CLOS supported for the MBA feature may or may not align with other resources such as L3 CAT. In
cases where the RDT features support different numbers of CLOS the lowest numerical CLOS support the common
set of features, while higher CLOS may support a subset. For instance, if L3 CAT supports 8 CLOS while MBA
supports 4 CLOS, all 8 CLOS would have L3 CAT masks available for cache control, but the upper 4 CLOS would not
offer MBA support. In this case the upper 4 CLOS would not be subject to any throttling control. Software can
manage supported resources / CLOS in order to either have consistent capabilities across CLOS by using the
common subset or enable more flexibility by selectively applying resource control where needed based on careful
CLOS and thread mapping. In all cases, CLOS[0] supports all RDT resource control features present on the plat-
form.

Discussion on the interpretation and usage of the MBA delay values is provided in Section 17.19.7.2 on MBA config-
uration.

17-66 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

17.19.7.2 Memory Bandwidth Allocation Configuration
The configuration of MBA takes consists of two processes once enumeration is complete.
• Association of threads to Classes of Service (CLOS) - accomplished in a common fashion across RDT features

as described in Section 17.19.7.1 via the IA32_PQR_ASSOC MSR. As with features such as L3 CAT, software
may update the CLOS field of the PQR MSR at context swap time in order to maintain the proper association of
software threads to Classes of Service on the hardware. While logical processors may each be associated with
independent CLOS, see Section 17.19.7.3 for important usage model considerations (initial versions of the MBA
feature select the maximum delay value across threads).

• Configuration of the per-CLOS delay values, accomplished via the IA32_L2_QoS_Ext_BW_Thrtl_n MSR set
shown in Table 17-20.

The MBA delay values which may be programmed range from zero (implying zero delay, and full bandwidth avail-
able) to the maximum (MBA_MAX) specified in CPUID as discussed in Section 17.19.7.1. The throttling values are
approximate and do not sum to 100% across CLOS, rather they should be viewed as a maximum bandwidth "cap"
per-CLOS.

Software may select an MBA delay value then write the value into one or more of the
IA32_L2_QoS_Ext_BW_Thrtl_n MSRs to update the delay values applied for a specific CLOS. As shown in Table
17.20 the base address of the MSRs is at D50H, and the range corresponds to the maximum supported CLOS from
CPUID.(EAX=10H, ECX=ResID=1):EDX[15:0] as described in Section 17.19.7.1. For instance, if 16 CLOS are
supported then the valid MSR range will extend from D50H through D5F inclusive.

Figure 17-39. CPUID.(EAX=10H, ECX=3H) MBA Feature Details Identification

11 0

EAX

31
CPUID.(EAX = 10H, ECX = ResID = 3) Output:

Reserved

EBX Reserved

ECX Reserved

EDX Reserved

MBA_MAX-1

 031

31

31

 2 1 0

16 15 0

MBA_Lin_Rsp

COS_MAX

Vol. 3B 17-67

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Table 17-20. MBA Delay Value MSRs

The definition for the MBA delay value MSRs is provided in Figure 17.39. The lower 16 bits are used for MBA delay
values, and values from zero to the maximum from the CPUID MBA_MAX-1 value are supported. Values outside
this range will generate #GP(0).

If linear input throttling values are indicated by CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] then values from
zero through the MBA_MAX field from CPUID.(EAX=10H, ECX=ResID=3):EAX[11:0] are supported as inputs. In
the linear mode the input precision is defined as 100-(MBA_MAX). For instance, if the MBA_MAX value is 90, the
input precision is 10%. Values not an even multiple of the precision (e.g., 12%) will be rounded down (e.g., to 10%
delay applied).
• If linear values are not supported (CPUID.(EAX=10H, ECX=ResID=3):ECX[bit 2] = 0) then input delay values

are powers-of-two from zero to the MBA_MAX value from CPUID. In this case any values not a power of two will
be rounded down the next nearest power of two.

Note that the throttling values provided to software are calibrated through specific traffic patterns, however as
workload characteristics may vary the response precision and linearity of the delay values will vary across
products, and should be treated as approximate values only.

17.19.7.3 Memory Bandwidth Allocation Usage Considerations
As the memory bandwidth control that MBA provides is indirect and approximate, using the feature with a closed-
loop controller to also monitor memory bandwidth and how effectively the applications use the cache (via the
Cache Monitoring Technology feature) may provide additional value. This approach also allows administrators to
provide a band-width target or set-point which a controller could use to guide MBA throttling values applied, and
this allows bandwidth control independent of the execution characteristics of the application.

As control is provided per processor core (the max of the delay values of the per-thread CLOS applied to the core)
care should be taking in scheduling threads so as to not inadvertently place a high-priority thread (with zero
intended MBA throttling) next to a low-priority thread (with MBA throttling intended), which would lead to inadver-
tent throttling of the high-priority thread.

Delay Value MSR Address

IA32_L2_QoS_Ext_BW_Thrtl_0 D50H
IA32_L2_QoS_Ext_BW_Thrtl_1 D51H
IA32_L2_QoS_Ext_BW_Thrtl_2 D52H
....

IA32_L2_QoS_Ext_BW_Thrtl_'COS_MAX' D50H + COS_MAX from CPUID.10H.3

Figure 17-40. IA32_L2_QoS_Ext_BW_Thrtl_n MSR Definition

16 15 063
Base MSR Address = 0xD50

IA32_L2_QOS_Ext_BW_Thrtl_n MSR
Reserved MBA Delay Value

17-68 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

18.Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

Change to chapter: Updated FREEZE_WHILE_SMM name.

Vol. 3B 18-1

CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring
Unit).

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection
of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based on
Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and perfor-
mance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architectural
performance events and a set of non-architectural performance events. Newer Intel processor generations support
enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or interrupt-based event
sampling usage. These events are non-architectural and vary from one processor model to another. They are
similar to those available in Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are discussed in Section 18.6.3,
“Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture).” Non-architectural events for a
given microarchitecture cannot be enumerated using CPUID; and they are listed in Chapter 19, “Performance
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available
events. The visible behavior of architectural performance events is consistent across processor implementations.
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events
are discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Processors and Intel® Xeon® Processors)”

• Section 18.3.1, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

• Section 18.3.2, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”

• Section 18.3.3, “Intel® Xeon® Processor E7 Family Performance Monitoring Facility”

• Section 18.3.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge”

• Section 18.3.5, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.6, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

• Section 18.3.7, “5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility”

18-2 Vol. 3B

PERFORMANCE MONITORING

• Section 18.3.8, “6th Generation Intel® Core™ Processor and 7th Generation Intel® Core™ Processor
Performance Monitoring Facility”

— Section 18.4, “Performance monitoring (Intel® Xeon™ Phi Processors)”

• Section 18.4.1, “Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring”

— Section 18.5, “Performance Monitoring (Intel® Atom™ Processors)”

• Section 18.5.1, “Performance Monitoring (45 nm and 32 nm Intel® Atom™ Processors)”

• Section 18.5.2, “Performance Monitoring for Silvermont Microarchitecture”

• Section 18.5.3, “Performance Monitoring for Goldmont Microarchitecture”

• Section 18.5.4, “Performance Monitoring for Goldmont Plus Microarchitecture”

— Section 18.6, “Performance Monitoring (Legacy Intel Processors)”

• Section 18.6.1, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

• Section 18.6.2, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

• Section 18.6.3, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

• Section 18.6.4, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture”

• Section 18.6.4.5, “Counting Clocks on systems with Intel Hyper-Threading Technology in
Processors Based on Intel NetBurst® Microarchitecture”

• Section 18.6.5, “Performance Monitoring and Dual-Core Technology”

• Section 18.6.6, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache”

• Section 18.6.7, “Performance Monitoring on L3 and Caching Bus Controller Sub-Systems”

• Section 18.6.8, “Performance Monitoring (P6 Family Processor)”

• Section 18.6.9, “Performance Monitoring (Pentium Processors)”

— Section 18.7, “Counting Clocks”

— Section 18.8, “IA32_PERF_CAPABILITIES MSR Enumeration”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a
mechanism for software to enumerate performance events and provides configuration and counting facilities for
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indicate
the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the Airmont
microarchitecture support the same performance monitoring capabilities as those based on the Silvermont micro-
architecture.

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell microar-
chitectures support version ID 1, 2, and 3. Intel processors based on the Skylake and Kaby Lake microarchitectures
support versionID 4.

Vol. 3B 18-3

PERFORMANCE MONITORING

Next generation Intel Atom processors are based on the Goldmont microarchitecture. Intel processors based on
the Goldmont microarchitecture support versionID 4.

18.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available in a logical processor (each IA32_PERFEVTSELx MSR is

paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx
• Number of architectural performance monitoring events supported in a logical processor

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-L,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version iden-
tifier is greater than zero, architectural performance monitoring capability is supported. Software queries the
CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

18.2.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and performance
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8].
• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each

performance event select register is paired with a corresponding performance counter in the 0C1H address
block.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and
the high-order bits are sign-extended from the value of bit 31.

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

18-4 Vol. 3B

PERFORMANCE MONITORING

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field
is defined architecturally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural
performance event, its corresponding UMASK value defines a specific microarchitectural condition.
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished.
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be
serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by
deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

Figure 18-1. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

Vol. 3B 18-5

PERFORMANCE MONITORING

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter
is not incremented.
This mask is intended for software to characterize microarchitectural conditions that can count multiple
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with
multiple occurrences.

18.2.1.2 Pre-defined Architectural Performance Events
Table 18-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all the predefined architectural
performance events (Table 18-1). The non-zero bits in CPUID.0AH:EBX indicate the events that are not available.

The behavior of each architectural performance event is expected to be consistent on all processors that support
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter
does not advance in the following conditions:

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter 14, “Power and
Thermal Management”)

The performance counter for this event counts across performance state transitions using different core clock
frequencies

• Instructions Retired — Event select C0H, Umask 00H
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction
are not counted.
This event does not increment under VM-exit conditions. Counters continue counting during hardware
interrupts, traps, and inside interrupt handlers.

Table 18-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

18-6 Vol. 3B

PERFORMANCE MONITORING

• UnHalted Reference Cycles — Event select 3CH, Umask 01H
This event counts reference clock cycles at a fixed frequency while the clock signal on the core is running. The
event counts at a fixed frequency, irrespective of core frequency changes due to performance state transitions.
Processors may implement this behavior differently. Current implementations use the core crystal clock, TSC or
the bus clock. Because the rate may differ between implementations, software should calibrate it to a time
source with known frequency.

• Last Level Cache References — Event select 2EH, Umask 4FH
This event counts requests originating from the core that reference a cache line in the last level on-die cache.
The event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but
may exclude cache line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level on-die cache. The event count may
include speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache
line fills due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch
instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op
of a branch instruction in the architectural path of execution and experienced misprediction in the branch
prediction hardware.
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to
estimate performance differences is not recommended.

NOTE
Programming decisions or software precisians on functionality should not be based on the event
values or dependent on the existence of performance monitoring events.

18.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK
field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do
not require any UMASK.

Vol. 3B 18-7

PERFORMANCE MONITORING

• Simplified event programming — Most frequent operation in programming performance events are
enabling/disabling event counting and checking the status of counter overflows. Architectural performance
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field interface
in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR records with
reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only the
legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on PMI
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2,
only the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on
PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a
fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function PMC.
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

Figure 18-2. Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

18-8 Vol. 3B

PERFORMANCE MONITORING

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting
is enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the
AND’ed results is true; counting is disabled when the result is false.

The behavior of the fixed function performance counters supported by architectural performance version 2 is
expected to be consistent on all processors that support those counters, and is defined as follows.

Figure 18-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63

Vol. 3B 18-9

PERFORMANCE MONITORING

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0,
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

Table 18-2. Association of Fixed-Function Performance Counters with Architectural Performance Events

Fixed-Function Performance Counter Address Event Mask Mnemonic Description

MSR_PERF_FIXED_CTR0/IA32_FIXED_CTR0 309H INST_RETIRED.ANY This event counts the number of
instructions that retire execution. For
instructions that consist of multiple
uops, this event counts the
retirement of the last uop of the
instruction. The counter continues
counting during hardware interrupts,
traps, and in-side interrupt handlers.

MSR_PERF_FIXED_CTR1//IA32_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THREAD

CPU_CLK_UNHALTED.CORE

The CPU_CLK_UNHALTED.THREAD
event counts the number of core
cycles while the logical processor is
not in a halt state.

If there is only one logical processor
in a processor core,
CPU_CLK_UNHALTED.CORE counts
the unhalted cycles of the processor
core.

The core frequency may change from
time to time due to transitions
associated with Enhanced Intel
SpeedStep Technology or TM2. For
this reason this event may have a
changing ratio with regards to time.

MSR_PERF_FIXED_CTR2//IA32_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_TSC This event counts the number of
reference cycles at the TSC rate
when the core is not in a halt state
and not in a TM stop-clock state. The
core enters the halt state when it is
running the HLT instruction or the
MWAIT instruction. This event is not
affected by core frequency changes
(e.g., P states) but counts at the same
frequency as the time stamp counter.
This event can approximate elapsed
time while the core was not in a halt
state and not in a TM stopclock state.

18-10 Vol. 3B

PERFORMANCE MONITORING

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

18.2.3 Architectural Performance Monitoring Version 3
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e. a processor core
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• AnyThread counting for processor core supporting two or more logical processors. The interface that supports

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in Figure
18-6.

Figure 18-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfDSBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

Vol. 3B 18-11

PERFORMANCE MONITORING

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3 for
processor core comprising of two or more logical processors. When set to 1, it enables counting the associated
event conditions (including matching the thread’s CPL with the OS/USR setting of IA32_PERFEVTSELx)
occurring across all logical processors sharing a processor core. When bit 21 is 0, the counter only increments
the associated event conditions (including matching the thread’s CPL with the OS/USR setting of
IA32_PERFEVTSELx) occurring in the logical processor which programmed the IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is
shown.

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 18-8 and
Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 18-7. IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

18-12 Vol. 3B

PERFORMANCE MONITORING

Note: The number of general-purpose performance monitoring counters (i.e. N in Figure 18-9) can vary across
processor generations within a processor family, across processor families, or could be different depending on
the configuration chosen at boot time in the BIOS regarding Intel Hyper Threading Technology, (e.g. N=2 for 45
nm Intel Atom processors; N =4 for processors based on the Nehalem microarchitecture; for processors based
on the Sandy Bridge microarchitecture, N = 4 if Intel Hyper Threading Technology is active and N=8 if not
active).

Figure 18-8. Layout of Global Performance Monitoring Control MSR

Figure 18-9. Global Performance Monitoring Overflow Status and Control MSRs

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

Global Enable Controls IA32_PERF_GLOBAL_CTRL

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfDSBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..

ClrOvfUncore

OvfUncore

61

Vol. 3B 18-13

PERFORMANCE MONITORING

18.2.3.1 AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While AnyThread counting provides some benefits in
simple software environments of an earlier era, the evolution contemporary software environments introduce
certain concepts and pre-requisites that AnyThread counting does not comply with.

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX
(see Chapter 23, “Introduction to Virtual-Machine Extensions”) where each VM represents a domain separated
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtualiza-
tion or requiring domain separation.

Specifically, Intel recommends VMM:
• configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in

VMX non-Root operation (see CHAPTER 24 for additional information),
• clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits

and VM entries (see CHAPTER 24, CHAPTER 26, and CHAPTER 27).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted (see relevant sections of Chapter 19, “Performance Monitoring Events”).

18.2.4 Architectural Performance Monitoring Version 4
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well as
capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation interface
that replaces the legacy semantic behavior but retains the same control interface in
IA32_DEBUGCTL.Freeze_LBRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the following
enhancement:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 18.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI and

IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 18.2.4.1. Legacy semantics of Freeze_LBRs_On_PMI
and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and
read-only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 18.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

18.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance monitoring
version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serve as an read-only control to enable
capturing data in the LBR stack. To enable capturing LBR records, the following expression must hold with
architectural perfmon version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ)) =1

18-14 Vol. 3B

PERFORMANCE MONITORING

• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the
performance counters are frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable
programmable performance counters and fixed counters in the core PMU. To enable counting with the
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for programmable counter ‘n’, or

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI
handler to use IA32_DEBUGCTL.Freeza_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 17-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary
interface to control all performance counters of the logical processor.

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting
IA32_PERF_GLOBAL_CTRL as the very last step to commence the overall operation after configuring the individual
counter registers, controls and PEBS facility. This does not only assure atomic monitoring but also avoids unneces-
sary complications (e.g. race conditions) when software attempts to change the core PMU configuration while some
counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor Trace
and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when a PMI
occurred due to a ToPA entry memory buffer was completely filled.

IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring oper-
ations with other side-band activities, which apply Intel SGX on processors that support SGX (For additional infor-
mation about Intel SGX, see “Intel® Software Guard Extensions Programming Reference”.):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured

performance counters (i.e. IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was
cleared).

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of
IA32_PERF_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

Figure 18-10. IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4

Reserved

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow

TraceToPAPMI

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

OvfUncore

61

IA32_PMC1 Overflow

60 59 58 55

ASCI

LBR_Frz
CTR_Frz

Vol. 3B 18-15

PERFORMANCE MONITORING

18.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in
IA32_PERF_GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with
architectural performance monitoring version 4, software can manage the overflow and other indicators in
IA32_PERF_GLOBAL_STATUS using separate interfaces to set or clear individual bits.

The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by
IA32_PERF_GLOBAL_STATUS_RESET (see Figure 18-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides
additional bit fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 18.2.4.1.

The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

18.2.4.3 IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s
performance monitoring facilities. The IA32_MISC_ENABLE.PERFMON_AVAILABLE[bit 7] interface could not serve

Figure 18-11. IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4

Figure 18-12. IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

Reserved

62

Clr IA32_FIXED_CTR2 Ovf
Clr IA32_FIXED_CTR1 Ovf
Clr IA32_FIXED_CTR0 Ovf

Clr TraceToPAPMI

.. 1 0

Clr IA32_PMC0 Ovf

313233343563

Clr CondChgd
Clr OvfDSBuffer

..N

Clr Ovf
Clr IA32_PMC(N-1) Ovf

Clr OvfUncore

61

Clr IA32_PMC1 Ovf

60 59 58 55

Clr ASCI

Clr LBR_Frz
Clr CTR_Frz

Reserved

62

Set IA32_FIXED_CTR2 Ovf
Set IA32_FIXED_CTR1 Ovf
Set IA32_FIXED_CTR0 Ovf

Set TraceToPAPMI

.. 1 0

Set IA32_PMC0 Ovf

313233343563

Set CondChgd
Set OvfDSBuffer

..N

Set Ovf
Set IA32_PMC(N-1) Ovf

Set OvfUncore

61

Set IA32_PMC1 Ovf

60 59 58 55

Set ASCI

Set LBR_Frz
Set CTR_Frz

18-16 Vol. 3B

PERFORMANCE MONITORING

the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1, proposed
a cooperative sharing protocol that is voluntary for participating software agents.

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simplifies
the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 18-13.

The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by a
profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of

(IA32_PERFEVTSEL0[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of

(IA32_PERFEVTSEL1[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of

(IA32_PERFEVTSEL2[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of

(IA32_PERFEVTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].
• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[1:0] != 0).
• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[5:4] != 0).
• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[9:8] != 0).
• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 63]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8].

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2.

— Any IA32_PEBS_ENABLES bit which enables PEBS for a general-purpose or fixed-function performance
counter.

1. Available at http://www.intel.com/sdm

Figure 18-13. IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4

Reserved

PMI InUse
FIXED_CTR2 InUse
FIXED_CTR1 InUse

.. 1 0

PERFEVTSEL0 InUse

313233343563 ..N

 InUse
PERFEVTSEL(N-1) InUse

PERFEVTSEL1 InUse
FIXED_CTR0 InUse

N = CPUID.0AH:EAX[15:8]

Vol. 3B 18-17

PERFORMANCE MONITORING

18.2.5 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 18-63.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias
address starting at 4C1H for IA32_A_PMC0.

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] ← EDX[COUNTERWIDTH-33:0]);
IA32_PMCi[31:0] ← EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

18.3 PERFORMANCE MONITORING (INTEL® CORE™ PROCESSORS AND INTEL®
XEON® PROCESSORS)

18.3.1 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem

Intel Core i7 processor family2 supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.3) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is based
on Intel® microarchitecture code name Nehalem, and provides four general-purpose performance counters
(IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2) in the processor core.

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-29.
Non-architectural performance monitoring events fall into two broad categories:
• Performance monitoring events in the processor core: These include many events that are similar to

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally,
there are several enhancements in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the
physical processor package. The off-core sub-systems in the physical processor package is loosely referred to
as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor
cores in the physical processor package. It provides additional performance monitoring facility outside of
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread
qualification using bit 21 of IA32_PERFEVTSELx MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.3.

2. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code name Nehalem; the performance
monitoring facilities described in this section generally also apply.

18-18 Vol. 3B

PERFORMANCE MONITORING

18.3.1.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs,

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of the
four performance counter can support processor event based sampling (PEBS) and thread-qualification of
architectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel micro-
architecture code name Nehalem has been enhanced to include new data format to capture additional infor-
mation, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency
facility in processors based on Intel microarchitecture code name Nehalem. This field measures the load latency
from load's first dispatch of till final data writeback from the memory subsystem. The latency is reported for
retired demand load operations and in core cycles (it accounts for re-dispatches). This facility is used in
conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

18.3.1.1.1 Processor Event Based Sampling (PEBS)

All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record to
be captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS
record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based
on Intel microarchitecture code name Nehalem is shown in Figure 18-15.

Figure 18-14. IA32_PERF_GLOBAL_STATUS MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 00000000_00000000H

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]

Vol. 3B 18-19

PERFORMANCE MONITORING

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 18-63).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-63). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-3, and each field in the PEBS record is 64 bits long. The PEBS record
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

Figure 18-15. Layout of IA32_PEBS_ENABLE MSR

Table 18-3. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

18-20 Vol. 3B

PERFORMANCE MONITORING

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-32e
mode are written to zero.

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is indi-
cated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS assist
occurred. This value is written so software can determine which counters overflowed when this PEBS record was
written. Note that this field indicates the overflow status for all counters, regardless of whether they were
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events
are listed in Table 18-68. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-16.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer

allocated by software. The processor reads this field to determine the base address of the PEBS buffer. Software
should allocate this memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the
beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first
PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond
the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to
continue capturing PEBS records.

50H R8 A8H Latency value (core cycles)

Table 18-3. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

Vol. 3B 18-21

PERFORMANCE MONITORING

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be
modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero
(assuming IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger.
PEBS hardware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1
transition of the counter). At this point, a PEBS assist will be undertaken by the processor.

Figure 18-16. PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset

18-22 Vol. 3B

PERFORMANCE MONITORING

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.3.1.2). It is
possible for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the
processor core. Software must check core and uncore status registers to determine the exact origin of counter
overflow interrupts.

18.3.1.1.2 Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS
buffer, see Table 18-3. This field measures the load latency from load's first dispatch of till final data writeback from
the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it accounts
for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 18-3, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in

processor core clock domain.

Vol. 3B 18-23

PERFORMANCE MONITORING

• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The
encoding is shown in Table 18-4. In the descriptions local memory refers to system memory physically
attached to a processor package, and remote memory referrals to system memory physically attached to
another processor package.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-17.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they
are ignored. The minimum value that may be programmed in this field is 3.

Table 18-4. Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where modified copies were found. (HITM).

07H1

NOTES:
1. Bit 7 is supported only for processor with CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is

reserved.

Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and was serviced by another
core with a cross core snoop where modified copies found

08H L3 MISS. Local homed requests that missed the L3 cache and was serviced by forwarded data following a cross
package snoop where no modified copies found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation

0FH The request was to un-cacheable memory.

Figure 18-17. Layout of MSR_PEBS_LD_LAT MSR

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H

18-24 Vol. 3B

PERFORMANCE MONITORING

18.3.1.1.3 Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only
one off-core response configuration MSR. Table 18-5 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-18. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

Table 18-5. Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

Figure 18-18. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Table 18-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

Vol. 3B 18-25

PERFORMANCE MONITORING

18.3.1.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in the physical processor
package that are shared by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache,
Intel QuickPath Interconnect link logic, and integrated memory controller. The performance monitoring facilities
inside the uncore operates in the same clock domain as the uncore (U-clock domain), which is usually different
from the processor core clock domain. The uncore performance monitoring facilities described in this section apply
to Intel Xeon processor 5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH
(see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4). An overview of the uncore performance monitoring facilities is described separately.

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global uncore performance counter
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the
rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in
the PCI configuration space register at offset C0H under device number 0 and Function 0.

18.3.1.2.1 Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function coun-
ters in the uncore. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is
shared by four processor cores in a physical package.
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter

MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes,
WC or non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions
required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by
another core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by
another core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data
following a cross package snoop where no modified copies found. (Remote home requests are not
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 18-6. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition (Contd.)

Bit Name Offset Description

18-26 Vol. 3B

PERFORMANCE MONITORING

• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive
an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow
is enabled by setting IA32_DEBUGCTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in
MSR_UNCORE_PERF_GLOBAL_CTRL upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 18-20 shows the
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request.
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register

has changed state.

Figure 18-19. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 00000000_00000000H

Vol. 3B 18-27

PERFORMANCE MONITORING

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the
UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global
status register are cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit
position in this register has no effect on the uncore PMU hardware.

Figure 18-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter
MSR_UNCORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing
a value other than 1 is ignored.

Figure 18-20. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 18-21. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 00000000_00000000H

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 00000000_00000000H

18-28 Vol. 3B

PERFORMANCE MONITORING

18.3.1.2.2 Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-22 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero.
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 18-23 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

Figure 18-22. Layout of MSR_UNCORE_PERFEVTSELx MSRs

Figure 18-23. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow
RESET Value — 00000000_00000000H

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 00000000_00000000H

Vol. 3B 18-29

PERFORMANCE MONITORING

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter
(MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages.
The event logic unit can filter event counts to specific regions of code or transaction types incoming to the home
node logic.

18.3.1.2.3 Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit.
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 18-24.

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode.

— Bits 47:44 specify the QPI message classes.
Table 18-7 lists the encodings supported in the opcode field.

Figure 18-24. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address
RESET Value — 00000000_00000000H

Opcode

18-30 Vol. 3B

PERFORMANCE MONITORING

• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware.

— 100B: Count if only the address field matches.

— 010B: Count if only the opcode field matches.

— 110B: Count if either opcode field matches or the address field matches.

— 001B: Count only if both opcode and address field match.

— Other encoding are reserved.

18.3.1.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility
The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series are
significantly different The uncore performance monitoring facility consist of many distributed units associated with
individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of the
various box units of the uncore is shown in Figure 18-25.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple
counters within each box.

Table 18-7. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Vol. 3B 18-31

PERFORMANCE MONITORING

Table 18-8 summarizes the number MSRs for uncore PMU for each box.

The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the
uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple
counters within the same box, this is somewhat similar the “global control“ programming interface,
IA32_PERF_GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for
multiple counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

Figure 18-25. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-8. Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels

18-32 Vol. 3B

PERFORMANCE MONITORING

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 2, “Model-Specific Registers (MSRs)”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, Table 2-16 under the general
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL,

MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS,

MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL,

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_CTR,

MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_EVNT_SEL,

MSR_S0_PMON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. MSR_M0_PMON_TIMESTAMP,

MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500
Series Uncore Performance Monitoring Guide“.

18.3.2 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere

All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities,
and uncore PMU) described in Section 18.6.3 also apply to processors based on Intel® microarchitecture code
name Westmere.

Table 18-5 describes a non-architectural performance monitoring event (event code 0B7H) and associated
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore
response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors
based on Intel microarchitecture code name Westmere. The event code and event mask definitions of Non-archi-
tectural performance monitoring events are listed in Table 19-29.

The load latency facility is the same as described in Section 18.3.1.1.2, but added enhancement to provide more
information in the data source encoding field of each load latency record. The additional information relates to
STLB_MISS and LOCK, see Table 18-13.

18.3.3 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as
those supported in the Intel Xeon processor 5600 series3. The uncore subsystem in the Intel Xeon processor E7
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-25, with the additional capability that up to 10 C-Box units are
supported.

3. Exceptions are indicated for event code 0FH in Table 19-21; and valid bits of data source encoding field of each load
latency record is limited to bits 5:4 of Table 18-13.

Vol. 3B 18-33

PERFORMANCE MONITORING

Table 18-9 summarizes the number MSRs for uncore PMU for each box.

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in the “Intel®
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

18.3.4 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance moni-
toring capability with version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.3.1.1 and Section 18.6.3, with some differ-
ences and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-10.

Table 18-9. Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-10. Core PMU Comparison

Box
Intel® microarchitecture code
name Sandy Bridge

Intel® microarchitecture code
name Westmere Comment

of Fixed counters per
thread

3 3 Use CPUID to enumerate # of
counters.

of general-purpose
counters per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 18.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 Use CPUID to enumerate # of
counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based
Sampling (PEBS) Events

See Table 18-12. See Table 18-68. IA32_PMC4-IA32_PMC7 do
not support PEBS.

18-34 Vol. 3B

PERFORMANCE MONITORING

18.3.4.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number
performance counters/event select registers (See Section 18.2.1.1).

Figure 18-42 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN,
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer (see Figure 18-27). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has
occurred in the associated counter.

PEBS-Load Latency See Section 18.3.4.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding

PEBS-Precise Store Section 18.3.4.4.3 No

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended
request and response types.

MSR 1A6H and 1A7H, limited
response types.

Nehalem supports 1A6H
only.

Figure 18-26. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

Table 18-10. Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code
name Sandy Bridge

Intel® microarchitecture code
name Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3

Vol. 3B 18-35

PERFORMANCE MONITORING

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-28). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling.
• Reloading counter values to continue sampling.
• Disabling event counting or interrupt based sampling.

Figure 18-27. IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

Figure 18-28. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore

18-36 Vol. 3B

PERFORMANCE MONITORING

18.3.4.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each processor core implements eight
general-purpose counters. CPUID.0AH:EAX[15:8] will report either 4 or 8 depending specific processor’s product
features.

If a processor core is shared by two logical processors, each logical processors can access 4 counters (IA32_PMC0-
IA32_PMC3). This is the same as in the prior generation for processors based on Intel microarchitecture code name
Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose counters are visible, and
CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7 occupy MSR addresses 0C5H through 0C8H. Each
counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP.
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.3.4.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-width writes to the general-
purpose counters, IA32_PMCx. Support of full-width writes are enumerated by
IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 18.2.4).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results in a sign-extended 32-bit
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address IA32_A_PMCx
by testing IA32_PERF_CAPABILITIES[13].

18.3.4.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, similar to those offered in
prior generation, with several enhanced features. The key components and differences of PEBS facility relative to
Intel microarchitecture code name Westmere is summarized in Table 18-11.

Table 18-11. PEBS Facility Comparison

Box
Intel® microarchitecture code name
Sandy Bridge

Intel® microarchitecture
code name Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 18-29 Figure 18-15

PEBS record layout Physical Layout same as Table 18-3. Table 18-3 Enhanced fields at offsets 98H,
A0H, A8H.

PEBS Events See Table 18-12. See Table 18-68. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-4

PEBS-Precise Store Yes; see Section 18.3.4.4.3. No IA32_PMC3 only

PEBS-PDIR Yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Vol. 3B 18-37

PERFORMANCE MONITORING

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations.

18.3.4.4.1 PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 18-3, but the fields at offset 98H, A0H and
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load,

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field will contain three piece of

information (including an encoded value indicating the source which satisfied the load operation). The source
field encodings are detailed in Table 18-4. When precise store is enabled, this field will contain information
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel microarchitecture code name
Sandy Bridge is shown in Table 18-12.

Figure 18-29. Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

62

PS_EN (R/W)

18-38 Vol. 3B

PERFORMANCE MONITORING

18.3.4.4.2 Load Latency Performance Monitoring Facility

The load latency facility in Intel microarchitecture code name Sandy Bridge is similar to that in prior microarchitec-
ture. It provides software a means to characterize the average load latency to different levels of cache/memory
hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see
Table 18-3 and Section 18.3.4.4.1. This field measures the load latency from load's first dispatch of till final data
writeback from the memory subsystem. The latency is reported for retired demand load operations and in core
cycles (it accounts for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is

Table 18-12. PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

NOTES:
1. Only available on IA32_PMC1.

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

Vol. 3B 18-39

PERFORMANCE MONITORING

programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 00000001.00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the
hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-3. The specificity of Data Source entry at
offset A0H has been enhanced to report three pieces of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 18-17.

18.3.4.4.3 Precise Store Facility

Processors based on Intel microarchitecture code name Sandy Bridge offer a precise store capability that comple-
ments the load latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise
memory reference events with linear address information for both loads and stores can help programmers improve
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware
captures the linear address and other status information of the next store that retires. This information is then
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture precise store information.
• Complete the PEBS configuration steps.

Table 18-13. Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-4

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved

18-40 Vol. 3B

PERFORMANCE MONITORING

• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3
(IA32_PMC3) supports collection of precise store information.

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and
enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, A0H and A8H of Table 18-3.
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information.

18.3.4.4.4 Precise Distribution of Instructions Retired (PDIR)

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to
sample where performance bottleneck happened and to help identify its location in instruction address space. Even
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space.
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge include a facility referred to
as precise distribution of Instruction Retired (PDIR).

The PDIR facility mitigates the “skid” problem by providing an early indication of when the INST_RETIRED counter
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the counter
overflow thus eliminating skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and must use IA32_PMC1 with PerfEvtSel1 property
configured and bit 1 in the IA32_PEBS_ENABLE set to 1. INST_RETIRED.ALL is a non-architectural performance
event, it is not supported in prior generation microarchitectures. Additionally, on processors with CPUID
DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool that programs PDIR should quiesce the rest
of the programmable counters in the core when PDIR is active.

18.3.4.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-15 lists the event code, mask value and additional off-core configuration MSR that
must be programmed to count off-core response events using IA32_PMCx.

Table 18-14. Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set,
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a
locked access.

Reserved A8H Reserved

Vol. 3B 18-41

PERFORMANCE MONITORING

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-30 and Figure 18-31. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Table 18-15. Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)

Figure 18-30. Request_Type Fields for MSR_OFFCORE_RSP_x

Table 18-16. MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

18-42 Vol. 3B

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit and a valid response type
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x
allow an agent software to program numerous combinations that meet the above guideline, not all combinations
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Figure 18-31. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x

Table 18-17. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

RSPNS_SUPPLIER — Local

Vol. 3B 18-43

PERFORMANCE MONITORING

18.3.4.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx,
Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter
register, similar in style as those described in Section 18.3.1.2.2. The ARB unit in the uncore also provides its local
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit
are shown in Figure 18-32.

Table 18-18. MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-
line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-
line was in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.

Figure 18-32. Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event SelectCounter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H

18-44 Vol. 3B

PERFORMANCE MONITORING

The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local

uncore PMU counter, see Table 19-18.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to

MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1.
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control.

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software
must then write to bit 13 of IA32_DEBUGCTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI)

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request.

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable bit
(bit 29).

Figure 18-33. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0

Vol. 3B 18-45

PERFORMANCE MONITORING

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

18.3.4.6.1 Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-18 can collect performance characteristics of transac-
tions initiated by processor core. In that respect, they are similar to various sub-events in the
OFFCORE_RESPONSE family of performance events in the core PMU. Information such as data supplier locality
(LLC HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qualified on a per-thread
basis.

On the other hand, uncore performance event logic can not associate its counts with the same level of per-thread
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may
be less affected by artifacts, complex interactions and other factors.

18.3.4.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge-E. While the processor cores share the same microarchitecture as those of the Intel®
Xeon® Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor
series, the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the
Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.3.4.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in
Section 18.6.3 through Section 18.3.4.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response
Supplier Info field shown in Table 18-17 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown in
Table 18-20. Additionally, the are some small differences in the non-architectural performance monitoring events
(see Table 19-16).

Table 18-19. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-20
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed
Counter

N.A. N.A. 48 No Uncore

18-46 Vol. 3B

PERFORMANCE MONITORING

18.3.4.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the
uncore sub-system.

Table 18-21 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel®
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore PMU
interfaces are listed in Table 2-23.

18.3.5 3rd Generation Intel® Core™ Processor Performance Monitoring Facility
The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally
are the same as those described in Section 18.6.3 through Section 18.3.4.5. The non-architectural performance
monitoring events supported by the processor core are listed in Table 19-16.

18.3.5.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are based
on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor E5 family
based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance counter sets
are provided at logic control unit scope.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7 v2
families are available in “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Programming
Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 2-27.

Table 18-20. MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier Info NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Table 18-21. Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Vol. 3B 18-47

PERFORMANCE MONITORING

18.3.6 4th Generation Intel® Core™ Processor Performance Monitoring Facility
The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with version
ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

18.3.6.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-23.

Table 18-22. Core PMU Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

of programmable counters per
thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by
two threads)

Use CPUID to enumerate
of counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based Sampling
(PEBS) Events

See Table 18-12 and Section
18.3.6.5.1.

See Table 18-12. IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

PEBS-Precise Store No, replaced by Data Address
profiling.

Section 18.3.4.4.3

PEBS-PDIR Yes (using precise
INST_RETIRED.ALL)

Yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP Yes No

Data Address Profiling Yes No

LBR Profiling Yes Yes

Call Stack Profiling Yes, see Section 17.11. No Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended
request and response types.

MSR 1A6H and 1A7H; extended
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. No

18-48 Vol. 3B

PERFORMANCE MONITORING

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread,
Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

18.3.6.2 PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 18-24. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Table 18-23. PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-15 Figure 18-29

PEBS record layout Table 18-24; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Table 18-3; enhanced fields at
offsets 98H, A0H, A8H.

Precise Events See Table 18-12. See Table 18-12. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-13. Table 18-13

PEBS-Precise Store No, replaced by data address
profiling.

Yes; see Section 18.3.4.4.3.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Vol. 3B 18-49

PERFORMANCE MONITORING

The layout of PEBS records are almost identical to those shown in Table 18-3. Offset B0H is a new field that records
the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and the equivalent
capability of precise store in prior generation (see Section 18.3.6.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H,
and ABH.

18.3.6.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

Table 18-24. PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section
18.3.6.5.1)

Table 18-25. Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

18-50 Vol. 3B

PERFORMANCE MONITORING

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture
DataLA information.
• Complete the PEBS configuration steps.
• Program the an event listed in Table 18-25 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H and A8H, as shown in Table 18-26.

18.3.6.3.1 EventingIP Record

The PEBS record layout for processors based on Intel microarchitecture code name Haswell adds a new field at
offset 0B0H. This is the eventingIP field that records the IP address of the retired instruction that triggered the
PEBS assist. The EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following
the PEBS assist.

18.3.6.4 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. The
event codes are listed in Table 18-15. Each event code for off-core response monitoring requires programming an
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according
to:
• Transaction request type encoding (bits 15:0): see Table 18-27.
• Supplier information (bits 30:16): see Table 18-28.
• Snoop response information (bits 37:31): see Table 18-18.

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Table 18-26. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 18-25.

Reserved A8H Always zero.

Table 18-25. Precise Events That Supports Data Linear Address Profiling (Contd.)
Event Name Event Name

Vol. 3B 18-51

PERFORMANCE MONITORING

The supplier information field listed in Table 18-28. The fields vary across products (according to CPUID signatures)
and is noted in the description.

Table 18-27. MSR_OFFCORE_RSP_x Request_Type Definition (Haswell microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

COREWB 3 (R/W). Counts the number of modified cachelines written back.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_L3_DATA_RD 7 (R/W). Counts the number of data cacheline reads generated by L3 prefetchers.

PF_L3_RFO 8 (R/W). Counts the number of RFO requests generated by L3 prefetchers.

PF_L3_CODE_RD 9 (R/W). Counts the number of code reads generated by L3 prefetchers.

SPLIT_LOCK_UC_
LOCK

10 (R/W). Counts the number of lock requests that split across two cachelines or are to UC memory.

STRM_ST 11 (R/W). Counts the number of streaming store requests electronically.

Reserved 12-14 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-28. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

18-52 Vol. 3B

PERFORMANCE MONITORING

18.3.6.4.1 Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series

Table 18-28 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature
06_3FH).

18.3.6.5 Performance Monitoring and Intel® TSX
Chapter 16 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 describes the details of
Intel® Transactional Synchronization Extensions (Intel TSX). This section describes performance monitoring
support for Intel TSX.

If a processor supports Intel TSX, the core PMU enhances it’s IA32_PERFEVTSELx MSR with two additional bit fields
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 18-34. The
two additional bit fields are:

Table 18-29. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_45H)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 (R/W). L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 (R/W). L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 (R/W). L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 (R/W). L4 Cache

Reserved 30:26 Reserved

Table 18-30. MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

L3_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 (R/W). Hop 0 Remote supplier

L3_MISS_REMOTE_HOP1 28 (R/W). Hop 1 Remote supplier

L3_MISS_REMOTE_HOP2P 29 (R/W). Hop 2 or more Remote supplier

Reserved 30 Reserved

Vol. 3B 18-53

PERFORMANCE MONITORING

• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region,
regardless of whether that region was aborted or committed. This bit may only be set if the processor supports
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for
IA32_PERFEVTSEL2.

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code
region for its aborted execution (if any) and completed execution.

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. see Table 2-28.

A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region
are discarded. The following example illustrates using three counters to drill down cycles spent inside and outside
of transactional regions:
• Program IA32_PERFEVTSEL2 to count Unhalted_Core_Cycles with (IN_TXCP=1, IN_TX=0), such that

IA32_PMC2 will count cycles spent due to aborted TSX transactions;
• Program IA32_PERFEVTSEL0 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=1), such that

IA32_PMC0 will count cycles spent by the transactional code regions;
• Program IA32_PERFEVTSEL1 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=0), such that

IA32_PMC1 will count total cycles spent by the non-transactional code and transactional code regions.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they are listed in Table 19-10.

18.3.6.5.1 Intel TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and
then the PEBS event is processed.

Figure 18-34. Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode

USR—User Mode

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved
I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

34

IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSEL2 Only)

18-54 Vol. 3B

PERFORMANCE MONITORING

Two of the TSX performance monitoring events in Table 19-10 also support using PEBS facility to capture additional
information. They are:
• HLE_RETIRED.ABORT ED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will
be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP,
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-31.

18.3.6.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™ Processors
The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a
similar manner as those described in Section 18.3.4.6.

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event
select MSRs in the C-Boxes are identical as shown in Figure 18-32.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-33 shows the layout of the uncore domain global control.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-19 summa-
rizes the number MSRs for uncore PMU for each box.

Table 18-31. TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or
committed.

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded.

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the
transactional region that aborted.

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

Reserved 63:40 Reserved

Vol. 3B 18-55

PERFORMANCE MONITORING

The uncore performance events for the C-Box and ARB units are listed in Table 19-11.

18.3.6.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in “Intel®
Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore
PMU interfaces are listed in Table 2-32.

18.3.7 5th Generation Intel® Core™ Processor and Intel® Core™ M Processor Performance
Monitoring Facility

The 5th Generation Intel® Core™ processor and the Intel® Core™ M processor families are based on the Broadwell
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3.

The core PMU has the same capability as those described in Section 18.3.6. IA32_PERF_GLOBAL_STATUS provide
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace.

Details of Intel Processor Trace is described in Chapter 35, “Intel® Processor Trace”.
IA32_PERF_GLOBAL_OVF_CTRL MSR provide a corresponding reset control bit.

Table 18-32. Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 2-20
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed Counter N.A. N.A. 48 No Uncore

Figure 18-35. IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_Buffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

Trace_ToPA_PMI

55

18-56 Vol. 3B

PERFORMANCE MONITORING

The specifics of non-architectural performance events are listed in Chapter 19, “Performance Monitoring Events”.

18.3.8 6th Generation Intel® Core™ Processor and 7th Generation Intel® Core™ Processor
Performance Monitoring Facility

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The 7th generation Intel®
Core™ processor is based on the Kaby Lake microarchitecture. The core PMU supports architectural performance
monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The core PMU’s capability is similar to those described in Section 18.6.3 through Section 18.3.4.5, with some differ-
ences and enhancements summarized in Table 18-22. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transactional
Synchronization Extensions (TSX), see Section 18.3.6.5. For details of Intel TSX, see Chapter 16, “Programming with
Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details
are described in Chapter 42, “Enclave Code Debug and Profiling”.

Figure 18-36. IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
ClrTraceToPA_PMI

61 55

Vol. 3B 18-57

PERFORMANCE MONITORING

18.3.8.1 Processor Event Based Sampling (PEBS) Facility
The PEBS facility in the 6th and 7th generation Intel Core processors provides a number enhancement relative to
PEBS in processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS
facility relative to Haswell/Broadwell microarchitecture is summarized in Table 18-34.

Table 18-33. Core PMU Comparison

Box
Intel® microarchitecture code name
Skylake and Kaby Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

CPUID enumerates
of counters.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_on_LBR with streamlined
semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics
not supported with
version 4 or higher.

Counter and Buffer Overflow
Status Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_RESET

• Set via
IA32_PERF_GLOBAL_STATUS_SET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS
Indicators of
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow (applicable

to Broadwell microarchitecture)

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATUS

• CTR_Frz
• LBR_Frz

NA See Section
18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section
18.2.4.3.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-PMC7
do not support
PEBS.

PEBS for front end events See Section 18.3.8.1.4. No

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.12

LBR Timing Yes No Section 17.12.1

Call Stack Profiling Yes, see Section 17.11 Yes, see Section 17.11 Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended request
and response types.

MSR 1A6H and 1A7H; Extended
request and response types.

Intel TSX support for Perfmon See Section 18.3.6.5. See Section 18.3.6.5.

18-58 Vol. 3B

PERFORMANCE MONITORING

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTES
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or IA32_PMCx
is changed for a PEBS-enabled counter while an event is being counted. To avoid this, changes to
the programming or value of a PEBS-enabled counter should be performed when the counter is
disabled.

18.3.8.1.1 PEBS Data Format

The PEBS record format for the 6th and 7th generation Intel Core processors is reporting with encoding 0011b in
IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 18-35. The PEBS record format, along with
debug/store area storage format, does not change regardless of whether IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

Table 18-34. PEBS Facility Comparison

Box
Intel® microarchitecture code
name Skylake and Kaby Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.3.1.1.1 Section 18.3.1.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-15 Figure 18-15

PEBS-EventingIP Yes Yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-35; enhanced fields
at offsets 98H- B8H; and TSC
record field at C0H.

Table 18-24; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS
resolution

PEBS record 90H resolves the
eventing counter overflow.

PEBS record 90H reflects
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 18-36. See Table 18-12. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-PDIR Yes Yes IA32_PMC1 only.

PEBS-Load Latency See Section 18.3.4.4.2. See Section 18.3.4.4.2.

Data Address Profiling Yes Yes

FrontEnd event support FrontEnd_Retried event and
MSR_PEBS_FRONTEND.

No IA32_PMC0-PMC3 only.

Vol. 3B 18-59

PERFORMANCE MONITORING

The layout of PEBS records are largely identical to those shown in Table 18-24.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.3.4.4.2), PDIR (Section 18.3.4.4.4), and data address
profiling (Section 18.3.6.3).

In the core PMU of the 6th and 7th generation Intel Core processors, load latency facility and PDIR capabilities and
data address profiling are unchanged relative to the 4th and 5th generation Intel Core processors. Similarly,
precise store is replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate multiple
PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS record entry
to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot of
the TSC that provides a time line annotation for each PEBS record entry.

18.3.8.1.2 PEBS Events

The list of precise events supported for PEBS in the Skylake and Kaby Lake microarchitectures is shown in
Table 18-36.

Table 18-35. PEBS Record Format for 6th Generation Intel Core Processor
and 7th Generation Intel Core Processor Families

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 18.3.6.5.1)

58H R9 C0H TSC

60H R10

18-60 Vol. 3B

PERFORMANCE MONITORING

18.3.8.1.3 Data Address Profiling

The PEBS Data address profiling on the 6th and 7th generation Intel Core processors is largely unchanged from
prior generation. When the DataLA facility is enabled, the relevant information written into a PEBS record affects
entries at offsets 98H, A0H and A8H, as shown in Table 18-26.

Table 18-36. Precise Events for the Skylake and Kaby Lake Microarchitectures
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.3.8.2
4. Instruction with at least one load uop experiencing the condition specified in the UMask.

Vol. 3B 18-61

PERFORMANCE MONITORING

18.3.8.1.4 PEBS Facility for Front End Events

In the 6th and 7th generation Intel Core processors, the PEBS facility has been extended to allow capturing PEBS
data for some microarchitectural conditions related to front end events. The frontend microarchitectural conditions
supported by PEBS requires the following interfaces:
• The IA32_PERFEVTSELx MSR must select “FrontEnd_Retired” (C6H) in the EventSelect field (bits 7:0) and

umask = 01H,
• The “FRONTEND_RETIRED” event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported

frontend event details, see Table 18-38.
• Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 18-38.

Table 18-37. Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Table 18-38. FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

DSB_MISS 11H Retired Instructions which experienced decode stream buffer (DSB) miss.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional
requests to the same cache line as an in-flight L1I cache miss will not be counted.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration.

Latency controls the number of cycles and Threshold controls the number of allocation slots that
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at
least FE_TRESHOLD number of bubbles each.

18-62 Vol. 3B

PERFORMANCE MONITORING

The layout of MSR_PEBS_FRONTEND is given in Table 18-39.

18.3.8.1.5 FRONTEND_RETIRED

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include
the following:
• The event counts only retired (non-speculative) Frontend events, i.e. events from just true program execution

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused

front-end misses, the count will be only 1 for that line.
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded

once. If there were additional misses in the second cacheline, they will not be counted separately.
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will

be counted once per that instruction.
• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted

once for the fused instruction.
• If a frontend (miss) event occurs outside instruction boundary (e.g. due to processor handling of architectural

event), it may be reported for the next instruction to retire.

18.3.8.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.3.4.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-40.
• Supplier information (bits 30:16): see Table 18-41.
• Snoop response information (bits 37:31): see Table 18-42.

Table 18-39. MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 18-38.

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when
counting IDQ_READ_BUBBLES event.

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event.

Reserved 63:23 Reserved

Vol. 3B 18-63

PERFORMANCE MONITORING

Table 18-41 lists the supplier information field that applies to 6th and 7th generation Intel Core processors. (6th
generation Intel Core processor CPUID signature: 06_4EH, 06_5EH; 7th generation Intel Core processor CPUID
signature: 06_8EH, 06_9EH).

Table 18-42 lists the snoop information field that apply to processors with CPUID signatures 06_4EH, 06_5EH,
06_8EH, 06_9E, and 06_55H.

Table 18-40. MSR_OFFCORE_RSP_x Request_Type Definition (Skylake and Kaby Lake Microarchitectures)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count hw or sw prefetches.

DMND_RFO 1 (R/W). Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

Reserved 6:3 Reserved

PF_L3_DATA_RD 7 (R/W). Counts the number of MLC prefetches into L3.

PF_L3_RFO 8 (R/W). Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 10:9 Reserved

STRM_ST 11 (R/W). Counts the number of streaming store requests.

Reserved 14:12 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-41. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_4EH, 06_5EH
and 06_8EH, 06_9EH)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available.

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

L4_HIT 22 (R/W). L4 Cache (if L4 is present in the processor)

Reserved 25:23 Reserved

DRAM 26 (R/W). Local Node

Reserved 29:27 Reserved

SPL_HIT 30 (R/W). L4 cache super line hit (if L4 is present in the processor)

18-64 Vol. 3B

PERFORMANCE MONITORING

18.3.8.2.1 Off-core Response Performance Monitoring for the Intel® Xeon® Processor Scalable Family

The following tables list the requestor and supplier information fields that apply to the Intel® Xeon® Processor
Scalable Family.
• Transaction request type encoding (bits 15:0): see Table 18-43.
• Supplier information (bits 30:16): see Table 18-44.
• Snoop response information has not been changed and is the same as in (bits 37:31): see Table 18-42.

Table 18-42. MSR_OFFCORE_RSP_x Snoop Info Field Definition (CPUID Signatures 06_4EH, 06_5EH, 06_8EH,
06_9E and 06_55H)

Subtype Bit Name Offset Description

Snoop Info SNOOP_NONE 31 (R/W). No details on snoop-related information

SNOOP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNOOP_MISS 33 (R/W). A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned
from DRAM.

SNOOP_HIT_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one snooped cache.
Hit denotes a cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 (R/W). A snoop was needed and data was forwarded from a remote
socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss,
IFetch/Data_RD/RFT).

SNOOP_HITM 36 (R/W). A snoop was needed and it HitM-ed in local or remote cache.
HitM denotes a cache-line was in modified state before effect as a
results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO
transactions.

Vol. 3B 18-65

PERFORMANCE MONITORING

Table 18-44 lists the supplier information field that applies to the Intel Xeon Processor Scalable Family (CPUID
signature: 06_55H).

Table 18-43. MSR_OFFCORE_RSP_x Request_Type Definition (Intel® Xeon® Processor Scalable Family)

Bit Name Offset Description

DEMAND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand
data page table entry cacheline reads. Does not count hw or sw prefetches.

DEMAND_RFO 1 (R/W). Counts the number of demand reads for ownership (RFO) requests generated by a write
to data cacheline. Does not count L2 RFO prefetches.

DEMAND_CODE_RD 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not
count L2 code read prefetches.

Reserved 3 Reserved.

PF_L2_DATA_RD 4 (R/W). Counts the number of prefetch data reads into L2.

PF_L2_RFO 5 (R/W). Counts the number of RFO Requests generated by the MLC prefetches to L2.

Reserved 6 Reserved.

PF_L3_DATA_RD 7 (R/W). Counts the number of MLC data read prefetches into L3.

PF_L3_RFO 8 (R/W). Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved.

PF_L1D_AND_SW 10 (R/W). Counts data cacheline reads generated by hardware L1 data cache prefetcher or software
prefetch requests.

STREAMING_STORES 11 (R/W). Counts the number of streaming store requests.

Reserved 14:12 Reserved.

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-44. MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_55H)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

SUPPLIER_NONE 17 (R/W). No Supplier Information available.

L3_HIT_M 18 (R/W). M-state initial lookup stat in L3.

L3_HIT_E 19 (R/W). E-state

L3_HIT_S 20 (R/W). S-state

L3_HIT_F 21 (R/W). F-state

Reserved 25:22 Reserved.

L3_MISS_LOCAL_DRAM 26 (R/W). L3 Miss: local home requests that missed the L3 cache and
were serviced by local DRAM.

L3_MISS_REMOTE_HOP0_DRAM 27 (R/W). Hop 0 Remote supplier.

L3_MISS_REMOTE_HOP1_DRAM 28 (R/W). Hop 1 Remote supplier.

L3_MISS_REMOTE_HOP2P_DRAM 29 (R/W). Hop 2 or more Remote supplier.

Reserved 30 Reserved.

18-66 Vol. 3B

PERFORMANCE MONITORING

18.4 PERFORMANCE MONITORING (INTEL® XEON™ PHI PROCESSORS)

18.4.1 Intel® Xeon Phi™ Processor 7200/5200/3200 Performance Monitoring
The Intel® Xeon Phi™ processor 7200/5200/3200 series are based on the Knights Landing microarchitecture. The
performance monitoring capabilities are distributed between its tiles (pair of processor cores) and untile
(connecting many tiles in a physical processor package). Functional details of the tiles and untile of the Knights
Landing microarchitecture can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

A complete description of the tile and untile PMU programming interfaces for Intel Xeon Phi processors based on the
Knights Landing microarchitecture can be found in the Technical Document section at
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

A tile contains a pair of cores attached to a shared L2 cache and is similar to those found in Intel® Atom™ proces-
sors based on the Silvermont microarchitecture. The processor provides several new capabilities on top of the
Silvermont performance monitoring facilities.

The processor supports architectural performance monitoring capability with version ID 3 (see Section 18.2.3) and
a host of non-architectural performance monitoring capabilities. The processor provides two general-purpose
performance counters (IA32_PMC0, IA32_PMC1) and three fixed-function performance counters
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in the processor also uses the IA32_PERFEVTSELx MSR to configure a
set of non-architecture performance monitoring events to be counted by the corresponding general-purpose
performance counter.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.3 in the SDM. The processor supports AnyThread counting in three architectural performance moni-
toring events.

18.4.1.1 Enhancements of Performance Monitoring in the Intel® Xeon Phi™ processor Tile
The Intel® Xeon Phi™ processor tile includes the following enhancements to the Silvermont microarchitecture.
• AnyThread support. This facility is limited to following three architectural events: Instructions Retired, Unhalted

Core Cycles, Unhalted Reference Cycles using IA32_FIXED_CTR0-2 and Unhalted Core Cycles, Unhalted
Reference Cycles using IA32_PERFEVTSELx.

• PEBS-DLA (Processor Event-Based Sampling-Data Linear Address) fields. The processor provides memory
address in addition to the Silvermont PEBS record support on select events. The PEBS recording format as
reported by IA32_PERF_CAPABILITIES [11:8] is 2.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor tile to subsystems outside the tile (untile). Counting off-core
response requires additional event qualification configuration facility in conjunction with IA32_PERFEVTSELx.
Two off-core response MSRs are provided to use in conjunction with specific event codes that must be specified
with IA32_PERFEVTSELx. Two cores do not share the off-core response MSRs. Knights Landing expands off-
core response capability to match the processor untile changes.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests. This facility is
updated to match the processor untile changes.

18.4.1.1.1 Processor Event-Based Sampling

The processor supports processor event based sampling (PEBS). PEBS is supported using IA32_PMC0 (see also
Section 17.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.6.2.4).

Vol. 3B 18-67

PERFORMANCE MONITORING

The list of PEBS events supported in the processor is shown in the following table.

The PEBS record format 2 supported by processors based on the Knights Landing microarchitecture is shown in
Table 18-46, and each field in the PEBS record is 64 bits long.

Table 18-45. PEBS Performance Events for the Knights Landing Microarchitecture
Event Name Event Select Sub-event UMask Data Linear

Address Support

BR_INST_RETIRED C4H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

CALL F9H No

REL_CALL FDH No

IND_CALL FBH No

NON_RETURN_IND EBH No

FAR_BRANCH BFH No

RETURN F7H No

BR_MISP_RETIRED C5H ALL_BRANCHES 00H No

JCC 7EH No

TAKEN_JCC FEH No

IND_CALL FBH No

NON_RETURN_IND EBH No

RETURN F7H No

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H Yes

L2_MISS_LOADS 04H Yes

DLTB_MISS_LOADS 08H Yes

RECYCLEQ 03H LD_BLOCK_ST_FORWARD 01H Yes

LD_SPLITS 08H Yes

Table 18-46. PEBS Record Format for the Knights Landing Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H PSDLA

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

18-68 Vol. 3B

PERFORMANCE MONITORING

18.4.1.1.2 Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-47 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

Some of the MSR_OFFCORE_RESP [0,1] register bits are not valid in this processor and their use is reserved. The
layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 registers are defined in Table 18-48. Bits 15:0 specifies
the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 spec-
ifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details.

Table 18-47. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Table 18-48. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers

Main Sub-field Bit Name Description

Request Type 0 DEMAND_DATA_RD Demand cacheable data and L1 prefetch data reads.

1 DEMAND_RFO Demand cacheable data writes.

2 DEMAND_CODE_RD Demand code reads and prefetch code reads.

3 Reserved Reserved.

4 Reserved Reserved.

5 PF_L2_RFO L2 data RFO prefetches (includes PREFETCHW instruction).

6 PF_L2_CODE_RD L2 code HW prefetches.

7 PARTIAL_READS Partial reads (UC or WC).

8 PARTIAL_WRITES Partial writes (UC or WT or WP). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

9 UC_CODE_READS UC code reads.

10 BUS_LOCKS Bus locks and split lock requests.

11 FULL_STREAMING_STO
RES

Full streaming stores (WC). Valid only for OFFCORE_RESP_1
event. Should only be used on PMC1. This bit is reserved for
OFFCORE_RESP_0 event.

12 SW_PREFETCH Software prefetches.

13 PF_L1_DATA_RD L1 data HW prefetches.

14 PARTIAL_STREAMING_
STORES

Partial streaming stores (WC). Valid only for
OFFCORE_RESP_1 event. Should only be used on PMC1.
This bit is reserved for OFFCORE_RESP_0 event.

15 ANY_REQUEST Account for any requests.

Response Type Any 16 ANY_RESPONSE Account for any response.

Data Supply from
Untile

17 NO_SUPP No Supplier Details.

18 Reserved Reserved.

Vol. 3B 18-69

PERFORMANCE MONITORING

18.4.1.1.3 Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0].

Refer to Section 18.5.2.3, “Average Offcore Request Latency Measurement,” for typical usage. Note that
MSR_OFFCORE_RESPx registers are not shared between cores in Knights Landing. This allows one core to measure
average latency while other core is measuring different offcore response events.

19 L2_HIT_OTHER_TILE_N
EAR

Other tile L2 hit E Near.

20 Reserved Reserved.

21 MCDRAM_NEAR MCDRAM Local.

22 MCDRAM_FAR_OR_L2_
HIT_OTHER_TILE_FAR

MCDRAM Far or Other tile L2 hit far.

23 DRAM_NEAR DRAM Local.

24 DRAM_FAR DRAM Far.

Data Supply from
within same tile

25 L2_HITM_THIS_TILE M-state.

26 L2_HITE_THIS_TILE E-state.

27 L2_HITS_THIS_TILE S-state.

28 L2_HITF_THIS_TILE F-state.

29 Reserved Reserved.

30 Reserved Reserved.

Snoop Info; Only
Valid in case of
Data Supply from
Untile

31 SNOOP_NONE None of the cores were snooped.

32 NO_SNOOP_NEEDED No snoop was needed to satisfy the request.

33 Reserved Reserved.

34 Reserved Reserved.

35 HIT_OTHER_TILE_FWD Snoop request hit in the other tile with data forwarded.

36 HITM_OTHER_TILE A snoop was needed and it HitM-ed in other core's L1 cache.
HitM denotes a cache-line was in modified state before
effect as a result of snoop.

37 NON_DRAM Target was non-DRAM system address. This includes MMIO
transactions.

Outstanding
requests

Weighted cycles 38 OUTSTANDING (Valid
only for
MSR_OFFCORE_RESP0.
Should only be used on
PMC0. This bit is
reserved for
MSR_OFFCORE_RESP1).

If set, counts total number of weighted cycles of any
outstanding offcore requests with data response. Valid only
for OFFCORE_RESP_0 event. Should only be used on PMC0.
This bit is reserved for OFFCORE_RESP_1 event.

Table 18-48. Bit fields of the MSR_OFFCORE_RESP [0, 1] Registers (Contd.)

Main Sub-field Bit Name Description

18-70 Vol. 3B

PERFORMANCE MONITORING

18.5 PERFORMANCE MONITORING (INTEL® ATOM™ PROCESSORS)

18.5.1 Performance Monitoring (45 nm and 32 nm Intel® Atom™ Processors)
45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting the
aggregate capabilities of versionID 1, 2, and 3; see Section 18.2.3) and a host of non-architectural monitoring
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters
(IA32_PMC0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-29.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e. if
IA32_PERFEVTSELx.AnyThread =1, event counts include monitored conditions due to either logical processors in
the same processor core.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.3.

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the
same qualifying actions like those listed in Table 18-61, Table 18-62, Table 18-63, and Table 18-64. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-29 in
Chapter 19, “Performance Monitoring Events.” Precise Event Based Monitoring is supported using IA32_PMC0 (see
also Section 17.4.9, “BTS and DS Save Area”).

18.5.2 Performance Monitoring for Silvermont Microarchitecture
Intel processors based on the Silvermont microarchitecture report architectural performance monitoring versionID
= 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. Intel processors based on the
Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and
three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). Intel
Atom processors based on the Airmont microarchitecture support the same performance monitoring capabilities as
those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-28.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.3. Architectural and non-architectural performance monitoring events in the
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx
MSR.

18.5.2.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits.
• Off-core response counting facility. This facility in the processor core allows software to count certain

transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two
performance counters to count the occurrences and weighted cycles of transaction requests.

Vol. 3B 18-71

PERFORMANCE MONITORING

18.5.2.1.1 Processor Event Based Sampling (PEBS)

In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using
IA32_PMC0 (see also Section 17.4.9).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.6.2.4).

The list of precise events supported in the Silvermont microarchitecture is shown in Table 18-49.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-50, and each field in the PEBS record is 64 bits long.

Table 18-49. PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-50. PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

18-72 Vol. 3B

PERFORMANCE MONITORING

18.5.2.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-51 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-37 and Figure 18-38. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.5.2.3 for details.

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-51. OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Figure 18-37. Request_Type Fields for MSR_OFFCORE_RSPx

Table 18-50. PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W)

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — SW_PREFETCH (R/W)

Vol. 3B 18-73

PERFORMANCE MONITORING

Table 18-52. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as
well as demand data page table entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests
generated by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count
L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 (R/W). Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 (R/W). Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT
and WP)

UC_IFETCH 9 (R/W). Counts the number of UC instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

SW_PREFETCH 12 (R/W). Counts software prefetch requests

PF_DATA_RD 13 (R/W). Counts DCU hardware prefetcher data read requests

PARTIAL_STRM_ST 14 (R/W). Streaming store requests

ANY 15 (R/W). Any request that crosses IDI, including I/O.

Figure 18-38. Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)

18-74 Vol. 3B

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit (Table 18-52) and a valid
response type pattern (Table 18-53, Table 18-54). Otherwise, the event count reported will be zero. It is permis-
sible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

18.5.2.3 Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using two
performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corresponding
IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a request type in
MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white setting the
remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the same request
type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting
MSR_OFFCORE_RSP1.ANY_RESPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be

Table 18-53. MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 (R/W). Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 (R/W). Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 18-54. MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information.

Reserved 32 Reserved

SNOOP_MISS 33 (R/W). Counts the number of snoop misses when L2 misses.

SNOOP_HIT 34 (R/W). Counts the number of snoops hit in the other module where no modified copies
were found.

Reserved 35 Reserved

HITM 36 (R/W). Counts the number of snoops hit in the other module where modified copies
were found in other core's L1 cache.

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 (R/W). Enable average latency measurement by counting weighted cycles of
outstanding offcore requests of the request type specified in bits 15:0 and any
response (bits 37:16 cleared to 0).

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the
specified programmable counter IA32_PMCx and the occurrence of specified requests
are counted in the other programmable counter.

Vol. 3B 18-75

PERFORMANCE MONITORING

obtained by dividing the value of the IA32_PMCx register that counted weight cycles by the register that counted
requests.

18.5.3 Performance Monitoring for Goldmont Microarchitecture
Intel Atom processors based on the Goldmont microarchitecture report architectural performance monitoring
versionID = 4 (see Section 18.2.4) and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.3. The Goldmont microarchitecture does not support Hyper-Threading and thus
architectural and non-architectural performance monitoring events ignore the AnyThread qualification regardless
of its setting in the IA32_PERFEVTSELx MSR. However, Goldmont does not set the AnyThread deprecation bit
(CPUID.0AH:EDX[15]).

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 18.5.2 , with
some differences and enhancements summarized in Table 18-55.

Table 18-55. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

of Fixed counters per core 3 3 Use CPUID to enumerate
of counters.

of general-purpose
counters per core

4 2

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 18.2.2.

Architectural Performance
Monitoring version ID

4 3 Use CPUID to enumerate
of counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_LBR_on_PMI with
streamlined semantics for
branch profiling.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_LBR_on_PMI with legacy
semantics for branch profiling.

See Section 17.4.7.

Legacy semantics not
supported with version 4
or higher.

Counter and Buffer
Overflow Status
Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of
Overflow/Overhead/Interfer
ence

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATU
S

• CTR_Frz,
• LBR_Frz

No See Section 18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 18.2.4.3.

Processor Event Based
Sampling (PEBS) Events

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 18-56.

See Section 18.5.2.1.1. General-
Purpose Counter 0 only. Only
supports precise events (see
Table 18-49).

IA32_PMC0 only.

18-76 Vol. 3B

PERFORMANCE MONITORING

18.5.3.1 Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture,
PEBS is supported using IA32_PMC0 for all events (see Section 17.4.9).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time
the sample was generated.

Precise events work the same way on Goldmont microarchitecture as on the Silvermont microarchitecture. The
record will be generated after an instruction that causes the event when the counter is already overflowed and will
capture the architectural state at this point (see Section 18.6.2.4 and Section 17.4.9). The eventingIP in the record
will indicate the instruction that caused the event. The list of precise events supported in the Goldmont microarchi-
tecture is shown in Table 18-56.

In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will
be generated at the next opportunity and capture the state at the processor's current retirement point. It is likely
that the instruction fetch that caused the event to increment was beyond that current retirement point. Other
examples of non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED.
CPU_CLK_UNHALTED.CORE_P will increment each cycle that the processor is awake. When the counter over-flows,
there may be many instructions in various stages of execution. Additionally, zero, one or multiple instructions may
be retired the cycle that the counter overflows. HARDWARE_INTERRUPTS.RECEIVED increments independent of
any instructions being executed. For all non-precise events, the PEBS record will be generated at the next opportu-
nity, after the counter has overflowed. The PEBS facility thus allows for identification of the instructions which were
executing when the event overflowed.

After generating a record for a non-precise event, the PEBS facility reloads the counter and resumes execution, just
as is done for precise events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect
the sample and reload the counter, the PEBS facility can collect samples even when interrupts are masked and
without using NMI. Since a PEBS record is generated immediately when a counter for a non-precise event is
enabled, it may also be generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

PEBS record format
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 18-57; enhanced fields at
offsets 90H- 98H; and TSC record
field at C0H.

Table 18-50.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core
has its own register.

MSR 1A6H and 1A7H, shared by a
pair of cores.

Nehalem supports 1A6H
only.

Table 18-55. Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

Vol. 3B 18-77

PERFORMANCE MONITORING

The PEBS record format supported by processors based on the Intel Goldmont microarchitecture is shown in
Table 18-57, and each field in the PEBS record is 64 bits long.

Table 18-56. Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H

18-78 Vol. 3B

PERFORMANCE MONITORING

On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless of
processor mode.

With PEBS record format encoding 0011b, offset 90H reports the "Applicable Counter" field, which indicates which
counters actually requested generating a PEBS record. This allows software to correlate the PEBS record entry
properly with the instruction that caused the event even when multiple counters are configured to record PEBS
records and multiple bits are set in the field. Additionally, offset C0H captures a snapshot of the TSC that provides
a time line annotation for each PEBS record entry.

18.5.3.1.1 PEBS Data Linear Address Profiling

Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source
Encoding or Latency Value fields that are also part of Data Address Profiling; those fields are present in the record
but are reserved.

For Goldmont microarchitecture, the Data Linear Address field will record the linear address of memory accesses in
the previous instruction (e.g. the one that triggered a precise event that caused the PEBS record to be generated).
Goldmont microarchitecture may record a Data Linear Address for the instruction that caused the event even for
events not related to memory accesses. This may differ from other microarchitectures.

18.5.3.1.2 Reduced Skid PEBS

For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism miti-
gates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing the
machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly reducing
skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See Section
18.3.4.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including, INST_RETIRED, except
for UOPS_RETIRED. However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or
CMASK fields are set.

For the Reduced Skid mechanism to operate correctly, the performance monitoring counters should not be recon-
figured or modified when they are running with PEBS enabled. The counters need to be disabled (e.g. via

Table 18-57. PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10

Vol. 3B 18-79

PERFORMANCE MONITORING

IA32_PERF_GLOBAL_CTRL MSR) before changes to the configuration (e.g. what event is specified in
IA32_PERFEVTSELx or whether PEBS is enabled for that counter via IA32_PEBS_ENABLE) or counter value (MSR
write to IA32_PMCx and IA32_A_PMCx).

18.5.3.1.3 Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62]

In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the
PEBS_Interrupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when
PEBS_Index < PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound
condition is encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable
Counters, however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

18.5.3.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 18-51 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 18-58.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 18-53.
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in

Table 18-59.
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore

transaction requests using two programmable counter simultaneously; see Section 18.5.2.3 for details.

Table 18-58. MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 (R/W) Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 (R/W) Counts cacheline read for ownership (RFO) requests due to demand writes
(excludes prefetches).

DEMAND_CODE_RD 2 (R/W) Counts demand instruction cacheline and I-side prefetch requests that miss the
instruction cache.

COREWB 3 (R/W) Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 (R/W) Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 (R/W) Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.

PARTIAL_READS 7 (R/W) Counts demand data partial reads, including data in uncacheable (UC) or
uncacheable (WC) write combining memory types.

PARTIAL_WRITES 8 (R/W) Counts partial writes, including uncacheable (UC), write through (WT) and write
protected (WP) memory type writes.

UC_CODE_READS 9 (R/W) Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 (R/W) Counts bus lock and split lock requests.

FULL_STREAMING_STORES 11 (R/W) Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 (R/W) Counts cacheline requests due to software prefetch instructions.

PF_L1_DATA_RD 13 (R/W) Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMING_STORES 14 (R/W) Counts partial cacheline writes due to streaming stores.

18-80 Vol. 3B

PERFORMANCE MONITORING

To properly program this extra register, software must set at least one request type bit (Table 18-52) and a valid
response type pattern (either Table 18-53 or Table 18-59). Otherwise, the event count reported will be zero. It is
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core
response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations that
meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type
must be a non-zero value of the following expression:

[ANY ‘OR’ (L2 Hit)] ‘XOR’ (Snoop Info Bits) ‘XOR’ (Avg Latency)

18.5.3.3 Average Offcore Request Latency Measurement
In Goldmont microarchitecture, measurement of average latency of offcore transaction requests is the same as
described in Section 18.5.2.3.

18.5.4 Performance Monitoring for Goldmont Plus Microarchitecture
Intel Atom processors based on the Goldmont Plus microarchitecture report architectural performance monitoring
versionID = 4 and support non-architectural monitoring capabilities described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

Goldmont Plus performance monitoring capabilities are similar to Goldmont capabilities. The differences are in
specific events and in which counters support PEBS. Goldmont Plus introduces the ability for fixed performance
monitoring counters to generate PEBS records.

Goldmont Plus will set the AnyThread deprecation CPUID bit (CPUID.0AH:EDX[15]) to indicate that the Any-Thread
bits in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL have no effect.

ANY_REQUEST 15 (R/W) Counts requests to the uncore subsystem.

Table 18-59. MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MISS_O
R_NO_SNOOP_NEEDED

33 (R/W). A true miss to this module, for which a snoop request missed the other
module or no snoop was performed/needed.

L2_MISS.HIT_OTHER_CO
RE_NO_FWD

34 (R/W) A snoop hit in the other processor module, but no data forwarding is
required.

Reserved 35 Reserved

L2_MISS.HITM_OTHER_C
ORE

36 (R/W) Counts the number of snoops hit in the other module or other core's L1
where modified copies were found.

L2_MISS.NON_DRAM 37 (R/W) Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding
requests1

NOTES:
1. See Section 18.5.2.3, “Average Offcore Request Latency Measurement” for details on how to use this bit to extract average latency.

OUTSTANDING 38 (R/W) Counts weighted cycles of outstanding offcore requests of the request type
specified in bits 15:0, from the time the XQ receives the request and any
response is received. Bits 37:16 must be set to 0. This bit is only available in
MSR_OFFCORE_RESP0.

Table 18-58. MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

Vol. 3B 18-81

PERFORMANCE MONITORING

The core PMU's capability is similar to that of the Goldmont microarchitecture described in Section 18.6.3, with
some differences and enhancements summarized in Table 18-60.

18.5.4.1 Extended PEBS
The Extended PEBS feature, introduced in Goldmont Plus microarchitecture, supports PEBS (Processor Event
Based Sampling) on a fixed-function performance counters as well as all four general purpose counters (PMC0-3).
PEBS can be enabled for the four general purpose counters using PEBS_EN_PMCi bits of IA32_PEBS_ENABLE (i =
0, 1, 2, 3). PEBS can be enabled for the 3 fixed function counters using the PEBS_EN_FIXEDi bits of
IA32_PEBS_ENABLE (I = 0, 1, 2).

Similar to Goldmont microarchitecture, Goldmont Plus microarchitecture processors can generate PEBS record
events on both precise as well as non-precise events.

A PEBS record due to a precise event will be generated after an instruction that causes the event when the counter
has already overflowed. A PEBS record due to a non-precise event will occur at the next opportunity after the
counter has overflowed, including immediately after an overflow is set by an MSR write.

IA32_FIXED_CTR0 counts instructions retired and is a precise event. IA32_FIXED_CTR1 counts unhalted core
cycles and is a non-precise event. IA32_FIXED_CTR2 counts unhalted reference cycles and is a non-precise event.

The Applicable Counter field at offset 90H of the PEBS record indicates which counters caused the PEBS record to
be generated. It is in the same format as the enable bits for each counter in IA32_PEBS_ENABLE. As an example,

Table 18-60. Core PMU Comparison Between the Goldmont Plus and Goldmont Microarchitectures

Box Goldmont Plus Microarchitecture Goldmont Microarchitecture Comment

of Fixed counters per core 3 3 No change.

of general-purpose
counters per core

4 4 No change.

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 No change.

Architectural Performance
Monitoring version ID

4 4 No change.

Processor Event Based
Sampling (PEBS) Events

All General-Purpose and Fixed
counters. Each General-Purpose
counter supports all events (precise
and non-precise).

General-Purpose Counter 0 only.
Supports all events (precise and
non-precise). Precise events are
listed in Table 18-56.

Goldmont Plus supports
PEBS on all counters.

PEBS record format
encoding

0011b 0011b No change.

Figure 18-39. Layout of IA32_PEBS_ENABLE MSR

PEBS_EN_FIXED2 (R/W)

8 7 0

PEBS_EN_FIXED1 (R/W)

3 1

Reserved

63 245635 34 33 32 31

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

PEBS_EN_FIXED0 (R/W)

RESET Value — 00000000_00000000H

18-82 Vol. 3B

PERFORMANCE MONITORING

an Applicable Counter field with bits 2 and 32 set would indicate that both general purpose counter 2 and fixed
function counter 0 generated the PEBS record.
• To properly use PEBS for the additional counters, software will need to set up the counter reset values in PEBS

portion of the DS_BUFFER_MANAGEMENT_AREA data structure that is indicated by the IA32_DS_AREA
register. The layout of the DS_BUFFER_MANAGEMENT_AREA for Goldmont Plus is shown in Figure 18-40. When
a counter generates a PEBS records, the appropriate counter reset values will be loaded into that counter. In
the above example where general purpose counter 2 and fixed function counter 0 generated the PEBS record,
general purpose counter 2 would be reloaded with the value contained in PEBS GP Counter 2 Reset (offset 50H)
and fixed function counter 0 would be reloaded with the value contained in PEBS Fixed Counter 0 Reset (offset
80H).

Figure 18-40. PEBS Programming Environment

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

58H

60H

68H

70H

78H

80H

88H

90H

PEBS Fixed Counter 1 Reset

PEBS Fixed Counter 0 Reset

63 BTS Buffer Base 0

BTS Index

BTS Absolute Maximum

BTS Interrupt Threshold

PEBS Buffer Base

PEBS Index

PEBS Absolute Maximum

PEBS Interrupt Threshold

PEBS GP Counter 0 Reset

PEBS GP Counter 1 Reset

PEBS GP Counter 2 Reset

PEBS GP Counter 3 Reset

Reserved

Reserved

Reserved

Reserved

PEBS Fixed Counter 2 Reset

PEBS C
onfig Buffer

DS Buffer Management

Branch Record 0

Branch Record 1

Branch Record n

BTS Buffer

PEBS Record 0

PEBS Record 1

PEBS Record n

PEBS Buffer

IA32_DS_AREA MSR

Vol. 3B 18-83

PERFORMANCE MONITORING

18.5.4.2 Reduced Skid PEBS
Goldmont Plus microarchitecture processors supports the Reduced Skid PEBS feature described in Section
18.5.3.1.2 on the IA32_PMC0 counter. Although Goldmont Plus adds support for generating PEBS records for
precise events on the other general-purpose and fixed-function performance counters, those counters do not
support the Reduced Skid PEBS feature.

18.6 PERFORMANCE MONITORING (LEGACY INTEL PROCESSORS)

18.6.1 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are
programmed using the same facilities (see Figure 18-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have
specificity related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a
microarchitectural condition and the originating core. This data is shown in Table 18-61. The two-bit encoding for
core-specificity is only supported for a subset of Umask values (see Chapter 19, “Performance Monitoring Events”)
and for Intel Core Duo processors. Such events are referred to as core-specific events.

Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some
bus events belong to this category, providing specificity between the originating physical processor (a bus agent)
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 18-62.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 18-63.

Table 18-61. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved

Table 18-62. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

18-84 Vol. 3B

PERFORMANCE MONITORING

Some performance events may (a) support none of the three event-specific qualification encodings (b) may
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for
cache coherency state qualification is shown in Table 18-64. If no bits in the MESI qualification sub-field are set for
an event that requires setting MESI qualification bits, the event count will not increment.

18.6.2 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural
performance events can be collected using general-purpose performance counters (coupled with two
IA32_PERFEVTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section
18.6.2.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 18-1. Starting with Intel
Core 2 processor T 7700, fixed-function performance counters and associated counter control and status MSR
becomes part of architectural performance monitoring version 2 facilities (see also Section 18.2.2).

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values
that are model-specific. Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-
fields identical to those listed in Table 18-61, Table 18-62, Table 18-63, and Table 18-64. One or more of these sub-
fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-25 in Chapter 19,
“Performance Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop
responses. Bits of the snoop response qualification sub-field are defined in Table 18-65.

Table 18-63. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 18-64. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 18-65. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Vol. 3B 18-85

PERFORMANCE MONITORING

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 18-66.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a
performance event.

NOTE
Software must write known values to the performance counters prior to enabling the counters. The
content of general-purpose counters and fixed-function counters are undefined after INIT or
RESET.

18.6.2.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. See Table
18-2 for details of the PMC addresses and what these events count.

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and
does not require specifying any event masks. Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple
sets of 4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See
Figures 18-41. Two sub-fields are defined for each control. See Figure 18-41; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the

corresponding fixed-function performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.
When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to
increment when the target condition associated with the architecture performance event occurs at ring greater
than 0.
Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective
of privilege levels.

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-66. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 18-65. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

18-86 Vol. 3B

PERFORMANCE MONITORING

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception
through its local APIC on overflow condition of the respective fixed-function counter.

18.6.2.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs

(MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 18-42). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in
the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 18-43). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has

Figure 18-41. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Figure 18-42. Layout of MSR_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

Vol. 3B 18-87

PERFORMANCE MONITORING

occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-44). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

18.6.2.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions
that arise from speculative execution. The at-retirement events available in processors based on Intel Core micro-
architecture does not require special MSR programming control (see Section 18.6.3.6, “At-Retirement Counting”),
but is limited to IA32_PMC0. See Table 18-67 for a list of events available to processors based on Intel Core micro-
architecture.

Figure 18-43. Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-44. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

18-88 Vol. 3B

PERFORMANCE MONITORING

18.6.2.4 Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state
information for the processor. The information provides architectural state of the instruction executed after the
instruction that caused the event (See Section 18.6.2.4.2 and Section 17.4.9).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in
Table 18-68. The procedure for detecting availability of PEBS is the same as described in Section 18.6.3.8.1.

18.6.2.4.1 Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following
procedure to set up the processor and IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of
64-bit address entries. See Figure 17-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 18-68.

18.6.2.4.2 PEBS Record Format

The PEBS record format may be extended across different processor implementations. The
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format in
processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields of

Table 18-67. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-68. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Vol. 3B 18-89

PERFORMANCE MONITORING

IA32_PERF_CAPABILITES are defined in Table 2-2 of Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 4. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are
recorded. On processors based on Intel Core microarchitecture, this bit is always 1

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS
record (seeSection 18.6.3.8).

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency data.
(seeSection 18.3.1.1.1).

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data,
and TSX tuning information. (seeSection 18.3.6.2).

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC data,
and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (see Section
18.3.8.1.1).

18.6.2.4.3 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the Inter-
rupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 17.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel
NetBurst microarchitectures is listed in Table 18-69.

Table 18-69. Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Verify PEBS support of
processor/OS.

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled. On initial set up or changing event configurations,
write MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0.

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ is not
enabled.

• If IA32_DebugCTL.Freeze is enabled, counters are
automatically disabled.

Counters MUST be stopped before writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (38EH)
handle any overflow conditions.

Check OVF flag of each CCCR for overflow
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (38EH)
using IA32_PERF_GLOBAL_OVF_CTRL MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

18-90 Vol. 3B

PERFORMANCE MONITORING

18.6.2.4.4 Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

18.6.3 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is
different from that provided in the P6 family and Pentium processors. While the general concept of selecting,
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters.

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter.

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count

specific events.

Table 18-70 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to
be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19, “Perfor-

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 - 0.
• Event programmed must be PEBS capable.

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4

support PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE MSR
(3F1H).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL MSR
(38FH).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Table 18-69. Requirements to Program PEBS (Contd.)

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Vol. 3B 18-91

PERFORMANCE MONITORING

mance Monitoring Events.”

Table 18-70. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

18-92 Vol. 3B

PERFORMANCE MONITORING

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not

available on later versions.

Table 18-70. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

Vol. 3B 18-93

PERFORMANCE MONITORING

The types of events that can be counted with these performance monitoring facilities are divided into two classes:
non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-31) are events that occur any time during instruction execution (such as

bus transactions or cache transactions).
• At-retirement events (see Table 19-32) are events that are counted at the retirement stage of instruction

execution, which allows finer granularity in counting events and capturing machine state.
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular
performance event during instruction execution. Tagging allows events to be sorted between those that
occurred on an execution path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually cancelled and never committed to
architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models
described below. The first two models can be used to count both non-retirement and at-retirement events; the
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the

counter is counting, software reads the counter at selected intervals to determine the number of events that
have been counted between the intervals.

• Interrupt-based event sampling — A performance counter is configured to count one or more types of
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a
modulus value that will cause the counter to overflow after a specific number of events have been counted.
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the
VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural
state of the processor to a memory buffer after the counter overflows. The records of architectural state
provide additional information for use in performance tuning. Processor-based event sampling can be used to
count only a subset of at-retirement events. PEBS captures more precise processor state information compared
to interrupt based event sampling, because the latter need to use the interrupt service routine to re-construct
the architectural states of processor.

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4
and Intel Xeon processors.

18.6.3.1 ESCR MSRs
The 45 ESCR MSRs (see Table 18-70) allow software to select specific events to be countered. Each ESCR is usually
associated with a pair of performance counters (see Table 18-70) and each performance counter has several ESCRs
associated with it (allowing the events counted to be selected from a variety of events).

Figure 18-45 shows the layout of an ESCR MSR. The functions of the flags and fields are:
• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level

(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events
are counted at all privilege levels.)

18-94 Vol. 3B

PERFORMANCE MONITORING

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired
branches. The event mask field is then used to select one or more of the specific events within the class to be
counted. For example, when counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR
using the WRMSR instruction. Table 18-70 gives the addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of
the CCCR includes selecting the ESCR and enabling the counter.

18.6.3.2 Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a partic-
ular subset of events and ESCR’s (see Table 18-70). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

Figure 18-45. Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved

Vol. 3B 18-95

PERFORMANCE MONITORING

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 18.6.3.5.6, “Cascading Coun-
ters”). The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-46). The RDPMC instruction is intended to allow reading
of either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the low 32-bits is faster than
reading the full counter width and is appropriate in situations where the count is small enough to be contained in
32 bits.

The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be
restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter.
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

18.6.3.3 CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 18-70). The CCCRs control
the filtering and counting of events as well as interrupt generation. Figure 18-47 shows the layout of an CCCR MSR.
The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with

the counter associated with the CCCR.

Figure 18-46. Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter

18-96 Vol. 3B

PERFORMANCE MONITORING

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result in a single count being delivered
to the performance counter; when clear, counts greater than the threshold value result in a count being
delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The complement flag is not
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and filtered by the following flags and
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more event
types within the class, respectively.

Figure 18-47. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved

Vol. 3B 18-97

PERFORMANCE MONITORING

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it,
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next.
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.6.3.5, “Programming the
Performance Counters for Non-Retirement Events.”

18.6.3.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning
programs. The DS mechanism can be used to collect two types of information: branch records and processor
event-based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the DS
feature flag (bit 21) returned by the CPUID instruction.

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.6.3.8, “Processor Event-Based Sampling (PEBS),”
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See
Section 17.4.9, “BTS and DS Save Area.”

18.6.3.5 Programming the Performance Counters for Non-Retirement Events
The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR restrictions row in Table
19-31, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-31 to a value listed in Table 18-70; select a CCCR and
performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which the are to be
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler
for the interrupt must be in place.

8. Enable the counter to begin counting.

18-98 Vol. 3B

PERFORMANCE MONITORING

18.6.3.5.1 Selecting Events to Count

Table 19-32 in Chapter 19 lists a set of at-retirement events for processors based on Intel NetBurst microarchitec-
ture. For each event listed in Table 19-32, setup information is provided. Table 18-71 gives an example of one of
the events.

For Table 19-31 and Table 19-32, Chapter 19, the name of the event is listed in the Event Name column and param-
eters that define the event and other information are listed in the Event Parameters column. The Parameter Value
and Description columns give specific parameters for the event and additional description information. Entries in
the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is

needed to count an event.
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 18-70

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to

be counted. The parameter value column defines the documented bits with relative bit position offset starting
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of
the ESCR from the Number column in Table 18-70.

• Event specific notes — Gives additional information about the event, such as the name of the same or a
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events listed
in Table 19-32.)

• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to
count the events (only supplied for the at-retirement events listed in Table 19-32.)

Table 18-71. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select
any combination of branch taken, not-taken, predicted and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The
performance counters and corresponding CCCRs can be obtained from
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Vol. 3B 18-99

PERFORMANCE MONITORING

NOTE
The performance-monitoring events listed in Chapter 19, “Performance Monitoring Events,” are
intended to be used as guides for performance tuning. The counter values reported are not
guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known
discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure
is continued through the following four sections.

Using information in Table 19-31, Chapter 19, an event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR
addresses of the counter, CCCR, and ESCR from Table 18-70.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however,
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.6.3.5.2, “Filtering Events.”

18.6.3.5.2 Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The
counter treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value
of 4, and input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value
on each clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to
the counter is always 1, not the input value that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-
to-true transition. Figure 18-48 illustrates rising edge filtering.

18-100 Vol. 3B

PERFORMANCE MONITORING

The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge filter.
This procedure is a continuation of the setup procedure introduced in Section 18.6.3.5.1, “Selecting Events to
Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.6.3.5.3, “Starting Event Counting.”

18.6.3.5.3 Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues
until it is stopped (see Section 18.6.3.5.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure
introduced in Section 18.6.3.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 18.6.3.5.4, “Reading a Performance Counter’s
Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 18.6.3.5.6, “Cascading Counters”).

18.6.3.5.4 Reading a Performance Counter’s Count

Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the
RDPMC instruction (including fast read) are described in Section 18.6.3.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 18.6.3.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number
obtained from Table 18-70 used as an operand.

This setup procedure is continued in the next section, Section 18.6.3.5.5, “Halting Event Counting.”

18.6.3.5.5 Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps

Figure 18-48. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock

Vol. 3B 18-101

PERFORMANCE MONITORING

around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates
that the counter has overflowed at least once since the OVF bit was last cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure
introduced in Section 18.6.3.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

18.6.3.5.6 Cascading Counters

As described in Section 18.6.3.2, “Performance Counters,” eighteen performance counters are implemented in
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ
(see Table 18-70). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events.
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in
the CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter
located in another pair in the same block (see Figure 18-47 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14
cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter
17.

Example 18-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In
the above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in
the basic performance counter setup procedure that begins in Section 18.6.3.5.1, “Selecting Events to Count.”
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow.
This is described in Section 18.6.3.5.8, “Generating an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then
continues on the second counter after the first counter overflows. This technique doubles the number of event
counts that can be recorded, since the contents of the two counters can be added together.

18.6.3.5.7 EXTENDED CASCADING

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID
DisplayFamily_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the IQ

18-102 Vol. 3B

PERFORMANCE MONITORING

block. See Table 18-72.

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the
erratum applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 18-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined
below:

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

18.6.3.5.8 Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program

Table 18-72. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5

Vol. 3B 18-103

PERFORMANCE MONITORING

when overflow occurred. This information can then be used with a tool like the Intel® VTune™ Performance
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set.
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset
value is to write a negative number into the counter, as described in Section 18.6.3.5.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on
every counter increment, which in turn triggers an interrupt after every counter increment.

18.6.3.5.9 Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than
no_event, which generally has a select value of 0).

18.6.3.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural
state and ignoring work that was performed speculatively and later discarded.

One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter
was set up to count all executed instructions, the count would include instructions whose results were canceled as
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those
tagged events that represent committed results. This mechanism is called “at-retirement counting.”

Tables 19-32 through 19-36 list predefined at-retirement events and event metrics that can be used to for tagging
events when using at retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired”
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state
changes as required by the program being executed. Thus instructions and μops are either bogus or non-
bogus, but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such
as, Instruction_Retired and Uops_Retired in Table 19-32) can count instructions or μops that are retired based
on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so they
can be counted at retirement. During the course of execution, the same event can happen more than once per
μop and a direct count of the event would not provide an indication of how many μops encountered that event.
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at retirement.
The retired suffix is used for performance metrics that increment a count once per μop, rather than once per

18-104 Vol. 3B

PERFORMANCE MONITORING

event. For example, a μop may encounter a cache miss more than once during its life time, but a “Miss Retired”
metric (that counts the number of retired μops that encountered a cache miss) will increment only once for that
μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a
particular instruction sequence. Details of various performance metrics and how these can be constructed using
the Pentium 4 and Intel Xeon processors performance events are provided in the Intel Pentium 4 Processor
Optimization Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the Pentium
4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay causes are
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number
of replays is common and unavoidable. An excessive number of replays is an indication of a performance
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The
hardware must internally modify the format of the operands in order to perform the computation. Assists clear
the entire machine of μops before they begin and are costly.

18.6.3.6.1 Using At-Retirement Counting

Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a
specified event. For a subset of the at-retirement events listed in Table 19-32, a μop may be tagged when it
encounters that event. The tagging mechanisms can be used in Interrupt-based event sampling, and a subset of
these mechanisms can be used in PEBS. There are four independent tagging mechanisms, and each mechanism
uses a different event to count μops tagged with that mechanism:
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for

example, trace cache and instruction counts) and are counted with the Front_end_event event.
• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events (for

example, instruction types) and are counted with the Execution_Event event.
• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a

cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be counted
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging
mechanism should be used at a time.

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far
transfers.

Table 19-32 lists the performance monitoring events that support at-retirement counting: specifically the
Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired events. The following sections
describe the tagging mechanisms for using these events to tag μop and count tagged μops.

18.6.3.6.2 Tagging Mechanism for Front_end_event

The Front_end_event counts μops that have been tagged as encountering any of the following events:
• μop decode events — Tagging μops for μop decode events requires specifying bits in the ESCR associated with

the performance-monitoring event, Uop_type.
• Trace cache events — Tagging μops for trace cache events may require specifying certain bits in the

MSR_TC_PRECISE_EVENT MSR (see Table 19-34).

Vol. 3B 18-105

PERFORMANCE MONITORING

Table 19-32 describes the Front_end_event and Table 19-34 describes metrics that are used to set up a
Front_end_event count.

The MSRs specified in the Table 19-32 that are supported by the front-end tagging mechanism must be set and one
or both of the NBOGUS and BOGUS bits in the Front_end_event event mask must be set to count events. None of
the events currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

18.6.3.6.3 Tagging Mechanism For Execution_event

Table 19-32 describes the Execution_event and Table 19-35 describes metrics that are used to set up an
Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using
Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the
mask is set, the related counter is incremented by one. This mechanism is summarized in the Table 19-35 metrics
that are supported by the execution tagging mechanism. The tag enable and tag value bits are irrelevant for the
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted in
Section 18.6.3.8.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example,
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.6.3.7 Tagging Mechanism for Replay_event
Table 19-32 describes the Replay_event and Table 19-36 describes metrics that are used to set up an Replay_event
count.

The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.

The Table 19-36 lists the metrics that are support the replay tagging mechanism and the at-retirement events that
use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The replay tags
defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 17.4.9). Each of these replay
tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_ENABLE_MSR. Each of
these metrics requires that the Replay_Event (see Table 19-32) be used to count the tagged μops.

18.6.3.8 Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section
17.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in
the precise event records buffer, which is part of the DS save area (see Section 17.4.9, “BTS and DS Save Area”).
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is

18-106 Vol. 3B

PERFORMANCE MONITORING

generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using IA32_PMC0
and IA32_PERFEVTSEL0 MSRs (See Section 18.6.2.4).

18.6.3.8.1 Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the

PEBS facilities, including the MSR_PEBS_ENABLE MSR.
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

18.6.3.8.2 Setting Up the DS Save Area

Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

18.6.3.8.3 Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the
processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields
of the DS buffer management area (see Figure 17-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for PEBS
as described in Tables 19-32 through 19-36.

18.6.3.8.4 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

18.6.3.8.5 Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and INIT.

The DS mechanism is available in real address mode.

18.6.3.9 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis.
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring
on every taken branch.

Vol. 3B 18-107

PERFORMANCE MONITORING

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records
need to have an association with the corresponding process. One solution requires the ability for the DS specific
operating system module to be chained to the context switch. A separate buffer can then be maintained for each
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context
switch.

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors,
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is
enabled/disabled appropriately in the context switch code.

18.6.4 Performance Monitoring and Intel Hyper-Threading Technology in Processors Based
on Intel NetBurst® Microarchitecture

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting
Intel Hyper-Threading Technology is similar to that described in Section 18.6.3. However, the capability is extended
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs.
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor.

The sections below describe performance counters, event qualification by logical processor ID, and special purpose
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and
MSR_TC_PRECISE_EVENT.

18.6.4.1 ESCR MSRs
Figure 18-49 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology.

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and
unprotected operating system code.

Figure 18-49. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon Processor and Intel
Xeon Processor MP Supporting Hyper-Threading Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved

18-108 Vol. 3B

PERFORMANCE MONITORING

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL
of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement event counting; when clear,
disables tagging. See Section 18.6.3.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop to assist in at-retirement
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 8.4.5, “Identifying
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor
basis (see Section 18.6.4.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits)
are counted or sampled without regard to which logical processor is associated with the detected event.

18.6.4.2 CCCR MSRs
Figure 18-50 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The
functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on

reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with

the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active

(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical
processors. The encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive.

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The
filtering method is selected with the threshold, complement, and edge flags.

Vol. 3B 18-109

PERFORMANCE MONITORING

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value.
When set, event counts that are less than or equal to the threshold value result in a single count being
delivered to the performance counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 18.6.3.5.2, “Filtering Events”). The compare flag is
not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The
processor examines this field only when the compare flag is set, and uses the complement flag setting to
determine the type of threshold comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 18.6.3.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear,
overflow only occurs when the counter actually overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0.
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1.
Note that the PMI is generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate
counter in the other the counter pair in the same counter group overflows (see Section 18.6.3.2, “Performance
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be
explicitly cleared by software.

18.6.4.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture,
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic

Figure 18-50. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF
OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved

18-110 Vol. 3B

PERFORMANCE MONITORING

processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a
specific logical processor. This is to prevent these kernel mode components from migrating between different
logical processors due to OS scheduling.

18.6.4.4 Performance Monitoring Events
All of the events listed in Table 19-31 and 19-32 are available in an Intel Xeon processor MP. When Intel Hyper-
Threading Technology is active, many performance monitoring events can be can be qualified by the logical
processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of the
logical processors. However, not all the events have this logic processor specificity, or thread specificity.

Here, each event falls into one of two categories:
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical

processor.

Table 19-37 gives logical processor specific information (TS or TI) for each of the events described in Tables 19-31
and 19-32. If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table
18-73) depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event
counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in
Table 15-6. For events that are marked as TI in Chapter 19, the effect of selectively specifying T0_USR, T0_OS,
T1_USR, T1_OS bits is shown in Table 18-74.

Table 18-73. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR
or T1 in USR

Counts while (a) T0 in
USR or (b) T1 in OS or (c)
T1 in USR

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or
USR

Counts while (a) T0 in OS
or (b) T0 in USR or (c) T1
in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) or T0 in USR or (c)
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in
USR

Counts while (a)T0 in Os
or (b) T1 in OS or (c) T1
in USR

Counts while (a) T0 in OS
or (b) T1 in OS

Vol. 3B 18-111

PERFORMANCE MONITORING

18.6.4.5 Counting Clocks on systems with Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture

18.6.4.5.1 Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on
Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.6.4.5.2 Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other
than “no_event”; the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to “1”.

4. Set the threshold to “15” and the complement to “1” in the CCCR. Since no event can exceed this threshold, the
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can
support two or more logical processors. Current implementation of Intel HT Technology provides two logical
processors for each physical processor. While both logical processors can execute two threads simultaneously, one
logical processor may halt to allow the other logical processor to execute without sharing execution resources
between two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter
into a power-saving state if all logical processors halt.

Table 18-74. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS

T0_OS/T0_USR = 01 Counts while (a) T0 in
USR or (b) T1 in USR

Counts while (a) T0 in
USR or (b) T1 in USR

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 11 Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

T0_OS/T0_USR = 0 Counts while (a) T0 in OS
or (b) T1 in OS

Counts irrespective of
CPL, T0, T1

Counts irrespective of
CPL, T0, T1

Counts while (a) T0 in OS
or (b) T1 in OS

18-112 Vol. 3B

PERFORMANCE MONITORING

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor
to enter into a power-saving state by using an OS service that transfers control to an OS's idle loop. The idle loop
then may place the processor into a power-saving state after an implementation-dependent period if there is no
work for the processor.

18.6.5 Performance Monitoring and Dual-Core Technology
The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but
two logical processors in the same core share performance monitoring resources (see Section 18.6.4, “Perfor-
mance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitec-
ture”).

18.6.6 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3
Cache

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model [03H
or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same
values (see Section 18.1 and Section 18.6.4) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 18-51.

Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:

Figure 18-51. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3

iBUSQ and iSNPQ

System Bus

3rd Level Cache

8 or 4 -way

IOQ

iFSB

Processor Core

(Front end, Execution,

Retirement, L1, L2

Vol. 3B 18-113

PERFORMANCE MONITORING

• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit.
It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 18-52.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit.
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter.
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 18-53.

• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in
the upper 32-bits of the MSR. See Figure 18-54.

Figure 18-52. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

Figure 18-53. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1
32 bit event count

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
31 0

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved
63 56 55 48 3257585960 3539

Agent_match

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

32 bit event count

031

18-114 Vol. 3B

PERFORMANCE MONITORING

• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event.
See Figure 18-55.

18.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and
programming interfaces that are largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon
processor 7400 series have six processor cores that share an L3 cache.

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core.

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through addi-

Figure 18-54. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Figure 18-55. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

Other

49 3850 37 36 3334

Saturate

Own
Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count

Vol. 3B 18-115

PERFORMANCE MONITORING

tional control logic. See Figure 18-56 for the block configuration of six processor cores and the L3/Caching bus
controller sub-system in Intel Xeon processor 7400 series. Figure 18-56 shows the block configuration of two
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor
7100 series.

Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures
(see Section 18.1 and Section 18.6.4) apply to Intel Xeon processor 7100 series. The MSRs used by performance
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are
described in this section.

Figure 18-56. Block Diagram of Intel Xeon Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core

18-116 Vol. 3B

PERFORMANCE MONITORING

18.6.7.1 Overview of Performance Monitoring with L3/Caching Bus Controller
The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition,
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation
of any combination of these event select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ

events. Up to two GBSQ events can be programmed and counted simultaneously.
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs
across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the
event logic, the matched condition signals the counter logic to increment the associated event count field. The
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter
registers.

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs.

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore
performance counter/control registers.

Figure 18-57. Block Diagram of Intel Xeon Processor 7100 Series

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor

Vol. 3B 18-117

PERFORMANCE MONITORING

18.6.7.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 18-58. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.

• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state.
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon

processor 7100 and 7400.
For Intel Xeon processor 7100 series,

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series,

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

Figure 18-58. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved
63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state

18-118 Vol. 3B

PERFORMANCE MONITORING

— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

18.6.7.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 18-59. Counting starts
after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and

7400.
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical
package. Bit 37 specifies central agent transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state.
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear,

Core_Module_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly
between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical
package.

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package.
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.

Vol. 3B 18-119

PERFORMANCE MONITORING

18.6.7.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 18-60. Counting
starts after software writes a non-zero value to one or more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration
event increments at most once per cycle.

18.6.7.4.1 FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package.
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical

package.
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical

package.

Figure 18-59. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 18-60. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved
63 56 55 47 3257585960 53 39

Agent_match

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select

32 bit event count

031

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

32 bit event count

031

18-120 Vol. 3B

PERFORMANCE MONITORING

• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical
package.

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions.
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions.
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions.
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY).
• FSB_DRDY (bit 45): Count DRDY assertions by this processor.
• FSB_BNR (bit 46): Count BNR assertions by this processor.
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty.
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full.
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ.
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY).
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent.
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent.
• FSB_other_BNR (bit 57): Count BNR assertions from another agent.

18.6.7.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field.

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 18-58 for example) is
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it.

18.6.8 Performance Monitoring (P6 Family Processor)
The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored
simultaneously. These can either count events or measure duration. When counting events, a counter increments
each time a specified event takes place or a specified number of events takes place. When measuring duration, it
counts the number of processor clocks that occur while a specified condition is true. The counters can count events
or measure durations that occur at any privilege level.

Table 19-40, Chapter 19, lists the events that can be counted with the P6 family performance monitoring counters.

Vol. 3B 18-121

PERFORMANCE MONITORING

NOTE
The performance-monitoring events listed in Chapter 19 are intended to be used as guides for
performance tuning. Counter values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs
(PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be
read from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using
these instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any
privilege level using the RDPMC (read performance-monitoring counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed in Table 19-40 are
model-specific for P6 family processors. They are not guaranteed to be available in other IA-32
processors.

18.6.8.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one
register used to set up each counter. They specify the events to be counted, how they should be counted, and the
privilege levels at which counting should take place. Figure 18-61 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural

conditions (see Table 19-40, for a list of events and their 8-bit codes).
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is
used as a MESI-protocol qualifier of cache states (see Table 19-40).

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism
allows software to measure not only the fraction of time spent in a particular state, but also the average length
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 18-61. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N
I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

18-122 Vol. 3B

PERFORMANCE MONITORING

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set,
performance counting is enabled in both performance-monitoring counters; when clear, both counters are
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock).
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that
occurred that cycle.

18.6.8.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

18.6.8.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs.
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

18.6.8.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking.
• Initialize and start counters.
• Stop counters.
• Read the event counters.
• Read the time-stamp counter.

Vol. 3B 18-123

PERFORMANCE MONITORING

The event monitor feature determination procedure must check whether the current processor supports the
performance-monitoring counters and time-stamp counter. This procedure compares the family and model of the
processor returned by the CPUID instruction with those of processors known to support performance monitoring.
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction
are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting
counts. The stop counters procedure stops the performance counters (see Section 18.6.8.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and
RDPMC instructions that allow application code to read the counters.

18.6.8.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the processor for which performance
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis
of the performance of the profiled application.

18.6.9 Performance Monitoring (Pentium Processors)
The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of
the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-41 are model-specific for the
Pentium processor.

The performance-monitoring events listed in Chapter 19 are intended to be used as guides for
performance tuning. Counter values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are documented where applicable.

18-124 Vol. 3B

PERFORMANCE MONITORING

18.6.9.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0
and CTR1 and the associated pins (see Figure 18-62). To control each counter, the CESR register contains a 6-bit
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1).
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field)

up to two events to be monitored. See Table 19-41 for a list of available event codes.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter.
Control codes are as follows:

000 — Count nothing (counter disabled).

001 — Count the selected event while CPL is 0, 1, or 2.

010 — Count the selected event while CPL is 3.

011 — Count the selected event regardless of CPL.

100 — Count nothing (counter disabled).

101 — Count clocks (duration) while CPL is 0, 1, or 2.

110 — Count clocks (duration) while CPL is 3.

111 — Count clocks (duration) regardless of CPL.
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the
counter has been incremented. These flags permit the pins to be individually programmed to indicate the
overflow or incremented condition. The external signalling of the event on the pins will lag the internal event by
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed,
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At
reset, all bits in the CESR register are cleared.

18.6.9.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high)
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the

Figure 18-62. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10

Vol. 3B 18-125

PERFORMANCE MONITORING

entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter.
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired,
the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these
pins to indicate breakpoint matches.

18.6.9.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.

18.7 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms the basis for measuring how long a program takes to execute.
Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may stop
ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions.
• Enhanced Intel SpeedStep Technology transitions (P-state transitions).

For Intel processors that support TM2, the processor core clocks may operate at a frequency that differs from the
Processor Base frequency (as indicated by processor frequency information reported by CPUID instruction). See
Section 18.7.2 for more detail.

Due to the above considerations there are several important clocks referenced in this manual:
• Base Clock — The frequency of this clock is the frequency of the processor when the processor is not in turbo

mode, and not being throttled via Intel SpeedStep.
• Maximum Clock — This is the maximum frequency of the processor when turbo mode is at the highest point.
• Bus Clock — These clockticks increment at a fixed frequency and help coordinate the bus on some systems.

18-126 Vol. 3B

PERFORMANCE MONITORING

• Core Crystal Clock — This is a clock that runs at fixed frequency; it coordinates the clocks on all packages
across the system.

• Non-halted Clockticks — Measures clock cycles in which the specified logical processor is not halted and is
not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a
per-logical-processor basis. There are also performance events on dual-core processors that measure
clockticks per logical processor when the processor is not halted.

• Non-sleep Clockticks — Measures clock cycles in which the specified physical processor is not in a sleep mode
or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp Counter — See Section 17.17, “Time-Stamp Counter”.
• Reference Clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor

features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 17.17, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time
stamp counter (the timestamp counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a
program, including those periods when the machine halts while waiting for I/O.

18.7.1 Non-Halted Reference Clockticks
Software can use UnHalted Reference Cycles on either a general purpose performance counter using event mask
0x3C and umask 0x01 or on fixed function performance counter 2 to count at a constant rate. These events count
at a consistent rate irrespective of P-state, TM2, or frequency transitions that may occur to the processor. The
UnHalted Reference Cycles event may count differently on the general purpose event and fixed counter.

18.7.2 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the
Processor Base frequency.

The following items are expected to hold true irrespective of when opportunistic processor operation causes state
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused by

opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which is

equal to the product of scalable bus frequency and maximum non-turbo ratio.

Vol. 3B 18-127

PERFORMANCE MONITORING

18.7.3 Determining the Processor Base Frequency
For Intel processors in which the nominal core crystal clock frequency is enumerated in CPUID.15H.ECX and the
core crystal clock ratio is encoded in CPUID.15H (see Table 3-8 “Information Returned by CPUID Instruction”), the
nominal TSC frequency can be determined by using the following equation:

Nominal TSC frequency = (CPUID.15H.ECX[31:0] * CPUID.15H.EBX[31:0]) ÷ CPUID.15H.EAX[31:0]

For Intel processors in which CPUID.15H.EBX[31:0] ÷ CPUID.0x15.EAX[31:0] is enumerated but CPUID.15H.ECX
is not enumerated, Table 18-75 can be used to look up the nominal core crystal clock frequency.

18.7.3.1 For Intel® Processors Based on Microarchitecture Code Name Sandy Bridge, Ivy Bridge,
Haswell and Broadwell

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 100 MHz.

18.7.3.2 For Intel® Processors Based on Microarchitecture Code Name Nehalem
The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by a bus speed of 133.33 MHz.

18.7.3.3 For Intel® Atom™ Processors Based on the Silvermont Microarchitecture (Including Intel
Processors Based on Airmont Microarchitecture)

The scalable bus frequency is encoded in the bit field MSR_PLATFORM_INFO[15:8] and the nominal TSC frequency
can be determined by multiplying this number by the scalable bus frequency. The scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] for Intel Atom processors based on the Silvermont microarchitecture,
and in bit field MSR_FSB_FREQ[3:0] for processors based on the Airmont microarchitecture; see Chapter 2,
“Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

Table 18-75. Nominal Core Crystal Clock Frequency

Processor Families/Processor Number Series1

NOTES:
1. For any processor in which CPUID.15H is enumerated and MSR_PLATFORM_INFO[15:8] (which gives the scalable bus frequency) is

available, a more accurate frequency can be obtained by using CPUID.15H.

Nominal Core Crystal Clock Frequency

Future Intel® Xeon® processors with CPUID signature 06_55H. 25 MHz

6th and 7th generation Intel® Core™ processors (does not include Intel® Xeon®
processors).

24 MHz

Next Generation Intel® Atom™ processors based on Goldmont Microarchitecture with
CPUID signature 06_5CH (does not include Intel Xeon processors).

19.2 MHz

18-128 Vol. 3B

PERFORMANCE MONITORING

18.7.3.4 For Intel® Core™ 2 Processor Family and for Intel® Xeon® Processors Based on Intel Core
Microarchitecture

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4. The maximum resolved bus ratio can be read from the
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It

corresponds to the Processor Base frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STATUS[44:40], it

corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If
MSR_PERF_STATUS[31] is set, XE operation is enabled. The MSR_PERF_STATUS[31] field is read-only.

Vol. 3B 18-129

PERFORMANCE MONITORING

18.8 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 18-63, it provides enumeration of a variety of
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section

17.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist, see Section

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers, see Section

18.6.2.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records, see

Section 18.6.2.4.2.
• IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is

supported if 1, see Section 18.8.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for

updating bits 32 and above of IA32_PMCx, see Section 18.2.5.

18.8.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 17.5, “Last Branch, Interrupt,
and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processors)”) are enabled, these facilities
capture event counts, branch records and branch trace messages occurring in a logical processor. The occurrence
of interrupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these
facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system soft-
ware using performance monitoring and/or branch profiling facilities to filter out the effects of servicing system
management interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored , after the SMI handler issues RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM[bit 14] to 1 only supported as indicated
by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

Figure 18-63. Layout of IA32_PERF_CAPABILITIES MSR

SMM_FREEZE (R/O)
PEBS_REC_FMT (R/O)

8 7 012 3 1

Reserved

63 2411 56

PEBS_TRAP (R/O)
LBR_FMT (R/O)

PEBS_ARCH_REG (R/O)

13

FW_WRITE (R/O)

18-130 Vol. 3B

PERFORMANCE MONITORING

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

19.Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

Changes to this chapter: Added ROB_MISC_EVENTS.LBR_INSERTS event to Table 19-4 “Performance Events of
the Processor Core Supported by Skylake Microarchitecture and Kaby Lake Microarchitecture”.

Vol. 3B 19-1

CHAPTER 19
PERFORMANCE MONITORING EVENTS

This chapter lists the performance monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Model-specific performance events are listed for each generation of microarchitecture:
• Section 19.2 - Processors based on Skylake microarchitecture
• Section 19.3 - Processors based on Skylake and Kaby Lake microarchitectures
• Section 19.4 - Processors based on Knights Landing microarchitecture
• Section 19.5 - Processors based on Broadwell microarchitecture
• Section 19.6 - Processors based on Haswell microarchitecture
• Section 19.6.1 - Processors based on Haswell-E microarchitecture
• Section 19.7 - Processors based on Ivy Bridge microarchitecture
• Section 19.7.1 - Processors based on Ivy Bridge-E microarchitecture
• Section 19.8 - Processors based on Sandy Bridge microarchitecture
• Section 19.9 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.10 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.11 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.12 - Processors based on Intel® Core™ microarchitecture
• Section 19.13 - Processors based on the Goldmont microarchitecture
• Section 19.15 - Processors based on the Silvermont microarchitecture
• Section 19.15.1 - Processors based on the Airmont microarchitecture
• Section 19.16 - 45 nm and 32 nm Intel® Atom™ Processors
• Section 19.17 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.18 - Processors based on Intel NetBurst® microarchitecture
• Section 19.19 - Pentium® M family processors
• Section 19.20 - P6 family processors
• Section 19.21 - Pentium® processors

NOTE
These performance monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.
All performance event encodings not documented in the appropriate tables for the given processor
are considered reserved, and their use will result in undefined counter updates with associated
overflow actions.
The event tables listed this chapter provide information for tool developers to support architectural
and model-specific performance monitoring events. The tables are up to date at processor launch,
but are subject to changes. The most up to date event tables and additional details of performance
event implementation for end-user (including additional details beyond event code/umask) can
found at the “perfmon” repository provided by The Intel Open Source Technology Center
(https://download.01.org/perfmon/).

19-2 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.1 ARCHITECTURAL PERFORMANCE MONITORING EVENTS
Architectural performance events are introduced in Intel Core Solo and Intel Core Duo processors. They are also
supported on processors based on Intel Core microarchitecture. Table 19-1 lists pre-defined architectural perfor-
mance events that can be configured using general-purpose performance counters and associated event-select
registers.

Fixed-function performance counters count only events defined in Table 19-2.

Table 19-1. Architectural Performance Events
Event
Num. Event Mask Name

Umask
Value Description

3CH UnHalted Core Cycles 00H Counts core clock cycles whenever the logical processor is in C0 state
(not halted). The frequency of this event varies with state transitions in
the core.

3CH UnHalted Reference Cycles1

NOTES:
1. Current implementations count at core crystal clock, TSC, or bus clock frequency.

01H Counts at a fixed frequency whenever the logical processor is in C0
state (not halted).

C0H Instructions Retired 00H Counts when the last uop of an instruction retires.

2EH LLC Reference 4FH Counts requests originating from the core that reference a cache line in
the last level on-die cache.

2EH LLC Misses 41H Counts each cache miss condition for references to the last level on-die
cache.

C4H Branch Instruction Retired 00H Counts when the last uop of a branch instruction retires.

C5H Branch Misses Retired 00H Counts when the last uop of a branch instruction retires which
corrected misprediction of the branch prediction hardware at execution
time.

Table 19-2. Fixed-Function Performance Counter and Pre-defined Performance Events
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

IA32_PERF_FIXED_CTR0 309H Inst_Retired.Any This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op
of the instruction. The counter continues counting during
hardware interrupts, traps, and inside interrupt handlers.

IA32_PERF_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THRE
AD/CPU_CLK_UNHALTED.C
ORE/CPU_CLK_UNHALTED.
THREAD_ANY

The CPU_CLK_UNHALTED.THREAD event counts the
number of core cycles while the logical processor is not in
a halt state.

If there is only one logical processor in a processor core,
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of
the processor core.

If there are more than one logical processor in a processor
core, CPU_CLK_UNHALTED.THREAD_ANY is supported by
programming IA32_FIXED_CTR_CTRL[bit 6]AnyThread =
1.

The core frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may have a
changing ratio with regards to time.

Vol. 3B 19-3

PERFORMANCE MONITORING EVENTS

19.2 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
SCALABLE FAMILY

The Intel® Xeon® Processor Scalable Family is based on the Skylake microarchitecture. These processors support
the architectural performance monitoring events listed in Table 19-1. Fixed counters in the core PMU support the
architecture events defined in Table 19-2. Model-specific performance monitoring events in the processor core are
listed in Table 19-4. The events in Table 19-4 apply to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following value: 06_55H .

The comment column in Table 19-4 uses abbreviated letters to indicate additional conditions applicable to the
Event Mask Mnemonic. For event umasks listed in Table 19-4 that do not show “AnyT”, users should refrain from
programming “AnyThread =1” in IA32_PERF_EVTSELx.

IA32_PERF_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF_
TSC

This event counts the number of reference cycles at the
TSC rate when the core is not in a halt state and not in a
TM stop-clock state. The core enters the halt state when
it is running the HLT instruction or the MWAIT instruction.
This event is not affected by core frequency changes (e.g.,
P states) but counts at the same frequency as the time
stamp counter. This event can approximate elapsed time
while the core was not in a halt state and not in a TM
stopclock state.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

00H 01H INST_RETIRED.ANY Counts the number of instructions retired from
execution. For instructions that consist of multiple
micro-ops, Counts the retirement of the last micro-op of
the instruction. Counting continues during hardware
interrupts, traps, and inside interrupt handlers. Notes:
INST_RETIRED.ANY is counted by a designated fixed
counter, leaving the four (eight when Hyperthreading is
disabled) programmable counters available for other
events. INST_RETIRED.ANY_P is counted by a
programmable counter and it is an architectural
performance event. Counting: Faulting executions of
GETSEC/VM entry/VM Exit/MWait will not count as
retired instructions.

 Fixed Counter

00H 02H CPU_CLK_UNHALTED.THREAD Counts the number of core cycles while the thread is
not in a halt state. The thread enters the halt state
when it is running the HLT instruction. This event is a
component in many key event ratios. The core
frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may
have a changing ratio with regards to time. When the
core frequency is constant, this event can approximate
elapsed time while the core was not in the halt state. It
is counted on a dedicated fixed counter, leaving the
four (eight when Hyperthreading is disabled)
programmable counters available for other events.

Fixed Counter

Table 19-2. Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

19-4 Vol. 3B

PERFORMANCE MONITORING EVENTS

00H 02H CPU_CLK_UNHALTED.THREAD_
ANY

Core cycles when at least one thread on the physical
core is not in halt state.

AnyThread=1

00H 03H CPU_CLK_UNHALTED.REF_TSC Counts the number of reference cycles when the core is
not in a halt state. The core enters the halt state when
it is running the HLT instruction or the MWAIT
instruction. This event is not affected by core
frequency changes (for example, P states, TM2
transitions) but has the same incrementing frequency
as the time stamp counter. This event can approximate
elapsed time while the core was not in a halt state. This
event has a constant ratio with the
CPU_CLK_UNHALTED.REF_XCLK event. It is counted on
a dedicated fixed counter, leaving the four (eight when
Hyperthreading is disabled) programmable counters
available for other events. Note: On all current
platforms this event stops counting during ‘throttling
(TM)’ states duty off periods the processor is ‘halted’.
The counter update is done at a lower clock rate then
the core clock the overflow status bit for this counter
may appear ‘sticky’. After the counter has overflowed
and software clears the overflow status bit and resets
the counter to less than MAX. The reset value to the
counter is not clocked immediately so the overflow
status bit will flip “high (1)” and generate another PMI
(if enabled) after which the reset value gets clocked
into the counter. Therefore, software will get the
interrupt, read the overflow status bit ‘1 for bit 34
while the counter value is less than MAX. Software
should ignore this case.

Fixed Counter

03H 02H LD_BLOCKS.STORE_FORWARD Counts how many times the load operation got the true
Block-on-Store blocking code preventing store
forwarding. This includes cases when: a. preceding
store conflicts with the load (incomplete overlap), b.
store forwarding is impossible due to u-arch limitations,
c. preceding lock RMW operations are not forwarded, d.
store has the no-forward bit set (uncacheable/page-
split/masked stores), e. all-blocking stores are used
(mostly, fences and port I/O), and others. The most
common case is a load blocked due to its address range
overlapping with a preceding smaller uncompleted
store. Note: This event does not take into account cases
of out-of-SW-control (for example, SbTailHit), unknown
physical STA, and cases of blocking loads on store due
to being non-WB memory type or a lock. These cases
are covered by other events. See the table of not
supported store forwards in the Optimization Guide.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-5

PERFORMANCE MONITORING EVENTS

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

Counts false dependencies in MOB when the partial
comparison upon loose net check and dependency was
resolved by the Enhanced Loose net mechanism. This
may not result in high performance penalties. Loose net
checks can fail when loads and stores are 4k aliased.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Counts demand data loads that caused a page walk of
any page size (4K/2M/4M/1G). This implies it missed in
all TLB levels, but the walk need not have completed.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Counts demand data loads that caused a completed
page walk (4K page size). This implies it missed in all
TLB levels. The page walk can end with or without a
fault.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Counts demand data loads that caused a completed
page walk (2M and 4M page sizes). This implies it
missed in all TLB levels. The page walk can end with or
without a fault.

08H 08H DTLB_LOAD_MISSES.WALK_COM
PLETED_1G

Counts load misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Counts demand data loads that caused a completed
page walk of any page size (4K/2M/4M/1G). This implies
it missed in all TLB levels. The page walk can end with
or without a fault.

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load. EPT page walk duration are
excluded in Skylake microarchitecture.

08H 10H DTLB_LOAD_MISSES.WALK_ACT
IVE

Counts cycles when at least one PMH (Page Miss
Handler) is busy with a page walk for a load.

CounterMask=1
CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Counts loads that miss the DTLB (Data TLB) and hit the
STLB (Second level TLB).

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the Resource allocator was stalled due to
recovery from an earlier branch misprediction or
machine clear event.

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier clear event for any thread running on the
physical core (e.g. misprediction or memory nuke).

AnyThread=1 AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front-end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY Counts the number of uops that the Resource
Allocation Table (RAT) issues to the Reservation Station
(RS).

0EH 01H UOPS_ISSUED.STALL_CYCLES Counts cycles during which the Resource Allocation
Table (RAT) does not issue any uops to the reservation
station (RS) for the current thread.

CounterMask=1
Invert=1 CMSK1, INV

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-6 Vol. 3B

PERFORMANCE MONITORING EVENTS

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Counts the number of Blend Uops issued by the
Resource Allocation Table (RAT) to the reservation
station (RS) in order to preserve upper bits of vector
registers. Starting with the Skylake microarchitecture,
these Blend uops are needed since every Intel SSE
instruction executed in Dirty Upper State needs to
preserve bits 128-255 of the destination register. For
more information, refer to Mixing Intel AVX and Intel
SSE Code section of the Optimization Guide.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA uops being allocated. A uop is
generally considered SlowLea if it has 3 sources (e.g. 2
sources + immediate) regardless if as a result of LEA
instruction or not.

14H 01H ARITH.DIVIDER_ACTIVE Cycles when divide unit is busy executing divide or
square root operations. Accounts for integer and
floating-point operations.

CounterMask=1

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Counts the number of demand Data Read requests that
miss L2 cache. Only not rejected loads are counted.

24H 22H L2_RQSTS.RFO_MISS Counts the RFO (Read-for-Ownership) requests that
miss L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Counts L2 cache misses when fetching instructions.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H 38H L2_RQSTS.PF_MISS Counts requests from the L1/L2/L3 hardware
prefetchers or Load software prefetches that miss L2
cache.

24H 3FH L2_RQSTS.MISS All requests that miss L2 cache.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Counts the number of demand Data Read requests that
hit L2 cache. Only non rejected loads are counted.

24H 42H L2_RQSTS.RFO_HIT Counts the RFO (Read-for-Ownership) requests that hit
L2 cache.

24H 44H L2_RQSTS.CODE_RD_HIT Counts L2 cache hits when fetching instructions, code
reads.

24H D8H L2_RQSTS.PF_HIT Counts requests from the L1/L2/L3 hardware
prefetchers or Load software prefetches that hit L2
cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts the number of demand Data Read requests
(including requests from L1D hardware prefetchers).
These loads may hit or miss L2 cache. Only non rejected
loads are counted.

24H E2H L2_RQSTS.ALL_RFO Counts the total number of RFO (read for ownership)
requests to L2 cache. L2 RFO requests include both
L1D demand RFO misses as well as L1D RFO
prefetches.

24H E4H L2_RQSTS.ALL_CODE_RD Counts the total number of L2 code requests.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H F8H L2_RQSTS.ALL_PF Counts the total number of requests from the L2
hardware prefetchers.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-7

PERFORMANCE MONITORING EVENTS

24H FFH L2_RQSTS.REFERENCES All L2 requests.

28H 07H CORE_POWER.LVL0_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for baseline license level 0. This includes non-
AVX codes, SSE, AVX 128-bit, and low-current AVX
256-bit codes.

28H 18H CORE_POWER.LVL1_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for license level 1. This includes high current
AVX 256-bit instructions as well as low current AVX
512-bit instructions.

28H 20H CORE_POWER.LVL2_TURBO_LIC
ENSE

Core cycles where the core was running with power-
delivery for license level 2 (introduced in Skylake
Server microarchitecture). This includes high current
AVX 512-bit instructions.

28H 40H CORE_POWER.THROTTLE Core cycles the out-of-order engine was throttled due
to a pending power level request.

2EH 41H LONGEST_LAT_CACHE.MISS Counts core-originated cacheable requests that miss
the L3 cache (Longest Latency cache). Requests include
data and code reads, Reads-for-Ownership (RFOs),
speculative accesses and hardware prefetches from L1
and L2. It does not include all misses to the L3.

See Table 19-1.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

Counts core-originated cacheable requests to the L3
cache (Longest Latency cache). Requests include data
and code reads, Reads-for-Ownership (RFOs),
speculative accesses and hardware prefetches from L1
and L2. It does not include all accesses to the L3.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

This is an architectural event that counts the number of
thread cycles while the thread is not in a halt state. The
thread enters the halt state when it is running the HLT
instruction. The core frequency may change from time
to time due to power or thermal throttling. For this
reason, this event may have a changing ratio with
regards to wall clock time.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P_ANY

Core cycles when at least one thread on the physical
core is not in halt state.

AnyThread=1 AnyT

3CH 00H CPU_CLK_UNHALTED.RING0_TR
ANS

Counts when the Current Privilege Level (CPL)
transitions from ring 1, 2 or 3 to ring 0 (Kernel).

EdgeDetect=1
CounterMask=1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Core crystal clock cycles when the thread is unhalted. See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK_ANY

Core crystal clock cycles when at least one thread on
the physical core is unhalted.

AnyThread=1 AnyT

3CH 01H CPU_CLK_UNHALTED.REF_XCLK Core crystal clock cycles when the thread is unhalted. See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_XCLK
_ANY

Core crystal clock cycles when at least one thread on
the physical core is unhalted.

AnyThread=1 AnyT

3CH 02H CPU_CLK_THREAD_UNHALTED.
ONE_THREAD_ACTIVE

Core crystal clock cycles when this thread is unhalted
and the other thread is halted.

3CH 02H CPU_CLK_UNHALTED.ONE_THR
EAD_ACTIVE

Core crystal clock cycles when this thread is unhalted
and the other thread is halted.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-8 Vol. 3B

PERFORMANCE MONITORING EVENTS

48H 01H L1D_PEND_MISS.PENDING Counts duration of L1D miss outstanding, that is each
cycle number of Fill Buffers (FB) outstanding required
by Demand Reads. FB either is held by demand loads, or
it is held by non-demand loads and gets hit at least
once by demand. The valid outstanding interval is
defined until the FB deallocation by one of the
following ways: from FB allocation, if FB is allocated by
demand from the demand Hit FB, if it is allocated by
hardware or software prefetch.Note: In the L1D, a
Demand Read contains cacheable or noncacheable
demand loads, including ones causing cache-line splits
and reads due to page walks resulted from any request
type.

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES

Counts duration of L1D miss outstanding in cycles. CounterMask=1
CMSK1

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES_ANY

Cycles with L1D load Misses outstanding from any
thread on physical core.

CounterMask=1
AnyThread=1
CMSK1, AnyT

48H 02H L1D_PEND_MISS.FB_FULL Number of times a request needed a FB (Fill Buffer)
entry but there was no entry available for it. A request
includes cacheable/uncacheable demands that are load,
store or SW prefetch instructions.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Counts demand data stores that caused a page walk of
any page size (4K/2M/4M/1G). This implies it missed in
all TLB levels, but the walk need not have completed.

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Counts demand data stores that caused a completed
page walk (4K page size). This implies it missed in all
TLB levels. The page walk can end with or without a
fault.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Counts demand data stores that caused a completed
page walk (2M and 4M page sizes). This implies it
missed in all TLB levels. The page walk can end with or
without a fault.

49H 08H DTLB_STORE_MISSES.WALK_CO
MPLETED_1G

Counts store misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Counts demand data stores that caused a completed
page walk of any page size (4K/2M/4M/1G). This implies
it missed in all TLB levels. The page walk can end with
or without a fault.

49H 10H DTLB_STORE_MISSES.WALK_PE
NDING

Counts 1 per cycle for each PMH that is busy with a
page walk for a store. EPT page walk duration are
excluded in Skylake microarchitecture.

49H 10H DTLB_STORE_MISSES.WALK_AC
TIVE

Counts cycles when at least one PMH (Page Miss
Handler) is busy with a page walk for a store.

CounterMask=1
CMSK1

49H 20H DTLB_STORE_MISSES.STLB_HIT Stores that miss the DTLB (Data TLB) and hit the STLB
(2nd Level TLB).

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-9

PERFORMANCE MONITORING EVENTS

4CH 01H LOAD_HIT_PRE.SW_PF Counts all not software-prefetch load dispatches that
hit the fill buffer (FB) allocated for the software
prefetch. It can also be incremented by some lock
instructions. So it should only be used with profiling so
that the locks can be excluded by ASM (Assembly File)
inspection of the nearby instructions.

4FH 10H EPT.WALK_PENDING Counts cycles for each PMH (Page Miss Handler) that is
busy with an EPT (Extended Page Table) walk for any
request type.

51H 01H L1D.REPLACEMENT Counts L1D data line replacements including
opportunistic replacements, and replacements that
require stall-for-replace or block-for-replace.

54H 01H TX_MEM.ABORT_CONFLICT Number of times a TSX line had a cache conflict.

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

54H 04H TX_MEM.ABORT_HLE_STORE_T
O_ELIDED_LOCK

Number of times a TSX Abort was triggered due to a
non-release/commit store to lock.

54H 08H TX_MEM.ABORT_HLE_ELISION_
BUFFER_NOT_EMPTY

Number of times a TSX Abort was triggered due to
commit but Lock Buffer not empty.

54H 10H TX_MEM.ABORT_HLE_ELISION_
BUFFER_MISMATCH

Number of times a TSX Abort was triggered due to
release/commit but data and address mismatch.

54H 20H TX_MEM.ABORT_HLE_ELISION_
BUFFER_UNSUPPORTED_ALIGN
MENT

Number of times a TSX Abort was triggered due to
attempting an unsupported alignment from Lock
Buffer.

54H 40H TX_MEM.HLE_ELISION_BUFFER
_FULL

Number of times we could not allocate Lock Buffer.

5DH 01H TX_EXEC.MISC1 Unfriendly TSX abort triggered by a flowmarker.

5DH 02H TX_EXEC.MISC2 Unfriendly TSX abort triggered by a vzeroupper
instruction.

5DH 04H TX_EXEC.MISC3 Unfriendly TSX abort triggered by a nest count that is
too deep.

5DH 08H TX_EXEC.MISC4 RTM region detected inside HLE.

5DH 10H TX_EXEC.MISC5 Counts the number of times an HLE XACQUIRE
instruction was executed inside an RTM transactional
region.

5EH 01H RS_EVENTS.EMPTY_CYCLES Counts cycles during which the reservation station (RS)
is empty for the thread.; Note: In ST-mode, not active
thread should drive 0. This is usually caused by
severely costly branch mispredictions, or allocator/FE
issues.

5EH 01H RS_EVENTS.EMPTY_END Counts end of periods where the Reservation Station
(RS) was empty. Could be useful to precisely locate
front-end Latency Bound issues.

EdgeDetect=1
CounterMask=1
Invert=1 CMSK1, INV

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-10 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Counts the number of offcore outstanding Demand
Data Read transactions in the super queue (SQ) every
cycle. A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor. See the corresponding
Umask under OFFCORE_REQUESTS. Note: A prefetch
promoted to Demand is counted from the promotion
point.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_D
ATA_RD

Counts cycles when offcore outstanding Demand Data
Read transactions are present in the super queue (SQ).
A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation).

CounterMask=1
CMSK1

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD_GE_6

Cycles with at least 6 offcore outstanding Demand Data
Read transactions in uncore queue.

CounterMask=6
CMSK6

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Counts the number of offcore outstanding Code Reads
transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_C
ODE_RD

Counts the number of offcore outstanding Code Reads
transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Counts the number of offcore outstanding RFO (store)
transactions in the super queue (SQ) every cycle. A
transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_R
FO

Counts the number of offcore outstanding demand rfo
Reads transactions in the super queue every cycle. The
'Offcore outstanding' state of the transaction lasts
from the L2 miss until the sending transaction
completion to requestor (SQ deallocation). See the
corresponding Umask under OFFCORE_REQUESTS.

CMSK1

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Counts the number of offcore outstanding cacheable
Core Data Read transactions in the super queue every
cycle. A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DATA_RD

Counts cycles when offcore outstanding cacheable Core
Data Read transactions are present in the super queue.
A transaction is considered to be in the Offcore
outstanding state between L2 miss and transaction
completion sent to requestor (SQ de-allocation). See
corresponding Umask under OFFCORE_REQUESTS.

CounterMask=1
CMSK1

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-11

PERFORMANCE MONITORING EVENTS

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD

Counts number of Offcore outstanding Demand Data
Read requests that miss L3 cache in the superQ every
cycle.

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least 1 Demand Data Read requests who
miss L3 cache in the superQ.

CounterMask=1
CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least 6 Demand Data Read requests that
miss L3 cache in the superQ.

CounterMask=6
CMSK6

79H 04H IDQ.MITE_UOPS Counts the number of uops delivered to Instruction
Decode Queue (IDQ) from the MITE path. Counting
includes uops that may 'bypass' the IDQ. This also
means that uops are not being delivered from the
Decode Stream Buffer (DSB).

79H 04H IDQ.MITE_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) from the MITE path.
Counting includes uops that may 'bypass' the IDQ.

CounterMask=1
CMSK1

79H 08H IDQ.DSB_UOPS Counts the number of uops delivered to Instruction
Decode Queue (IDQ) from the Decode Stream Buffer
(DSB) path. Counting includes uops that may ‘bypass’
the IDQ.

79H 08H IDQ.DSB_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Counting includes uops that
may 'bypass' the IDQ.

CounterMask=1
CMSK1

79H 10H IDQ.MS_DSB_CYCLES Counts cycles during which uops initiated by Decode
Stream Buffer (DSB) are being delivered to Instruction
Decode Queue (IDQ) while the Microcode Sequencer
(MS) is busy. Counting includes uops that may 'bypass'
the IDQ.

CounterMask=1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts the number of cycles 4 uops were delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Count includes uops that may
'bypass' the IDQ.

CounterMask=4
CMSK4

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts the number of cycles uops were delivered to
Instruction Decode Queue (IDQ) from the Decode
Stream Buffer (DSB) path. Count includes uops that may
'bypass' the IDQ.

CounterMask=1
CMSK1

79H 20H IDQ.MS_MITE_UOPS Counts the number of uops initiated by MITE and
delivered to Instruction Decode Queue (IDQ) while the
Microcode Sequencer (MS) is busy. Counting includes
uops that may 'bypass' the IDQ.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts the number of cycles 4 uops were delivered to
the Instruction Decode Queue (IDQ) from the MITE
(legacy decode pipeline) path. Counting includes uops
that may 'bypass' the IDQ. During these cycles uops are
not being delivered from the Decode Stream Buffer
(DSB).

CounterMask=4
CMSK4

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-12 Vol. 3B

PERFORMANCE MONITORING EVENTS

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts the number of cycles uops were delivered to
the Instruction Decode Queue (IDQ) from the MITE
(legacy decode pipeline) path. Counting includes uops
that may 'bypass' the IDQ. During these cycles uops are
not being delivered from the Decode Stream Buffer
(DSB).

CounterMask=1
CMSK1

79H 30H IDQ.MS_CYCLES Counts cycles during which uops are being delivered to
Instruction Decode Queue (IDQ) while the Microcode
Sequencer (MS) is busy. Counting includes uops that
may 'bypass' the IDQ. Uops maybe initiated by Decode
Stream Buffer (DSB) or MITE.

CounterMask=1
CMSK1

79H 30H IDQ.MS_SWITCHES Number of switches from DSB (Decode Stream Buffer)
or MITE (legacy decode pipeline) to the Microcode
Sequencer.

EdgeDetect=1
CounterMask=1
EDGE

79H 30H IDQ.MS_UOPS Counts the total number of uops delivered by the
Microcode Sequencer (MS). Any instruction over 4 uops
will be delivered by the MS. Some instructions such as
transcendentals may additionally generate uops from
the MS.

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code line fetch is stalled due to an L1
instruction cache miss. The legacy decode pipeline
works at a 16 Byte granularity.

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

83H 04H ICACHE_64B.IFTAG_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Counts page walks of any page size (4K/2M/4M/1G)
caused by a code fetch. This implies it missed in the
ITLB and further levels of TLB, but the walk need not
have completed.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Counts completed page walks (4K page size) caused by
a code fetch. This implies it missed in the ITLB and
further levels of TLB. The page walk can end with or
without a fault.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Counts completed page walks of any page size
(4K/2M/4M/1G) caused by a code fetch. This implies it
missed in the ITLB and further levels of TLB. The page
walk can end with or without a fault.

85H 08H ITLB_MISSES.WALK_COMPLETE
D_1G

Counts store misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can
end with or without a fault.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks (2M and 4M page sizes)
caused by a code fetch. This implies it missed in the
ITLB and further levels of TLB. The page walk can end
with or without a fault.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-13

PERFORMANCE MONITORING EVENTS

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request. EPT page
walk duration are excluded in Skylake
microarchitecture.

85H 10H ITLB_MISSES.WALK_ACTIVE Cycles when at least one PMH is busy with a page walk
for code (instruction fetch) request. EPT page walk
duration are excluded in Skylake microarchitecture.

CounterMask=1

85H 20H ITLB_MISSES.STLB_HIT Instruction fetch requests that miss the ITLB and hit
the STLB.

87H 01H ILD_STALL.LCP Counts cycles that the Instruction Length decoder (ILD)
stalls occurred due to dynamically changing prefix
length of the decoded instruction (by operand size
prefix instruction 0x66, address size prefix instruction
0x67 or REX.W for Intel64). Count is proportional to the
number of prefixes in a 16B-line. This may result in a
three-cycle penalty for each LCP (Length changing
prefix) in a 16-byte chunk.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Counts the number of uops not delivered to Resource
Allocation Table (RAT) per thread adding “4 – x” ? when
Resource Allocation Table (RAT) is not stalled and
Instruction Decode Queue (IDQ) delivers x uops to
Resource Allocation Table (RAT) (where x belongs to
{0,1,2,3}). Counting does not cover cases when: a. IDQ-
Resource Allocation Table (RAT) pipe serves the other
thread. b. Resource Allocation Table (RAT) is stalled for
the thread (including uop drops and clear BE
conditions). c. Instruction Decode Queue (IDQ) delivers
four uops.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOPS_DELIV.CORE

Counts, on the per-thread basis, cycles when no uops
are delivered to Resource Allocation Table (RAT).
IDQ_Uops_Not_Delivered.core =4.

CounterMask=4
CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_1_UOP_DELIV.CORE

Counts, on the per-thread basis, cycles when less than
1 uop is delivered to Resource Allocation Table (RAT).
IDQ_Uops_Not_Delivered.core >= 3.

CounterMask=3
CMSK3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_2_UOP_DELIV.CORE

Cycles with less than 2 uops delivered by the front end. CounterMask=2
CMSK2

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_3_UOP_DELIV.CORE

Cycles with less than 3 uops delivered by the front end. CounterMask=1
CMSK1

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Counts cycles FE delivered 4 uops or Resource
Allocation Table (RAT) was stalling FE.

CounterMask=1
Invert=1 CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 2.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-14 Vol. 3B

PERFORMANCE MONITORING EVENTS

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts, on the per-thread basis, cycles during which at
least one uop is dispatched from the Reservation
Station (RS) to port 7.

A2H 01H RESOURCE_STALLS.ANY Counts resource-related stall cycles. Reasons for stalls
can be as follows: a. *any* u-arch structure got full (LB,
SB, RS, ROB, BOB, LM, Physical Register Reclaim Table
(PRRT), or Physical History Table (PHT) slots). b. *any*
u-arch structure got empty (like INT/SIMD FreeLists). c.
FPU control word (FPCW), MXCSR.and others. This
counts cycles that the pipeline back end blocked uop
delivery from the front end.

A2H 08H RESOURCE_STALLS.SB Counts allocation stall cycles caused by the store buffer
(SB) being full. This counts cycles that the pipeline back
end blocked uop delivery from the front end.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CounterMask=1
CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CounterMask=2
CMSK2

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls. CounterMask=4
CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CounterMask=5
CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CounterMask=6
CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 cache miss demand load is outstanding. CounterMask=8
CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 cache miss demand load is
outstanding.

CounterMask=12
CMSK12

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CounterMask=16
CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CounterMask=20
CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Counts cycles during which no uops were executed on
all ports and Reservation Station (RS) was not empty.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-15

PERFORMANCE MONITORING EVENTS

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Counts cycles during which a total of 1 uop was
executed on all ports and Reservation Station (RS) was
not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Counts cycles during which a total of 2 uops were
executed on all ports and Reservation Station (RS) was
not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles total of 3 uops are executed on all ports and
Reservation Station (RS) was not empty.

A6H 10H EXE_ACTIVITY.4_PORTS_UTIL Cycles total of 4 uops are executed on all ports and
Reservation Station (RS) was not empty.

A6H 40H EXE_ACTIVITY.BOUND_ON_STO
RES

Cycles where the Store Buffer was full and no
outstanding load.

A8H 01H LSD.UOPS Number of uops delivered to the back-end by the LSD
(Loop Stream Detector).

A8H 01H LSD.CYCLES_ACTIVE Counts the cycles when at least one uop is delivered by
the LSD (Loop-stream detector).

CounterMask=1
CMSK1

A8H 01H LSD.CYCLES_4_UOPS Counts the cycles when 4 uops are delivered by the
LSD (Loop-stream detector).

CounterMask=4
CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Counts Decode Stream Buffer (DSB)-to-MITE switch
true penalty cycles. These cycles do not include uops
routed through because of the switch itself, for
example, when Instruction Decode Queue (IDQ) pre-
allocation is unavailable, or Instruction Decode Queue
(IDQ) is full. SBD-to-MITE switch true penalty cycles
happen after the merge mux (MM) receives Decode
Stream Buffer (DSB) Sync-indication until receiving the
first MITE uop. MM is placed before Instruction Decode
Queue (IDQ) to merge uops being fed from the MITE
and Decode Stream Buffer (DSB) paths. Decode Stream
Buffer (DSB) inserts the Sync-indication whenever a
Decode Stream Buffer (DSB)-to-MITE switch
occurs.Penalty: A Decode Stream Buffer (DSB) hit
followed by a Decode Stream Buffer (DSB) miss can
cost up to six cycles in which no uops are delivered to
the IDQ. Most often, such switches from the Decode
Stream Buffer (DSB) to the legacy pipeline cost 0 to 2
cycles.

AEH 01H ITLB.ITLB_FLUSH Counts the number of flushes of the big or small ITLB
pages. Counting include both TLB Flush (covering all
sets) and TLB Set Clear (set-specific).

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Counts the Demand Data Read requests sent to uncore.
Use it in conjunction with
OFFCORE_REQUESTS_OUTSTANDING to determine
average latency in the uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Counts both cacheable and non-cacheable code read
requests.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Counts the demand RFO (read for ownership) requests
including regular RFOs, locks, ItoM.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-16 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Counts the demand and prefetch data reads. All Core
Data Reads include cacheable 'Demands' and L2
prefetchers (not L3 prefetchers). Counting also covers
reads due to page walks resulted from any request
type.

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand Data Read requests who miss L3 cache.

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Counts memory transactions reached the super queue
including requests initiated by the core, all L3
prefetches, page walks, etc.

B1H 01H UOPS_EXECUTED.THREAD Number of uops to be executed per-thread each cycle.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Counts cycles during which no uops were dispatched
from the Reservation Station (RS) per thread.

CounterMask=1
Invert=1 CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles where at least 1 uop was executed per-thread. CounterMask=1
CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOPS_EXEC

Cycles where at least 2 uops were executed per-thread. CounterMask=2
CMSK2

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOPS_EXEC

Cycles where at least 3 uops were executed per-thread. CounterMask=3
CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOPS_EXEC

Cycles where at least 4 uops were executed per-thread. CounterMask=4
CMSK4

B1H 02H UOPS_EXECUTED.CORE Number of uops executed from any thread.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles at least 1 micro-op is executed from any thread
on physical core.

CounterMask=1
CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles at least 2 micro-op is executed from any thread
on physical core.

CounterMask=2
CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles at least 3 micro-op is executed from any thread
on physical core.

CounterMask=3
CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles at least 4 micro-op is executed from any thread
on physical core.

CounterMask=4
CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles with no micro-ops executed from any thread on
physical core.

CounterMask=1
Invert=1 CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of x87 uops executed.

B2H 01H OFFCORE_REQUESTS_BUFFER.S
Q_FULL

Counts the number of cases when the offcore requests
buffer cannot take more entries for the core. This can
happen when the superqueue does not contain eligible
entries, or when L1D writeback pending FIFO requests
is full. Note: Writeback pending FIFO has six entries.

BDH 01H TLB_FLUSH.DTLB_THREAD Counts the number of DTLB flush attempts of the
thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Counts the number of any STLB flush attempts (such as
entire, VPID, PCID, InvPage, CR3 write, etc.).

C0H 00H INST_RETIRED.ANY_P Counts the number of instructions (EOMs) retired.
Counting covers macro-fused instructions individually
(that is, increments by two).

See Table 19-1.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-17

PERFORMANCE MONITORING EVENTS

C0H 01H INST_RETIRED.PREC_DIST A version of INST_RETIRED that allows for a more
unbiased distribution of samples across instructions
retired. It utilizes the Precise Distribution of
Instructions Retired (PDIR) feature to mitigate some
bias in how retired instructions get sampled.

Precise event capable
Requires PEBS on
General Counter
1(PDIR).

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

C2H 01H UOPS_RETIRED.STALL_CYCLES This is a non-precise version (that is, does not use
PEBS) of the event that counts cycles without actually
retired uops.

CounterMask=1
Invert=1 CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Number of cycles using always true condition (uops_ret
< 16) applied to non PEBS uops retired event.

CounterMask=10
Invert=1 CMSK10,
INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears (nukes) of any type. EdgeDetect=1
CounterMask=1
CMSK1, EDG

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of memory ordering Machine Clears
detected. Memory Ordering Machine Clears can result
from one of the following: a. memory disambiguation, b.
external snoop, or c. cross SMT-HW-thread snoop
(stores) hitting load buffer.

C3H 04H MACHINE_CLEARS.SMC Counts self-modifying code (SMC) detected, which
causes a machine clear.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Counts all (macro) branch instructions retired. Precise event capable.

See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

This is a non-precise version (that is, does not use
PEBS) of the event that counts conditional branch
instructions retired.

Precise event capable.
PS

C4H 02H BR_INST_RETIRED.NEAR_CALL This is a non-precise version (that is, does not use
PEBS) of the event that counts both direct and indirect
near call instructions retired.

Precise event capable.
PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

This is a non-precise version (that is, does not use
PEBS) of the event that counts return instructions
retired.

Precise event capable.
PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN This is a non-precise version (that is, does not use
PEBS) of the event that counts not taken branch
instructions retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

This is a non-precise version (that is, does not use
PEBS) of the event that counts taken branch
instructions retired.

Precise event capable.
PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

This is a non-precise version (that is, does not use
PEBS) of the event that counts far branch instructions
retired.

Precise event capable.
PS

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-18 Vol. 3B

PERFORMANCE MONITORING EVENTS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Counts all the retired branch instructions that were
mispredicted by the processor. A branch misprediction
occurs when the processor incorrectly predicts the
destination of the branch. When the misprediction is
discovered at execution, all the instructions executed in
the wrong (speculative) path must be discarded, and
the processor must start fetching from the correct
path.

Precise event capable.

See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

This is a non-precise version (that is, does not use
PEBS) of the event that counts mispredicted conditional
branch instructions retired.

Precise event capable.
PS

C5H 02H BR_MISP_RETIRED.NEAR_CALL Counts both taken and not taken retired mispredicted
direct and indirect near calls, including both register and
memory indirect.

Precise event capable.

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

Precise event capable.
PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Counts retired Instructions that experienced DSB
(Decode stream buffer, i.e. the decoded instruction-
cache) miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired Instructions who experienced Instruction L1
Cache true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.L2_MISS Retired Instructions who experienced Instruction L2
Cache true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.ITLB_MISS Counts retired Instructions that experienced iTLB
(Instruction TLB) true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Counts retired Instructions that experienced STLB (2nd
level TLB) true miss.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of 2
cycles which was not interrupted by a back-end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_4

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of 4
cycles which was not interrupted by a back-end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_8

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 8 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 16 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_32

Counts retired instructions that are delivered to the
back end after a front-end stall of at least 32 cycles.
During this period the front end delivered no uops.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_64

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
64 cycles which was not interrupted by a back-end
stall.

Precise event capable.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-19

PERFORMANCE MONITORING EVENTS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_128

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
128 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_256

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
256 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_512

Retired instructions that are fetched after an interval
where the front end delivered no uops for a period of
512 cycles which was not interrupted by a back-end
stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_1

Counts retired instructions that are delivered to the
back end after the front end had at least 1 bubble-slot
for a period of 2 cycles. A bubble-slot is an empty issue-
pipeline slot while there was no RAT stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_2

Retired instructions that are fetched after an interval
where the front end had at least 2 bubble-slots for a
period of 2 cycles which was not interrupted by a back-
end stall.

Precise event capable.

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_3

Retired instructions that are fetched after an interval
where the front end had at least 3 bubble-slots for a
period of 2 cycles which was not interrupted by a back-
end stall.

Precise event capable.

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of SSE/AVX computational scalar double
precision floating-point instructions retired. Each count
represents 1 computation. Applies to SSE* and AVX*
scalar double precision floating-point instructions: ADD
SUB MUL DIV MIN MAX SQRT FM(N)ADD/SUB.
FM(N)ADD/SUB instructions count twice as they
perform multiple calculations per element.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of SSE/AVX computational scalar single
precision floating-point instructions retired. Each count
represents 1 computation. Applies to SSE* and AVX*
scalar single precision floating-point instructions: ADD
SUB MUL DIV MIN MAX RCP RSQRT SQRT
FM(N)ADD/SUB. FM(N)ADD/SUB instructions count
twice as they perform multiple calculations per
element.

Software may treat
each count as one SP
FLOP.

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of SSE/AVX computational 128-bit packed
double precision floating-point instructions retired.
Each count represents 2 computations. Applies to SSE*
and AVX* packed double precision floating-point
instructions: ADD SUB MUL DIV MIN MAX SQRT DPP
FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions
count twice as they perform multiple calculations per
element.

Software may treat
each count as two DP
FLOPs.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-20 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of SSE/AVX computational 128-bit packed
single precision floating-point instructions retired. Each
count represents 4 computations. Applies to SSE* and
AVX* packed single precision floating-point
instructions: ADD SUB MUL DIV MIN MAX RCP RSQRT
SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB
instructions count twice as they perform multiple
calculations per element.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of SSE/AVX computational 256-bit packed
double precision floating-point instructions retired.
Each count represents 4 computations. Applies to SSE*
and AVX* packed double precision floating-point
instructions: ADD SUB MUL DIV MIN MAX SQRT DPP
FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions
count twice as they perform multiple calculations per
element.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of SSE/AVX computational 256-bit packed
single precision floating-point instructions retired. Each
count represents 8 computations. Applies to SSE* and
AVX* packed single precision floating-point
instructions: ADD SUB MUL DIV MIN MAX RCP RSQRT
SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB
instructions count twice as they perform multiple
calculations per element.

Software may treat
each count as eight
SP FLOPs.

C7H 40H FP_ARITH_INST_RETIRED.512B
_PACKED_DOUBLE

Number of Packed Double-Precision FP arithmetic
instructions (use operation multiplier of 8).

Only applicable when
AVX-512 is enabled.

C7H 80H FP_ARITH_INST_RETIRED.512B
_PACKED_SINGLE

Number of Packed Single-Precision FP arithmetic
instructions (use operation multiplier of 16).

Only applicable when
AVX-512 is enabled.

C8H 01H HLE_RETIRED.START Number of times we entered an HLE region. Does not
count nested transactions.

C8H 02H HLE_RETIRED.COMMIT Number of times HLE commit succeeded.

C8H 04H HLE_RETIRED.ABORTED Number of times HLE abort was triggered. Precise event capable.

C8H 08H HLE_RETIRED.ABORTED_MEM Number of times an HLE execution aborted due to
various memory events (e.g., read/write capacity and
conflicts).

C8H 10H HLE_RETIRED.ABORTED_TIMER Number of times an HLE execution aborted due to
hardware timer expiration.

C8H 20H HLE_RETIRED.ABORTED_UNFRI
ENDLY

Number of times an HLE execution aborted due to HLE-
unfriendly instructions and certain unfriendly events
(such as AD assists etc.).

C8H 40H HLE_RETIRED.ABORTED_MEMT
YPE

Number of times an HLE execution aborted due to
incompatible memory type.

C8H 80H HLE_RETIRED.ABORTED_EVENT
S

Number of times an HLE execution aborted due to
unfriendly events (such as interrupts).

C9H 01H RTM_RETIRED.START Number of times we entered an RTM region. Does not
count nested transactions.

C9H 02H RTM_RETIRED.COMMIT Number of times RTM commit succeeded.

C9H 04H RTM_RETIRED.ABORTED Number of times RTM abort was triggered. Precise event capable.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-21

PERFORMANCE MONITORING EVENTS

C9H 08H RTM_RETIRED.ABORTED_MEM Number of times an RTM execution aborted due to
various memory events (e.g. read/write capacity and
conflicts).

C9H 10H RTM_RETIRED.ABORTED_TIMER Number of times an RTM execution aborted due to
uncommon conditions.

C9H 20H RTM_RETIRED.ABORTED_UNFRI
ENDLY

Number of times an RTM execution aborted due to
HLE-unfriendly instructions.

C9H 40H RTM_RETIRED.ABORTED_MEMT
YPE

Number of times an RTM execution aborted due to
incompatible memory type.

C9H 80H RTM_RETIRED.ABORTED_EVENT
S

Number of times an RTM execution aborted due to
none of the previous 4 categories (e.g. interrupt).

CAH 1EH FP_ASSIST.ANY Counts cycles with any input and output SSE or x87 FP
assist. If an input and output assist are detected on the
same cycle the event increments by 1.

CounterMask=1
CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Counts the number of hardware interruptions received
by the processor.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Increments when an entry is added to the Last Branch
Record (LBR) array (or removed from the array in case
of RETURNs in call stack mode). The event requires LBR
enable via IA32_DEBUGCTL MSR and branch type
selection via MSR_LBR_SELECT.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_4

Counts loads when the latency from first dispatch to
completion is greater than 4 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_8

Counts loads when the latency from first dispatch to
completion is greater than 8 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_16

Counts loads when the latency from first dispatch to
completion is greater than 16 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_32

Counts loads when the latency from first dispatch to
completion is greater than 32 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_64

Counts loads when the latency from first dispatch to
completion is greater than 64 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_128

Counts loads when the latency from first dispatch to
completion is greater than 128 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_256

Counts loads when the latency from first dispatch to
completion is greater than 256 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY_GT_512

Counts loads when the latency from first dispatch to
completion is greater than 512 cycles. Reported latency
may be longer than just the memory latency.

Precise event capable.
Specify threshold in
MSR 3F6H.

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. Precise event capable.
PSDLA

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-22 Vol. 3B

PERFORMANCE MONITORING EVENTS

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. Precise event capable.
PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. Precise event capable.
PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Counts retired load instructions that split across a
cacheline boundary.

Precise event capable.
PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Counts retired store instructions that split across a
cacheline boundary.

Precise event capable.
PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. Precise event capable.
PSDLA

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. Precise event capable.
PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Counts retired load instructions with at least one uop
that hit in the L1 data cache. This event includes all SW
prefetches and lock instructions regardless of the data
source.

Precise event capable.
PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load instructions with L2 cache hits as data
sources.

Precise event capable.
PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Counts retired load instructions with at least one uop
that hit in the L3 cache.

Precise event capable.
PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Counts retired load instructions with at least one uop
that missed in the L1 cache.

Precise event capable.
PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load instructions missed L2 cache as data
sources.

Precise event capable.
PSDLA

D1H 20H MEM_LOAD_RETIRED.L3_MISS Counts retired load instructions with at least one uop
that missed in the L3 cache.

Precise event capable.
PSDLA

D1H 40H MEM_LOAD_RETIRED.FB_HIT Counts retired load instructions with at least one uop
was load missed in L1 but hit FB (Fill Buffers) due to
preceding miss to the same cache line with data not
ready.

Precise event capable.
PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load instructions which data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

Precise event capable.
PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load instructions which data sources were L3
and cross-core snoop hits in on-pkg core cache.

Precise event capable.
PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load instructions which data sources were HitM
responses from shared L3.

Precise event capable.
PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load instructions which data sources were hits
in L3 without snoops required.

Precise event capable.
PSDLA

D3H 01H MEM_LOAD_L3_MISS_RETIRED.
LOCAL_DRAM

Retired load instructions which data sources missed L3
but serviced from local DRAM.

Precise event capable.

D3H 02H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_DRAM

Retired load instructions which data sources missed L3
but serviced from remote dram.

Precise event capable.

D3H 04H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_HITM

Retired load instructions whose data sources was
remote HITM.

Precise event capable.

D3H 08H MEM_LOAD_L3_MISS_RETIRED.
REMOTE_FWD

Retired load instructions whose data sources was
forwarded from a remote cache.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

Vol. 3B 19-23

PERFORMANCE MONITORING EVENTS

19.3 PERFORMANCE MONITORING EVENTS FOR 6TH GENERATION INTEL®
CORE™ PROCESSOR AND 7TH GENERATION INTEL® CORE™ PROCESSOR

6th Generation Intel® Core™ processors are based on the Skylake microarchitecture. They support the architec-
tural performance monitoring events listed in Table 19-1. Fixed counters in the core PMU support the architecture
events defined in Table 19-2. Model-specific performance monitoring events in the processor core are listed in
Table 19-4. The events in Table 19-4 apply to processors with CPUID signature of DisplayFamily_DisplayModel
encoding with the following values: 06_4EH and 06_5EH. Table 19-10 lists performance events supporting Intel
TSX (see Section 18.3.6.5) and the events are applicable to processors based on Skylake microarchitecture. Where
Skylake microarchitecture implements TSX-related event semantics that differ from Table 19-10, they are listed in
Table 19-5.

7th Generation Intel® Core™ processors are based on the Kaby Lake microarchitecture. Model-specific perfor-
mance monitoring events in the processor core are listed in Table 19-4. The events in Table 19-4 apply to proces-
sors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_8EH and
06_9EH.

D4H 04H MEM_LOAD_MISC_RETIRED.UC Retired instructions with at least 1 uncacheable load or
lock.

Precise event capable.

E6H 01H BACLEARS.ANY Counts the number of times the front-end is resteered
when it finds a branch instruction in a fetch line. This
occurs for the first time a branch instruction is fetched
or when the branch is not tracked by the BPU (Branch
Prediction Unit) anymore.

F0H 40H L2_TRANS.L2_WB Counts L2 writebacks that access L2 cache.

F1H 1FH L2_LINES_IN.ALL Counts the number of L2 cache lines filling the L2.
Counting does not cover rejects.

F2H 01H L2_LINES_OUT.SILENT Counts the number of lines that are silently dropped by
L2 cache when triggered by an L2 cache fill. These lines
are typically in Shared state. A non-threaded event.

F2H 02H L2_LINES_OUT.NON_SILENT Counts the number of lines that are evicted by L2 cache
when triggered by an L2 cache fill. Those lines can be
either in modified state or clean state. Modified lines
may either be written back to L3 or directly written to
memory and not allocated in L3. Clean lines may either
be allocated in L3 or dropped.

F2H 04H L2_LINES_OUT.USELESS_PREF Counts the number of lines that have been hardware
prefetched but not used and now evicted by L2 cache.

F2H 04H L2_LINES_OUT.USELESS_HWPF Counts the number of lines that have been hardware
prefetched but not used and now evicted by L2 cache.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of cache line split locks sent to the
uncore.

FEH 02H IDI_MISC.WB_UPGRADE Counts number of cache lines that are allocated and
written back to L3 with the intention that they are
more likely to be reused shortly.

FEH 04H IDI_MISC.WB_DOWNGRADE Counts number of cache lines that are dropped and not
written back to L3 as they are deemed to be less likely
to be reused shortly.

Table 19-3. Performance Events of the Processor Core Supported in
Intel® Xeon® Processor Scalable Family with Skylake Microarchitecture (Contd.)

Event
Num.

Umask
Value

Event Mask Mnemonic Description Comment

19-24 Vol. 3B

PERFORMANCE MONITORING EVENTS

The comment column in Table 19-4 uses abbreviated letters to indicate additional conditions applicable to the Event
Mask Mnemonic. For event umasks listed in Table 19-4 that do not show “AnyT”, users should refrain from program-
ming “AnyThread =1” in IA32_PERF_EVTSELx.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare on
address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk of
any page size.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Load misses in all TLB levels causes a page walk that
completes. (All page sizes.)

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load.

08H 10H DTLB_LOAD_MISSES.WALK_ACT
IVE

Cycles when at least one PMH is busy with a walk for a
load.

CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Loads that miss the DTLB but hit STLB.

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the allocator was stalled due to recovery
from earlier machine clear event for this thread (for
example, misprediction or memory order conflict).

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier machine clear event for any logical thread
in this processor core.

AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY The number of uops issued by the RAT to RS.

0EH 01H UOPS_ISSUED.STALL_CYCLES Cycles when the RAT does not issue uops to RS for the
thread.

CMSK1, INV

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Uops inserted at issue-stage in order to preserve upper
bits of vector registers.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such uop
has 3 sources (for example, 2 sources + immediate)
regardless of whether it is a result of LEA instruction or
not.

14H 01H ARITH.FPU_DIVIDER_ACTIVE Cycles when divider is busy executing divide or square
root operations. Accounts for FP operations including
integer divides.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no rejects.

24H 22H L2_RQSTS.RFO_MISS RFO requests that missed L2.

24H 24H L2_RQSTS.CODE_RD_MISS L2 cache misses when fetching instructions.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that missed L2.

Vol. 3B 19-27

PERFORMANCE MONITORING EVENTS

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least one offcore outstanding demand
data read requests from SQ that missed L3.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least one offcore outstanding demand
data read requests from SQ that missed L3.

CMSK6

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

79H 04H IDQ.MITE_CYCLES Cycles when uops are being delivered to IDQ from MITE
path.

CMSK1

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ from
DSB path.

79H 08H IDQ.DSB_CYCLES Cycles when uops are being delivered to IDQ from DSB
path.

CMSK1

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ by DSB
when MS_busy.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Cycles DSB is delivered at least one uops. CMSK1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Cycles DSB is delivered four uops. CMSK4

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ by
MITE when MS_busy.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. CMSK1

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. CMSK4

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ while
MS is busy.

79H 30H IDQ.MS_SWITCHES Number of switches from DSB or MITE to MS. EDG

79H 30H IDQ.MS_CYCLES Cycles MS is delivered at least one uops. CMSK1

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache miss.

80H 04H ICACHE_64B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses at all ITLB levels that cause page walks.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks in any TLB level due to
code fetch misses (all page sizes).

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-28 Vol. 3B

PERFORMANCE MONITORING EVENTS

85H 20H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was delivered
from the front end to the back end when there is no
back-end stall.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOP_DELIV.CORE

Cycles which 4 issue pipeline slots had no uop delivered
from the front end to the back end when there is no
back-end stall.

CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_n_UOP_DELIV.CORE

Cycles which “4-n” issue pipeline slots had no uop
delivered from the front end to the back end when
there is no back-end stall.

Set CMSK = 4-n; n = 1,
2, 3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Cycles which front end delivered 4 uops or the RAT was
stalling FE.

CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

A2H 01H RESOURCE_STALLS.ANY Resource-related stall cycles.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CMSK2

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls. CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 data cache miss demand load is
outstanding.

CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 data cache miss demand load
is outstanding.

CMSK12

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-29

PERFORMANCE MONITORING EVENTS

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Cycles for which no uops began execution, the
Reservation Station was not empty, the Store Buffer
was full and there was no outstanding load.

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Cycles for which one uop began execution on any port,
and the Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Cycles for which two uops began execution, and the
Reservation Station was not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles for which three uops began execution, and the
Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.4_PORTS_UTIL Cycles for which four uops began execution, and the
Reservation Station was not empty.

A6H 40H EXE_ACTIVITY.BOUND_ON_STO
RES

Cycles where the Store Buffer was full and no
outstanding load.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

A8H 01H LSD.CYCLES_ACTIVE Cycles with at least one uop delivered by the LSD and
none from the decoder.

CMSK1

A8H 01H LSD.CYCLES_4_UOPS Cycles with 4 uops delivered by the LSD and none from
the decoder.

CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

DSB-to-MITE switch true penalty cycles.

AEH 01H ITLB.ITLB_FLUSH Flushing of the Instruction TLB (ITLB) pages, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand data read requests that missed L3.

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Any memory transaction that reached the SQ.

B1H 01H UOPS_EXECUTED.THREAD Counts the number of uops that begin execution across
all ports.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Cycles where there were no uops that began execution. CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles where there was at least one uop that began
execution.

CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOP_EXEC

Cycles where there were at least two uops that began
execution.

CMSK2

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-30 Vol. 3B

PERFORMANCE MONITORING EVENTS

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOP_EXEC

Cycles where there were at least three uops that began
execution.

CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOP_EXEC

Cycles where there were at least four uops that began
execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE Counts the number of uops from any logical processor
in this core that begin execution.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles where there was at least one uop, from any
logical processor in this core, that began execution.

CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles where there were at least two uops, from any
logical processor in this core, that began execution.

CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles where there were at least three uops, from any
logical processor in this core, that began execution.

CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles where there were at least four uops, from any
logical processor in this core, that began execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles where there were no uops from any logical
processor in this core that began execution.

CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of X87 uops that begin execution.

B2H 01H OFF_CORE_REQUEST_BUFFER.S
Q_FULL

Offcore requests buffer cannot take more entries for
this core.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 01H TLB_FLUSH.STLB_ANY STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C0H 01H INST_RETIRED.TOTAL_CYCLES Number of cycles using always true condition applied to
PEBS instructions retired event.

CMSK10, PS

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

C2H 01H UOPS_RETIRED.STALL_CYCLES Cycles without actually retired uops. CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Cycles with less than 10 actually retired uops. CMSK10, INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears of any type. CMSK1, EDG

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions that retired. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

PS

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-31

PERFORMANCE MONITORING EVENTS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. PS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions retired. PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired. PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. PS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. PS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Retired instructions which experienced DSB miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=11H.

PS

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired instructions which experienced instruction L1
cache true miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=12H.

PS

C6H 01H FRONTEND_RETIRED.L2_MISS Retired instructions which experienced L2 cache true
miss. Specify MSR_PEBS_FRONTEND.EVTSEL=13H.

PS

C6H 01H FRONTEND_RETIRED.ITLB_MISS Retired instructions which experienced ITLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=14H.

PS

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Retired instructions which experienced STLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=15H.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Retired instructions that are fetched after an interval
where the front end delivered no uops for at least 16
cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =16, IDQ_Bubble_Width = 4.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_m

Retired instructions that are fetched after an interval
where the front end had ‘m’ IDQ slots delivered, no uops
for at least 2 cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =2, IDQ_Bubble_Width = m.

PS, m = 1, 2, 3

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of double-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction counts as 2.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of single-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction counts as 2.

Software may treat
each count as one SP
FLOP.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-32 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of double-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPD instruction counts as 2.

Software may treat
each count as two DP
FLOPs.

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of single-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPS instruction counts as 2.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of double-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA instruction counts as 2.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of single-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA or VDPPS instruction counts as 2.

Software may treat
each count as eight
SP FLOPs.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists. CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Number of hardware interrupts received by the
processor.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Increments when an entry is added to the Last Branch
Record (LBR) array (or removed from the array in case
of RETURNs in call stack mode). The event requires LBR
enable via IA32_DEBUGCTL MSR and branch type
selection via MSR_LBR_SELECT.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a user
defined threshold. A small fraction of the overall loads
are sampled due to randomization.

Specify threshold in
MSR 3F6H.

PSDLA

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. PSDLA

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Number of load instructions retired with cache-line
splits that may impact performance.

PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Number of store instructions retired with line-split. PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. PSDLA

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Retired load instructions with L1 cache hits as data
sources.

PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load instructions with L2 cache hits as data
sources.

PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Retired load instructions with L3 cache hits as data
sources.

PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Retired load instructions missed L1 cache as data
sources.

PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load instructions missed L2. Unknown data
source excluded.

PSDLA

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-33

PERFORMANCE MONITORING EVENTS

Table 19-10 lists performance events supporting Intel TSX (see Section 18.3.6.5) and the events are applicable to
processors based on Skylake microarchitecture. Where Skylake microarchitecture implements TSX-related event
semantics that differ from Table 19-10, they are listed in Table 19-5.

19.4 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON PHI™ PROCESSOR
3200, 5200, 7200 SERIES

Intel® Xeon Phi™ processors 3200/5200/7200 series are based on the Knights Landing microarchitecture. Model-
specific performance monitoring events in the processor core are listed in Table 19-6. The events in Table 19-6
apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following value
06_57H.

D1H 20H MEM_LOAD_RETIRED.L3_MISS Retired load instructions missed L3. Excludes unknown
data source.

PSDLA

D1H 40H MEM_LOAD_RETIRED.FB_HIT Retired load instructions where data sources were load
uops missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load instructions where data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load Instructions where data sources were L3
and cross-core snoop hits in on-pkg core cache.

PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load instructions where data sources were HitM
responses from shared L3.

PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load instructions where data sources were hits
in L3 without snoops required.

PSDLA

E6H 01H BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2.

CMSK1: Counter Mask = 1 required; CMSK4: CounterMask = 4 required; CMSK6: CounterMask = 6 required; CMSK8: CounterMask = 8
required; CMSK10: CounterMask = 10 required; CMSK12: CounterMask = 12 required; CMSK16: CounterMask = 16 required; CMSK20:
CounterMask = 20 required.

AnyT: AnyThread = 1 required.

INV: Invert = 1 required.

EDG: EDGE = 1 required.

PSDLA: Also supports PEBS and DataLA.

PS: Also supports PEBS.

Table 19-5. Intel® TSX Performance Event Addendum in Processors based on Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

Table 19-4. Performance Events of the Processor Core Supported by
Skylake Microarchitecture and Kaby Lake Microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-34 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H RECYCLEQ.LD_BLOCK_ST_FORW
ARD

Counts the number of occurrences a retired load gets
blocked because its address partially overlaps with a
store.

PSDLA

03H 02H RECYCLEQ.LD_BLOCK_STD_NOT
READY

Counts the number of occurrences a retired load gets
blocked because its address overlaps with a store
whose data is not ready.

03H 04H RECYCLEQ.ST_SPLITS Counts the number of occurrences a retired store that
is a cache line split. Each split should be counted only
once.

03H 08H RECYCLEQ.LD_SPLITS Counts the number of occurrences a retired load that is
a cache line split. Each split should be counted only
once.

PSDLA

03H 10H RECYCLEQ.LOCK Counts all the retired locked loads. It does not include
stores because we would double count if we count
stores.

03H 20H RECYCLEQ.STA_FULL Counts the store micro-ops retired that were pushed in
the recycle queue because the store address buffer is
full.

03H 40H RECYCLEQ.ANY_LD Counts any retired load that was pushed into the
recycle queue for any reason.

03H 80H RECYCLEQ.ANY_ST Counts any retired store that was pushed into the
recycle queue for any reason.

04H 01H MEM_UOPS_RETIRED.L1_MISS_
LOADS

Counts the number of load micro-ops retired that miss
in L1 D cache.

04H 02H MEM_UOPS_RETIRED.L2_HIT_L
OADS

Counts the number of load micro-ops retired that hit in
the L2.

PSDLA

04H 04H MEM_UOPS_RETIRED.L2_MISS_
LOADS

Counts the number of load micro-ops retired that miss
in the L2.

PSDLA

04H 08H MEM_UOPS_RETIRED.DTLB_MIS
S_LOADS

Counts the number of load micro-ops retired that cause
a DTLB miss.

PSDLA

04H 10H MEM_UOPS_RETIRED.UTLB_MIS
S_LOADS

Counts the number of load micro-ops retired that
caused micro TLB miss.

04H 20H MEM_UOPS_RETIRED.HITM Counts the loads retired that get the data from the
other core in the same tile in M state.

04H 40H MEM_UOPS_RETIRED.ALL_LOAD
S

Counts all the load micro-ops retired.

04H 80H MEM_UOPS_RETIRED.ALL_STOR
ES

Counts all the store micro-ops retired.

05H 01H PAGE_WALKS.D_SIDE_WALKS Counts the total D-side page walks that are completed
or started. The page walks started in the speculative
path will also be counted.

EdgeDetect=1

05H 01H PAGE_WALKS.D_SIDE_CYCLES Counts the total number of core cycles for all the D-side
page walks. The cycles for page walks started in
speculative path will also be included.

05H 02H PAGE_WALKS.I_SIDE_WALKS Counts the total I-side page walks that are completed. EdgeDetect=1

Vol. 3B 19-35

PERFORMANCE MONITORING EVENTS

05H 02H PAGE_WALKS.I_SIDE_CYCLES Counts the total number of core cycles for all the I-side
page walks. The cycles for page walks started in
speculative path will also be included.

05H 03H PAGE_WALKS.WALKS Counts the total page walks that are completed (I-side
and D-side).

EdgeDetect=1

05H 03H PAGE_WALKS.CYCLES Counts the total number of core cycles for all the page
walks. The cycles for page walks started in speculative
path will also be included.

2EH 41H LONGEST_LAT_CACHE.MISS Counts the number of L2 cache misses. Also called
L2_REQUESTS_MISS.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

Counts the total number of L2 cache references. Also
called L2_REQUESTS_REFERENCE.

30H 00H L2_REQUESTS_REJECT.ALL Counts the number of MEC requests from the L2Q that
reference a cache line (cacheable requests) excluding
SW prefetches filling only to L2 cache and L1 evictions
(automatically excludes L2HWP, UC, WC) that were
rejected - Multiple repeated rejects should be counted
multiple times.

31H 00H CORE_REJECT_L2Q.ALL Counts the number of MEC requests that were not
accepted into the L2Q because of any L2 queue reject
condition. There is no concept of at-ret here. It might
include requests due to instructions in the speculative
path.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of unhalted core clock cycles.

3CH 01H CPU_CLK_UNHALTED.REF Counts the number of unhalted reference clock cycles.

3EH 04H L2_PREFETCHER.ALLOC_XQ Counts the number of L2HWP allocated into XQ GP.

80H 01H ICACHE.HIT Counts all instruction fetches that hit the instruction
cache.

80H 02H ICACHE.MISSES Counts all instruction fetches that miss the instruction
cache or produce memory requests. An instruction
fetch miss is counted only once and not once for every
cycle it is outstanding.

80H 03H ICACHE.ACCESSES Counts all instruction fetches, including uncacheable
fetches.

86H 04H FETCH_STALL.ICACHE_FILL_PEN
DING_CYCLES

Counts the number of core cycles the fetch stalls
because of an icache miss. This is a cumulative count of
core cycles the fetch stalled for all icache misses.

B7H 01H OFFCORE_RESPONSE_0 See Section 18.4.1.1.2. Requires
MSR_OFFCORE_RESP
0 to specify request
type and response.

B7H 02H OFFCORE_RESPONSE_1 See Section 18.4.1.1.2. Requires
MSR_OFFCORE_RESP
1 to specify request
type and response.

C0H 00H INST_RETIRED.ANY_P Counts the total number of instructions retired. PS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-36 Vol. 3B

PERFORMANCE MONITORING EVENTS

C2H 01H UOPS_RETIRED.MS Counts the number of micro-ops retired that are from
the complex flows issued by the micro-sequencer (MS).

C2H 10H UOPS_RETIRED.ALL Counts the number of micro-ops retired.

C2H 20H UOPS_RETIRED.SCALAR_SIMD Counts the number of scalar SSE, AVX, AVX2, and AVX-
512 micro-ops except for loads (memory-to-register
mov-type micro ops), division and sqrt.

C2H 40H UOPS_RETIRED.PACKED_SIMD Counts the number of packed SSE, AVX, AVX2, and
AVX-512 micro-ops (both floating point and integer)
except for loads (memory-to-register mov-type micro-
ops), packed byte and word multiplies.

C3H 01H MACHINE_CLEARS.SMC Counts the number of times that the machine clears
due to program modifying data within 1K of a recently
fetched code page.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of times the machine clears due to
memory ordering hazards.

C3H 04H MACHINE_CLEARS.FP_ASSIST Counts the number of floating operations retired that
required microcode assists.

C3H 08H MACHINE_CLEARS.ALL Counts all machine clears.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 7EH BR_INST_RETIRED.JCC Counts the number of JCC branch instructions retired. PS

C4H BFH BR_INST_RETIRED.FAR_BRANC
H

Counts the number of far branch instructions retired. PS

C4H EBH BR_INST_RETIRED.NON_RETUR
N_IND

Counts the number of branch instructions retired that
were near indirect CALL or near indirect JMP.

PS

C4H F7H BR_INST_RETIRED.RETURN Counts the number of near RET branch instructions
retired.

PS

C4H F9H BR_INST_RETIRED.CALL Counts the number of near CALL branch instructions
retired.

PS

C4H FBH BR_INST_RETIRED.IND_CALL Counts the number of near indirect CALL branch
instructions retired.

PS

C4H FDH BR_INST_RETIRED.REL_CALL Counts the number of near relative CALL branch
instructions retired.

PS

C4H FEH BR_INST_RETIRED.TAKEN_JCC Counts the number of branch instructions retired that
were taken conditional jumps.

PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Counts the number of mispredicted branch instructions
retired.

PS

C5H 7EH BR_MISP_RETIRED.JCC Counts the number of mispredicted JCC branch
instructions retired.

PS

C5H BFH BR_MISP_RETIRED.FAR_BRANC
H

Counts the number of mispredicted far branch
instructions retired.

PS

C5H EBH BR_MISP_RETIRED.NON_RETUR
N_IND

Counts the number of mispredicted branch instructions
retired that were near indirect CALL or near indirect
JMP.

PS

C5H F7H BR_MISP_RETIRED.RETURN Counts the number of mispredicted near RET branch
instructions retired.

PS

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-37

PERFORMANCE MONITORING EVENTS

C5H F9H BR_MISP_RETIRED.CALL Counts the number of mispredicted near CALL branch
instructions retired.

PS

C5H FBH BR_MISP_RETIRED.IND_CALL Counts the number of mispredicted near indirect CALL
branch instructions retired.

PS

C5H FDH BR_MISP_RETIRED.REL_CALL Counts the number of mispredicted near relative CALL
branch instructions retired.

PS

C5H FEH BR_MISP_RETIRED.TAKEN_JCC Counts the number of mispredicted branch instructions
retired that were taken conditional jumps.

PS

CAH 01H NO_ALLOC_CYCLES.ROB_FULL Counts the number of core cycles when no micro-ops
are allocated and the ROB is full.

CAH 04H NO_ALLOC_CYCLES.MISPREDICT
S

Counts the number of core cycles when no micro-ops
are allocated and the alloc pipe is stalled waiting for a
mispredicted branch to retire.

CAH 20H NO_ALLOC_CYCLES.RAT_STALL Counts the number of core cycles when no micro-ops
are allocated and a RATstall (caused by reservation
station full) is asserted.

CAH 90H NO_ALLOC_CYCLES.NOT_DELIVE
RED

Counts the number of core cycles when no micro-ops
are allocated, the IQ is empty, and no other condition is
blocking allocation.

CAH 7FH NO_ALLOC_CYCLES.ALL Counts the total number of core cycles when no micro-
ops are allocated for any reason.

CBH 01H RS_FULL_STALL.MEC Counts the number of core cycles when allocation
pipeline is stalled and is waiting for a free MEC
reservation station entry.

CBH 1FH RS_FULL_STALL.ALL Counts the total number of core cycles the allocation
pipeline is stalled when any one of the reservation
stations is full.

CDH 01H CYCLES_DIV_BUSY.ALL Cycles the number of core cycles when divider is busy.
Does not imply a stall waiting for the divider.

E6H 01H BACLEARS.ALL Counts the number of times the front end resteers for
any branch as a result of another branch handling
mechanism in the front end.

E6H 08H BACLEARS.RETURN Counts the number of times the front end resteers for
RET branches as a result of another branch handling
mechanism in the front end.

E6H 10H BACLEARS.COND Counts the number of times the front end resteers for
conditional branches as a result of another branch
handling mechanism in the front end.

E7H 01H MS_DECODED.MS_ENTRY Counts the number of times the MSROM starts a flow
of uops.

PS: Also supports PEBS.

PSDLA: Also supports PEBS and DataLA.

Table 19-6. Performance Events of the Processor Core Supported by
Knights Landing Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-38 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.5 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M AND 5TH
GENERATION INTEL® CORE™ PROCESSORS

The Intel® Core™ M processors, the 5th generation Intel® Core™ processors and the Intel Xeon processor E3 1200
v4 product family are based on the Broadwell microarchitecture. They support the architectural performance moni-
toring events listed in Table 19-1. Model-specific performance monitoring events in the processor core are listed in
Table 19-7. The events in Table 19-7 apply to processors with CPUID signature of DisplayFamily_DisplayModel
encoding with the following values: 06_3DH and 06_47H. Table 19-10 lists performance events supporting Intel
TSX (see Section 18.3.6.5) and the events are available on processors based on Broadwell microarchitecture. Fixed
counters in the core PMU support the architecture events defined in Table 19-2.

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Broadwell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3DH
and 06_47H support uncore performance events listed in Table 19-11.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk
of any page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
add delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (for example, 2 sources +
immediate) regardless of whether it is a result of
LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

Vol. 3B 19-39

PERFORMANCE MONITORING EVENTS

14H 01H ARITH.FPU_DIV_ACTIVE Cycles when divider is busy executing divide
operations.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand data read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand data read requests that hit L2 cache.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only.

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4FH 10H EPT.WALK_CYCLES Cycles of Extended Page Table walks.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer move elimination candidate uops
that were not eliminated.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-40 Vol. 3B

PERFORMANCE MONITORING EVENTS

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD move elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer move elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD move elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding demand data read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding demand code read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle # of uops delivered to IDQ from
DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uop. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS Number of uops delivered to IDQ from any path.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-41

PERFORMANCE MONITORING EVENTS

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that cause a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-42 Vol. 3B

PERFORMANCE MONITORING EVENTS

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

Set AnyThread to count
per core.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

Set AnyThread to count
per core.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

Set AnyThread to count
per core.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

Set AnyThread to count
per core.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

Set AnyThread to count
per core.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

Set AnyThread to count
per core.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

Set AnyThread to count
per core.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to resource related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Cycles of delay due to Decode Stream Buffer to MITE
switches.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes; includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off.

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
logical-processor each cycle.

Use Cmask to count stall
cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-43

PERFORMANCE MONITORING EVENTS

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C0H 02H INST_RETIRED.X87 FP operations retired. X87 FP operations that have
no exceptions.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired.

Use cmask=1 and invert to count active cycles or
stalled cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 01H MACHINE_CLEARS.CYCLES Counts cycles while a machine clears stalled forward
progress of a logical processor or a processor core.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-44 Vol. 3B

PERFORMANCE MONITORING EVENTS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-45

PERFORMANCE MONITORING EVENTS

Table 19-10 lists performance events supporting Intel TSX (see Section 18.3.6.5) and the events are applicable to
processors based on Broadwell microarchitecture. Where Broadwell microarchitecture implements TSX-related
event semantics that differ from Table 19-10, they are listed in Table 19-8.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source.

Supports PEBS and
DataLA.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops where data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops where data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops where data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops where data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops where data sources were hits in
L3 without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops where data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand data read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

Table 19-8. Intel® TSX Performance Event Addendum in Processors Based on Broadwell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes.

Table 19-7. Performance Events of the Processor Core Supported by Broadwell Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-46 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.6 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION
INTEL® CORE™ PROCESSORS

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on the
Haswell microarchitecture. They support the architectural performance monitoring events listed in Table 19-1.
Model-specific performance monitoring events in the processor core are listed in Table 19-9. The events in Table
19-9 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_3CH, 06_45H and 06_46H. Table 19-10 lists performance events focused on supporting Intel TSX (see Section
18.3.6.5). Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Additional information on event specifics (e.g., derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at https://software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-monitoring.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size
due to demand load misses.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1 to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
add delay.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

Vol. 3B 19-47

PERFORMANCE MONITORING EVENTS

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (for example, 2 sources +
immediate) regardless of whether it is a result of
LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand data read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand data read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only.

Set Cmask = 1 to count
cycles.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-48 Vol. 3B

PERFORMANCE MONITORING EVENTS

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer move elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD move elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer move elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD move elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding demand data read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-49

PERFORMANCE MONITORING EVENTS

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uop. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-50 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core.

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core.

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core.

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core.

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core.

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core.

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-51

PERFORMANCE MONITORING EVENTS

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles allocation is stalled due to resource related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to
count cycle.

Use only when HTT is off.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set
Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 See Table 18-28 or Table 18-29. Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Table 18-28 or Table 18-29. Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-52 Vol. 3B

PERFORMANCE MONITORING EVENTS

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired. Use
Cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA; use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that
were taken but mispredicted.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-53

PERFORMANCE MONITORING EVENTS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-54 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand data read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled due
to a data conflict on a transactionally accessed address.

54H 02H TX_MEM.ABORT_CAPACITY_W
RITE

Number of times a transactional abort was signaled due
to a data capacity limitation for transactional writes.

54H 04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted due
to a non XRELEASE prefixed instruction writing to an
elided lock in the elision buffer.

54H 08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution aborted
due to NoAllocatedElisionBuffer being non-zero.

54H 10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution aborted
due to XRELEASE lock not satisfying the address and
value requirements in the elision buffer.

54H 20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution aborted
due to an unsupported read alignment from the elision
buffer.

Table 19-9. Performance Events in the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-55

PERFORMANCE MONITORING EVENTS

54H 40H TX_MEM.HLE_ELISION_BUFFE
R_FULL

Number of times HLE lock could not be elided due to
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that
may cause a transactional abort was executed. Since this
is the count of execution, it may not always cause a
transactional abort.

5DH 02H TX_EXEC.MISC2 Counts the number of times a class of instructions (for
example, vzeroupper) that may cause a transactional
abort was executed inside a transactional region.

5DH 04H TX_EXEC.MISC3 Counts the number of times an instruction execution
caused the transactional nest count supported to be
exceeded.

5DH 08H TX_EXEC.MISC4 Counts the number of times an XBEGIN instruction was
executed inside an HLE transactional region.

5DH 10H TX_EXEC.MISC5 Counts the number of times an instruction with HLE-
XACQUIRE semantic was executed inside an RTM
transactional region.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported.

C8H 02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully
committed.

C8H 04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

C8H 08H HLE_RETIRED.ABORTED_MEM Number of times an HLE execution aborted due to
various memory events (for example, read/write
capacity and conflicts).

C8H 10H HLE_RETIRED.ABORTED_TIME
R

Number of times an HLE execution aborted due to
uncommon conditions.

C8H 20H HLE_RETIRED.ABORTED_UNFR
IENDLY

Number of times an HLE execution aborted due to HLE-
unfriendly instructions.

C8H 40H HLE_RETIRED.ABORTED_MEM
TYPE

Number of times an HLE execution aborted due to
incompatible memory type.

C8H 80H HLE_RETIRED.ABORTED_EVEN
TS

Number of times an HLE execution aborted due to none
of the previous 4 categories (for example, interrupts).

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported.

C9H 02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully
committed.

C9H 04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-56 Vol. 3B

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Haswell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3CH
and 06_45H support performance events listed in Table 19-11.

C9H 08H RTM_RETIRED.ABORTED_MEM Number of times an RTM execution aborted due to
various memory events (for example, read/write
capacity and conflicts).

IF RTM is supported.

C9H 10H RTM_RETIRED.ABORTED_TIME
R

Number of times an RTM execution aborted due to
uncommon conditions.

C9H 20H RTM_RETIRED.ABORTED_UNF
RIENDLY

Number of times an RTM execution aborted due to HLE-
unfriendly instructions.

C9H 40H RTM_RETIRED.ABORTED_MEM
TYPE

Number of times an RTM execution aborted due to
incompatible memory type.

C9H 80H RTM_RETIRED.ABORTED_EVE
NTS

Number of times an RTM execution aborted due to none
of the previous 4 categories (for example, interrupt).

Table 19-11. Uncore Performance Events in the 4th Generation Intel® Core™ Processors
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H.

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H.22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to L3 eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M L3 lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H.

34H 06H UNC_CBO_CACHE_LOOKUP.ES L3 lookup request that access cache and found line in E
or S state.

34H 08H UNC_CBO_CACHE_LOOKUP.I L3 lookup request that access cache and found line in I-
state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

Table 19-10. Intel TSX Performance Events in Processors Based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-57

PERFORMANCE MONITORING EVENTS

19.6.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3
Family

Model-specific performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v3 family based on the Haswell-E microarchitecture, with CPUID signature of
DisplayFamily_DisplayModel 06_3FH, are listed in Table 19-12. The performance events listed in Table 19-9 and
Table 19-10 also apply Intel Xeon processor E5 v3 family, except that the OFF_CORE_RESPONSE_x event listed in
Table 19-9 should reference Table 18-30.

Uncore performance monitoring events for Intel Xeon Processor E5 v3 families are described in “Intel® Xeon®
Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or L3.

Counter 0 only.

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or L3.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and L3 evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of L3 evictions allocated.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only.

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-12. Performance Events Applicable only to the Processor Core of Intel® Xeon® Processor E5 v3 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 04H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_DRAM

Retired load uops whose data sources were remote
DRAM (snoop not needed, Snoop Miss).

Supports PEBS.

D3H 10H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_HITM

Retired load uops whose data sources were remote
cache HITM.

Supports PEBS.

D3H 20H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_FWD

Retired load uops whose data sources were forwards
from a remote cache.

Supports PEBS.

Table 19-11. Uncore Performance Events in the 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

19-58 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.7 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel
microarchitecture code name Ivy Bridge. They support architectural performance monitoring events listed in Table
19-1. Model-specific performance monitoring events in the processor core are listed in Table 19-13. The events in
Table 19-13 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3AH. Fixed counters in the core PMU support the architecture events defined in Table 19-24.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at found at https://software.intel.com/en-
us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

Page walk for a large page completed for Demand
load.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED
SINGLE

Counts number of SSE* or AVX-128 single precision
FP packed uops executed.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

Vol. 3B 19-59

PERFORMANCE MONITORING EVENTS

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-60 Vol. 3B

PERFORMANCE MONITORING EVENTS

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes a page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-61

PERFORMANCE MONITORING EVENTS

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1
instruction-cache miss or an iTLB miss.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls or returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-62 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non-call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls or returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non-call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-63

PERFORMANCE MONITORING EVENTS

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PEN
DING

Number of loads missed L2. Restricted to counters 0-
3 when HTT is disabled.

A3H 06H CYCLE_ACTIVITY.STALLS_LDM_P
ENDING

Restricted to counters 0-
3 when HTT is disabled.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_PE
NDING

Execution stalls due to L1 data cache miss loads.
Set Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY.

B7H 01H OFFCORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFFCORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-64 Vol. 3B

PERFORMANCE MONITORING EVENTS

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by
hardware upon uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

Supports PEBS.

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS.

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to output values. Supports PEBS.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values. Supports PEBS.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by
hardware.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-65

PERFORMANCE MONITORING EVENTS

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.

Specify threshold in MSR
3F6H. PMC 3 only.

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.3.4.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MISS
_LOADS

Retired load uops that miss the STLB. Supports PEBS.

D0H 12H MEM_UOPS_RETIRED.STLB_MISS
_STORES

Retired store uops that miss the STLB. Supports PEBS.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LOA
DS

Retired load uops that split across a cacheline
boundary.

Supports PEBS.

D0H 42H MEM_UOPS_RETIRED.SPLIT_STO
RES

Retired store uops that split across a cacheline
boundary.

Supports PEBS.

D0H 81H MEM_UOPS_RETIRED.ALL_LOADS All retired load uops. Supports PEBS.

D0H 82H MEM_UOPS_RETIRED.ALL_STORE
S

All retired store uops. Supports PEBS.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an
L1 miss.

Supports PEBS.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding
unknown sources.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss. Supports PEBS.
Restricted to counters 0-
3 when HTT is disabled.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local
memory (cross-socket snoop not needed or missed).

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-66 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.7.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v2
Family and Intel Xeon Processor E7 v2 Family

Model-specific performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v2 family and Intel Xeon processor E7 v2 family based on the Ivy Bridge-E microarchitecture, with
CPUID signature of DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-14.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-14. Performance Events Applicable Only to the Processor Core of
Intel® Xeon® Processor E5 v2 Family and Intel® Xeon® Processor E7 v2 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 03H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops whose data sources were local
DRAM (snoop not needed, Snoop Miss, or Snoop Hit
data not forwarded).

Supports PEBS.

D3H 0CH MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_DRAM

Retired load uops whose data source was remote
DRAM (snoop not needed, Snoop Miss, or Snoop Hit
data not forwarded).

Supports PEBS.

D3H 10H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_HITM

Retired load uops whose data sources were remote
HITM.

Supports PEBS.

D3H 20H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_FWD

Retired load uops whose data sources were forwards
from a remote cache.

Supports PEBS.

Table 19-13. Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-67

PERFORMANCE MONITORING EVENTS

19.8 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance monitoring events listed in Table 19-1. Model-specific performance monitoring
events in the processor core are listed in Table 19-15, Table 19-16, and Table 19-17. The events in Table 19-15
apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_2AH and 06_2DH. The events in Table 19-16 apply to processors with CPUID signature 06_2AH. The events in
Table 19-17 apply to processors with CPUID signature 06_2DH. Fixed counters in the core PMU support the archi-
tecture events defined in Table 19-2.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at found at https://software.intel.com/en-
us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN Blocked loads due to store buffer blocks with
unknown data.

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not
available.

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are
temporarily blocked because of older stores, with
addresses that are not yet known. A load operation
may incur more than one block of this type.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or
JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this
thread.

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring

19-68 Vol. 3B

PERFORMANCE MONITORING EVENTS

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count
stalled cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar
uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the
IQ every cycle.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-69

PERFORMANCE MONITORING EVENTS

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes a page walk of any page
size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D
cache. A request is being counted each time it
access the cache & miss it, including if a block is
applicable or if hit the Fill Buffer for example.

This accounts for both L1
streamer and IP-based
(IPP) HW prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D
cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-70 Vol. 3B

PERFORMANCE MONITORING EVENTS

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight
each cycle. Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT.

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path. Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path. Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS busy by DSB. Set Cmask = 1 to count
cycles MS is busy. Set Cmask=1 and Edge =1 to
count MS activations.

Can combine Umask 08H
and 10H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS is busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H
and 20H.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-71

PERFORMANCE MONITORING EVENTS

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H and 30H.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches.

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches.

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches
excluding calls and indirects.

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches
excluding calls and returns.

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that
are returns.

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls.

88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls.

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches.

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches
excluding calls and indirects.

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding
calls and returns.

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are
returns.

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches.

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches.

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted
conditional branches.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-72 Vol. 3B

PERFORMANCE MONITORING EVENTS

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect
branches excluding calls and returns.

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect
branches that are returns.

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct
near calls.

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect
near calls.

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional
branches.

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect
branches excluding calls and returns.

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near
calls.

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches.

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count issue pipeline slots where no uop was
delivered from the front end to the back end when
there is no back-end stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-73

PERFORMANCE MONITORING EVENTS

A3H 05H CYCLE_ACTIVITY.STALL_CYCLE
S_L2_PENDING

PMC0-3 only.

A3H 06H CYCLE_ACTIVITY.STALL_CYCLE
S_L1D_PENDING

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes; includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT.

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY.

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the
following traits: 1. Addressing of the format [base +
offset], 2. The offset is between 1 and 2047, 3. The
address specified in the base register is in one page
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.4.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to
L1D bank conflicts with other load ports.

Cmask=1.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; must quiesce
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-74 Vol. 3B

PERFORMANCE MONITORING EVENTS

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-75

PERFORMANCE MONITORING EVENTS

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.
PMC3 only.

Specify threshold in MSR
3F6H.

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.3.4.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MI
SS_LOADS

Retired load uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 12H MEM_UOPS_RETIRED.STLB_MI
SS_STORES

Retired store uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 21H MEM_UOPS_RETIRED.LOCK_LO
ADS

Retired load uops with locked access. Supports PEBS. PMC0-3
only regardless HTT.

D0H 41H MEM_UOPS_RETIRED.SPLIT_L
OADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 42H MEM_UOPS_RETIRED.SPLIT_S
TORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 81H MEM_UOPS_RETIRED.ALL_LOA
DS

All retired load uops. Supports PEBS. PMC0-3
only regardless HTT.

D0H 82H MEM_UOPS_RETIRED.ALL_STO
RES

All retired store uops. Supports PEBS. PMC0-3
only regardless HTT.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT.

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits
in LLC without snoops required.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

Supports PEBS.

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-76 Vol. 3B

PERFORMANCE MONITORING EVENTS

Non-architecture performance monitoring events in the processor core that are applicable only to Intel processors
with CPUID signature of DisplayFamily_DisplayModel 06_2AH are listed in Table 19-16.

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a
correct prediction and this is corrected by other
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. Including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC
without snoops required.

Supports PEBS.

Table 19-15. Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-77

PERFORMANCE MONITORING EVENTS

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data
source in cache serviced the load.

Supports PEBS. PMC0-
3 only regardless HTT.

B7H/BBH 01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 10003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 300400244H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0091H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 300400091H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 300400240H

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 300400090H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0120H

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 2003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 300400120H

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 3004003F7H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 2003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 300400122H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 300400004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 300400001H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0002H

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-78 Vol. 3B

PERFORMANCE MONITORING EVENTS

Non-architecture performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 family (and Intel Core i7-3930 processor) based on Intel microarchitecture code name Sandy Bridge,
with CPUID signature of DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-17.

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 2003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 300400002H

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 18000H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 300400040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 300400010H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 2003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 300400020H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 300400200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 300400080H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 2003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 300400100H

Table 19-17. Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory
is remotely homed. The count is not reliable If the memory is locally homed.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass. Supports PEBS.

Table 19-16. Performance Events applicable only to the Processor core for 2nd Generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-79

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Intel microarchitecture code name Sandy Bridge.
Processors with CPUID signature of DisplayFamily_DisplayModel 06_2AH support performance events listed in
Table 19-18.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core. Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass. Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass. Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass. Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass. Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data
missed LLC but serviced by local DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H).

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data
missed LLC but serviced by remote DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H).

B7H/BB
H

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 600400004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 67F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 107FC00004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00001H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00010H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00080H

Table 19-17. Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-80 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-18. Performance Events In the Processor Uncore for 2nd Generation
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H.

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H.22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to LLC eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M LLC lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H.

34H 02H UNC_CBO_CACHE_LOOKUP.E LLC lookup request that access cache and found line in
E-state.

34H 04H UNC_CBO_CACHE_LOOKUP.S LLC lookup request that access cache and found line in
S-state.

34H 08H UNC_CBO_CACHE_LOOKUP.I LLC lookup request that access cache and found line in
I-state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or LLC.

Counter 0 only.

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or LLC.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and LLC evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of LLC evictions allocated.

Vol. 3B 19-81

PERFORMANCE MONITORING EVENTS

19.9 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ I7 PROCESSOR
FAMILY AND INTEL® XEON® PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the architectural and model-specific
performance monitoring events listed in Table 19-1 and Table 19-19. The events in Table 19-19 generally applies to
processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_1AH,
06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID signature of
DisplayFamily_DisplayModel 06_2EH have a small number of events that are not supported in processors with
CPUID signature 06_1AH, 06_1EH, and 06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, 06_1FH) also
support the following model-specific, product-specific uncore performance monitoring events listed in Table 19-20.

Fixed counters in the core PMU support the architecture events defined in Table 19-2.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only.

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer drains.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

08H 80H DTLB_LOAD_MISSES.LARGE_W
ALK_COMPLETED

Counts number of completed large page walks due
to load miss in the STLB.

Table 19-18. Performance Events In the Processor Uncore for 2nd Generation
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

19-82 Vol. 3B

PERFORMANCE MONITORING EVENTS

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility.

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCLE
S

Counts the number of cycles no Uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

Set “invert=1, cmask =
1“.

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.L3_D
ATA_MISS_UNKNOWN

Counts number of memory load instructions retired
where the memory reference missed L3 and data
source is unknown.

Available only for CPUID
signature 06_2EH.

0FH 02H MEM_UNCORE_RETIRED.OTHE
R_CORE_L2_HITM

Counts number of memory load instructions retired
where the memory reference hit modified data in a
sibling core residing on the same socket.

0FH 08H MEM_UNCORE_RETIRED.REMO
TE_CACHE_LOCAL_HOME_HIT

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and HIT in a remote socket's cache. Only
counts locally homed lines.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and was remotely homed. This includes
both DRAM access and HITM in a remote socket's
cache for remotely homed lines.

0FH 20H MEM_UNCORE_RETIRED.LOCA
L_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and required a local socket memory
reference. This includes locally homed cachelines
that were in a modified state in another socket.

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and to perform I/O.

Available only for CPUID
signature 06_2EH.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-83

PERFORMANCE MONITORING EVENTS

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARITH Counts number of 128 bit SIMD integer arithmetic
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch cannot bypass to LB, it
has another chance to dispatch from the one-cycle
delayed staging latch before it is written into the
LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-84 Vol. 3B

PERFORMANCE MONITORING EVENTS

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE.

Set 'edge =1, invert=1, cmask=1' to count the
number of divides.

Count may be incorrect
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on.

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Counts number of loops that can’t stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for various
reasons. Only non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-85

PERFORMANCE MONITORING EVENTS

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as
L1D RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-86 Vol. 3B

PERFORMANCE MONITORING EVENTS

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss. The L1D prefetcher does
not issue a RFO prefetch.

This is a demand RFO
request.

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request.

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests. The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, for example, a cache miss.

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e., a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-87

PERFORMANCE MONITORING EVENTS

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFERENCE This event counts requests originating from the
core that reference a cache line in the last level
cache. The event count includes speculative traffic
but excludes cache line fills due to a L2 hardware-
prefetch. Because cache hierarchy, cache sizes and
other implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache. The event count
may include speculative traffic but excludes cache
line fills due to L2 hardware-prefetches. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

See Table 19-1.

40H 01H L1D_CACHE_LD.I_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the I (invalid) state, i.e.
the read request missed the cache.

Counter 0, 1 only.

40H 02H L1D_CACHE_LD.S_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only.

40H 04H L1D_CACHE_LD.E_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only.

40H 08H L1D_CACHE_LD.M_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only.

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only.

41H 02H L1D_CACHE_ST.S_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only.

41H 04H L1D_CACHE_ST.E_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only.

41H 08H L1D_CACHE_ST.M_STATE Counts L1 data cache store RFO requests where
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only.

42H 01H L1D_CACHE_LOCK.HIT Counts retired load locks that hit in the L1 data
cache or hit in an already allocated fill buffer. The
lock portion of the load lock transaction must hit in
the L1D.

The initial load will pull
the lock into the L1 data
cache. Counter 0, 1 only.

42H 02H L1D_CACHE_LOCK.S_STATE Counts L1 data cache retired load locks that hit the
target cache line in the shared state.

Counter 0, 1 only.

42H 04H L1D_CACHE_LOCK.E_STATE Counts L1 data cache retired load locks that hit the
target cache line in the exclusive state.

Counter 0, 1 only.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-88 Vol. 3B

PERFORMANCE MONITORING EVENTS

42H 08H L1D_CACHE_LOCK.M_STATE Counts L1 data cache retired load locks that hit the
target cache line in the modified state.

Counter 0, 1 only.

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, speculated and
retired) to the L1 data cache, including all loads and
stores with any memory types. The event counts
memory accesses only when they are actually
performed. For example, a load blocked by unknown
store address and later performed is only counted
once.

The event does not
include non-memory
accesses, such as I/O
accesses. Counter 0, 1
only.

43H 02H L1D_ALL_REF.CACHEABLE Counts all data reads and writes (speculated and
retired) from cacheable memory, including locked
operations.

Counter 0, 1 only.

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLET
ED

Counts number of misses in the STLB which
resulted in a completed page walk.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of misses in the STLB which
resulted in a completed page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the L1D.
A streamer, which predicts lines sequentially after
this one should be fetched, and the IP prefetcher
that remembers access patterns for the current
instruction. The streamer prefetcher stops on an
L1D hit, while the IP prefetcher does not.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only.

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only.

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-89

PERFORMANCE MONITORING EVENTS

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only.

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_FB_HIT Counts the number of cacheable load lock
speculated or retired instructions accepted into the
fill buffer.

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for Intel
64) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-90 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NON
_CALL

Counts the number of executed indirect near
branch instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non-call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non-call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non-call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Counts mispredicted indirect near calls executed,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-91

PERFORMANCE MONITORING EVENTS

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions cannot enter
the reservation station
and start execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediction direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles.

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-92 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of uops executed that were issued
on port 2. Port 2 handles the load uops. This is a
core count only and cannot be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of uops executed that were issued
on port 3. Port 3 handles store uops. This is a core
count only and cannot be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store uops issued on port 3. This is a core count
only and cannot be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES_NO_PORT5

Counts cycles when the uops executed were issued
from any ports except port 5. Use Cmask=1 for
active cycles; Cmask=0 for weighted cycles. Use
CMask=1, Invert=1 to count P0-4 stalled cycles. Use
Cmask=1, Edge=1, Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES

Counts cycles when the uops are executing. Use
Cmask=1 for active cycles; Cmask=0 for weighted
cycles. Use CMask=1, Invert=1 to count P0-4 stalled
cycles. Use Cmask=1, Edge=1, Invert=1 to count P0-
4 stalls.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of uops executed that where issued
on port 0, 1, or 5.

Use cmask=1, invert=1
to count stall cycles.

B1H 80H UOPS_EXECUTED.PORT234 Counts number of uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Requires programming
MSR 01A6H.

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.6.3, “Performance Monitoring
(Processors Based on Intel NetBurst®
Microarchitecture)”.

Requires programming
MSR 01A7H.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-93

PERFORMANCE MONITORING EVENTS

C0H 00H INST_RETIRED.ANY_P See Table 19-1.

Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of
GETSEC/VM entry/VM
Exit/MWait will not count
as retired instructions.

C0H 02H INST_RETIRED.X87 Counts the number of MMX instructions retired.

C0H 04H INST_RETIRED.MMX Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD scalar single-precision floating point
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point
Uops retired.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-94 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of all
cores on the package, this is an L3 hit. This counts
both clean and modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but
not necessarily executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-95

PERFORMANCE MONITORING EVENTS

D1H 04H UOPS_DECODED.ESP_FOLDING Counts number of stack pointer (ESP) instructions
decoded: push, pop, call, ret, etc. ESP instructions do
not generate a Uop to increment or decrement ESP.
Instead, they update an ESP_Offset register that
keeps track of the delta to the current value of the
ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected by
adding the ESP offset register to the current value
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe. Cycles when partial register stalls
occurred. Cycles when flag stalls occurred. Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-96 Vol. 3B

PERFORMANCE MONITORING EVENTS

DBH 01H UOP_UNFUSION Counts unfusion events due to floating-point
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the front
end.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the front end.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETCH Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the
L2 cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the
L2 cache in the E (exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the
L2 cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-97

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Intel microarchitecture code name Nehalem.
Processors with CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-20.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CLE
AN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of the
threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions (denormal input when the
DAZ flag is off or underflow result when the FTZ
flag is off); x87 instructions (NaN or denormal are
loaded to a register or used as input from memory,
division by 0 or underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-19. Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-98 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full.
The peer probe tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker
has at least one valid entry. The peer probe tracker
queue tracks IOH and remote socket snoops.

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to
deallocate entries. The GQ read tracker allocate to
deallocate occupancy count is divided by the count to
obtain the average read tracker latency.

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a
full cache line read has missed the L3. The GQ read
tracker L3 miss to fill occupancy count is divided by
this count to obtain the average cache line read L3
miss latency. The latency represents the time after
which the L3 has determined that the cache line has
missed. The time between a GQ read tracker allocation
and the L3 determining that the cache line has missed
is the average L3 hit latency. The total L3 cache line
read miss latency is the hit latency + L3 miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are
allocated in the read tracker queue that hit or miss the
L3. The GQ read tracker L3 hit occupancy count is
divided by this count to obtain the average L3 hit
latency.

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are
allocated in the read tracker, have missed in the L3
and have not acquired a Request Transaction ID. The
GQ read tracker L3 miss to RTID acquired occupancy
count is divided by this count to obtain the average
latency for a read L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_TO_RTID
_ACQUIRED

Counts the number of GQ write tracker entries that
are allocated in the write tracker, have missed in the
L3 and have not acquired a Request Transaction ID.
The GQ write tracker L3 miss to RTID occupancy count
is divided by this count to obtain the average latency
for a write L3 miss to acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that
are allocated in the write tracker queue that miss the
L3. The GQ write tracker occupancy count is divided by
this count to obtain the average L3 write miss latency.

Vol. 3B 19-99

PERFORMANCE MONITORING EVENTS

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop)
entries that are allocated in the peer probe tracker
queue that miss the L3. The GQ peer probe occupancy
count is divided by this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data
port is busy importing data from the Quickpath
Interface. Each cycle the input port can transfer 8 or
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input
data port is busy importing data from the Quickpath
Memory Interface. Each cycle the input port can
transfer 8 or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data
from the Last Level Cache. Each cycle the input port
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy
importing data from processor cores 0 and 2. Each
cycle the input port can transfer 32 bytes of data.

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy
importing data from processor cores 1 and 3. Each
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy
sending data to the Quickpath Interface or Quickpath
Memory Interface. Each cycle the output port can
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to
the Last Level Cache. Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data
to the Cores. Each cycle the output port can transfer
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3
does not have the referenced cache line.

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3
has the referenced line cached in the S state.

06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to
the local home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the local
home in the S state.

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the
local home that the L3 has the referenced cache line in
the M state. The L3 cache line state is invalidated and
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local
home.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-100 Vol. 3B

PERFORMANCE MONITORING EVENTS

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to
the local home that the L3 has the referenced line
cached in the M state.

07H 01H UNC_SNP_RESP_TO_REMOTE
_HOME.I_STATE

Number of snoop responses to a remote home that L3
does not have the referenced cache line.

07H 02H UNC_SNP_RESP_TO_REMOTE
_HOME.S_STATE

Number of snoop responses to a remote home that L3
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_S_STATE

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the remote
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a
remote home that the L3 has the referenced cache
line in the M state. The L3 cache line state is
invalidated and the line is forwarded to the remote
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE
_HOME.CONFLICT

Number of conflict snoop responses sent to the local
home.

07H 20H UNC_SNP_RESP_TO_REMOTE
_HOME.WB

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced line
cached in the M state.

07H 24H UNC_SNP_RESP_TO_REMOTE
_HOME.HITM

Number of HITM snoop responses to a remote home.

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that
hit in the L3.

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3.
Writebacks from the cores will always result in L3 hits
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that
miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3.
Should always be zero as writebacks from the cores
will always result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3.

0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state. The
only time a cache line is allocated in the M state is
when the line was forwarded in M state is forwarded
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-101

PERFORMANCE MONITORING EVENTS

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state.

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in
the M state. When the victim cache line is in M state,
the line is written to its home cache agent which can
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read
requests from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WR
ITES

Counts number of Quickpath Home Logic write
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read
requests from a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read
requests from the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write
requests from the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REM
OTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home
Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker is busy.

23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read
occupancy.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-102 Vol. 3B

PERFORMANCE MONITORING EVENTS

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 2 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 3 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote
Tracker contains two or more requests with an
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.
LOCAL

Counts cycles the Quickpath Home Logic Local Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory
Controller that bypass the Quickpath Home Logic. All
local accesses can be bypassed. For remote requests,
only read requests can be bypassed.

27H 01H UNC_QMC_NORMAL_FULL.RE
AD.CH0

Uncore cycles all the entries in the DRAM channel 0
medium or low priority queue are occupied with read
requests.

27H 02H UNC_QMC_NORMAL_FULL.RE
AD.CH1

Uncore cycles all the entries in the DRAM channel 1
medium or low priority queue are occupied with read
requests.

27H 04H UNC_QMC_NORMAL_FULL.RE
AD.CH2

Uncore cycles all the entries in the DRAM channel 2
medium or low priority queue are occupied with read
requests.

27H 08H UNC_QMC_NORMAL_FULL.WRI
TE.CH0

Uncore cycles all the entries in the DRAM channel 0
medium or low priority queue are occupied with write
requests.

27H 10H UNC_QMC_NORMAL_FULL.WRI
TE.CH1

Counts cycles all the entries in the DRAM channel 1
medium or low priority queue are occupied with write
requests.

27H 20H UNC_QMC_NORMAL_FULL.WRI
TE.CH2

Uncore cycles all the entries in the DRAM channel 2
medium or low priority queue are occupied with write
requests.

28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
read requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel
1high priority queue are occupied with isochronous
read requests.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-103

PERFORMANCE MONITORING EVENTS

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
read requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1
high priority queue are occupied with isochronous
write requests.

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
0.

29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller
channel 0 medium and low priority read requests. The
QMC channel 0 normal read occupancy divided by this
count provides the average QMC channel 0 read
latency.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-104 Vol. 3B

PERFORMANCE MONITORING EVENTS

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller
channel 1 medium and low priority read requests. The
QMC channel 1 normal read occupancy divided by this
count provides the average QMC channel 1 read
latency.

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller
channel 2 medium and low priority read requests. The
QMC channel 2 normal read occupancy divided by this
count provides the average QMC channel 2 read
latency.

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller
medium and low priority read requests. The QMC
normal read occupancy divided by this count provides
the average QMC read latency.

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller
channel 0 high priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller
channel 1 high priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller
channel 2 high priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller
high priority isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH0

Counts the number of Quickpath Memory Controller
channel 0 critical priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH1

Counts the number of Quickpath Memory Controller
channel 1 critical priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH2

Counts the number of Quickpath Memory Controller
channel 2 critical priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_PRIORIT
Y_READS.ANY

Counts the number of Quickpath Memory Controller
critical priority isochronous read requests.

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM
channel 1.

2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-105

PERFORMANCE MONITORING EVENTS

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send
a priority update to QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send
a priority update to QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority
update occurs when an ISOC high or critical request is
received by the QHL and there is a matching request
with normal priority that has already been issued to
the QMC. In this instance, the QHL will send a priority
update to QMC to expedite the request.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
local home.

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-106 Vol. 3B

PERFORMANCE MONITORING EVENTS

40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-107

PERFORMANCE MONITORING EVENTS

41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the
Quickpath Interface link 0 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the
Quickpath Interface link 1 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-108 Vol. 3B

PERFORMANCE MONITORING EVENTS

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were
issued to DRAM channel 0 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were
issued to DRAM channel 1 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were
issued to DRAM channel 2 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was
issued on DRAM channel 2.

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was
issued on DRAM channel 0.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was
issued on DRAM channel 2.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-109

PERFORMANCE MONITORING EVENTS

Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH have a distinct uncore sub-
system that is significantly different from the uncore found in processors with CPUID signature 06_1AH, 06_1EH,
and 06_1FH. Model-specific performance monitoring events for its uncore will be available in future documenta-
tion.

19.10 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON
INTEL® MICROARCHITECTURE CODE NAME WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support the architectural and model-
specific performance monitoring events listed in Table 19-1 and Table 19-21. Table 19-21 applies to processors with
CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. In addition,
these processors (CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH) also support the following
model-specific, product-specific uncore performance monitoring events listed in Table 19-22. Fixed counters
support the architecture events defined in Table 19-2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all
(PREALL) commands that close all open pages in a
rank. PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

Table 19-20. Performance Events In the Processor Uncore for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-110 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERLAP_STOR
E

Loads that partially overlap an earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.STORE All store referenced with misaligned address.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_C
OMPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 04H DTLB_LOAD_MISSES.WALK_CY
CLES

Cycles PMH is busy with a page walk due to a load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HI
T

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility.

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCL
ES

Counts the number of cycles no uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

Set “invert=1, cmask =
1“.

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

Vol. 3B 19-111

PERFORMANCE MONITORING EVENTS

0FH 01H MEM_UNCORE_RETIRED.UNK
NOWN_SOURCE

Load instructions retired with unknown LLC miss
(Precise Event).

Applicable to one and
two sockets.

0FH 02H MEM_UNCORE_RETIRED.OHTE
R_CORE_L2_HIT

Load instructions retired that HIT modified data in
sibling core (Precise Event).

Applicable to one and
two sockets.

0FH 04H MEM_UNCORE_RETIRED.REMO
TE_HITM

Load instructions retired that HIT modified data in
remote socket (Precise Event).

Applicable to two
sockets only.

0FH 08H MEM_UNCORE_RETIRED.LOCA
L_DRAM_AND_REMOTE_CACH
E_HIT

Load instructions retired local dram and remote
cache HIT data sources (Precise Event).

Applicable to one and
two sockets.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Load instructions retired remote DRAM and remote
home-remote cache HITM (Precise Event).

Applicable to two
sockets only.

0FH 20H MEM_UNCORE_RETIRED.OTHE
R_LLC_MISS

Load instructions retired other LLC miss (Precise
Event).

Applicable to two
sockets only.

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Load instructions retired I/O (Precise Event). Applicable to one and
two sockets.

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARIT
H

Counts number of 128 bit SIMD integer arithmetic
operations.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-112 Vol. 3B

PERFORMANCE MONITORING EVENTS

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch cannot bypass to LB, it
has another chance to dispatch from the one-cycle
delayed staging latch before it is written into the
LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE. Set 'edge =1, invert=1, cmask=1'
to count the number of divides.

Count may be incorrect
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on.

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Number of loops that cannot stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for various
reasons. Only non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-113

PERFORMANCE MONITORING EVENTS

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as L1D
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-114 Vol. 3B

PERFORMANCE MONITORING EVENTS

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e., a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss. The L1D prefetcher does
not issue a RFO prefetch.

This is a demand RFO
request.

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request.

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests. The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request.

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e., a cache miss.

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-115

PERFORMANCE MONITORING EVENTS

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e., a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache misses. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

2EH 4FH L3_LAT_CACHE.REFERENCE Counts uncore Last Level Cache references.
Because cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

See Table 19-1.

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLE
TED

Counts number of misses in the STLB which
resulted in a completed page walk.

49H 04H DTLB_MISSES.WALK_CYCLES Counts cycles of page walk due to misses in the
STLB.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

Counter 0, 1 only.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-116 Vol. 3B

PERFORMANCE MONITORING EVENTS

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

Counter 0, 1 only.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the L1D.
A streamer, which predicts lines sequentially after
this one should be fetched, and the IP prefetcher
that remembers access patterns for the current
instruction. The streamer prefetcher stops on an
L1D hit, while the IP prefetcher does not.

Counter 0, 1 only.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

Counter 0, 1 only.

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only.

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only.

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only.

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only.

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_DATA

Counts weighted cycles of offcore demand data
read requests. Does not include L2 prefetch
requests.

Counter 0.

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_CODE

Counts weighted cycles of offcore demand code
read requests. Does not include L2 prefetch
requests.

Counter 0.

60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.RFO

Counts weighted cycles of offcore demand RFO
requests. Does not include L2 prefetch requests.

Counter 0.

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ANY.READ

Counts weighted cycles of offcore read requests of
any kind. Include L2 prefetch requests.

Counter 0.

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table. This event does
not cause locks, it merely detects them.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-117

PERFORMANCE MONITORING EVENTS

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

85H 04H ITLB_MISSES.WALK_CYCLES Counts ITLB miss page walk cycles.

85H 10H ITLB_MISSES.STLB_HIT Counts number of ITLB first level miss but second
level hits.

85H 80H ITLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for Intel
64) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed indirect near branch
instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non-call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non-call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-118 Vol. 3B

PERFORMANCE MONITORING EVENTS

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non-call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NE
AR_CALL

Counts mispredicted indirect near calls executed,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-119

PERFORMANCE MONITORING EVENTS

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions cannot enter
the reservation station
and start execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediction direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles.

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUESTS.DEMAN
D.READ_DATA

Counts number of offcore demand data read
requests. Does not count L2 prefetch requests.

B0H 02H OFFCORE_REQUESTS.DEMAN
D.READ_CODE

Counts number of offcore demand code read
requests. Does not count L2 prefetch requests.

B0H 04H OFFCORE_REQUESTS.DEMAN
D.RFO

Counts number of offcore demand RFO requests.
Does not count L2 prefetch requests.

B0H 08H OFFCORE_REQUESTS.ANY.REA
D

Counts number of offcore read requests. Includes
L2 prefetch requests.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-120 Vol. 3B

PERFORMANCE MONITORING EVENTS

B0H 10H OFFCORE_REQUESTS.ANY.RFO Counts number of offcore RFO requests. Includes L2
prefetch requests.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B0H 80H OFFCORE_REQUESTS.ANY Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of uops executed that were issued
on port 2. Port 2 handles the load uops. This is a
core count only and cannot be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of uops executed that were issued
on port 3. Port 3 handles store uops. This is a core
count only and cannot be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store uops issued on port 3. This is a core count
only and cannot be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES_NO_PORT5

Counts number of cycles there are one or more
uops being executed and were issued on ports 0-4.
This is a core count only and cannot be collected per
thread.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

Counts number of cycles there are one or more
uops being executed on any ports. This is a core
count only and cannot be collected per thread.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of uops executed that where issued
on port 0, 1, or 5.

Use cmask=1, invert=1
to count stall cycles.

B1H 80H UOPS_EXECUTED.PORT234 Counts number of uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B3H 01H SNOOPQ_REQUESTS_OUTSTA
NDING.DATA

Counts weighted cycles of snoopq requests for
data. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B3H 02H SNOOPQ_REQUESTS_OUTSTA
NDING.INVALIDATE

Counts weighted cycles of snoopq invalidate
requests. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B3H 04H SNOOPQ_REQUESTS_OUTSTA
NDING.CODE

Counts weighted cycles of snoopq requests for
code. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B4H 01H SNOOPQ_REQUESTS.CODE Counts the number of snoop code requests.

B4H 02H SNOOPQ_REQUESTS.DATA Counts the number of snoop data requests.

B4H 04H SNOOPQ_REQUESTS.INVALID
ATE

Counts the number of snoop invalidate requests.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-121

PERFORMANCE MONITORING EVENTS

B7H 01H OFF_CORE_RESPONSE_0 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Requires programming
MSR 01A6H.

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.3.1.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Use MSR 01A7H.

C0H 00H INST_RETIRED.ANY_P See Table 19-1.

Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of
GETSEC/VM entry/VM
Exit/MWait will not count
as retired instructions.

C0H 02H INST_RETIRED.X87 Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles.

C2H 02H UOPS_RETIRED.RETIRE_SLOT
S

Counts the number of retirement slots used each
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-122 Vol. 3B

PERFORMANCE MONITORING EVENTS

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Counts mispredicted conditional retired calls.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Counts all mispredicted retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating-point
uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD scalar single-precision floating-point
uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating-point
uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating-point
uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of all
cores on the package, this is an L3 hit. This counts
both clean and modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-123

PERFORMANCE MONITORING EVENTS

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but not
necessarily executed or retired).

D1H 01H UOPS_DECODED.STALL_CYCLE
S

Counts the cycles of decoder stalls. INV=1, Cmask=
1.

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP_FOLDIN
G

Counts number of stack pointer (ESP) instructions
decoded: push, pop, call, ret, etc. ESP instructions do
not generate a Uop to increment or decrement ESP.
Instead, they update an ESP_Offset register that
keeps track of the delta to the current value of the
ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected by
adding the ESP offset register to the current value
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-124 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe, Cycles when partial register stalls
occurred, Cycles when flag stalls occurred, Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the front
end.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the front end.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-125

PERFORMANCE MONITORING EVENTS

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETC
H

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the L2
cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the L2
cache in the E (exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the L2
cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CL
EAN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU hints sent to
L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of the
threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions, (Denormal input when the
DAZ flag is off or Underflow result when the FTZ
flag is off): x87 instructions, (NaN or denormal are
loaded to a register or used as input from memory,
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-126 Vol. 3B

PERFORMANCE MONITORING EVENTS

Model-specific performance monitoring events of the uncore sub-system for processors with CPUID signature of
DisplayFamily_DisplayModel 06_25H, 06_2CH, and 06_1FH support performance events listed in Table 19-22.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full.
The peer probe tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker
has at least one valid entry. The peer probe tracker
queue tracks IOH and remote socket snoops.

02H 01H UNC_GQ_OCCUPANCY.READ_T
RACKER

Increments the number of queue entries (code read,
data read, and RFOs) in the tread tracker. The GQ read
tracker allocate to deallocate occupancy count is
divided by the count to obtain the average read tracker
latency.

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to
deallocate entries. The GQ read tracker allocate to
deallocate occupancy count is divided by the count to
obtain the average read tracker latency.

Table 19-21. Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-127

PERFORMANCE MONITORING EVENTS

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a
full cache line read has missed the L3. The GQ read
tracker L3 miss to fill occupancy count is divided by
this count to obtain the average cache line read L3
miss latency. The latency represents the time after
which the L3 has determined that the cache line has
missed. The time between a GQ read tracker allocation
and the L3 determining that the cache line has missed
is the average L3 hit latency. The total L3 cache line
read miss latency is the hit latency + L3 miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are
allocated in the read tracker queue that hit or miss the
L3. The GQ read tracker L3 hit occupancy count is
divided by this count to obtain the average L3 hit
latency.

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are
allocated in the read tracker, have missed in the L3 and
have not acquired a Request Transaction ID. The GQ
read tracker L3 miss to RTID acquired occupancy count
is divided by this count to obtain the average latency
for a read L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_TO_RTID_
ACQUIRED

Counts the number of GQ write tracker entries that are
allocated in the write tracker, have missed in the L3
and have not acquired a Request Transaction ID. The
GQ write tracker L3 miss to RTID occupancy count is
divided by this count to obtain the average latency for
a write L3 miss to acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that are
allocated in the write tracker queue that miss the L3.
The GQ write tracker occupancy count is divided by
this count to obtain the average L3 write miss latency.

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop)
entries that are allocated in the peer probe tracker
queue that miss the L3. The GQ peer probe occupancy
count is divided by this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data
port is busy importing data from the Quickpath
Interface. Each cycle the input port can transfer 8 or
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input
data port is busy importing data from the Quickpath
Memory Interface. Each cycle the input port can
transfer 8 or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data
from the Last Level Cache. Each cycle the input port
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy
importing data from processor cores 0 and 2. Each
cycle the input port can transfer 32 bytes of data.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-128 Vol. 3B

PERFORMANCE MONITORING EVENTS

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy
importing data from processor cores 1 and 3. Each
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy
sending data to the Quickpath Interface or Quickpath
Memory Interface. Each cycle the output port can
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to
the Last Level Cache. Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data
to the Cores. Each cycle the output port can transfer
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3
does not have the referenced cache line.

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3
has the referenced line cached in the S state.

06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to
the local home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the local
home in the S state.

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the
local home that the L3 has the referenced cache line in
the M state. The L3 cache line state is invalidated and
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local
home.

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to
the local home that the L3 has the referenced line
cached in the M state.

07H 01H UNC_SNP_RESP_TO_REMOTE_
HOME.I_STATE

Number of snoop responses to a remote home that L3
does not have the referenced cache line.

07H 02H UNC_SNP_RESP_TO_REMOTE_
HOME.S_STATE

Number of snoop responses to a remote home that L3
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_S_STATE

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced cache
line in the E state. The L3 cache line state is changed
to the S state and the line is forwarded to the remote
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a
remote home that the L3 has the referenced cache
line in the M state. The L3 cache line state is
invalidated and the line is forwarded to the remote
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE_
HOME.CONFLICT

Number of conflict snoop responses sent to the local
home.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-129

PERFORMANCE MONITORING EVENTS

07H 20H UNC_SNP_RESP_TO_REMOTE_
HOME.WB

Number of responses to code or data read snoops to a
remote home that the L3 has the referenced line
cached in the M state.

07H 24H UNC_SNP_RESP_TO_REMOTE_
HOME.HITM

Number of HITM snoop responses to a remote home.

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that
hit in the L3.

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3.
Writebacks from the cores will always result in L3 hits
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that
miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3.
Should always be zero as writebacks from the cores
will always result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3.

0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state. The
only time a cache line is allocated in the M state is
when the line was forwarded in M state is forwarded
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state.

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in
the M state. When the victim cache line is in M state,
the line is written to its home cache agent which can
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOTO_S Counts the number of remote snoops that have
requested a cache line be set to the S state.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-130 Vol. 3B

PERFORMANCE MONITORING EVENTS

0CH 02H UNC_GQ_SNOOP.GOTO_I Counts the number of remote snoops that have
requested a cache line be set to the I state.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
E

Counts the number of remote snoops that have
requested a cache line be set to the S state from E
state.

Requires writing MSR
301H with mask = 2H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
F

Counts the number of remote snoops that have
requested a cache line be set to the S state from F
(forward) state.

Requires writing MSR
301H with mask = 8H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
M

Counts the number of remote snoops that have
requested a cache line be set to the S state from M
state.

Requires writing MSR
301H with mask = 1H.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
S

Counts the number of remote snoops that have
requested a cache line be set to the S state from S
state.

Requires writing MSR
301H with mask = 4H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
E

Counts the number of remote snoops that have
requested a cache line be set to the I state from E
state.

Requires writing MSR
301H with mask = 2H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
F

Counts the number of remote snoops that have
requested a cache line be set to the I state from F
(forward) state.

Requires writing MSR
301H with mask = 8H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
M

Counts the number of remote snoops that have
requested a cache line be set to the I state from M
state.

Requires writing MSR
301H with mask = 1H.

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
S

Counts the number of remote snoops that have
requested a cache line be set to the I state from S
state.

Requires writing MSR
301H with mask = 4H.

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read requests
from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WRI
TES

Counts number of Quickpath Home Logic write
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read requests
from a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read requests
from the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write
requests from the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REMO
TE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home
Logic IOH is busy.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-131

PERFORMANCE MONITORING EVENTS

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home
Logic local tracker is busy.

23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read
occupancy.

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 2 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT)
entries that saw a max of 3 conflicts. The AAT is a
structure that tracks requests that are in conflict. The
requests themselves are in the home tracker entries.
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote
Tracker contains two or more requests with an
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.L
OCAL

Counts cycles the Quickpath Home Logic Local Tracker
contains two or more requests with an address
conflict. A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory
Controller that bypass the Quickpath Home Logic. All
local accesses can be bypassed. For remote requests,
only read requests can be bypassed.

28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel
1high priority queue are occupied with isochronous
read requests.

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0
high priority queue are occupied with isochronous
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1
high priority queue are occupied with isochronous
write requests.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-132 Vol. 3B

PERFORMANCE MONITORING EVENTS

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2
high priority queue are occupied with isochronous
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding read request to DRAM channel
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
0.

29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has
at least 1 outstanding write request to DRAM channel
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2AH 07H UNC_QMC_OCCUPANCY.ANY Normal read request occupancy for any channel.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller
channel 0 medium and low priority read requests. The
QMC channel 0 normal read occupancy divided by this
count provides the average QMC channel 0 read
latency.

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller
channel 1 medium and low priority read requests. The
QMC channel 1 normal read occupancy divided by this
count provides the average QMC channel 1 read
latency.

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller
channel 2 medium and low priority read requests. The
QMC channel 2 normal read occupancy divided by this
count provides the average QMC channel 2 read
latency.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-133

PERFORMANCE MONITORING EVENTS

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller
medium and low priority read requests. The QMC
normal read occupancy divided by this count provides
the average QMC read latency.

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller
channel 0 high priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller
channel 1 high priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller
channel 2 high priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller
high priority isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_PRIORITY
_READS.CH0

Counts the number of Quickpath Memory Controller
channel 0 critical priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_PRIORITY
_READS.CH1

Counts the number of Quickpath Memory Controller
channel 1 critical priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_PRIORITY
_READS.CH2

Counts the number of Quickpath Memory Controller
channel 2 critical priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_PRIORITY
_READS.ANY

Counts the number of Quickpath Memory Controller
critical priority isochronous read requests.

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM
channel 1.

2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-134 Vol. 3B

PERFORMANCE MONITORING EVENTS

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A
priority update occurs when an ISOC high or critical
request is received by the QHL and there is a matching
request with normal priority that has already been
issued to the QMC. In this instance, the QHL will send a
priority update to QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority
update occurs when an ISOC high or critical request is
received by the QHL and there is a matching request
with normal priority that has already been issued to
the QMC. In this instance, the QHL will send a priority
update to QMC to expedite the request.

32H 01H UNC_IMC_RETRY.CH0 Counts number of IMC DRAM channel 0 retries. DRAM
retry only occurs when configured in RAS mode.

32H 02H UNC_IMC_RETRY.CH1 Counts number of IMC DRAM channel 1 retries. DRAM
retry only occurs when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH2 Counts number of IMC DRAM channel 2 retries. DRAM
retry only occurs when configured in RAS mode.

32H 07H UNC_IMC_RETRY.ANY Counts number of IMC DRAM retries from any channel.
DRAM retry only occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_CNFLTS.I
OH

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
IOH.

33H 02H UNC_QHL_FRC_ACK_CNFLTS.R
EMOTE

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
remote home.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic to the
local home.

33H 07H UNC_QHL_FRC_ACK_CNFLTS.A
NY

Counts number of Force Acknowledge Conflict
messages sent by the Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IOH_ORDER Counts number of occurrences a request was put to
sleep due to IOH ordering (write after read) conflicts.
While in the sleep state, the request is not eligible to
be scheduled to the QMC.

34H 02H UNC_QHL_SLEEPS.REMOTE_O
RDER

Counts number of occurrences a request was put to
sleep due to remote socket ordering (write after read)
conflicts. While in the sleep state, the request is not
eligible to be scheduled to the QMC.

34H 04H UNC_QHL_SLEEPS.LOCAL_ORD
ER

Counts number of occurrences a request was put to
sleep due to local socket ordering (write after read)
conflicts. While in the sleep state, the request is not
eligible to be scheduled to the QMC.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-135

PERFORMANCE MONITORING EVENTS

34H 08H UNC_QHL_SLEEPS.IOH_CONFLI
CT

Counts number of occurrences a request was put to
sleep due to IOH address conflicts. While in the sleep
state, the request is not eligible to be scheduled to the
QMC.

34H 10H UNC_QHL_SLEEPS.REMOTE_C
ONFLICT

Counts number of occurrences a request was put to
sleep due to remote socket address conflicts. While in
the sleep state, the request is not eligible to be
scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.LOCAL_CON
FLICT

Counts number of occurrences a request was put to
sleep due to local socket address conflicts. While in the
sleep state, the request is not eligible to be scheduled
to the QMC.

35H 01H UNC_ADDR_OPCODE_MATCH.I
OH

Counts number of requests from the IOH,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

35H 02H UNC_ADDR_OPCODE_MATCH.R
EMOTE

Counts number of requests from the remote socket,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

35H 04H UNC_ADDR_OPCODE_MATCH.L
OCAL

Counts number of requests from the local socket,
address/opcode of request is qualified by mask value
written to MSR 396H. The following mask values are
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address
by writing MSR 396H
with mask supported
mask value.

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-136 Vol. 3B

PERFORMANCE MONITORING EVENTS

40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP
virtual channel is stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data
response virtual channel is stalled due to lack of a VNA
and VN0 credit. Note that this event does not filter out
when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of a VNA and VN0
credit. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-137

PERFORMANCE MONITORING EVENTS

41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data
Response virtual channel is stalled due to lack of VNA
and VN0 credits. Note that this event does not filter
out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack
of VNA and VN0 credits. Note that this event does not
filter out when a flit would not have been selected for
arbitration because another virtual channel is getting
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual
channels are stalled due to lack of VNA and VN0
credits. Note that this event does not filter out when a
flit would not have been selected for arbitration
because another virtual channel is getting arbitrated.

42H 01H UNC_QPI_TX_HEADER.FULL.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the
Quickpath Interface outbound link 0 is busy.

42H 04H UNC_QPI_TX_HEADER.FULL.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the
Quickpath Interface link 0 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the
Quickpath Interface link 1 are stalled and not sent to
the GQ because the GQ Peer Probe Tracker (PPT) does
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-138 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands
issued either for read or write. To read or write data,
the referenced DRAM page must first be opened.

61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due
to page idle timer expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were
issued to DRAM channel 0 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were
issued to DRAM channel 1 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were
issued to DRAM channel 2 because there was a page
miss. A page miss refers to a situation in which a page
is currently open and another page from the same
bank needs to be opened. The new page experiences a
page miss. Closing of the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was
issued on DRAM channel 2.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-139

PERFORMANCE MONITORING EVENTS

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was
issued on DRAM channel 0.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was
issued on DRAM channel 0 where the command issued
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was
issued on DRAM channel 1 where the command issued
used the auto-precharge (auto page close) mode.

64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was
issued on DRAM channel 2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was
issued on DRAM channel 2 where the command issued
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands.
DRAM loses data content over time. In order to keep
correct data content, the data values have to be
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all
(PREALL) commands that close all open pages in a rank.
PREALL is issued when the DRAM needs to be
refreshed or needs to go into a power down mode.

67H 01H UNC_DRAM_THERMAL_THROT
TLED

Uncore cycles DRAM was throttled due to its
temperature being above the thermal throttling
threshold.

80H 01H UNC_THERMAL_THROTTLING_
TEMP.CORE_0

Cycles that the PCU records that core 0 is above the
thermal throttling threshold temperature.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

19-140 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 02H UNC_THERMAL_THROTTLING_
TEMP.CORE_1

Cycles that the PCU records that core 1 is above the
thermal throttling threshold temperature.

80H 04H UNC_THERMAL_THROTTLING_
TEMP.CORE_2

Cycles that the PCU records that core 2 is above the
thermal throttling threshold temperature.

80H 08H UNC_THERMAL_THROTTLING_
TEMP.CORE_3

Cycles that the PCU records that core 3 is above the
thermal throttling threshold temperature.

81H 01H UNC_THERMAL_THROTTLED_
TEMP.CORE_0

Cycles that the PCU records that core 0 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 02H UNC_THERMAL_THROTTLED_
TEMP.CORE_1

Cycles that the PCU records that core 1 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 04H UNC_THERMAL_THROTTLED_
TEMP.CORE_2

Cycles that the PCU records that core 2 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

81H 08H UNC_THERMAL_THROTTLED_
TEMP.CORE_3

Cycles that the PCU records that core 3 is in the power
throttled state due to core’s temperature being above
the thermal throttling threshold.

82H 01H UNC_PROCHOT_ASSERTION Number of system assertions of PROCHOT indicating
the entire processor has exceeded the thermal limit.

83H 01H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_0

Cycles that the PCU records that core 0 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 02H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_1

Cycles that the PCU records that core 1 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 04H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_2

Cycles that the PCU records that core 2 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

83H 08H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_3

Cycles that the PCU records that core 3 is a low power
state due to the system asserting PROCHOT the entire
processor has exceeded the thermal limit.

84H 01H UNC_TURBO_MODE.CORE_0 Uncore cycles that core 0 is operating in turbo mode.

84H 02H UNC_TURBO_MODE.CORE_1 Uncore cycles that core 1 is operating in turbo mode.

84H 04H UNC_TURBO_MODE.CORE_2 Uncore cycles that core 2 is operating in turbo mode.

84H 08H UNC_TURBO_MODE.CORE_3 Uncore cycles that core 3 is operating in turbo mode.

85H 02H UNC_CYCLES_UNHALTED_L3_
FLL_ENABLE

Uncore cycles that at least one core is unhalted and all
L3 ways are enabled.

86H 01H UNC_CYCLES_UNHALTED_L3_
FLL_DISABLE

Uncore cycles that at least one core is unhalted and all
L3 ways are disabled.

Table 19-22. Performance Events In the Processor Uncore for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Vol. 3B 19-141

PERFORMANCE MONITORING EVENTS

19.11 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
5200, 5400 SERIES AND INTEL® CORE™2 EXTREME PROCESSORS QX
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architectural and model-specific
performance monitoring events listed in Table 19-1 and Table 19-25. In addition, they also support the following
model-specific performance monitoring events listed in Table 19-23. Fixed counters support the architecture
events defined in Table 19-24.

19.12 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR
3000, 3200, 5100, 5300 SERIES AND INTEL® CORE™2 DUO PROCESSORS

Processors based on the Intel® Core™ microarchitecture support architectural and model-specific performance
monitoring events.

Fixed-function performance counters are introduced first on processors based on Intel Core microarchitecture.
Table 19-24 lists pre-defined performance events that can be counted using fixed-function performance counters.

Table 19-23. Performance Events for Processors Based on Enhanced Intel Core Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_HOST Instruction retired while in VMX root operations.

D2H 10H RAT_STAALS.OTHER_SERIALIZ
ATION_STALLS

This event counts the number of stalls due to other
RAT resource serialization not counted by Umask
value 0FH.

Table 19-24. Fixed-Function Performance Counter and Pre-defined Performance Events
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIXED_CTR0

309H Inst_Retired.Any This event counts the number of instructions that
retire execution. For instructions that consist of
multiple micro-ops, this event counts the retirement
of the last micro-op of the instruction. The counter
continues counting during hardware interrupts, traps,
and inside interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIXED_CTR1

30AH CPU_CLK_UNHALTED.CORE This event counts the number of core cycles while the
core is not in a halt state. The core enters the halt
state when it is running the HLT instruction. This
event is a component in many key event ratios.

The core frequency may change from time to time
due to transitions associated with Enhanced Intel
SpeedStep Technology or TM2. For this reason this
event may have a changing ratio with regards to time.

When the core frequency is constant, this event can
approximate elapsed time while the core was not in
halt state.

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIXED_CTR2

30BH CPU_CLK_UNHALTED.REF This event counts the number of reference cycles
when the core is not in a halt state and not in a TM
stop-clock state. The core enters the halt state when
it is running the HLT instruction or the MWAIT
instruction.

19-142 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-25 lists general-purpose model-specific performance monitoring events supported in processors based on
Intel® Core™ microarchitecture. For convenience, Table 19-25 also includes architectural events and describes
minor model-specific behavior where applicable. Software must use a general-purpose performance counter to
count events listed in Table 19-25.

This event is not affected by core frequency changes
(e.g., P states) but counts at the same frequency as
the time stamp counter. This event can approximate
elapsed time while the core was not in halt state and
not in a TM stop-clock state.

This event has a constant ratio with the
CPU_CLK_UNHALTED.BUS event.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture
Event
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked by a
preceding store with
unknown address.

This event indicates that loads are blocked by preceding
stores. A load is blocked when there is a preceding store to
an address that is not yet calculated. The number of events
is greater or equal to the number of load operations that
were blocked.

If the load and the store are always to different addresses,
check why the memory disambiguation mechanism is not
working. To avoid such blocks, increase the distance
between the store and the following load so that the store
address is known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked by a
preceding store with
unknown data.

This event indicates that loads are blocked by preceding
stores. A load is blocked when there is a preceding store to
the same address and the stored data value is not yet
known. The number of events is greater or equal to the
number of load operations that were blocked.

To avoid such blocks, increase the distance between the
store and the dependent load, so that the store data is
known at the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that partially
overlap an earlier
store, or 4-Kbyte
aliased with a previous
store.

This event indicates that loads are blocked due to a variety
of reasons. Some of the triggers for this event are when a
load is blocked by a preceding store, in one of the following:

• Some of the loaded byte locations are written by the
preceding store and some are not.

• The load is from bytes written by the preceding store,
the store is aligned to its size and either:

• The load’s data size is one or two bytes and it is not
aligned to the store.

• The load’s data size is of four or eight bytes and the load
is misaligned.

Table 19-24. Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

Vol. 3B 19-143

PERFORMANCE MONITORING EVENTS

• The load is from bytes written by the preceding store,
the store is misaligned and the load is not aligned on the
beginning of the store.

• The load is split over an eight byte boundary (excluding
16-byte loads).

• The load and store have the same offset relative to the
beginning of different 4-KByte pages. This case is also
called 4-KByte aliasing.

• In all these cases the load is blocked until after the
blocking store retires and the stored data is committed to
the cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked until
retirement.

This event indicates that load operations were blocked until
retirement. The number of events is greater or equal to the
number of load operations that were blocked.
This includes mainly uncacheable loads and split loads (loads
that cross the cache line boundary) but may include other
cases where loads are blocked until retirement.

03H 20H LOAD_BLOCK.L1D Loads blocked by the
L1 data cache.

This event indicates that loads are blocked due to one or
more reasons. Some triggers for this event are:

• The number of L1 data cache misses exceeds the
maximum number of outstanding misses supported by
the processor. This includes misses generated as result of
demand fetches, software prefetches or hardware
prefetches.

• Cache line split loads.
• Partial reads, such as reads to un-cacheable memory, I/O

instructions and more.
• A locked load operation is in progress. The number of

events is greater or equal to the number of load
operations that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while stores are
blocked due to store
buffer drain.

This event counts every cycle during which the store buffer
is draining. This includes:

• Serializing operations such as CPUID
• Synchronizing operations such as XCHG
• Interrupt acknowledgment
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while store is
waiting for a
preceding store to be
globally observed.

This event counts the total duration, in number of cycles,
which stores are waiting for a preceding stored cache line to
be observed by other cores.
This situation happens as a result of the strong store
ordering behavior, as defined in “Memory Ordering,” Chapter
8, Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

The stall may occur and be noticeable if there are many
cases when a store either misses the L1 data cache or hits a
cache line in the Shared state. If the store requires a bus
transaction to read the cache line then the stall ends when
snoop response for the bus transaction arrives.

04H 08H STORE_BLOCK.
SNOOP

A store is blocked due
to a conflict with an
external or internal
snoop.

This event counts the number of cycles the store port was
used for snooping the L1 data cache and a store was stalled
by the snoop. The store is typically resubmitted one cycle
later.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-144 Vol. 3B

PERFORMANCE MONITORING EVENTS

06H 00H SEGMENT_REG_
LOADS

Number of segment
register loads.

This event counts the number of segment register load
operations. Instructions that load new values into segment
registers cause a penalty.

This event indicates performance issues in 16-bit code. If
this event occurs frequently, it may be useful to calculate
the number of instructions retired per segment register
load. If the resulting calculation is low (on average a small
number of instructions are executed between segment
register loads), then the code’s segment register usage
should be optimized.

As a result of branch misprediction, this event is speculative
and may include segment register loads that do not actually
occur. However, most segment register loads are internally
serialized and such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions executed.

This event counts the number of times the SSE instruction
prefetchNTA is executed.

This instruction prefetches the data to the L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions executed.

This event counts the number of times the SSE instruction
prefetchT0 is executed. This instruction prefetches the data
to the L1 data cache and L2 cache.

07H 02H SSE_PRE_EXEC.L2 Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions executed.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 are executed. These
instructions prefetch the data to the L2 cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD
Extensions (SSE)
Weakly-ordered store
instructions executed.

This event counts the number of times SSE non-temporal
store instructions are executed.

08H 01H DTLB_MISSES.
ANY

Memory accesses that
missed the DTLB.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses. The count includes misses detected
as a result of speculative accesses.

Typically a high count for this event indicates that the code
accesses a large number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses due to
load operations.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses due to load operations.

This count includes misses detected as a result of
speculative accesses.

08H 04H DTLB_MISSES.L0_MISS_LD L0 DTLB misses due to
load operations.

This event counts the number of level 0 Data Table
Lookaside Buffer (DTLB0) misses due to load operations.

This count includes misses detected as a result of
speculative accesses. Loads that miss that DTLB0 and hit
the DTLB1 can incur two-cycle penalty.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-145

PERFORMANCE MONITORING EVENTS

08H 08H DTLB_MISSES.
MISS_ST

TLB misses due to
store operations.

This event counts the number of Data Table Lookaside
Buffer (DTLB) misses due to store operations.

This count includes misses detected as a result of
speculative accesses. Address translation for store
operations is performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.RESET

Memory
disambiguation reset
cycles.

This event counts the number of cycles during which
memory disambiguation misprediction occurs. As a result
the execution pipeline is cleaned and execution of the
mispredicted load instruction and all succeeding instructions
restarts.

This event occurs when the data address accessed by a load
instruction, collides infrequently with preceding stores, but
usually there is no collision. It happens rarely, and may have
a penalty of about 20 cycles.

09H 02H MEMORY_DISAMBIGUATIO
N.SUCCESS

Number of loads
successfully
disambiguated.

This event counts the number of load operations that were
successfully disambiguated. Loads are preceded by a store
with an unknown address, but they are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of page-walks
executed.

This event counts the number of page-walks executed due
to either a DTLB or ITLB miss.

The page walk duration, PAGE_WALKS.CYCLES, divided by
number of page walks is the average duration of a page
walk. The average can hint whether most of the page-walks
are satisfied by the caches or cause an L2 cache miss.

0CH 02H PAGE_WALKS.
CYCLES

Duration of page-
walks in core cycles.

This event counts the duration of page-walks in core cycles.
The paging mode in use typically affects the duration of
page walks.

Page walk duration divided by number of page walks is the
average duration of page-walks. The average can hint at
whether most of the page-walks are satisfied by the caches
or cause an L2 cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point
computational micro-
ops executed.

This event counts the number of floating point
computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention.
Assists are required in the following cases:

• Streaming SIMD Extensions (SSE) instructions:

• Denormal input when the DAZ (Denormals Are Zeros) flag
is off

• Underflow result when the FTZ (Flush To Zero) flag is off
• X87 instructions:
• NaN or denormal are loaded to a register or used as input

from memory
• Division by 0
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply operations
executed.

This event counts the number of multiply operations
executed. This includes integer as well as floating point
multiply operations.

Use IA32_PMC1 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-146 Vol. 3B

PERFORMANCE MONITORING EVENTS

13H 00H DIV Divide operations
executed.

This event counts the number of divide operations
executed. This includes integer divides, floating point
divides and square-root operations executed.

Use IA32_PMC1 only.

14H 00H CYCLES_DIV
_BUSY

Cycles the divider
busy.

This event counts the number of cycles the divider is busy
executing divide or square root operations. The divide can
be integer, X87 or Streaming SIMD Extensions (SSE). The
square root operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the divider is
busy and all other
execution units are
idle.

This event counts the number of cycles the divider is busy
(with a divide or a square root operation) and no other
execution unit or load operation is in progress.

Load operations are assumed to hit the L1 data cache. This
event considers only micro-ops dispatched after the divider
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass to FP
operation.

This event counts the number of times floating point
operations use data immediately after the data was
generated by a non-floating point execution unit. Such cases
result in one penalty cycle due to data bypass between the
units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass to
SIMD operation.

This event counts the number of times SIMD operations use
data immediately after the data was generated by a non-
SIMD execution unit. Such cases result in one penalty cycle
due to data bypass between the units.

Use IA32_PMC1 only.

19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass to
load operation.

This event counts the number of delayed bypass penalty
cycles that a load operation incurred.

When load operations use data immediately after the data
was generated by an integer execution unit, they may
(pending on certain dynamic internal conditions) incur one
penalty cycle due to delayed data bypass between the units.

Use IA32_PMC1 only.

21H See
Table
18-61

L2_ADS.(Core) Cycles L2 address bus
is in use.

This event counts the number of cycles the L2 address bus
is being used for accesses to the L2 cache or bus queue. It
can count occurrences for this core or both cores.

23H See
Table
18-61

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2
transfers data to the
core.

This event counts the number of cycles during which the L2
data bus is busy transferring data from the L2 cache to the
core. It counts for all L1 cache misses (data and instruction)
that hit the L2 cache.

This event can count occurrences for this core or both cores.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-147

PERFORMANCE MONITORING EVENTS

24H Combin
ed mask
from
Table
18-61
and
Table
18-63

L2_LINES_IN.
(Core, Prefetch)

L2 cache misses. This event counts the number of cache lines allocated in the
L2 cache. Cache lines are allocated in the L2 cache as a
result of requests from the L1 data and instruction caches
and the L2 hardware prefetchers to cache lines that are
missing in the L2 cache.

This event can count occurrences for this core or both cores.
It can also count demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
18-61

L2_M_LINES_IN.
(Core)

L2 cache line
modifications.

This event counts whenever a modified cache line is written
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

26H See
Table
18-61
and
Table
18-63

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines evicted. This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores.
It can also count evictions due to demand requests and L2
hardware prefetch requests together or separately.

27H See
Table
18-61
and
Table
18-63

L2_M_LINES_OUT.(Core,
Prefetch)

Modified lines evicted
from the L2 cache.

This event counts the number of L2 modified cache lines
evicted. These lines are written back to memory unless they
also exist in a modified-state in one of the L1 data caches.

This event can count occurrences for this core or both cores.
It can also count evictions due to demand requests and L2
hardware prefetch requests together or separately.

28H Com-
bined
mask
from
Table
18-61
and
Table
18-64

L2_IFETCH.(Core, Cache
Line State)

L2 cacheable
instruction fetch
requests.

This event counts the number of instruction cache line
requests from the IFU. It does not include fetch requests
from uncacheable memory. It does not include ITLB miss
accesses.

This event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

29H Combin
ed mask
from
Table
18-61,
Table
18-63,
and
Table
18-64

L2_LD.(Core, Prefetch,
Cache Line State)

L2 cache reads. This event counts L2 cache read requests coming from the
L1 data cache and L2 prefetchers.

The event can count occurrences:

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together or separately.
• Of accesses to cache lines at different MESI states.

2AH See
Table
18-61
and
Table
18-64

L2_ST.(Core, Cache Line
State)

L2 store requests. This event counts all store operations that miss the L1 data
cache and request the data from the L2 cache.

The event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-148 Vol. 3B

PERFORMANCE MONITORING EVENTS

2BH See
Table
18-61
and
Table
18-64

L2_LOCK.(Core, Cache Line
State)

L2 locked accesses. This event counts all locked accesses to cache lines that
miss the L1 data cache.

The event can count occurrences for this core or both cores.
It can also count accesses to cache lines at different MESI
states.

2EH See
Table
18-61,
Table
18-63,
and
Table
18-64

L2_RQSTS.(Core, Prefetch,
Cache Line State)

L2 cache requests. This event counts all completed L2 cache requests. This
includes L1 data cache reads, writes, and locked accesses,
L1 data prefetch requests, instruction fetches, and all L2
hardware prefetch requests.

This event can count occurrences:

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together, or separately.
• Of accesses to cache lines at different MESI states.

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache demand
requests from this
core that missed the
L2.

This event counts all completed L2 cache demand requests
from this core that miss the L2 cache. This includes L1 data
cache reads, writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache demand
requests from this
core.

This event counts all completed L2 cache demand requests
from this core. This includes L1 data cache reads, writes,
and locked accesses, L1 data prefetch requests, and
instruction fetches.

This is an architectural performance event.

30H See
Table
18-61,
Table
18-63,
and
Table
18-64

L2_REJECT_BUSQ.(Core,
Prefetch, Cache Line State)

Rejected L2 cache
requests.

This event indicates that a pending L2 cache request that
requires a bus transaction is delayed from moving to the bus
queue. Some of the reasons for this event are:

• The bus queue is full.
• The bus queue already holds an entry for a cache line in

the same set.
The number of events is greater or equal to the number of
requests that were rejected.

• For this core or both cores.
• Due to demand requests and L2 hardware prefetch

requests together, or separately.
• Of accesses to cache lines at different MESI states.

32H See
Table
18-61

L2_NO_REQ.(Core) Cycles no L2 cache
requests are pending.

This event counts the number of cycles that no L2 cache
requests were pending from a core. When using the
BOTH_CORE modifier, the event counts only if none of the
cores have a pending request. The event counts also when
one core is halted and the other is not halted.

The event can count occurrences for this core or both cores.

3AH 00H EIST_TRANS Number of Enhanced
Intel SpeedStep
Technology (EIST)
transitions.

This event counts the number of transitions that include a
frequency change, either with or without voltage change.
This includes Enhanced Intel SpeedStep Technology (EIST)
and TM2 transitions.

The event is incremented only while the counting core is in
C0 state. Since transitions to higher-numbered CxE states
and TM2 transitions include a frequency change or voltage
transition, the event is incremented accordingly.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-149

PERFORMANCE MONITORING EVENTS

3BH C0H THERMAL_TRIP Number of thermal
trips.

This event counts the number of thermal trips. A thermal
trip occurs whenever the processor temperature exceeds
the thermal trip threshold temperature.

Following a thermal trip, the processor automatically
reduces frequency and voltage. The processor checks the
temperature every millisecond and returns to normal when
the temperature falls below the thermal trip threshold
temperature.

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core
is not in a halt state. The core enters the halt state when it
is running the HLT instruction. This event is a component in
many key event ratios.

The core frequency may change due to transitions
associated with Enhanced Intel SpeedStep Technology or
TM2. For this reason, this event may have a changing ratio in
regard to time.

When the core frequency is constant, this event can give
approximate elapsed time while the core not in halt state.

This is an architectural performance event.

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles when core
is not halted.

This event counts the number of bus cycles while the core is
not in the halt state. This event can give a measurement of
the elapsed time while the core was not in the halt state.
The core enters the halt state when it is running the HLT
instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the maximum bus
to processor frequency ratio.

Non-halted bus cycles are a component in many key event
ratios.

3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles when core
is active and the other
is halted.

This event counts the number of bus cycles during which
the core remains non-halted and the other core on the
processor is halted.

This event can be used to determine the amount of
parallelism exploited by an application or a system. Divide
this event count by the bus frequency to determine the
amount of time that only one core was in use.

40H See
Table
18-64

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable data
reads.

This event counts the number of data reads from cacheable
memory. Locked reads are not counted.

41H See
Table
18-64

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable data
writes.

This event counts the number of data writes to cacheable
memory. Locked writes are not counted.

42H See
Table
18-64

L1D_CACHE_
LOCK.(Cache Line State)

L1 data cacheable
locked reads.

This event counts the number of locked data reads from
cacheable memory.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-150 Vol. 3B

PERFORMANCE MONITORING EVENTS

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 data
cacheable locked
operation.

This event counts the number of cycles during which any
cache line is locked by any locking instruction.

Locking happens at retirement and therefore the event does
not occur for instructions that are speculatively executed.
Locking duration is shorter than locked instruction execution
duration.

43H 01H L1D_ALL_REF All references to the
L1 data cache.

This event counts all references to the L1 data cache,
including all loads and stores with any memory types.

The event counts memory accesses only when they are
actually performed. For example, a load blocked by unknown
store address and later performed is only counted once.

The event includes non-cacheable accesses, such as I/O
accesses.

43H 02H L1D_ALL_
CACHE_REF

L1 Data cacheable
reads and writes.

This event counts the number of data reads and writes from
cacheable memory, including locked operations.

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines allocated
in the L1 data cache.

This event counts the number of lines brought into the L1
data cache.

46H 00H L1D_M_REPL Modified cache lines
allocated in the L1
data cache.

This event counts the number of modified lines brought into
the L1 data cache.

47H 00H L1D_M_EVICT Modified cache lines
evicted from the L1
data cache.

This event counts the number of modified lines evicted from
the L1 data cache, whether due to replacement or by snoop
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of
outstanding L1 data
cache misses at any
cycle.

This event counts the number of outstanding L1 data cache
misses at any cycle. An L1 data cache miss is outstanding
from the cycle on which the miss is determined until the
first chunk of data is available. This event counts:

• All cacheable demand requests.
• L1 data cache hardware prefetch requests.
• Requests to write through memory.
• Requests to write combine memory.
Uncacheable requests are not counted. The count of this
event divided by the number of L1 data cache misses,
L1D_REPL, is the average duration in core cycles of an L1
data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split loads
from the L1 data
cache.

This event counts the number of load operations that span
two cache lines. Such load operations are also called split
loads. Split load operations are executed at retirement.

49H 02H L1D_SPLIT.
STORES

Cache line split stores
to the L1 data cache.

This event counts the number of store operations that span
two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchNTA were executed and missed all cache levels.

Due to speculation an executed instruction might not retire.
This instruction prefetches the data to the L1 data cache.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-151

PERFORMANCE MONITORING EVENTS

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchT0 were executed and missed all cache levels.

Due to speculation executed instruction might not retire.
The prefetchT0 instruction prefetches data to the L2 cache
and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions missing all
cache levels.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 were executed and missed all
cache levels.

Due to speculation, an executed instruction might not retire.
The prefetchT1 and PrefetchNT2 instructions prefetch data
to the L2 cache.

4CH 00H LOAD_HIT_PRE Load operations
conflicting with a
software prefetch to
the same address.

This event counts load operations sent to the L1 data cache
while a previous Streaming SIMD Extensions (SSE) prefetch
instruction to the same cache line has started prefetching
but has not yet finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache prefetch
requests.

This event counts the number of times the L1 data cache
requested to prefetch a data cache line. Requests can be
rejected when the L2 cache is busy and resubmitted later or
lost.

All requests are counted, including those that are rejected.

60H See
Table
18-61
and
Table
18-62.

BUS_REQUEST_
OUTSTANDING.
(Core and Bus Agents)

Outstanding cacheable
data read bus
requests duration.

This event counts the number of pending full cache line read
transactions on the bus occurring in each cycle. A read
transaction is pending from the cycle it is sent on the bus
until the full cache line is received by the processor.

The event counts only full-line cacheable read requests from
either the L1 data cache or the L2 prefetchers. It does not
count Read for Ownership transactions, instruction byte
fetch transactions, or any other bus transaction.

61H See
Table
18-62.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus Not
Ready signals
asserted.

This event counts the number of Bus Not Ready (BNR)
signals that the processor asserts on the bus to suspend
additional bus requests by other bus agents.

A bus agent asserts the BNR signal when the number of
data and snoop transactions is close to the maximum that
the bus can handle. To obtain the number of bus cycles
during which the BNR signal is asserted, multiply the event
count by two.

While this signal is asserted, new transactions cannot be
submitted on the bus. As a result, transaction latency may
have higher impact on program performance.

62H See
Table
18-62.

BUS_DRDY_
CLOCKS.(Bus Agents)

Bus cycles when data
is sent on the bus.

This event counts the number of bus cycles during which
the DRDY (Data Ready) signal is asserted on the bus. The
DRDY signal is asserted when data is sent on the bus. With
the 'THIS_AGENT' mask this event counts the number of bus
cycles during which this agent (the processor) writes data
on the bus back to memory or to other bus agents. This
includes all explicit and implicit data writebacks, as well as
partial writes.

With the 'ALL_AGENTS' mask, this event counts the number
of bus cycles during which any bus agent sends data on the
bus. This includes all data reads and writes on the bus.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-152 Vol. 3B

PERFORMANCE MONITORING EVENTS

63H See
Table
18-61
and
Table
18-62.

BUS_LOCK_
CLOCKS.(Core and Bus
Agents)

Bus cycles when a
LOCK signal asserted.

This event counts the number of bus cycles, during which
the LOCK signal is asserted on the bus. A LOCK signal is
asserted when there is a locked memory access, due to:

• Uncacheable memory.
• Locked operation that spans two cache lines.
• Page-walk from an uncacheable page table.
Bus locks have a very high performance penalty and it is
highly recommended to avoid such accesses.

64H See
Table
18-61.

BUS_DATA_
RCV.(Core)

Bus cycles while
processor receives
data.

This event counts the number of bus cycles during which
the processor is busy receiving data.

65H See
Table
18-61
and
Table
18-62.

BUS_TRANS_BRD.(Core
and Bus Agents)

Burst read bus
transactions.

This event counts the number of burst read transactions
including:

• L1 data cache read misses (and L1 data cache hardware
prefetches).

• L2 hardware prefetches by the DPL and L2 streamer.
• IFU read misses of cacheable lines.
It does not include RFO transactions.

66H See
Table
18-61
and
Table
18-62.

BUS_TRANS_RFO.(Core
and Bus Agents)

RFO bus transactions. This event counts the number of Read For Ownership (RFO)
bus transactions, due to store operations that miss the L1
data cache and the L2 cache. It also counts RFO bus
transactions due to locked operations.

67H See
Table
18-61
and
Table
18-62.

BUS_TRANS_WB.
(Core and Bus Agents)

Explicit writeback bus
transactions.

This event counts all explicit writeback bus transactions due
to dirty line evictions. It does not count implicit writebacks
due to invalidation by a snoop request.

68H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
IFETCH.(Core and Bus
Agents)

Instruction-fetch bus
transactions.

This event counts all instruction fetch full cache line bus
transactions.

69H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
INVAL.(Core and Bus
Agents)

Invalidate bus
transactions.

This event counts all invalidate transactions. Invalidate
transactions are generated when:

• A store operation hits a shared line in the L2 cache.
• A full cache line write misses the L2 cache or hits a

shared line in the L2 cache.

6AH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
PWR.(Core and Bus Agents)

Partial write bus
transaction.

This event counts partial write bus transactions.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-153

PERFORMANCE MONITORING EVENTS

6BH See
Table
18-61
and
Table
18-62.

BUS_TRANS
_P.(Core and Bus Agents)

Partial bus
transactions.

This event counts all (read and write) partial bus
transactions.

6CH See
Table
18-61
and
Table
18-62.

BUS_TRANS_IO.(Core and
Bus Agents)

IO bus transactions. This event counts the number of completed I/O bus
transactions as a result of IN and OUT instructions. The
count does not include memory mapped IO.

6DH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
DEF.(Core and Bus Agents)

Deferred bus
transactions.

This event counts the number of deferred transactions.

6EH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
BURST.(Core and Bus
Agents)

Burst (full cache-line)
bus transactions.

This event counts burst (full cache line) transactions
including:

• Burst reads.
• RFOs.
• Explicit writebacks.
• Write combine lines.

6FH See
Table
18-61
and
Table
18-62.

BUS_TRANS_
MEM.(Core and Bus Agents)

Memory bus
transactions.

This event counts all memory bus transactions including:

• Burst transactions.
• Partial reads and writes - invalidate transactions.
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_IVAL.

70H See
Table
18-61
and
Table
18-62.

BUS_TRANS_
ANY.(Core and Bus Agents)

All bus transactions. This event counts all bus transactions. This includes:

• Memory transactions.
• IO transactions (non memory-mapped).
• Deferred transaction completion.
• Other less frequent transactions, such as interrupts.

77H See
Table
18-61
and
Table
18-65.

EXT_SNOOP.
(Bus Agents, Snoop
Response)

External snoops. This event counts the snoop responses to bus transactions.
Responses can be counted separately by type and by bus
agent.

With the 'THIS_AGENT' mask, the event counts snoop
responses from this processor to bus transactions sent by
this processor. With the 'ALL_AGENTS' mask the event
counts all snoop responses seen on the bus.

78H See
Table
18-61
and
Table
18-66.

CMP_SNOOP.(Core, Snoop
Type)

L1 data cache
snooped by other core.

This event counts the number of times the L1 data cache is
snooped for a cache line that is needed by the other core in
the same processor. The cache line is either missing in the
L1 instruction or data caches of the other core, or is
available for reading only and the other core wishes to write
the cache line.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-154 Vol. 3B

PERFORMANCE MONITORING EVENTS

The snoop operation may change the cache line state. If the
other core issued a read request that hit this core in E state,
typically the state changes to S state in this core. If the
other core issued a read for ownership request (due a write
miss or hit to S state) that hits this core's cache line in E or S
state, this typically results in invalidation of the cache line in
this core. If the snoop hits a line in M state, the state is
changed at a later opportunity.

These snoops are performed through the L1 data cache
store port. Therefore, frequent snoops may conflict with
extensive stores to the L1 data cache, which may increase
store latency and impact performance.

7AH See
Table
18-62.

BUS_HIT_DRV.

(Bus Agents)

HIT signal asserted. This event counts the number of bus cycles during which
the processor drives the HIT# pin to signal HIT snoop
response.

7BH See
Table
18-62.

BUS_HITM_DRV.

(Bus Agents)

HITM signal asserted. This event counts the number of bus cycles during which
the processor drives the HITM# pin to signal HITM snoop
response.

7DH See
Table
18-61.

BUSQ_EMPTY.

(Core)

Bus queue empty. This event counts the number of cycles during which the
core did not have any pending transactions in the bus queue.
It also counts when the core is halted and the other core is
not halted.

This event can count occurrences for this core or both cores.

7EH See
Table
18-61
and
Table
18-62.

SNOOP_STALL_
DRV.(Core and Bus Agents)

Bus stalled for snoops. This event counts the number of times that the bus snoop
stall signal is asserted. To obtain the number of bus cycles
during which snoops on the bus are prohibited, multiply the
event count by two.

During the snoop stall cycles, no new bus transactions
requiring a snoop response can be initiated on the bus. A
bus agent asserts a snoop stall signal if it cannot response
to a snoop request within three bus cycles.

7FH See
Table
18-61.

BUS_IO_WAIT.
(Core)

IO requests waiting in
the bus queue.

This event counts the number of core cycles during which IO
requests wait in the bus queue. With the SELF modifier this
event counts IO requests per core.

With the BOTH_CORE modifier, this event increments by one
for any cycle for which there is a request from either core.

80H 00H L1I_READS Instruction fetches. This event counts all instruction fetches, including
uncacheable fetches that bypass the Instruction Fetch Unit
(IFU).

81H 00H L1I_MISSES Instruction Fetch Unit
misses.

This event counts all instruction fetches that miss the
Instruction Fetch Unit (IFU) or produce memory requests.
This includes uncacheable fetches.

An instruction fetch miss is counted only once and not once
for every cycle it is outstanding.

82H 02H ITLB.SMALL_MISS ITLB small page
misses.

This event counts the number of instruction fetches from
small pages that miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page
misses.

This event counts the number of instruction fetches from
large pages that miss the ITLB.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-155

PERFORMANCE MONITORING EVENTS

82H 40H ITLB.FLUSH ITLB flushes. This event counts the number of ITLB flushes. This usually
happens upon CR3 or CR0 writes, which are executed by
the operating system during process switches.

82H 12H ITLB.MISSES ITLB misses. This event counts the number of instruction fetches from
either small or large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during which
the instruction queue
is full.

This event counts the number of cycles during which the
instruction queue is full. In this situation, the core front end
stops fetching more instructions. This is an indication of
very long stalls in the back-end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during which
instruction fetches
stalled.

This event counts the number of cycles for which an
instruction fetch stalls, including stalls due to any of the
following reasons:

• Instruction Fetch Unit cache misses.
• Instruction TLB misses.
• Instruction TLB faults.

87H 00H ILD_STALL Instruction Length
Decoder stall cycles
due to a length
changing prefix.

This event counts the number of cycles during which the
instruction length decoder uses the slow length decoder.
Usually, instruction length decoding is done in one cycle.
When the slow decoder is used, instruction decoding
requires 6 cycles.

The slow decoder is used in the following cases:

• Operand override prefix (66H) preceding an instruction
with immediate data.

• Address override prefix (67H) preceding an instruction
with a modr/m in real, big real, 16-bit protected or 32-bit
protected modes.

To avoid instruction length decoding stalls, generate code
using imm8 or imm32 values instead of imm16 values. If
you must use an imm16 value, store the value in a register
using “mov reg, imm32” and use the register format of the
instruction.

88H 00H BR_INST_EXEC Branch instructions
executed.

This event counts all executed branches (not necessarily
retired). This includes only instructions and not micro-op
branches.

Frequent branching is not necessarily a major performance
issue. However frequent branch mispredictions may be a
problem.

89H 00H BR_MISSP_EXEC Mispredicted branch
instructions executed.

This event counts the number of mispredicted branch
instructions that were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch instructions
mispredicted at
decoding.

This event counts the number of branch instructions that
were mispredicted at decoding.

8BH 00H BR_CND_EXEC Conditional branch
instructions executed.

This event counts the number of conditional branch
instructions executed, but not necessarily retired.

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted
conditional branch
instructions executed.

This event counts the number of mispredicted conditional
branch instructions that were executed.

8DH 00H BR_IND_EXEC Indirect branch
instructions executed.

This event counts the number of indirect branch instructions
that were executed.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-156 Vol. 3B

PERFORMANCE MONITORING EVENTS

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted indirect
branch instructions
executed.

This event counts the number of mispredicted indirect
branch instructions that were executed.

8FH 00H BR_RET_EXEC RET instructions
executed.

This event counts the number of RET instructions that were
executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted RET
instructions executed.

This event counts the number of mispredicted RET
instructions that were executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET instructions
executed mispredicted
at decoding.

This event counts the number of RET instructions that were
executed and were mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL instructions
executed.

This event counts the number of CALL instructions
executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted CALL
instructions executed.

This event counts the number of mispredicted CALL
instructions that were executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL
instructions executed.

This event counts the number of indirect CALL instructions
that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch predicted
taken with bubble 1.

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2
together count the number of times a taken branch
prediction incurred a one-cycle penalty. The penalty incurs
when:

• Too many taken branches are placed together. To avoid
this, unroll loops and add a non-taken branch in the
middle of the taken sequence.

• The branch target is unaligned. To avoid this, align the
branch target.

98H 00H BR_TKN_
BUBBLE_2

Branch predicted
taken with bubble 2.

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2
together count the number of times a taken branch
prediction incurred a one-cycle penalty. The penalty incurs
when:

• Too many taken branches are placed together. To avoid
this, unroll loops and add a non-taken branch in the
middle of the taken sequence.

• The branch target is unaligned. To avoid this, align the
branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops dispatched
for execution.

This event counts the number of micro-ops dispatched for
execution. Up to six micro-ops can be dispatched in each
cycle.

A1H 01H RS_UOPS_
DISPATCHED.PORT0

Cycles micro-ops
dispatched for
execution on port 0.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Issue Ports are described in
Intel® 64 and IA-32 Architectures Optimization Reference
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT1

Cycles micro-ops
dispatched for
execution on port 1.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 04H RS_UOPS_
DISPATCHED.PORT2

Cycles micro-ops
dispatched for
execution on port 2.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-157

PERFORMANCE MONITORING EVENTS

A1H 08H RS_UOPS_
DISPATCHED.PORT3

Cycles micro-ops
dispatched for
execution on port 3.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 10H RS_UOPS_
DISPATCHED.PORT4

Cycles micro-ops
dispatched for
execution on port 4.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

A1H 20H RS_UOPS_
DISPATCHED.PORT5

Cycles micro-ops
dispatched for
execution on port 5.

This event counts the number of cycles for which micro-ops
dispatched for execution. Each cycle, at most one micro-op
can be dispatched on the port. Use IA32_PMC0 only.

AAH 01H MACRO_INSTS.
DECODED

Instructions decoded. This event counts the number of instructions decoded (but
not necessarily executed or retired).

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC Instructions
decoded.

This event counts the number of complex instructions
decoded. Complex instructions usually have more than four
micro-ops. Only one complex instruction can be decoded at a
time.

ABH 01H ESP.SYNCH ESP register content
synchron-ization.

This event counts the number of times that the ESP register
is explicitly used in the address expression of a load or store
operation, after it is implicitly used, for example by a push or
a pop instruction.

ESP synch micro-op uses resources from the rename pipe-
stage and up to retirement. The expected ratio of this event
divided by the number of ESP implicit changes is 0,2. If the
ratio is higher, consider rearranging your code to avoid ESP
synchronization events.

ABH 02H ESP.ADDITIONS ESP register automatic
additions.

This event counts the number of ESP additions performed
automatically by the decoder. A high count of this event is
good, since each automatic addition performed by the
decoder saves a micro-op from the execution units.

To maximize the number of ESP additions performed
automatically by the decoder, choose instructions that
implicitly use the ESP, such as PUSH, POP, CALL, and RET
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops
executed (excluding
stores).

This event counts all the SIMD micro-ops executed. It does
not count MOVQ and MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated
arithmetic micro-ops
executed.

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed multiply
micro-ops executed.

This event counts the number of SIMD packed multiply
micro-ops executed.

B3H 02H SIMD_UOP_TYPE_EXEC.SHI
FT

SIMD packed shift
micro-ops executed.

This event counts the number of SIMD packed shift micro-
ops executed.

B3H 04H SIMD_UOP_TYPE_EXEC.PA
CK

SIMD pack micro-ops
executed.

This event counts the number of SIMD pack micro-ops
executed.

B3H 08H SIMD_UOP_TYPE_EXEC.UN
PACK

SIMD unpack micro-
ops executed.

This event counts the number of SIMD unpack micro-ops
executed.

B3H 10H SIMD_UOP_TYPE_EXEC.LO
GICAL

SIMD packed logical
micro-ops executed.

This event counts the number of SIMD packed logical micro-
ops executed.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-158 Vol. 3B

PERFORMANCE MONITORING EVENTS

B3H 20H SIMD_UOP_TYPE_EXEC.ARI
THMETIC

SIMD packed
arithmetic micro-ops
executed.

This event counts the number of SIMD packed arithmetic
micro-ops executed.

C0H 00H INST_RETIRED.
ANY_P

Instructions retired. This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op of
the instruction. The counter continues counting during
hardware interrupts, traps, and inside interrupt handlers.

INST_RETIRED.ANY_P is an architectural performance
event.

C0H 01H INST_RETIRED.
LOADS

Instructions retired,
which contain a load.

This event counts the number of instructions retired that
contain a load operation.

C0H 02H INST_RETIRED.
STORES

Instructions retired,
which contain a store.

This event counts the number of instructions retired that
contain a store operation.

C0H 04H INST_RETIRED.
OTHER

Instructions retired,
with no load or store
operation.

This event counts the number of instructions retired that do
not contain a load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH instructions
retired.

This event counts the number of FXCH instructions retired.
Modern compilers generate more efficient code and are less
likely to use this instruction. If you obtain a high count for
this event consider recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired floating-point
computational
operations (precise
event).

This event counts the number of floating-point
computational operations retired. It counts:

• Floating point computational operations executed by the
assist handler.

• Sub-operations of complex floating-point instructions like
transcendental instructions.

This event does not count:

• Floating-point computational operations that cause traps
or assists.

• Floating-point loads and stores.
When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op or
load+indirect branch
retired.

This event counts the number of retired micro-ops that
fused a load with another operation. This includes:

• Fusion of a load and an arithmetic operation, such as with
the following instruction: ADD EAX, [EBX] where the
content of the memory location specified by EBX register
is loaded, added to EXA register, and the result is stored
in EAX.

• Fusion of a load and a branch in an indirect branch
operation, such as with the following instructions:

• JMP [RDI+200]
• RET
• Fusion decreases the number of micro-ops in the

processor pipeline. A high value for this event count
indicates that the code is using the processor resources
effectively.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-159

PERFORMANCE MONITORING EVENTS

C2H 02H UOPS_RETIRED.
STD_STA

Fused store address +
data retired.

This event counts the number of store address calculations
that are fused with store data emission into one micro-op.
Traditionally, each store operation required two micro-ops.

This event counts fusion of retired micro-ops only. Fusion
decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code is using the processor resources effectively.

C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired instruction
pairs fused into one
micro-op.

This event counts the number of times CMP or TEST
instructions were fused with a conditional branch
instruction into one micro-op. It counts fusion by retired
micro-ops only.

Fusion decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code uses the processor resources more effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-ops
retired.

This event counts the total number of retired fused micro-
ops. The counts include the following fusion types:

• Fusion of load operation with an arithmetic operation or
with an indirect branch (counted by event
UOPS_RETIRED.LD_IND_BR)

• Fusion of store address and data (counted by event
UOPS_RETIRED.STD_STA)

• Fusion of CMP or TEST instruction with a conditional
branch instruction (counted by event
UOPS_RETIRED.MACRO_FUSION)

Fusion decreases the number of micro-ops in the processor
pipeline. A high value for this event count indicates that the
code is using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused micro-ops
retired.

This event counts the number of micro-ops retired that
were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops retired. This event counts the number of micro-ops retired. The
processor decodes complex macro instructions into a
sequence of simpler micro-ops. Most instructions are
composed of one or two micro-ops.

Some instructions are decoded into longer sequences such
as repeat instructions, floating point transcendental
instructions, and assists. In some cases micro-op sequences
are fused or whole instructions are fused into one micro-op.

See other UOPS_RETIRED events for differentiating retired
fused and non-fused micro-ops.

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying Code
detected.

This event counts the number of times that a program
writes to a code section. Self-modifying code causes a
severe penalty in all Intel 64 and IA-32 processors.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-160 Vol. 3B

PERFORMANCE MONITORING EVENTS

C3H 04H MACHINE_NUKES.MEM_OR
DER

Execution pipeline
restart due to memory
ordering conflict or
memory
disambiguation
misprediction.

This event counts the number of times the pipeline is
restarted due to either multi-threaded memory ordering
conflicts or memory disambiguation misprediction.

A multi-threaded memory ordering conflict occurs when a
store, which is executed in another core, hits a load that is
executed out of order in this core but not yet retired. As a
result, the load needs to be restarted to satisfy the memory
ordering model.

See Chapter 8, “Multiple-Processor Management” in the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

To count memory disambiguation mispredictions, use the
event MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.ANY Retired branch
instructions.

This event counts the number of branch instructions retired.
This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRED_N
OT_
TAKEN

Retired branch
instructions that were
predicted not-taken.

This event counts the number of branch instructions retired
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MISPRE
D_NOT_
TAKEN

Retired branch
instructions that were
mispredicted not-
taken.

This event counts the number of branch instructions retired
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRED_T
AKEN

Retired branch
instructions that were
predicted taken.

This event counts the number of branch instructions retired
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MISPRE
D_TAKEN

Retired branch
instructions that were
mispredicted taken.

This event counts the number of branch instructions retired
that were mispredicted and taken.

C4H 0CH BR_INST_RETIRED.TAKEN Retired taken branch
instructions.

This event counts the number of branches retired that were
taken.

C5H 00H BR_INST_RETIRED.MISPRE
D

Retired mispredicted
branch instructions.
(precise event)

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa.

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during which
interrupts are
disabled.

This event counts the number of cycles during which
interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during which
interrupts are pending
and disabled.

This event counts the number of cycles during which there
are pending interrupts but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_SINGLE

Retired SSE packed-
single instructions.

This event counts the number of SSE packed-single
instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_SINGLE

Retired SSE scalar-
single instructions.

This event counts the number of SSE scalar-single
instructions retired.

C7H 04H SIMD_INST_
RETIRED.PACKED_DOUBLE

Retired SSE2 packed-
double instructions.

This event counts the number of SSE2 packed-double
instructions retired.

C7H 08H SIMD_INST_
RETIRED.SCALAR_DOUBLE

Retired SSE2 scalar-
double instructions.

This event counts the number of SSE2 scalar-double
instructions retired.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-161

PERFORMANCE MONITORING EVENTS

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 vector
integer instructions.

This event counts the number of SSE2 vector integer
instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired Streaming
SIMD instructions
(precise event).

This event counts the overall number of retired SIMD
instructions that use XMM registers. To count each type of
SIMD instruction separately, use the following events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

C8H 00H HW_INT_RCV Hardware interrupts
received.

This event counts the number of hardware interrupts
received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired instructions
that missed the ITLB.

This event counts the number of retired instructions that
missed the ITLB when they were fetched.

CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired computational
SSE packed-single
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired computational
SSE scalar-single
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired computational
SSE2 packed-double
instructions.

This event counts the number of computational SSE2
packed-double instructions retired. Computational
instructions perform arithmetic computations (for example:
add, multiply and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

CAH 08H SIMD_COMP_INST_RETIRE
D.SCALAR_DOUBLE

Retired computational
SSE2 scalar-double
instructions.

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions
perform arithmetic computations (for example: add, multiply
and divide).

Instructions that perform load and store operations or
logical operations, like XOR, OR, and AND are not counted by
this event.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-162 Vol. 3B

PERFORMANCE MONITORING EVENTS

CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads that miss
the L1 data cache
(precise event).

This event counts the number of retired load operations
that missed the L1 data cache. This includes loads from
cache lines that are currently being fetched, due to a
previous L1 data cache miss to the same cache line.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache line
missed by retired
loads (precise event).

This event counts the number of load operations that miss
the L1 data cache and send a request to the L2 cache to
fetch the missing cache line. That is the missing cache line
fetching has not yet started.

The event count is equal to the number of cache lines
fetched from the L2 cache by retired loads.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

The event might not be counted if the load is blocked (see
LOAD_BLOCK events).

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads that miss
the L2 cache (precise
event).

This event counts the number of retired load operations
that missed the L2 cache.

This event counts loads from cacheable memory only. It
does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-163

PERFORMANCE MONITORING EVENTS

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_MISS

L2 cache line missed
by retired loads
(precise event).

This event counts the number of load operations that miss
the L2 cache and result in a bus request to fetch the missing
cache line. That is the missing cache line fetching has not
yet started.

This event count is equal to the number of cache lines
fetched from memory by retired loads.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

The event might not be counted if the load is blocked (see
LOAD_BLOCK events).

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads that miss
the DTLB (precise
event).

This event counts the number of retired loads that missed
the DTLB. The DTLB miss is not counted if the load
operation causes a fault.

This event counts loads from cacheable memory only. The
event does not count loads by software prefetches.

When this event is captured with the precise event
mechanism, the collected samples contain the address of
the instruction that was executed immediately after the
instruction that caused the event.

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_TO_MMX Transitions from
Floating Point to MMX
Instructions.

This event counts the first MMX instructions following a
floating-point instruction. Use this event to estimate the
penalties for the transitions between floating-point and
MMX states.

CCH 02H FP_MMX_TRANS_TO_FP Transitions from MMX
Instructions to
Floating Point
Instructions.

This event counts the first floating-point instructions
following any MMX instruction. Use this event to estimate
the penalties for the transitions between floating-point and
MMX states.

CDH 00H SIMD_ASSIST SIMD assists invoked. This event counts the number of SIMD assists invoked. SIMD
assists are invoked when an EMMS instruction is executed,
changing the MMX state in the floating point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD Instructions
retired.

This event counts the number of retired SIMD instructions
that use MMX registers.

CFH 00H SIMD_SAT_INSTR_RETIRED Saturated arithmetic
instructions retired.

This event counts the number of saturated arithmetic SIMD
instructions that retired.

D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port stalls
cycles.

This event counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops to enter
the out-of-order pipeline.

Note that, at this stage in the pipeline, additional stalls may
occur at the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops retry
entering the execution pipe in the next cycle and the ROB-
read-port stall is counted again.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-164 Vol. 3B

PERFORMANCE MONITORING EVENTS

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register stall
cycles.

This event counts the number of cycles instruction
execution latency became longer than the defined latency
because the instruction uses a register that was partially
written by previous instructions.

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles. This event counts the number of cycles during which
execution stalled due to several reasons, one of which is a
partial flag register stall.

A partial register stall may occur when two conditions are
met:

• An instruction modifies some, but not all, of the flags in
the flag register.

• The next instruction, which depends on flags, depends on
flags that were not modified by this instruction.

D2H 08H RAT_STALLS.
FPSW

FPU status word stall. This event indicates that the FPU status word (FPSW) is
written. To obtain the number of times the FPSW is written
divide the event count by 2.

The FPSW is written by instructions with long latency; a
small count may indicate a high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall cycles. This event counts the number of stall cycles due to
conditions described by:

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_
STALLS.ES

Segment rename stalls
- ES.

This event counts the number of stalls due to the lack of
renaming resources for the ES segment register. If a
segment is renamed, but not retired and a second update to
the same segment occurs, a stall occurs in the front end of
the pipeline until the renamed segment retires.

D4H 02H SEG_RENAME_
STALLS.DS

Segment rename stalls
- DS.

This event counts the number of stalls due to the lack of
renaming resources for the DS segment register. If a
segment is renamed, but not retired and a second update to
the same segment occurs, a stall occurs in the front end of
the pipeline until the renamed segment retires.

D4H 04H SEG_RENAME_
STALLS.FS

Segment rename stalls
- FS.

This event counts the number of stalls due to the lack of
renaming resources for the FS segment register.

If a segment is renamed, but not retired and a second
update to the same segment occurs, a stall occurs in the
front end of the pipeline until the renamed segment retires.

D4H 08H SEG_RENAME_
STALLS.GS

Segment rename stalls
- GS.

This event counts the number of stalls due to the lack of
renaming resources for the GS segment register.

If a segment is renamed, but not retired and a second
update to the same segment occurs, a stall occurs in the
front end of the pipeline until the renamed segment retires.

D4H 0FH SEG_RENAME_
STALLS.ANY

Any (ES/DS/FS/GS)
segment rename stall.

This event counts the number of stalls due to the lack of
renaming resources for the ES, DS, FS, and GS segment
registers.

If a segment is renamed but not retired and a second update
to the same segment occurs, a stall occurs in the front end
of the pipeline until the renamed segment retires.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-165

PERFORMANCE MONITORING EVENTS

D5H 01H SEG_REG_
RENAMES.ES

Segment renames -
ES.

This event counts the number of times the ES segment
register is renamed.

D5H 02H SEG_REG_
RENAMES.DS

Segment renames -
DS.

This event counts the number of times the DS segment
register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment renames -
FS.

This event counts the number of times the FS segment
register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment renames -
GS.

This event counts the number of times the GS segment
register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any (ES/DS/FS/GS)
segment rename.

This event counts the number of times any of the four
segment registers (ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during which
the ROB full.

This event counts the number of cycles when the number of
instructions in the pipeline waiting for retirement reaches
the limit the processor can handle.

A high count for this event indicates that there are long
latency operations in the pipe (possibly load and store
operations that miss the L2 cache, and other instructions
that depend on these cannot execute until the former
instructions complete execution). In this situation new
instructions cannot enter the pipe and start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during which
the RS full.

This event counts the number of cycles when the number of
instructions in the pipeline waiting for execution reaches
the limit the processor can handle.

A high count of this event indicates that there are long
latency operations in the pipe (possibly load and store
operations that miss the L2 cache, and other instructions
that depend on these cannot execute until the former
instructions complete execution). In this situation new
instructions cannot enter the pipe and start execution.

DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during which
the pipeline has
exceeded load or store
limit or waiting to
commit all stores.

This event counts the number of cycles while resource-
related stalls occur due to:

• The number of load instructions in the pipeline reached
the limit the processor can handle. The stall ends when a
loading instruction retires.

• The number of store instructions in the pipeline reached
the limit the processor can handle. The stall ends when a
storing instruction commits its data to the cache or
memory.

• There is an instruction in the pipe that can be executed
only when all previous stores complete and their data is
committed in the caches or memory. For example, the
SFENCE and MFENCE instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled due to
FPU control word
write.

This event counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU) control
word.

DCH 10H RESOURCE_
STALLS.BR_MISS_CLEAR

Cycles stalled due to
branch misprediction.

This event counts the number of cycles after a branch
misprediction is detected at execution until the branch and
all older micro-ops retire. During this time new micro-ops
cannot enter the out-of-order pipeline.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

19-166 Vol. 3B

PERFORMANCE MONITORING EVENTS

DCH 1FH RESOURCE_
STALLS.ANY

Resource related
stalls.

This event counts the number of cycles while resource-
related stalls occurs for any conditions described by the
following events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch instructions
decoded.

This event counts the number of branch instructions
decoded.

E4H 00H BOGUS_BR Bogus branches. This event counts the number of byte sequences that were
mistakenly detected as taken branch instructions.

This results in a BACLEAR event. This occurs mainly after
task switches.

E6H 00H BACLEARS BACLEARS asserted. This event counts the number of times the front end is
resteered, mainly when the BPU cannot provide a correct
prediction and this is corrected by other branch handling
mechanisms at the front and. This can occur if the code has
many branches such that they cannot be consumed by the
BPU.

Each BACLEAR asserted costs approximately 7 cycles of
instruction fetch. The effect on total execution time
depends on the surrounding code.

F0H 00H PREF_RQSTS_UP Upward prefetches
issued from DPL.

This event counts the number of upward prefetches issued
from the Data Prefetch Logic (DPL) to the L2 cache. A
prefetch request issued to the L2 cache cannot be cancelled
and the requested cache line is fetched to the L2 cache.

F8H 00H PREF_RQSTS_DN Downward prefetches
issued from DPL.

This event counts the number of downward prefetches
issued from the Data Prefetch Logic (DPL) to the L2 cache. A
prefetch request issued to the L2 cache cannot be cancelled
and the requested cache line is fetched to the L2 cache.

Table 19-25. Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
Event
Num

Umask
Value Event Name Definition

Description and
Comment

Vol. 3B 19-167

PERFORMANCE MONITORING EVENTS

19.13 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
GOLDMONT PLUS MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support the architectural performance moni-
toring events listed in Table 19-1 and fixed-function performance events using a fixed counter. They also support
the following performance monitoring events listed in Table 19-27. These events apply to processors with CPUID
signature of 06_7AH. In addition, processors based on the Goldmont Plus microarchitecture also support the
events listed in Table 19-27 (see Section 19.14, “Performance Monitoring Events for Processors Based on the Gold-
mont Microarchitecture”). For an event listed in Table 19-27 that also appears in the model-specific tables of prior
generations, Table 19-27 supersedes prior generation tables.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

In Goldmont Plus microarchitecture, performance monitoring events that support Processor Event Based Sampling
(PEBS) and PEBS records that contain processor state information that are associated with at-retirement tagging
are marked by “Precise Event”.

Table 19-26. Performance Events for the Goldmont Plus Microarchitecture
Event
Num.

Umask
Value Event Name Description Comment

00H 01H INST_RETIRED.ANY Counts the number of instructions that retire execution. For
instructions that consist of multiple uops, this event counts the
retirement of the last uop of the instruction. The counter continues
counting during hardware interrupts, traps, and inside interrupt
handlers. This event uses fixed counter 0. You cannot collect a PEBS
record for this event.

Fixed Event,
Precise Event,
Not Reduced
Skid

08H 02H DTLB_LOAD_MISSES.W
ALK_COMPLETED_4K

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 4K pages. The page walks can end with or without a
page fault.

08H 04H DTLB_LOAD_MISSES.W
ALK_COMPLETED_2M_
4M

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 2M or 4M pages. The page walks can end with or
without a page fault.

08H 08H DTLB_LOAD_MISSES.W
ALK_COMPLETED_1GB

Counts page walks completed due to demand data loads (including SW
prefetches) whose address translations missed in all TLB levels and
were mapped to 1GB pages. The page walks can end with or without a
page fault.

08H 10H DTLB_LOAD_MISSES.W
ALK_PENDING

Counts once per cycle for each page walk occurring due to a load
(demand data loads or SW prefetches). Includes cycles spent traversing
the Extended Page Table (EPT). Average cycles per walk can be
calculated by dividing by the number of walks.

49H 02H DTLB_STORE_MISSES.W
ALK_COMPLETED_4K

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 4K pages.
The page walks can end with or without a page fault.

49H 04H DTLB_STORE_MISSES.W
ALK_COMPLETED_2M_
4M

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 2M or 4M
pages. The page walks can end with or without a page fault.

49H 08H DTLB_STORE_MISSES.W
ALK_COMPLETED_1GB

Counts page walks completed due to demand data stores whose
address translations missed in the TLB and were mapped to 1GB pages.
The page walks can end with or without a page fault.

49H 10H DTLB_STORE_MISSES.W
ALK_PENDING

Counts once per cycle for each page walk occurring due to a demand
data store. Includes cycles spent traversing the Extended Page Table
(EPT). Average cycles per walk can be calculated by dividing by the
number of walks.

19-168 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.14 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
GOLDMONT MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support the architectural performance monitoring
events listed in Table 19-1 and fixed-function performance events using a fixed counter. In addition, they also
support the following model-specific performance monitoring events listed in Table 19-27. These events apply to
processors with CPUID signatures of 06_5CH, 06_5FH, and 06_7AH.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

In Goldmont microarchitecture, performance monitoring events that support Processor Event Based Sampling
(PEBS) and PEBS records that contain processor state information that are associated with at-retirement tagging
are marked by “Precise Event”.

4FH 10H EPT.WALK_PENDING Counts once per cycle for each page walk only while traversing the
Extended Page Table (EPT), and does not count during the rest of the
translation. The EPT is used for translating Guest-Physical Addresses to
Physical Addresses for Virtual Machine Monitors (VMMs). Average
cycles per walk can be calculated by dividing the count by number of
walks.

85H 02H ITLB_MISSES.WALK_CO
MPLETED_4K

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 4K pages. The page
walks can end with or without a page fault.

85H 04H ITLB_MISSES.WALK_CO
MPLETED_2M_4M

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 2M or 4M pages.
The page walks can end with or without a page fault.

85H 08H ITLB_MISSES.WALK_CO
MPLETED_1GB

Counts page walks completed due to instruction fetches whose address
translations missed in the TLB and were mapped to 1GB pages. The
page walks can end with or without a page fault.

85H 10H ITLB_MISSES.WALK_PE
NDING

Counts once per cycle for each page walk occurring due to an
instruction fetch. Includes cycles spent traversing the Extended Page
Table (EPT). Average cycles per walk can be calculated by dividing by
the number of walks.

BDH 20H TLB_FLUSHES.STLB_AN
Y

Counts STLB flushes. The TLBs are flushed on instructions like INVLPG
and MOV to CR3.

C3H 20H MACHINE_CLEARS.PAGE
_FAULT

Counts the number of times that the machines clears due to a page
fault. Covers both I-side and D-side (Loads/Stores) page faults. A page
fault occurs when either page is not present, or an access violation.

Table 19-27. Performance Events for the Goldmont Microarchitecture
Event
Num.

Umask
Value Event Name Description Comment

03H 10H LD_BLOCKS.ALL_BLOCK Counts anytime a load that retires is blocked for any reason. Precise Event

03H 08H LD_BLOCKS.UTLB_MISS Counts loads blocked because they are unable to find their physical
address in the micro TLB (UTLB).

Precise Event

03H 02H LD_BLOCKS.STORE_FO
RWARD

Counts a load blocked from using a store forward because of an
address/size mismatch; only one of the loads blocked from each store
will be counted.

Precise Event

Table 19-26. Performance Events for the Goldmont Plus Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-169

PERFORMANCE MONITORING EVENTS

03H 01H LD_BLOCKS.DATA_UNK
NOWN

Counts a load blocked from using a store forward, but did not occur
because the store data was not available at the right time. The forward
might occur subsequently when the data is available.

Precise Event

03H 04H LD_BLOCKS.4K_ALIAS Counts loads that block because their address modulo 4K matches a
pending store.

Precise Event

05H 01H PAGE_WALKS.D_SIDE_C
YCLES

Counts every core cycle when a Data-side (walks due to data operation)
page walk is in progress.

05H 02H PAGE_WALKS.I_SIDE_CY
CLES

Counts every core cycle when an Instruction-side (walks due to an
instruction fetch) page walk is in progress.

05H 03H PAGE_WALKS.CYCLES Counts every core cycle a page-walk is in progress due to either a data
memory operation, or an instruction fetch.

0EH 00H UOPS_ISSUED.ANY Counts uops issued by the front end and allocated into the back end of
the machine. This event counts uops that retire as well as uops that
were speculatively executed but didn't retire. The sort of speculative
uops that might be counted includes, but is not limited to those uops
issued in the shadow of a mispredicted branch, those uops that are
inserted during an assist (such as for a denormal floating-point result),
and (previously allocated) uops that might be canceled during a
machine clear.

13H 02H MISALIGN_MEM_REF.LO
AD_PAGE_SPLIT

Counts when a memory load of a uop that spans a page boundary (a
split) is retired.

Precise Event

13H 04H MISALIGN_MEM_REF.ST
ORE_PAGE_SPLIT

Counts when a memory store of a uop that spans a page boundary (a
split) is retired.

Precise Event

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

Counts memory requests originating from the core that reference a
cache line in the L2 cache.

2EH 41H LONGEST_LAT_CACHE.
MISS

Counts memory requests originating from the core that miss in the L2
cache.

30H 00H L2_REJECT_XQ.ALL Counts the number of demand and prefetch transactions that the L2
XQ rejects due to a full or near full condition which likely indicates back
pressure from the intra-die interconnect (IDI) fabric. The XQ may reject
transactions from the L2Q (non-cacheable requests), L2 misses and L2
write-back victims.

31H 00H CORE_REJECT_L2Q.ALL Counts the number of demand and L1 prefetcher requests rejected by
the L2Q due to a full or nearly full condition which likely indicates back
pressure from L2Q. It also counts requests that would have gone
directly to the XQ, but are rejected due to a full or nearly full condition,
indicating back pressure from the IDI link. The L2Q may also reject
transactions from a core to ensure fairness between cores, or to delay
a core's dirty eviction when the address conflicts with incoming
external snoops.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core is not halted. This event uses a programmable
general purpose performance counter.

3CH 01H CPU_CLK_UNHALTED.R
EF

Reference cycles when core is not halted. This event uses a
programmable general purpose performance counter.

51H 01H DL1.DIRTY_EVICTION Counts when a modified (dirty) cache line is evicted from the data L1
cache and needs to be written back to memory. No count will occur if
the evicted line is clean, and hence does not require a writeback.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-170 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 01H ICACHE.HIT Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line and that cache line is in the Icache (hit). The
event strives to count on a cache line basis, so that multiple accesses
which hit in a single cache line count as one ICACHE.HIT. Specifically, the
event counts when straight line code crosses the cache line boundary,
or when a branch target is to a new line, and that cache line is in the
ICache. This event counts differently than Intel processors based on
the Silvermont microarchitecture.

80H 02H ICACHE.MISSES Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line and that cache line is not in the Icache (miss).
The event strives to count on a cache line basis, so that multiple
accesses which miss in a single cache line count as one ICACHE.MISS.
Specifically, the event counts when straight line code crosses the cache
line boundary, or when a branch target is to a new line, and that cache
line is not in the ICache. This event counts differently than Intel
processors based on the Silvermont microarchitecture.

80H 03H ICACHE.ACCESSES Counts requests to the Instruction Cache (ICache) for one or more
bytes in an ICache Line. The event strives to count on a cache line basis,
so that multiple fetches to a single cache line count as one
ICACHE.ACCESS. Specifically, the event counts when accesses from
straight line code crosses the cache line boundary, or when a branch
target is to a new line. This event counts differently than Intel
processors based on the Silvermont microarchitecture.

81H 04H ITLB.MISS Counts the number of times the machine was unable to find a
translation in the Instruction Translation Lookaside Buffer (ITLB) for a
linear address of an instruction fetch. It counts when new translations
are filled into the ITLB. The event is speculative in nature, but will not
count translations (page walks) that are begun and not finished, or
translations that are finished but not filled into the ITLB.

86H 00H FETCH_STALL.ALL Counts cycles that fetch is stalled due to any reason. That is, the
decoder queue is able to accept bytes, but the fetch unit is unable to
provide bytes. This will include cycles due to an ITLB miss, ICache miss
and other events.

86H 01H FETCH_STALL.ITLB_FIL
L_PENDING_CYCLES

Counts cycles that fetch is stalled due to an outstanding ITLB miss.
That is, the decoder queue is able to accept bytes, but the fetch unit is
unable to provide bytes due to an ITLB miss. Note: this event is not the
same as page walk cycles to retrieve an instruction translation.

86H 02H FETCH_STALL.ICACHE_F
ILL_PENDING_CYCLES

Counts cycles that an ICache miss is outstanding, and instruction fetch
is stalled. That is, the decoder queue is able to accept bytes, but the
fetch unit is unable to provide bytes, while an Icache miss is
outstanding. Note this event is not the same as cycles to retrieve an
instruction due to an Icache miss. Rather, it is the part of the
Instruction Cache (ICache) miss time where no bytes are available for
the decoder.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-171

PERFORMANCE MONITORING EVENTS

9CH 00H UOPS_NOT_DELIVERED.
ANY

This event is used to measure front-end inefficiencies, i.e., when the
front end of the machine is not delivering uops to the back end and the
back end has not stalled. This event can be used to identify if the
machine is truly front-end bound. When this event occurs, it is an
indication that the front end of the machine is operating at less than its
theoretical peak performance.

Background: We can think of the processor pipeline as being divided
into 2 broader parts: the front end and the back end. The front end is
responsible for fetching the instruction, decoding into uops in machine
understandable format and putting them into a uop queue to be
consumed by the back end. The back end then takes these uops and
allocates the required resources. When all resources are ready, uops are
executed. If the back end is not ready to accept uops from the front
end, then we do not want to count these as front-end bottlenecks.
However, whenever we have bottlenecks in the back end, we will have
allocation unit stalls and eventually force the front end to wait until the
back end is ready to receive more uops. This event counts only when
the back end is requesting more micro-uops and the front end is not
able to provide them. When 3 uops are requested and no uops are
delivered, the event counts 3. When 3 are requested, and only 1 is
delivered, the event counts 2. When only 2 are delivered, the event
counts 1. Alternatively stated, the event will not count if 3 uops are
delivered, or if the back end is stalled and not requesting any uops at
all. Counts indicate missed opportunities for the front end to deliver a
uop to the back end. Some examples of conditions that cause front-end
efficiencies are: Icache misses, ITLB misses, and decoder restrictions
that limit the front-end bandwidth.

Known Issues: Some uops require multiple allocation slots. These uops
will not be charged as a front end 'not delivered' opportunity, and will
be regarded as a back-end problem. For example, the INC instruction
has one uop that requires 2 issue slots. A stream of INC instructions will
not count as UOPS_NOT_DELIVERED, even though only one instruction
can be issued per clock. The low uop issue rate for a stream of INC
instructions is considered to be a back-end issue.

B7H 01H,
02H

OFFCORE_RESPONSE Requires MSR_OFFCORE_RESP[0,1] to specify request type and
response. (Duplicated for both MSRs.)

C0H 00H INST_RETIRED.ANY_P Counts the number of instructions that retire execution. For
instructions that consist of multiple uops, this event counts the
retirement of the last uop of the instruction. The event continues
counting during hardware interrupts, traps, and inside interrupt
handlers. This is an architectural performance event. This event uses a
programmable general purpose performance counter. *This event is a
Precise Event: the EventingRIP field in the PEBS record is precise to the
address of the instruction which caused the event.

Note: Because PEBS records can be collected only on IA32_PMC0, only
one event can use the PEBS facility at a time.

Precise Event

C2H 00H UOPS_RETIRED.ANY Counts uops which have retired. Precise Event,
Not Reduced
Skid

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-172 Vol. 3B

PERFORMANCE MONITORING EVENTS

C2H 01H UOPS_RETIRED.MS Counts uops retired that are from the complex flows issued by the
micro-sequencer (MS). Counts both the uops from a micro-coded
instruction, and the uops that might be generated from a micro-coded
assist.

Precise Event,
Not Reduced
Skid

C2H 08H UOPS_RETIRED.FPDIV Counts the number of floating point divide uops retired. Precise Event

C2H 10H UOPS_RETIRED.IDIV Counts the number of integer divide uops retired. Precise Event

C3H 01H MACHINE_CLEARS.SMC Counts the number of times that the processor detects that a program
is writing to a code section and has to perform a machine clear because
of that modification. Self-modifying code (SMC) causes a severe penalty
in all Intel architecture processors.

C3H 02H MACHINE_CLEARS.MEM
ORY_ORDERING

Counts machine clears due to memory ordering issues. This occurs
when a snoop request happens and the machine is uncertain if memory
ordering will be preserved as another core is in the process of
modifying the data.

C3H 04H MACHINE_CLEARS.FP_A
SSIST

Counts machine clears due to floating-point (FP) operations needing
assists. For instance, if the result was a floating-point denormal, the
hardware clears the pipeline and reissues uops to produce the correct
IEEE compliant denormal result.

C3H 08H MACHINE_CLEARS.DISA
MBIGUATION

Counts machine clears due to memory disambiguation. Memory
disambiguation happens when a load which has been issued conflicts
with a previous un-retired store in the pipeline whose address was not
known at issue time, but is later resolved to be the same as the load
address.

C3H 00H MACHINE_CLEARS.ALL Counts machine clears for any reason.

C4H 00H BR_INST_RETIRED.ALL_
BRANCHES

Counts branch instructions retired for all branch types. This is an
architectural performance event.

Precise Event

C4H 7EH BR_INST_RETIRED.JCC Counts retired Jcc (Jump on Conditional Code/Jump if Condition is Met)
branch instructions retired, including both when the branch was taken
and when it was not taken.

Precise Event

C4H 80H BR_INST_RETIRED.ALL_
TAKEN_BRANCHES

Counts the number of taken branch instructions retired. Precise Event

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Counts Jcc (Jump on Conditional Code/Jump if Condition is Met) branch
instructions retired that were taken and does not count when the Jcc
branch instruction were not taken.

Precise Event

C4H F9H BR_INST_RETIRED.CALL Counts near CALL branch instructions retired. Precise Event

C4H FDH BR_INST_RETIRED.REL_
CALL

Counts near relative CALL branch instructions retired. Precise Event

C4H FBH BR_INST_RETIRED.IND_
CALL

Counts near indirect CALL branch instructions retired. Precise Event

C4H F7H BR_INST_RETIRED.RET
URN

Counts near return branch instructions retired. Precise Event

C4H EBH BR_INST_RETIRED.NON
_RETURN_IND

Counts near indirect call or near indirect jmp branch instructions retired. Precise Event

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Counts far branch instructions retired. This includes far jump, far call
and return, and Interrupt call and return.

Precise Event

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Counts mispredicted branch instructions retired including all branch
types.

Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-173

PERFORMANCE MONITORING EVENTS

C5H 7EH BR_MISP_RETIRED.JCC Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if
Condition is Met) branch instructions retired, including both when the
branch was supposed to be taken and when it was not supposed to be
taken (but the processor predicted the opposite condition).

Precise Event

C5H FEH BR_MISP_RETIRED.TAK
EN_JCC

Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if
Condition is Met) branch instructions retired that were supposed to be
taken but the processor predicted that it would not be taken.

Precise Event

C5H FBH BR_MISP_RETIRED.IND_
CALL

Counts mispredicted near indirect CALL branch instructions retired,
where the target address taken was not what the processor predicted.

Precise Event

C5H F7H BR_MISP_RETIRED.RET
URN

Counts mispredicted near RET branch instructions retired, where the
return address taken was not what the processor predicted.

Precise Event

C5H EBH BR_MISP_RETIRED.NON
_RETURN_IND

Counts mispredicted branch instructions retired that were near indirect
call or near indirect jmp, where the target address taken was not what
the processor predicted.

Precise Event

CAH 01H ISSUE_SLOTS_NOT_CO
NSUMED.RESOURCE_FU
LL

Counts the number of issue slots per core cycle that were not
consumed because of a full resource in the back end. Including but not
limited to resources include the Re-order Buffer (ROB), reservation
stations (RS), load/store buffers, physical registers, or any other
needed machine resource that is currently unavailable. Note that uops
must be available for consumption in order for this event to fire. If a
uop is not available (Instruction Queue is empty), this event will not
count.

CAH 02H ISSUE_SLOTS_NOT_CO
NSUMED.RECOVERY

Counts the number of issue slots per core cycle that were not
consumed by the back end because allocation is stalled waiting for a
mispredicted jump to retire or other branch-like conditions (e.g. the
event is relevant during certain microcode flows). Counts all issue slots
blocked while within this window, including slots where uops were not
available in the Instruction Queue.

CAH 00H ISSUE_SLOTS_NOT_CO
NSUMED.ANY

Counts the number of issue slots per core cycle that were not
consumed by the back end due to either a full resource in the back end
(RESOURCE_FULL), or due to the processor recovering from some
event (RECOVERY).

CBH 01H HW_INTERRUPTS.RECEI
VED

Counts hardware interrupts received by the processor.

CBH 02H HW_INTERRUPTS.MASK
ED

Counts the number of core cycles during which interrupts are masked
(disabled). Increments by 1 each core cycle that EFLAGS.IF is 0,
regardless of whether interrupts are pending or not.

CBH 04H HW_INTERRUPTS.PENDI
NG_AND_MASKED

Counts core cycles during which there are pending interrupts, but
interrupts are masked (EFLAGS.IF = 0).

CDH 00H CYCLES_DIV_BUSY.ALL Counts core cycles if either divide unit is busy.

CDH 01H CYCLES_DIV_BUSY.IDIV Counts core cycles if the integer divide unit is busy.

CDH 02H CYCLES_DIV_BUSY.FPDI
V

Counts core cycles if the floating point divide unit is busy.

D0H 81H MEM_UOPS_RETIRED.A
LL_LOADS

Counts the number of load uops retired. Precise Event

D0H 82H MEM_UOPS_RETIRED.A
LL_STORES

Counts the number of store uops retired. Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-174 Vol. 3B

PERFORMANCE MONITORING EVENTS

D0H 83H MEM_UOPS_RETIRED.A
LL

Counts the number of memory uops retired that are either a load or a
store or both.

Precise Event

D0H 11H MEM_UOPS_RETIRED.D
TLB_MISS_LOADS

Counts load uops retired that caused a DTLB miss. Precise Event

D0H 12H MEM_UOPS_RETIRED.D
TLB_MISS_STORES

Counts store uops retired that caused a DTLB miss. Precise Event

D0H 13H MEM_UOPS_RETIRED.D
TLB_MISS

Counts uops retired that had a DTLB miss on load, store or either.

Note that when two distinct memory operations to the same page miss
the DTLB, only one of them will be recorded as a DTLB miss.

Precise Event

D0H 21H MEM_UOPS_RETIRED.L
OCK_LOADS

Counts locked memory uops retired. This includes 'regular' locks and
bus locks. To specifically count bus locks only, see the offcore response
event. A locked access is one with a lock prefix, or an exchange to
memory.

Precise Event

D0H 41H MEM_UOPS_RETIRED.S
PLIT_LOADS

Counts load uops retired where the data requested spans a 64 byte
cache line boundary.

Precise Event

D0H 42H MEM_UOPS_RETIRED.S
PLIT_STORES

Counts store uops retired where the data requested spans a 64 byte
cache line boundary.

Precise Event

D0H 43H MEM_UOPS_RETIRED.S
PLIT

Counts memory uops retired where the data requested spans a 64
byte cache line boundary.

Precise Event

D1H 01H MEM_LOAD_UOPS_RETI
RED.L1_HIT

Counts load uops retired that hit the L1 data cache. Precise Event

D1H 08H MEM_LOAD_UOPS_RETI
RED.L1_MISS

Counts load uops retired that miss the L1 data cache. Precise Event

D1H 02H MEM_LOAD_UOPS_RETI
RED.L2_HIT

Counts load uops retired that hit in the L2 cache. Precise Event

0xD1H 10H MEM_LOAD_UOPS_RETI
RED.L2_MISS

Counts load uops retired that miss in the L2 cache. Precise Event

D1H 20H MEM_LOAD_UOPS_RETI
RED.HITM

Counts load uops retired where the cache line containing the data was
in the modified state of another core or modules cache (HITM). More
specifically, this means that when the load address was checked by
other caching agents (typically another processor) in the system, one
of those caching agents indicated that they had a dirty copy of the
data. Loads that obtain a HITM response incur greater latency than
most that is typical for a load. In addition, since HITM indicates that
some other processor had this data in its cache, it implies that the data
was shared between processors, or potentially was a lock or
semaphore value. This event is useful for locating sharing, false
sharing, and contended locks.

Precise Event

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

Vol. 3B 19-175

PERFORMANCE MONITORING EVENTS

19.15 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance monitoring events
listed in Table 19-1 and fixed-function performance events using fixed counter. In addition, they also support the
following model-specific performance monitoring events listed in Table 19-28. These processors have the CPUID
signatures of 06_37H, 06_4AH, 06_4DH, 06_5AH, and 06_5DH.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Intel® Xeon®
processor 5500 Series,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

D1H 40H MEM_LOAD_UOPS_RETI
RED.WCB_HIT

Counts memory load uops retired where the data is retrieved from the
WCB (or fill buffer), indicating that the load found its data while that
data was in the process of being brought into the L1 cache. Typically a
load will receive this indication when some other load or prefetch
missed the L1 cache and was in the process of retrieving the cache line
containing the data, but that process had not yet finished (and written
the data back to the cache). For example, consider load X and Y, both
referencing the same cache line that is not in the L1 cache. If load X
misses cache first, it obtains and WCB (or fill buffer) begins the process
of requesting the data. When load Y requests the data, it will either hit
the WCB, or the L1 cache, depending on exactly what time the request
to Y occurs.

Precise Event

D1H 80H MEM_LOAD_UOPS_RETI
RED.DRAM_HIT

Counts memory load uops retired where the data is retrieved from
DRAM. Event is counted at retirement, so the speculative loads are
ignored. A memory load can hit (or miss) the L1 cache, hit (or miss) the
L2 cache, hit DRAM, hit in the WCB or receive a HITM response.

Precise Event

E6H 01H BACLEARS.ALL Counts the number of times a BACLEAR is signaled for any reason,
including, but not limited to indirect branch/call, Jcc (Jump on Conditional
Code/Jump if Condition is Met) branch, unconditional branch/call, and
returns.

E6H 08H BACLEARS.RETURN Counts BACLEARS on return instructions.

E6H 10H BACLEARS.COND Counts BACLEARS on Jcc (Jump on Conditional Code/Jump if Condition is
Met) branches.

E7H 01H MS_DECODED.MS_ENTR
Y

Counts the number of times the Microcode Sequencer (MS) starts a
flow of uops from the MSROM. It does not count every time a uop is
read from the MSROM. The most common case that this counts is when
a micro-coded instruction is encountered by the front end of the
machine. Other cases include when an instruction encounters a fault,
trap, or microcode assist of any sort that initiates a flow of uops. The
event will count MS startups for uops that are speculative, and
subsequently cleared by branch mispredict or a machine clear.

E9H 01H DECODE_RESTRICTION.
PREDECODE_WRONG

Counts the number of times the prediction (from the pre-decode cache)
for instruction length is incorrect.

Table 19-27. Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment

19-176 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

03H 01H REHABQ.LD_BLOCK_S
T_FORWARD

Loads blocked due to
store forward
restriction.

This event counts the number of retired loads that were
prohibited from receiving forwarded data from the store
because of address mismatch.

03H 02H REHABQ.LD_BLOCK_S
TD_NOTREADY

Loads blocked due to
store data not ready.

This event counts the cases where a forward was technically
possible, but did not occur because the store data was not
available at the right time.

03H 04H REHABQ.ST_SPLITS Store uops that split
cache line boundary.

This event counts the number of retire stores that experienced
cache line boundary splits.

03H 08H REHABQ.LD_SPLITS Load uops that split
cache line boundary.

This event counts the number of retire loads that experienced
cache line boundary splits.

03H 10H REHABQ.LOCK Uops with lock
semantics.

This event counts the number of retired memory operations
with lock semantics. These are either implicit locked instructions
such as the XCHG instruction or instructions with an explicit
LOCK prefix (F0H).

03H 20H REHABQ.STA_FULL Store address buffer
full.

This event counts the number of retired stores that are delayed
because there is not a store address buffer available.

03H 40H REHABQ.ANY_LD Any reissued load uops. This event counts the number of load uops reissued from
Rehabq.

03H 80H REHABQ.ANY_ST Any reissued store
uops.

This event counts the number of store uops reissued from
Rehabq.

04H 01H MEM_UOPS_RETIRED.L
1_MISS_LOADS

Loads retired that
missed L1 data cache.

This event counts the number of load ops retired that miss in L1
Data cache. Note that prefetch misses will not be counted.

04H 02H MEM_UOPS_RETIRED.L
2_HIT_LOADS

Loads retired that hit
L2.

This event counts the number of load micro-ops retired that hit
L2.

04H 04H MEM_UOPS_RETIRED.L
2_MISS_LOADS

Loads retired that
missed L2.

This event counts the number of load micro-ops retired that
missed L2.

04H 08H MEM_UOPS_RETIRED.
DTLB_MISS_LOADS

Loads missed DTLB. This event counts the number of load ops retired that had DTLB
miss.

04H 10H MEM_UOPS_RETIRED.
UTLB_MISS

Loads missed UTLB. This event counts the number of load ops retired that had UTLB
miss.

04H 20H MEM_UOPS_RETIRED.
HITM

Cross core or cross
module hitm.

This event counts the number of load ops retired that got data
from the other core or from the other module.

04H 40H MEM_UOPS_RETIRED.
ALL_LOADS

All Loads. This event counts the number of load ops retired.

04H 80H MEM_UOP_RETIRED.A
LL_STORES

All Stores. This event counts the number of store ops retired.

05H 01H PAGE_WALKS.D_SIDE_
CYCLES

Duration of D-side
page-walks in core
cycles.

This event counts every cycle when a D-side (walks due to a
load) page walk is in progress. Page walk duration divided by
number of page walks is the average duration of page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 02H PAGE_WALKS.I_SIDE_C
YCLES

Duration of I-side page-
walks in core cycles.

This event counts every cycle when an I-side (walks due to an
instruction fetch) page walk is in progress. Page walk duration
divided by number of page walks is the average duration of
page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

Vol. 3B 19-177

PERFORMANCE MONITORING EVENTS

05H 03H PAGE_WALKS.WALKS Total number of page-
walks that are
completed (I-side and
D-side).

This event counts when a data (D) page walk or an instruction (I)
page walk is completed or started. Since a page walk implies a
TLB miss, the number of TLB misses can be counted by counting
the number of pagewalks.

Edge trigger bit must be set. Clear Edge to count the number of
cycles.

2EH 41H LONGEST_LAT_CACHE.
MISS

L2 cache request
misses.

This event counts the total number of L2 cache references and
the number of L2 cache misses respectively.

L3 is not supported in Silvermont microarchitecture.

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

L2 cache requests
from this core.

This event counts requests originating from the core that
references a cache line in the L2 cache.

L3 is not supported in Silvermont microarchitecture.

30H 00H L2_REJECT_XQ.ALL Counts the number of
request from the L2
that were not accepted
into the XQ.

This event counts the number of demand and prefetch
transactions that the L2 XQ rejects due to a full or near full
condition which likely indicates back pressure from the IDI link.
The XQ may reject transactions from the L2Q (non-cacheable
requests), BBS (L2 misses) and WOB (L2 write-back victims).

31H 00H CORE_REJECT_L2Q.ALL Counts the number of
request that were not
accepted into the L2Q
because the L2Q is
FULL.

This event counts the number of demand and L1 prefetcher
requests rejected by the L2Q due to a full or nearly full condition
which likely indicates back pressure from L2Q. It also counts
requests that would have gone directly to the XQ, but are
rejected due to a full or nearly full condition, indicating back
pressure from the IDI link. The L2Q may also reject transactions
from a core to insure fairness between cores, or to delay a core's
dirty eviction when the address conflicts incoming external
snoops. (Note that L2 prefetcher requests that are dropped are
not counted by this event.).

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction. In mobile systems the core frequency may
change from time to time. For this reason this event may have a
changing ratio with regards to time.

N/A N/A CPU_CLK_UNHALTED.C
ORE

Core cycles when core
is not halted.

This uses the fixed counter 1 to count the same condition as
CPU_CLK_UNHALTED.CORE_P does.

3CH 01H CPU_CLK_UNHALTED.R
EF_P

Bus cycles when core is
not halted.

This event counts the number of bus cycles that the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction.

In mobile systems the core frequency may change from time.
This event is not affected by core frequency changes.

N/A N/A CPU_CLK_UNHALTED.R
EF_TSC

Reference cycles when
core is not halted.

This event counts the number of reference cycles at a TSC rate
that the core is not in a halt state. The core enters the halt state
when it is running the HLT instruction.

In mobile systems the core frequency may change from time.

This event is not affected by core frequency changes.

80H 01H ICACHE.HIT Instruction fetches
from Icache.

This event counts all instruction fetches from the instruction
cache.

80H 02H ICACHE.MISSES Icache miss. This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-178 Vol. 3B

PERFORMANCE MONITORING EVENTS

80H 03H ICACHE.ACCESSES Instruction fetches. This event counts all instruction fetches, including uncacheable
fetches.

B7H 01H OFFCORE_RESPONSE_
0

See Section 18.5.2.2. Requires MSR_OFFCORE_RESP0 to specify request type and
response.

B7H 02H OFFCORE_RESPONSE_
1

See Section 18.5.2.2. Requires MSR_OFFCORE_RESP1 to specify request type and
response.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(PEBS supported with
IA32_PMC0).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

N/A N/A INST_RETIRED.ANY Instructions retired. This uses the fixed counter 0 to count the same condition as
INST_RETIRED.ANY_P does.

C2H 01H UOPS_RETIRED.MS MSROM micro-ops
retired.

This event counts the number of micro-ops retired that were
supplied from MSROM.

C2H 10H UOPS_RETIRED.ALL Micro-ops retired. This event counts the number of micro-ops retired.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected.

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in all
Intel® architecture processors.

C3H 02H MACHINE_CLEARS.ME
MORY_ORDERING

Stalls due to Memory
ordering.

This event counts the number of times that pipeline was cleared
due to memory ordering issues.

C3H 04H MACHINE_CLEARS.FP_
ASSIST

Stalls due to FP assists. This event counts the number of times that pipeline stalled due
to FP operations needing assists.

C3H 08H MACHINE_CLEARS.ALL Stalls due to any
causes.

This event counts the number of times that pipeline stalled due
to due to any causes (including SMC, MO, FP assist, etc.).

C4H 00H BR_INST_RETIRED.ALL
_BRANCHES

Retired branch
instructions.

This event counts the number of branch instructions retired.

C4H 7EH BR_INST_RETIRED.JCC Retired branch
instructions that were
conditional jumps.

This event counts the number of branch instructions retired that
were conditional jumps.

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Retired far branch
instructions.

This event counts the number of far branch instructions retired.

C4H EBH BR_INST_RETIRED.NO
N_RETURN_IND

Retired instructions of
near indirect Jmp or
call.

This event counts the number of branch instructions retired that
were near indirect call or near indirect jmp.

C4H F7H BR_INST_RETIRED.RET
URN

Retired near return
instructions.

This event counts the number of near RET branch instructions
retired.

C4H F9H BR_INST_RETIRED.CAL
L

Retired near call
instructions.

This event counts the number of near CALL branch instructions
retired.

C4H FBH BR_INST_RETIRED.IND
_CALL

Retired near indirect
call instructions.

This event counts the number of near indirect CALL branch
instructions retired.

C4H FDH BR_INST_RETIRED.REL
_CALL

Retired near relative
call instructions.

This event counts the number of near relative CALL branch
instructions retired.

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Retired conditional
jumps that were taken.

This event counts the number of branch instructions retired that
were conditional jumps and taken.

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Retired mispredicted
branch instructions.

This event counts the number of mispredicted branch
instructions retired.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-179

PERFORMANCE MONITORING EVENTS

C5H 7EH BR_MISP_RETIRED.JCC Retired mispredicted
conditional jumps.

This event counts the number of mispredicted branch
instructions retired that were conditional jumps.

C5H BFH BR_MISP_RETIRED.FA
R

Retired mispredicted
far branch instructions.

This event counts the number of mispredicted far branch
instructions retired.

C5H EBH BR_MISP_RETIRED.NO
N_RETURN_IND

Retired mispredicted
instructions of near
indirect Jmp or call.

This event counts the number of mispredicted branch
instructions retired that were near indirect call or near indirect
jmp.

C5H F7H BR_MISP_RETIRED.RE
TURN

Retired mispredicted
near return
instructions.

This event counts the number of mispredicted near RET branch
instructions retired.

C5H F9H BR_MISP_RETIRED.CAL
L

Retired mispredicted
near call instructions.

This event counts the number of mispredicted near CALL branch
instructions retired.

C5H FBH BR_MISP_RETIRED.IND
_CALL

Retired mispredicted
near indirect call
instructions.

This event counts the number of mispredicted near indirect CALL
branch instructions retired.

C5H FDH BR_MISP_RETIRED.REL
_CALL

Retired mispredicted
near relative call
instructions

This event counts the number of mispredicted near relative CALL
branch instructions retired.

C5H FEH BR_MISP_RETIRED.TA
KEN_JCC

Retired mispredicted
conditional jumps that
were taken.

This event counts the number of mispredicted branch
instructions retired that were conditional jumps and taken.

CAH 01H NO_ALLOC_CYCLES.RO
B_FULL

Counts the number of
cycles when no uops
are allocated and the
ROB is full (less than 2
entries available).

Counts the number of cycles when no uops are allocated and the
ROB is full (less than 2 entries available).

CAH 20H NO_ALLOC_CYCLES.RA
T_STALL

Counts the number of
cycles when no uops
are allocated and a
RATstall is asserted.

Counts the number of cycles when no uops are allocated and a
RATstall is asserted.

CAH 3FH NO_ALLOC_CYCLES.AL
L

Front end not
delivering.

This event counts the number of cycles when the front end does
not provide any instructions to be allocated for any reason.

CAH 50H NO_ALLOC_CYCLES.NO
T_DELIVERED

Front end not
delivering back end not
stalled.

This event counts the number of cycles when the front end does
not provide any instructions to be allocated but the back end is
not stalled.

CBH 01H RS_FULL_STALL.MEC MEC RS full. This event counts the number of cycles the allocation pipe line
stalled due to the RS for the MEC cluster is full.

CBH 1FH RS_FULL_STALL.ALL Any RS full. This event counts the number of cycles that the allocation pipe
line stalled due to any one of the RS is full.

CDH 01H CYCLES_DIV_BUSY.AN
Y

Divider Busy. This event counts the number of cycles the divider is busy.

E6H 01H BACLEARS.ALL BACLEARS asserted for
any branch.

This event counts the number of baclears for any type of branch.

E6H 08H BACLEARS.RETURN BACLEARS asserted for
return branch.

This event counts the number of baclears for return branches.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-180 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.15.1 Performance Monitoring Events for Processors Based on the Airmont
Microarchitecture

Intel processors based on the Airmont microarchitecture support the same architectural and the model-specific
performance monitoring events as processors based on the Silvermont microarchitecture. All of the events listed
in Table 19-28 apply. These processors have the CPUID signatures that include 06_4CH.

19.16 PERFORMANCE MONITORING EVENTS FOR 45 NM AND 32 NM
INTEL® ATOM™ PROCESSORS

45 nm and 32 nm processors based on the Intel® Atom™ microarchitecture support the architectural performance
monitoring events listed in Table 19-1 and fixed-function performance events using fixed counter listed in Table
19-24. In addition, they also support the following model-specific performance monitoring events listed in Table
19-29.

E6H 10H BACLEARS.COND BACLEARS asserted for
conditional branch.

This event counts the number of baclears for conditional
branches.

E7H 01H MS_DECODED.MS_ENT
RY

MS Decode starts. This event counts the number of times the MSROM starts a flow
of UOPS.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWARDS.GO
OD

Good store forwards. This event counts the number of times store data was
forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of segment
register loads.

This event counts the number of segment register load
operations. Instructions that load new values into segment
registers cause a penalty. This event indicates performance
issues in 16-bit code. If this event occurs frequently, it may be
useful to calculate the number of instructions retired per
segment register load. If the resulting calculation is low (on
average a small number of instructions are executed between
segment register loads), then the code’s segment register
usage should be optimized.

As a result of branch misprediction, this event is speculative and
may include segment register loads that do not actually occur.
However, most segment register loads are internally serialized
and such speculative effects are minimized.

07H 01H PREFETCH.PREFETCHT
0

Streaming SIMD
Extensions (SSE)
PrefetchT0
instructions executed.

This event counts the number of times the SSE instruction
prefetchT0 is executed. This instruction prefetches the data to
the L1 data cache and L2 cache.

07H 06H PREFETCH.SW_L2 Streaming SIMD
Extensions (SSE)
PrefetchT1 and
PrefetchT2
instructions executed.

This event counts the number of times the SSE instructions
prefetchT1 and prefetchT2 are executed. These instructions
prefetch the data to the L2 cache.

Table 19-28. Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-181

PERFORMANCE MONITORING EVENTS

07H 08H PREFETCH.PREFETCHN
TA

Streaming SIMD
Extensions (SSE)
Prefetch NTA
instructions executed.

This event counts the number of times the SSE instruction
prefetchNTA is executed. This instruction prefetches the data
to the L1 data cache.

08H 07H DATA_TLB_MISSES.DT
LB_MISS

Memory accesses that
missed the DTLB.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses. The count includes misses detected as a result
of speculative accesses. Typically a high count for this event
indicates that the code accesses a large number of data pages.

08H 05H DATA_TLB_MISSES.DT
LB_MISS_LD

DTLB misses due to
load operations.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses due to load operations. This count includes
misses detected as a result of speculative accesses.

08H 09H DATA_TLB_MISSES.L0
_DTLB_MISS_LD

L0_DTLB misses due to
load operations.

This event counts the number of L0_DTLB misses due to load
operations. This count includes misses detected as a result of
speculative accesses.

08H 06H DATA_TLB_MISSES.DT
LB_MISS_ST

DTLB misses due to
store operations.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses due to store operations. This count includes
misses detected as a result of speculative accesses.

0CH 03H PAGE_WALKS.WALKS Number of page-walks
executed.

This event counts the number of page-walks executed due to
either a DTLB or ITLB miss. The page walk duration,
PAGE_WALKS.CYCLES, divided by number of page walks is the
average duration of a page walk. This can hint to whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.CYCLES Duration of page-walks
in core cycles.

This event counts the duration of page-walks in core cycles. The
paging mode in use typically affects the duration of page walks.
Page walk duration divided by number of page walks is the
average duration of page-walks. This can hint at whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be cleared.

10H 01H X87_COMP_OPS_EXE.
ANY.S

Floating point
computational micro-
ops executed.

This event counts the number of x87 floating point
computational micro-ops executed.

10H 81H X87_COMP_OPS_EXE.
ANY.AR

Floating point
computational micro-
ops retired.

This event counts the number of x87 floating point
computational micro-ops retired.

11H 01H FP_ASSIST Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases.

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory.

2. Division by 0.

3. Underflow output.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-182 Vol. 3B

PERFORMANCE MONITORING EVENTS

11H 81H FP_ASSIST.AR Floating point assists. This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases.

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory.

2. Division by 0.

3. Underflow output.

12H 01H MUL.S Multiply operations
executed.

This event counts the number of multiply operations executed.
This includes integer as well as floating point multiply
operations.

12H 81H MUL.AR Multiply operations
retired.

This event counts the number of multiply operations retired.
This includes integer as well as floating point multiply
operations.

13H 01H DIV.S Divide operations
executed.

This event counts the number of divide operations executed.
This includes integer divides, floating point divides and square-
root operations executed.

13H 81H DIV.AR Divide operations
retired.

This event counts the number of divide operations retired. This
includes integer divides, floating point divides and square-root
operations executed.

14H 01H CYCLES_DIV_BUSY Cycles the driver is
busy.

This event counts the number of cycles the divider is busy
executing divide or square root operations. The divide can be
integer, X87 or Streaming SIMD Extensions (SSE). The square
root operation can be either X87 or SSE.

21H See
Table
18-61

L2_ADS Cycles L2 address bus
is in use.

This event counts the number of cycles the L2 address bus is
being used for accesses to the L2 cache or bus queue.

This event can count occurrences for this core or both cores.

22H See
Table
18-61

L2_DBUS_BUSY Cycles the L2 cache
data bus is busy.

This event counts core cycles during which the L2 cache data
bus is busy transferring data from the L2 cache to the core. It
counts for all L1 cache misses (data and instruction) that hit the
L2 cache. The count will increment by two for a full cache-line
request.

24H See
Table
18-61
and
Table
18-63

L2_LINES_IN L2 cache misses. This event counts the number of cache lines allocated in the L2
cache. Cache lines are allocated in the L2 cache as a result of
requests from the L1 data and instruction caches and the L2
hardware prefetchers to cache lines that are missing in the L2
cache.

This event can count occurrences for this core or both cores.
This event can also count demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
18-61

L2_M_LINES_IN L2 cache line
modifications.

This event counts whenever a modified cache line is written
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-183

PERFORMANCE MONITORING EVENTS

26H See
Table
18-61
and
Table
18-63

L2_LINES_OUT L2 cache lines evicted. This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores.
This event can also count evictions due to demand requests and
L2 hardware prefetch requests together or separately.

27H See
Table
18-61
and
Table
18-63

L2_M_LINES_OUT Modified lines evicted
from the L2 cache.

This event counts the number of L2 modified cache lines
evicted. These lines are written back to memory unless they
also exist in a shared-state in one of the L1 data caches.

This event can count occurrences for this core or both cores.
This event can also count evictions due to demand requests and
L2 hardware prefetch requests together or separately.

28H See
Table
18-61
and
Table
18-64

L2_IFETCH L2 cacheable
instruction fetch
requests.

This event counts the number of instruction cache line requests
from the ICache. It does not include fetch requests from
uncacheable memory. It does not include ITLB miss accesses.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

29H See
Table
18-61,
Table
18-63
and
Table
18-64

L2_LD L2 cache reads. This event counts L2 cache read requests coming from the L1
data cache and L2 prefetchers.

This event can count occurrences for this core or both cores.
This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests
together or separately.

- of accesses to cache lines at different MESI states.

2AH See
Table
18-61
and
Table
18-64

L2_ST L2 store requests. This event counts all store operations that miss the L1 data
cache and request the data from the L2 cache.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

2BH See
Table
18-61
and
Table
18-64

L2_LOCK L2 locked accesses. This event counts all locked accesses to cache lines that miss
the L1 data cache.

This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.

2EH See
Table
18-61,
Table
18-63
and
Table
18-64

L2_RQSTS L2 cache requests. This event counts all completed L2 cache requests. This
includes L1 data cache reads, writes, and locked accesses, L1
data prefetch requests, instruction fetches, and all L2 hardware
prefetch requests.

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests
together, or separately.

- of accesses to cache lines at different MESI states.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-184 Vol. 3B

PERFORMANCE MONITORING EVENTS

2EH 41H L2_RQSTS.SELF.DEMA
ND.I_STATE

L2 cache demand
requests from this core
that missed the L2.

This event counts all completed L2 cache demand requests
from this core that miss the L2 cache. This includes L1 data
cache reads, writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.DEMA
ND.MESI

L2 cache demand
requests from this
core.

This event counts all completed L2 cache demand requests
from this core. This includes L1 data cache reads, writes, and
locked accesses, L1 data prefetch requests, and instruction
fetches.

This is an architectural performance event.

30H See
Table
18-61,
Table
18-63
and
Table
18-64

L2_REJECT_BUSQ Rejected L2 cache
requests.

This event indicates that a pending L2 cache request that
requires a bus transaction is delayed from moving to the bus
queue. Some of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a cache line in the
same set.

The number of events is greater or equal to the number of
requests that were rejected.

- For this core or both cores.

- Due to demand requests and L2 hardware prefetch requests
together, or separately.

- Of accesses to cache lines at different MESI states.

32H See
Table
18-61

L2_NO_REQ Cycles no L2 cache
requests are pending.

This event counts the number of cycles that no L2 cache
requests are pending.

3AH 00H EIST_TRANS Number of Enhanced
Intel SpeedStep(R)
Technology (EIST)
transitions.

This event counts the number of Enhanced Intel SpeedStep(R)
Technology (EIST) transitions that include a frequency change,
either with or without VID change. This event is incremented
only while the counting core is in C0 state. In situations where
an EIST transition was caused by hardware as a result of CxE
state transitions, those EIST transitions will also be registered
in this event.

Enhanced Intel Speedstep Technology transitions are commonly
initiated by OS, but can be initiated by HW internally. For
example: CxE states are C-states (C1,C2,C3…) which not only
place the CPU into a sleep state by turning off the clock and
other components, but also lower the voltage (which reduces
the leakage power consumption). The same is true for thermal
throttling transition which uses Enhanced Intel Speedstep
Technology internally.

3BH C0H THERMAL_TRIP Number of thermal
trips.

This event counts the number of thermal trips. A thermal trip
occurs whenever the processor temperature exceeds the
thermal trip threshold temperature. Following a thermal trip,
the processor automatically reduces frequency and voltage.
The processor checks the temperature every millisecond, and
returns to normal when the temperature falls below the
thermal trip threshold temperature.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-185

PERFORMANCE MONITORING EVENTS

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core is
not in a halt state. The core enters the halt state when it is
running the HLT instruction. This event is a component in many
key event ratios.

In mobile systems the core frequency may change from time to
time. For this reason this event may have a changing ratio with
regards to time. In systems with a constant core frequency, this
event can give you a measurement of the elapsed time while
the core was not in halt state by dividing the event count by the
core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is counted by a
programmable counter.

- The event CPU_CLK_UNHALTED.CORE is counted by a
designated fixed counter, leaving the two programmable
counters available for other events.

3CH 01H CPU_CLK_UNHALTED.B
US

Bus cycles when core is
not halted.

This event counts the number of bus cycles while the core is not
in the halt state. This event can give you a measurement of the
elapsed time while the core was not in the halt state, by
dividing the event count by the bus frequency. The core enters
the halt state when it is running the HLT instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the maximum bus to
processor frequency ratio.

Non-halted bus cycles are a component in many key event
ratios.

3CH 02H CPU_CLK_UNHALTED.
NO_OTHER

Bus cycles when core is
active and the other is
halted.

This event counts the number of bus cycles during which the
core remains non-halted, and the other core on the processor is
halted.

This event can be used to determine the amount of parallelism
exploited by an application or a system. Divide this event count
by the bus frequency to determine the amount of time that
only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable Data
Reads.

This event counts the number of data reads from cacheable
memory.

40H 22H L1D_CACHE.ST L1 Cacheable Data
Writes.

This event counts the number of data writes to cacheable
memory.

60H See
Table
18-61
and
Table
18-62.

BUS_REQUEST_OUTST
ANDING

Outstanding cacheable
data read bus requests
duration.

This event counts the number of pending full cache line read
transactions on the bus occurring in each cycle. A read
transaction is pending from the cycle it is sent on the bus until
the full cache line is received by the processor. NOTE: This
event is thread-independent and will not provide a count per
logical processor when AnyThr is disabled.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-186 Vol. 3B

PERFORMANCE MONITORING EVENTS

61H See
Table
18-62.

BUS_BNR_DRV Number of Bus Not
Ready signals asserted.

This event counts the number of Bus Not Ready (BNR) signals
that the processor asserts on the bus to suspend additional bus
requests by other bus agents. A bus agent asserts the BNR
signal when the number of data and snoop transactions is close
to the maximum that the bus can handle.

While this signal is asserted, new transactions cannot be
submitted on the bus. As a result, transaction latency may have
higher impact on program performance. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.

62H See
Table
18-62.

BUS_DRDY_CLOCKS Bus cycles when data
is sent on the bus.

This event counts the number of bus cycles during which the
DRDY (Data Ready) signal is asserted on the bus. The DRDY
signal is asserted when data is sent on the bus.

This event counts the number of bus cycles during which this
agent (the processor) writes data on the bus back to memory or
to other bus agents. This includes all explicit and implicit data
writebacks, as well as partial writes.
Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

63H See
Table
18-61
and
Table
18-62.

BUS_LOCK_CLOCKS Bus cycles when a
LOCK signal is asserted.

This event counts the number of bus cycles, during which the
LOCK signal is asserted on the bus. A LOCK signal is asserted
when there is a locked memory access, due to:

- Uncacheable memory.

- Locked operation that spans two cache lines.

- Page-walk from an uncacheable page table.

Bus locks have a very high performance penalty and it is highly
recommended to avoid such accesses. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.

64H See
Table
18-61.

BUS_DATA_RCV Bus cycles while
processor receives
data.

This event counts the number of cycles during which the
processor is busy receiving data. NOTE: This event is thread-
independent and will not provide a count per logical processor
when AnyThr is disabled.

65H See
Table
18-61
and
Table
18-62.

BUS_TRANS_BRD Burst read bus
transactions.

This event counts the number of burst read transactions
including:

- L1 data cache read misses (and L1 data cache hardware
prefetches).

- L2 hardware prefetches by the DPL and L2 streamer.

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See
Table
18-61
and
Table
18-62.

BUS_TRANS_RFO RFO bus transactions. This event counts the number of Read For Ownership (RFO) bus
transactions, due to store operations that miss the L1 data
cache and the L2 cache. This event also counts RFO bus
transactions due to locked operations.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-187

PERFORMANCE MONITORING EVENTS

67H See
Table
18-61
and
Table
18-62.

BUS_TRANS_WB Explicit writeback bus
transactions.

This event counts all explicit writeback bus transactions due to
dirty line evictions. It does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
18-61
and
Table
18-62.

BUS_TRANS_IFETCH Instruction-fetch bus
transactions.

This event counts all instruction fetch full cache line bus
transactions.

69H See
Table
18-61
and
Table
18-62.

BUS_TRANS_INVAL Invalidate bus
transactions.

This event counts all invalidate transactions. Invalidate
transactions are generated when:

- A store operation hits a shared line in the L2 cache.

- A full cache line write misses the L2 cache or hits a shared line
in the L2 cache.

6AH See
Table
18-61
and
Table
18-62.

BUS_TRANS_PWR Partial write bus
transaction.

This event counts partial write bus transactions.

6BH See
Table
18-61
and
Table
18-62.

BUS_TRANS_P Partial bus
transactions.

This event counts all (read and write) partial bus transactions.

6CH See
Table
18-61
and
Table
18-62.

BUS_TRANS_IO IO bus transactions. This event counts the number of completed I/O bus
transactions as a result of IN and OUT instructions. The count
does not include memory mapped IO.

6DH See
Table
18-61
and
Table
18-62.

BUS_TRANS_DEF Deferred bus
transactions.

This event counts the number of deferred transactions.

6EH See
Table
18-61
and
Table
18-62.

BUS_TRANS_BURST Burst (full cache-line)
bus transactions.

This event counts burst (full cache line) transactions including:

- Burst reads.

- RFOs.

- Explicit writebacks.

- Write combine lines.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-188 Vol. 3B

PERFORMANCE MONITORING EVENTS

6FH See
Table
18-61
and
Table
18-62.

BUS_TRANS_MEM Memory bus
transactions.

This event counts all memory bus transactions including:

- Burst transactions.

- Partial reads and writes.

- Invalidate transactions.

The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_INVAL.

70H See
Table
18-61
and
Table
18-62.

BUS_TRANS_ANY All bus transactions. This event counts all bus transactions. This includes:

- Memory transactions.

- IO transactions (non memory-mapped).

- Deferred transaction completion.

- Other less frequent transactions, such as interrupts.

77H See
Table
18-61
and
Table
18-64.

EXT_SNOOP External snoops. This event counts the snoop responses to bus transactions.
Responses can be counted separately by type and by bus agent.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7AH See
Table
18-62.

BUS_HIT_DRV HIT signal asserted. This event counts the number of bus cycles during which the
processor drives the HIT# pin to signal HIT snoop response.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7BH See
Table
18-62.

BUS_HITM_DRV HITM signal asserted. This event counts the number of bus cycles during which the
processor drives the HITM# pin to signal HITM snoop response.
NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7DH See
Table
18-61.

BUSQ_EMPTY Bus queue is empty. This event counts the number of cycles during which the core
did not have any pending transactions in the bus queue.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7EH See
Table
18-61
and
Table
18-62.

SNOOP_STALL_DRV Bus stalled for snoops. This event counts the number of times that the bus snoop stall
signal is asserted. During the snoop stall cycles no new bus
transactions requiring a snoop response can be initiated on the
bus.

Note: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.

7FH See
Table
18-61.

BUS_IO_WAIT IO requests waiting in
the bus queue.

This event counts the number of core cycles during which IO
requests wait in the bus queue. This event counts IO requests
from the core.

80H 03H ICACHE.ACCESSES Instruction fetches. This event counts all instruction fetches, including uncacheable
fetches.

80H 02H ICACHE.MISSES Icache miss. This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

82H 04H ITLB.FLUSH ITLB flushes. This event counts the number of ITLB flushes.

82H 02H ITLB.MISSES ITLB misses. This event counts the number of instruction fetches that miss
the ITLB.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-189

PERFORMANCE MONITORING EVENTS

AAH 02H MACRO_INSTS.CISC_DE
CODED

CISC macro instructions
decoded.

This event counts the number of complex instructions decoded,
but not necessarily executed or retired. Only one complex
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.ALL_DE
CODED

All Instructions
decoded.

This event counts the number of instructions decoded.

B0H 00H SIMD_UOPS_EXEC.S SIMD micro-ops
executed (excluding
stores).

This event counts all the SIMD micro-ops executed. This event
does not count MOVQ and MOVD stores from register to
memory.

B0H 80H SIMD_UOPS_EXEC.AR SIMD micro-ops retired
(excluding stores).

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B1H 00H SIMD_SAT_UOP_EXEC.
S

SIMD saturated
arithmetic micro-ops
executed.

This event counts the number of SIMD saturated arithmetic
micro-ops executed.

B1H 80H SIMD_SAT_UOP_EXEC.
AR

SIMD saturated
arithmetic micro-ops
retired.

This event counts the number of SIMD saturated arithmetic
micro-ops retired.

B3H 01H SIMD_UOP_TYPE_EXE
C.MUL.S

SIMD packed multiply
micro-ops executed.

This event counts the number of SIMD packed multiply micro-
ops executed.

B3H 81H SIMD_UOP_TYPE_EXE
C.MUL.AR

SIMD packed multiply
micro-ops retired.

This event counts the number of SIMD packed multiply micro-
ops retired.

B3H 02H SIMD_UOP_TYPE_EXE
C.SHIFT.S

SIMD packed shift
micro-ops executed.

This event counts the number of SIMD packed shift micro-ops
executed.

B3H 82H SIMD_UOP_TYPE_EXE
C.SHIFT.AR

SIMD packed shift
micro-ops retired.

This event counts the number of SIMD packed shift micro-ops
retired.

B3H 04H SIMD_UOP_TYPE_EXE
C.PACK.S

SIMD pack micro-ops
executed.

This event counts the number of SIMD pack micro-ops executed.

B3H 84H SIMD_UOP_TYPE_EXE
C.PACK.AR

SIMD pack micro-ops
retired.

This event counts the number of SIMD pack micro-ops retired.

B3H 08H SIMD_UOP_TYPE_EXE
C.UNPACK.S

SIMD unpack micro-ops
executed.

This event counts the number of SIMD unpack micro-ops
executed.

B3H 88H SIMD_UOP_TYPE_EXE
C.UNPACK.AR

SIMD unpack micro-ops
retired.

This event counts the number of SIMD unpack micro-ops retired.

B3H 10H SIMD_UOP_TYPE_EXE
C.LOGICAL.S

SIMD packed logical
micro-ops executed.

This event counts the number of SIMD packed logical micro-ops
executed.

B3H 90H SIMD_UOP_TYPE_EXE
C.LOGICAL.AR

SIMD packed logical
micro-ops retired.

This event counts the number of SIMD packed logical micro-ops
retired.

B3H 20H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.S

SIMD packed arithmetic
micro-ops executed.

This event counts the number of SIMD packed arithmetic micro-
ops executed.

B3H A0H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.AR

SIMD packed arithmetic
micro-ops retired.

This event counts the number of SIMD packed arithmetic micro-
ops retired.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(precise event).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-190 Vol. 3B

PERFORMANCE MONITORING EVENTS

N/A 00H INST_RETIRED.ANY Instructions retired. This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

C2H 10H UOPS_RETIRED.ANY Micro-ops retired. This event counts the number of micro-ops retired. The
processor decodes complex macro instructions into a sequence
of simpler micro-ops. Most instructions are composed of one or
two micro-ops. Some instructions are decoded into longer
sequences such as repeat instructions, floating point
transcendental instructions, and assists. In some cases micro-op
sequences are fused or whole instructions are fused into one
micro-op. See other UOPS_RETIRED events for differentiating
retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected.

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in
all Intel® architecture processors.

C4H 00H BR_INST_RETIRED.AN
Y

Retired branch
instructions.

This event counts the number of branch instructions retired.

This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRE
D_NOT_TAKEN

Retired branch
instructions that were
predicted not-taken.

This event counts the number of branch instructions retired
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MIS
PRED_NOT_TAKEN

Retired branch
instructions that were
mispredicted not-
taken.

This event counts the number of branch instructions retired
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRE
D_TAKEN

Retired branch
instructions that were
predicted taken.

This event counts the number of branch instructions retired
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MIS
PRED_TAKEN

Retired branch
instructions that were
mispredicted taken.

This event counts the number of branch instructions retired
that were mispredicted and taken.

C4H 0AH BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.

Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-191

PERFORMANCE MONITORING EVENTS

To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.

Tips:

- See the optimization guide for tips on reducing branch
mispredictions.

- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.

C4H 0CH BR_INST_RETIRED.TAK
EN

Retired taken branch
instructions.

This event counts the number of branches retired that were
taken.

C4H 0FH BR_INST_RETIRED.AN
Y1

Retired branch
instructions.

This event counts the number of branch instructions retired
that were mispredicted. This event is a duplicate of
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.

Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.

To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.

Tips:

- See the optimization guide for tips on reducing branch
mispredictions.

- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.

C6H 01H CYCLES_INT_MASKED.
CYCLES_INT_MASKED

Cycles during which
interrupts are disabled.

This event counts the number of cycles during which interrupts
are disabled.

C6H 02H CYCLES_INT_MASKED.
CYCLES_INT_PENDING
_AND_MASKED

Cycles during which
interrupts are pending
and disabled.

This event counts the number of cycles during which there are
pending interrupts but interrupts are disabled.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-192 Vol. 3B

PERFORMANCE MONITORING EVENTS

C7H 01H SIMD_INST_RETIRED.P
ACKED_SINGLE

Retired Streaming
SIMD Extensions (SSE)
packed-single
instructions.

This event counts the number of SSE packed-single instructions
retired.

C7H 02H SIMD_INST_RETIRED.S
CALAR_SINGLE

Retired Streaming
SIMD Extensions (SSE)
scalar-single
instructions.

This event counts the number of SSE scalar-single instructions
retired.

C7H 04H SIMD_INST_RETIRED.P
ACKED_DOUBLE

Retired Streaming
SIMD Extensions 2
(SSE2) packed-double
instructions.

This event counts the number of SSE2 packed-double
instructions retired.

C7H 08H SIMD_INST_RETIRED.S
CALAR_DOUBLE

Retired Streaming
SIMD Extensions 2
(SSE2) scalar-double
instructions.

This event counts the number of SSE2 scalar-double
instructions retired.

C7H 10H SIMD_INST_RETIRED.V
ECTOR

Retired Streaming
SIMD Extensions 2
(SSE2) vector
instructions.

This event counts the number of SSE2 vector instructions
retired.

C7H 1FH SIMD_INST_RETIRED.A
NY

Retired Streaming
SIMD instructions.

This event counts the overall number of SIMD instructions
retired. To count each type of SIMD instruction separately, use
the following events:

SIMD_INST_RETIRED.PACKED_SINGLE
SIMD_INST_RETIRED.SCALAR_SINGLE
SIMD_INST_RETIRED.PACKED_DOUBLE
SIMD_INST_RETIRED.SCALAR_DOUBLE
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware interrupts
received.

This event counts the number of hardware interrupts received
by the processor. This event will count twice for dual-pipe
micro-ops.

CAH 01H SIMD_COMP_INST_RET
IRED.PACKED_SINGLE

Retired computational
Streaming SIMD
Extensions (SSE)
packed-single
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_INST_RET
IRED.SCALAR_SINGLE

Retired computational
Streaming SIMD
Extensions (SSE)
scalar-single
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_INST_RET
IRED.PACKED_DOUBLE

Retired computational
Streaming SIMD
Extensions 2 (SSE2)
packed-double
instructions.

This event counts the number of computational SSE2 packed-
double instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

Vol. 3B 19-193

PERFORMANCE MONITORING EVENTS

CAH 08H SIMD_COMP_INST_RET
IRED.SCALAR_DOUBLE

Retired computational
Streaming SIMD
Extensions 2 (SSE2)
scalar-double
instructions.

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions perform
arithmetic computations, like add, multiply and divide.
Instructions that perform load and store operations or logical
operations, like XOR, OR, and AND are not counted by this
event.

CBH 01H MEM_LOAD_RETIRED.L
2_HIT

Retired loads that hit
the L2 cache (precise
event).

This event counts the number of retired load operations that
missed the L1 data cache and hit the L2 cache.

CBH 02H MEM_LOAD_RETIRED.L
2_MISS

Retired loads that miss
the L2 cache (precise
event).

This event counts the number of retired load operations that
missed the L2 cache.

CBH 04H MEM_LOAD_RETIRED.D
TLB_MISS

Retired loads that miss
the DTLB (precise
event).

This event counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load operation causes
a fault.

CDH 00H SIMD_ASSIST SIMD assists invoked. This event counts the number of SIMD assists invoked. SIMD
assists are invoked when an EMMS instruction is executed after
MMX™ technology code has changed the MMX state in the
floating point stack. For example, these assists are required in
the following cases.

Streaming SIMD Extensions (SSE) instructions:

1. Denormal input when the DAZ (Denormals Are Zeros) flag is
off.

2. Underflow result when the FTZ (Flush To Zero) flag is off.

CEH 00H SIMD_INSTR_RETIRED SIMD Instructions
retired.

This event counts the number of SIMD instructions that retired.

CFH 00H SIMD_SAT_INSTR_RETI
RED

Saturated arithmetic
instructions retired.

This event counts the number of saturated arithmetic SIMD
instructions that retired.

E0H 01H BR_INST_DECODED Branch instructions
decoded.

This event counts the number of branch instructions decoded.

E4H 01H BOGUS_BR Bogus branches. This event counts the number of byte sequences that were
mistakenly detected as taken branch instructions. This results
in a BACLEAR event and the BTB is flushed. This occurs mainly
after task switches.

E6H 01H BACLEARS.ANY BACLEARS asserted. This event counts the number of times the front end is
redirected for a branch prediction, mainly when an early branch
prediction is corrected by other branch handling mechanisms in
the front end. This can occur if the code has many branches
such that they cannot be consumed by the branch predictor.
Each Baclear asserted costs approximately 7 cycles. The effect
on total execution time depends on the surrounding code.

Table 19-29. Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event
Num.

Umask
Value Event Name Definition Description and Comment

19-194 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.17 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Table 19-30 lists model-specific performance events for Intel® Core™ Duo processors. If a model-specific event
requires qualification in core specificity, it is indicated in the comment column. Table 19-30 also applies to Intel®
Core™ Solo processors; bits in the unit mask corresponding to core-specificity are reserved and should be 00B.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to store buffer blocks.

The preceding store may be blocked due to
unknown address, unknown data, or conflict due to
partial overlap between the load and store.

04H SD_Drains 00H Cycles while draining store buffers.

05H Misalign_Mem_Ref 00H Misaligned data memory references (MOB splits of
loads and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction PREFETCHNTA
retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction PREFETCHT1
retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction PREFETCHT2
retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction executed. FADD,
FSUB, FCOM, FMULs, MUL, IMUL, FDIVs, DIV, IDIV,
FPREMs, FSQRT are included; but exclude FADD or
FMUL used in the middle of a transcendental
instruction.

11H FP_Assist 00H FP exceptions experienced microcode assists. IA32_PMC1 only.

12H Mul 00H Multiply operations (a speculative count, including
FP and integer multiplies).

IA32_PMC1 only.

13H Div 00H Divide operations (a speculative count, including FP
and integer divisions).

IA32_PMC1 only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity.

22H Dbus_Busy 00H Core cycle during which data bus was busy
(increments by 4).

Requires core-
specificity.

23H Dbus_Busy_Rd 00H Cycles data bus is busy transferring data to a core
(increments by 4).

Requires core-
specificity.

24H L2_Lines_In 00H L2 cache lines allocated. Requires core-specificity
and HW prefetch
qualification.

25H L2_M_Lines_In 00H L2 Modified-state cache lines allocated. Requires core-
specificity.

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-specificity
and HW prefetch
qualification.

27H L2_M_Lines_Out 00H L2 Modified-state cache lines evicted.

Vol. 3B 19-195

PERFORMANCE MONITORING EVENTS

28H L2_IFetch Requires MESI
qualification

L2 instruction fetches from instruction fetch unit
(includes speculative fetches).

Requires core-
specificity.

29H L2_LD Requires MESI
qualification

L2 cache reads. Requires core-
specificity.

2AH L2_ST Requires MESI
qualification

L2 cache writes (includes speculation). Requires core-
specificity.

2EH L2_Rqsts Requires MESI
qualification

L2 cache reference requests. Requires core-
specificity, HW prefetch
qualification.30H L2_Reject_Cycles Requires MESI

qualification
Cycles L2 is busy and rejecting new requests.

32H L2_No_Request_
Cycles

Requires MESI
qualification

Cycles there is no request to access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) Technology
transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep Technology frequency
transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on the current core
clock.

Use edge trigger to
count occurrence.

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core executing code
while the other core is halted.

40H DCache_Cache_LD Requires MESI
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires MESI
qualification

L1 cacheable data write operations.

42H DCache_Cache_
Lock

Requires MESI
qualification

L1 cacheable lock read operations to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of cacheable and non-
cacheable types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss outstanding. Use Cmask =1 to count
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU cache misses. May overcount if
request re-submitted.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-196 Vol. 3B

PERFORMANCE MONITORING EVENTS

60H Bus_Req_
Outstanding

00; Requires core-
specificity, and agent
specificity

Weighted cycles of cacheable bus data read
requests. This event counts full-line read request
from DCU or HW prefetcher, but not RFO, write,
instruction fetches, or others.

Use Cmask =1 to count
duration.

Use Umask bit 12 to
include HWP or exclude
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY asserted. Requires agent
specificity.

63H Bus_Locks_Clocks 00H External bus cycles while bus lock signal asserted. Requires core
specificity.

64H Bus_Data_Rcv 40H Number of data chunks received by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data or code). Requires core
specificity.

66H Bus_Trans_RFO See comment. Completed read for ownership (RFO) transactions. Requires agent
specificity.

Requires core
specificity.

Each transaction counts
its address strobe.

Retried transaction may
be counted more than
once.

68H Bus_Trans_Ifetch See comment. Completed instruction fetch transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write transactions.

6BH Bus_Trans_P See comment. Completed partial transactions (include partial read
+ partial write + line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core
specificity.

Retried transaction may
be counted more than
once.

67H Bus_Trans_WB C0H Completed writeback transactions from DCU (does
not include L2 writebacks).

Requires agent
specificity.

Each transaction counts
its address strobe.

Retried transaction may
be counted more than
once.

6EH Bus_Trans_Burst C0H Completed burst transactions (full line transactions
include reads, write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. This includes
Bus_Trans_Burst + Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI
qualification.

Requires agent
specificity.

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 cache line due to L1
misses.

Requires core
specificity.

7DH Bus_Not_In_Use 00H Number of cycles there is no transaction from the
core.

Requires core
specificity.

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches from ICache,
streaming buffers (both cacheable and uncacheable
fetches).

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

Vol. 3B 19-197

PERFORMANCE MONITORING EVENTS

81H ICache_Misses 00H Number of instruction fetch misses from ICache,
streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting for data from
memory.

87H ILD_Stall 00H Number of instruction length decoder stalls (Counts
number of LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed (includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and mispredicted at
execution (includes branches that do not have
prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that were
mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions executed that were
mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions executed that were
mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions executed that were
mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions executed that were
mispredicted at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed that were
mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions executed.

A2H Resource_Stall 00H Cycles while there is a resource related stall
(renaming, buffer entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions executed (does not
include MOVQ and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating instructions
executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed multiply
instructions executed.

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed shift instructions
executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack operations instruction
executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack instructions
executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed logical instructions
executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed arithmetic
instructions executed.

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-198 Vol. 3B

PERFORMANCE MONITORING EVENTS

C0H Instr_Ret 00H Number of instruction retired (Macro fused
instruction count as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute instructions retired (X87
instruction or instruction that contains X87
operations).

Use IA32_PMC0 only.

C2H Uops_Ret 00H Number of micro-ops retired (include fused uops).

C3H SMC_Detected 00H Number of times self-modifying code condition
detected.

C4H Br_Instr_Ret 00H Number of branch instructions retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled and interrupts are
pending.

C8H HW_Int_Rx 00H Number of hardware interrupts received.

C9H Br_Taken_Ret 00H Number of taken branch instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted branch
instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX to X87.

CCH FP_MMX_Trans 01H Number of transitions from X87 to MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single precision instructions
retired (packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single precision
instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed double precision
instructions retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double precision
instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer instructions
retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed double precision
compute instructions retired (does not include AND,
OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double precision
compute instructions retired (does not include AND,
OR, XOR).

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

Vol. 3B 19-199

PERFORMANCE MONITORING EVENTS

19.18 PENTIUM® 4 AND INTEL® XEON® PROCESSOR PERFORMANCE
MONITORING EVENTS

Tables 19-31, 19-32 and 19-33 list performance monitoring events that can be counted or sampled on processors
based on Intel NetBurst® microarchitecture. Table 19-31 lists the non-retirement events, and Table 19-32 lists the
at-retirement events. Tables 19-34, 19-35, and 19-36 describes three sets of parameters that are available for
three of the at-retirement counting events defined in Table 19-32. Table 19-37 shows which of the non-retirement
and at retirement events are logical processor specific (TS) (see Section 18.6.4.4, “Performance Monitoring
Events”) and which are non-logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance monitoring events may be available only to specific
models. The performance monitoring events listed in Tables 19-31 and 19-32 apply to processors with CPUID
signature that matches family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors with a
CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance monitoring events in Pentium 4 and Intel Xeon processors is also available when
IA-32e mode is enabled.

DAH Fused_Uops_Ret 00H All fused uops retired.

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the ROB (due to
exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did not produce a
prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch requests issued in
forward streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch requests issued in
backward streams.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in clock cycles) of the operating
modes of the trace cache and decode engine in the processor
package. The mode is specified by one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

Table 19-30. Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)
Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

19-200 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in deliver mode.

Logical processor 0 is in deliver mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver mode and logical processor 1 is
either halted, under a machine clear condition or transitioning to a
long microcode flow.

3: BD

4: BB

Logical processor 0 is in build mode and logical processor 1 is in
deliver mode.

Both logical processors are in build mode.

5: BI Logical processor 0 is in build mode and logical processor 1 is either
halted, under a machine clear condition or transitioning to a long
microcode flow.

6: ID

7: IB

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
deliver mode.

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
build mode.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If only one logical processor is available from a physical processor
package, the event mask should be interpreted as logical processor 1
is halted. Event mask bit 2 was previously known as “DELIVER”, bit 5
was previously known as “BUILD”.

BPU_fetch_
request

This event counts instruction fetch requests of specified request
type by the Branch Prediction unit. Specify one or more mask bits to
qualify the request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-201

PERFORMANCE MONITORING EVENTS

ITLB_reference This event counts translations using the Instruction Translation
Look-aside Buffer (ITLB).

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of the page size are looked up as
actual 4-KByte pages. Use the page_walk_type event with the
ITMISS mask for a more conservative count.

memory_cancel This event counts the canceling of various type of request in the
Data cache Address Control unit (DAC). Specify one or more mask
bits to select the type of requests that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store request buffer is available.

Conflicts due to 64-KByte aliasing.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

All_CACHE_MISS includes uncacheable memory in count.

memory_
complete

This event counts the completion of a load split, store split,
uncacheable (UC) split, or UC load. Specify one or more mask bits to
select the operations to be counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-202 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding UC/WC loads.

Any split stores completed.

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events at the load port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

store_port_replay This event counts replayed events at the store port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

MOB_load_replay This event triggers if the memory order buffer (MOB) caused a load
operation to be replayed. Specify one or more mask bits to select the
cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-203

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown store address.

Replayed because of unknown store data.

4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially overlapped data access between the
load and store operations.

Replayed because the lower 4 bits of the linear address do not
match between the load and store operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss (either load or store).

Page walk for an instruction TLB miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference

This event counts cache references (2nd level cache or 3rd level
cache) as seen by the bus unit.

Specify one or more mask bit to select an access according to the
access type (read type includes both load and RFO, write type
includes writebacks and evictions) and the access result (hit, misses).

ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-204 Vol. 3B

PERFORMANCE MONITORING EVENTS

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared (includes load and RFO).

Read 2nd level cache hit Exclusive (includes load and RFO).

Read 2nd level cache hit Modified (includes load and RFO).

Read 3rd level cache hit Shared (includes load and RFO).

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive (includes load and RFO).

Read 3rd level cache hit Modified (includes load and RFO).

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss (includes load and RFO).

Read 3rd level cache miss (includes load and RFO).

A Writeback lookup from DAC misses the 2nd level cache (unlikely to
happen).

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this event in current Pentium 4 and Xeon
processors treats either a load operation or a request for
ownership (RFO) request as a “read” type operation.

2: Currently this event causes both over and undercounting by as
much as a factor of two due to an erratum.

3: It is possible for a transaction that is started as a prefetch to
change the transaction's internal status, making it no longer a
prefetch. or change the access result status (hit, miss) as seen by
this event.

IOQ_allocation This event counts the various types of transactions on the bus. A
count is generated each time a transaction is allocated into the IOQ
that matches the specified mask bits. An allocated entry can be a
sector (64 bytes) or a chunks of 8 bytes.

Requests are counted once per retry. The event mask bits constitute
4 bit fields. A transaction type is specified by interpreting the values
of each bit field.

Specify one or more event mask bits in a bit field to select the value
of the bit field.

Each field (bits 0-4 are one field) are independent of and can be
ORed with the others. The request type field is further combined
with bit 5 and 6 to form a binary expression. Bits 7 and 8 form a bit
field to specify the memory type of the target address.

Bits 13 and 14 form a bit field to specify the source agent of the
request. Bit 15 affects read operation only. The event is triggered by
evaluating the logical expression: (((Request type) OR Bit 5 OR Bit 6)
OR (Memory type)) AND (Source agent).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-205

PERFORMANCE MONITORING EVENTS

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

 9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: If PREFETCH bit is cleared, sectors fetched using prefetch are
excluded in the counts. If PREFETCH bit is set, all sectors or chunks
read are counted.

2: Specify the edge trigger in CCCR to avoid double counting.

3: The mapping of interpreted bit field values to transaction types
may differ with different processor model implementations of the
Pentium 4 processor family. Applications that program
performance monitoring events should use CPUID to determine
processor models when using this event. The logic equations that
trigger the event are model-specific (see 4a and 4b below).

4a:For Pentium 4 and Xeon Processors starting with CPUID Model
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

4b:For Pentium 4 and Xeon Processors with CPUID Model field
encoding less than 2, this event is triggered by evaluating the
logical expression [((Request type) or Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note that event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5: This event is known to ignore CPL in early implementations of
Pentium 4 and Xeon Processors. Both user requests and OS
requests are included in the count. This behavior is fixed starting
with Pentium 4 and Xeon Processors with CPUID signature F27H
(Family 15, Model 2, Stepping 7).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-206 Vol. 3B

PERFORMANCE MONITORING EVENTS

6: For write-through (WT) and write-protected (WP) memory types,
this event counts reads as the number of 64-byte sectors. Writes
are counted by individual chunks.

7: For uncacheable (UC) memory types, this event counts the
number of 8-byte chunks allocated.

8: For Pentium 4 and Xeon Processors with CPUID Signature less
than F27H, only MSR_FSB_ESCR0 is available.

IOQ_active_
entries

This event counts the number of entries (clipped at 15) in the IOQ
that are active. An allocated entry can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in conjunction with IOQ_allocation.
Specify one or more event mask bits to select the transactions that
is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the ioq_allocation event for descriptions of the mask bits.

3: Edge triggering should not be used when counting cycles.

4: The mapping of interpreted bit field values to transaction types
may differ across different processor model implementations of
the Pentium 4 processor family. Applications that programs
performance monitoring events should use the CPUID instruction
to detect processor models when using this event. The logical
expression that triggers this event as describe below:

5a:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-207

PERFORMANCE MONITORING EVENTS

5b:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding less than 2, this event is triggered by evaluating
the logical expression [((Request type) or Bit 5 or Bit 6) or
(Memory type)] and (Source agent). Event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5c: This event is known to ignore CPL in the current implementations
of Pentium 4 and Xeon Processors Both user requests and OS
requests are included in the count.

6: An allocated entry can be a full line (64 bytes) or in individual
chunks of 8 bytes.

FSB_data_
activity

This event increments once for each DRDY or DBSY event that
occurs on the front side bus. The event allows selection of a specific
DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives data onto the bus - includes writes
and implicit writebacks.

Asserted two processor clock cycles for partial writes and 4
processor clocks (usually in consecutive bus clocks) for full line
writes.

1: DRDY_OWN Count when this processor reads data from the bus - includes loads
and some PIC transactions. Asserted two processor clock cycles for
partial reads and 4 processor clocks (usually in consecutive bus
clocks) for full line reads.

Count DRDY events that we drive.

Count DRDY events sampled that we own.

2: DRDY_OTHER Count when data is on the bus but not being sampled by the
processor. It may or may not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

3: DBSY_DRV Count when this processor reserves the bus for use in the next bus
cycle in order to drive data. Asserted for two processor clock cycles
for full line writes and not at all for partial line writes.

May be asserted multiple times (in consecutive bus clocks) if we stall
the bus waiting for a cache lock to complete.

4: DBSY_OWN Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will sample.

Asserted for two processor clock cycles for full line writes and not at
all for partial line writes. May be asserted multiple times (all one bus
clock apart) if we stall the bus for some reason.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-208 Vol. 3B

PERFORMANCE MONITORING EVENTS

5:DBSY_OTHER Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will NOT sample. It may or may
not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

Specify edge trigger in the CCCR MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in the Bus Sequence Unit (BSQ)
according to the specified mask bit encoding. The event mask bits
consist of four sub-groups:

• Request type.
• Request length.
• Memory type.
• Sub-group consisting mostly of independent bits (bits 5, 6, 7, 8, 9,

and 10).
Specify an encoding for each sub-group.

ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 1) are:

0 – Read (excludes read invalidate).
1 – Read invalidate.
2 – Write (other than writebacks).
3 – Writeback (evicted from cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE
9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte chunk split across 8-byte boundary.

Request type is a demand if set. Request type is HW.SW prefetch
if 0.

Request is an ordered type.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-209

PERFORMANCE MONITORING EVENTS

11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 11-13) are:

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to avoid double counting.
2: A writebacks to 3rd level cache from 2nd level cache counts as a

separate entry, this is in additional to the entry allocated for a
request to the bus.

3: A read request to WB memory type results in a request to the
64-byte sector, containing the target address, followed by a
prefetch request to an adjacent sector.

4: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 0 and 1, an allocated BSQ entry includes both the
demand sector and prefetched 2nd sector.

5: An allocated BSQ entry for a data chunk is any request less than
64 bytes.

6a:This event may undercount for requests of split type transactions
if the data address straddled across modulo-64 byte boundary.

6b:This event may undercount for requests of read request of
16-byte operands from WC or UC address.

6c: This event may undercount WC partial requests originated from
store operands that are
dwords.

bsq_active_
entries

This event represents the number of BSQ entries (clipped at 15)
currently active (valid) which meet the subevent mask criteria during
allocation in the BSQ. Active request entries are allocated on the BSQ
until de-allocated.

De-allocation of an entry does not necessarily imply the request is
filled. This event must be programmed in conjunction with
BSQ_allocation. Specify one or more event mask bits to select the
transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the BSQ_allocation event for descriptions of the mask bits.
3: Edge triggering should not be used when counting cycles.

4: This event can be used to estimate the latency of a transaction
from allocation to de-allocation in the BSQ. The latency observed
by BSQ_allocation includes the latency of FSB, plus additional
overhead.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-210 Vol. 3B

PERFORMANCE MONITORING EVENTS

5: Additional overhead may include the time it takes to issue two
requests (the sector by demand and the adjacent sector via
prefetch). Since adjacent sector prefetches have lower priority
that demand fetches, on a heavily used system there is a high
probability that the adjacent sector prefetch will have to wait
until the next bus arbitration.

6: For Pentium 4 and Xeon processors with CPUID model encoding
value less than 3, this event is updated every clock.

7: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 3 or 4, this event is updated every other clock.

SSE_input_assist This event counts the number of times an assist is requested to
handle problems with input operands for SSE/SSE2/SSE3 operations;
most notably denormal source operands when the DAZ bit is not set.
Set bit 15 of the event mask to use this event.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are actually taken. This event is known
to overcount in that it counts requests for assists from
instructions on the non-retired path that do not incur a
performance penalty. An assist is actually taken only for non-
bogus μops. Any appreciable counts for this event are an
indication that the DAZ or FTZ bit should be set and/or the source
code should be changed to eliminate the condition.

2: Two common situations for an SSE/SSE2/SSE3 operation needing
an assist are: (1) when a denormal constant is used as an input and
the Denormals-Are-Zero (DAZ) mode is not set, (2) when the input
operand uses the underflowed result of a previous
SSE/SSE2/SSE3 operation and neither the DAZ nor Flush-To-Zero
(FTZ) modes are set.

3: Enabling the DAZ mode prevents SSE/SSE2/SSE3 operations from
needing assists in the first situation. Enabling the FTZ mode
prevents SSE/SSE2/SSE3 operations from needing assists in the
second situation.

packed_SP_uop This event increments for each packed single-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-211

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more than one packed SP μops, each
packed SP μop that is specified by the event mask will be counted.

2: This metric counts instances of packed memory μops in a repeat
move string.

packed_DP_uop This event increments for each packed double-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one packed DP μops, each
packed DP μop that is specified by the event mask will be counted.

scalar_SP_uop This event increments for each scalar single-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one scalar SP μops, each scalar
SP μop that is specified by the event mask will be counted.

scalar_DP_uop This event increments for each scalar double-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar double-precision operands.

CCCR Select 01H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-212 Vol. 3B

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

If an instruction contains more than one scalar DP μops, each scalar
DP μop that is specified by the event mask is counted.

64bit_MMX_uop This event increments for each MMX instruction, which operate on
64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64- bit SIMD integer operands in memory
or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one 64-bit MMX μops, each 64-
bit MMX μop that is specified by the event mask will be counted.

128bit_MMX_uop This event increments for each integer SIMD SSE2 instruction, which
operate on 128-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one 128-bit MMX μops, each
128-bit MMX μop that is specified by the event mask will be counted.

x87_FP_uop This event increments for each x87 floating-point μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-213

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

1: If an instruction contains more than one x87 FP μops, each x87
FP μop that is specified by the event mask will be counted.

2: This event does not count x87 FP μop for load, store, move
between registers.

TC_misc This event counts miscellaneous events detected by the TC. The
counter will count twice for each occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of times that uop delivery changed
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of valid uops written to the uop
queue. Specify one or more mask bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-214 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from TC deliver mode.

The uops being written are from microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount conditional branches if:

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

retired_branch

_type

This event counts retiring branches by type. Specify one or more
mask bits to qualify the branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-215

PERFORMANCE MONITORING EVENTS

Event Specific
Notes

This event may overcount conditional branches if :

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

resource_stall This event monitors the occurrence or latency of stalls in the
Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

WC_Buffer This event counts Write Combining Buffer operations that are
selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer is available.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

This event is useful for detecting the subset of 64K aliasing cases
that are more costly (i.e. 64K aliasing cases involving stores) as long
as there are no significant contributions due to write combining
buffer full or hit-modified conditions.

b2b_cycles This event can be configured to count the number back-to-back bus
cycles using sub-event mask bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-216 Vol. 3B

PERFORMANCE MONITORING EVENTS

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

bnr This event can be configured to count bus not ready conditions using
sub-event mask bits 0 through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

snoop This event can be configured to count snoop hit modified bus traffic
using sub-event mask bits 2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Response This event can be configured to count different types of responses
using sub-event mask bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Table 19-31. Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-217

PERFORMANCE MONITORING EVENTS

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting

Event Name Event Parameters Parameter Value Description

front_end_event This event counts the retirement of tagged μops, which are specified
through the front-end tagging mechanism. The event mask specifies
bogus or non-bogus μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional
MSRs for tagging

Selected ESCRs
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by Front_end tagging in Table A-3

execution_event This event counts the retirement of tagged μops, which are specified
through the execution tagging mechanism.

The event mask allows from one to four types of μops to be
specified as either bogus or non-bogus μops to be tagged.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Each of the 4 slots to specify the bogus/non-bogus μops must be
coordinated with the 4 TagValue bits in the ESCR (for example,
NBOGUS0 must accompany a ‘1’ in the lowest bit of the TagValue
field in ESCR, NBOGUS1 must accompany a ‘1’ in the next but lowest
bit of the TagValue field).

Can Support PEBS Yes

19-218 Vol. 3B

PERFORMANCE MONITORING EVENTS

Require Additional
MSRs for tagging

An ESCR for an
upstream event

See list of metrics supported by execution tagging in Table A-4.

replay_event This event counts the retirement of tagged μops, which are specified
through the replay tagging mechanism. The event mask specifies
bogus or non-bogus μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Supports counting tagged μops with additional MSRs.

Can Support PEBS Yes

Require Additional
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by replay tagging in Table A-5.

instr_retired This event counts instructions that are retired during a clock cycle.

Mask bits specify bogus or non-bogus (and whether they are tagged
using the front-end tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are not tagged.

Non-bogus instructions that are tagged.

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not tagged.

Bogus instructions that are tagged.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

1: The event count may vary depending on the microarchitectural
states of the processor when the event detection is enabled.

2: The event may count more than once for some instructions with
complex uop flows and were interrupted before retirement.

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-219

PERFORMANCE MONITORING EVENTS

Can Support PEBS No

uops_retired This event counts μops that are retired during a clock cycle. Mask bits
specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction with the front-end at-retirement
mechanism to tag load and store μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Setting the TAGLOADS and TAGSTORES mask bits does not cause a
counter to increment. They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement of a branch. Specify one or more
mask bits to select any combination of taken, not-taken, predicted
and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-70 for the addresses of the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The
performance counters and corresponding CCCRs can be obtained
from Table 18-70.

ESCR Event Select 06H ESCR[31:25]

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-220 Vol. 3B

PERFORMANCE MONITORING EVENTS

ESCR Event Mask

Bit

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

mispred_branch_
retired

This event represents the retirement of mispredicted branch
instructions.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement of x87 instructions that required
special handling.

Specifies one or more event mask bits to select the type of
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow.

Handle FP stack overflow.

2: POAO

3: POAU

4: PREA

Handle x87 output overflow.

Handle x87 output underflow.

Handle x87 input assist.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Vol. 3B 19-221

PERFORMANCE MONITORING EVENTS

machine_clear This event increments according to the mask bit specified while the
entire pipeline of the machine is cleared. Specify one of the mask bit
to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: CLEAR

ESCR[24:9]

Counts for a portion of the many cycles while the machine is cleared
for any cause. Use Edge triggering for this bit only to get a count of
occurrence versus a duration.

2: MOCLEAR

6: SMCLEAR

Increments each time the machine is cleared due to memory ordering
issues.

Increments each time the machine is cleared due to self-modifying
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-33. Intel NetBurst® Microarchitecture Model-Specific Performance Monitoring Events
(For Model Encoding 3, 4 or 6)

Event Name Event Parameters Parameter Value Description

instr_completed This event counts instructions that have completed and retired
during a clock cycle. Mask bits specify whether the instruction is
bogus or non-bogus and whether they are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

This metric differs from instr_retired, since it counts instructions
completed, rather than the number of times that instructions started.

Can Support PEBS No

Table 19-32. Performance Monitoring Events For Intel NetBurst® Microarchitecture
for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

19-222 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-34. List of Metrics Available for Front_end Tagging (For Front_end Event Only)

Front-end metric1 MSR_
TC_PRECISE_EVENT
MSR Bit field

 Additional MSR Event mask value for
Front_end_event

memory_loads None Set TAGLOADS bit in ESCR corresponding to
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit in the ESCR corresponding
to event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of the floating point stack.

Table 19-35. List of Metrics Available for Execution Tagging (For Execution Event Only)
Execution metric Upstream ESCR TagValue in

Upstream ESCR
Event mask value for
execution_event

packed_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of
128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event mask, TagUop bit in ESCR of
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 bits in event mask, TagUop bit in
ESCR of X87_SIMD_ moves_uop.

1 NBOGUS0

Table 19-36. List of Metrics Available for Replay Tagging (For Replay Event Only)

Replay metric1
IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT Bit
Field to Set

Additional MSR/ Event
Event Mask Value for
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24,
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, Bit 24,
Bit 25

Bit 4 None NBOGUS

Vol. 3B 19-223

PERFORMANCE MONITORING EVENTS

MOB_load
_replay_retired3

Bit 9, Bit 24,
Bit 25

Bit 0 Select MOB_load_replay
event and set
PARTIAL_DATA and
UNALGN_ADDR bit.

NBOGUS

split_load_retired Bit 10, Bit 24,
Bit 25

Bit 0 Select load_port_replay
event with the
MSR_SAAT_ESCR1 MSR
and set the SPLIT_LD mask
bit.

NBOGUS

split_store_retired Bit 10, Bit 24,
Bit 25

Bit 1 Select store_port_replay
event with the
MSR_SAAT_ESCR0 MSR
and set the SPLIT_ST mask
bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that are found to be misses by the fast

detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is the case where the data from a

load that would otherwise be forwarded is not an aligned subset of the data from a preceding store.

Table 19-36. List of Metrics Available for Replay Tagging (For Replay Event Only) (Contd.)

Replay metric1
IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT Bit
Field to Set

Additional MSR/ Event
Event Mask Value for
Replay_event

19-224 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-37. Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS

Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Vol. 3B 19-225

PERFORMANCE MONITORING EVENTS

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

19-226 Vol. 3B

PERFORMANCE MONITORING EVENTS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Vol. 3B 19-227

PERFORMANCE MONITORING EVENTS

Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

19-228 Vol. 3B

PERFORMANCE MONITORING EVENTS

19.19 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M
PROCESSORS

The Pentium M processor’s performance monitoring events are based on monitoring events for the P6 family of
processors. All of these performance events are model specific for the Pentium M processor and are not available in
this form in other processors. Table 19-38 lists the performance monitoring events that were added in the Pentium
M processor.

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-37. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Vol. 3B 19-229

PERFORMANCE MONITORING EVENTS

Table 19-38. Performance Monitoring Events on Intel® Pentium® M Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to count number of thermal trips: bit
22 in PerfEvtSel0/1 needs to be set to enable edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed (not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were mispredicted at execution.

BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed that were mispredicted at front end
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0 - Fused micro-ops

Mask = 1 - Only load+Op micro-ops

Mask = 2 - Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, happened on a FP exception to a
fused µop.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued.

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued.

19-230 Vol. 3B

PERFORMANCE MONITORING EVENTS

A number of P6 family processor performance monitoring events are modified for the Pentium M processor. Table
19-39 lists the performance monitoring events that were changed in the Pentium M processor, and differ from
performance monitoring events for the P6 family of processors.

19.20 P6 FAMILY PROCESSOR PERFORMANCE MONITORING EVENTS
Table 19-40 lists the events that can be counted with the performance monitoring counters and read with the
RDPMC instruction for the P6 family processors. The unit column gives the microarchitecture or bus unit that
produces the event; the event number column gives the hexadecimal number identifying the event; the mnemonic
event name column gives the name of the event; the unit mask column gives the unit mask required (if any); the
description column describes the event; and the comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and are not available in this form in
the Pentium 4 processors or the Pentium processors. Some events (such as those added in later generations of the
P6 family processors) are only available in specific processors in the P6 family. All performance event encodings not
listed in Table 19-40 are reserved and their use will result in undefined counter results.

See the end of the table for notes related to certain entries in the table.

Table 19-39. Performance Monitoring Events Modified on Intel® Pentium® M Processors

Name Hex
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0 – SSE packed single and scalar single

Mask = 1 – SSE scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

L2_LD 29H L2 data loads Mask[0] = 1 – count I state lines

Mask[1] = 1 – count S state lines

Mask[2] = 1 – count E state lines

Mask[3] = 1 – count M state lines

Mask[5:4]:

00H – Excluding hardware-prefetched lines

01H - Hardware-prefetched lines only

02H/03H – All (HW-prefetched lines and non HW --
Prefetched lines)

L2_LINES_IN 24H L2 lines allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines evicted

Vol. 3B 19-231

PERFORMANCE MONITORING EVENTS

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any memory type. All stores
to any memory type. Each part of a split is
counted separately. The internal logic counts
not only memory loads and stores, but also
internal retries.

80-bit floating-point accesses are double
counted, since they are decomposed into a
16-bit exponent load and a 64-bit mantissa
load. Memory accesses are only counted
when they are actually performed (such as a
load that gets squashed because a previous
cache miss is outstanding to the same
address, and which finally gets performed, is
only counted once).

Does not include I/O accesses, or other
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in DCU.

46H DCU_M_LINES_IN 00H Number of M state lines allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines evicted from DCU.

This includes evictions via snoop HITM,
intervention or replacement.

48H DCU_MISS_
OUTSTANDING

00H Weighted number of cycles while a DCU miss
is outstanding, incremented by the number
of outstanding cache misses at any
particular time.

Cacheable read requests only are
considered.

Uncacheable requests are excluded.

Read-for-ownerships are counted, as well as
line fills, invalidates, and stores.

An access that also misses the L2
is short-changed by 2 cycles (i.e., if
counts N cycles, should be N+2
cycles).

Subsequent loads to the same
cache line will not result in any
additional counts.

Count value not precise, but still
useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction fetches, both
cacheable and noncacheable, including UC
fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction fetch misses

All instruction fetches that do not hit the IFU
(i.e., that produce memory requests). This
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles instruction fetch is stalled,
for any reason.

Includes IFU cache misses, ITLB misses, ITLB
faults, and other minor stalls.

87H ILD_STALL 00H Number of cycles that the instruction length
decoder is stalled.

L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction fetches.

This event indicates that a normal
instruction fetch was received by the L2.

19-232 Vol. 3B

PERFORMANCE MONITORING EVENTS

The count includes only L2 cacheable
instruction fetches; it does not include UC
instruction fetches.

It does not include ITLB miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that a normal, unlocked,
load memory access was received by the L2.

It includes only L2 cacheable memory
accesses; it does not include I/O accesses,
other nonmemory accesses, or memory
accesses such as UC/WT memory accesses.

It does include L2 cacheable TLB miss
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data stores.

This event indicates that a normal, unlocked,
store memory access was received by the
L2.

it indicates that the DCU sent a read-for-
ownership request to the L2. It also includes
Invalid to Modified requests sent by the DCU
to the L2.

It includes only L2 cacheable memory
accesses; it does not include I/O accesses,
other nonmemory accesses, or memory
accesses such as UC/WT memory accesses.

It includes TLB miss memory accesses.

24H L2_LINES_IN 00H Number of lines allocated in the L2.

26H L2_LINES_OUT 00H Number of lines removed from the L2 for
any reason.

25H L2_M_LINES_INM 00H Number of modified lines allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines removed from the
L2 for any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 requests.

21H L2_ADS 00H Number of L2 address strobes.

22H L2_DBUS_BUSY 00H Number of cycles during which the L2 cache
data bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during which the data bus
was busy transferring read data from L2 to
the processor.

External
Bus Logic
(EBL)2

62H BUS_DRDY_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during which DRDY# is
asserted.

Utilization of the external system data bus
during data transfers.

Unit Mask = 00H counts bus clocks
when the processor is driving
DRDY#.

Unit Mask = 20H counts in
processor clocks when any agent is
driving DRDY#.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-233

PERFORMANCE MONITORING EVENTS

63H BUS_LOCK_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during which LOCK# is
asserted on the external system bus.3

Always counts in processor clocks.

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests outstanding.

This counter is incremented by the number
of cacheable read bus requests outstanding
in any given cycle.

Counts only DCU full-line cacheable
reads, not RFOs, writes, instruction
fetches, or anything else. Counts
“waiting for bus to complete” (last
data chunk received).

65H BUS_TRAN_BRD 00H
(Self)

20H
(Any)

Number of burst read transactions.

66H BUS_TRAN_RFO 00H
(Self)

20H
(Any)

Number of completed read for ownership
transactions.

67H BUS_TRANS_WB 00H
(Self)

20H
(Any)

Number of completed write back
transactions.

68H BUS_TRAN_
IFETCH

00H
(Self)

20H
(Any)

Number of completed instruction fetch
transactions.

69H BUS_TRAN_INVA
L

00H
(Self)

20H
(Any)

Number of completed invalidate
transactions.

6AH BUS_TRAN_PWR 00H
(Self)

20H
(Any)

Number of completed partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)

20H
(Any)

Number of completed partial transactions.

6CH BUS_TRANS_IO 00H
(Self)

20H
(Any)

Number of completed I/O transactions.

6DH BUS_TRAN_DEF 00H
(Self)

20H
(Any)

Number of completed deferred transactions.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-234 Vol. 3B

PERFORMANCE MONITORING EVENTS

6EH BUS_TRAN_
BURST

00H
(Self)

20H
(Any)

Number of completed burst transactions.

70H BUS_TRAN_ANY 00H
(Self)

20H
(Any)

Number of all completed bus transactions.

Address bus utilization can be calculated
knowing the minimum address bus
occupancy.

Includes special cycles, etc.

6FH BUS_TRAN_MEM 00H
(Self)

20H
(Any)

Number of completed memory transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock cycles during which this
processor is receiving data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the BNR# pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the HIT# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but
BPMi (breakpoint monitor) pins
function as follows based on the
setting of the PC bits (bit 19 in the
PerfEvtSel0 and PerfEvtSel1
registers):

• If the core-clock-to- bus-clock
ratio is 2:1 or 3:1, and a PC bit is
set, the BPMi pins will be
asserted for a single clock when
the counters overflow.

• If the PC bit is clear, the
processor toggles the BPMi pins
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1,
the BPMi pins will not function
for these performance
monitoring counter events.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock cycles during which this
processor is driving the HITM# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but
BPMi (breakpoint monitor) pins
function as follows based on the
setting of the PC bits (bit 19 in the
PerfEvtSel0 and PerfEvtSel1
registers):

• If the core-clock-to- bus-clock
ratio is 2:1 or 3:1, and a PC bit is
set, the BPMi pins will be
asserted for a single clock when
the counters overflow.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-235

PERFORMANCE MONITORING EVENTS

• If the PC bit is clear, the
processor toggles the BPMipins
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1,
the BPMi pins will not function
for these performance
monitoring counter events.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles during which the bus
is snoop stalled.

Floating-
Point Unit

C1H FLOPS 00H Number of computational floating-point
operations retired.

Excludes floating-point computational
operations that cause traps or assists.

Includes floating-point computational
operations executed by the assist handler.

Includes internal sub-operations for complex
floating-point instructions like
transcendentals.

Excludes floating-point loads and stores.

Counter 0 only.

10H FP_COMP_OPS_
EXE

00H Number of computational floating-point
operations executed.

The number of FADD, FSUB, FCOM, FMULs,
integer MULs and IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs.

This number does not include the number of
cycles, but the number of operations.

This event does not distinguish an FADD
used in the middle of a transcendental flow
from a separate FADD instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point exception cases
handled by microcode.

Counter 1 only.

This event includes counts due to
speculative execution.

12H MUL 00H Number of multiplies.

This count includes integer as well as FP
multiplies and is speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes integer as well as FP
divides and is speculative.

Counter 1 only.

14H CYCLES_DIV_
BUSY

00H Number of cycles during which the divider is
busy, and cannot accept new divides.

This includes integer and FP divides, FPREM,
FPSQRT, etc. and is speculative.

Counter 0 only.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-236 Vol. 3B

PERFORMANCE MONITORING EVENTS

Memory
Ordering

03H LD_BLOCKS 00H Number of load operations delayed due to
store buffer blocks.

Includes counts caused by preceding stores
whose addresses are unknown, preceding
stores whose addresses are known but
whose data is unknown, and preceding
stores that conflicts with the load but which
incompletely overlap the load.

04H SB_DRAINS 00H Number of store buffer drain cycles.

Incremented every cycle the store buffer is
draining.

Draining is caused by serializing operations
like CPUID, synchronizing operations like
XCHG, interrupt acknowledgment, as well as
other conditions (such as cache flushing).

05H MISALIGN_
MEM_REF

00H Number of misaligned data memory
references.

Incremented by 1 every cycle, during which
either the processor’s load or store pipeline
dispatches a misaligned μop.

Counting is performed if it is the first or
second half, or if it is blocked, squashed, or
missed.

In this context, misaligned means crossing a
64-bit boundary.

MISALIGN_MEM_
REF is only an approximation to the
true number of misaligned memory
references.

The value returned is roughly
proportional to the number of
misaligned memory accesses (the
size of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming SIMD extensions
prefetch/weakly-ordered instructions
dispatched (speculative prefetches are
included in counting):

Counters 0 and 1. Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of prefetch/weakly-ordered
instructions that miss all caches:

Counters 0 and 1. Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Instruction
Decoding
and
Retirement

C0H INST_RETIRED 00H Number of instructions retired. A hardware interrupt received
during/after the last iteration of
the REP STOS flow causes the
counter to undercount by 1
instruction.

An SMI received while executing a
HLT instruction will cause the
performance counter to not count
the RSM instruction and
undercount by 1.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-237

PERFORMANCE MONITORING EVENTS

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming SIMD extensions
retired:

0: packed & scalar

1: scalar

Counters 0 and 1. Pentium III
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming SIMD extensions
computation instructions retired:

0: packed and scalar

1: scalar

Counters 0 and 1. Pentium III
processor only.

Interrupts C8H HW_INT_RX 00H Number of hardware interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor cycles for which
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor cycles for which
interrupts are disabled and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken mispredictions branches
retired.

E0H BR_INST_
DECODED

00H Number of branch instructions decoded.

E2H BTB_MISSES 00H Number of branches for which the BTB did
not produce a prediction.

E4H BR_BOGUS 00H Number of bogus branches.

E6H BACLEARS 00H Number of times BACLEAR is asserted.

This is the number of times that a static
branch prediction was made, in which the
branch decoder decided to make a branch
prediction because the BTB did not.

Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during every cycle for
which there is a resource related stall.

Includes register renaming buffer entries,
memory buffer entries.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-238 Vol. 3B

PERFORMANCE MONITORING EVENTS

Does not include stalls due to bus queue full,
too many cache misses, etc.

In addition to resource related stalls, this
event counts some other events.

Includes stalls arising during branch
misprediction recovery, such as if retirement
of the mispredicted branch is delayed and
stalls arising while store buffer is draining
from synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or events for partial stalls.
This includes flag partial stalls.

Segment
Register
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during which the
processor is not halted.

MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX Instructions Executed. Available in Intel Celeron, Pentium II
and Pentium II Xeon processors
only.

Does not account for MOVQ and
MOVD stores from register to
memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX Saturating Instructions
Executed.

Available in Pentium II and Pentium

III processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops Executed. Available in Pentium II and Pentium

III processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply instructions executed.

MMX packed shift instructions executed.

MMX pack operation instructions executed.

Available in Pentium II and Pentium

III processors only.

08H

10H

20H

MMX unpack operation instructions
executed.

MMX packed logical instructions executed.

MMX packed arithmetic instructions
executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX instruction to
floating-point instructions.

Transitions from floating-point instructions
to MMX instructions.

Available in Pentium II and Pentium

III processors only.

CDH MMX_ASSIST 00H Number of MMX Assists (that is, the number
of EMMS instructions executed).

Available in Pentium II and Pentium

III processors only.

CEH MMX_INSTR_RET 00H Number of MMX Instructions Retired. Available in Pentium II processors
only.

Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment Register Renaming
Stalls:

Available in Pentium II and Pentium

III processors only.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Vol. 3B 19-239

PERFORMANCE MONITORING EVENTS

19.21 PENTIUM PROCESSOR PERFORMANCE MONITORING EVENTS
Table 19-41 lists the events that can be counted with the performance monitoring counters for the Pentium
processor. The Event Number column gives the hexadecimal code that identifies the event and that is entered in
the ES0 or ES1 (event select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of the
event, and the Description and Comments columns give detailed descriptions of the events. Most events can be
counted with either counter 0 or counter 1; however, some events can only be counted with only counter 0 or only
counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the Pentium processor with MMX
technology.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment Register Renames: Available in Pentium II and Pentium

III processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment register rename events
retired.

Available in Pentium II and Pentium

III processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and

PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache state or
cache states involved.
The P6 family processors identify cache states using the “MESI” protocol and consequently each bit in the Unit Mask field repre-
sents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state.
UMSK[3:0] = MESI” (FH) should be used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field in the
PerfEvtSel0 and PerfEvtSel1 registers.
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the processor should count transactions that
are self- generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).

3. L2 cache locks, so it is possible to have a zero count.

Table 19-40. Events That Can Be Counted with the P6 Family Performance Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

19-240 Vol. 3B

PERFORMANCE MONITORING EVENTS

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters

Event
Num.

Mnemonic Event
Name Description Comments

00H DATA_READ Number of memory data reads
(internal data cache hit and miss
combined).

Split cycle reads are counted individually. Data Memory
Reads that are part of TLB miss processing are not
included. These events may occur at a maximum of two
per clock. I/O is not included.

01H DATA_WRITE Number of memory data writes
(internal data cache hit and miss
combined); I/O not included.

Split cycle writes are counted individually. These events
may occur at a maximum of two per clock. I/O is not
included.

0H2 DATA_TLB_MISS Number of misses to the data cache
translation look-aside buffer.

03H DATA_READ_MISS Number of memory read accesses that
miss the internal data cache whether
or not the access is cacheable or
noncacheable.

Additional reads to the same cache line after the first
BRDY# of the burst line fill is returned but before the final
(fourth) BRDY# has been returned, will not cause the
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

04H DATA WRITE MISS Number of memory write accesses
that miss the internal data cache
whether or not the access is cacheable
or noncacheable.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to exclusive or
modified lines in the data cache.

These are the writes that may be held up if EWBE# is
inactive. These events may occur a maximum of two per
clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines (all) that are
written back, regardless of the cause.

Replacements and internal and external snoops can all
cause writeback and are counted.

07H EXTERNAL_
SNOOPS

Number of accepted external snoops
whether they hit in the code cache or
data cache or neither.

Assertions of EADS# outside of the sampling interval are
not counted, and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external snoops to the data
cache.

Snoop hits to a valid line in either the data cache, the data
line fill buffer, or one of the write back buffers are all
counted as hits.

09H MEMORY ACCESSES
IN BOTH PIPES

Number of data memory reads or
writes that are paired in both pipes of
the pipeline.

These accesses are not necessarily run in parallel due to
cache misses, bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank conflicts.

0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or I/O reads or
writes that are misaligned.

A 2- or 4-byte access is misaligned when it crosses a 4-
byte boundary; an 8-byte access is misaligned when it
crosses an 8-byte boundary. Ten byte accesses are
treated as two separate accesses of 8 and 2 bytes each.

0CH CODE READ Number of instruction reads; whether
the read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

0DH CODE TLB MISS Number of instruction reads that miss
the code TLB whether the read is
cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

0EH CODE CACHE MISS Number of instruction reads that miss
the internal code cache; whether the
read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are
counted.

Vol. 3B 19-241

PERFORMANCE MONITORING EVENTS

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into any segment
register in real or protected mode
including the LDTR, GDTR, IDTR, and
TR.

Segment loads are caused by explicit segment register
load instructions, far control transfers, and task switches.
Far control transfers and task switches causing a privilege
level change will signal this event twice. Interrupts and
exceptions may initiate a far control transfer.

10H Reserved

11H Reserved

12H Branches Number of taken and not taken
branches, including: conditional
branches, jumps, calls, returns,
software interrupts, and interrupt
returns.

 Also counted as taken branches are serializing
instructions, VERR and VERW instructions, some segment
descriptor loads, hardware interrupts (including FLUSH#),
and programmatic exceptions that invoke a trap or fault
handler. The pipe is not necessarily flushed.

The number of branches actually executed is measured,
not the number of predicted branches.

13H BTB_HITS Number of BTB hits that occur. Hits are counted only for those instructions that are
actually executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken branches or BTB hits
that occur.

This event type is a logical OR of taken branches and BTB
hits. It represents an event that may cause a hit in the
BTB. Specifically, it is either a candidate for a space in the
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline flushes that occur

Pipeline flushes are caused by BTB
misses on taken branches,
mispredictions, exceptions, interrupts,
and some segment descriptor loads.

The counter will not be incremented for serializing
instructions (serializing instructions cause the prefetch
queue to be flushed but will not trigger the Pipeline
Flushed event counter) and software interrupts (software
interrupts do not flush the pipeline).

16H INSTRUCTIONS_
EXECUTED

Number of instructions executed (up
to two per clock).

Invocations of a fault handler are considered instructions.
All hardware and software interrupts and exceptions will
also cause the count to be incremented. Repeat prefixed
string instructions will only increment this counter once
despite the fact that the repeat loop executes the same
instruction multiple times until the loop criteria is
satisfied.

This applies to all the Repeat string instruction prefixes
(i.e., REP, REPE, REPZ, REPNE, and REPNZ). This counter
will also only increment once per each HLT instruction
executed regardless of how many cycles the processor
remains in the HALT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions executed in
the V_pipe.

The event indicates the number of
instructions that were paired.

This event is the same as the 16H event except it only
counts the number of instructions actually executed in
the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while a bus cycle is in
progress.

This event measures bus use.

The count includes HLDA, AHOLD, and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while the pipeline is
stalled due to full write buffers.

Full write buffers stall data memory read misses, data
memory write misses, and data memory write hits to S-
state lines. Stalls on I/O accesses are not included.

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-242 Vol. 3B

PERFORMANCE MONITORING EVENTS

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while the pipeline is
stalled while waiting for data memory
reads.

Data TLB Miss processing is also included in the count. The
pipeline stalls while a data memory read is in progress
including attempts to read that are not bypassed while a
line is being filled.

1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on writes to E- or M-
state lines.

1CH LOCKED BUS CYCLE Number of locked bus cycles that occur
as the result of the LOCK prefix or
LOCK instruction, page-table updates,
and descriptor table updates.

Only the read portion of the locked read-modify-write is
counted. Split locked cycles (SCYC active) count as two
separate accesses. Cycles restarted due to BOFF# are not
re-counted.

1DH I/O READ OR WRITE
CYCLE

Number of bus cycles directed to I/O
space.

Misaligned I/O accesses will generate two bus cycles. Bus
cycles restarted due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of noncacheable instruction or
data memory read bus cycles.

The count includes read cycles caused
by TLB misses, but does not include
read cycles to I/O space.

Cycles restarted due to BOFF# are not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address generation
interlock (AGI) stalls.

An AGI occurring in both the U- and V-
pipelines in the same clock signals this
event twice.

An AGI occurs when the instruction in the execute stage
of either of U- or V-pipelines is writing to either the index
or base address register of an instruction in the D2
(address generation) stage of either the U- or V- pipelines.

20H Reserved

21H Reserved

22H FLOPS Number of floating-point operations
that occur.

Number of floating-point adds, subtracts, multiplies,
divides, remainders, and square roots are counted. The
transcendental instructions consist of multiple adds and
multiplies and will signal this event multiple times.
Instructions generating the divide-by-zero, negative
square root, special operand, or stack exceptions will not
be counted.

Instructions generating all other floating-point exceptions
will be counted. The integer multiply instructions and
other instructions which use the x87 FPU will be counted.

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on register DR0
breakpoint.

The counters is incremented regardless if the breakpoints
are enabled or not. However, if breakpoints are not
enabled, code breakpoint matches will not be checked for
instructions executed in the V-pipe and will not cause this
counter to be incremented. (They are checked on
instruction executed in the U-pipe only when breakpoints
are not enabled.)

These events correspond to the signals driven on the
BP[3:0] pins. Refer to Chapter 17, “Debug, Branch Profile,
TSC, and Resource Monitoring Features” for more
information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on register DR1
breakpoint.

See comment for 23H event.

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Vol. 3B 19-243

PERFORMANCE MONITORING EVENTS

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on register DR2
breakpoint.

See comment for 23H event.

26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on register DR3
breakpoint.

See comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR and NMI
interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data reads and/or
writes (internal data cache hit and
miss combined).

Split cycle reads and writes are counted individually. Data
Memory Reads that are part of TLB miss processing are
not included. These events may occur at a maximum of
two per clock. I/O is not included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read and/or write
accesses that miss the internal data
cache, whether or not the access is
cacheable or noncacheable.

Additional reads to the same cache line after the first
BRDY# of the burst line fill is returned but before the final
(fourth) BRDY# has been returned, will not cause the
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are
not included. Accesses directed to I/O space are not
included.

2AH BUS_OWNERSHIP_
LATENCY
(Counter 0)

The time from LRM bus ownership
request to bus ownership granted
(that is, the time from the earlier of a
PBREQ (0), PHITM# or HITM#
assertion to a PBGNT assertion)

The ratio of the 2AH events counted on counter 0 and
counter 1 is the average stall time due to bus ownership
conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss ownership
transfers (that is, the number of
PBREQ (0) assertions

The ratio of the 2AH events counted on counter 0 and
counter 1 is the average stall time due to bus ownership
conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX instructions executed
in the U-pipe

2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX instructions executed
in the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a processor identified
a hit to a modified line due to a
memory access in the other processor
(PHITM (O))

If the average memory latencies of the system are known,
this event enables the user to count the Write Backs on
PHITM(O) penalty and the Latency on Hit Modified(I)
penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data lines in the L1
cache (PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of EMMS instructions
executed

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-244 Vol. 3B

PERFORMANCE MONITORING EVENTS

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions between MMX
and floating-point instructions or vice
versa

An even count indicates the processor
is in MMX state. an odd count indicates
it is in FP state.

This event counts the first floating-point instruction
following an MMX instruction or first MMX instruction
following a floating-point instruction.

The count may be used to estimate the penalty in
transitions between floating-point state and MMX state.

2EH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the bus is busy due
to the processor’s own activity (the
bus activity that is caused by the
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write accesses to
noncacheable memory

The count includes write cycles caused by TLB misses and
I/O write cycles.

Cycles restarted due to BOFF# are not re-counted.

2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of saturating MMX
instructions executed, independently
of whether they actually saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX instructions that used
saturating arithmetic when at least
one of its results actually saturated

If an MMX instruction operating on 4 doublewords
saturated in three out of the four results, the counter will
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the processor is not
idle due to HLT instruction

This event will enable the user to calculate “net CPI”. Note
that during the time that the processor is executing the
HLT instruction, the Time-Stamp Counter is not disabled.
Since this event is controlled by the Counter Controls CC0,
CC1 it can be used to calculate the CPI at CPL=3, which
the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the pipeline is stalled
due to a data cache translation look-
aside buffer (TLB) miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX instruction data read
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while pipe is stalled
due to a floating-point freeze

32H TAKEN_BRANCHES
(Counter 1)

Number of taken branches

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Vol. 3B 19-245

PERFORMANCE MONITORING EVENTS

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1 stage cannot
issue ANY instructions since the FIFO
buffer is empty

The D1 stage can issue 0, 1, or 2 instructions per clock if
those are available in an instructions FIFO buffer.

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 stage issues a
single instruction (since the FIFO
buffer had just one instruction ready)

The D1 stage can issue 0, 1, or 2 instructions per clock if
those are available in an instructions FIFO buffer.

When combined with the previously defined events,
Instruction Executed (16H) and Instruction Executed in
the V-pipe (17H), this event enables the user to calculate
the numbers of time pairing rules prevented issuing of
two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes caused by MMX
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write misses caused
by MMX instructions

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline flushes due to
wrong branch predictions resolved in
either the E-stage or the WB-stage

The count includes any pipeline flush due to a branch that
the pipeline did not follow correctly. It includes cases
where a branch was not in the BTB, cases where a branch
was in the BTB but was mispredicted, and cases where a
branch was correctly predicted but to the wrong address.

Branches are resolved in either the Execute stage
(E-stage) or the Writeback stage (WB-stage). In the later
case, the misprediction penalty is larger by one clock. The
difference between the 35H event count in counter 0 and
counter 1 is the number of E-stage resolved branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE
(Counter 1)

Number of pipeline flushes due to
wrong branch predictions resolved in
the WB-stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned data memory
references when executing MMX
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during pipeline stalls
caused by waits form MMX instruction
data memory reads

T3:

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

19-246 Vol. 3B

PERFORMANCE MONITORING EVENTS

37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns predicted
incorrectly or not predicted at all

The count is the difference between the total number of
executed returns and the number of returns that were
correctly predicted. Only RET instructions are counted (for
example, IRET instructions are not counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted returns (whether
they are predicted correctly and
incorrectly

Only RET instructions are counted (for example, IRET
instructions are not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the pipe is stalled
since the destination of previous MMX
multiply instruction is not ready yet

The counter will not be incremented if there is another
cause for a stall. For each occurrence of a multiply
interlock, this event will be counted twice (if the stalled
instruction comes on the next clock after the multiply) or
by once (if the stalled instruction comes two clocks after
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a MOVD/MOVQ
instruction store is stalled in D2 stage
due to a previous MMX operation with
a destination to be used in the store
instruction.

39H RETURNS
(Counter 0)

Number or returns executed. Only RET instructions are counted; IRET instructions are
not counted. Any exception taken on a RET instruction
and any interrupt recognized by the processor on the
instruction boundary prior to the execution of the RET
instruction will also cause this counter to be incremented.

39H Reserved

3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries in the Branch
Target Buffer

False entries are causes for misprediction other than a
wrong prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the BTB predicted a
not-taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS
(Counter 0)

Number of clocks while the pipeline is
stalled due to full write buffers while
executing MMX instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during stalls on MMX
instructions writing to E- or M-state
lines

Table 19-41. Events That Can Be Counted with Pentium Processor Performance Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

20.Updates to Chapter 24, Volume 3B
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
Changes to this chapter: Various updates related to VMX and Intel Processor Trace interactions.

Vol. 3C 24-1

CHAPTER 24
VIRTUAL MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD,
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the
processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction,

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so,
but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current
VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS
whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding VMCS
region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction,

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there

is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.

24-2 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g.,
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 24-1.

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.2 Processors that maintain
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-

Figure 24-1. States of VMCS X

Table 24-1. Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 24.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VMPTRLD X

VMCLEAR X

VMLAUNCH

VMCLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

VM
PTR

LD X

VM
PTR

LD Y

VM
PTR

LD X

VM
PTR

LD Y

Vol. 3C 24-3

VIRTUAL MACHINE CONTROL STRUCTURES

ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.1 Bit 31
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for
this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future
implementations may allow or require a different memory type2. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the

nature of VM exits. On some processors, these fields are read-only.3

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred
to collectively as VMX controls.

2. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was 0.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

3. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

24-4 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM entry (see Section 26.3.2) and stored into these fields on every VM exit (see
Section 27.3).

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode.
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

Vol. 3C 24-5

VIRTUAL MACHINE CONTROL STRUCTURES

The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the
segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

— IA32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of the
“load IA32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.
The following activity states are defined:2

— 0: Active. The logical processor is executing instructions normally.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Table 24-2. Format of Access Rights (Contd.)

Bit Position(s) Field

24-6 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault1 or some other serious
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this
field are given in Table 24-3.

• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32
processors may recognize one or more debug exceptions without immediately delivering them.2 This field
contains information about such exceptions. This field is described in Table 24-4.

2. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

1. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” from Chapter 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, and “POP—Pop a Value from the
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its
execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMIs is in effect.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

4 Enclave
interruption

A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

31:5 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

Vol. 3C 24-7

VIRTUAL MACHINE CONTROL STRUCTURES

• VMCS link pointer (64 bits). If the “VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies
that there is no such interrupt.)

2. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP)
occurred inside an RTM region while advanced debugging of RTM transactional regions was
enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).1

63:17 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this

field sets the bit to indicate that condition.

24-8 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

See Chapter 29 for more information on the use of this field.
• PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML”

VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the
page-modification log comprises 512 entries, the PML index is typically a value in the range 0–511. Details of
the page-modification log and use of the PML index are given in Section 28.2.5.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the

host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is support

24-10 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT,
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-based VM-execution controls are
used. If this control is 0, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Vol. 3C 24-11

VIRTUAL MACHINE CONTROL STRUCTURES

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
Section 29.5.

9 Virtual-interrupt
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

15 Enable ENCLS
exiting

If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether
the instruction causes a VM exit. See Section 24.6.16 and Section 25.1.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an
entry to the page-modification log. See Section 28.2.5.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.

19 Conceal VMX from
PT

If this control is 1, Intel Processor Trace suppresses from PIPs an indication that the processor
was in VMX non-root operation and omits a VMCS packet from any PSB+ produced in VMX non-
root operation (see Chapter 35).

20 Enable
XSAVES/XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

22 Mode-based
execute control for
EPT

If this control is 1, EPT execute permissions are based on whether the linear address being
accessed is supervisor mode or user mode. See Chapter 28.

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the
TSC multiplier field (see Section 24.6.5 and Section 25.3).

24-12 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B (each of which are
4 KBytes in size). I/O bitmap A contains one bit for each I/O port in the range 0000H through 7FFFH; I/O bitmap B
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 1. If the bitmaps are used,
execution of an I/O instruction causes a VM exit if any bit in the I/O bitmaps corresponding to a port it accesses is
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset and Multiplier
The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls
executions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field.
If this control is 1 (and the “RDTSC exiting” control is 0 and the “use TSC offsetting” control is 1), this field also
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 27 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4 registers. These
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW).
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits

in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.

Vol. 3C 24-13

VIRTUAL MACHINE CONTROL STRUCTURES

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.
The CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability
MSR IA32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization
There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and
Location” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A and Intel® 64
Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page.

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be
virtualized by the processor. See Section 29.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page.
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual
interrupts; see Chapter 29.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow”
VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold.
See Section 29.1.2.

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.

24-14 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized
writes to the APIC’s EOI register cause VM exits:

— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte aligned
posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address

in the range 00000000H to 00001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of RDMSR
applied to that MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each
MSR address in the range 00000000H to 00001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.

24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2.
VM entries that return from SMM use this field as described in Section 34.15.4.

Vol. 3C 24-15

VIRTUAL MACHINE CONTROL STRUCTURES

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting
of the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution
control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive

executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to

execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See
Section 25.1.3 for more details regarding PAUSE-loop exiting.

Table 24-8. Format of Extended-Page-Table Pointer

Bit
Position(s)

Field

2:0 EPT paging-structure memory type (see Section 28.2.6):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-

ture memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.4)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

11:7 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table3

3. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved

24-16 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.5 for more details of how these controls affect processor
behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.5.3).

24.6.15 VMCS Shadowing Bitmap Addresses
On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 ENCLS-Exiting Bitmap
The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution of
ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruction
executes normally. See Section 25.1.3 for more information.

24.6.17 Control Field for Page-Modification Logging
The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the
page-modification logging are given in Section 28.2.5.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

24.6.18 Controls for Virtualization Exceptions
On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the

virtualization-exception information area. When a logical processor encounters a virtualization exception,
it saves virtualization-exception information at the virtualization-exception information address; see Section
25.5.6.2.

Table 24-9. Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list.
See Section 25.5.5.3.

Vol. 3C 24-17

VIRTUAL MACHINE CONTROL STRUCTURES

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field
(see Section 25.5.5.3).

24.6.19 XSS-Exiting Bitmap
On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section
24.7.2.

24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-10 lists the
controls supported. See Chapter 27 for complete details of how these controls affect VM exits.

Table 24-10. Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this control determines whether a logical
processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

12 Load
IA32_PERF_GLOB
AL_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and the
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX-
preemption timer
value

This control determines whether the value of the VMX-preemption timer is saved on VM exit.

23 Clear
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.

24 Conceal VMX from
PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on
a VM exit or a VMCS packet on an SMM VM exit (see Chapter 35).

24-18 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11,
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is
recommended that this count not exceed 512 bytes.1 Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-store
count. The format of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero, the address
must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is

recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load
count (see Table 24-11). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through
24.8.3.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and since

CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX operation.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-11. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Vol. 3C 24-19

VIRTUAL MACHINE CONTROL STRUCTURES

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 lists
the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12.
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that
support the 0-settings of any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this
functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is

recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM entry.1

Table 24-12. Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control
(see Section 27.2).

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM)
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

16 Load
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.

17 Conceal VMX from
PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on
a VM entry or a VMCS packet on a VM entry that returns from SMM (see Chapter 35).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

24-20 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry
MSR-load count. The format of entries is described in Table 24-11. If the VM-entry MSR-load count is not zero,
the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have
been loaded). This process is called event injection and is controlled by the following three VM-entry control
fields:
• VM-entry interruption-information field (32 bits). This field provides details about the event to be injected.

Table 24-13 describes the field.

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM
should use the type hardware exception for all exceptions other than breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#OF; generated by INTO); it should use the type software
exception for #BP and #OF. The type other event is used for injection of events that are not delivered
through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on every
VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on
the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the use of the interruption type
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

Table 24-13. Format of the VM-Entry Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

Vol. 3C 24-21

VIRTUAL MACHINE CONTROL STRUCTURES

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).1

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-14.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can
happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.7), software
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains
additional information about the cause of VM exits due to the following: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT;
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register accesses;
MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the VM exit. See Section
27.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

1. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

Table 24-14. Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

26:16 Reserved (cleared to 0)

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

24-22 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

• Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations.
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored events: exceptions (including
those generated by the instructions INT3, INTO, BOUND, and UD); external interrupts that occur while the
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information is
provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic information associated with the event

causing the VM exit. Table 24-15 describes this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This
information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information associated with the event that was

being delivered when the VM exit occurred. Table 24-16 describes this field.

Table 24-15. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.5.1.2.

Vol. 3C 24-23

VIRTUAL MACHINE CONTROL STRUCTURES

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution, this field receives the

length in bytes of the instruction whose execution led to the VM exit.1 See Section 27.2.4 for details of when
and how this field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS,
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section
27.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for
VM exits due to SMIs that arrive immediately after retirement of I/O instructions. They provide information about
that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that addressed the I/O instruction).

24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of
one of the VMX instructions.

Table 24-16. Format of the IDT-Vectoring Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

24-24 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

24.10 VMCS TYPES: ORDINARY AND SHADOW
Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when

the current VMCS is a shadow VMCS fail (see Section 26.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES
This section details guidelines that software should observe when using a VMCS and related structures. It also
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary
memory operations, in part because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS.

Results may vary from time to time or from logical processor to logical processor.

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.

Vol. 3C 24-25

VIRTUAL MACHINE CONTROL STRUCTURES

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS.
Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 27 and may

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor

to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given,
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields
and their function in the VMCS. See Table 24-17.

The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

Table 24-17. Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)

24-26 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information.
(The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and
access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination
operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source
operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode,
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.
• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support

Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode,
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use
VMWRITE with the high access type (establishing bits 63:32 of the field).

Vol. 3C 24-27

VIRTUAL MACHINE CONTROL STRUCTURES

24.11.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a
VMCS region. Because the format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that

VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR

for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS
from one logical processor to another.

24.11.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are
referenced by pointers in a VMCS (for example, the I/O bitmaps). While the pointers to these data structures are
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior
(including behaviors identified in Section 24.11.1).

24.11.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.2,3

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.

24-28 Vol. 3C

VIRTUAL MACHINE CONTROL STRUCTURES

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should
use a separate region for each logical processor and should not access or modify the VMXON region of a logical
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

21.Updates to Chapter 28, Volume 3C
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--
Change to chapter: Footnote update in Section 28.3.3.4 “Guidelines for Use of the INVEPT Instruction”.

Vol. 3C 28-1

CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address translation: virtual-processor iden-
tifiers (VPIDs) and the extended page-table mechanism (EPT). VPIDs are a mechanism for managing translations
of linear addresses. EPT defines a layer of address translation that augments the translation of linear addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of EPT. Section 28.3 explains how
a logical processor may cache information from the paging structures, how it may use that cached information, and
how software can managed the cached information.

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs and paging-structure caches.
This ensured that translations cached for the old linear-address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which a logical processor may cache
information for multiple linear-address spaces. When VPIDs are used, VMX transitions may retain cached informa-
tion and the logical processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages information cached for multiple address
spaces. A logical processor may tag some cached information with a 16-bit VPID. This section specifies how the
current VPID is determined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management mode under the default treatment
of SMIs and SMM with VMX operation; see Section 34.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-execution control is 1, the

current VPID is the value of the VPID VM-execution control field in the VMCS. (VM entry ensures that this value
is never 0000H; see Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, the processor associates
cached information with both a VPID and a PCID. Such information is used only if the current VPID and PCID both
match those associated with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical
memory. When EPT is in use, certain addresses that would normally be treated as physical addresses (and used to
access memory) are instead treated as guest-physical addresses. Guest-physical addresses are translated by
traversing a set of EPT paging structures to produce physical addresses that are used to access memory.
• Section 28.2.1 gives an overview of EPT.
• Section 28.2.2 describes operation of EPT-based address translation.
• Section 28.2.3 discusses VM exits that may be caused by EPT.
• Section 28.2.6 describes interactions between EPT and memory typing.

28.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-physical addresses used in
VMX non-root operation and those used by VM entry for event injection.

28-2 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

The translation from guest-physical addresses to physical addresses is determined by a set of EPT paging struc-
tures. The EPT paging structures are similar to those used to translate linear addresses while the processor is in
IA-32e mode. Section 28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced through control register CR3.
While the “enable EPT” VM-execution control is 1, these are called guest paging structures. There are no guest
paging structures if CR0.PG = 0.1

When the “enable EPT” VM-execution control is 1, the identity of guest-physical addresses depends on the value
of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of control register CR3 and the

guest paging structures. (This includes the values of the PDPTEs, which logical processors store in internal,
non-architectural registers.) The latter includes (in page-table entries and in other paging-structure entries for
which bit 7—PS—is 1) the addresses to which linear addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires multiple translations of guest-phys-
ical addresses using EPT. Assume, for example, that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear
address then operates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory located at the guest-physical

address in CR3. The guest-physical address of the guest page-directory entry (PDE) is translated through EPT
to determine the guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at the guest-physical address in
the guest PDE. The guest-physical address of the guest page-table entry (PTE) is translated through EPT to
determine the guest PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the guest-physical address in the guest
PTE. The guest-physical address determined by this offset is translated through EPT to determine the physical
address to which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT specifies the privileges that software
is allowed when accessing the address. Attempts at disallowed accesses are called EPT violations and cause
VM exits. See Section 28.2.3.

A processor uses EPT to translate guest-physical addresses only when those addresses are used to access memory.
This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether that address is translated

through EPT depends on whether PAE paging is being used.2

— If PAE paging is not being used, the instruction does not use that address to access memory and does not
cause it to be translated through EPT. (If CR0.PG = 1, the address will be translated through EPT on the
next memory accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-pointer-table entries (PDPTEs)
from that address and it does cause the address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the PDPTEs from the guest-
physical address in CR3. Such executions cause that address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the PDPTEs (see above) do not use
those addresses to access memory and do not cause them to be translated through EPT. The address in a
PDPTE will be translated through EPT on the next memory accessing using a linear address that uses that
PDPTE.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, the logical processor operates as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are
both 1.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Vol. 3C 28-3

VMX SUPPORT FOR ADDRESS TRANSLATION

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1 It uses a page-walk length of
4, meaning that at most 4 EPT paging-structure entries are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in bits 51:12 of the

extended-page-table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section 24.6.11). An EPT
PML4 table comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the physical address
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it controls access to a 512-
GByte region of the guest-physical-address space. The format of an EPT PML4E is given in Table 28-1.

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. Thus, no such processor can pro-
duce a guest-physical address with more than 48 bits. An attempt to use such an address causes a page fault. An attempt to load
CR3 with such an address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 that would load a
PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-walk lengths are supported.

Table 28-1. Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 512-GByte region controlled by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
fetches are allowed from the 512-GByte region controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 512-GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 512-GByte region
controlled by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 512-GByte region
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

28-4 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the physical address specified in
bits 51:12 of the EPT PML4E. An EPT page-directory-pointer table comprises 512 64-bit entries (EPT PDPTEs).
An EPT PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4E.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls access to a 1-GByte
region of the guest-physical-address space. Use of the EPT PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical address is computed as
follows:

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
The format of an EPT PDPTE that maps a 1-GByte page is given in Table 28-2.

• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is located at the physical address
specified in bits 51:12 of the EPT PDPTE. The format of an EPT PDPTE that references an EPT page directory is
given in Table 28-3.

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s physical-address width by execut-

ing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is allowed.

Vol. 3C 28-5

VMX SUPPORT FOR ADDRESS TRANSLATION

Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 1-GByte page referenced by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether
instruction fetches are allowed from the 1-GByte page controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 1-GByte page controlled by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.6)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte page controlled
by this entry. If that control is 0, this bit is ignored.

11 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.

28-6 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is selected using the physical address
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it controls access to a 2-MByte
region of the guest-physical-address space. Use of the EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page. The final physical address is computed as

follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
The format of an EPT PDE that maps a 2-MByte page is given in Table 28-4.

• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located at the physical address
specified in bits 51:12 of the EPT PDE. The format of an EPT PDE that references an EPT page table is given in
Table 28-5.
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a physical address defined
as follows:

— Bits 63:52 are all 0.

Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 1-GByte region controlled by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
fetches are allowed from the 1-GByte region controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 1-GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte region controlled
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte region
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

Vol. 3C 28-7

VMX SUPPORT FOR ADDRESS TRANSLATION

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, every EPT PTE maps a 4-KByte

page. The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PTE.

— Bits 11:0 are from the original guest-physical address.
The format of an EPT PTE is given in Table 28-6.

An EPT paging-structure entry is present if any of bits 2:0 is 1; otherwise, the entry is not present. The processor
ignores bits 62:3 and uses the entry neither to reference another EPT paging-structure entry nor to produce a
physical address. A reference using a guest-physical address whose translation encounters an EPT paging-struc-

Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 2-MByte page referenced by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
fetches are allowed from the 2-MByte page controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 2-MByte page controlled by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.6)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte page controlled
by this entry. If that control is 0, this bit is ignored.

11 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.

28-8 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

ture that is not present causes an EPT violation (see Section 28.2.3.2). (If the “EPT-violation #VE” VM-execution
control is 1, the EPT violation is convertible to a virtualization exception only if bit 63 is 0; see Section 25.5.6.1. If
the “EPT-violation #VE” VM-execution control is 0, this bit is ignored.)

NOTE
If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure
entry is present if any of bits 2:0 or bit 10 is 1. If bits 2:0 are all 0 but bit 10 is 1, the entry is used
normally to reference another EPT paging-structure entry or to produce a physical address.

The discussion above describes how the EPT paging structures reference each other and how the logical processor
traverses those structures when translating a guest-physical address. It does not cover all details of the translation
process. Additional details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes before the process completes) are

described in Section 28.2.3.
• Interactions between the EPT translation mechanism and memory typing are described in Section 28.2.6.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-structure entries. For the EPT paging
structure entries, it identifies separately the format of entries that map pages, those that reference other EPT
paging structures, and those that do neither because they are not present; bits 2:0 and bit 7 are highlighted
because they determine how a paging-structure entry is used. (Figure 28-1 does not comprehend the fact that, if
the “mode-based execute control for EPT” VM-execution control is 1, an entry is present if any of bits 2:0 or bit 10
is 1.)

Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 2-MByte region controlled by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether instruction
fetches are allowed from the 2-MByte region controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 2-MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte region controlled
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte region
controlled by this entry. If that control is 0, this bit is ignored.

11 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored

Vol. 3C 28-9

VMX SUPPORT FOR ADDRESS TRANSLATION

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations, EPT violations, and
page-modification log-full events. An EPT misconfiguration occurs when, in the course of translating a guest-
physical address, the logical processor encounters an EPT paging-structure entry that contains an unsupported
value (see Section 28.2.3.1). An EPT violation occurs when there is no EPT misconfiguration but the EPT paging-
structure entries disallow an access using the guest-physical address (see Section 28.2.3.2). A page-modifica-

tion log-full event occurs when the logical processor determines a need to create a page-modification log entry
and the current log is full (see Section 28.2.5).

These events occur only due to an attempt to access memory with a guest-physical address. Loading CR3 with a
guest-physical address with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT violation
until that address is used to access a paging structure.1

If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions
instead of VM exits. See Section 25.5.6.1.

Table 28-6. Format of an EPT Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 4-KByte page referenced by this entry

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; indicates whether
instruction fetches are allowed from the 4-KByte page controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 4-KByte page controlled by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.6)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 4-KByte page controlled
by this entry. If that control is 0, this bit is ignored.

11 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

28-10 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

28.2.3.1 EPT Misconfigurations
An EPT misconfiguration occurs if translation of a guest-physical address encounters an EPT paging-structure that
meets any of the following conditions:
• Bit 0 of the entry is clear (indicating that data reads are not allowed) and bit 1 is set (indicating that data writes

are allowed).
• Either of the following if the processor does not support execute-only translations:

— Bit 0 of the entry is clear (indicating that data reads are not allowed) and bit 2 is set (indicating that
instruction fetches are allowed).1

— The “mode-based execute control for EPT” VM-execution control is 1, bit 0 of the entry is clear (indicating
that data reads are not allowed), and bit 10 is set (indicating that instruction fetches are allowed from user-
mode linear addresses).

Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether execute-only
translations are supported (see Appendix A.10).

• The entry is present (see Section 28.2.2) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that is beyond the logical
processor’s physical-address width.2 See Section 28.2.2 for details of which bits are reserved in which EPT
paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an EPT PDE with bit 7 set to 1 or
an EPT PTE) and the value of bits 5:3 (EPT memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with settings reserved for future
functionality. Software developers should be aware that such settings may be used in the future and that an EPT
paging-structure entry that causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2 EPT Violations
An EPT violation may occur during an access using a guest-physical address whose translation does not cause an
EPT misconfiguration. An EPT violation occurs in any of the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure entry that is not present (see

Section 28.2.2).
• The access is a data read and, for any byte to be read, bit 0 (read access) was clear in any of the EPT paging-

structure entries used to translate the guest-physical address of the byte. Reads by the logical processor of
guest paging structures to translate a linear address are considered to be data reads.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3
instruction may cause an EPT misconfiguration, an EPT violation, or a page-modification log-full event.

1. If the “mode-based execute control for EPT” VM-execution control is 1, setting bit 2 indicates that instruction fetches are allowed
from supervisor-mode linear addresses.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

Vol. 3C 28-11

VMX SUPPORT FOR ADDRESS TRANSLATION

• The access is a data write, for any byte to be written, bit 1 (write access) was clear in any of the EPT paging-
structure entries used to translate the guest-physical address of the byte. Writes by the logical processor to
guest paging structures to update accessed and dirty flags are considered to be data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), processor accesses to guest
paging-structure entries are treated as writes with regard to EPT violations. Thus, if bit 1 is clear in any of the

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Rsvd.
A
/
D

EPT
PWL–

1

EPT
PS
MT

EPTP2

Ignored Rsvd. Address of EPT page-directory-pointer table Ig
n.

X
U
3

Ig
n. A Reserved X

4 W R PML4E:
present5

S
V
E6

Ignored 0 0 0
PML4E:

not
present

S
V
E

Ignored Rsvd.
Physical

address of
1GB page

Reserved Ig
n.

X
U D A 1

I
P
A
T

EPT
MT X W R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ig
n.

X
U

Ig
n. A 0 Rsvd. X W R

PDPTE:
page

directory

S
V
E

Ignored 0 0 0
PDTPE:

not
present

S
V
E

Ignored Rsvd. Physical address
of 2MB page Reserved Ig

n.
X
U D A 1

I
P
A
T

EPT
MT X W R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ig
n.

X
U

Ig
n. A 0 Rsvd. X W R

PDE:
page
table

S
V
E

Ignored 0 0 0
PDE:
not

present

S
V
E

Ignored Rsvd. Physical address of 4KB page Ig
n.

X
U D A

I
g
n

I
P
A
T

EPT
MT X W R

PTE:
4KB
page

S
V
E

Ignored 0 0 0
PTE:
not

present

Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. See Section 24.6.11 for details of the EPTP.
3. Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is 0, this bit is

ignored.
4. Execute access. If the “mode-based execute control for EPT” VM-execution control is 1, this bit controls execute access for supervi-

sor-mode linear addresses.
5. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or

bit 10 is 1. This table does not comprehend that fact.
6. Suppress #VE. If the “EPT-violation #VE” VM-execution control is 0, this bit is ignored.

28-12 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

EPT paging-structure entries used to translate the guest-physical address of a guest paging-structure entry, an
attempt to use that entry to translate a linear address causes an EPT violation.
(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for PAE paging; see Section
4.4.1. Those loads of guest PDPTEs are treated as reads and do not cause EPT violations due to a guest-physical
address not being writable.)

• The access is an instruction fetch and the EPT paging structures prevent execute access to any of the bytes
being fetched. Whether this occurs depends upon the setting of the “mode-based execute control for EPT” VM-
execution control:

— If the control is 0, an instruction fetch from a byte is prevented if bit 2 (execute access) was clear in any of
the EPT paging-structure entries used to translate the guest-physical address of the byte.

— If the control is 1, an instruction fetch from a byte is prevented in either of the following cases:

• Paging maps the linear address of the byte as a supervisor-mode address and bit 2 (execute access for
supervisor-mode linear addresses) was clear in any of the EPT paging-structure entries used to
translate the guest-physical address of the byte.

Paging maps a linear address as a supervisor-mode address if the U/S flag (bit 2) is 0 in at least one of
the paging-structure entries controlling the translation of the linear address.

• Paging maps the linear address of the byte as a user-mode address and bit 10 (execute access for user-
mode linear addresses) was clear in any of the EPT paging-structure entries used to translate the guest-
physical address of the byte.

Paging maps a linear address as a user-mode address if the U/S flag is 1 in all of the paging-structure
entries controlling the translation of the linear address. If paging is disabled (CR0.PG = 0), every linear
address is a user-mode address.

28.2.3.3 Prioritization of EPT Misconfigurations and EPT Violations
The translation of a linear address to a physical address requires one or more translations of guest-physical
addresses using EPT (see Section 28.2.1). This section specifies the relative priority of EPT-induced VM exits with
respect to each other and to other events that may be encountered when accessing memory using a linear address.

For an access to a guest-physical address, determination of whether an EPT misconfiguration or an EPT violation
occurs is based on an iterative process:1

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (see Section 28.2.2), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see Section 28.2.3.1), an EPT miscon-
figuration occurs.

c. If the entry is present and its contents are configured properly, operation depends on whether the entry
references another EPT paging structure (whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from that structure is accessed;
step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address (the translation of the original
guest-physical address); step 2 is executed.

2. Once the ultimate physical address is determined, the privileges determined by the EPT paging-structure
entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges (see Section 28.2.3.2), an EPT
violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, memory is accessed using the
ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the processor first accessing an
entry in the guest paging structure referenced by the guest-physical address in CR3 (or, if PAE paging is in use, the

1. This is a simplification of the more detailed description given in Section 28.2.2.

Vol. 3C 28-13

VMX SUPPORT FOR ADDRESS TRANSLATION

guest-physical address in the appropriate PDPTE register), then accessing an entry in another guest paging struc-
ture referenced by the guest-physical address in the first guest paging-structure entry, etc. Each guest-physical
address is itself translated using EPT and may cause an EPT-induced VM exit. The following items detail how page
faults and EPT-induced VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-physical address (initially, the
address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag) of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on whether the entry references
another guest paging structure (whether it is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry from that structure is
accessed; step 1 is executed for that other entry.

• Otherwise, the entry is used to produce the ultimate guest-physical address (the translation of the
original linear address); step 2 is executed.

2. Once the ultimate guest-physical address is determined, the privileges determined by the guest paging-
structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it was a write to a read-only
page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt is made to access memory at
the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed using the ultimate physical
address (the translation, using EPT, of the ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is translated using EPT (see above). This
process, if it completes without an EPT violation or EPT misconfiguration, produces a physical address and deter-
mines the privileges allowed by the EPT paging-structure entries. If these privileges do not allow the access to the
physical address (see Section 28.2.3.2), an EPT violation occurs. Otherwise, memory is accessed using the phys-
ical address.

28.2.4 Accessed and Dirty Flags for EPT
The Intel 64 architecture supports accessed and dirty flags in ordinary paging-structure entries (see Section
4.8). Some processors also support corresponding flags in EPT paging-structure entries. Software should read the
VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports
this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). If this bit is 1, the processor will set the accessed and
dirty flags for EPT as described below. In addition, setting this flag causes processor accesses to guest paging-
structure entries to be treated as writes (see below and Section 28.2.3.2).

For any EPT paging-structure entry that is used during guest-physical-address translation, bit 8 is the accessed
flag. For a EPT paging-structure entry that maps a page (as opposed to referencing another EPT paging structure),
bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-physical-address translation, it sets
the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty flag (if it is not already set) in
the EPT paging-structure entry that identifies the final physical address for the guest-physical address (either an
EPT PTE or an EPT paging-structure entry in which bit 7 is 1).

28-14 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

When accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are
treated as writes (see Section 28.2.3.2). Thus, such an access will cause the processor to set the dirty flag in the
EPT paging-structure entry that identifies the final physical address of the guest paging-structure entry.

(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR instruction; see Section 4.4.1.
Those loads of guest PDPTEs are treated as reads and do not cause the processor to set the dirty flag in any EPT
paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them; only software can clear them.

A processor may cache information from the EPT paging-structure entries in TLBs and paging-structure caches (see
Section 28.3). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor
might not set the corresponding bit in memory on a subsequent access using an affected guest-physical address.

28.2.5 Page-Modification Logging
When accessed and dirty flags for EPT are enabled, software can track writes to guest-physical addresses using a
feature called page-modification logging.

Software can enable page-modification logging by setting the “enable PML” VM-execution control (see Table 24-7
in Section 24.6.2). When this control is 1, the processor adds entries to the page-modification log as described
below. The page-modification log is a 4-KByte region of memory located at the physical address in the PML address
VM-execution control field. The page-modification log consists of 512 64-bit entries; the PML index VM-execution
control field indicates the next entry to use.

Before allowing a guest-physical access, the processor may determine that it first needs to set an accessed or dirty
flag for EPT (see Section 28.2.4). When this happens, the processor examines the PML index. If the PML index is
not in the range 0–511, there is a page-modification log-full event and a VM exit occurs. In this case, the
accessed or dirty flag is not set, and the guest-physical access that triggered the event does not occur.

If instead the PML index is in the range 0–511, the processor proceeds to update accessed or dirty flags for EPT as
described in Section 28.2.4. If the processor updated a dirty flag for EPT (changing it from 0 to 1), it then operates
as follows:

1. The guest-physical address of the access is written to the page-modification log. Specifically, the guest-physical
address is written to physical address determined by adding 8 times the PML index to the PML address.
Bits 11:0 of the value written are always 0 (the guest-physical address written is thus 4-KByte aligned).

2. The PML index is decremented by 1 (this may cause the value to transition from 0 to FFFFH).

Because the processor decrements the PML index with each log entry, the value may transition from 0 to FFFFH. At
that point, no further logging will occur, as the processor will determine that the PML index is not in the range 0–
511 and will generate a page-modification log-full event (see above).

28.2.6 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a memory access while EPT is in
use. (See Chapter 11, “Memory Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A for details of memory typing in the Intel 64 architecture.) Section 28.2.6.1 explains how the memory
type is determined for accesses to the EPT paging structures. Section 28.2.6.2 explains how the memory type is
determined for an access using a guest-physical address that is translated using EPT.

28.2.6.1 Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT paging structures. The determi-
nation is based first on the value of bit 30 (cache disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-structure memory type, which

is specified in bits 2:0 of the extended-page-table pointer (EPTP), a VM-execution control field (see Section
24.6.11). A value of 0 indicates the uncacheable type (UC), while a value of 6 indicates the write-back type
(WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable (UC).

Vol. 3C 28-15

VMX SUPPORT FOR ADDRESS TRANSLATION

The MTRRs have no effect on the memory type used for an access to an EPT paging structure.

28.2.6.2 Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an access that is translated
using EPT) is the memory type that is used to access memory. The effective memory type is based on the value of
bit 30 (cache disable—CD) in control register CR0; the last EPT paging-structure entry used to translate the guest-
physical address (either an EPT PDE with bit 7 set to 1 or an EPT PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the IA32_PAT MSR as specified in
Section 11.12.3, “Selecting a Memory Type from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure entry: 0 = UC; 1 = WC; 4 =
WT; 5 = WP; and 6 = WB. Other values are reserved and cause EPT misconfigurations (see Section 28.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the last EPT paging-structure
entry:

— If the value is 0, the effective memory type is the combination of the EPT memory type and the PAT
memory type specified in Table 11-7 in Section 11.5.2.2, using the EPT memory type in place of the MTRR
memory type.

— If the value is 1, the memory type used for the access is the EPT memory type. The PAT memory type is
ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical address.

28.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the address-translation process by
caching on the processor data from the structures in memory that control that process. Such caching is discussed
in Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A. The current section describes how this caching interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this caching architecture. EPT defines
the guest-physical address space and defines translations to that address space (from the linear-address space)
and from that address space (to the physical-address space). Both features control the ways in which a logical
processor may create and use information cached from the paging structures.

Section 28.3.1 describes the different kinds of information that may be cached. Section 28.3.2 specifies when such
information may be cached and how it may be used. Section 28.3.3 details how software can invalidate cached
information.

28.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A identifies two kinds of translation-related information that may be cached by a logical

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls
are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT memory type is selected based on
the values of the PAT, PCD, and PWT bits in a page-table entry (or page-directory entry with PS = 1). For accesses to a guest paging-
structure entry X, the PAT memory type is selected from the table by using a value of 0 for the PAT bit with the values of PCD and
PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root paging structure). With PAE paging, the PAT
memory type for accesses to the PDPTEs is WB.

28-16 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

processor: translations, which are mappings from linear page numbers to physical page frames, and paging-
structure caches, which map the upper bits of a linear page number to information from the paging-structure
entries used to translate linear addresses matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A logical processor may cache and
use such information based on its function. Information with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to the physical page frame to
which it translates, along with information about access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear
address to the physical address of the paging structure used to translate the corresponding region of the
linear-address space, along with information about access privileges. For example, bits 47:39 of a linear
address would map to the address of the relevant page-directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical page number to the physical
page frame to which it translates, along with information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping from the upper portion of a
guest-physical address to the physical address of the EPT paging structure used to translate the corre-
sponding region of the guest-physical address space, along with information about access privileges.

The information in guest-physical mappings about access privileges and memory typing is derived from EPT
paging structures.

• Combined mappings.3 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number to the physical page frame to
which it translates, along with information about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear
address to the physical address of the paging structure used to translate the corresponding region of the
linear-address space, along with information about access privileges.

The information in combined mappings about access privileges and memory typing is derived from both guest
paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous section:4

• The following items describe the creation of mappings while EPT is not in use (including execution outside VMX
non-root operation):

— Linear mappings may be created. They are derived from the paging structures referenced (directly or
indirectly) by the current value of CR3 and are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-structure entries that are not present
(bit 0 is 0) or that set reserved bits. For example, if a PTE is not present, no linear mapping are created for
any linear page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.

2. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

3. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

4. This section associated cached information with the current VPID and PCID. If PCIDs are not supported or are not being used (e.g.,
because CR4.PCIDE = 0), all the information is implicitly associated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers
(PCIDs),” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Vol. 3C 28-17

VMX SUPPORT FOR ADDRESS TRANSLATION

— Guest-physical mappings may be created. They are derived from the EPT paging structures referenced
(directly or indirectly) by bits 51:12 of the current EPTP. These 40 bits contain the address of the EPT-PML4-
table. (the notation EP4TA refers to those 40 bits). Newly created guest-physical mappings are associated
with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging structures referenced (directly
or indirectly) by the current EP4TA. If CR0.PG = 1, they are also derived from the paging structures
referenced (directly or indirectly) by the current value of CR3. They are associated with the current VPID,
the current PCID, and the current EP4TA.1 No combined paging-structure-cache entries are created if
CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with information derived from EPT paging-
structure entries that are not present (see Section 28.2.2) or that are misconfigured (see Section
28.2.3.1).

— No combined mappings are created with information derived from guest paging-structure entries that are
not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical processor may use cached mappings

as follows:

— For accesses using linear addresses, it may use linear mappings associated with the current VPID and the
current PCID. It may also use global TLB entries (linear mappings) associated with the current VPID and
any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated with the current VPID, the
current PCID, and the current EP4TA. It may also use global TLB entries (combined mappings) associated
with the current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical mappings associated with the
current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may result in inconsistencies
between those structures and the mappings cached by a logical processor. Certain operations invalidate informa-
tion cached by a logical processor and can be used to eliminate such inconsistencies.

28.3.3.1 Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX

operation (e.g., the INVLPG and INVPCID instructions) invalidate linear mappings and combined mappings.3
They are required to do so only for the current VPID (but, for combined mappings, all EP4TAs). Linear

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that are associated with different
EP4TAs. Similarly, it may be caching combined mappings for an EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls
are both 1.

3. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A for an enumeration of operations that architecturally invalidate entries in the TLBs and paging-structure
caches independent of VMX operation.

28-18 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

mappings for the current VPID are invalidated even if EPT is in use.1 Combined mappings for the current
VPID are invalidated even if EPT is not in use.2

• An EPT violation invalidates any guest-physical mappings (associated with the current EP4TA) that would be
used to translate the guest-physical address that caused the EPT violation. If that guest-physical address was
the translation of a linear address, the EPT violation also invalidates any combined mappings for that linear
address associated with the current PCID, the current VPID and the current EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits invalidate linear mappings and
combined mappings associated with VPID 0000H (for all PCIDs). Combined mappings for VPID 0000H are
invalidated for all EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined mappings. Invalidation is based
on instruction operands, called the INVVPID type and the INVVPID descriptor. Four INVVPID types are currently
defined:

— Individual-address. If the INVVPID type is 0, the logical processor invalidates linear mappings and
combined mappings associated with the VPID specified in the INVVPID descriptor and that would be used
to translate the linear address specified in of the INVVPID descriptor. Linear mappings and combined
mappings for that VPID and linear address are invalidated for all PCIDs and, for combined mappings, all
EP4TAs. (The instruction may also invalidate mappings associated with other VPIDs and for other linear
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all linear mappings and
combined mappings associated with the VPID specified in the INVVPID descriptor. Linear mappings and
combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs.
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear mappings and combined
mappings associated with all VPIDs except VPID 0000H and with all PCIDs. (The instruction may also
invalidate linear mappings with VPID 0000H.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical processor invalidates linear
mappings and combined mappings associated with the VPID specified in the INVVPID descriptor. Linear
mappings and combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings,
all EP4TAs. The logical processor is not required to invalidate information that was used for global transla-
tions (although it may do so). See Section 4.10, “Caching Translation Information” for details regarding
global translations. (The instruction may also invalidate mappings associated with other VPIDs.)

See Chapter 30 for details of the INVVPID instruction. See Section 28.3.3.3 for guidelines regarding use of this
instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and combined mappings. Invalidation
is based on instruction operands, called the INVEPT type and the INVEPT descriptor. Two INVEPT types are
currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all guest-physical mappings and
combined mappings associated with the EP4TA specified in the INVEPT descriptor. Combined mappings for
that EP4TA are invalidated for all VPIDs and all PCIDs. (The instruction may invalidate mappings associated
with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-physical mappings and
combined mappings associated with all EP4TAs (and, for combined mappings, for all VPIDs and PCIDs).

See Chapter 30 for details of the INVEPT instruction. See Section 28.3.3.4 for guidelines regarding use of this
instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, and combined mappings.

1. While no linear mappings are created while EPT is in use, a logical processor may retain, while EPT is in use, linear mappings (for the
same VPID as the current one) there were created earlier, when EPT was not in use.

2. While no combined mappings are created while EPT is not in use, a logical processor may retain, while EPT is in not use, combined
mappings (for the same VPID as the current one) there were created earlier, when EPT was in use.

Vol. 3C 28-19

VMX SUPPORT FOR ADDRESS TRANSLATION

28.3.3.2 Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX

operation are not required to invalidate any guest-physical mappings.
• The INVVPID instruction is not required to invalidate any guest-physical mappings.
• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If the “enable VPID” VM-execution

control is 1, VMX transitions are not required to invalidate any linear mappings or combined mappings.
• The VMXOFF and VMXON instructions are not required to invalidate any linear mappings, guest-physical

mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, the operations identified
above may invalidate the indicated mappings despite the fact that doing so is not required.

28.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that software is virtualizing memory
(e.g., see Section 32.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. Such a VMM may configure
the VMCS so that all or some of the operations that invalidate entries the TLBs and the paging-structure caches
(e.g., the INVLPG instruction) cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure caches are
appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the specific algorithm being used for
page-table virtualization. The following items provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG instruction being
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—except for global translations.
An example is the MOV to CR3 instruction. (See Section 4.10, “Caching Translation Information” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details regarding global translations.)
Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—including for global transla-
tions. An example is the MOV to CR4 instruction if the value of value of bit 4 (page global enable—PGE) is
changing. Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the current VPID, and it will use
such mappings to translate linear addresses. For that reason, a VMM should not use the same VPID for different
non-EPT guests that use different page tables. Doing so may result in one guest using translations that pertain to
the other.

If EPT is in use, the instructions enumerated above might not be configured to cause VM exits and the VMM might
not be emulating them. In that case, executions of the instructions by guest software properly invalidate the

28-20 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

required entries in the TLBs and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID instruc-
tion is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of bits 51:12 of current EPTP.
If a VMM uses different EPTP values for different guests, it may use the same VPID for those guests. Doing so
cannot result in one guest using translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:
• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if

software does not properly invalidate information that may be cached from the paging structures. If, at one
time, the current VPID on a logical processor was a non-zero value X, it is recommended that software use the
INVVPID instruction with the “single-context” INVVPID type and with VPID X in the INVVPID descriptor before
a VM entry on the same logical processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type immediately after execution of
the VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially
undesired retention of information cached from paging structures between separate uses of VMX operation.

28.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate information cached from the
EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT type after making any of the

following changes to an EPT paging-structure entry (the INVEPT descriptor should contain an EPTP value that
references — directly or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.1

— Changing the physical address in bits 51:12.

— Clearing bit 8 (the accessed flag) if accessed and dirty flags for EPT will be enabled.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), changing either bits 5:3 or bit 6. (These bits
determine the effective memory type of accesses using that EPT paging-structure entry; see Section
28.2.6.)

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), clearing bit 9 (the dirty flag) if accessed and dirty
flags for EPT will be enabled.

• Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an
EPTP value X such that X[6] = 1 (accessed and dirty flags for EPT are enabled) if the logical processor had
earlier been in VMX non-root operation with an EPTP value Y such that Y[6] = 0 (accessed and dirty flags for
EPT are not enabled) and Y[51:12] = X[51:12].

• Software may use the INVEPT instruction after modifying a present EPT paging-structure entry (see Section
28.2.2) to change any of the privilege bits 2:0 from 0 to 1.2 Failure to do so may cause an EPT violation that
would not otherwise occur. Because an EPT violation invalidates any mappings that would be used by the access
that caused the EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the original access is
performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT paging-structure entries that are
not present (see Section 28.2.2) or misconfigured (see Section 28.2.3.1), it is not necessary to execute INVEPT
following modification of an EPT paging-structure entry that had been not present or misconfigured.

1. If the “mode-based execute control for EPT” VM-execution control is 1, software should use the INVEPT instruction after changing
privilege bit 10 from 1 to 0.

2. If the “mode-based execute control for EPT” VM-execution control is 1, software may use the INVEPT instruction after modifying a
present EPT paging-structure entry to change privilege bit 10 from 0 to 1.

Vol. 3C 28-21

VMX SUPPORT FOR ADDRESS TRANSLATION

• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if
software does not properly invalidate information that may be cached from the EPT paging structures. If EPT
was in use on a logical processor at one time with EPTP X, it is recommended that software use the INVEPT
instruction with the “single-context” INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry
on the same logical processor that enables EPT with EPTP X and either (a) the “virtualize APIC accesses” VM-
execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type immediately after execution of the
VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially
undesired retention of information cached from EPT paging structures between separate uses of VMX
operation.

In a system containing more than one logical processor, software must account for the fact that information from
an EPT paging-structure entry may be cached on logical processors other than the one that modifies that entry. The
process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shootdown.” A
discussion of TLB shootdown appears in Section 4.10.5, “Propagation of Paging-Structure Changes to Multiple
Processors,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

28-22 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

22.Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--
Changes to this chapter: Various updates related to VMX and Intel Processor Trace interactions. Various minor
corrections throughout chapter.

Vol. 3C 35-1

INTEL® PROCESSOR TRACE

CHAPTER 35
INTEL® PROCESSOR TRACE

35.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include
timing, program flow information (e.g. branch targets, branch taken/not taken indications) and program-induced
mode related information (e.g. Intel TSX state transitions, CR3 changes). These packets may be buffered internally
before being sent to the memory subsystem or other output mechanism available in the platform. Debug software
can process the trace data and reconstruct the program flow.
Later generations include additional trace sources, including software trace instrumentation using PTWRITE, and
Power Event tracing.

35.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code
regions (basic blocks).
Intel PT can also be configured to log software-generated packets using PTWRITE, and packets describing
processor power management events.
In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional
and performance debugging of applications. Intel PT has several control and filtering capabilities available to
customize the tracing information collected and to append other processor state and timing information to enable
debugging. For example, there are modes that allow packets to be filtered based on the current privilege level
(CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are
enumerated by CPUID, see Section 35.3. Details of the MSRs for configuring Intel PT are described in Section
35.2.7.

35.1.1.1 Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace
information in the following categories of packets (for more details on the packets, see Section 35.4):
• Packets about basic information on program execution; these include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information,
along with information from the operating system on the CR3 value of each process, allows the debugger
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion
of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.

35-2 Vol. 3C

INTEL® PROCESSOR TRACE

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow,
resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to
respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
other branches or events. These packets can contain the IP, although that IP value may be compressed by
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
more detail in Section 35.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so that
it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of formats
that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

• Packets inserted by software:

— PTWRITE (PTW) packets: includes the value of the operand passed to the PTWRITE instruction (see
“PTWRITE - Write Data to a Processor Trace Packet” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

• Packets about processor power management events:

— MWAIT packets: Indicate successful completion of an MWAIT operation to a C-state deeper than C0.0.

— Power State Entry (PWRE) packets: Indicate entry to a C-state deeper than C0.0.

— Power State Exit (PWRX) packets: Indicate exit from a C-state deeper than C0.0, returning to C0.

— Execution Stopped (EXSTOP) packets: Indicate that software execution has stopped, due to events such as
P-state change, C-state change, or thermal throttling.

35.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it
operates.

35.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this
block of code need not be traced, as the processor will execute them from start to end without redirecting code
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow.
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.
The following subsections describe the COFI events that result in trace packet generation. Table 35-1 lists branch
instruction by COFI types. For detailed description of specific instructions, see Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

Table 35-1. COFI Type for Branch Instructions

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL,
JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Vol. 3C 35-3

INTEL® PROCESSOR TRACE

35.2.1.1 Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is
embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the
program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor
will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a
TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct
jumps that toggle Intel PT enables (see Section 35.2.5).

35.2.1.2 Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or
memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer
until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the
target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for
debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address
(see Section 35.3.1.1).
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch.
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory
location. Therefore, the processor must generate a packet that includes this target address to allow the
decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of
the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software
can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the
CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding” defined

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2)

Near Ret RET (C3, C2 xx)

Far Transfers INT3, INTn, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx), SYS-
CALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME

Table 35-1. COFI Type for Branch Instructions

COFI Type Instructions

35-4 Vol. 3C

INTEL® PROCESSOR TRACE

as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET
target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a Target
IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that
correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical
processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 35.4.2.2.

35.2.1.3 Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the
event was taken. Table 35-23 indicates exactly which IP will be included in the FUP generated by a far transfer.

35.2.2 Software Trace Instrumentation with PTWRITE
PTWRITE provides a mechanism by which software can instrument the Intel PT trace. PTWRITE is a ring3-acces-
sible instruction that can be passed to a register or memory variable, see “PTWRITE - Write Data to a Processor
Trace Packet” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B for details. The
contents of that variable will be used as the payload for the PTW packet (see Table 35-40 “PTW Packet Definition”),
inserted at the time of PTWRITE retirement, assuming PTWRITE is enabled and all other filtering conditions are
met. Decode and analysis software will then be able to determine the meaning of the PTWRITE packet based on the
IP of the associated PTWRITE instruction.
PTWRITE is enabled via IA32_RTIT_CTL.PTWEn[12] (see Table 35-6). Optionally, the user can use
IA32_RTIT_CTL.FUPonPTW[5] to enable PTW packets to be followed by FUP packets containing the IP of the asso-
ciated PTWRITE instruction.

35.2.3 Power Event Tracing
Power Event Trace is a capability that exposes core- and thread-level sleep state and power down transition infor-
mation. When this capability is enabled, the trace will expose information about:

— Scenarios where software execution stops.

• Due to sleep state entry, frequency change, or other powerdown.

• Includes the IP, when in the tracing context.

— The requested and resolved hardware thread C-state.

• Including indication of hardware autonomous C-state entry.

— The last and deepest core C-state achieved during a sleep session.

— The reason for C-state wake.
This information is in addition to the bus ratio (CBR) information provided by default after any powerdown, and the
timing information (TSC, TMA, MTC, CYC) provided during or after a powerdown state.
Power Event Trace is enabled via IA32_RTIT_CTL.PwrEvtEn[4].

35.2.4 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced.

35.2.4.1 Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when
CPL > 0, or regardless of CPL.

Vol. 3C 35-5

INTEL® PROCESSOR TRACE

CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet
(see the discussion of TIP.PGD in Section 35.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 35.2.5.1 for details.

35.2.4.2 Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can
be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single applica-
tion without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with
multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating
system does not provide context-switch support) to separate the output for the different threads (see Section
35.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter
is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other
packets can be generated when ContextEn is 0; see Section 35.2.5.3 for details. When CR3 does match
IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0
(although it could be 0 due to other filters or modes).
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value
of CR0.PG.
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

35.2.4.3 Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1.
Intel PT can be configured to enable the generation of packets containing architectural states only when the
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 35.2.7.2), where the digit
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures
the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 35.2.7.5).
IA32_RTIT_ADDRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is
enabled. Thus each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A.
IA32_RTIT_ADDRn_B]. There can be multiple such ranges, software can query CPUID (Section 35.3.1) for the
number of ranges supported on a processor.
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to
enable IP filtering (see Section 35.3.1), tracing will commence when a taken branch or event is seen whose target
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the
next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section
35.2.5.5 for more details on FilterEn.
Note that these address range base and limit values are inclusive, such that the range includes the first and last
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause
different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 35.3.1.1 for
details. Software can query CPUID to determine filters are based on linear or effective address (Section 35.3.1).

35-6 Vol. 3C

INTEL® PROCESSOR TRACE

Note that some packets, such as MTC (Section 35.3.7) and other timing packets, do not depend on FilterEn. For
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 35.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is
intended for cases where unexpected code is executed, and the user wishes to immediately stop generating
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison
logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate
that the condition was hit.
If a TraceStop condition is encountered during buffer overflow (Section 35.3.8), it will not be dropped, but will
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal
buffers. To ensure that this has occurred, the user should clear TraceEn.
To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing
resumed.
Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 35.2.6.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of Range-
Base, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable
ADDRn range as a FilterEn range).

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code
executing in the overlapping range will get TraceStop behavior.

35.2.5 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most
packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hardware in

Table 35-2. IP Filtering Packet Example

Code Flow Packets

Bar:

jmp RangeBase // jump into filter range

RangeBase:

jcc Foo // not taken

add eax, 1

Foo:

jmp RangeLimit+1 // jump out of filter range

RangeLimit:

nop

jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)

Vol. 3C 35-7

INTEL® PROCESSOR TRACE

response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of
PacketEn to the software-visible controls in the configuration MSRs is described in this section.

35.2.5.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring and all packets can be generated to
log what is being executed. PacketEn is composed of other states according to this relationship:

PacketEn TriggerEn AND ContextEn AND FilterEn AND BranchEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 35.2.6 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H,
ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 0), FilterEn is treated as always set.

35.2.5.2 Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software.
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set.
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 35.3.9).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

35.2.5.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is
defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is gener-
ated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation
Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 35.4.2.16 and Section
35.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when
ContextEn is set, see Section 35.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

35.2.5.4 Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well

1. Trace packets generation is disabled in a production enclave, see Section 35.2.8.5. See Intel® Software Guard
Extensions Programming Reference about differences between a production enclave and a debug enclave.

35-8 Vol. 3C

INTEL® PROCESSOR TRACE

as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of
what software is running.

35.2.5.5 Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch.
Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration
and use of IP filtering, see Section 35.2.4.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for
indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long
as they are within context.
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP,
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section
35.4.1.
After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e.,
CPUID.(EAX=14H, ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and
ContextEn=1, and when at least one range is configured for IP filtering.

35.2.6 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available
for trace output can vary across processor generations and platforms.
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit
fields of IA32_RTIT_CTL (see Section 35.2.7.2):
• A single, contiguous region of physical address space.
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that
they don't consume precious cache space, but they do not have the serializing aspects associated with un-cache-
able (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as
this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe perfor-
mance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so
ensures that all buffered packets are flushed out of the processor.

35.2.6.1 Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single,
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in
IA32_RTIT_OUTPUT_BASE (Section 35.2.7.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section
35.2.7.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM.

Vol. 3C 35-9

INTEL® PROCESSOR TRACE

• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint
(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept
these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each
other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer.

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] IA32_RTIT_OUTPUT_BASE[63:0]

OutputMask[63:0] ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])

OutputOffset[63:0] ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])

trace_store_phys_addr (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 35.3.9) will
be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset > 0.

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value
(IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset).

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section
35.2.6.4.

35.2.6.2 Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The
ToPA mechanism uses a linked list of tables; see Figure 35-1 for an illustrative example. Each entry in the table
contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table
may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array)
or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that
a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the
latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads this value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to proc_trace_table_offset, but these
updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that
the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates

35-10 Vol. 3C

INTEL® PROCESSOR TRACE

IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Figure 35-1 provides an illustration (not to scale) of the table and associated pointers.

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr Base address from current ToPA table entry +
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA
table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Section
35.2.6.2 for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = 01FFFFFH). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs

Figure 35-1. ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset: IA32_RTIT_OUTPUT_MASK_PTRS.TableOffset

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

64K OutputBaseX
4K OutputBaseY
END=1 TableBaseB

ToPA Table A

OutputRegionY

OutputRegionX

Vol. 3C 35-11

INTEL® PROCESSOR TRACE

while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that he output MSR values account for all packets generated to that point, after which the output MSR
values will be frozen until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 35-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 35-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause these writes to be globally observed.

Figure 35-2. Layout of ToPA Table Entry

Table 35-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63

35-12 Vol. 3C

INTEL® PROCESSOR TRACE

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 35.2.7.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that
would produce an operational error if the configuration remained when tracing is re-enabled with
IA32_RTIT_STATUS.Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI)
when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to
the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The
Freeze_Perfmon_on_PMI and Freeze_LBRs_on_PMI settings in IA32_DEBUGCTL will be applied on ToPA PMI just as
on other PMIs, and hence Perfmon counters are frozen.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table
entry.

Table 35-3. ToPA Table Entry Fields (Contd.)

ToPA Entry Field Description

Vol. 3C 35-13

INTEL® PROCESSOR TRACE

Assuming the PMI handler wishes to read any buffered packets for persistent output, or wishes to modify any Intel
PT MSRs, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets
are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to deter-
mine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-
enabled before the IRET if continued tracing is desired.
In rare cases, it may be possible to trigger a second ToPA PMI before the first is handled. This can happen if another
ToPA region with INT=1 is filled before, or shortly after, the first PMI is taken, perhaps due to EFLAGS.IF being
cleared for an extended period of time. This can manifest in two ways: either the second PMI is triggered before the
first is taken, and hence only one PMI is taken, or the second is triggered after the first is taken, and thus will be
taken when the handler for the first completes. Software can minimize the likelihood of the second case by clearing
TraceEn at the beginning of the PMI handler. Further, it can detect such cases by then checking the Interrupt
Request Register (IRR) for PMI pending, and checking the ToPA table base and off-set pointers (in
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) to see if multiple entries with INT=1 have been
filled.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible that, in rare cases, the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 35-3); this will disable tracing once the region is
filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill
and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state,
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT
context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT output
configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs.
Table 35-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling
ToPA PMIs that may arrive between XSAVES and XRSTORS. This algorithm is flexible to allow software to choose
between adding entries to the current ToPA table, adding a new ToPA table, or using the current ToPA table as a
circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry in the table, which is the
recommended treatment.

35-14 Vol. 3C

INTEL® PROCESSOR TRACE

ToPA Errors

When a malformed ToPA entry is found, an operation error results (see Section 35.3.9). A malformed entry can
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 35.2.6.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0).

c. ToPA entry base address sets upper physical address bits not supported by the processor.

3. Illegal ToPA Output Offset (if IA32_RTIT_STATUS.Stopped=0).
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.

Table 35-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)

 Save IA32_RTIT_CTL value;

 IF (IA32_RTIT_CTL.TraceEN)

 Disable Intel PT by clearing TraceEn;

 FI;

 IF (there is space available to grow the current ToPA table)

 Add one or more ToPA entries after the last entry in the ToPA table;

 Point new ToPA entry address field(s) to new output region base(s);

 ELSE

 Modify an upcoming ToPA entry in the current table to have END=1;

 IF (output should transition to a new ToPA table)

 Point the address of the “END=1” entry of the current table to the new table base;

 ELSE

 /* Continue to use the current ToPA table, make a circular. */

 Point the address of the “END=1”l entry to the base of the current table;

 Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;

 /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */

 FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;

Vol. 3C 35-15

INTEL® PROCESSOR TRACE

In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
35.2.6.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 35.5.

35.2.6.3 Trace Transport Subsystem
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration
options should refer to the specific platform documentation. The FabricEn bit is available to be set if
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

35.2.6.4 Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 35-5 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the
IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the
SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries inter-
nally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again,
meaning one could potentially route packet output to a newly restricted region. Software can ensure that any
cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

35.2.7 Enabling and Configuration MSRs

35.2.7.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 35.3.1), RDMSR or WRMSR of the

IA32_RTIT_* MSRs will cause #GP.
• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP

fault. Packet generation must be disabled before the configuration MSRs can be changed.

Table 35-5. Behavior on Restricted Memory Access

Scenario Description

ToPA output region
overlaps with
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read
from that restricted region will return all 1s. The processor also may signal an error (Section 35.3.9) and disable
tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output
region is larger than the restricted memory region).

ToPA table overlaps
with SMRR

The processor will signal an error (Section 35.3.9) and disable tracing when the ToPA read pointer
(IA32_RTIT_OUTPUT_BASE + (proc_trace_table_offset « 3)) enters the restricted region.

35-16 Vol. 3C

INTEL® PROCESSOR TRACE

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a cold RESET.

— If CPUID.(EAX=14H, ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 1, only the TraceEn bit is cleared on warm
RESET; though this may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of
the trace configuration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to
these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to
IA32_RTIT_CTL.TraceEn by XSAVES (Section 35.3.5.2).

35.2.7.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 35-6.

Table 35-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers.
A further store, fence, or architecturally serializing instruction may be required to ensure that
packet data can be observed at the trace endpoint. See Section 35.2.7.3 for details of
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section) and warm reset. Other MSR bits
of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these events.

1 CYCEn 0 0: Disables CYC Packet (see Section 35.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

4 PwrEvtEn 0 0: Power Event Trace packets are disabled.

1: Power Event Trace packets are enabled (see Section 35.2.3, “Power Event Tracing”).

5 FUPonPTW 0 0: PTW packets are not followed by FUPs.

1: PTW packets are followed by FUPs.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored.
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

Vol. 3C 35-17

INTEL® PROCESSOR TRACE

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2]
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 35.2.6.2) if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 35.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 35.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 35.2.1.2).

12 PTWEn 0 0: PTWRITE packet generation disabled.

1: PTWRITE packet generation enabled (see Table 35-40 “PTW Packet Definition”).

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

see Section 35.2.6 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7),
8: ART(8), 9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15:

ART(15)
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 0.

18 Reserved 0 Must be 0.

22:19 CycThresh 0 CYC packet threshold, see Section 35.3.6 for details. CYC packets will be sent with the first
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64,
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

23 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

35-18 Vol. 3C

INTEL® PROCESSOR TRACE

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel
PT packet bytes output, so this field allows the user to determine the increment of
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that
PSB insertion is not precise, but the average output bytes per PSB should approximate the
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K,
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section
35.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

31:28 Reserved 0 Must be 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] >= 0.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

Vol. 3C 35-19

INTEL® PROCESSOR TRACE

35.2.7.3 Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated.
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A
full PSB+ (see Section 35.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section
35.4.2).
In addition to the packets discussed above, if and when PacketEn (Section 35.2.5.1) transitions from 0 to 1 (which
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 35.4.2.3) will be generated.
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason,
software should disable packet generation before making modifications to the ToPA tables (or changing the config-
uration of restricted memory regions). See Section 35.7 for more details of packets that may be generated with
modifications to TraceEn.

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure
that the packet data is globally observed. No special packets are generated by disabling packet generation, though
a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the
same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a
#GP, even if TraceEn remains set.

35.2.7.4 IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, but some bits (ContextEn, TriggerEn) are read-
only and cannot be directly modified. The WRMSR instruction ignores these bits in the source operand (attempts to
modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with
WRMSR).

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 35.2.4.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 35.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

59:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

63:60 Reserved 0 Must be 0.

Table 35-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

35-20 Vol. 3C

INTEL® PROCESSOR TRACE

35.2.7.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG
fields in IA32_RTIT_CTL (see Section 35.2.7.2). The number of these register pairs is enumerated by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

• Processors that enumerate support for 3 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B

• Processors that enumerate support for 4 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B

Table 35-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP,
see Section 35.2.5.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See
Section 35.2.5.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 35.2.5.2. Writes are
ignored.

3 Reserved 0 Must be 0.

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see
“ToPA Errors” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered.
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details,
see “ToPA STOP” in Section 35.2.6.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

31:6 Reserved 0 Must be 0.

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent
out. The processor also uses this field to determine when the next PSB packet should be
inserted. Note that the processor may clear or modify this field at any time while
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 35.4.2.17 for details.

63:49 Reserved 0 Must be 0.

Vol. 3C 35-21

INTEL® PROCESSOR TRACE

Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is in
canonical form, otherwise a #GP fault will result.

35.2.7.6 IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of
this register, see Section 35.2.4.2.
This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR
causes a #GP.

35.2.7.7 IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width
(MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and
those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered
unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

35-22 Vol. 3C

INTEL® PROCESSOR TRACE

35.2.7.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See
Section 35.2.6.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 35-8. IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region.
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of
the 1s in the mask value(Section 35.2.7.8) overlap with 1s in the base address. If
the base is not aligned, an operational error will result (see Section 35.3.9).

1: The base physical address of the current ToPA table. The address must be 4K
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in
Section 35.2.6.2 as well as Section 35.3.9.

63:MAXPHYADDR Reserved 0 Must be 0.

Table 35-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored.

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the
OutputOffset field to determine the next write address. All 1s in this field should be
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an
operational error (Section 35.3.9) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

Vol. 3C 35-23

INTEL® PROCESSOR TRACE

35.2.8 Interaction of Intel® Processor Trace and Other Processor Features

35.2.8.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock
elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace
output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region
that is later aborted. For this reason, debugging software will need indication of the beginning and end of a trans-
actional region; this will allow software to understand when instructions are part of a transactional region and
whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 35-10 for
details.

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to
be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region.
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address
at which the next byte of packet output data will be written. This value must be less than or
equal to the MaskOrTableOffset field, otherwise an operational error (Section 35.3.9) will be
signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This
value will be added to the output region base field, found in the current ToPA table entry, to
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section
35.3.9) will be signaled when TraceEn is set.

Table 35-10. TSX Packet Scenarios

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP)

Transaction
Commit

Either XEND or XRELEASE lock, if transactional execution
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP),
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these
cases.

Table 35-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR (Contd.)

Position Bit Name At Reset Bit Description

35-24 Vol. 3C

INTEL® PROCESSOR TRACE

35.2.8.2 TSX and IP Filtering
A complication with tracking transactions is handling transactions that start or end outside of the tracing region.
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts.
But a transaction can start within the IP filter region and end outside it.
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indi-
cate the current transaction status.

35.2.8.3 System Management Mode (SMM)
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM
code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection.
Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either
protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of IA32_RTIT_CTL.TraceEn
into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 35.2.7.2).

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-evalu-
ated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was
disabled or re-enabled. See Table 35.7 for more information about packets entering and leaving SMM.
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that
restrict use of Intel PT with LBRs (see Section 35.3.1.2), any RSM that results in enabling of both will cause a shut-
down.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 35.6.

35.2.8.4 Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears
IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL in VMX operation causes a general-protection
exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of
tracing in VMX operation are described in Section 35.5.

35.2.8.5 Intel Software Guard Extensions (SGX)
SGX provides an application with ability to instantiate a protective container (an enclave) with confidentiality and
integrity (see Intel® Software Guard Extensions Programming Reference). On a processor with both Intel PT and
SGX enabled, when executing code within a production enclave, no control flow packets are produced by Intel PT.
Enclave entry will clear ContextEn, thereby blocking control flow packet generation. A TIP.PGD packet will be gener-
ated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be
generated to indicate that tracing is resumed.

Vol. 3C 35-25

INTEL® PROCESSOR TRACE

During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or
CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 35.7.

Debug Enclaves

SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see Intel®
Software Guard Extensions Programming Reference. In a debug enclave, Intel PT continues to function normally.
Specifically, ContextEn is not impacted by enclave entry or exit. Hence the generation of ContextEn-dependent
packets within a debug enclave is allowed.

35.2.8.6 SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup.
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will
be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

35.2.8.7 Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets
that indicate the source and destination IPs.

35.3 CONFIGURATION AND PROGRAMMING GUIDELINE

35.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID
function 14H is dedicated to enumerate the resource and capability of processors that report
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined
variation in capabilities. Table 35-11 describes details of the enumerable capabilities that software must use across
generations of processors that support Intel Processor Trace.

35-26 Vol. 3C

INTEL® PROCESSOR TRACE

Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 35.2.7.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any
access to IA32_RTIT_CR3_MATCH, will #GP fault.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to
select the preferred PSB frequency (see below for allowed values). (b)
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and
will be incremented by the processor when tracing to indicate progress
towards the next PSB. If trace packet generation is enabled by setting
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c)
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode.
See Section 35.2.7.

0: (a) Any attempt to set IA32_RTIT_CTL.PSBFreq, to set
IA32_RTIT_CTL.CYCEn, or write a non-zero value to
IA32_RTIT_STATUS.PacketByteCnt any access to
IA32_RTIT_CR3_MATCH, will #GP fault. (b) If trace packet generation is
enabled by setting TraceEn, a PSB is always generated. (c) Any attempt
to set IA32_RTIT_CTL.CYCEn will #GP fault.

2 IP Filtering and TraceStop
supported, and Preserve Intel
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to
configure the corresponding address range MSRs for IP Filtering or IP
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2
inclusive. The number of ADDRn_CFG fields is reported by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to
configure address ranges for IP filtering or IP TraceStop. (c) On warm
reset, all Intel PT MSRs will retain their pre-reset values, though
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in
Section 35.2.7.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A
and IA32_RTIT_ADDRn_B, will #GP fault. (c) On warm reset, all Intel PT
MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be
generated. See Section 35.2.7.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq
to a non-zero value will #GP fault.

4 PTWRITE Supported 1: Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5]
(FUPonPTW), and PTWRITE can generate packets.

0: Writes that set IA32_RTIT_CTL[12] or IA32_RTIT_CTL[5] will #GP,
and PTWRITE will #UD fault.

5 Power Event Trace Supported 1: Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event
Trace packet generation.

0: Writes that set IA32_RTIT_CTL[4] will #GP.

31:6 Reserved

Vol. 3C 35-27

INTEL® PROCESSOR TRACE

If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are
described in the sub-leaves of CPUID leaf 14H.

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing
the ToPA output scheme (Section 35.2.6.2) IA32_RTIT_OUTPUT_BASE
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS.
MSRs will #GP fault.

1 ToPA Tables Allow Multiple
Output Entries

1: ToPA tables can hold any number of output entries, up to the
maximum allowed by the MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed
by an END=1 entry which points back to the base of the table.

Further, ToPA PMIs will be delivered before the region is filled. See ToPA
PMI in Section 35.2.6.2.

If there is more than one output entry before the END entry, or if the
END entry has the wrong base address, an operational error will be
signaled (see “ToPA Errors” in Section 35.2.6.2).

2 Single-Range Output
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs
will #GP fault.

3 Output to Trace Transport
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to
IA32_RTIT_CTL.FabricEn will #GP fault.

30:4 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which
are the offset from CS base.

EDX 31:0 Reserved

Table 35-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities (Contd.)

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

35-28 Vol. 3C

INTEL® PROCESSOR TRACE

Table 35-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in
IA32_RTIT_CTL and the number of register pair
IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering
and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

31:16 Bitmap of supported MTC
Period Encodings

The non-zero bit positions indicate the map of supported encoding
values for the IA32_RTIT_CTL.MTCFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 1 (MTC Packet generation is
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause
#GP fault.

EBX 15:0 Bitmap of supported Cycle
Threshold values

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.CycThresh field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Cycle-Accurate
Mode is Supported), otherwise the CycThresh field is reserved to 0. See
Section 35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit
CycThresh field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported
Configurable PSB Frequency
encoding

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.PSBFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Configurable PSB
is supported), otherwise the PSBFreq field is reserved to 0. See
Section 35.2.7.

Each bit position in this field represents 1 encoding value in the 4-bit
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved

Vol. 3C 35-29

INTEL® PROCESSOR TRACE

35.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset
and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected
mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type
is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 35-11).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on
those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e.
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

35.3.1.2 Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM,
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume.
Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_LIP, MSR_LER_TO_LIP
• MSR_LBR_SELECT
For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

35.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the
capabilities described in Section 35.3.1.
Based on the capability queried from Section 35.3.1, software must configure a number of model-specific regis-
ters. This section describes programming considerations related to those MSRs.

35.3.2.1 Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel
PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if
TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any
values that may have persisted from prior trace packet collection contexts. See Section 35.2.7.2 for details of
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 35.3.9), there may be a delay after the WRMSR
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet genera-
tion is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

35-30 Vol. 3C

INTEL® PROCESSOR TRACE

35.3.2.2 Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR
(Section 35.2.7.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software

should check the source of the error (by examining the output MSR values), correct the source of the problem,
and then attempt to gather the trace again. For details on operational errors, see Section 35.3.9. Software
should clear IA32_RTIT_STATUS.Error before re-enabling packet generation.

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 35.2.4.3) or the ToPA
Stop condition (see “ToPA STOP” in Section 35.2.6.2) before packet generation was disabled.

35.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Genera-
tion” in Section 35.2.7.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues
an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or
serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a
read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on
the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While
TraceEn is set, these MSRs may hold stale values. Further, if a ToPA region with INT=1 is filled, meaning a ToPA PMI
has been triggered, IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI[55] will be set by the time the flush completes.

35.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in
IA32_RTIT_STATUS).

35.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context,
software can save and restore the states of the trace configuration MSRs across the process or thread context
switch boundary. The principle is the same as saving and restoring the typical architectural processor states across
context switches.

35.3.5.1 Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must
clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed
values to memory

Vol. 3C 35-31

INTEL® PROCESSOR TRACE

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with
WRMSR

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

35.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be
saved using XSAVES and restored by XRSTORS, in conjunction with the bit field associated with supervisory state
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.
The layout of the trace configuration component state in the XSAVE area is shown in Table 35-13.1

The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 8] is set, system software operating at CPL=
0 can use XSAVES/XRSTORS with the appropriate requested-feature bitmap (RFBM) to manage supervisor state
components in the XSAVE map. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

35.3.6 Cycle-Accurate Mode
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 35.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC
packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The
CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC, PTWRITE, EXSTOP
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the
number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except
that they will be sent before the wrap occurs. An illustration is given below.

1. Table 35-13 documents support for the MSRs defining address ranges 0 and 1. Processors that provide XSAVE support for Intel Processor
Trace support only those address ranges.

Table 35-13. Memory Layout of the Trace Configuration State Component

Offset within
Component Area

Field Offset within
Component Area

Field

0H IA32_RTIT_CTL 08H IA32_RTIT_OUTPUT_BASE

10H IA32_RTIT_OUTPUT_MASK_PTRS 18H IA32_RTIT_STATUS

20H IA32_RTIT_CR3_MATCH 28H IA32_RTIT_ADDR0_A

30H IA32_RTIT_ADDR0_B 38H IA32_RTIT_ADDR1_A

40H IA32_RTIT_ADDR1_B 48H–End Reserved

35-32 Vol. 3C

INTEL® PROCESSOR TRACE

35.3.6.1 Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter is
implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point
where clocks are disabled, and resume counting once they are re-enabled.

35.3.6.2 Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time.
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or

after, the CYC time.
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream.
Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those packets
represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional branches
and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides the
retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle as
that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be
generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC
and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 35.8.3.2 to understand how to
interpret the payload values

Multi-packet Instructions or Events

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a
task switch on a software interrupt, is shown below.

Example 35-1. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet

Vol. 3C 35-33

INTEL® PROCESSOR TRACE

35.3.6.3 Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the
expense of precision. This is done by utilizing a cycle threshold (see Section 35.2.7.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in
which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated
number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold
options for CycThresh, see Section 35.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be gener-
ated before a CYC will be inserted. Table 35-14 illustrates the threshold behavior.

35.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 35.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in
the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can
result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log
properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack,
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 35.4.2.18). One or more packets may
be generated in between those two packets, and these inform the decoder of the current state of the processor.
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the

Example 35-2. An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?),

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

Table 35-14. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP

35-34 Vol. 3C

INTEL® PROCESSOR TRACE

normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1.
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Info Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the logical

processor is in VMX non-root operation and the “conceal VMX from PT” VM-execution control is 0.
• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation

and the “conceal VMX from PT” VM-execution control is 0.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1.
• MODE.Exec, if PacketEn=1.
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within
PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their
meanings are the same as outside PSB+.
A PSB+ can be lost in some scenarios. If IA32_RTIT_STATUS.TriggerEn is cleared just as the PSB threshold is
reached, the PSB+ may not be generated. TriggerEn can be cleared by a WRMSR that clears
IA32_RTIT_CTL.TraceEn, a VM-exit that clears IA32_RTIT_CTL.TraceEn, an #SMI, or any time that either
IA32_RTIT_STATUS.Stopped is set (e.g., by a TraceStop or ToPA stop condition) or IA32_RTIT_STATUS.Error is set
(e.g., by an Intel PT output error).
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason,
the OVF packet should also be viewed as terminating PSB+.

35.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation
resumes.
When the buffer overflow is cleared, an OVF packet (Section 35.4.2.16) is generated, and the processor ensures
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that
were lost.
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon
which tracing resumes after the overflow is cleared. If the overflow resolves while PacketEn=1, only timing packets
may come between the OVF and the FUP. If the overflow resolves while PacketEn=0, any other packets that are not
dependent on PacketEn may come between the OVF and the TIP.PGE.

35.3.8.1 Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 35.2.4.3), continue during a
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets,
however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further,
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be
dropped.

Vol. 3C 35-35

INTEL® PROCESSOR TRACE

35.3.8.2 Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are
lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly understand
the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter
wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter
counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the
cycle counter wrapped during the overflow, which could render this CYC misleading.

35.3.9 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment issues,
ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in Section
35.2.6.2 for details on ToPA errors, and Section 35.2.6.4 for details on restricted memory errors. Operational
errors are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically,
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable genera-
tion of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the
processor encounters the problematic configuration. This could be as soon as packet generation is enabled but
could also be later when the problematic entry or field needs to be used.
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the error
condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

35.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the
interpretation code that will decode the data packets and apply it to the traced source code.

35.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP,
TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions)
to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between
packets, and to use this packet context to determine how to bind the packet.
Section 35.4.2 below provides detailed descriptions of the packets, including how packets bind to IPs in the disas-
sembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated
in only a few scenarios. Those that require more consideration are typically part of “compound packet events”, such
as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination
address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3
or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes
indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound
packet events is provided in Table 35-15; see Section 35.4.2 for more per-packet details and Section 35.7 for more
detailed packet generation examples.

35-36 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 35-3 explains how to interpret them.
Packet bits listed as “RSVD” are not guaranteed to be 0.

35.4.2.1 Taken/Not-taken (TNT) Packet

Table 35-15. Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional,
uncompressed

control-flow
transfer

FUP or none Any combination
of PIP, VMCS,
MODE.Exec, or
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets
may vary.

PIP/VMCS/MODE only if the operation modifies the state
tracked by these respective packets.

TSX Update MODE.TSX, and
(FUP or none)

None TIP, TIP.PGD, or
none

FUP

TIP/TIP.PGD only for TSX abort cases.

Overflow OVF PSB, PSBEND, or
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Figure 35-3. Interpreting Tabular Definition of Packet Format

Table 35-16. TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other
bits (Section 35.2.5).

Generation Scenario Which instructions, events, or other
scenarios can cause this packet to be
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

Vol. 3C 35-37

INTEL® PROCESSOR TRACE

B1…BN represent the last N conditional branch or compressed RET (Section 35.4.2.2) results, such that B1 is oldest
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain from
1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below.

Dependencies PacketEn Generation
Scenario

On a conditional branch or compressed RET, if it fills the TNT.
Also, partial TNTs may be generated at any time, as a result of
other packets being generated,
or certain micro-architectural conditions occurring, before the
TNT is full.

Description Provides the taken/not-taken results for the last 1–N conditional branches (Jcc, J*CXZ, or LOOP) or compressed RETs
(Section 35.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should
be applied to (and hence provide the destination for) the next N conditional branches or RETs

Table 35-16. TNT Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

35-38 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.2 Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the
use of IP compression. IP compression is an optional compression technique the processor may choose to employ
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP sent
out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address
bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state of
the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the “Last IP” state in
software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero, hence if the first IP
in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are
provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a
TIP/FUP packet is shown in the table below.

Table 35-17. IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt,
exception, INIT, SIPI, VM exit, VM entry, TSX abort, EENTER, EEXIT, ERE-
SUME, AEX1.

NOTES:

1. EENTER, EEXIT, ERESUME, AEX would be possible only for a debug enclave.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which
will bind to the TIP packet. See the packet application descriptions for other packets for details.

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

Vol. 3C 35-39

INTEL® PROCESSOR TRACE

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 35-18), or compressed against
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the full
address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that
applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code.
In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0.
When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet
with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits
(IPBytes <= 010b).

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can
deduce the target IP by maintaining a CALL/RET stack of its own.
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets.

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry off
the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have
matching RETs.

3. For near RETs, pop the top (youngest) entry off the stack. This will be the target of the RET.
In cases where the RET is compressed, the target is guaranteed to match the value produced in 2) above. If the
target is not compressed, a TIP packet will be generated with the RET target, which may differ from 2).
The hardware ensure that packets read by the decoder will always have seen the CALL that corresponds to any
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where Pack-
etEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last PSB, etc.,
will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP
packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack, and
a later RET uses this target.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because it sends no TIP packet, it also
does not update the internal Last IP value, and thus the decoder should treat it the same way. If the RET is not
compressed, it will generate a TIP packet (just like when RET compression is disabled, via
IA32_RTIT_CTL.DisRETC). For processors that employ deferred TIPs (Section 35.4.2.3), an uncompressed RET will
not be deferred, and hence will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and make

Table 35-18. FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved

35-40 Vol. 3C

INTEL® PROCESSOR TRACE

clear to the decoder whether the near RET was compressed, and hence a bit in the in-progress TNT should be
consumed, or uncompressed, in which case there will be no in-progress TNT and thus a TIP should be consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode,
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the CALL’s
Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should match
this behavior

35.4.2.3 Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g.,
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other
packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out
the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth
consumption, and hence the performance impact, incurred by tracing.

Table 35-19. TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c),
TIP(0xcc00)

TNT(0b00100), TIP(0x1308),
TIP(0x1100), FUP(0x110c),
TIP(0xcc00)

Vol. 3C 35-41

INTEL® PROCESSOR TRACE

35.4.2.4 Packet Generation Enable (TIP.PGE)

Table 35-20. TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE)

Packet Format

Dependencies PacketEn transitions to 1 Generation
Scenario

Any branch instruction, control flow transfer, or MOV
CR3 that sets PacketEn, a WRMSR that enables
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3. The
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of
the branch.

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

35-42 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.5 Packet Generation Disable (TIP.PGD)

Table 35-21. TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD)

Packet Format

Dependencies PacketEn transitions to
0

Generation
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears
PacketEn, a WRMSR that disables packet generation and clears PacketEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the
“IPBytes” field will have the value 0.

• FilterEn: This is set when software jumps out of the tracing region. This region is defined by enabling IP filtering
in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 35.2.4.3.
The IP payload will depend on the type of the branch. For conditional branches, the payload is
suppressed (IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other
type of branch, the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See
Section 35.2.4.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes”
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or
TNI bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced
instead by the TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn.
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce.
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e.,
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload,
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should
apply to the next branch or MOV CR3 instruction.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

Vol. 3C 35-43

INTEL® PROCESSOR TRACE

35.4.2.6 Flow Update (FUP) Packet

Table 35-22. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn & ContextEn.
(Typically depends on
BranchEn and FilterEn as well,
see Section 35.2.4 for details.)

Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit,
#MC), XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, EENTER,
EEXIT, ERESUME, EEE, AEX,1, INT 0, INT 3, INT n, a WRMSR that dis-
ables packet generation.

NOTES:

1. EENTER, EEXIT, ERESUME, EEE, AEX apply only if Intel Software Guard Extensions is supported.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 35.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 35.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) uop will provide any destination IP.
Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]

35-44 Vol. 3C

INTEL® PROCESSOR TRACE

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do
not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the
source address cannot be inferred from the source, and hence a FUP will be sent. Table 35-23 illustrates cases
where FUPs are sent, and which IP can be expected in those cases.

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is
consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the
stack or VMCS.

Table 35-23. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value and also the EIP value which is saved onto
the stack.

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value and also the EIP value which is
saved onto the stack.

Software Interrupt Address of the software interrupt instruction
(Current IP)

This matches the similar functionality of LBR
FROM field value, but does not match the EIP
value which is saved onto the stack (Next
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave
Exiting Event (EEE), AEX1

NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in Intel® Soft-
ware Guard Extensions Programming Reference.

Current IP of the instruction This matches the LBR FROM field value and also
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn Current IP

Vol. 3C 35-45

INTEL® PROCESSOR TRACE

35.4.2.7 Paging Information (PIP) Packet

Table 35-24. PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn &&
IA32_RTIT_CTL.OS

Generation
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+, VM exit,
VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus
included. For other page modes (32-bit and 4-level paging1), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit, if “conceal VMX from PT” VM-exit control is 0 (see Section 35.5.1)
• VM entry, if “conceal VMX from PT” VM-entry control is 0
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section 35.2.8.3 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper
binaries to the linear addresses that are being traced.
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX from PT” VM-execution control is 0 (see Section 35.5.1). All other PIPs clear the NR bit.

NOTES:

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it,
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section
35.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]

35-46 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.8 MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a
header and a mode byte, as shown below.

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 35-25. General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 35-26. MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Far branch, interrupt, exception, VM exit, and VM entry, if the mode changes.
PSB+, and any scenario that can generate a TIP.PGE, such that the mode may have
changed since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values.
Essential for the decoder to properly disassemble the associated binary.

MODE.Exec is sent at the time of a mode change, if PacketEn=1 at the time, or when tracing resumes, if necessary.
In the former case, the MODE.Exec packet is generated along with other packets that result from the far transfer
operation that changes the mode. In cases where the mode changes while PacketEn=0, the processor will send out
a MODE.Exec along with the TIP.PGE when tracing resumes. The processor may opt to suppress the MODE.Exec
when tracing resumes if the mode matches that from the last MODE.Exec packet, if there was no PSB in between.

Application MODE.Exec always immediately precedes a TIP or TIP.PGE. The mode change applies to the IP address in the payload
of the next TIP or TIP.PGE.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode

Vol. 3C 35-47

INTEL® PROCESSOR TRACE

MODE.TSX Packet

Table 35-27. MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn and ContextEn Generation
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if INTX
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX
generated before TIP.PGE need be applied.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally

35-48 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.9 TraceStop Packet

35.4.2.10 Core:Bus Ratio (CBR) Packet

Table 35-28. TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region.
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn
before examining output. See Section 35.2.4.3 for more details.

Application If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 35-29. CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

After any frequency change, on C-state wake up, PSB+, and after
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application All packets following the CBR represent instructions that executed with the new core:bus ratio, while all preceding
packets (aside from timing packets) represent instructions that executed with the prior ratio. There is not a precise
IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved

Vol. 3C 35-49

INTEL® PROCESSOR TRACE

35.4.2.11 Timestamp Counter (TSC) Packet

Table 35-30. TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn &&
TriggerEn

Generation
Scenario

Sent after any event that causes the processor clocks or Intel PT timing
packets (such as MTC or CYC) to stop, This may include P-state changes,
wake from C-state, or clock modulation. Also on transition of TraceEn
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake,
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]

35-50 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.12 Mini Time Counter (MTC) Packet

Table 35-31. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
TriggerEn

Generation
Scenario

Periodic, based on the core crystal clock, or Always Running Timer
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common
Timestamp Copy) payload value is set to (ART >> N) & FFH. The frequency of the ART is related to the Maximum
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 35.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq
field (see Section 35.2.7.2) to a supported value using the lookup enumerated by CPUID (see Section 35.3.1).
See Section 35.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet.
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]

Vol. 3C 35-51

INTEL® PROCESSOR TRACE

35.4.2.13 TSC/MTC Alignment (TMA) Packet

Table 35-32. TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp
counter ticks have passed since the last TSC or MTC packet. See Section 35.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]

35-52 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.14 Cycle Count Packet (CYC) Packet

Table 35-33. Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn &&
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is
sent per core clock cycle. See Section 35.3.6 for CYC-eligible packets.

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length.
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0. And so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 35.2.7.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see
Section 35.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first
branch in the TNT packet.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)

Vol. 3C 35-53

INTEL® PROCESSOR TRACE

35.4.2.15 VMCS Packet

Table 35-34. VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on SMM
VM exits and VM entries that return from SMM (see Section 35.5).

Description The VMCS packet provides a VMCS pointer for a decoder to determine the transition of code contexts:

• On a successful VMPTRLD (i.e., a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the
logical processor’s VMCS pointer established by VMPTRLD (for subsequent execution of a VM guest context).

• An SMM VM exit loads the logical processor’s VMCS pointer with the SMM-transfer VMCS pointer. If the “conceal
VMX from PT” VM-exit control is 0 (see Section 35.5.1), a VMCS packet provides this pointer. See Section 35.6 on
tracing inside and outside STM.

• A VM entry that returns from SMM loads the logical processor’s VMCS pointer from a field in the SMM-transfer
VMCS. If the “conceal VMX from PT” VM-entry control is 0, a VMCS packet provides this pointer. Whether the
VM entry is to VMX root operation or VMX non-root operation is indicated by the PIP.NR bit.

A VMCS packet generated before a VMCS pointer has been loaded, or after the VMCS pointer has been cleared will
set all 64 bits in the VMCS pointer field.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context
in situations that CR3 may not be unique.
When a VMCS packet is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section
35.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP.

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 35.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS pointer [19:12]

3 VMCS pointer [27:20]

4 VMCS pointer [35:28]

5 VMCS pointer [43:36]

6 VMCS pointer [51:44]

35-54 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.16 Overflow (OVF) Packet

35.4.2.17 Packet Stream Boundary (PSB) Packet

Table 35-35. OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See
Section 35.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP
packet that preceded the overflow.

Table 35-36. PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0

Vol. 3C 35-55

INTEL® PROCESSOR TRACE

35.4.2.18 PSBEND Packet

Dependencies TriggerEn Generation
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software
selected threshold after that. May be sent for other micro-architectural conditions
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via
IA32_RTIT_CTL.PSBFreq (see Section 35.2.7.2). Note, however, that the PSB period is not precise, it simply reflects
the average number of output bytes that should pass between PSBs. The processor will make a best effort to
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 35.3.7).

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is
included.

Table 35-37. PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 35.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

Table 35-36. PSB Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1

35-56 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.19 Maintenance (MNT) Packet

35.4.2.20 PAD Packet

Table 35-38. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies TriggerEn Generation Sce-
nario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this
packet should simply be ignored. It does not bind to any IP.

Table 35-39. PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0

Vol. 3C 35-57

INTEL® PROCESSOR TRACE

35.4.2.21 PTWRITE (PTW) Packet

Table 35-40. PTW Packet Definition

Name PTW Packet

Packet Format

The PayloadBytes field indicates the number of bytes of payload that follow the header bytes. Encodings are as fol-
lows:

IP bit indicates if a FUP, whose payload will be the IP of the PTWRITE instruction, will follow.

Dependencies TriggerEn & ContextEn & FilterEn
& PTWEn

Generation
Scenario

PTWRITE Instruction

Description Contains the value held in the PTWRITE operand.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application Binds to the associated PTWRITE instruction. The IP of the PTWRITE will be provided by a following FUP, when
PTW.IP=1.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP PayloadBytes 1 0 0 1 0

2 Payload[7:0]

3 Payload[15:8]

4 Payload[23:16]

5 Payload[31:24]

6 Payload[39:32]

7 Payload[47:40]

8 Payload[55:48]

9 Payload[63:56]

PayloadBytes Bytes of Payload

‘00 4

‘01 8

‘10 Reserved

‘11 Reserved

35-58 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.22 Execution Stop (EXSTOP) Packet

Table 35-41. EXSTOP Packet Definition

Name EXSTOP Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

C-state entry, P-state change, or other processor clock power-
down. Includes :
• Entry to C-state deeper than C0.0
• TM1/2
• STPCLK#
• Frequency change due to IA32_CLOCK_MODULATION, Turbo

Description This packet indicates that software execution has stopped due to processor clock powerdown. Later packets will
indicate when execution resumes.
If EXSTOP is generated while ContextEn is set, the IP bit will be set, and EXSTOP will be followed by a FUP packet
containing the IP at which execution stopped. More precisely, this will be the IP of the oldest instruction that has
not yet completed.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application If a FUP follows EXSTOP (hence IP bit set), the EXSTOP can be bound to the FUP IP. Otherwise the IP is not known.
Time of powerdown can be inferred from the preceding CYC, if CYCEn=1. Combined with the TSC at the time of
wake (if TSCEn=1), this can be used to determine the duration of the powerdown.

IP bit indicates if a FUP will follow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 1 1 0 0 0 1 0

Vol. 3C 35-59

INTEL® PROCESSOR TRACE

35.4.2.23 MWAIT Packet

Table 35-42. MWAIT Packet Definition

Name MWAIT Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn & Contex-
tEn

Generation
Scenario

MWAIT instruction, or I/O redirection to MWAIT, that complete
without fault or VMexit.

Description Indicates that an MWAIT operation to C-state deeper than C0.0 completed. The MWAIT hints and extensions passed
in by software are exposed in the payload.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application The MWAIT packet should bind to the IP of the next FUP, which will be the IP of the instruction that caused the
MWAIT. This FUP will be shared with EXSTOP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0

2 MWAIT Hints[7:0]

3 Reserved

4 Reserved

5 Reserved

6 Reserved EXT[1:0]

7 Reserved

8 Reserved

9 Reserved

35-60 Vol. 3C

INTEL® PROCESSOR TRACE

35.4.2.24 Power Entry (PWRE) Packet

Table 35-43. PWRE Packet Definition

Name PWRE Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

Transition to a C-state deeper than C0.0.

Description Indicates processor entry to the resolved thread C-state and sub C-state indicated. The processor will remain in this
C-state until either another PWRE indicates the processor has moved to a C-state deeper than C0.0, or a PWRX
packet indicates a return to C0.
Note that some CPUs may allow MWAIT to request a deeper C-state than is supported by the core. These deeper C-
states may have platform-level implications that differentiate them. However, the PWRE packet will provide only
the resolved thread C-state, which will not exceed that supported by the core.
If the C-state entry was initiated by hardware, rather than a direct software request (such as MWAIT, HLT, or shut-
down), the HW bit will be set to indicate this. Hardware Duty Cycling (see Section 14.5, “Hardware Duty Cycling
(HDC)” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B) is an example of such a
case.

Application When transitioning from C0.0 to a deeper C-state, the PWRE packet will be followed by an EXSTOP. If that EXSTOP
packet has the IP bit set, then the following FUP will provide the IP at which the C-state entry occurred. Subsequent
PWRE packets generated before the next PWRX should bind to the same IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0

2 HW Reserved

3 Resolved Thread C-State Resolved Thread Sub C-State

Vol. 3C 35-61

INTEL® PROCESSOR TRACE

35.4.2.25 Power Exit (PWRX) Packet

35.5 TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. A series of mecha-
nisms exist to allow the VMM to configure tracing based on the desired trace domain, and on the consumer of the
trace output. The VMM can configure specific VMX controls to control what virtualization-specific data are included
within the trace packets (see Section 35.5.1 for details). The MSR-load areas used by VMX transitions can be
employed by the VMM to restrict tracing to the desired context (see Section 35.5.2 for details). These configuration
options are summarized in Table 35-45. Table 35-45 covers common Intel PT usages while SMIs are handled by the
default SMM treatment. Tracing with SMM Transfer Monitor is described in Section 35.6.

Table 35-44. PWRX Packet Definition

Name PWRX Packet

Packet Format

Dependencies TriggerEn & PwrEvtEn Generation
Scenario

Transition from a C-state deeper than C0.0 to C0.

Description Indicates processor return to thread C0 from a C-state deeper than C0.0.
The Last Core C-State field provides the MWAIT encoding for the core C-state at the time of the wake. The Deepest
Core C-State provides the MWAIT encoding for the deepest core C-state achieved during the sleep session, or since
leaving thread C0. MWAIT encodings for C-states can be found in Table 4-11 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B. Note that these values reflect only the core C-state, and hence will
not exceed the maximum supported core C-state, even if deeper C-states can be requested.
The Wake Reason field is one-hot, encoded as follows:

Application PWRX will always apply to the same IP as the PWRE. The time of wake can be discerned from (optional) timing pack-
ets that precede PWRX.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0

2 Last Core C-State Deepest Core C-State

3 Reserved Wake Reason

4 Reserved

5 Reserved

6 Reserved

Bit Field Meaning

0 Interrupt Wake due to external interrupt received.

1 Reserved

2 Store to Monitored Address Wake due to store to monitored address.

3 HW Wake Wake due to hardware autonomous condition,
such as HDC.

35-62 Vol. 3C

INTEL® PROCESSOR TRACE

35.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, a decoder in the host or VMM context can identify the occurrences of VMX
transitions with the aid of VMX-specific packets. There are two kinds of packets relevant to VMX:
• VMCS packet. The VMX transitions of individual VMs can be distinguished by a decoder using the VMCS-

pointer field in a VMCS packet. A VMCS packet is sent on a successful execution of VMPTRLD, and its VMCS-
pointer field stores the VMCS pointer loaded by that execution. See Section 35.4.2.15 for details.

• The NR (non-root) bit in a PIP packet. Normally, the NR bit is set in any PIP packet generated in VMX non-
root operation. In addition, PIP packets are generated with each VM entry and VM exit. Thus a transition of the
NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of
a VM exit.

There are VMX controls that a VMM can set to conceal some of this VMX-specific information (by suppressing its
recording) and thereby prevent it from leaking across virtualization boundaries. There is one of these controls
(each of which is called “conceal VMX from PT”) of each type of VMX control.

Table 35-45. Common Usages of Intel PT and VMX

Target Domain Output
Consumer

Virtualize
Output

Configure VMX
Controls

TraceEN Configuration Save/Restore MSR states
of Trace Configuration

System-Wide
(VMM + VMs)

Host N/A Default setting
(no suppression)

WRMSR or XRSTORS by Host N/A

VMM Only Intel PT Aware
VMM

N/A Enable
suppression

Use VMX MSR-load areas to
disable tracing in VM, enable
tracing on VM exits

N/A

VM Only Intel PT Aware
VMM

N/A Enable
suppression

Use VMX MSR-load areas to
enable tracing in VM, disable
tracing on VM exits

N/A

Intel PT Aware
Guest(s)

Per Guest VMM adds
trace output
virtualization

Enable
suppression

Use VMX MSR-load areas to
enable tracing in VM, disable
tracing on VM exits

VMM updates guest state
on VM exits due to
XRSTORS

Table 35-46. VMX Controls For Intel Processor Trace

Type of VMX
Control

Bit
Position1

NOTES:

1. These are the positions of the control bits in the relevant VMX control fields.

Value Behavior

Secondary
processor-based
VM-execution
control

19 0 Each PIP generated in VM non-root operation will set the NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure that the decoder
knows which guest is currently in use.

1 Each PIP generated in VMX non-root operation will clear the NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

VM-exit control 24 0 Each VM exit generates a PIP in which the NR bit is clear.

In addition, SMM VM exits generate VMCS packets.

1 VM exits do not generate PIPs, and no VMCS packets are generated on SMM VM exits.

VM-entry control 17 0 Each VM entry generates a PIP in which the NR bit is set (except VM entries that return
from SMM to VMX root operation).

In addition, VM entries that return from SMM generate VMCS packets.

1 VM entries do not generate PIPs, and no VMCS packets are generated on VM entries that
return from SMM.

Vol. 3C 35-63

INTEL® PROCESSOR TRACE

The 0-settings of these VMX controls enable all VMX-specific packet information. The scenarios that would use
these default settings also do not require the VMM to use VMX MSR-load areas to enable and disable trace-packet
generation across VMX transitions.
If IA32_VMX_MISC[bit 14] reports 0, the 1-settings of the VMX controls in Table 35-46 are not supported, and
VM entry will fail on any attempt to set them.

35.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host executive
can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be
modified using MSR load areas across VMX transitions.
For tracing scenarios that collect packets only within VMX root operation or only within VMX non-root operation, the
VMM can use the MSR load areas to toggle IA32_RTIT_CTL.TraceEn.

35.5.2.1 System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the relevant VMX
controls clear to allow VMX-specific packets to provide information across VMX transitions. The VMX MSR-load
areas need not be used to load Intel PT MSRs on VM exits or VM entries.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are
shown in Table 35-47.

Since the VMX controls that suppress packet generation are cleared, a VMCS packet will be included in all PSB+ for
this usage scenario. Additionally, VMPTRLD will generate such a packet. Thus the decoder can distinguish the
execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report
CPUID.(EAX=07H, ECX=0):EBX[bit 26] as 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a
VMM’s use of the TSC offsetting or TSC scaling VMX controls (see Chapter 25, “VMX Non-Root Operation”). In this
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC

Table 35-47. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the guest flow the VM exit occurred. This is important,
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that the logical processor
is entering VMX root operation. This allows the decoder to identify the change of executing
context from guest to host and load the appropriate set of binaries to continue decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX root
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new guest CR3 value, as well as indication that the logical
processor is entering VMX non-root operation. This allows the decoder to identify the change
of executing context from host to guest and load the appropriate set of binaries to continue
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX non-
root operation. This should match the RIP loaded from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

35-64 Vol. 3C

INTEL® PROCESSOR TRACE

packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in
VMX root operation. The VMM can supply this information to the decoder.

35.5.2.2 Host-Only Tracing
When trace packets in VMX non-root operation are not desired, the VMM can use the VM-entry MSR-load area to
load IA32_RTIT_CTL (clearing TraceEn) to disable trace-packet generation in guests, and use the VM-exit MSR-load
area to load IA32_RTIT_CTL to set TraceEn.

When tracing only the host, the decoder does not need information about the guests, and the VMX controls for
suppressing VMX-specific packets can be set to reduce the packets generated. VMCS packets will still be generated
on execution of VMPTRLD and in PSB+ generated in the host, but these will be unused by the decoder.
The packets of interests to a decoder when trace packets are collected for host-only tracing are shown in Table 35-
48.

35.5.2.3 Guest-Only Tracing
A VMM can configure trace-packet generation while in VMX non-root operation for guests executing normally. This
is accomplished by utilizing the VMX MSR-load areas on VM exits and VM entries to limit trace-packet generation
to the guest environment.
For this usage, the VM-entry MSR load area is programmed to enable trace packet generation; the VM-exit MSR
load area is used to clear IA32_RTIT_CTL.TraceEn so as to disable trace-packet generation in the host. Further, if
it is preferred that the guest packet stream contain no indication that execution was in VMX non-root operation,
the VMM should set to 1 all the VMX controls enumerated in Table 35-46.

35.5.2.4 Virtualization of Guest Output Packet Streams
Each Intel PT aware guest OS can produce one or more output packet streams to destination addresses specified
as guest physical address using by context-switching IA32_RTIT_OUTPUT_BASE within the guest. The processor
generates trace packets to the physical address specified in IA32_RTIT_OUTPUT_BASE, and those specified in the
ToPA tables. Thus, a VMM that supports Intel PT aware guest OS may wish to virtualize the output configurations of
IA32_RTIT_OUTPUT_BASE and ToPA for each trace configuration state of all the guests.

35.5.2.5 Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state,
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet
normally generated on the CR3 write will be missing.
To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it
into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned

Table 35-48. Packets on VMX Transitions (Host-Only Tracing)

Event Packets Description

VM exit TIP.PGE(HostIP) The TIP.PGE indicates that trace packet generation is enabled and gives the IP of the first
instruction to be executed in VMX root operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 35.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry TIP.PGD() The TIP indicates that trace packet generation was disabled. This ensure that all buffered
packets are flushed out.

Vol. 3C 35-65

INTEL® PROCESSOR TRACE

with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

35.5.2.6 TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in
CPUID leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will
allow the decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose
frequency is indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency to
the Max Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be unable
to properly track time in the trace. See Section 35.8.3 for details on tracking time within an Intel PT trace.

35.5.2.7 Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be
generated, depending on implementation choice, and the point of failure.

35.5.2.8 VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some
packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

35.6 TRACING AND SMM TRANSFER MONITOR (STM)
The SMM-transfer monitor (STM) is a VMM that operates inside SMM while in VMX root operation. An STM operates
in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a
VM entry to the VM in VMX non-root operation or the executive monitor in VMX root operation.
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 35.5.
As a result, on a SMM VM exit resulting from #SMI, TraceEn is not saved and then cleared. Software can save the
state of the trace configuration MSRs and clear TraceEn using the MSR load/save lists.

35.7 PACKET GENERATION SCENARIOS
Table 35-50 and Table 35-52 illustrate the packets generated in various scenarios. In the heading row, PacketEn is
abbreviated as PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while Trig-
gerEn=1 and Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet
generation are marked “D.C.” Packets followed by a “?” imply that these packets depend on additional factors,
which are listed in the “Other Dependencies” column.

Table 35-49. Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall
through to next IP)

Late Failure (VM-exit like)

System-Wide No use of VM-entry
MSR-load area

TIP (NextIP) PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section
35.2.7.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only VM-entry MSR-load
area used to clear
TraceEn

TIP (NextIP) TraceEn 0->1 Packets (See Section 35.2.7.3), TIP(HostIP)

VM Only VM-entry MSR-load
area used to set
TraceEn

None None

35-66 Vol. 3C

INTEL® PROCESSOR TRACE

In Table 35-50, PktEn is evaluated based on TiggerEn & ContextEn & FilterEn & BranchEn.

Table 35-50. Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

1a Normal non-jump operation 0 0 D.C. None

1b Normal non-jump operation 1 1 1 None

2a WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

2b WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

PSB, PSBEND (see Sec-
tion 35.4.2.17)

2d WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
MODE.Exec, TIP.PGE(NLIP)

2e WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 1 1 MODE.Exec,
TIP.PGE(NLIP), PSB,
PSBEND (see Section
35.4.2.8, 35.4.2.7,
35.4.2.13,35.4.2.15,
35.4.2.17)

3a WRMSR that changes TraceEn 1 -> 0 0 0 D.C. None

3b WRMSR that changes TraceEn 1 -> 0 1 0 D.C. FUP(CLIP), TIP.PGD()

5a MOV to CR3 0 0 0 None

5f MOV to CR3 0 0 1 TraceStop if executed in a
TraceStop region

PIP(NewCR3,NR?), Trace-
Stop?

5b MOV to CR3 0 1 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?),
MODE.Exec?,
TIP.PGE(NLIP)

5c MOV to CR3 1 0 0 TIP.PGD()

5e MOV to CR3 1 0 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0
*TraceStop if executed in a
TraceStop region

PIP(NewCR3, NR?),
TIP.PGE(NLIP), TraceStop?

5d MOV to CR3 1 1 1 *PIP.NR=1 if not in root
operation and the “conceal
VMX from PT” VM-execu-
tion control is 0

PIP(NewCR3, NR?)

6a Unconditional direct near jump 0 0 D.C. None

6b Unconditional direct near jump 1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

6c Unconditional direct near jump 0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

Vol. 3C 35-67

INTEL® PROCESSOR TRACE

6d Unconditional direct near jump 1 1 1 None

7a Conditional taken jump or compressed
RET that does not fill up the internal
TNT buffer

0 0 D.C. None

7b Conditional taken jump or compressed
RET

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

7e Conditional taken jump or compressed
RET, with empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(), TraceStop?

7f Conditional taken jump or compressed
RET, with non-empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TNT, TIP.PGD(), TraceS-
top?

7d Conditional taken jump or compressed
RET that fills up the internal TNT buf-
fer

1 1 1 TNT

8a Conditional non-taken jump 0 0 D.C. None

8d Conditional not-taken jump that fills up
the internal TNT buffer

1 1 1 TNT

9a Near indirect jump (JMP, CALL, or
uncompressed RET)

0 0 D.C. None

9b Near indirect jump (JMP, CALL, or
uncompressed RET)

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

9c Near indirect jump (JMP, CALL, or
uncompressed RET)

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

9d Near indirect jump (JMP, CALL, or
uncompressed RET)

1 1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET) 0 0 0 None

10f Far Branch (CALL/JMP/RET) 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

10b Far Branch (CALL/JMP/RET) 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?,
TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET) 1 0 0 TIP.PGD()

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-68 Vol. 3C

INTEL® PROCESSOR TRACE

10d Far Branch (CALL/JMP/RET) 1 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?),
TIP.PGD(BLIP), TraceStop?

10e Far Branch (CALL/JMP/RET) 1 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

PIP(NewCR3, NR?)?,
MODE.Exec?, TIP(BLIP)

11a HW Interrupt 0 0 0 None

11f HW Interrupt 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

11b HW Interrupt 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?,
TIP.PGE(BLIP)

11c HW Interrupt 1 0 0 FUP(NLIP), TIP.PGD()

11d HW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(NLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-69

INTEL® PROCESSOR TRACE

11e HW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(NLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

12a SW Interrupt 0 0 0 None

12f SW Interrupt 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?,
TraceStop?

12b SW Interrupt 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?,
TIP.PGE(BLIP)

12c SW Interrupt 1 0 0 FUP(CLIP), TIP.PGD()

12d SW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop?

12e SW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

13a Exception/Fault 0 0 0 None

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-70 Vol. 3C

INTEL® PROCESSOR TRACE

13f Exception/Fault 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?,
TraceStop?

13b Exception/Fault 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?,
TIP.PGE(BLIP)

13c Exception/Fault 1 0 0 FUP(CLIP), TIP.PGD()

13d Exception/Fault 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP),
TraceStop?

13e Exception/Fault 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation and the
“conceal VMX from PT” VM-
execution control is 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

14a SMI (TraceEn cleared) 0 0 D.C. None

14b SMI (TraceEn cleared) 1 0 0 FUP(SMRAM,LIP),
TIP.PGD()

14f SMI (TraceEn cleared) 1 0 1 NA

14c SMI (TraceEn cleared) 1 1 1 NA

15a RSM, TraceEn restored to 0 0 0 0 None

15b RSM, TraceEn restored to 1 0 0 D.C. See WRMSR cases for
packets on enable

15c RSM, TraceEn restored to 1 0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
SMRAM.LIP

15e RSM (TraceEn=1, goes to shutdown) 1 0 0 None

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-71

INTEL® PROCESSOR TRACE

15f RSM (TraceEn=1, goes to shutdown) 1 0 1 None

15d RSM (TraceEn=1, goes to shutdown) 1 1 1 None

16i VM exit 0 0 0 None

16a VM exit 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

PIP(HostCR3, NR=0)?,
TraceStop?

16b VM exit, MSR list sets TraceEn=1 0 0 0 See WRMSR cases for
packets on enable. FUP IP
is VMCSh.LIP

16c VM exit, MSR list sets TraceEn=1 0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
VMCSh.LIP

16e VM exit 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(HostCR3, NR=0)?,
MODE.Exec?,
TIP.PGE(VMCSh.LIP)

16f VM exit, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD

16j VM exit, ContextEN 1->0 1 0 0 FUP(VMCSg.LIP), TIP.PGD

16g VM exit 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD(VMCSh.LIP),
TraceStop?

16h VM exit 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-exit
control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
MODE.Exec,
TIP(VMCSh.LIP)

17a VM entry 0 0 0 None

17b VM entry 0 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TraceStop?

17c VM entry, MSR load list sets
TraceEn=1

0 0 1 See WRMSR cases for
packets on enable. FUP IP
is VMCSg.LIP

17d VM entry, MSR load list sets
TraceEn=1

0 1 1 See WRMSR cases for
packets on enable.
FUP/TIP.PGE IP is
VMCSg.LIP

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-72 Vol. 3C

INTEL® PROCESSOR TRACE

17f VM entry, FilterEN 0->1 0 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec?,
TIP.PGE(VMCSg.LIP)

17j VM entry, ContextEN 0->1 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec,
TIP.PGE(VMCSg.LIP)

17g VM entry, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;

PIP(GuestCR3, NR=1)?,
TIP.PGD

17h VM entry 1 0 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TIP.PGD(VMCSg.LIP),
TraceStop?

17i VM entry 1 1 1 *PIP if OF=1 and the “con-
ceal VMX from PT” VM-
entry control is 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec,
TIP(VMCSg.LIP)

20a EENTER/ERESUME to non-debug
enclave

0 0 0 None

20c EENTER/ERESUME to non-debug
enclave

1 0 0 FUP(CLIP), TIP.PGD()

21a EEXIT from non-debug enclave 0 0 D.C. None

21b EEXIT from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

22a AEX/EEE from non-debug enclave 0 0 D.C. None

22b AEX/EEE from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(AEP.LIP)

23a EENTER/ERESUME to debug enclave 0 0 D.C. None

23b EENTER/ERESUME to debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

23c EENTER/ERESUME to debug enclave 1 0 0 FUP(CLIP), TIP.PGD()

23d EENTER/ERESUME to debug enclave 0 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

23e EENTER/ERESUME to debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24f EEXIT from debug enclave 0 0 D.C. None

24b EEXIT from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(BLIP)

24d EEXIT from debug enclave 1 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

24e EEXIT from debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

25a AEX/EEE from debug enclave 0 0 D.C. None

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-73

INTEL® PROCESSOR TRACE

25b AEX/EEE from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

 MODE.Exec?,
TIP.PGE(AEP.LIP)

25d AEX/EEE from debug enclave 1 0 1 *For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP),
TIP.PGD(AEP.LIP)

25e AEX/EEE from debug enclave 1 1 1 *MODE.Exec if the value is
different, since last TIP.PGD
*For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP), MODE.Exec?,
TIP(AEP.LIP)

26a XBEGIN/XACQUIRE 0 0 D.C. None

26d XBEGIN/XACQUIRE that does not set
InTX

1 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 1 MODE(InTX=1,
TXAbort=0), FUP(CLIP)

27a XEND/XRELEASE 0 0 D.C. None

27d XEND/XRELEASE that does not clear
InTX

1 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 1 MODE(InTX=0,
TXAbort=0), FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 0 None

28e XABORT(Async XAbort, or other) 0 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE(InTX=0,
TXAbort=1), TraceStop?

28b XABORT(Async XAbort, or other) 0 1 1 MODE(InTX=0,
TXAbort=1),
TIP.PGE(BLIP)

28c XABORT(Async XAbort, or other) 1 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE(InTX=0,
TXAbort=1), TIP.PGD
(BLIP), TraceStop?

28d XABORT(Async XAbort, or other) 1 1 1 MODE(InTX=0,
TXAbort=1), FUP(CLIP),
TIP(BLIP)

30a INIT (BSP) 0 0 0 None

30b INIT (BSP) 0 0 1 *TraceStop if RESET.LIP is in
a TraceStop region

BIP(0), TraceStop?

30c INIT (BSP) 0 1 1 * MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, PIP(0),
TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 0 FUP(NLIP), TIP.PGD()

30e INIT (BSP) 1 0 1 * PIP if OS=1
*TraceStop if RESET.LIP is in
a TraceStop region

FUP(NLIP), PIP(0),
TIP.PGD, TraceStop?

30f INIT (BSP) 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB
* PIP if OS=1

FUP(NLIP), PIP(0)?,
MODE.Exec?,
TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. D.C. None

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-74 Vol. 3C

INTEL® PROCESSOR TRACE

In Table 35-52, PktEn is evaluated based on (TiggerEn & ContextEn & FilterEn & BranchEn & PwrEvtEn).

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. D.C. * PIP if OS=1 FUP(NLIP), PIP(0)

32a SIPI 0 0 0 None

32c SIPI 0 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP.PGE(SIPI-
LIP)

32d SIPI 1 0 0 TIP.PGD

32e SIPI 1 0 1 *TraceStop if SIPI LIP is in a
TraceStop region

TIP.PGD(SIPILIP); TraceS-
top?

32f SIPI 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP(SIPILIP)

33a MWAIT (to C0) D.C. D.C. D.C. None

33b MWAIT (to higher-numbered C-State,
packet sent on wake)

D.C. D.C. D.C. *TSC if TSCEn=1
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

Table 35-51. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

16.1 MWAIT or I/O redir to MWAIT, gets
#UD or #GP fault

dc dc dc None

16.2 MWAIT or I/O redir to MWAIT,
VM exits

dc dc dc See VM exit examples
(16[a-z] in Table 35-50)
for BranchEn packets.

16.3 MWAIT or I/O redir to MWAIT,
requests C0, or monitor not armed,
or VMX virtual-interrupt delivery

dc dc dc None

16.4a MWAIT(X) or I/O redir to MWAIT,
goes to C-state Y (Y>0)

dc 0 0 PWRE(Cx), EXSTOP

16.4b MWAIT(X) or I/O redir to MWAIT,
goes to C-state Y (Y>0)

dc dc 1 MWAIT(Cy), PWRE(Cx),
EXSTOP(IP), FUP(CLIP)

16.5a MWAIT(X) or I/O redir to MWAIT,
Pending event after resolving to go
to C-state Y (Y>0)

dc 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP, TSC?,
TMA?, CBR, PWRX(LCC,
DCC, 0)

16.5b MWAIT(X) or I/O redir to MWAIT,
Pending event after resolving to go
to C-state Y (Y>0)

dc dc 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(Cx), EXSTOP(IP),
FUP(CLIP), TSC?, TMA?,
CBR, PWRX(LCC, DCC, 0)

16.6a MWAIT(5) or I/O redir to MWAIT,
other thread(s) in core in C0/C1

dc 0 0 PWRE(C1), EXSTOP

16.6b MWAIT(5) or I/O redir to MWAIT,
other thread(s) in core in C0/C1

dc dc 1 MWAIT(5), PWRE(C1),
EXSTOP(IP), FUP(CLIP)

Table 35-50. Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-75

INTEL® PROCESSOR TRACE

16.9a HLT, Triple-fault shutdown, #MC
with CR4.MCE=0, RSM to Cx (x>0)

dc 0 0 PWRE(C1), EXSTOP

16.9b HLT, Triple-fault shutdown, #MC
with CR4.MCE=1, RSM to Cx (x>0)

dc dc PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.10a VMX abort dc 0 0 See “VMX Abort” (cases
16* and 18* in Table 35-
50) for BranchEn packets
that precede

PWRE(C1), EXSTOP

16.10b VMX abort dc dc 1 See “VMX Abort” (cases
16* and 18* in Table 35-
50) for BranchEn packets
that precede

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.11a RSM to Shutdown dc 0 0 See “RSM to Shutdown”
(cases 15[def] in Table
35-50) for BranchEn
packets that precede

PWRE(C1), EXSTOP

16.11b RSM to Shutdown dc dc 1 See “RSM to Shutdown”
(cases 15[def] in Table
35-50) for BranchEn
packets that precede

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.12a INIT (BSP) dc 0 0 See “INIT (BSP)” (cases
30[a-z] in Table 35-50)
for packets that BranchEn
precede

PWRE(C1), EXSTOP

16.12b INIT (BSP) dc dc 1 See “INIT (BSP)” (cases
30[a-z] in Table 35-50)
for packets that BranchEn
precede

PWRE(C1), EXSTOP(IP),
FUP(NLIP)

16.13a INIT (AP, goes to Wait-for-SIPI) dc 0 0 See “INIT (AP, goes to
Wait-for-SIPI)” (cases
31[a-z] in Table 35-50)
for BranchEn packets that
precede

PWRE(C1), EXSTOP

Table 35-51. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-76 Vol. 3C

INTEL® PROCESSOR TRACE

16.13b INIT (AP, goes to Wait-for-SIPI) dc dc 1 See “INIT (AP, goes to
Wait-for-SIPI)” (cases
31[a-z] in Table 35-50)
for BranchEn packets that
precede

PWRE(C1), EXSTOP(IP),
FUP(NLIP)

16.14a Hardware Duty Cycling (HDC) dc 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXSTOP,
TSC?, TMA?, CBR,
PWRX(CC6, CC6, 0x8)

16.14b Hardware Duty Cycling (HDC) dc dc 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXS-
TOP(IP), FUP(NLIP), TSC?,
TMA?, CBR, PWRX(CC6,
CC6, 0x8)

16.15a VM entry to HLT or Shutdown dc 0 0 See “VM entry” (cases
17[a-z] in Table 35-50)
for BranchEn packets that
precede.

PWRE(C1), EXSTOP

16.15b VM entry to HLT or Shutdown dc dc 1 See “VM entry” (cases
17[a-z] in Table 35-50)
for BranchEn packets that
precede.

PWRE(C1), EXSTOP(IP),
FUP(CLIP)

16.16a EIST in C0, S1/TM1/TM2, or STP-
CLK#

dc 0 0 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP, TSC?, TMA?, CBR

16.16b EIST in C0, S1/TM1/TM2, or STP-
CLK#

dc dc 1 * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

EXSTOP(IP), FUP(NLIP),
TSC?, TMA?, CBR

16.17 EIST in Cx (x>0) dc dc dc None

16.18 INTR during Cx (x>0) dc dc dc * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0x1)

See “HW Interrupt” (cases
11[a-z] in Table 35-50)
for BranchEn packets that
follow.

16.18 SMI during Cx (x>0) dc dc dc * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases
14[a-z] in Table 35-50)
for BranchEn packets that
follow.

Table 35-51. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Vol. 3C 35-77

INTEL® PROCESSOR TRACE

16.19 NMI during Cx (x>0) dc dc dc * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

See “HW Interrupt” (cases
11[a-z] in Table 35-50)
for BranchEn packets that
follow.

16.2 Store to monitored address during
Cx (x>0)

dc dc dc * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0x4)

16.22 #MC, IERR, TSC deadline timer
expiration, or APIC counter under-
flow during Cx (x>0)

dc dc dc * TSC if TSCEn=1
* TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
PWRX(LCC, DCC, 0)

Table 35-51. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

35-78 Vol. 3C

INTEL® PROCESSOR TRACE

In Table 35-52, PktEn is evaluated based on (TiggerEn & ContextEn & FilterEn & BranchEn & PTWEn).

35.8 SOFTWARE CONSIDERATIONS

35.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in
Section , SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to enable tracing.
There are some unique aspects and guidelines involved with tracing SMM code, which follows:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM.

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible
LIP vs RIP confusion.

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any
other configuration MSRs that were modified.

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and
the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 35.3.1.2), any RSM
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

35.8.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor
that supports Intel PT but may run under any operating system.
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transition
of single-use hardware resources, similar to how performance monitoring tools handle performance monitoring
hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see architec-

tural MSRs with the prefix “IA32_RTIT_” in Chapter 2, “Model-Specific Registers (MSRs)” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4, where “in-use” can be determined by reading the
“enable bits” in the configuration MSRs.

Table 35-52. PwrEvtEn and PTWEn Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

16.24a PTWRITE rm32/64, no fault dc dc dc None

16.24b PTWRITE rm32/64, no fault dc 0 0 None

16.24d PTWRITE rm32, no fault dc 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 4B,
rm32_value), FUP(CLIP)?

16.24e PTWRITE rm64, no fault dc 1 1 * FUP, IP=1 if FUPonPTW=1 PTW(IP=1?, 8B,
rm64_value), FUP(CLIP)?

16.25a PTWRITE mem32/64, fault dc dc dc See “Exception/fault”
(cases 13[a-z] in Table
35-50) for BranchEn
packets.

Vol. 3C 35-79

INTEL® PROCESSOR TRACE

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration
MSRs.

35.8.3 Tracking Time
This section describes the relationships of several clock counters whose update frequencies reside in different
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregu-
larity of the occurrences of various timing packets that store those clock counters.
Intel PT provides time information for three different but related domains:
• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp
counter will continue to increment when the processor is in deep C-States, with the exception of processors
reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can be calculated as
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower than
that of the timestamp counter. The periodic MTC packet is generated based on software-selected multiples of
the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides
elapsed time as measured in processor core clock cycles relative to the last CYC packet.

A decoder can use all or some combination of these packets to track time at different resolutions throughout the
trace packets.

35.8.3.1 Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset;

The CoreCrystalClockValue can provide the coarse-grained component of the TSC value. P, or the TSC/”core crystal
clock” ratio, can be derived from CPUID leaf 15H, as described in Section 35.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum
Non-Turbo (or P1) frequency.
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as
IA32_TSC_ADJUST.

35.8.3.2 Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula
provided in Section 35.8.3.1 above provides the framework for how such an estimate can be calculated from the
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means
to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles
passed is calculated from the 8-bit payloads of respective MTC packets:

35-80 Vol. 3C

INTEL® PROCESSOR TRACE

(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the
TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the Adjust-
edProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core
crystal clock value of the TSC packet.
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
The TMA.FastCounter field provides the fractional component of the TSC packet into the next crystal clock cycle.
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by
providing an indication of the time passed between other timing packets (MTCs or TSCs).
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor core
clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC
values can be used to estimate the adjusted_processor_cycles component of the timestamp value. The accumu-
lated CPU cycles will have to be adjusted to account for the difference in frequency between the processor core
clock and the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the
CBR packet, by multiplying the accumulated cycle count value by P1/CBRpayload.
Note that stand-alone TSC packets (that is, TSC packets that are not a part of a PSB+) are typically generated only
when generation of other timing packets (MTCs and CYCs) has ceased for a period of time. Example scenarios
include when Intel PT is re-enabled, or on wake after a sleep state. Thus any calculation of ART or cycle time
leading up to a TSC packet will likely result in a discrepancy, which the TSC packet serves to correct.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 35.8.3.4 below for
a method to do so using Intel PT packets.
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in
estimated TSC precision.

35.8.3.3 VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 25, “VMX Non-
Root Operation” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 35.5.2.6 for details.

35.8.3.4 Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it
can be applied to determine the CPU frequency. See Section 35.8.3.1 above for details on the relationship between
TSC, MTC, and CYC.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

23.Updates to Chapter 36, Volume 3D
Change bars show changes to Chapter 36 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Various updates throughout chapter regarding Intel SGX and new Intel SGX VM Over-
subscription feature.

Vol. 3D 36-1

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

CHAPTER 36
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

36.1 OVERVIEW
Intel® Software Guard Extensions (Intel® SGX) is a set of instructions and mechanisms for memory accesses
added to Intel® Architecture processors. Intel SGX can encompass two collections of instruction extensions,
referred to as SGX1 and SGX2, see Table 36-1 and Table 36-2. The SGX1 extensions allow an application to instan-
tiate a protected container, referred to as an enclave. An enclave is a protected area in the application’s address
space (see Figure 36-1), which provides confidentiality and integrity even in the presence of privileged malware.
Accesses to the enclave memory area from any software not resident in the enclave are prevented. The SGX2
extensions allow additional flexibility in runtime management of enclave resources and thread execution within an
enclave.
Chapter 37 covers main concepts, objects and data structure formats that interact within the Intel SGX architec-
ture. Chapter 38 covers operational aspects ranging from preparing an enclave, transferring control to enclave
code, and programming considerations for the enclave code and system software providing support for enclave
execution. Chapter 39 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events while
executing enclave code. Chapter 40 covers the syntax and operational details of the instruction and associated leaf
functions available in Intel SGX. Chapter 41 describes interaction of various aspects of IA32 and Intel® 64 archi-
tectures with Intel SGX. Chapter 42 covers Intel SGX support for application debug, profiling and performance
monitoring.

36.2 ENCLAVE INTERACTION AND PROTECTION
Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built, the
enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave where
its code and data is measured. Once the application’s protected portion of the code and data are loaded into an
enclave, it is protected against external software access. An enclave can prove its identity to a remote party and
provide the necessary building-blocks for secure provisioning of keys and credentials. The application can also
request an enclave-specific and platform-specific key that it can use to protect keys and data that it wishes to store
outside the enclave.1

Figure 36-1. An Enclave Within the Application’s Virtual Address Space

1. For additional information, see white papers on Intel SGX at http://software.intel.com/en-us/intel-isa-extensions.

OS

App Code

App Code

Entry TableEnclave
Enclave Heap

Enclave Stack

Enclave Code

36-2 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory
access semantics. The second is protection of the address mappings of the application.

36.3 ENCLAVE LIFE CYCLE
Enclave memory management is divided into two parts: address space allocation and memory commitment.
Address space allocation is the specification of the range of logical addresses that the enclave may use. This range
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flexi-
bility for enclaves to control their memory usage and to adjust dynamically without overusing memory resources
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support
separate allocate and commit operations.
During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e. from non-enclave
memory.
Untrusted application code starts using an initialized enclave typically by using the EENTER leaf function provided
by Intel SGX to transfer control to the enclave code residing in the protected Enclave Page Cache (EPC). The
enclave code returns to the caller via the EEXIT leaf function. Upon enclave entry, control is transferred by hard-
ware to software inside the enclave. The software inside the enclave switches the stack pointer to one inside the
enclave. When returning back from the enclave, the software swaps back the stack pointer then executes the
EEXIT leaf function.
On processors that support the SGX2 extensions, an enclave writer may add memory to an enclave using the SGX2
instruction set, after the enclave is built and running. These instructions allow adding additional memory resources
to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add new
threads to the enclave. The SGX2 features provide additional capabilities to the software model without changing
the security properties of the Intel SGX architecture.
Calling an external procedure from an enclave could be done using the EEXIT leaf function. Software would use
EEXIT and a software convention between the trusted section and the untrusted section.
An active enclave consumes resources from the Enclave Page Cache (EPC, see Section 36.5). Intel SGX provides
the EREMOVE instruction that an EPC manager can use to reclaim EPC pages committed to an enclave. The EPC
manager uses EREMOVE on every enclave page when the enclave is torn down. After successful execution of
EREMOVE the EPC page is available for allocation to another enclave.

36.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS,
see Section 37.7) and the Thread Control Structure (TCS, see Section 37.8).
There is one SECS for each enclave. The SECS contains meta-data about the enclave which is used by the hardware
and cannot be directly accessed by software. Included in the SECS is a field that stores the enclave build measure-
ment value. This field, MRENCLAVE, is initialized by the ECREATE instruction and updated by every EADD and
EEXTEND. It is locked by EINIT.
Every enclave contains one or more TCS structures. The TCS contains meta-data used by the hardware to save and
restore thread specific information when entering/exiting the enclave. There is one field, FLAGS, that may be
accessed by software. This field can only be accessed by debug enclaves. The flag bit, DBGOPTIN, allows to single
step into the thread associated with the TCS. (see Section 37.8.1)
The SECS is created when ECREATE (see Table 36-1) is executed. The TCS can be created using the EADD instruc-
tion or the SGX2 instructions (see Table 36-2).

36.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is the secure storage used to store enclave pages when they are a part of an
executing enclave. For an EPC page, hardware performs additional access control checks to restrict access to the
page. After the current page access checks and translations are performed, the hardware checks that the EPC page

Vol. 3D 36-3

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

is accessible to the program currently executing. Generally an EPC page is only accessed by the owner of the
executing enclave or an instruction which is setting up an EPC page
The EPC is divided into EPC pages. An EPC page is 4KB in size and always aligned on a 4KB boundary.
Pages in the EPC can either be valid or invalid. Every valid page in the EPC belongs to one enclave instance. Each
enclave instance has an EPC page that holds its SECS. The security metadata for each EPC page is held in an
internal micro-architectural structure called Enclave Page Cache Map (EPCM, see Section 36.5.1).
The EPC is managed by privileged software. Intel SGX provides a set of instructions for adding and removing
content to and from the EPC. The EPC may be configured by BIOS at boot time. On implementations in which EPC
memory is part of system DRAM, the contents of the EPC are protected by an encryption engine.

36.5.1 Enclave Page Cache Map (EPCM)
The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation
dependent. However, the EPCM contains the following architectural information:
• The status of EPC page with respect to validity and accessibility.
• An SECS identifier (see Section 37.19) of the enclave to which the page belongs.
• The type of page: regular, SECS, TCS or VA.
• The linear address through which the enclave is allowed to access the page.
• The specified read/write/execute permissions on that page.
The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the EPC pages.
The EPCM structure is described in Table 37-27, and the conceptual access-control flow is described in Section
37.5.
The EPCM entries are managed by the processor as part of various instruction flows.

36.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under three instruction
mnemonics: ENCLS (ring 0), ENCLU (ring 3), and ENCLV (VT root mode). Each leaf function uses EAX to specify the
leaf function index, and may require additional implicit input registers as parameters. The use of EAX is implied
implicitly by the ENCLS, ENCLU, and ENCLV instructions; ModR/M byte encoding is not used with ENCLS, ENCLU,
and ENCLV. The use of additional registers does not use ModR/M encoding and is implied implicitly by the respective
leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’, ‘U’, or ‘V’. The long-form
expression provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity,
the unique “Leaf_Mnemonic” name is used (omitting the ENCLx for convenience) throughout in this document.
Details of individual SGX leaf functions are described in Chapter 40. Table 36-1 provides a summary of the instruc-
tion leaves that are available in the initial implementation of Intel SGX, which is introduced in the 6th generation
Intel Core processors. Table 36-2 summarizes enhancement of Intel SGX for future Intel processors.

Table 36-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add an EPC page to an enclave. ENCLU[EENTER] Enter an enclave.

ENCLS[EBLOCK] Block an EPC page. ENCLU[EEXIT] Exit an enclave.

ENCLS[ECREATE] Create an enclave. ENCLU[EGETKEY] Create a cryptographic key.

ENCLS[EDBGRD] Read data from a debug enclave by debug-
ger.

ENCLU[EREPORT] Create a cryptographic report.

36-4 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

36.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using
the CPUID instruction. The enumeration interface comprises the following:
• Processor support of Intel SGX is enumerated by a feature flag in CPUID leaf 07H: CPUID.(EAX=07H,

ECX=0H):EBX.SGX[bit 2]. If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support for Intel
SGX, and requires opt-in enabling by BIOS via IA32_FEATURE_CONTROL MSR.

If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, CPUID will report via the available sub-leaves of
CPUID.(EAX=12H) on available and/or configured Intel SGX resources.

• The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.(EAX=12H) depend
on the state of BIOS configuration.

ENCLS[EDBGWR] Write data into a debug enclave by debug-
ger.

ENCLU[ERESUME] Re-enter an enclave.

ENCLS[EEXTEND] Extend EPC page measurement.

ENCLS[EINIT] Initialize an enclave.

ENCLS[ELDB] Load an EPC page in blocked state.

ENCLS[ELDU] Load an EPC page in unblocked state.

ENCLS[EPA] Add an EPC page to create a version array.

ENCLS[EREMOVE] Remove an EPC page from an enclave.

ENCLS[ETRACK] Activate EBLOCK checks.

ENCLS[EWB] Write back/invalidate an EPC page.

Table 36-2. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2
Supervisor Instruction Description User Instruction Description

ENCLS[EAUG] Allocate EPC page to an existing enclave. ENCLU[EACCEPT] Accept EPC page into the enclave.

ENCLS[EMODPR] Restrict page permissions. ENCLU[EMODPE] Enhance page permissions.

ENCLS[EMODT] Modify EPC page type. ENCLU[EACCEPTCOPY] Copy contents to an augmented EPC
page and accept the EPC page into
the enclave.

Table 36-3. VMX Operation and Supervisor Mode Enclave Instruction Leaf Functions in Long-Form of OVERSUB
Supervisor Instruction Description User Instruction Description

ENCLV[EDECVIRTCHILD] Decrement the virtual child page count. ENCLS[ERDINFO] Read information about EPC page.

ENCLV[EINCVIRTCHILD] Increment the virtual child page count. ENCLS[TRACKC] Activate EBLOCK checks with conflict
reporting.

ENCLV[ESETCONTEXT] Set virtualization context. ENCLS[ELDBC/UC] Load an EPC page with conflict
reporting.

Table 36-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

Vol. 3D 36-5

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

36.7.1 Intel® SGX Opt-In Configuration
On processors that support Intel SGX, IA32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before
system software can configure and enable Intel SGX resources, BIOS is required to set
IA32_FEATURE_CONTROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.
The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and
IA32_FEATURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is not
reflected by CPUID.

36.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in
and system software configuration. Information returned by CPUID.12H is thread specific; software should not
assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere.
A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information
(non-zero content) in three or more sub-leaves, see Table 36-5.
• CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave

configuration in the SECS structure (see Table 37-3).
• CPUID.(EAX=12H, ECX >1) enumerates available EPC resources.

Table 36-4. Intel® SGX Opt-in and Enabling Behavior
CPUID.(07H,0H):EBX.

SGX
CPUID.(12H)

FEATURE_CONTROL.
LOCK

FEATURE_CONTROL.
SGX_ENABLE

Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD**

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

1 Valid* 1 1 Available (see Table 36-5 for details
of SGX1 and SGX2).

* Leaf 12H enumeration results are dependent on enablement.

** See list of conditions in the #UD section of the reference pages of ENCLS and ENCLU

Table 36-5. CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates leaf functions of SGX1 instruction listed in Table 36-1 are supported.

1 SGX2: If 1, indicates leaf functions of SGX2 instruction listed in Table 36-2 are supported.

4:2 Reserved (0)

5 OVERSUB: If 1, indicates Intel SGX supports instructions: EINCVIRTCHILD, EDECVIRTCHILD, and
ESETCONTEXT.

6 OVERSUB: If 1, indicates Intel SGX supports instructions: ETRACKC, ERDINFO, ELDBC, and ELDUC.

31:7 Reserved (0)

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC

region of the SSA.

ECX 31:0 Reserved (0).

36-6 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

On processors that support Intel SGX1 and SGX2, CPUID leaf 12H sub-leaf 2 report physical memory resources
available for use with Intel SGX. These physical memory sections are typically allocated by BIOS as Processor
Reserved Memory, and available to the OS to manage as EPC.
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with 0.

EDX

7:0 MaxEnclaveSize_Not64: the maximum supported enclave size is 2^(EDX[7:0]) bytes when not in 64-bit
mode.

15:8 MaxEnclaveSize_64: the maximum supported enclave size is 2^(EDX[15:8]) bytes when operating in 64-
bit mode.

31:16 Reserved (0).

Table 36-6. CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits

EAX 31:0 Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.
SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32.

EBX 31:0 Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.
SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32.

ECX 31:0 Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.
SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32.

EDX 31:0 Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.
SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32.

Table 36-7. CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid; EDX:ECX:EBX:EAX return 0.

0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the
Enclave Page Cache (EPC) section.

All other encoding are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved.

ECX

3: 0 If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.

If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.

All other encoding are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the
Processor Reserved Memory.

Table 36-5. CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

Vol. 3D 36-7

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the
Processor Reserved Memory.

31:20 Reserved.

Table 36-7. CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

36-8 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

24.Updates to Chapter 37, Volume 3D
Change bars show changes to Chapter 37 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Various updates throughout chapter regarding Intel SGX and new Intel SGX VM Over-
subscription feature.

Vol. 3D 37-1

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

CHAPTER 37
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
When an enclave is created, it has a range of linear addresses that the processor applies enhanced access control.
This ranged is called the ELRANGE (see Section 36.3). When an enclave generates a memory access, the existing
IA32 segmentation and paging architecture are applied. Additionally, linear addresses inside the ELRANGE must
map to an EPC page otherwise when an enclave attempts to access that linear address a fault is generated.
The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves.
Enclaves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and
extended page tables provide address translation for the enclave pages. Hardware requires that these pages are
properly mapped to EPC (any failure generates an exception).
Enclave entry must happen through specific enclave instructions:
• ENCLU[EENTER], ENCLU[ERESUME].
Enclave exit must happen through specific enclave instructions or events:
• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
Attempts to execute, read, or write to linear addresses mapped to EPC pages when not inside an enclave will result
in the processor altering the access to preserve the confidentiality and integrity of the enclave. The exact behavior
may be different between implementations. As an example a read of an enclave page may result in the return of all
one's or return of cyphertext of the cache line. Writing to an enclave page may result in a dropped write or a
machine check at a later time. The processor will provide the protections as described in Section 37.4 and Section
37.5 on such accesses.

37.2 TERMINOLOGY
A memory access to the ELRANGE and initiated by an instruction executed by an enclave is called a Direct Enclave
Access (Direct EA).
Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME to EPC pages are called Indirect Enclave Accesses
(Indirect EA). Table 37-1 lists additional details of the indirect EA of SGX1 and SGX2 extensions.
Direct EAs and Indirect EAs together are called Enclave Accesses (EAs).
Any memory access that is not an Enclave Access is called a non-enclave access.

37.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control attributes:
• All memory accesses must conform to segmentation and paging protection mechanisms.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.
• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in

Section 37.4 and Section 37.5 on such accesses.
• EPC pages of page types PT_REG, PT_TCS and PT_TRIM must be mapped to ELRANGE at the linear address

specified when the EPC page was allocated to the enclave using ENCLS[EADD] or ENCLS[EAUG] leaf functions.
Enclave accesses through other linear address result in a #PF with the PFEC.SGX bit set.

• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in the
EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave sets them using
SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

37-2 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

— Target page must belong to the currently executing enclave.

— Data may be written to an EPC page if the EPCM allow write access.

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Target page must not have a restricted page type1 (PT_SECS, PT_TCS, PT_VA, or PT_TRIM).

— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

— The EPC page must not be MODIFIED.

37.4 SEGMENT-BASED ACCESS CONTROL
Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory accesses
arising from a logical processor in protected mode (including enclave access) are subject to segmentation checks
with the applicable segment register.
To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).
On enclave entry either via EENTER or ERESUME, the processor saves the contents of the external FS and GS regis-
ters, and loads these registers with values stored in the TCS at build time to enable the enclave’s use of these regis-
ters for accessing the thread-local storage inside the enclave. On EEXIT and AEX, the contents at time of entry are
restored. On AEX, the values of FS and GS are saved in the SSA frame. On ERESUME, FS and GS are restored from
the SSA frame. The details of these operations can be found in the descriptions of EENTER, ERESUME, EEXIT, and
AEX flows.

37.5 PAGE-BASED ACCESS CONTROL

37.5.1 Access-control for Accesses that Originate from non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to provide page-granular access-control for enclave pages.
Enclave pages are only accessible from inside the currently executing enclave if they belong to that enclave. In
addition, enclave accesses must conform to the access control requirements described in Section 37.3. or through
certain Intel SGX instructions. Attempts to execute, read, or write to linear addresses mapped to EPC pages when
not inside an enclave will result in the processor altering the access to preserve the confidentiality and integrity of
the enclave. The exact behavior may be different between implementations.

37.5.2 Memory Accesses that Split across ELRANGE
Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE, the
processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and each
access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that lies
outside of the ELRANGE.

37.5.3 Implicit vs. Explicit Accesses
Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses or
implicit accesses. Table 37-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

1. EPCM may allow write, read or execute access only for pages with page type PT_REG.

Vol. 3D 37-3

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.5.3.1 Explicit Accesses
Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked
data structures are called explicit accesses.
Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when the
access is made.
The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in
Section 42.3.4.

37.5.3.2 Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.
These addresses are not passed as operands of the instruction but are implied by use of the instruction.
These accesses do not trigger any access-control faults/exits or data breakpoints. Table 37-1 lists memory objects
that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses of explicit
access objects are passed via register operands with the second through fourth column of Table 37-1 matching
implicitly encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the
enclave via ENCLS[EADD] or ENCLS[EAUG], or when the page is loaded to EPC via ENCLS[ELDB] or ENCLS[ELDU].
This binding is severed when the corresponding page is removed from the EPC via ENCLS[EREMOVE] or
ENCLS[EWB]. Physical addresses of TCS and SSA pages are cached at the time of most-recent enclave entry. Exit
from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is described in
Chapter 39.
The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses
after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger excep-
tions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is cached
and used for an implicit access.

Table 37-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit

EACCEPT SGX2 SECINFO EPCPAGE SECS

EACCEPTCOPY SGX2 SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EADD SGX1 PAGEINFO and linked structures EPCPAGE

EAUG SGX2 PAGEINFO and linked structures EPCPAGE SECS

EBLOCK SGX1 EPCPAGE SECS

ECREATE SGX1 PAGEINFO and linked structures EPCPAGE

EDBGRD SGX1 EPCADDR Destination SECS

EDBGWR SGX1 EPCADDR Source SECS

EDECVIRTCHILD OVERSUB EPCPAGE SECS

EENTER SGX1 TCS and linked SSA SECS

EEXIT SGX1 SECS, TCS

EEXTEND SGX1 SECS EPCPAGE

EGETKEY SGX1 KEYREQUEST KEY SECS

EINCVIRTCHILD OVERSUB EPCPAGE SECS

EINIT SGX1 SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

ELDBC/ELDUC OVERSUB PAGEINFO and linked structures EPCPAGE VAPAGE

37-4 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.6 INTEL® SGX DATA STRUCTURES OVERVIEW
Enclave operation is managed via a collection of data structures. Many of the top-level data structures contain sub-
structures. The top-level data structures relate to parameters that may be used in enclave setup/maintenance, by
Intel SGX instructions, or AEX event. The top-level data structures are:
• SGX Enclave Control Structure (SECS)
• Thread Control Structure (TCS)
• State Save Area (SSA)
• Page Information (PAGEINFO)
• Security Information (SECINFO)
• Paging Crypto MetaData (PCMD)
• Enclave Signature Structure (SIGSTRUCT)
• EINIT Token Structure (EINITTOKEN)
• Report Structure (REPORT)
• Report Target Info (TARGETINFO)
• Key Request (KEYREQUEST)
• Version Array (VA)
• Enclave Page Cache Map (EPCM)
• Read Info (RDINFO)
Details of the top-level data structures and associated sub-structures are listed in Section 37.7 through Section
37.19.

37.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

EMODPE SGX2 SECINFO EPCPAGE

EMODPR SGX2 SECINFO EPCPAGE SECS

EMODT SGX2 SECINFO EPCPAGE SECS

EPA SGX1 EPCADDR

ERDINFO OVERSUB RDINFO EPCPAGE

EREMOVE SGX1 EPCPAGE SECS

EREPORT SGX1 TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME SGX1 TCS and linked SSA SECS

ESETCONTEXT OVERSUB SECS ContextValue

ETRACK SGX1 EPCPAGE

ETRACKC OVERSUB EPCPAGE

EWB SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

Asynchronous Enclave Exit* SECS, TCS,
SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 39.4

Table 37-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions (Contd.)
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit

Vol. 3D 37-5

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.7.1 ATTRIBUTES
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and the
KEYREQUEST structures. CPUID.(EAX=12H, ECX=1) enumerates a bitmap of permitted 1-setting of bits in ATTRI-
BUTES.

Table 37-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages, including XSAVE, pad, GPR, and MISC (if
CPUID.(EAX=12H, ECX=0):.EBX != 0).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region
(see Section 37.7.2) of the SSA frame when an AEX occurs.

RESERVED 24 24

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 37-3.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the
enclave. See SIGSTRUCT for format.

RESERVED 160 32

CONFIGID 192 64 Post EINIT configuration identity.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Post EINIT configuration security version number (SVN).

RESERVED 260 3834 The RESERVED field consists of the following:
• EID: An 8 byte Enclave Identifier. Its location is implementation specific.
• PAD: A 352 bytes padding pattern from the Signature (used for key

derivation strings). It’s location is implementation specific.
• VIRTCHILDCNT: An 8 byte Count of virtual children that have been paged

out by a VMM. Its location is implementation specific.
• ENCLAVECONTEXT: An 8 byte Enclave context pointer. Its location is

implementation specific.
• ISVFAMILYID: A 16 byte value assigned to identify the family of products

the enclave belongs to.
• ISVEXTPRODID: A 16 byte value assigned to identify the product identity

of the enclave.
• The remaining 3226 bytes are reserved area.
The entire 3836 byte field must be cleared prior to executing ECREATE.

Table 37-3. Layout of ATTRIBUTES Structure
Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as
part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1 to
match the state after EINIT has initialized the enclave.

DEBUG 1 If 1, the enclave permit debugger to read and write enclave data using EDBGRD and EDBGWR.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

37-6 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.7.2 SECS.MISCSELECT Field
CPUID.(EAX=12H, ECX=0):EBX[31:0] enumerates which extended information that the processor can save into
the MISC region of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the
SECS.MISCSELECT field. The bit vector of MISCSELECT selects which extended information is to be saved in the
MISC region of the SSA frame when an AEX is generated. The bit vector definition of extended information is listed
in Table 37-4.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 37.9.2.

37.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes alignment.

EINITTOKEN_KEY 5 EINIT token key is available from EGETKEY.

RESERVED 6 Must be zero.

KSS 7 Key Separation and Sharing Enabled.

RESERVED 63:8 Must be zero.

XFRM 127:64 XSAVE Feature Request Mask. See Section 41.7.

Table 37-4. Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an
enclave.

Reserved 31:1 Reserved (0).

Table 37-5. Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

STAGE 0 8 Enclave execution state of the thread controlled by this TCS. A value of 0 indi-
cates that this TCS is available for enclave entry. A value of 1 indicates that a
processer is currently executing an enclave in the context of this TCS.

FLAGS 8 8 The thread’s execution flags (see Section 37.8.1).

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the
base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time.

OFSBASGX 48 8 Offset to add to the base address of the enclave for producing the base
address of FS segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 Offset to add to the base address of the enclave for producing the base
address of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

Table 37-3. Layout of ATTRIBUTES Structure
Field Bit Position Description

Vol. 3D 37-7

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.8.1 TCS.FLAGS

37.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of State Save Area (SSA) frames (see Section 37.9) used to save the processor state
when an interrupt or exception occurs while executing in the enclave.

37.8.3 Current State Save Area Frame (CSSA)
CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the array
of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

37.8.4 Number of State Save Area Frames (NSSA)
NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame
when EENTER-ing the enclave or the EENTER will fail.

37.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA frame,
which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in

an XSAVE/FXSAVE-compatible non-compacted format.
• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC region.

Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.
• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 37-7). This is used to

hold the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS and the
AEX information.

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX
region, and may contain zero or more components of extended information that would be saved when an AEX
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions is the pad region that
software can use. If the MISC region is present, the region between the MISC and XSAVE regions is the pad
region that software can use. See additional details in Section 37.9.2.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

RESERVED 72 4024 Must be zero.

Table 37-6. Layout of TCS.FLAGS Field
Field Bit Position Description

DBGOPTIN 0 If set, allows debugging features (single-stepping, breakpoints, etc.) to be enabled and active while
executing in the enclave on this TCS. Hardware clears this bit on EADD. A debugger may later mod-
ify it if the enclave’s ATTRIBUTES.DEBUG is set.

RESERVED 63:1

Table 37-5. Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

37-8 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 37-8.

Table 37-7. Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using CPUID
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The
enablement of those processor extended state components in conjunction with
CPUID leaf 0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE
region

Chosen by enclave
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of GPRSGX
– sizeof(MISC)

Calculate from high-
est set bit of
SECS.MISCSELECT

See Section 37.9.2.

GPRSGX SSAFRAMESIZE
– 176

176 See Table 37-8 for layout of the GPRSGX region.

Table 37-8. Layout of GPRSGX Portion of the State Save Area
Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Non-Enclave (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Non-Enclave (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be
needed by enclave software (see Section 37.9.1.1).

RESERVED 164 4

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

Vol. 3D 37-9

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.9.1.1 EXITINFO
EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field laid
out as in Table 37-9. The VALID bit is set only for the exceptions conditions which are reported inside an enclave.
See Table 37-10 for which exceptions are reported inside the enclave. If the exception condition is not one reported
inside the enclave then VECTOR and EXIT_TYPE are cleared.

37.9.1.2 VECTOR Field Definition
Table 37-10 contains the VECTOR field. This field contains information about some exceptions which occur inside
the enclave. These vector values are the same as the values that would be used when vectoring into regular excep-
tion handlers. All values not shown are not reported inside an enclave.

37.9.2 MISC Region
The layout of the MISC region is shown in Table 37-11. The number of components that the processor supports in
the MISC region corresponds to the set bits of CPUID.(EAX=12H, ECX=0):EBX[31:0] set to 1. Each set bit in
CPUID.(EAX=12H, ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table
37-11. Enclave writers needs to do the following:
• Decide which MISC region components will be supported for the enclave.
• Allocate an SSA frame large enough to hold the components chosen above.
• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.

Table 37-9. Layout of EXITINFO Field
Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.
110b: Software exceptions.
Other values: Reserved.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.
1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.

• Conditionally supported exception:

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

Table 37-10. Exception Vectors
Name Vector # Description

#DE 0 Divider exception.

#DB 1 Debug exception.

#BP 3 Breakpoint exception.

#BR 5 Bound range exceeded exception.

#UD 6 Invalid opcode exception.

#GP 13 General protection exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#MF 16 x87 FPU floating-point error.

#AC 17 Alignment check exceptions.

#XM 19 SIMD floating-point exceptions.

37-10 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow in
ascending order within the MISC region towards the XSAVE region.
The size of the MISC region is calculated as follows:
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported.
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from sum of the highest bit set

in SECS.MISCSELECT and the size of the MISC component corresponding to that bit. Offset and size
information of currently defined MISC components are listed in Table 37-11. For example, if the highest bit set
in SECS.MISCSELECT is bit 0, the MISC region offset is OFFSET(GPRSGX)-16 and size is 16 bytes.

• The processor saves a MISC component i in the MISC region if and only if SECS.MISCSELECT[i] is 1.

37.9.2.1 EXINFO Structure
Table 37-12 contains the layout of the EXINFO structure that provides additional information.

37.9.2.2 Page Fault Error Codes
Table 37-13 contains page fault error code that may be reported in EXINFO.ERRCD.

Table 37-11. Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO Offset(GPRSGX) –16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or
#PF that occurred inside an enclave can be written to the EXINFO structure
if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0).

Table 37-12. Layout of EXINFO Structure
Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 If #PF: contains the page fault linear address that caused a page fault.
If #GP: the field is cleared.

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

Table 37-13. Page Fault Error Codes
Name Bit Position Description

P 0 Same as non-SGX page fault exception P flag.

W/R 1 Same as non-SGX page fault exception W/R flag.

U/S1

NOTES:

1. Page faults incident to enclave mode that report U/S=0 are not reported in EXINFO.

2 Always set to 1 (user mode reference).

RSVD 3 Same as non-SGX page fault exception RSVD flag.

I/D 4 Same as non-SGX page fault exception I/D flag.

PK 5 Protection Key induced fault.

RSVD 14:6 Reserved.

SGX 15 EPCM induced fault.

RSVD 31:5 Reserved.

Vol. 3D 37-11

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.10 PAGE INFORMATION (PAGEINFO)
PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It
requires 32-Byte alignment.

37.11 SECURITY INFORMATION (SECINFO)
The SECINFO data structure holds meta-data about an enclave page.

37.11.1 SECINFO.FLAGS
The SECINFO.FLAGS are a set of fields describing the properties of an enclave page.

Table 37-14. Layout of PAGEINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for
the page.

SECS 24 8 Effective address of EPC slot that currently contains the SECS.

Table 37-15. Layout of SECINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page.

RESERVED 8 56 Must be zero.

Table 37-16. Layout of SECINFO.FLAGS Field
Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read
from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be
executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

PR 5 If 1 indicates that a permission restriction operation on the page is in progress, otherwise a permission
restriction operation is not in progress.

RESERVED 7:6 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.

37-12 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.11.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page.

37.12 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page.
The size of the PCMD structure (128 bytes) is architectural.
EWB calculates the Message Authentication Code (MAC) value and writes out the PCMD. ELDB/U reads the fields
and checks the MAC.
The format of PCMD is as follows:

37.13 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the
enclave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digest, as defined in FIPS PUB 180-4. The digests are byte strings
of length 32. Each of the 8 HASH dwords is stored in little-endian order.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented as
a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least significant
byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 3072-
bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format with DER
encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned

Table 37-17. Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a regular page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

All other Reserved.

Table 37-18. Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-out
page and the enclave.

RESERVED 72 40 Must be zero.

MAC 112 16 Message Authentication Code for the page, page meta-data and reserved
field.

Vol. 3D 37-13

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

In column 5 of Table 37-19, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

37.14 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by an
enclave in possession of the EINITTOKEN key (the Launch Enclave).
EINIT token must be 512-Byte aligned.

Table 37-19. Layout of Enclave Signature Structure (SIGSTRUCT)
Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream
06000000E10000000000010000000000H

Y

VENDOR 16 4 Intel Enclave: 00008086H
Non-Intel Enclave: 00000000H

Y

DATE 20 4 Build date is yyyymmdd in hex:
yyyy=4 digit year, mm=1-12, dd=1-31

Y

HEADER2 24 16 Must be byte stream
01010000600000006000000001000000H

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength=3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT* 900 4 Bit vector specifying Extended SSA frame feature set to be
used.

Y

MISCMASK* 904 4 Bit vector mask of MISCSELECT to enforce. Y

RESERVED 908 4 Must be zero. Y

ISVFAMILYID 912 16 ISV assigned Product Family ID. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

RESERVED 992 16 Must be zero. Y

ISVEXTPRODID 1008 16 ISV assigned extended Product ID. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N

* If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] !=0, enclave writers must specify MISCSELECT such that each cleared
bit in MISCMASK must also specify the corresponding bit as 0 in MISCSELECT.

37-14 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.15 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 37-20. Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

Valid 0 4 Y Bit 0: 1: Valid; 0: Invalid.
All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

RESERVED 212 24 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved
MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s
masking).

MASKEDATTRIBU
TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the LE’s
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N Message Authentication Code on EINITTOKEN using EINITTOKEN_KEY.

Table 37-21. Layout of REPORT
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of
the SSA frame when an AEX occurs.

RESERVED 20 12 Zero.

ISVEXTNPRODID 32 16 The value of SECS.ISVEXTPRODID.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 37.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Zero.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 32 Zero.

CONFIGID 192 64 Value provided by SW to identify enclave's post EINIT configuration.

ISVPRODID 256 02 Product ID of enclave.

ISVSVN 258 02 Security version number (SVN) of the enclave.

CONFIGSVN 260 02 Value provided by SW to indicate expected SVN of enclave's post EINIT configura-
tion.

RESERVED 262 42 Zero.

ISVFAMILYID 304 16 The value of SECS.ISVFAMILYID.

Vol. 3D 37-15

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.15.1 REPORTDATA
REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be used
to securely pass information from the enclave to the target enclave.

37.16 REPORT TARGET INFO (TARGETINFO)
This structure is an input parameter to the EREPORT leaf function. The address of TARGETINFO is specified as an
effective address in RBX. It is used to identify the target enclave which will be able to cryptographically verify the
REPORT structure returned by EREPORT. TARGETINFO must be 512-Byte aligned.

37.17 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX and
must be 512-Byte aligned. It is used for selecting the appropriate key and any additional parameters required in
the derivation of that key.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC, see Section
37.15.1.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 Message Authentication Code on the report using report key.

Table 37-22. Layout of TARGETINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

RESERVED 48 2 Must be zero.

CONFIGSVN 50 2 CONFIGSVN of the target enclave.

MISCSELECT 52 4 The MISCSELECT of the target enclave.

RESERVED 56 8 Must be zero.

CONFIGID 64 64 CONFIGID of target enclave.

RESERVED 128 384 Must be zero.

Table 37-23. Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 02 Identifies the Key Required.

KEYPOLICY 02 02 Identifies which inputs are required to be used in the key derivation.

ISVSVN 04 02 The ISV security version number that will be used in the key derivation.

RESERVED 06 02 Must be zero.

CPUSVN 08 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in key derivation.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 04 A mask defining which MISCSELECT bits will be included in key derivation.

Table 37-21. Layout of REPORT
Field OFFSET (Bytes) Size (Bytes) Description

37-16 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.17.1 KEY REQUEST KeyNames

37.17.2 Key Request Policy Structure

37.18 VERSION ARRAY (VA)
In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot
receives the unique version number of the page being evicted. When the EPC page is reloaded, there must be a VA
slot that must hold the version of the page. If the page is successfully reloaded, the version in the VA slot is cleared.
VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA
page must be used to hold the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

CONFIGSVN 76 02 Identifies which enclave Configuration's Security Version should be used in key
derivation.

RESERVED 78 434

Table 37-24. Supported KEYName Values
Key Name Value Description

EINITTOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Seal Key

All other Reserved

Table 37-25. Layout of KEYPOLICY Field
Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

NOISVPRODID 2 If 1, derive key WITHOUT using the enclave' ISVPRODID value.

CONFIGID 3 If 1, derive key using the enclave's CONFIGID value.

ISVFAMILYID 4 If 1, derive key using the enclave ISVFAMILYID value.

ISVEXTPRODID 5 If 1, derive key using enclave's ISVEXTPRODID value.

RESERVED 15:6 Must be zero.

Table 37-23. Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Vol. 3D 37-17

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.19 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of
EPCM fields is implementation specific.

37.20 READ INFO (RDINFO)
The RDINFO structure contains status information about an EPC page. It must be aligned to 32-Bytes.

Table 37-26. Layout of Version Array Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 08 Version Slot 0

Slot 1 8 08 Version Slot 1

...

Slot 511 4088 08 Version Slot 511

Table 37-27. Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by this
entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by this
entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page
referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.

PR Indicates whether the EPC page is in a permission restriction state.

Table 37-28. Layout of RDINFO Structure

Field OFFSET
(Bytes)

Size (Bytes) Description

STATUS 0 8 Page status information.

FLAGS 8 8 EPCM state of the page.

ENCLAVECONTEXT 16 8 Context pointer describing the page's parent location.

37-18 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

37.20.1 RDINFO Status Structure

37.20.2 RDINFO Flags Structure

Table 37-29. Layout of RDINFO STATUS Structure
Field Bit Position Description

CHILDPRESENT 0 Indicates that the page has one or more child pages present (always zero for non-SECS
pages). In VMX non-root operation includes the presence of virtual children.

VIRTCHLDPRESENT 1 Indicates that the page has one or more virtual child pages present (always zero for non-
SECS pages). In VMX non-root operation this value is always zero.

RESERVED 63:2

Table 37-30. Layout of RDINFO FLAGS Structure
Field Bit Position Description

R 0 Read access; indicates whether enclave accesses for reads are allowed from the EPC page
referenced by this entry.

W 1 Write access; indicates whether enclave accesses for writes are allowed to the EPC page
referenced by this entry.

X 2 Execute access; indicates whether enclave accesses for instruction fetches are allowed
from the EPC page referenced by this entry.

PENDING 3 Indicates whether the EPC page is in the pending state.

MODIFIED 4 Indicates whether the EPC page is in the modified state.

PR 5 Indicates whether the EPC page is in a permission restriction state.

RESERVED 7:6

PAGE_TYPE 15:8 Indicates the page type of the EPC page.

RESERVED 62:16

BLOCKED 63 Indicates whether the EPC page is in the blocked state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

25.Updates to Chapter 38, Volume 3D
Change bars show changes to Chapter 38 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Various updates throughout chapter regarding Intel SGX and new Intel SGX VM Over-
subscription feature.

Vol. 3D 38-1

ENCLAVE OPERATION

CHAPTER 38
ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing

identity.
• Enclave entry and exiting including:

— Controlled entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

38.1 CONSTRUCTING AN ENCLAVE
Figure 38-1 illustrates a typical Enclave memory layout.

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1. The application hands over the enclave content along with additional information required by the enclave
creation API to the enclave creation service running at privilege level 0.

2. The enclave creation service running at privilege level 0 uses the ECREATE leaf function to set up the initial
environment, specifying base address and size of the enclave. This address range, the ELRANGE, is part of the
application's address space. This reserves the memory range. The enclave will now reside in this address

Figure 38-1. Enclave Memory Layout

Thread Data

Global Data

Code

Enclave Memory

SECS

TCS

Base + Size

Base

Replicated once
per thread

Enclave {Base, Size}

Application Context

OS Context

38-2 Vol. 3D

ENCLAVE OPERATION

region. ECREATE also allocates an Enclave Page Cache (EPC) page for the SGX Enclave Control Structure
(SECS). Note that this page is not required to be a part of the enclave linear address space and is not required
to be mapped into the process.

3. The enclave creation service uses the EADD leaf function to commit EPC pages to the enclave, and use
EEXTEND to measure the committed memory content of the enclave. For each page to be added to the enclave:

— Use EADD to add the new page to the enclave.

— If the enclave developer requires measurement of the page as a proof for the content, use EEXTEND to add
a measurement for 256 bytes of the page. Repeat this operation until the entire page is measured.

4. The enclave creation service uses the EINIT leaf function to complete the enclave creation process and finalize
the enclave measurement to establish the enclave identity. Until an EINIT is executed, the enclave is not
permitted to execute any enclave code (i.e. entering the enclave by executing EENTER would result in a fault).

38.1.1 ECREATE
The ECREATE leaf function sets up the initial environment for the enclave by reading an SGX Enclave Control Struc-
ture (SECS) that contains the enclave's address range (ELRANGE) as defined by BASEADDR and SIZE, the ATTRI-
BUTES and MISCSELECT bitmaps, and the SSAFRAMESIZE. It then securely stores this information in an Enclave
Page Cache (EPC) page. ELRANGE is part of the application's address space. ECREATE also initializes a crypto-
graphic log of the enclave's build process.

38.1.2 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting a
free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will update the EPCM entry with the type of page (PT_REG or PT_TCS), the
linear address used by the enclave to access the page, and the enclave access permissions for the page. It associ-
ates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access
control to the page. EADD records EPCM information in the cryptographic log stored in the SECS and copies 4
KBytes of data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing the
type of page to be added, the attributes of the page, the contents of the page, and the SECS (enclave) to which the
page is to be added as requested by the application. Incorrect data would lead to a failure of EADD or to an incor-
rect cryptographic log and a failure at EINIT time.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire 4KB page, system software must execute EEXTEND 16
times. Each invocation of EEXTEND adds to the cryptographic log information about which region is being measured
and the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that
the enclave was correctly constructed by the untrusted system software.

38.1.3 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT leaf function. After an enclave is initialized, EADD and EEXTEND are disabled for that enclave (An
attempt to execute EADD/EEXTEND to enclave after enclave initialization will result in a fault). The initialization
process finalizes the cryptographic log and establishes the enclave identity and sealing identity used by
EGETKEY and EREPORT.
A cryptographic hash of the log is stored as the enclave identity. Correct construction of the enclave results in the
cryptographic hash matching the one built by the enclave owner and included as the ENCLAVEHASH field of
SIGSTRUCT. The enclave identity provided by the EREPORT leaf function can be verified by a remote party.

Vol. 3D 38-3

ENCLAVE OPERATION

The EINIT leaf function checks the EINIT token to validate that the enclave has been enabled on this platform. If
the enclave is not correctly constructed, or the EINIT token is not valid for the platform, or SIGSTRUCT isn't prop-
erly signed, then EINIT will fail. See the EINIT leaf function for details on the error reporting.
The enclave identity is a cryptographic hash that reflects the enclave attributes and MISCSELECT value, content
of the enclave, the order in which it was built, the addresses it occupies in memory, the security attributes, and
access right permissions of each page. The enclave identity is established by the EINIT leaf function.
The sealing identity is managed by a sealing authority represented by the hash of the public key used to sign the
SIGSTRUCT structure processed by EINIT. The sealing authority assigns a product ID (ISVPRODID) and security
version number (ISVSVN) to a particular enclave identity.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is properly signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in SIGSTRUCT.
3. Checks that the enclave’s attributes and MISCSELECT values are compatible with those specified in SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity (the sealing authority, product id
and security version number) and enclave identity in the SECS.
5. Sets the ATTRIBUTES.INIT bit for the enclave.

38.1.4 Intel® SGX Launch Control Configuration
Intel® SGX Launch Control is a set of controls that govern the creation of enclaves. Before the EINIT leaf function
will successfully initialize an enclave, a designated Launch Enclave must create an EINITTOKEN for that enclave.
Launch Enclaves have SECS.ATTRIBUTES.EINITTOKEN_KEY = 1, granting them access to the EINITTOKEN_KEY
from the EGETKEY leaf function. EINITTOKEN_KEY must be used by the Launch Enclave when computing EINIT-
TOKEN.MAC, the Message Authentication Code of the EINITTOKEN.
The hash of the public key used to sign the SIGSTRUCT of the Launch Enclave must equal the value in the
IA32_SGXLEPUBKEYHASH MSRs. Only Launch Enclaves are allowed to launch without a valid token.
The IA32_SGXLEPUBKEYHASH MSRs are provided to designate the platform’s Launch Enclave.
IA32_SGXLEPUBKEYHASH defaults to digest of Intel’s launch enclave signing key after reset.
IA32_FEATURE_CONTROL bit 17 controls the permissions on the IA32_SGXLEPUBKEYHASH MSRs when
CPUID.(EAX=12H, ECX=00H):EAX[0] = 1. If IA32_FEATURE_CONTROL is locked with bit 17 set,
IA32_SGXLEPUBKEYHASH MSRs are reconfigurable (writeable). If either IA32_FEATURE_CONTROL is not locked or
bit 17 is clear, the MSRs are read only. By leaving these MSRs writable, system SW or a VMM can support a plurality
of Launch Enclaves for hosting multiple execution environments. See Table 42.2.2 for more details.

38.2 ENCLAVE ENTRY AND EXITING

38.2.1 Controlled Entry and Exit
The EENTER leaf function is the method to enter the enclave under program control. To execute EENTER, software
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the
enclave to transfer control to and a pointer to the SSA frame inside the enclave that an AEX should store the
register state to.
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the
enclave. An attempt to enter an enclave through a busy TCS results in a fault. Intel® SGX allows an enclave builder
to define multiple TCSs, thereby providing support for multithreaded enclaves.
Software must also supply to EENTER the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external
to the enclave which an exception handler will return to using IRET. Typically the location would contain the
ERESUME instruction. ERESUME transfers control back to the enclave, to the address retrieved from the enclave
thread’s saved state.
EENTER performs the following operations:

38-4 Vol. 3D

ENCLAVE OPERATION

1. Check that TCS is not busy and flush all cached linear-to-physical mappings.

2. Change the mode of operation to be in enclave mode.

3. Save the old RSP, RBP for later restore on AEX (Software is responsible for setting up the new RSP, RBP to be
used inside enclave).

4. Save XCR0 and replace it with the XFRM value for the enclave.

5. Check if software wishes to debug (applicable to a debuggable enclave):

— If not debugging, then configure hardware so the enclave appears as a single instruction.

— If debugging, then configure hardware to allow traps, breakpoints, and single steps inside the enclave.

6. Set the TCS as busy.

7. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT leaf function is the method of leaving the enclave under program control. EEXIT receives the target
address outside of the enclave that the enclave wishes to transfer control to. It is the responsibility of enclave soft-
ware to erase any secret from the registers prior to invoking EEXIT. To allow enclave software to easily perform an
external function call and re-enter the enclave (using EEXIT and EENTER leaf functions), EEXIT returns the value of
the AEP that was used when the enclave was entered.
EEXIT performs the following operations:

1. Clear enclave mode and flush all cached linear-to-physical mappings.

2. Mark TCS as not busy.

3. Transfer control from inside the enclave to a location on the outside specified as parameter to the EEXIT leaf
function.

38.2.2 Asynchronous Enclave Exit (AEX)
Asynchronous and synchronous events, such as exceptions, interrupts, traps, SMIs, and VM exits may occur while
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic
state is called an Asynchronous Enclave Exit (AEX). Details of AEX is described in Chapter 39, “Enclave Exiting
Events”.
As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location
where control will return to after executing the IRET. The ERESUME leaf function can be executed from that point
to reenter the enclave and resume execution from the interrupted point.
After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the
enclave (e.g. a #PF in dispatching to an interrupt handler).

38.2.3 Resuming Execution after AEX
After system software has serviced the event that caused the logical processor to exit an enclave, the logical
processor can continue enclave execution using ERESUME. ERESUME restores processor state and returns control
to where execution was interrupted.
If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by 0 operation, executing
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by 0
exception. Intel® SGX provides the means for an enclave developer to handle enclave exceptions from within the
enclave. Software can enter the enclave at a different location and invoke the exception handler within the enclave
by executing the EENTER leaf function. The exception handler within the enclave can read the fault information
from the SSA frame and attempt to resolve the faulting condition or simply return and indicate to software that the
enclave should be terminated (e.g. using EEXIT).

Vol. 3D 38-5

ENCLAVE OPERATION

38.2.3.1 ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI, EIP and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. Neither
the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded.

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values as if REX.W = 1.

38.3 CALLING ENCLAVE PROCEDURES

38.3.1 Calling Convention
In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the
SP or BP register (depending on runtime conventions used by the compiler).
Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner.
Entering the enclave requires a modified parameter passing convention.
For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those parame-
ters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge routines;
be those routines hand-coded or compiler generated.

38.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning a
value. This is consistent with conventional usage and tends to optimize the number of register save/restore oper-
ations that need be performed. It has the additional security result that it ensures that data is scrubbed from any
registers that were used by enclave to temporarily contain secrets.

38.3.3 Returning to Caller
No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before
executing EEXIT.

38.4 INTEL® SGX KEY AND ATTESTATION

38.4.1 Enclave Measurement and Identification
During the enclave build process, two “measurements” are taken of each enclave and are stored in two 256-bit
Measurement Registers (MR): MRENCLAVE and MRSIGNER. MRENCLAVE represents the enclave's contents and
build process. MRSIGNER represents the entity that signed the enclave's SIGSTRUCT.

38-6 Vol. 3D

ENCLAVE OPERATION

The values of the Measurement Registers are included in attestations to identify the enclave to remote parties. The
MRs are also included in most keys, binding keys to enclaves with specific MRs.

38.4.1.1 MRENCLAVE
MRENCLAVE is a unique 256 bit value that identifies the code and data that was loaded into the enclave during the
initial launch. It is computed as a SHA256 hash that is initialized by the ECREATE leaf function. EADD and EEXTEND
leaf functions record information about each page and the content of those pages. The EINIT leaf function finalizes
the hash, which is stored in SECS.MRENCLAVE. Any tampering with the build process, contents of a page, page
permissions, etc will result in a different MRENCLAVE value.
Figure 38-2 illustrates a simplified flow of changes to the MRENCLAVE register when building an enclave:
• Enclave creation with ECREATE.
• Copying a non-enclave source page into the EPC of an un-initialized enclave with EADD.
• Updating twice of the MRENCLAVE after modifying the enclave’s page content, i.e. EEXTEND twice.
• Finalizing the enclave build with EINIT.
Details on specific values inserted in the hash are available in the individual instruction definitions.

38.4.1.2 MRSIGNER
Each enclave is signed using a 3072 bit RSA key. The signature is stored in the SIGSTRUCT. In the SIGSTRUCT, the
enclave's signer also assigns a product ID (ISVPRODID) and a security version (ISVSVN) to the enclave.
MRSIGNER is the SHA-256 hash of the signer's public key. For platforms that support Key Separation and Sharing
(CPUID.(EAX=12H, ECX=1).EAX.KSS[7]) the SIGSTRUCT can additionally specify an 16 byte extended product ID
(ISVEXTPRODID), and a 16 byte family ID (ISVFAMILYID).
In attestation, MRSIGNER can be used to allow software to approve of an enclave based on the author rather than
maintaining a list of MRENCLAVEs. It is used in key derivation to allow software to create a lineage of an applica-
tion. By signing multiple enclaves with the same key, the enclaves will share the same keys and data. Combined

Figure 38-2. Measurement Flow of Enclave Build Process

SHA_INIT

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_FINAL

MRENCLAVE

Page
Metadata

Data
Chunk 1

Data
Chunk 2

Chunk 1
Metadata

Chunk 2
Metadata

ECREATE EADD EEXTEND EEXTEND EINIT

Vol. 3D 38-7

ENCLAVE OPERATION

with security version numbering, the author can release multiple versions of an application which can access keys
for previous versions, but not future versions of that application.

38.4.1.3 CONFIGID
For platforms that support enhancements for key separation and sharing (CPUID.(EAX=12H, ECX=1).EAX.KSS[7])
when the enclave is created the platform can additionally provide 32-byte configuration identifier (CONFIGID).
How this value is used is dependent on the enclave but it is intended to allow enclave creators to indicate what
additional content may be accepted by the enclave post-initialization.

38.4.2 Security Version Numbers (SVN)
Intel® SGX supports a versioning system that allows the signer to identify different versions of the same software
released by an author. The security version is independent of the functional version an author uses and is intended
to specify security equivalence. Multiple releases with functional enhancements may all share the same SVN if they
all have the same security properties or posture. Each enclave has an SVN and the underlying hardware has an
SVN.
The SVNs are attested to in EREPORT and are included in the derivation of most keys, thus providing separation
between data for older/newer versions.

38.4.2.1 Enclave Security Version
In the SIGSTRUCT, the MRSIGNER is associated with a 16-bit Product ID (ISVPRODID) and a 16 bit integer SVN
(ISVSVN). Together they define a specific group of versions of a specific product. Most keys, including the Seal Key,
can be bound to this pair.
To support upgrading from one release to another, EGETKEY will return keys corresponding to any value less than
or equal to the software's ISVSVN.

38.4.2.2 Hardware Security Version
CPUSVN is a 128 bit value that reflects the microcode update version and authenticated code modules supported
by the processor. Unlike ISVSVN, CPUSVN is not an integer and cannot be compared mathematically. Not all values
are valid CPUSVNs.
Software must ensure that the CPUSVN provided to EGETKEY is valid. EREPORT will return the CPUSVN of the
current environment. Software can execute EREPORT with TARGETINFO set to zeros to retrieve a CPUSVN from
REPORTDATA. Software can access keys for a CPUSVN recorded previously, provided that each of the elements
reflected in CPUSVN are the same or have been upgraded.

38.4.2.3 CONFIGID Security Version
The CONFIGID field can be used to contain the hash of a signing key for verifying the additional content. In this
case, similar to the relationship between MRSIGNER and ISVSVN, CONFIGID needs a CONFIGID Security Version
Number. CONFIGIDSVN can be specified at the same time as CONFIGID.

38.4.3 Keys
Intel® SGX provides software with access to keys unique to each processor and rooted in HW keys inserted into the
processor during manufacturing.
Each enclave requests keys using the EGETKEY leaf function. The key is based on enclave parameters such as
measurement, the enclave signing key, security attributes of the enclave, and the Hardware Security version of the
processor itself. A full list of parameter options is specified in the KEYREQUEST structure, see details in Section
37.17.
By deriving keys using enclave properties, SGX guarantees that if two enclaves call EGETKEY, they will receive a
unique key only accessible by the respective enclave. It also guarantees that the enclave will receive the same key

38-8 Vol. 3D

ENCLAVE OPERATION

on every future execution of EGETKEY. Some parameters are optional or configurable by software. For example, a
Seal key can be based on the signer of the enclave, resulting in a key available to multiple enclaves signed by the
same party.
The EGETKEY leaf function provides several key types. Each key is specific to the processor, CPUSVN, and the
enclave that executed EGETKEY. The EGETKEY instruction definition details how each of these keys is derived, see
Table 40-64. Additionally,
• SEAL Key: The Seal key is a general purpose key for the enclave to use to protect secrets. Typical uses of the

Seal key are encrypting and calculating MAC of secrets on disk. There are 2 types of Seal Key described in
Section 38.4.3.1.

• REPORT Key: This key is used to compute the MAC on the REPORT structure. The EREPORT leaf function is used
to compute this MAC, and destination enclave uses the Report key to verify the MAC. The software usage flow
is detailed in Section 38.4.3.2.

• EINITTOKEN_KEY: This key is used by Launch Enclaves to compute the MAC on EINITTOKENs. These tokens are
then verified in the EINIT leaf function. The key is only available to enclaves with ATTRIBUTE.EINITTOKEN_KEY set
to 1.

• PROVISIONING Key and PROVISIONING SEAL Key: These keys are used by attestation key provisioning
software to prove to remote parties that the processor is genuine and identify the currently executing TCB.
These keys are only available to enclaves with ATTRIBUTE.PROVISIONKEY set to 1.

38.4.3.1 Sealing Enclave Data
Enclaves can protect persistent data using Seal keys to provide encryption and/or integrity protection. EGETKEY
provides two types of Seal keys specified in KEYREQUEST.KEYPOLICY field: MRENCLAVE-based key and
MRSIGNER-based key.
The MRENCLAVE-based keys are available only to enclave instances sharing the same MRENCLAVE. If a new
version of the enclave is released, the Seal keys will be different. Retrieving previous data requires additional soft-
ware support.
The MRSIGNER-based keys are bound to the 3 tuple (MRSIGNER, ISVPRODID, ISVSVN). These keys are available
to any enclave with the same MRSIGNER and ISVPRODID and an ISVSVN equal to or greater than the key in ques-
tions. This is valuable for allowing new versions of the same software to retrieve keys created before an upgrade.
For platforms that support enhancements for key separation and sharing (CPUID.(EAX=12H, ECX=1).EAX.KSS[7])
four additional key policies for seal key derivation are provided. These add the ISVEXTPRODID, ISVFAMILYID and
CONFIGID/CONFIGSVN to the key derivation. Additionally there is a policy to remove ISVPRODID from a key deri-
vation to create a shared between different products that share the same MRSIGNER.

38.4.3.2 Using REPORTs for Local Attestation
SGX provides a means for enclaves to securely identify one another, this is referred to as “Local Attestation”. SGX
provides a hardware assertion, REPORT that contains calling enclaves Attributes, Measurements and User supplied
data (described in detail in Section 37.15). Figure 38-3 shows the basic flow of information.

1. The source enclave determines the identity of the target enclave to populate TARGETINFO.

2. The source enclave calls EREPORT instruction to generate a REPORT structure. The EREPORT instruction
conducts the following:

— Populates the REPORT with identify information about the calling enclave.

— Derives the Report Key that is returned when the target enclave executes the EGETKEY. TARGETINFO
provides information about the target.

— Computes a MAC over the REPORT using derived target enclave Report Key.

3. Non-enclave software copies the REPORT from source to destination.

4. The target enclave executes the EGETKEY instruction to request its REPORT key, which is the same key used by
EREPORT at the source.

5. The target enclave verifies the MAC and can then inspect the REPORT to identify the source.

Vol. 3D 38-9

ENCLAVE OPERATION

38.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 36-7 for EPC layout). EPC is
typically configured by BIOS at system boot time.

38.5.1 EPC Implementation
EPC must be properly protected against attacks. One example of EPC implementation could use a Memory Encryp-
tion Engine (MEE). An MEE provides a cost-effective mechanism of creating cryptographically protected volatile
storage using platform DRAM. These units provide integrity, replay, and confidentiality protection. Details are
implementation specific.

38.5.2 OS Management of EPC Pages
The EPC is a finite resource. SGX1 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H,
ECX=0):EAX.SGX2 = 0) provides the EPC manager with leaf functions to manage this resource and properly swap
pages out of and into the EPC. For that, the EPC manager would need to keep track of all EPC entries, type and
state, context affiliation, and SECS affiliation.
Enclave pages that are candidates for eviction should be moved to BLOCKED state using EBLOCK instruction that
ensures no new cached virtual to physical address mappings can be created by attempts to reference a BLOCKED
page.
Before evicting blocked pages, EPC manager should execute ETRACK leaf function on that enclave and ensure that
there are no stale cached virtual to physical address mappings for the blocked pages remain on any thread on the
platform.
After removing all stale translations from blocked pages, system software should use the EWB leaf function for
securely evicting pages out of the EPC. EWB encrypts a page in the EPC, writes it to unprotected memory, and
invalidates the copy in EPC. In addition, EWB also creates a cryptographic MAC (PCMD.MAC) of the page and stores
it in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match. To ensure
that only the latest version of the evicted page can be loaded back, the version of the evicted page is stored
securely in a Version Array (VA) in EPC.
SGX1 includes two instructions for reloading pages that have been evicted by system software: ELDU and ELDB.
The difference between the two instructions is the value of the paging state at the end of the instruction. ELDU
results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a
BLOCKED state.

Figure 38-3. SGX Local Attestation

EREPORT

REPORT

Software

Verify REPORT

(Symmetric Key)

Source Enclave

Destination Enclave

EGETKEY
REPORT KEY

(Symmetric Key)
Hardware

Legend:

TARGETINFO

38-10 Vol. 3D

ENCLAVE OPERATION

ELDB is intended for use by a Virtual Machine Monitor (VMM). When a VMM reloads an evicted page, it needs to
restore it to the correct state of the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was
evicted. Based on the state of the page at eviction, the VMM chooses either ELDB or ELDU.

38.5.2.1 Enhancement to Managing EPC Pages
On processors supporting SGX2 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 1), the EPC manager can manage
EPC resources (while enclave is running) with more flexibility provided by the SGX2 leaf functions. The additional
flexibility is described in Section 38.5.7 through Section 38.5.11.

38.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the Operating System (OS) to evict multiple pages out of the EPC under a
single synchronization.
The suggested flow for evicting a list of pages from the EPC is:

1. For each page to be evicted from the EPC:

a. Select an empty slot in a Version Array (VA) page.

• If no empty VA page slots exist, create a new VA page using the EPA leaf function.

b. Remove linear-address to physical-address mapping from the enclave context’s mapping tables (page table
and EPT tables).

c. Execute the EBLOCK leaf function for the target page. This sets the target page state to BLOCKED. At this
point no new mappings of the page will be created. So any access which does not have the mapping cached
in the TLB will generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK leaf function pointing to that enclave’s SECS. This initiates the tracking process that
ensures that all caching of linear-address to physical-address translations for the blocked pages is cleared.

3. For all logical processors executing in processes (OS) or guests (VMM) that contain the enclaves selected in
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those logical processors to asynchro-
nously exit any enclaves they might be in, and as a result flush cached linear-address to physical-address
translations that might hold stale translations to blocked pages. There is no need for additional measures
such as performing a “TLB shootdown”.

4. After enclaves exit, allow logical processors to resume normal operation, including enclave re-entry as the
tracking logic keeps track of the activity.

5. For each page to be evicted:

— Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

At this point, system software has the only copy of each page data encrypted with its page metadata in main
memory.

38.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent
SECS to associate this page with. If the VA page or the parent SECS are not already in the EPC, they must be
reloaded first.

1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page), passing as parameters: the EPC
page linear address, the VA slot, the encrypted page, and the page metadata.

Vol. 3D 38-11

ENCLAVE OPERATION

2. Create a mapping in the enclave context’s mapping tables (page tables and EPT tables) to allow the application
to access that page (OS: system page table; VMM: EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

38.5.5 Eviction of an SECS Page
The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS page
cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages have been
evicted, there will be no threads executing inside the enclave and tracking with ETRACK isn’t necessary. When
reloading an enclave, the SECS page must be reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave.

2. Select an empty slot in a Version Array page.

— If no VA page exists with an empty slot, create a new one using the EPA function leaf.

3. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

38.5.6 Eviction of a Version Array Page
VA pages do not belong to any enclave and tracking with ETRACK isn’t necessary. When evicting the VA page, a slot
in a different VA page must be specified in order to provide versioning of the evicted VA page.

1. Select a slot in a Version Array page other than the page being evicted.

— If no VA page exists with an empty slot, create a new one using the EPA leaf function.

2. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

38.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page to an already initialized enclave is accomplished by
invoking the EAUG leaf function. Typically, the enclave requests that the OS allocate a new page at a particular
location within the enclave’s address space. Once allocated, the page remains in a pending state until the enclave
executes the corresponding EACCEPT leaf function to accept the new page into the enclave. Page allocation opera-
tions may be batched to improve efficiency.
The typical process for allocating a regular page is as follows:

1. Enclave requests additional memory from OS when the current allocation becomes insufficient.

2. The OS invokes the EAUG leaf function to add a new memory page to the enclave.

a. EAUG may only be called on a free EPC page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

c. All dynamically created pages have the type PT_REG and content of all zeros.

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, which verifies the page’s attributes and clears the PENDING state.
At that point the page becomes accessible for normal enclave use.

38-12 Vol. 3D

ENCLAVE OPERATION

38.5.8 Allocating a TCS Page
On processors that support SGX2, allocating a new TCS page to an already initialized enclave is a two-step process.
First the OS allocates a regular page with a call to EAUG. This page must then be accepted and initialized by the
enclave to which it belongs. Once the page has been initialized with appropriate values for a TCS page, the enclave
requests the OS to change the page’s type to PT_TCS. This change must also be accepted. As with allocating a
regular page, TCS allocation operations may be batched.
A typical process for allocating a TCS page is as follows:

1. Enclave requests an additional page from the OS.

2. The OS invokes EAUG to add a new regular memory page to the enclave.

a. EAUG may only be called on a free EPC page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave use.

5. The enclave initializes the contents of the new page.

6. The enclave requests that the OS convert the page from type PT_REG to PT_TCS.

7. OS issues an EMODT instruction on the page.

a. The parameters to EMODT indicate that the regular page should be converted into a TCS.

b. EMODT forces all access rights to a page to be removed because TCS pages may not be accessed by enclave
code.

8. The enclave issues an EACCEPT instruction to confirm the requested modification.

38.5.9 Trimming a Page
On processors that support SGX2, Intel SGX supports the trimming of an enclave page as a special case of EMODT.
Trimming allows an enclave to actively participate in the process of removing a page from the enclave (dealloca-
tion) by splitting the process into first removing it from the enclave's access and then removing it from the EPC
using the EREMOVE leaf function. The page type PT_TRIM indicates that a page has been trimmed from the
enclave’s address space and that the page is no longer accessible to enclave software. Modifications to a page in
the PT_TRIM state are not permitted; the page must be removed and then reallocated by the OS before the enclave
may use the page again. Page deallocation operations may be batched to improve efficiency.
The typical process for trimming a page from an enclave is as follows:

1. Enclave signals OS that a particular page is no longer in use.

2. OS invokes the EMODT leaf function on the page, requesting that the page’s type be changed to PT_TRIM.

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or
PT_TCS.

b. EMODT may only be called on valid enclave pages.

3. OS invokes the ETRACK leaf function on the enclave containing the page to track removal the TLB addresses
from all the processors.

4. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for all
logical processors executing in processes that contain the enclave.

5. Enclave issues an EACCEPT leaf function.

6. The OS may now permanently remove the page from the EPC (by issuing EREMOVE).

38.5.10 Restricting the EPCM Permissions of a Page
On processors that support SGX2, restricting the EPCM permissions associated with an enclave page is accom-
plished using the EMODPR leaf function. This operation requires the cooperation of the OS to flush stale entries to

Vol. 3D 38-13

ENCLAVE OPERATION

the page and to update the page-table permissions of the page to match. Permissions restriction operations may
be batched.
The typical process for restricting the permissions of an enclave page is as follows:

1. Enclave requests that the OS to restrict the permissions of an EPC page.

2. OS performs permission restriction, flushing cached linear-address to physical-address translations, and page-
table modifications.

a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).

b. Invokes the ETRACK leaf function on the enclave containing the page to track removal of the TLB addresses
from all the processor.

c. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for
all logical processors executing in processes that contain the enclave.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown.

e. OS informs the Enclave that all logical processors should now see the new restricted permissions.

3. Enclave invokes the EACCEPT leaf function.

a. Enclave may access the page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale cached linear-address to physical-address translations
are present.

38.5.11 Extending the EPCM Permissions of a Page
On processors that support SGX2, extending the EPCM permissions associated with an enclave page is accom-
plished directly be the enclave using the EMODPE leaf function. After performing the EPCM permission extension,
the enclave requests the OS to update the page table permissions to match the extended permission. Security
wise, permission extension does not require enclave threads to leave the enclave as TLBs with stale references to
the more restrictive permissions will be flushed on demand, but to allow forward progress, an OS needs to be
aware that an application might signal a page fault.
The typical process for extending the permissions of an enclave page is as follows:

1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be
called on VALID pages).

2. Enclave requests that OS update the page tables to match the new EPCM permissions.

3. Enclave code resumes.

a. If cached linear-address to physical-address translations are present to the more restrictive permissions,
the enclave thread will page fault. The SGX2-aware OS will see that the page tables permit the access and
resume the thread, which can now successfully access the page because exiting cleared the TLB.

b. If cached linear-address to physical-address translations are not present, access to the page with the new
permissions will succeed without an enclave exit.

38.5.12 VMM Oversubscription of EPC
On processors supporting oversubscription enhancements (.e. CPUID.(EAX=12H, ECX=0):EAX.[5]=1 & EAX[6] =
1) a Virtual Machine Monitor or other executive can more efficiently manage the EPC space available on the plat-
form between virtualized entities. A typical process for using these instructions to support oversubscribing the
physical EPC space on the platform is as follows:

1. VMM creates data structures for SECS tracking including a count of child pages.

2. VMM selects possible EPC victim pages.

3. VMM ages the victim pages. Some of the selected pages will be accessed by the guest. In this case the VMM will
remove these pages from the victim pool and return them to the guest.

4. VMM makes remaining pages not present in EPT. It then issues IPI on each page to remove TLB mappings.

38-14 Vol. 3D

ENCLAVE OPERATION

5. For every EPC victim page the VMM obtains the victim's SECS page info using ERDINFO.

a. ENCLAVECONTEXT field in RDINFO structure will indicate the location of SECS, and the PAGE_TYPE field will
indicate the page type.

b. Child pages of SECS can be evicted.

c. SECS pages may be evicted if the child count is zero.

d. Some pages may be returned to active state depending on such things as page type or child count.

6. VMM increments its evicted page count for the SECS of each page (stored in the data structure created in 1).

7. If this is the first evicted page of that SECS, set Marker on SECS of the victim page (EINCVIRTCHILD). This
locks the SECS in the guest. The guest cannot page out the SECS.

8. EBLOCK, ETRACK, EWB eviction sequence is executed for page.

9. After loading an SECS page back in, the VMM will set the correct ENCLAVECONTEXT for the guest using
ESETCONTEXT instruction.

38.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE
This section covers instructions whose behavior changes when executed in enclave mode.

38.6.1 Illegal Instructions
The instructions listed in Table 38-1 are ring 3 instructions which become illegal when executed inside an enclave.
Executing these instructions inside an enclave will generate an exception.
The first row of Table 38-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM
cannot emulate enclave execution, execution of any these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 38-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation. Again,
enclave execution cannot be emulated, so execution of any these instructions inside an enclave results in #UD.
The third row of Table 38-1 enumerates instructions that load descriptors from the GDT or the LDT or that change
privilege level. The former class is disallowed because enclave software should not depend on the contents of the
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any
these instructions inside an enclave results in #UD.
The fourth row of Table 38-1 enumerates instructions that provide access to kernel information from user mode and
can be used to aid kernel exploits from within enclave. Execution of any these instructions inside an enclave results
in #UD

RDTSC and RDTSCP are legal inside an enclave for processors that support SGX2 (subject to the value of CR4.TSD).
For processors which support SGX1 but not SGX2, RDTSC and RDTSCP will cause #UD.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.

Table 38-1. Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS,
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL,
SYSENTER

#UD Access segment register could change privilege level.

SMSW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.

Vol. 3D 38-15

ENCLAVE OPERATION

Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other
software, e.g. the TSC can be manipulated by software outside the enclave.

38.6.2 RDRAND and RDSEED Instructions
These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instructions
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 6.5.5, any VM exit orig-
inating on an instruction boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM
receives a VM exit due to an attempt to execute either of these instructions determines (by that bit) that the execu-
tion was inside an enclave, it can do either of two things. It can clear the “RDRAND exiting” VM-execution control
and execute VMRESUME; this will result in the enclave executing RDRAND or RDSEED again, and this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

38.6.3 PAUSE Instruction
The PAUSE instruction may cause a VM exit from an enclave if the “PAUSE exiting” VM-execution control is 1. Unlike
other instructions that can cause VM exits, the PAUSE instruction is legal inside an enclave. If a VMM receives a VM
exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the “PAUSE exiting” VM-
execution control and execute VMRESUME; this will result in the enclave executing PAUSE again, but this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.
The PAUSE instruction may also cause a VM exit outside of an enclave if the “PAUSE-loop exiting” VM-execution
control is 1, but as the “PAUSE-loop exiting” control is ignored at CPL > 0 (see Section 25.1.3), VM exit from an
enclave due to the 1-setting of “PAUSE-LOOP exiting” will never occur.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

38.6.4 INT 3 Behavior Inside an Enclave
INT3 is legal inside an enclave, however, the behavior inside an enclave is different from its behavior outside an
enclave. See Section 42.4.1 for details.

38.6.5 INVD Handling when Enclaves Are Enabled
Once processor reserved memory protections are activated (see Section 38.5), any execution of INVD will result in
a #GP(0).

38-16 Vol. 3D

ENCLAVE OPERATION

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

26.Updates to Chapter 40, Volume 3D
Change bars show changes to Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Various updates throughout chapter regarding Intel SGX and new Intel SGX VM Over-
subscription feature.

Vol. 3D 40-1

SGX INSTRUCTION REFERENCES

CHAPTER 40
SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions
(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor), ENCLU
(user), and the ENCLV (virtualization operation) instruction mnemonics. Different leaf functions are encoded by
specifying an input value in the EAX register of the respective instruction mnemonic.

40.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS, ENCLU and ENCLV instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one
or more of the general purpose registers.

40.1.1 ENCLS Register Usage Summary
Table 40-1 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 40-1. Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

ERDINFO 010H (In) RDINFO (In, EA*) EPCPAGE (In, EA)

ETRACKC 011H (In) EPCPAGE (In, EA)

ELDBC 012H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

ELDUC 013H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

EA: Effective Address

40-2 Vol. 3D

SGX INSTRUCTION REFERENCES

40.1.2 ENCLU Register Usage Summary
Table 40-2 summarizes the implicit register usage of user mode enclave instructions.

40.1.3 ENCLV Register Usage Summary
Table 40-3 summarizes the implicit register usage of virtualization operation enclave instructions.

40.1.4 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 40-4 shows the various codes
and the instruction which generated the code. Details of the meaning of the code is provided in the individual
instruction.

Table 40-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 40-3. Register Usage of Virtualization Operation Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EDECVIRTCHILD 00H (In) EPCPAGE (In, EA) SECS (In, EA)

EINCVIRTCHILD 01H (In) EPCPAGE (In, EA) SECS (In, EA)

ESETCONTEXT 02H (In) EPCPAGE (In, EA) Context Value (In, EA)

EA: Effective Address

Table 40-4. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK, ERDINFO, ETRACKC

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, ERDINFO , EDECVIRTCHILD, EINCVIRTCHILD, ELDBC,
ELDUC, ESETCONTEXT, ETRACKC

Vol. 3D 40-3

SGX INSTRUCTION REFERENCES

40.1.5 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 40-5 appear at various
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU, ELDBC, ELDUC

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK, ETRACKC

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INVALID_COUNTER 25 EDECVIRTCHILD, EINCVIRTCHILD

SGX_PG_NONEPC 26 ERDINFO

SGX_TRACK_NOT_REQUIRED 27 ETRACKC

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 40-5. List of Internal CREG
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

Table 40-4. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

40-4 Vol. 3D

SGX INSTRUCTION REFERENCES

40.1.6 Concurrent Operation Restrictions
Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are
some examples of concurrency that are not allowed.
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves.

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being

removed.
When disallowed operation is detected, a leaf function may do one of the following:
• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.
• Cause a #GP(0) exception.
To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing
the same EPC page.

40.1.6.1 Concurrency Tables of Intel® SGX Instructions
The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the
table has a separate line for each of the EPC pages the leaf function accesses.
For each such EPC page, the base concurrency requirements are detailed as follows:
• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target
page it accesses.

• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page may
be executed concurrently. Other leaf functions that require shared access may run concurrently. For example,
EADD requires a shared access to the SECS page it accesses.

• Concurrent Access means that any other leaf function that requires any access to the same EPC page may be
executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST page.

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply only
to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EXTEND and
EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

Table 40-5. List of Internal CREG
Name Size (Bits) Scope

Vol. 3D 40-5

SGX INSTRUCTION REFERENCES

The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not
met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause an
exception. In addition, the tables detail those conflicts where a VM Exit may be triggered, and list the Exit Qualifi-
cation code that is provided in such cases.

Table 40-6. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EENTERTCS SECS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.
SECS

Shared #GP

40-6 Vol. 3D

SGX INSTRUCTION REFERENCES

EDLBC/ELDUC Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE
_CONFLICT

SECS [DS:RBX]PAGEINFO.
SECS

Shared SGX_EPC_PAGE
_CONFLICT

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

EPC_PAGE_CONFLICT_ERROR

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

ETRACK SECS [DS:RCX] Shared #GP

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE
_CONFLICT

SECS Implicit Concurrent

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict Access
On

Conflict Access
On

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Table 40-6. Base Concurrency Restrictions

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

Vol. 3D 40-7

SGX INSTRUCTION REFERENCES

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EENTERTCS SECS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EDLBC/ELDUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.
SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EMODT Target [DS:RCX] Exclusive SGX_EPC_
PAGE_CON
FLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict

40-8 Vol. 3D

SGX INSTRUCTION REFERENCES

40.2 INTEL® SGX INSTRUCTION REFERENCE

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS Implicit Concurrent Concurrent Exclusive SGX_EPC_
PAGE_CO
NFLICT1

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

NOTES:

1. SGX_CONFLICT VM Exit Qualification =TRACKING_RESOURCE_CONFLICT.

Table 40-7. Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY,

EMODPE, EMODPR,
EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access
On

Conflict
Access

On
Conflict

Access
On

Conflict

Vol. 3D 40-9

SGX INSTRUCTION REFERENCES

ENCLS—Execute an Enclave System Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 0
results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).
Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF (CPL > 0)
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF EAX is invalid leaf number)
THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 CF
ENCLS

NP V/V SGX1 This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 40.3

40-10 Vol. 3D

SGX INSTRUCTION REFERENCES

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

Vol. 3D 40-11

SGX INSTRUCTION REFERENCES

ENCLU—Execute an Enclave User Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper
32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 3
results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, or
if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not available
exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and (CS.D = 0 or DS.B = 0)

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 D7
ENCLU

NP V/V SGX1 This instruction is used to execute non-privileged Intel SGX leaf
functions.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 40.4

40-12 Vol. 3D

SGX INSTRUCTION REFERENCES

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, or EACCEPTCOPY *)

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Vol. 3D 40-13

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.

40-14 Vol. 3D

SGX INSTRUCTION REFERENCES

ENCLV—Execute an Enclave VMM Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLV instruction invokes the virtualization SGX leaf functions for managing enclaves in a virtualized environ-
ment. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The regis-
ters RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In non 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLV instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, if it is
executed in system-management mode (SMM), or not in VMX operation. Additionally, any attempt to execute the
instruction when CPL > 0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG
= 0 or if an attempt is made to invoke an undefined leaf function.
Software in VMX root mode of operation can enable execution of the ENCLV instruction in VMX non-root mode by
setting enable ENCLV execution control in the VMCS. If enable ENCLV execution control in the VMCS is clear, execu-
tion of the ENCLV instruction in VMX non-root mode results in #UD.
When execution of ENCLV instruction in VMX non-root mode is enabled, software in VMX root operation can inter-
cept the invocation of various ENCLS leaf functions in VMX non-root operation by setting the corresponding bits in
the ENCLV-exiting bitmap.
Addresses and operands are 32 bits in 32-bit mode (IA32_EFER.LMA == 0 || CS.L == 0) and are 64 bits in 64-bit
mode (IA32_EFER.LMA == 1 && CS.L == 1). CS.D value has no impact on address calculation.
Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.OSS = 0
THEN #UD; FI;

IF in VMX non-root operation and IA_32_EFER.LMA = 1 and CS.L = 1
THEN #UD; FI;

IF (CPL > 0)
THEN #UD; FI;

IF in VMX non-root operation
 IF “enable ENCLV exiting“ VM-execution control is 1
 THEN
 IF EAX < 63 and ENCLV_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLV_exiting_bitmap[63] = 1
 THEN VM exit;
 FI;
 ELSE
 #UD; FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

NP 0F 01 C0
ENCLV

NP V/V SGX1 This instruction is used to execute privileged SGX leaf functions
that are reserved for VMM use. They are used for managing the
enclaves.

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 40.3

Vol. 3D 40-15

SGX INSTRUCTION REFERENCES

FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF EAX is invalid leaf number)
THEN #GP(0); FI;

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions.

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLV is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLV is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

40-16 Vol. 3D

SGX INSTRUCTION REFERENCES

40.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-17

SGX INSTRUCTION REFERENCES

EADD—Add a Page to an Uninitialized Enclave

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following:

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted
by Non Enclave

Read/Write access permit-
ted by Enclave

Read access permitted
by Non Enclave

Read access permitted
by Non Enclave

Write access permitted
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 40-8. Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

40-18 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_SECINFO DS:RBX.SECINFO;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO DS:TMP_SECINFO;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or

Table 40-9. Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Exclusive #GP Concurrent

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Vol. 3D 40-19

SGX INSTRUCTION REFERENCES

! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS))
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (SECS is not available for EADD)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)
{

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ((DS:TMP_SECS.ATTIBUTES.MODE64BIT = 0) and

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH))) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)

40-20 Vol. 3D

SGX INSTRUCTION REFERENCES

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
SCRATCH_SECINFO.FLAGS.R 0;
SCRATCH_SECINFO.FLAGS.W 0;
SCRATCH_SECINFO.FLAGS.X 0;
(DS:RCX).FLAGS.DBGOPTIN 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA 0;
DS:RCX.AEP 0;
DS:RCX.STATE 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

Vol. 3D 40-21

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

40-22 Vol. 3D

SGX INSTRUCTION REFERENCES

EAUG—Add a Page to an Initialized Enclave

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following:

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0DH
ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave

Read/Write access permit-
ted by Enclave

Must be zero
Read access permitted by

Non Enclave
Write access permitted by

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 40-10. Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

Vol. 3D 40-23

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS DS:RBX.SECS;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF ((DS:RBX.SRCPAGE is not 0) or (DS:RBX.SECINFO is not 0))
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0)
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)

Table 40-11. Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-
INFO.SECS

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

40-24 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (SECS is not available for EAUG)
THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)

THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))

THEN #GP(0); FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] 0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R 1;
EPCM(DS:RCX).W 1;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT PT_REG;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 1;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

Vol. 3D 40-25

SGX INSTRUCTION REFERENCES

EBLOCK—Mark a page in EPC as Blocked

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 09H
ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-12. EBLOCK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is
eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently
executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-13. Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

40-26 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Check the EPC page for concurrency*)
IF (EPC page in use)

THEN
RFLAGS.ZF 1;
RAX SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN

RFLAGS.ZF 1;
RAX SGX_PG_INVLD;
GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM))
THEN

RFLAGS.CF 1;
IF (EPCM(DS:RCX).PT = PT_SECS)

THEN RAX SGX_PG_IS_SECS;
ELSE RAX SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE EPCM(DS:RCX).BLOCKED;

Table 40-14. Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.

Vol. 3D 40-27

SGX INSTRUCTION REFERENCES

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1))

THEN
RFLAGS.CF 1;
RAX SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED 1

FI;
DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

40-28 Vol. 3D

SGX INSTRUCTION REFERENCES

ECREATE—Create an SECS page in the Enclave Page Cache

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES,
CONFIGID and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE
must be at least 2 pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 41.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS
page in EPC.

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by
Non Enclave

Read access permitted by
Non Enclave

Read access permitted by Non
Enclave

Write access permitted by
Enclave

Table 40-15. Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Vol. 3D 40-29

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECINFO DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS))

THEN #GP(0); FI;

TMP_SECS RCX;

IF (EPC entry in use)
THEN

IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason SGX_CONFLICT;

Table 40-16. Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

40-30 Vol. 3D

SGX INSTRUCTION REFERENCES

VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address

<< translation of DS:TMP_SECS produced by paging >>;
VMCS.Guest-linear_address DS:TMP_SECS;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPC entry in use)
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)
THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H)

THEN #GP(0); FI;

IF (XFRM is illegal)
THEN #GP(0); FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF (!(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]))

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

(* Compute size of MISC area *)
TMP_MISC_SIZE compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 41.7.2.2*)
TMP_XSIZE compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ((DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0])))
THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8])))

Vol. 3D 40-31

SGX INSTRUCTION REFERENCES

THEN #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1))

THEN #GP(0); FI;

* Ensure the SECS does not have any unsupported attributes*)
IF ((DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

THEN #GP(0); FI;

IF ((DS:TMP_SECS reserved fields are not zero)
THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)
IF (((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0))

THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN 0;
DS:TMP_SECS.ISVPRODID 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] DS:TMP_SECS.SIZE;
TMPUPDATEFIELD[511:160] 0;
DS:TMP_SECS.MRENCLAVE SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID LockedXAdd(CR_NEXT_EID, 1);

(* Initialize the virtual child count to zero *)
DS:TMP_SECS.VIRTCHILDCNT 0;

(* Load ENCLAVECONTEXT with Address out of paging of SECS *)
<< store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS 0;
EPCM(DS:TMP_SECS).R 0;
EPCM(DS:TMP_SECS).W 0;
EPCM(DS:TMP_SECS).X 0;

(* Set EPCM entry fields *)

40-32 Vol. 3D

SGX INSTRUCTION REFERENCES

EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

Vol. 3D 40-33

SGX INSTRUCTION REFERENCES

EDBGRD—Read From a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are:

The instruction faults if any of the following:

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.

Op/En EAX RBX RCX

IR EDBGRD (In) Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave

Table 40-17. EDBGRD Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.

40-34 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

THEN
RFLAGS.ZF 1;
RAX SGX_PAGE_NOT_DEBUGGABLE;

Table 40-18. Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGRD Target [DS:RCX] Shared #GP

Table 40-19. Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Vol. 3D 40-35

SGX INSTRUCTION REFERENCES

GOTO DONE;
FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT))

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

THEN
TMP_SECS GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;
IF ((TMP_MODE64 = 1))

THEN RBX[63:0] (DS:RCX)[63:0];
ELSE EBX[31:0] (DS:RCX)[31:0];

FI;
ELSE

TMP_64BIT_VAL[63:0] (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1)

THEN
IF (TMP_64BIT_VAL ≠ 0H)

THEN RBX[63:0] 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] 0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H)
THEN EBX[31:0] 0FFFFFFFFH;
ELSE EBX[31:0] 0H;

FI;
FI;

(* clear EAX and ZF to indicate successful completion *)
RAX 0;
RFLAGS.ZF 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

40-36 Vol. 3D

SGX INSTRUCTION REFERENCES

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Vol. 3D 40-37

SGX INSTRUCTION REFERENCES

EDBGWR—Write to a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following:

EDBGWR Faulting Conditions

The error codes are:

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDBGRD does not result in a #GP.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Op/En EAX RBX RCX

IR EDBGWR (In) Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

Table 40-20. EDBGWR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

Table 40-21. Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGWR Target [DS:RCX] Shared #GP

40-38 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS))

THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)
IF ((EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0))

THEN
RFLAGS.ZF 1;
RAX SGX_PAGE_NOT_DEBUGGABLE;
GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H))

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)

Table 40-22. Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Vol. 3D 40-39

SGX INSTRUCTION REFERENCES

TMP_SECS GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

THEN #GP(0); FI;

IF ((TMP_MODE64 = 1))
THEN (DS:RCX)[63:0] RBX[63:0];
ELSE (DS:RCX)[31:0] EBX[31:0];

FI;

(* clear EAX and ZF to indicate successful completion *)
RAX 0;
RFLAGS.ZF 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF 0

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

40-40 Vol. 3D

SGX INSTRUCTION REFERENCES

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized.
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following:

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave
page.

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 40-23. Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

Vol. 3D 40-41

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does resolve to an EPC page)
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS))

THEN #PF(DS:RCX); FI;

TMP_SECS Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

THEN #GP(0); FI;

Table 40-24. Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

40-42 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] 0; // 48 bytes
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Vol. 3D 40-43

SGX INSTRUCTION REFERENCES

EINIT—Initialize an Enclave for Execution

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to
execute enclave code.

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 40-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN

MRSIGNER

ATTRIBUTES
MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK
MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES
MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX
EINITTOKEN

40-44 Vol. 3D

SGX INSTRUCTION REFERENCES

EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 40-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0.
Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH.
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with
SECS.ATTRIBUTES.
If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals
IA32_SGX_LEPUBKEYHASH.
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.
If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.
Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure code
(ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These events
includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks, INIT
signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external inter-
rupts could be inhibited due to blocking by MOV SS blocking or by STI).
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error,
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and
RAX is set to 0.
The error codes are:

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

Table 40-25. EINIT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.
If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.

Vol. 3D 40-45

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0] DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] DS:RDX[2423:0]; // 304 bytes

Table 40-26. Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EINIT SECS [DS:RCX] Shared #GP

Table 40-27. Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized
enclaves.

TMP_KEYDEPENDENCIE
S

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3
modulo MRSIGNER.

40-46 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h)) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT ≠ 00000003h) or (Reserved space is not 0’s))
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) THEN

RFLAGS.ZF 1;
RAX SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)

THEN #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS))
THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)
IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

THEN
 RFLAGS.ZF 1;
 RAX SGX_INVALID_SIG_STRUCT;
 GOTO EXIT;
FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAGS.ZF 1;
RAX SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

Vol. 3D 40-47

SGX INSTRUCTION REFERENCES

TMP_MRSIGNER SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH))

RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

(* if EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAGS.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

RFLAGS.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAGS.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must be ≤ CR_CPUSVN *)
IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)

RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;

40-48 Vol. 3D

SGX INSTRUCTION REFERENCES

GOTO EXIT;
FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID 0;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN TMP_TOKEN.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN TMP_TOKEN.CPUSVN;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.KEYPOLICY 0;
TMP_KEYDEPENDENCIES.CONFIGID 0;
TMP_KEYDEPENDENCIES.CONFIGSVN 0;

(* Calculate the derived key*)
TMP_EINITTOKENKEY derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITTOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

RFLAGS.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* Verify EINITTOKEN (RDX) is for this enclave *)
IF (TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER))

RFLAGS.ZF 1;
RAX SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAGS.ZF 1;
RAX SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:

Vol. 3D 40-49

SGX INSTRUCTION REFERENCES

(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)
DS:RCX.MRSIGNER TMP_MRSIGNER;
DS:RCX.ISVEXTPRODID TMP_SIG.ISVEXTPRODID;
DS:RCX.ISVPRODID TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN TMP_SIG.ISVSVN;
DS:RCX.ISVFAMILYID TMP_SIG.ISVFAMILYID;
DS:RCX.PADDING TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAGS.ZF 0;
RAX 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

40-50 Vol. 3D

SGX INSTRUCTION REFERENCES

ELDB/ELDU/ELDBC/ELBUC—Load an EPC Page and Marked its State

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The ELDBC/ELDUC leafs are very similar to ELDB and ELDU. They provide an error code on the concurrency conflict
for any of the pages which need to acquire a lock. These include the destination, SECS, and VA slot.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU/ELDBC/ELBUC Memory Parameter Semantics

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as blocked.

EAX = 08H
ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as unblocked.

EAX = 12H
ENCLS[ELDBC]

IR V/V EAX[5] This leaf function behaves lie ELDB but with improved conflict
handling for oversubscription.

EAX = 13H
ENCLS[ELDBC]

IR V/V EAX[5] This leaf function behaves like ELDU but with improved conflict
handling for oversubscription.

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)
Return error
code (Out)

Address of the PAGEINFO
(In)

Address of the EPC page
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave
read access

Non-enclave read
access

Non-enclave read
access

Enclave read/write
access

Read/Write access
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 40-28. ELDB/ELDU/ELDBC/ELBUC Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Vol. 3D 40-51

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in ELDB/ELDU/ELDBC/ELBUC Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

THEN #GP(0); FI;

Table 40-29. Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ELDB/ELDU/ Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

ELDBC/ELBUC Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RBX]PAGEINFO.SECS Shared SGX_EPC_PAGE_
CONFLICT

Table 40-30. Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,
EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND,
EINIT

vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU/ Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

ELDBC/ELBUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes

40-52 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_PCMD DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)
IF (other instructions accessing EPC)

THEN
 IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)
 THEN
 IF (<<VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)
THEN

VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address

 << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address DS:RCX;
Deliver VMEXIT;

ELSE
#GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

 IF (<<VMX non-root operation>> AND
 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_ERROR;
VMCS.Exit_qualification.error SGX_EPC_PAGE_CONFLICT;
VMCS.Guest-physical_address

 << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address DS:RCX;
Deliver VMEXIT;

ELSE
 RFLAGS.ZF 1;

 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;

FI;

Vol. 3D 40-53

SGX INSTRUCTION REFERENCES

FI;
FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF (Other instructions modifying VA slot)

THEN
IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

 #GP(0);
FI;

 ELSE (* ELDBC/ELDUC *)
 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;
FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA))
THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] 0;

TMP_HEADER.SECINFO SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
THEN

IF (DS:TMP_SECS is not 4KByte aligned)
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS) FI;

IF (Other instructions modifying SECS)
THEN

IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)
 #GP(0);

FI;
ELSE (* ELDBC/ELDUC *)

RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 GOTO ERROR_EXIT;

FI;
FI;

40-54 Vol. 3D

SGX INSTRUCTION REFERENCES

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
THEN

TMP_HEADER.EID DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID 0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] DS:TMP_SRCPGE[32767: 0];
TMP_VER DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC ≠ DS:TMP_PCMD.MAC))
THEN

RFLAGS.ZF 1;
RAX SGX_MAC_COMPARE_FAIL;
GOTO ERROR_EXIT;

FI;

(* Check version before committing *)
IF (DS:RDX ≠ 0)

THEN #GP(0);
ELSE

DS:RDX TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_HEADER.LINADDR;

IF (((EAX = 07H) or (EAX = 12H)) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN

EPCM(DS:RCX).BLOCKED 1;
ELSE

EPCM(DS:RCX).BLOCKED 0;
FI;

IF (TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS)
 << store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>
FI;

EPCM(DS:RCX). VALID 1;

RAX 0;
RFLAGS.ZF 0;

Vol. 3D 40-55

SGX INSTRUCTION REFERENCES

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

40-56 Vol. 3D

SGX INSTRUCTION REFERENCES

EMODPR—Restrict the Permissions of an EPC Page

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following:

EMODPR Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0EH
ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a
EPC page in an initialized enclave.

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-31. EMODPR Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Table 40-32. Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPR Target [DS:RCX] Shared #GP

Vol. 3D 40-57

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

((SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0))
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page)

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF 1;
RAX SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF 1;
RAX SGX_PAGE_NOT_MODIFIABLE;

Table 40-33. Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

40-58 Vol. 3D

SGX INSTRUCTION REFERENCES

GOTO DONE;
FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR 1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF 0;
RAX 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Vol. 3D 40-59

SGX INSTRUCTION REFERENCES

EMODT—Change the Type of an EPC Page

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following:

EMODT Faulting Conditions

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0FH
ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 40-34. EMODT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Table 40-35. Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_
CONFLICT

EPC_PAGE_CONFLICT_ERROR

40-60 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)

THEN
RFLAGS.ZF 1;
RAX SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN
RFLAGS.ZF 1;
RAX SGX_EPC_PAGE_CONFLICT;
GOTO DONE;

Table 40-36. Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE
_CONFLICT

Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-61

SGX INSTRUCTION REFERENCES

FI;

IF (!(EPCM(DS:RCX).PT is PT_REG or
(EPCM(DS:RCX).PT is PT_TCS and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
THEN

RFLAGS.ZF 1;
RAX SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
THEN #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).MODIFIED 1;
EPCM(DS:RCX).R 0;
EPCM(DS:RCX).W 0;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF 0;
RAX 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

40-62 Vol. 3D

SGX INSTRUCTION REFERENCES

EPA—Add Version Array

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.
The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0AH
ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 40-37. Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-38. Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent

Vol. 3D 40-63

SGX INSTRUCTION REFERENCES

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] 0;

EPCM(DS:RCX).PT PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS 0;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).RWX 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

40-64 Vol. 3D

SGX INSTRUCTION REFERENCES

ERDINFO—Read Type and Status Information About an EPC Page

Instruction Operand Encoding

Description

This instruction reads type and status information about an EPC page and returns it in a RDINFO structure. The
STATUS field of the structure describes the status of the page and determines the validity of the remaining fields.
The FLAGS field returns the EPCM permissions of the page; the page type; and the BLOCKED, PENDING, MODI-
FIED, and PR status of the page. For enclave pages, the ENCLAVECONTEXT field of the structure returns the value
of SECS.ENCLAVECONTEXT. For non-enclave pages (e.g., VA) ENCLAVECONTEXT returns 0.
For invalid or non-EPC pages, the instruction returns an information code indicating the page's status, in addition
to populating the STATUS field.
ERDINFO returns an error code if the destination EPC page is being modified by a concurrent SGX instruction.
RBX contains the effective address of a RDINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of ERDINFO leaf function.

ERDINFO Memory Parameter Semantics

The instruction faults if any of the following:

ERDINFO Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 10H
ENCLS[ERDINFO]

IR V/V EAX[6] This leaf function returns type and status information about an
EPC page.

Op/En EAX RBX RCX

IR ERDINFO (In) Address of a RDINFO structure (In)
Address of the destination EPC page

(In)

RDINFO EPCPAGE

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS
segment limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-39. ERDINFO Return Value in RAX
 Error Code Value Description

No Error 0 ERDINFO successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD Target page is not a valid EPC page.

SGX_PG_NONEPC Page is not an EPC page.

Vol. 3D 40-65

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in ERDINFO Operational Flow

(* check alignment of RDINFO structure (RBX) *)
IF (DS:RBX is not 32Byte Aligned) THEN
 #GP(0); FI;

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
 #GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within EPC) THEN
 RFLAGS.CF 1;
 RFLAGS.ZF 0;
 RAX SGX_PG_NONEPC;
 goto DONE;
FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF = 1;
 RFLAGS.CF = 0;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 RFLAGS.CF = 1;

Table 40-40. Base Concurrency Restrictions of ERDINFO

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

Table 40-41. Additional Concurrency Restrictions of ERDINFO

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_RDINFO Linear Address 64 Address of the RDINFO structure.

40-66 Vol. 3D

SGX INSTRUCTION REFERENCES

 RFLAGS.ZF = 0;
 RAX = SGX_PG_INVLD;
 goto DONE;
FI;

(* clear the fields of the RDINFO structure *)
TMP_RDINFO DS:RBX;
TMP_RDINFO.STATUS 0;
TMP_RDINFO.FLAGS 0;
TMP_RDINFO.ENCLAVECONTEXT 0;

(* store page info in RDINFO structure *)
TMP_RDINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
TMP_RDINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
TMP_RDINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
TMP_RDINFO.FLAGS.PR EPCM(DS:RCX).PR;
TMP_RDINFO.FLAGS.PAGE_TYPE EPCM(DS:RCX).PAGE_TYPE;
TMP_RDINFO.FLAGS.BLOCKED EPCM(DS:RCX).BLOCKED;

(* read SECS.ENCLAVECONTEXT for enclave child pages *)
IF ((EPCM(DS:RCX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RCX).PAGE_TYPE = PT_TCS) or
 (EPCM(DS:RCX).PAGE_TYPE = PT_TRIM)
) THEN
 TMP_SECS Address of SECS for (DS:RCX);
 TMP_RDINFO.ENCLAVECONTEXT SECS(TMP_SECS).ENCLAVECONTEXT;
FI;

(* populate enclave information for SECS pages *)
IF (EPCM(DS:RCX).PAGE_TYPE = PT_SECS) THEN
 IF ((VMX non-root mode) and
 (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)
) THEN
 TMP_RDINFO.STATUS.CHILDPRESENT
 ((SECS(DS:RCX).CHLDCNT ≠ 0) or
 SECS(DS:RCX).VIRTCHILDCNT ≠ 0));
 ELSE
 TMP_RDINFO.STATUS.CHILDPRESENT (SECS(DS:RCX).CHLDCNT ≠ 0);
 TMP_RDINFO.STATUS.VIRTCHILDPRESENT
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0);
 TMP_RDINFO.ENCLAVECONTEXT SECS(DS_RCX).ENCLAVECONTEXT;
 FI;
FI;

RAX 0;
RFLAGS.ZF 0;
RFLAGS.CF 0;

DONE:
(* clear flags *)
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF ? 0;

Vol. 3D 40-67

SGX INSTRUCTION REFERENCES

Flags Affected

ZF is set if ERDINFO fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF is set if page is not a valid EPC page or not an EPC page; otherwise cleared.
PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

40-68 Vol. 3D

SGX INSTRUCTION REFERENCES

EREMOVE—Remove a page from the EPC

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Op/En EAX RCX

IR EREMOVE (In) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 40-42. EREMOVE Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.

Vol. 3D 40-69

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address << translation of DS:RCX produced by paging >>;
VMCS.Guest-linear_address DS:RCX;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE;
FI;

Table 40-43. Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Table 40-44. Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

40-70 Vol. 3D

SGX INSTRUCTION REFERENCES

IF ((EPCM(DS:RCX).PT = PT_VA) OR
((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)))
THEN

EPCM(DS:RCX).VALID 0;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)
THEN

IF (DS:RCX has an EPC page associated with it)
THEN

RFLAGS.ZF 1;
RAX SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF 1;

 RAX SGX_CHILD_PRESENT
GOTO ERROR_EXIT

FI;
EPCM(DS:RCX).VALID 0;
GOTO DONE;

FI;

IF (Other threads active using SECS)
THEN

RFLAGS.ZF 1;
RAX SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

FI;

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))
THEN

EPCM(DS:RCX).VALID 0;
GOTO DONE;

FI;

DONE:
RAX 0;
RFLAGS.ZF 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Vol. 3D 40-71

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

40-72 Vol. 3D

SGX INSTRUCTION REFERENCES

ETRACK—Activates EBLOCK Checks

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 0CH
ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-45. ETRACK Return Value in RAX
 Error Code (see Table 40-4) Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

Table 40-46. Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACK SECS [DS:RCX] Shared #GP

Table 40-47. Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Vol. 3D 40-73

SGX INSTRUCTION REFERENCES

Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code TRACKING_RESOURCE_CONFLICT;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address 0;

 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS)
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING ≠ 0))

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code TRACKING_REFERENCE_CONFLICT;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address SECS(TMP_SECS).ENCLAVECONTEXT;
VMCS.Guest-linear_address 0;

 Deliver VMEXIT;
FI;

RFLAGS.ZF 1;
RAX SGX_PREV_TRK_INCMPL;
GOTO DONE;

ELSE
RAX 0;
RFLAGS.ZF 0;

FI;

DONE:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.

40-74 Vol. 3D

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Vol. 3D 40-75

SGX INSTRUCTION REFERENCES

ETRACKC—Activates EBLOCK Checks

Instruction Operand Encoding

Description

The ETRACKC instruction is thread safe variant of ETRACK leaf and can be executed concurrently with other CPU
threads operating on the same SECS.
This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACKC Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 11H
ENCLS[ETRACKC]

IR V/V EAX[6] This leaf function activates EBLOCK checks.

Op/En EAX RCX

IR
ETRACK

(In)
Return error code (Out)

Address of the destination EPC page
(In, EA)

Address of the SECS page (In, EA)

EPCPAGE

Read/Write access permitted by Enclave

Table 40-48. ETRACKC Return Value in RAX
 Error Code Value Description

No Error 0 ETRACKC successful.

SGX_EPC_PAGE_CONFLICT 7 Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD 6 Target page is not a VALID EPC page.

SGX_PREV_TRK_INCMPL 17 All processors did not complete the previous tracking sequence.

SGX_TRACK_NOT_REQUIRED 27 Target page type does not require tracking.

Table 40-49. Base Concurrency Restrictions of ETRACKC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

SECS implicit Concurrent

40-76 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ETRACKC Operational Flow

(* check alignment of EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
#GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
#PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 goto DONE_POST_LOCK_RELEASE;
FI;

(* check to make sure the page is valid *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_PG_INVLD;
 GOTO DONE;
FI;

(* find out the target SECS page *)
IF (EPCM(DS:RCX).PT is PT_REG or PT_TCS or PT_TRIM) THEN
 TMP_SECS Obtain SECS through EPCM(DS:RCX).ENCLAVESECS;
ELSE IF (EPCM(DS:RCX).PT is PT_SECS) THEN
 TMP_SECS Obtain SECS through (DS:RCX);
ELSE
 RFLAGS.ZF 0;
 RFLAGS.CF 1;
 RAX SGX_TRACK_NOT_REQUIRED;
 GOTO DONE;
FI;

Table 40-50. Additional Concurrency Restrictions of ETRACKC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS implicit Concurrent Concurrent Exclusive SGX_EPC_PAGE
_CONFLICT

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

Vol. 3D 40-77

SGX INSTRUCTION REFERENCES

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason SGX_CONFLICT;
 VMCS.Exit_qualification.code TRACKING_RESOURCE_CONFLICT;
 VMCS.Exit_qualification.error 0;
 VMCS.Guest-physical_address

SECS(TMP_SECS).ENCLAVECONTEXT;
 VMCS.Guest-linear_address 0;
 Deliver VMEXIT;
 FI;

 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 GOTO DONE;
FI;
(* All processors must have completed the previous tracking cycle*)
IF ((TMP_SECS).TRACKING ≠ 0))
THEN

IF ((VMX non-root mode) and
(ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason SGX_CONFLICT;
 VMCS.Exit_qualification.code TRACKING_REFERENCE_CONFLICT;
 VMCS.Exit_qualification.error 0;
 VMCS.Guest-physical_address

SECS(TMP_SECS).ENCLAVECONTEXT;
 VMCS.Guest-linear_address 0;
 Deliver VMEXIT;
 FI;

 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_PREV_TRK_INCMPL;
 GOTO DONE;
FI;

RFLAGS.ZF 0;
RFLAGS.CF 0;
RAX 0;

DONE:
(* clear flags *)
RFLAGS.PF,AF,OF,SF 0;

Flags Affected

ZF is set if ETRACKC fails due to concurrent operations with another SGX instructions or target page is an invalid
EPC page or tracking is not completed on SECS page; otherwise cleared.
CF is set if target page is not of a type that requires tracking; otherwise cleared.
PF, AF, OF and SF are cleared.

40-78 Vol. 3D

SGX INSTRUCTION REFERENCES

Protected Mode Exceptions

#GP(0) If the memory operand violates access-control policies of DS segment.
If DS segment is unusable.
If the memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.
If a page fault occurs in access memory operand.

Vol. 3D 40-79

SGX INSTRUCTION REFERENCES

EWB—Invalidate an EPC Page and Write out to Main Memory

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.
The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are:

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0BH
ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to
main memory.

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

Table 40-51. EWB Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

Table 40-52. Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40-53. Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive

40-80 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EWB Operational Flow

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DSTMP_SRCPGE is not 4KByte Aligned))
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)

THEN
IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

THEN
VMCS.Exit_reason SGX_CONFLICT;
VMCS.Exit_qualification.code EPC_PAGE_CONFLICT_EXCEPTION;
VMCS.Exit_qualification.error 0;
VMCS.Guest-physical_address << translation of DS:RCX produced by paging >>;

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16

Vol. 3D 40-81

SGX INSTRUCTION REFERENCES

VMCS.Guest-linear_address DS:RCX;
 Deliver VMEXIT;
 ELSE

#GP(0);
FI;

FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)

THEN
RAX SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX SGX_NOT_TRACKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)

40-82 Vol. 3D

SGX INSTRUCTION REFERENCES

(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX SGX_CHILD_PRESENT;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI:
(* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)
IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND
 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

THEN
RFLAGS.ZF 1;

 RAX SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
TMP_HEADER.EID 0;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID 0;

FI;

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1 : 0] 0;

TMP_HEADER.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO
DS:TMP_PCMD.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED 0;
DS:TMP_PCMD.ENCLAVEID TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX])

THEN

Vol. 3D 40-83

SGX INSTRUCTION REFERENCES

RAX SGX_VA_SLOT_OCCUPIED
RFLAGS.CF 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID 0;
ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

40-84 Vol. 3D

SGX INSTRUCTION REFERENCES

40.4 INTEL® SGX USER LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-85

SGX INSTRUCTION REFERENCES

EACCEPT—Accept Changes to an EPC Page

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 05H
ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to
an EPC page in the running enclave.

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make
the page inaccessible.

Table 40-54. EACCEPT Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.

40-86 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)))
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero))

THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

Table 40-55. Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Table 40-56. Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-87

SGX INSTRUCTION REFERENCES

IF (DS:RCX is not within CR_ELRANGE)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and

((SCRATCH_SECINFO.FLAGS.PR is 1) or
(SCRATCH_SECINFO.FLAGS.PENDING is 1)) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and
(SCRATCH_SECINFO.FLAGS.PR is 0) and
(SCRATCH_SECINFO.FLAGS.PENDING is 0) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

THEN #GP(0); FI

(* Check security attributes of the destination EPC page *)
If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)) or
(EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ((EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT))
THEN

RFLAGS.ZF 1;
RAX SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF 1;
RAX SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN

40-88 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0)

THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)))

THEN #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF 0;
RAX 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

Vol. 3D 40-89

SGX INSTRUCTION REFERENCES

EACCEPTCOPY—Initialize a Pending Page

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This
instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 07H
ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page
from another page in the EPC.

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running
enclave.

Table 40-57. EACCEPTCOPY Return Value in RAX
 Error Code (see Table 40-4) Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

40-90 Vol. 3D

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or
(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX))
THEN #PF(DS:RBX); FI;

Table 40-58. Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-59. Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-91

SGX INSTRUCTION REFERENCES

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or ((SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN

RFLAGS.ZF 1;
RAX SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN

RFLAGS.ZF 1;
RAX SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING 0;

RFLAGS.ZF 0;
RAX 0;

DONE:
RFLAGS.CF,PF,AF,OF,SF 0;

40-92 Vol. 3D

SGX INSTRUCTION REFERENCES

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

Vol. 3D 40-93

SGX INSTRUCTION REFERENCES

EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.2).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 42.2.3):

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

40-94 Vol. 3D

SGX INSTRUCTION REFERENCES

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

Table 40-60. Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EENTER TCS [DS:RBX] Shared #GP

Table 40-61. Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

Vol. 3D 40-95

SGX INSTRUCTION REFERENCES

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)

40-96 Vol. 3D

SGX INSTRUCTION REFERENCES

IF (TMP_GSLIMIT < TMP_GSBASE)
THEN

IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
FI;

ELSE
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

Vol. 3D 40-97

SGX INSTRUCTION REFERENCES

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

CR_ENCLAVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;

40-98 Vol. 3D

SGX INSTRUCTION REFERENCES

CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;
CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX RIP;
RIP TMP_TARGET;
RAX (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP RSP;
DS:TMP_SSA.U_RBP RBP;

(* Do the FS/GS swap *)
FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;
FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

Vol. 3D 40-99

SGX INSTRUCTION REFERENCES

CR_DBGOPTIN TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

40-100 Vol. 3D

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

Vol. 3D 40-101

SGX INSTRUCTION REFERENCES

EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This has the effect of
abort page semantics on the next destination.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 04H
ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)

Target Address

 Non-Enclave read and execute access

Table 40-62. Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXIT Concurrent

Table 40-63. Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent

40-102 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP CRIP;
RIP RBX;

(* Return current AEP in RCX *)
RCX CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector CR_SAVE_FS.selector;
FS.base CR_SAVE_FS.base;
FS.limit CR_SAVE_FS.limit;
FS.access_rights CR_SAVE_FS.access_rights;
GS.selector CR_SAVE_GS.selector;
GS.base CR_SAVE_GS.base;
GS.limit CR_SAVE_GS.limit;
GS.access_rights CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

XCR0 CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.

Vol. 3D 40-103

SGX INSTRUCTION REFERENCES

IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

CR_ENCLAVE_MODE 0;
CR_TCS_PA.STATE INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.

40-104 Vol. 3D

SGX INSTRUCTION REFERENCES

EGETKEY—Retrieves a Cryptographic Key

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible inputs.
This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:
• The instruction assembles the derivation data for the key based on the Table 40-64.
• Computes derived key using the derivation data and package specific value.
• Outputs the calculated key to the address in RCX.
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware.
These checks may be performed in any order. Thus, an indication by error number of one cause (for example,
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the
address specified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 37.17.1) identifies the key to be provided. The Keyrequest.KeyName field
identifies which type of key is requested.
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 40-64) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 40-64 indicates the value for the field is included from its default location,
identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Op/En EAX RBX RCX

IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access

Vol. 3D 40-105

SGX INSTRUCTION REFERENCES

Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional require-
ments. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's SVN,
respectively.
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the enclave's
ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set and
SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656]

Vol. 3D 40-107

SGX INSTRUCTION REFERENCES

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0))

THEN #GP(0); FI;

TMP_CURRENTSECS CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)
IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

THEN #GP(0); FI;
(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;

(*Include enclave identity?*)
TMP_MRENCLAVE 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
FI;
(*Include enclave author?*)

40-108 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_MRSIGNER 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER TMP_CURRENTSECS.MRSIGNER;
FI;

(* Include enclave product family ID? *)
 TMP_ISVFAMILYID 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID 0;
 TMP_CONFIGSVN 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID TMP_CURRENTSECS.CONFIGID;
 TMP_CONFIGSVN DS:RBX.CONFIGSVN;

FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN TMP_CONFIGSVN;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;

Vol. 3D 40-109

SGX INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.ISVFAMILYID 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID 0;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.KEYPOLICY 0;
TMP_KEYDEPENDENCIES.CONFIGID TMP_CURRENTSECS.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN TMP_CURRENTSECS.CONFIGSVN;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has LAUNCH capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID 0;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;

40-110 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.KEYPOLICY 0;
TMP_KEYDEPENDENCIES.CONFIGID 0;
TMP_KEYDEPENDENCIES.CONFIGSVN 0;
BREAK;

PROVISION_KEY:
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID 0;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES 0;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY 0;
TMP_KEYDEPENDENCIES.CONFIGID 0;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

Vol. 3D 40-111

SGX INSTRUCTION REFERENCES

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Include enclave product family ID? *)
 TMP_ISVFAMILYID 0;
 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)
 THEN TMP_ISVFAMILYID TMP_CURRENTSECS.ISVFAMILYID;

FI;

 (* Include enclave product ID? *)
 TMP_ISVPRODID 0;
 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)
 TMP_ISVPRODID TMP_CURRENTSECS.ISVPRODID;

FI;

 (* Include enclave Config ID? *)
 TMP_CONFIGID 0;
 TMP_CONFIGSVN 0;
 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)
 TMP_CONFIGID TMP_CURRENTSECS.CONFIGID;
 TMP_CONFIGSVN DS:RBX.CONFIGSVN;

FI;

 (* Include enclave extended product ID? *)
 TMP_ISVEXTPRODID 0;
 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)
 TMP_ISVEXTPRODID TMP_CURRENTSECS.ISVEXTPRODID;
 FI;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID TMP_ISVFAMILYID;
TMP_KEYDEPENDENCIES.ISVEXTPRODID TMP_ISVEXTPRODID;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;

40-112 Vol. 3D

SGX INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
TMP_KEYDEPENDENCIES.KEYPOLICY DS:RBX.KEYPOLICY;
TMP_KEYDEPENDENCIES.CONFIGID TMP_CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN TMP_CONFIGSVN;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF 1;
RAX SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] TMP_OUTPUTKEY;
RAX 0;
RFLAGS.ZF 0;

EXIT:
RFLAGS.CF 0;
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.

Vol. 3D 40-113

SGX INSTRUCTION REFERENCES

EMODPE—Extend an EPC Page Permissions

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page
permissions will have no effect. This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following:

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 06H
ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC
page.

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 40-68. Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Table 40-69. Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

40-114 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)))
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0)))

THEN #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Vol. 3D 40-115

SGX INSTRUCTION REFERENCES

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

40-116 Vol. 3D

SGX INSTRUCTION REFERENCES

EREPORT—Create a Cryptographic Report of the Enclave

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX
(REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following:

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)
Address of REPORTDATA

(In)
Address where the REPORT is

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.

Vol. 3D 40-117

SGX INSTRUCTION REFERENCES

Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ((DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX). VALID = 0)
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))

Table 40-70. Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Table 40-71. Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA
[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA
[DS:RDX]

Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712

40-118 Vol. 3D

SGX INSTRUCTION REFERENCES

THEN #PF(DS:RBX);
FI;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #P(DS:RCX); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX). VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1))
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN CR_CPUSVN;
TMP_REPORT.ISVFAMILYID TMP_CURRENTSECS.ISVFAMILYID;
TMP_REPORT.ISVEXTPRODID TMP_CURRENTSECS.ISVEXTPRODID;
TMP_REPORT.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN TMP_CURRENTSECS.ISVSVN;
TMP_REPORT.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA DS:RCX[511:0];
TMP_REPORT.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
TMP_REPORT.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED 0;
TMP_REPORT.KEYID[255:0] CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT TMP_CURRENTSECS.MISCSELECT;

Vol. 3D 40-119

SGX INSTRUCTION REFERENCES

TMP_REPORT.CONFIGID TMP_CURRENTSECS.CONFIGID;
TMP_REPORT.CONFIGSVN TMP_CURRENTSECS.CONFIGSVN;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVFAMILYID 0;
TMP_KEYDEPENDENCIES.ISVEXTPRODID 0;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.SGXOWNEREPOCH CR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.KEYPOLICY 0;
TMP_KEYDEPENDENCIES.CONFIGID DS:RBX.CONFIGID;
TMP_KEYDEPENDENCIES.CONFIGSVN DS:RBX.CONFIGSVN;

(* Calculate the derived key*)
TMP_REPORTKEY derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC cmac(TMP_REPORTKEY, TMP_REPORT[3071:0]);
DS:RDX[3455: 0] TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

40-120 Vol. 3D

SGX INSTRUCTION REFERENCES

ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following:

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 42.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 42.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 42.2.3).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 03H
ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.

Vol. 3D 40-121

SGX INSTRUCTION REFERENCES

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 42.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

THEN #GP(0); FI;

Table 40-72. Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERESUME TCS [DS:RBX] Shared #GP

Table 40-73. Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

40-122 Vol. 3D

SGX INSTRUCTION REFERENCES

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & FFFFFFFFFFFFFFFEH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

Vol. 3D 40-123

SGX INSTRUCTION REFERENCES

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

40-124 Vol. 3D

SGX INSTRUCTION REFERENCES

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA Physical_Address (DS: TMP_GPR);

TMP_TARGET (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE DS:TMP_GPR.FSBASE;
TMP_GSBASE DS:TMP_GPR.GSBASE;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)

Vol. 3D 40-125

SGX INSTRUCTION REFERENCES

XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE INACTIVE;
#GP(0);

FI;

CR_ENCLAVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;
CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;
CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

RIP TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM 0;
IF (RFLAGS.IOPL = 3)

THEN RFLAGS.IF = DS:TMP_GPR.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)
THEN RFLAGS.TF = 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

40-126 Vol. 3D

SGX INSTRUCTION REFERENCES

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;
FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

CR_DBGOPTIN TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Vol. 3D 40-127

SGX INSTRUCTION REFERENCES

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

40-128 Vol. 3D

SGX INSTRUCTION REFERENCES

40.5 INTEL® SGX VIRTUALIZATION LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLV instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

Vol. 3D 40-129

SGX INSTRUCTION REFERENCES

EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS

Instruction Operand Encoding

Description

This instruction decrements the SECS VIRTCHILDCNT field. This instruction can only be executed when current
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.

EDECVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following:

EDECVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 00H
ENCLV[EDECVIRTCHILD]

IR V/V EAX[5] This leaf function decrements the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EDECVIRTCHILD (In) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS
referenced in RCX.

Table 40-74. Base Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent

40-130 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EDECVIRTCHILD Operational Flow

EDECVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
 RFLAGS.ZF = 1;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

Table 40-75. Additional Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

Error Value Description

No Error 0 EDECVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to decrement counter that is already zero.

Vol. 3D 40-131

SGX INSTRUCTION REFERENCES

 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM))
THEN

 (* get the SECS of DS:RBX *)
 TMP_SECS Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
 (* get the physical address of DS:RBX *)
 TMP_SECS Physical_Address(DS:RBX);
ELSE
 (* EDECVIRTCHILD called on page of incorrect type *)
 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
 #GP(0); FI;

(* Atomically decrement virtchild counter and check for underflow *)
Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);
IF (There was an underflow) THEN
 Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);
 RFLAGS.ZF 1;
 RAX ? SGX_INVALID_COUNTER;
 goto DONE;
FI;

RFLAGS.ZF 0;
RAX 0;

DONE:
(* clear flags *)
RFLAGS.CF 0;
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF 0;

Flags Affected

ZF is set if EDECVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a VIRT-
CHILDCNT underflow. Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

40-132 Vol. 3D

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

Vol. 3D 40-133

SGX INSTRUCTION REFERENCES

EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS

Instruction Operand Encoding

Description

This instruction increments the SECS VIRTCHILDCNT field. This instruction can only be executed when the current
privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create a linear address.
Segment override is not supported.

EINCVIRTCHILD Memory Parameter Semantics

The instruction faults if any of the following:

EINCVIRTCHILD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 01H
ENCLV[EINCVIRTCHILD]

IR V/V EAX[5] This leaf function increments the SECS VIRTCHILDCNT field.

Op/En EAX RBX RCX

IR EINCVIRTCHILD (In) Address of an enclave page (In) Address of an SECS page (In)

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS
referenced in RCX.

Table 40-76. Base Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_
CONFLICT

SECS [DS:RCX] Concurrent

40-134 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in EINCVIRTCHILD Operational Flow

EINCVIRTCHILD Return Value in RAX

(* check alignment of DS:RBX *)
IF (DS:RBX is not 4K aligned) THEN
 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)
IF (DS:RBX does not resolve within an EPC) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)
IF (DS:RCX does not resolve within an EPC) THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)
IF (EPCPAGE is being modified) THEN
 RFLAGS.ZF = 1;
 RAX = SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check that the EPC page is valid *)
IF (EPCM(DS:RBX).VALID = 0) THEN
 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)
IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or
 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

Table 40-77. Additional Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

Error Value Description

No Error 0 EINCVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to increment counter that will produce an overflow.

Vol. 3D 40-135

SGX INSTRUCTION REFERENCES

 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM))
THEN

 (* get the SECS of DS:RBX *)
 TMP_SECS Address of SECS for (DS:RBX);
ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN
 (* get the physical address of DS:RBX *)
 TMP_SECS Physical_Address(DS:RBX);
ELSE
 (* EINCVIRTCHILD called on page of incorrect type *)
 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN
 #GP(0); FI;

(* Atomically increment virtchild counter and check for overflow *)
Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);
IF (There was an overflow) THEN
 Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);
 RFLAGS.ZF 1;
 RAX SGX_INVALID_COUNTER;
 goto DONE;
FI;

RFLAGS.ZF 0;
RAX 0;

DONE:
(* clear flags *)
RFLAGS.CF 0;
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF 0;

Flags Affected

ZF is set if EINCVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a VIRT-
CHILDCNT underflow; otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

40-136 Vol. 3D

SGX INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.
RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.
If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).
If RCX does not refer to an SECS page.

Vol. 3D 40-137

SGX INSTRUCTION REFERENCES

ESETCONTEXT—Set the ENCLAVECONTEXT Field in SECS

Instruction Operand Encoding

Description

The ESETCONTEXT leaf overwrites the ENCLAVECONTEXT field in the SECS. ECREATE and ELD of an SECS set the
ENCLAVECONTEXT field in the SECS to the address of the SECS (for access later in ERDINFO). The ESETCONTEXT
instruction allows a VMM to overwrite the default context value if necessary, for example, if the VMM is emulating
ECREATE or ELD on behalf of the guest.
The content of RCX is an effective address of the SECS page to be updated, RDX contains the address pointing to
the value to be stored in the SECS. The DS segment is used to create linear address. Segment override is not
supported.
The instruction fails if:
• The operand is not properly aligned.
• RCX does not refer to an SECS page.

ESETCONTEXT Memory Parameter Semantics

The instruction faults if any of the following:

ESETCONTEXT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 02H
ENCLV[ESETCONTEXT]

IR V/V EAX[5] This leaf function sets the ENCLAVECONTEXT field in SECS.

Op/En EAX RCX RDX

IR ESETCONTEXT (In)
Address of the destination EPC page

(In, EA)
Context Value (In, EA)

EPCPAGE CONTEXT

Read access permitted by Enclave Read/Write access permitted by Non Enclave

A memory operand effective address is outside the DS segment
limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Table 40-78. Base Concurrency Restrictions of ESETCONTEXT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit
Qualification

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE_
CONFLICT

40-138 Vol. 3D

SGX INSTRUCTION REFERENCES

Operation

Temp Variables in ESETCONTEXT Operational Flow

ESETCONTEXT Return Value in RAX

(* check alignment of the EPCPAGE (RCX) *)
IF (DS:RCX is not 4KByte Aligned) THEN
 #GP(0); FI;

 (* check that EPCPAGE (DS:RCX) is the address of an EPC page *)
IF (DS:RCX does not resolve within an EPC)THEN
 #PF(DS:RCX, PFEC.SGX); FI;

(* check alignment of the CONTEXT field (RDX) *)
IF (DS:RDX is not 8Byte Aligned) THEN
 #GP(0); FI;

 (* Load CONTEXT into local variable *)
TMP_CONTEXT DS:RDX

(* Check the EPC page for concurrency *)
IF (EPC page is being modified) THEN
 RFLAGS.ZF 1;
 RFLAGS.CF 0;
 RAX SGX_EPC_PAGE_CONFLICT;
 goto DONE;
FI;

(* check page validity *)
IF (EPCM(DS:RCX).VALID = 0) THEN
 #PF(DS:RCX, PFEC.SGX);
 goto DONE;
FI;

Table 40-79. Additional Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_CONTEXT CONTEXT 64 Data Value of CONTEXT.

Error Value Description

No Error 0 ESETCONTEXT Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

Vol. 3D 40-139

SGX INSTRUCTION REFERENCES

(* check EPC page is an SECS page *)
IF (EPCM(DS:RCX).PT is not PT_SECS) THEN
 #PF(DS:RCX, PFEC.SGX);
 goto DONE;
FI;

(* load the context value into SECS(DS:RCX).ENCLAVECONTEXT *)
SECS(DS:RCX).ENCLAVECONTEXT TMP_CONTEXT;

RAX 0;
RFLAGS.ZF 0;

DONE:
(* clear flags *)
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

ZF is set if ESETCONTEXT fails due to concurrent operation with another SGX instruction; otherwise cleared.
CF, PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If DS segment is unusable.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

40-140 Vol. 3D

SGX INSTRUCTION REFERENCES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

27.Updates to Chapter 41, Volume 3D
Change bars show changes to Chapter 41 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Changes to this chapter: Various updates throughout chapter regarding Intel SGX and new Intel SGX VM Over-
subscription feature.

Vol. 3D 41-1

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

CHAPTER 41
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

41.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 36-1) are available only when the processor is executing in protected mode of
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

41.2 IA32_FEATURE_CONTROL
IA32_FEATURE_CONTROL MSR provides two new bits related to two aspects of Intel SGX: using the instruction
extensions and launch control configuration.

41.2.1 Availability of Intel SGX
IA32_FEATURE_CONTROL[bit 18] allows BIOS to control the availability of Intel SGX extensions. For Intel SGX
extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL MSR on that logical
processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be locked (bit 0 must be
set). See Section 36.7.1 for additional details. OS is expected to examine the value of bit 18 prior to enabling Intel
SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

41.2.2 Intel SGX Launch Control Configuration
The IA32_SGXLEPUBKEYHASHn MSRs used to configure authorized launch enclaves' MRSIGNER digest value. They
are present on logical processors that support the collection of SGX1 leaf functions (i.e. CPUID.(EAX=12H,
ECX=00H):EAX[0] = 1) and that CPUID.(EAX=07H, ECX=00H):ECX[30] = 1. IA32_FEATURE_CONTROL[bit 17]
allows to BIOS to enable write access to these MSRs. If IA32_FEATURE_CONTROL.LE_WR (bit 17) is set to 1 and
IA32_FEATURE_CONTROL is locked on that logical processor, IA32_SGXLEPUBKEYHASH MSRs on that logical
processor are writeable. If this bit 17 is not set or IA32_FEATURE_CONTROL is not locked,
IA32_SGXLEPUBKEYHASH MSRs are read only. See Section 38.1.4 for additional details.

41.3 INTERACTIONS WITH SEGMENTATION

41.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see Section
41.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies set up
by the OS, but they can be more restrictive than the OS.
Intel SGX interacts with segmentation at two levels:
• The Intel SGX instruction (see the enclave instruction in Table 36-1).

41-2 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

• While executing inside an enclave (legacy instructions and enclave instructions permitted inside an enclave).

41.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing
Prefixes

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion if used.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

41.3.3 Interaction of Intel® SGX Instructions with Segmentation
All leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an expand-up
segment. Failing this check results in generation of a #GP(0) exception.
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) operate as
follows:
• All usable segment registers except for FS and GS have a zero base.
• The contents of the FS/GS segment registers (including the hidden portion) is saved in the processor.
• New FS and GS values compatible with enclave security are loaded from the TCS
• The linear ranges and access rights available under the newly-loaded FS and GS must abide to OS policies by

ensuring they are subsets of the linear-address range and access rights available for the DS segment.
• The CS segment mode (64-bit, compatible, or 32 bit modes) must be consistent with the segment mode for

which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that the CPL of the
logical processor is 3

An exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment regis-
ters.

41.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(e.g. via MOV seg register, POP seg register, LDS, far jump, etc; excluding WRFSBASE/WRGSBASE) results in the
generation of a #UD. See Section 38.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the (TCS.OFSBASE + SECS.BASEADDR) and
TCS.FSLIMIT fields and GS is loaded from the (TCS.OGSBASE + SECS.BASEADDR) and TCS.GSLIMIT fields.
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave is allowed. The processor will save the new
values into the current SSA frame on an asynchronous exit (AEX) and restore them back on enclave entry via
ENCLU[ERESUME] instruction.

41.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any
attempt to execute these leaf functions with paging disabled results in an invalid-opcode exception (#UD). As with

Vol. 3D 41-3

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more restrictive than the
OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging-based
access control if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[ERESUME] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL = 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the existing paging modes. See Section 37.5 for details.
Execution of Intel SGX instructions may set accessed and dirty flags on accesses to EPC pages that do not fault
even if the instruction later causes a fault for some other reason.

41.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX root
operation or VMX non-root operation, as long as the processor is using a legal mode of operation (see Section
41.1).
A VMM has the flexibility to configure a VMCS to permit a guest to use any subset of the ENCLS leaf functions. Avail-
ability of the ENCLU leaf functions in VMX non-root operation has the same requirement as ENCLU leaf functions
outside of a virtualized environment.
Details of the VMCS control to allow VMM to configure support of Intel SGX in VMX non-root operation is described
in Section 41.5.1

41.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.
Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 36.7). VMMs can
virtualize these MSRs for the guests using the MSR bitmaps referenced by pointers in the VMCS.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as paging or the extended page table mechanism (EPT).
The VMM can set the “enable ENCLS exiting” VM-execution controls to cause a VM exit when the ENCLS instruction
is executed in VMX non-root operation. If the “enable ENCLS exiting” control is 0, all of the ENCLS leaf functions are
permitted in VMX non-root operation. If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions
in VMX non-root operation is governed by consulting the bits in a new 64-bit VM-execution control field called the
ENCLS-exiting bitmap (Each bit in the bitmap corresponds to an ENCLS leaf function with an EAX value that is iden-
tical to the bit’s position). When bits in the “ENCLS-exiting bitmap” are set, attempts to execute the corresponding
ENCLS leaf functions in VMX non-root operation causes VM exits. The checking for these VM exits occurs immedi-
ately after checking that CPL = 0.

41.5.2 Interactions with the Extended Page Table Mechanism (EPT)
Intel SGX instructions are fully compatible with the extended page-table mechanism (EPT; see Section 28.2).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and
the linear addresses generated by combining these offsets with DS segment register are subject to paging and EPT.
As with paging, enclaves abide by all the policies set up by the VMM.
The Intel SGX access control itself is implemented as an extension to paging and EPT, and may be more restrictive.
See Section 41.4 for details of this extension.
An execution of an Intel SGX instruction may set accessed and dirty flags for EPT (when enabled; see Section
28.2.4) on accesses to EPC pages that do not fault or cause VM exits even if the instruction later causes a fault or
VM exit for some other reason.

41-4 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.5.3 Interactions with APIC Virtualization
This section applies to Intel SGX in VMX non-root operation when the “virtualize APIC accesses” VM-execution
control is 1.
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 37.5.3.2).
An explicit Enclave Access (a linear memory access which is either from within an enclave into its ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access
VM exit.
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses result in undefined behavior if these accesses eventually
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor is executing inside an enclave, an attempt to execute an instruction outside of ELRANGE
results in a #GP(0), even if the linear address would translate to a physical address that overlaps the APIC-access
page.

41.5.4 Interactions with VT and SGX concurrency
In some cases, a VMM is required to handle conflicts between its own operation and a guest operation on EPC pages
that are present in both guest and VMM address space. These conflict would otherwise cause the guest to experi-
ence an unexpected behavior (vs. running directly on the h/w). These conflict cases are:
• ETRACK/ETRACKC failure due to Entry Epoch Object Lock conflict or reference tracking check failure.
• EPC Page Resource conflict.
A new exit reason is defined for all those cases: SGX_CONFLICT (value 71). The VMCS exit qualification field details
the specific case as follows:

This SGX_CONFLICT exiting behavior is controlled by a VM execution control called
ENABLE_EPC_VIRTUALIZATION_EXTENSIONS (bit 29 of the secondary processor control field).
Details for various SGX_CONFLICT VMEXIT cases are provided in the following sections.

Table 41-1. SGX Conflict Exit Qualification
Bits Size (bits) Name Description

15:0 16 Code Exit qualification code. The following values are defined:

0: TRACKING_RESOURCE_CONFLICT

1: TRACKING_REFERENCE_CONFLICT

2: EPC_PAGE_CONFLICT_EXCEPTION

3: EPC_PAGE_CONFLICT_ERROR

Other: Reserved

31:16 16 Error Error code. Applicable only if the exit qualification code is EPC_PAGE_CONFLICT_ERROR;
contains the error code that would be returned in RAX if the instruction was executed on
bare metal platform or if the ENABLE_EPC_VIRTUALIZATION_EXTENSIONS bit in the
secondary processor control field is not set. In other cases this field is reserved as 0.

63:32 32 Reserved Always 0.

Vol. 3D 41-5

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.5.5 Virtual Child Tracking
SGX oversubscription support adds the ability to associate virtual children with each enclave using the
ENCLV[EINCVIRTCHILD] and ENCLV[EDECVIRTCHILD] instructions. The VMM enables checking of the virtual child
count by EREMOVE and EWB in guests with a new VM execution control called
ENABLE_EPC_VIRTUALIZATION_EXTENSIONS.
When in VMX non-root operation and the ENABLE_EPC_VIRTUALIZATION_EXTENSIONS control enabled, the
following instructions change their behavior:
• EWB and EREMOVE return the SGX_CHILD_PRESENT error code if any virtual or physical children are

associated with the enclave.
• ERDINFO set STATUS.CHILDPRESENT if any virtual or physical children are associated with the enclave.

41.5.6 Handling EPCM Entry Lock Conflicts
When performing paging within a VMM, it is possible for a contention on the EPC page to happen in the following
case:
• The VMM performs an ELDB/ELDU/ELDBC/ELDUC of an enclave page, and the guest attempts to perform some

SGX instruction (e.g., EREMOVE) where the same SECS parent page is required.
A similar conflict may occur if the VMM uses EINCVIRTCHILD or EDECVIRTCHILD pointing to an SECS page. In all
other cases where a SGX instruction executed by the VMM the applicable EPC page should not be mapped to the
guest, thus no resource conflict occurs.
This conflicting situation can cause the guest's instruction to fail and cause guest instability. To help the VMM
manage such conflicts, the SGX VMM paging extensions introduce a new VM-Exit that will be triggered whenever
the guest encounters a resource conflict.
The exit reason is SGX_CONFLICT. The exit qualification field is used to distinguish the two kinds of resource
conflicts:
• A value of EPCM_RESOURCE_CONFLICT_EXCEPTION (2) in the exit qualification code field indicates that a

resource conflict occurred that would result in a #GP. In that case, the exit qualification error field is set to zero.
• A value of EPC_PAGE_CONFLICT_ERROR (3) in the exit qualification code field indicates that a resource conflict

occurred that would result in an error code being return in RAX. In that case, the exit qualification error field is
set to SGX_EPC_PAGE_CONFLICT.

The Guest Linear Address and Guest Physical Address fields are set to the guest linear and guest physical
addresses respectively of the EPC page on which the conflict occurred. The VMM may determine which instruction
induced the exit by reading RAX. The exit also populates the VM-exit instruction length field.
The VMM can determine whether the conflict may be due to its own operation, e.g., by setting a per-enclave busy
indicator before executing ELD*, and clearing it afterwards. In that case, the VMM can handle an SGX Conflict
(EPCM_PAGE_CONFLICT_*) exit by resuming guest execution at the same instruction, allowing the guest to re-
execute the instruction. The VMM may also take steps to throttle its own paging thread to reduce contention with
the guest.
If the VMM determines that the conflict is not due to its own operation, it may inject a #GP (in case of
EPC_PAGE_CONFLICT_EXCEPTION), or emulate an error code as the guest instruction would return (in case of
EPC_PAGE_CONFLICT_ERROR) by setting ZF and copying the error value provided in the exit qualification to guest
RAX.
To gracefully handle resource contention on the VMM side, the VMM should use the new ELDBC and ELDUC instruc-
tions. These are similar to ELDB and ELDU respectively, except that on EPC resource contention they return an
SGX_EPC_PAGE_CONFLICT error instead of issuing a #GP. In case of an error, the VMM can retry the instruction,
possibly throttling the guest to assure progress.
When using EDECVIRTCHILD and EINCVIRTCHILD, the VMM should preferably point to the enclave child page, not
to the SECS page, avoiding resource conflict on the SECS. If the VMM chooses to point to the SECS page, it should
handle conflicts in the same way as handling the ELD* case.

41-6 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.5.7 Context Tracking
The ENCLAVECONTEXT field in the SECS is available for use by the VMM to track context information associated
with that enclave, such as the GPA of the SECS in the context of the appropriate guest. This field is initialized by the
successful execution of ECREATE and ELD of an SECS page. The value stored in the ENCLAVECONTEXT field will be
the translation of the target page address produced by paging (GPA in VMMs that have EPTs turned on). VMMs may
override this default value by calling the ENCLV[ESETCONTEXT] instruction, which allows the VMM to store an arbi-
trary 64-bit value in the ENCLAVECONTEXT field. The VMM may later access the ENCLAVECONTEXT field by calling
ENCLS[ERDINFO] on any member page of the enclave, including the SECS.
For nested virtualization cases, the lowest level VMM can make SGX oversubscription instructions higher level
guest VMMs. In that case the lower level VMM can simply inject #GP to higher level VMMs when attempting to
execute these instructions.
However, if VMMs expose SGX oversubscription instructions to higher level VMMs, then VMMs have to use
ENCLV[ESETCONTEXT] instruction to properly manage the ENCLAVECONTEXT field of SECS during paging opera-
tions. That may involve emulating ERCREATE, ELD, ESETCONTEXT and ERDINFO instructions apart from managing
ENCLAVECONTEXT values.

41.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) can be detected
while inside an enclave and will cause an asynchronous enclave exit if they are not blocked. Additionally, INT3, and
the SignalTXTMsg[SENTER] (i.e. GETSEC[SENTER]’s rendezvous event message) events also cause asynchronous
enclave exits. Note that SignalTXTMsg[SEXIT] (i.e. GETSEC[SEXIT]’s teardown message) does not cause an AEX.
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 39.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the
first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

41.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND
MISCELLANEOUS STATE

41.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in CHAPTER 13 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state by

saving them in the enclave’s state-save area (SSA), and clear the secrets from the processor extended state
that is used by an enclave.

• Intel SGX architecture must verify that the SSA frame size is large enough to contain all the processor extended
states and miscellaneous state used by the enclave.

• Intel SGX architecture must ensure that enclaves can only use processor extended state that is enabled by
system software in XCR0.

• Enclave software should be able to discover only those processor extended state and miscellaneous state for
which such protection is enabled.

• The processor extended states that are enabled inside the enclave must be approved by the enclave developer:

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 17, “Intel® MPX” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) modify the behavior of the

Vol. 3D 41-7

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

legacy ISA software. If such features are enabled for enclaves that do not understand those features, then
such a configuration could lead to a compromise of the enclave's security.

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's
identity. This requirement has two implications:

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave creation (ENCLS[ECREATE] leaf function), the required SSA frame
size is calculated by the processor from the list of enabled extended and miscellaneous states and verified against
the actual SSA frame size defined by SECS.SSAFRAMESIZE.
On enclave entry, after verifying that XFRM is only enabling features that are already enabled in XCR0, the value in
the XCR0 is saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value of
XCR0 is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in
enabled state, and those that are disabled in XFRM are in disabled state.
The entire ATTRIBUTES field, including the XFRM subfield is integral part of enclave's identity (i.e., its value is
included in reports generated by ENCLU[EREPORT], and select bits from this field can be included in key-derivation
for keys obtained via the ENCLU[EGETKEY] leaf function).
Enclave developers can create their enclave to work with certain features and fallback to another code path in case
those features aren't available (e.g. optimize for AVX and fallback to SSE). For this purpose Intel SGX provides the
following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. EINIT ensures that
the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIGSTRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 39.3 for the definition of the synthetic state). When the
interrupted enclave is resumed via the ENCLU[ERESUME] leaf function, the saved state for processor extended
states enabled by XFRM is restored.

41.7.2 Relevant Fields in Various Data Structures

41.7.2.1 SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 37.7) contains a sub-field called XSAVE-Feature
Request Mask (XFRM). Software populates this field at the time of enclave creation according to the features that
are enabled by the operating system and approved by the enclave developer.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM
are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the
set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3.
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]

must be zero.
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact
enforcement mechanisms are elaborated in Section 41.7.3 through Section 41.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution.

41-8 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.OSFXSR
= 1).

41.7.2.2 SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the
general-purpose registers and additional Intel SGX specific information. The MISC area must hold the Miscella-
neous state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states specified
by SECS.ATTRIBUTES.XFRM (see Section 37.9 for the layout of SSA and Section 41.7.3 for ECREATE's consistency
checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX would return if XCR0 were set to XFRM. The
following pseudo code illustrates how software can calculate this length using XFRM as the input parameter without
modifying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.
The size of the MISC region depends on the setting of SECS.MISCSELECT and can be calculated using the layout
information described in Section 37.9.2

41.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

41.7.2.4 MISC Area in SSA
The MISC area of an SSA frame is positioned immediately before the GPRSGX region.

41.7.2.5 SIGSTRUCT Fields
Intel SGX provides the flexibility for an enclave developer to choose the enclave's code path according to the
features that are enabled on the platform (e.g. optimize for AVX and fallback to SSE). See Section 41.7.1 for
details.

1. It is the responsibility of the enclave to actually allocate this memory.

Vol. 3D 41-9

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

SIGSTRUCT includes the following fields:
SIGSTRUCT.ATTRIBUTES, SIGSTRUCT.ATTRIBUTEMASK, SIGSTRUCT.MISCSELECT, SIGSTRUCT.MISCMASK.

41.7.2.6 REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
The processor extended states and miscellaneous states that are enabled inside the enclave form an integral part
of the enclave's identity and are therefore included in the enclave's report, as provided by the ENCLU[EREPORT]
leaf function. The REPORT structure includes the enclave's XFRM and MISCSELECT configurations.

41.7.2.7 KEYREQUEST
An enclave developer can specify which bits out of XFRM and MISCSELECT ENCLU[EGETKEY] should include in the
derivation of the sealing key by specifying ATTRIBUTESMASK and MISCMASK in the KEYREQUEST structure.

41.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf function of the ENCLS instruction enforces a number of consistency checks described earlier. The
execution of ENCLS[ECREATE] leaf function results in a #GP(0) in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3.
• The processor does not support XSAVE and any of the following is true:

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0.

— XFRM[63]=1.

— The SSAFRAME is too small to hold required, enabled states (see Section 41.7.2.2).

41.7.4 Processor Extended States and ENCLU[EENTER]

41.7.4.1 Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) in any of the following cases:
• If CR4.OSFXSR=0.
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

41.7.4.2 State Loading
If ENCLU[EENTER] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.

41-10 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.7.5 Processor Extended States and AEX

41.7.5.1 State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame in a compatible format with
XSAVE that was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE
area, and (for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every
bit that is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled.

41.7.5.2 State Synthesis
After saving the extended state, the processor restores XCR0 to the value it held at the time of the most recent
enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 39.3.1.

41.7.6 Processor Extended States and ENCLU[ERESUME]

41.7.6.1 Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM.
• The required bytes in the header are not clear.
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0.

41.7.6.2 State Loading
If ENCLU[ERESUME] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1.
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g.,
by marking all state as modified).

41.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before

Vol. 3D 41-11

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it
held at the time of the most recent enclave entry.

41.7.8 Processor Extended States and ENCLU[EREPORT]

The ENCLU[EREPORT] leaf function creates the MAC-protected REPORT structure that reports on the enclave’s
identity. ENCLU[EREPORT] includes in the report the values of SECS.ATTRIBUTES.XFRM and SECS.MISCSELECT.

41.7.9 Processor Extended States and ENCLU[EGETKEY]
The ENCLU[EGETKEY] leaf function returns a cryptographic key based on the information provided by the KEYRE-
QUEST structure. Intel SGX provides the means for isolation between different operating conditions by allowing an
enclave developer to select which bits out of XFRM and MISCSELECT need to be included in the derivation of the
keys.

41.8 INTERACTIONS WITH SMM

41.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM
results in an invalid-opcode exception (#UD).

41.8.2 SMI while Inside an Enclave
If the logical processor executing inside an enclave receives an SMI, the logical processor exits the enclave asyn-
chronously. The response to an SMI received while executing inside an enclave depends on whether the dual-
monitor treatment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management
Mode” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H).
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 41-2) and in the Guest Interrupt-
ibility State field (see Table 41-3) of the SMM VMCS.

41.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 39.3. Additional
SMRAM fields that are treated specially on SMI are:

Table 41-2. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value Writable

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode No

41-12 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state
(Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters wait-for-
SIPI state.
INIT received inside an enclave, while the logical processor (LP) is in VMX root operation, follows regular Intel
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT causes a VM exit with the Enclave Interruption bit in the exit-reason field in the VMCS.
A processor cannot be inside an enclave in the wait-for-SIPI state. Consequently, a SIPI received while inside an
enclave is lost.
Intel SGX does not change the behavior of the processor in the wait-for-SIPI state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPC Settings: Unchanged
• EPCM: Unchanged
• CPUID.LEAF_12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take appro-
priate measures such as initialize the EPC with the EREMOVE leaf function.

41.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

41.11 INTERACTIONS WITH TXT

41.11.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] leaf function are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that a TXT Launched Envi-
ronment performs in preparation to execute code in the Launched Environment, also applies to enclave code that
would run after GETSEC[SENTER].

41.11.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and results in an invalid-opcode exception
(#UD).
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.

Vol. 3D 41-13

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.11.3 Interactions with Authenticated Code Modules (ACMs)
Intel SGX only allows launching ACMs with an Intel SGX SVN that is at the same level or higher than the expected
Intel SGX SVN. The expected Intel SGX SVN is specified by BIOS and locked down by the processor on the first
successful execution of an Intel SGX instruction that doesn’t return an error code. Intel SGX provides interfaces for
system software to discover whether a non faulting Intel SGX instruction has been executed, and evaluate the suit-
ability of the Intel SGX SVN value of any ACM that is expected to be launched by the OS or the VMM.
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 41-3.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the IA32_SGX_SVN_STATUS
MSR to determine whether the ACM can be launched or a new ACM is needed:
• If either the Intel SGX SVN of the ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the

lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM.
• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is greater

than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then the
OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from
the BIOS or from an external resource.

However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irrespec-
tive of the setting of the lock bit.

41.12 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

41.13 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.

Table 41-3. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been
executed, consequently, launching a properly signed ACM but with Intel
SGX SVN value less than the BIOS specified Intel SGX SVN threshold
would lead to an TXT shutdown.

• If 0, indicates that the processor will allow a properly signed ACM to
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of
Intel SGX SVN for the SINIT ACM.

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0

41-14 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

41.13.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered.
After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP detected inside an RTM
transaction region will just cause an abort with no exception delivered.
After opt-in entry, if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM transla-
tion will
• terminate speculative execution,
• set RIP to the address of the XBEGIN instruction, and
• be delivered as #DB (implying an Intel SGX AEX; any #BP is converted to #DB).
• DR6[16] will be cleared, indicating RTM debug (if the #DB causes a VM exit, DR6 is not modified but bit 16 of

the pending debug exceptions field in the VMCS will be set).

41.14 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor enters S3-S5 state, enclaves are destroyed. This is due to the EPC being
destroyed when power down occurs. It is the application runtime’s responsibility to re-instantiate an enclave after
a power transition for which the enclaves were destroyed.

41.15 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

41.15.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause an
asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

41.15.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SGX1] to 0) until the next reset.

41.15.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.

Vol. 3D 41-15

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

41.16 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies neither
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.
If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change
within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault;
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

41.17 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.(EAX=12H, ECX=1):ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If

SECS.ATTRIBUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part of
ERESUME. If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whether
SECS.ATTRIBUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher
priority than SGX permission checks.

3) Implicit accesses aren't subject to domain permission checks.

41-16 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

28.Updates to Appendix A, Volume 3D
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3D: System Programming Guide, Part 4.

--
Change to this chapter: Deletion of duplicate paragraph.

Vol. 3D A-1

APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indicated by
CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX features.

Support for specific features detailed in Chapter 26 and other VMX chapters is determined by reading values from
a set of capability MSRs. These MSRs are indexed starting at MSR address 480H. VMX capability MSRs are read-
only; an attempt to write them (with WRMSR) produces a general-protection exception (#GP(0)). They do not exist
on processors that do not support VMX operation; an attempt to read them (with RDMSR) on such processors
produces a general-protection exception (#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same VMCS

revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).
• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and

data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.2 If the bit is 1,
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management
interrupts and system-management mode. See Section 34.15 for details of this treatment.

• Bits 53:50 report the memory type that should be used for the VMCS, for data structures referenced by
pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions), and for the MSEG
header. If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it
can configure the paging structures to map them into the linear-address space. If it does so, it should establish
mappings that use the memory type reported bits 53:50 in this MSR.3

As of this writing, all processors that support VMX operation indicate the write-back type. The values used are
given in Table A-1.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.

2. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width.

3. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer.

Table A-1. Memory Types Recommended for VMCS and Related Data Structures
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

A-2 Vol. 3D

VMX CAPABILITY REPORTING FACILITY

• If bit 54 is read as 1, the processor reports information in the VM-exit instruction-information field on VM exits
due to execution of the INS and OUTS instructions (see Section 27.2.4). This reporting is done only if this bit is
read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It also
reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (0 or 1)
determined by the processor. The specific value to which a reserved control must be set is its default setting.
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality
should set the control to its default setting. For that reason, it is useful for software to know the default settings of
the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1.

VM entry will fail if any of these controls are 0 (see Section 26.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs:
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not
supported if bit 55 of the IA32_VMX_BASIC MSR is read as 0.)

See Section 31.5.1 for recommended software algorithms for proper capability detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the primary processor-based VM-
execution controls, and the secondary processor-based VM-execution controls. These are described in Appendix
A.3.1, Appendix A.3.2, and Appendix A.3.3, respectively.

A.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of most of the pin-based
VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the pin-based

VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
Exceptions are made for the pin-based VM-execution controls in the default1 class (see Appendix A.2). These
are bits 1, 2, and 4; the corresponding bits of the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

Vol. 3D A-3

VMX CAPABILITY REPORTING FACILITY

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-based VM-execution control in
the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (see
below) reports which of the pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH)
reports on the allowed settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the pin-
based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the pin-based

VM-execution controls is contained in the IA32_VMX_PINBASED_CTLS MSR. (The
IA32_VMX_TRUE_PINBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the pin-based
VM-execution controls is contained in the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software
knows that the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is no need for
software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of most of the primary
processor-based VM-execution controls (see Section 24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary

processor-based VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to
1, VM entry fails if control X is 0.
Exceptions are made for the primary processor-based VM-execution controls in the default1 class (see
Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; the corresponding bits of the
IA32_VMX_PROCBASED_CTLS MSR are always read as 1. The treatment of these controls by VM entry is
determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the primary processor-based VM-
execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (see
below) reports which of the primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH)
reports on the allowed settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary

processor-based VM-execution controls is contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

A-4 Vol. 3D

VMX CAPABILITY REPORTING FACILITY

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the processor-
based VM-execution controls is contained in the IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that
software knows that the default1 class of processor-based VM-execution controls contains bits 1, 4–6, 8, 13–
16, and 26, there is no need for software to consult the IA32_VMX_PROCBASED_CTLS MSR.

A.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings of the secondary processor-
based VM-execution controls (see Section 24.6.2). VM entries perform the following checks:
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0. This fact indicates that

VM entry allows each bit of the secondary processor-based VM-execution controls to be 0 (reserved bits must
be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not allowed for any reserved bit.
VM entry allows control X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate secondary
controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-setting of the “activate
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most of the VM-exit controls (see
Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-exit

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix A.2). These are bits 0–8, 10,
11, 13, 14, 16, and 17; the corresponding bits of the IA32_VMX_EXIT_CTLS MSR are always read as 1. The
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-exit control in the default1 class
is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (see below)
reports which of the VM-exit controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH) reports on
the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
VM-exit controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-exit

controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-exit
controls is contained in the IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the default1
class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for software to consult
the IA32_VMX_EXIT_CTLS MSR.

Vol. 3D A-5

VMX CAPABILITY REPORTING FACILITY

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most of the VM-entry controls
(see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-entry

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see Appendix A.2). These are bits 0–8 and
12; the corresponding bits of the IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry control in the default1
class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (see below)
reports which of the VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is 1 in the VM-entry controls
and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports
on the allowed settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-entry

controls is contained in the IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-entry
controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for software to consult the
IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and that

of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 every
time bit X in the TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control;
see Section 27.2 for more details. This bit is read as 1 on any logical processor that supports the 1-setting of
the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish that
activity state. All implementations support VM entry to activity state 0 (active).

• If bit 14 is read as 1, Intel® Processor Trace (Intel PT) can be used in VMX operation. If the processor supports
Intel PT but does not allow it to be used in VMX operation, execution of VMXON clears IA32_RTIT_CTL.TraceEn
(see “VMXON—Enter VMX Operation” in Chapter 30); any attempt to write IA32_RTIT_CTL while in VMX
operation (including VMX root operation) causes a general-protection exception.

A-6 Vol. 3D

VMX CAPABILITY REPORTING FACILITY

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the
IA32_SMBASE MSR (MSR address 9EH). See Section 34.15.6.3.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit
MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of
IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in
each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during
the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise,
VMWRITE cannot be used to modify VM-exit information fields.

• If bit 30 is read as 1, VM entry allows injection of a software interrupt, software exception, or privileged
software exception with an instruction length of 0.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 13:9 and bit 31 are reserved and are read as 0.

A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR (index 487H) indicate how bits
in CR0 may be set in VMX operation. They report on bits in CR0 that are allowed to be 0 and to be 1, respectively,
in VMX operation. If bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 0 in VMX operation. It is always the case
that, if bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, each bit in CR0 is either fixed to
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in
IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR (index 489H) indicate how bits
in CR4 may be set in VMX operation. They report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX
operation. If bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if
bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX operation. It is always the case that,
if bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in
IA32_VMX_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed to
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in
IA32_VMX_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist software in enumerating fields in
the VMCS.

As noted in Section 24.11.2, each field in the VMCS is associated with a 32-bit encoding which is structured as
follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.

Vol. 3D A-7

VMX CAPABILITY REPORTING FACILITY

• Bits 9:1 is an index field that distinguishes different fields with the same width and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any field supported
by the processor:
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical
processor with regard to virtual-processor identifiers (VPIDs, Section 28.1) and extended page tables (EPT, Section
28.2):
• If bit 0 is read as 1, the processor supports execute-only translations by EPT. This support allows software to

configure EPT paging-structure entries in which bits 1:0 are clear (indicating that data accesses are not
allowed) and bit 2 is set (indicating that instruction fetches are allowed).1

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by

setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by

setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 28.2.4).
• If bit 22 is read as 1, the processor reports advanced VM-exit information for EPT violations (see Section

27.2.1). This reporting is done only if this bit is read as 1.
• Support for the INVVPID instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:18, bits 24:23, bits 31:27, bits 39:33, and bits 63:44 are reserved

and are read as 0.

1. If the “mode-based execute control for EPT” VM-execution control is 1, setting bit 0 indicates also that software may also configure
EPT paging-structure entries in which bits 1:0 are both clear and in which bit 10 is set (indicating a translation that can be used to
fetch instructions from a supervisor-mode linear address or a user-mode linear address).

A-8 Vol. 3D

VMX CAPABILITY REPORTING FACILITY

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support
either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the VM-function controls (see
Section 24.6.14). VM entry allows bit X of the VM-function controls to be 1 if bit X in the MSR is set to 1; if bit X in
the MSR is cleared to 0, VM entry fails if bit X of the VM-function controls, the “activate secondary controls” primary
processor-based VM-execution control, and the “enable VM functions” secondary processor-based VM-execution
control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of
the “enable VM functions” secondary processor-based VM-execution control (only if bit 45 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

29.Updates to Chapter 2, Volume 4
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 4: Model-Specific Registers.

--
Changes to this chapter: Update comments for IA32_SGXLEPUBKEYHASH0, IA32_SGXLEPUBKEYHASH1,
IA32_SGXLEPUBKEYHASH2, and IA32_SGXLEPUBKEYHASH3 MSRs. Updated MSR_SGXOWNEREPOCH0 and
MSR_SGXOWNEREPOCH1 to indicate they are write only. Updated MSR_BR_DETECT_CTRL with additional infor-
mation regarding bits 17:8. Updated FREEZE_WHILE_SMM name.

Vol. 4 2-1

CHAPTER 2
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with
the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distin-
guish between different processor family and/or models, software must use CPUID.01H leaf function to query the
combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 2-1 lists the signature values of DisplayFamily and DisplayModel for various
processor families or processor number series.

Table 2-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_85H Future Intel® Xeon Phi™ Processor based on Knights Mill microarchitecture

06_57H Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

06_66H Future Intel® Core™ processors based on Cannon Lake microarchitecture

06_8EH, 06_9EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture

06_55H Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor E7 v4
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

2-2 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs”
were given the prefix “IA32_”. Table 2-2 lists the architectural MSRs, their addresses, their current names, their
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table
2-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific.

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_7AH Intel® Atom™ processors based on Goldmont Plus Microarchitecture

06_5FH Intel Atom processors based on Goldmont Microarchitecture (code name Denverton)

06_5CH Intel Atom processors based on Goldmont Microarchitecture

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and
SteppingID = 0

Table 2-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Vol. 4 2-3

MODEL-SPECIFIC REGISTERS (MSRS)

Code that accesses a machine specified MSR and that is executed on a processor that does not support that MSR
will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 2-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 2-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 2-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 2-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 2.22, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 2.22, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.17, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) This register holds the APIC base address,
permitting the relocation of the APIC
memory map. See Section 10.4.4, “Local
APIC Status and Location” and Section
10.4.5, “Relocating the Local APIC
Registers”.

06_01H

7:0 Reserved

8 BSP flag (R/W)

2-4 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If any one enumeration
condition for defined bit
field holds

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[5] = 1
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[5] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

16 Reserved

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-5

MODEL-SPECIFIC REGISTERS (MSRS)

17 SGX Launch Control Enable (R/WL): This bit
must be set to enable runtime
reconfiguration of SGX Launch Control via
IA32_SGXLEPUBKEYHASHn MSR.

If CPUID.(EAX=07H,
ECX=0H): ECX[30] = 1

18 SGX Global Enable (R/WL): This bit must be
set to enable SGX leaf functions.

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

19 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-6 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8CH 140 IA32_SGXLEPUBKEYHASH0 IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
CPUID.(EAX=07H,
ECX=0H):ECX[30]=1.

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
17] = 1 &&
IA32_FEATURE_CONTROL[
0] = 1

8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

8EH 142 IA32_SGXLEPUBKEYHASH2 IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel’s signing key.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 ||
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-7

MODEL-SPECIFIC REGISTERS (MSRS)

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear).

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector.

31:16 Not used. Can be read and written.

63:32 Not used. Writes ignored; reads

return zero.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-8 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If
IA32_MCG_CAP.LMCE_P[2
7] =1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8]
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-9

MODEL-SPECIFIC REGISTERS (MSRS)

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS Current performance status. (RO)

See Section 14.1.1, “Software Interface For
Initiating Performance State Transitions”.

0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL Performance Control MSR. (R/W)

Software makes a request for a new
Performance state (P-State) by writing this
MSR. See Section 14.1.1, “Software
Interface For Initiating Performance State
Transitions”.

0F_03H

15:0 Target performance State Value

31:16 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-10 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

If CPUID.01H:EDX[22] = 1

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

If CPUID.01H:EDX[22] = 1

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved.

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1

22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

If CPUID.01H:EDX[22] = 1

0 Thermal Status (RO): If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W): If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (RO) If CPUID.01H:EDX[22] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-11

MODEL-SPECIFIC REGISTERS (MSRS)

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (RO) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled.
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

The default value of this field varies with
product . See respective tables where
default value is listed.

0F_0H

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-12 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Processor Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not supported.

Software attempts to execute
MONITOR/MWAIT will cause #UD when this
bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-13

MODEL-SPECIFIC REGISTERS (MSRS)

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 2.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 2, this bit is
supported.

Otherwise, this bit is not supported. Setting
this bit when the maximum value is not
greater than 2 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 2.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-14 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-15

MODEL-SPECIFIC REGISTERS (MSRS)

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

If
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If
IA32_MTRRCAP.SMRR[11]
= 1

7:0 Type. Specifies memory type of the range.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-16 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If CPUID.01H:
EDX.MTRR[12] =1

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If CPUID.01H:
EDX.MTRR[12] =1

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If CPUID.01H:
EDX.MTRR[12] =1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-17

MODEL-SPECIFIC REGISTERS (MSRS)

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 If CPUID.01H:
EDX.MTRR[12] =1

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 If CPUID.01H:
EDX.MTRR[12] =1

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.01H:
EDX.MTRR[12] =1

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.01H:
EDX.MTRR[12] =1

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.01H:
EDX.MTRR[12] =1

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.01H:
EDX.MTRR[12] =1

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If CPUID.01H:
EDX.MTRR[12] =1

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.01H:
EDX.MTRR[12] =1

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.01H:
EDX.MTRR[12] =1

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.01H:
EDX.MTRR[12] =1

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.01H:
EDX.MTRR[12] =1

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If CPUID.01H:
EDX.MTRR[12] =1

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H:
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H:
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H:
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H:
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H:
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H:
EDX.MTRR[12] =1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-18 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H:
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H:
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H:
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H:
EDX.MTRR[12] =1

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H:
EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 MSR to enable/disable CMCI capability for
bank 0. (R/W)

See Section 15.3.2.5, “IA32_MCi_CTL2
MSRs”.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
0

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
1

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
2

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-19

MODEL-SPECIFIC REGISTERS (MSRS)

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
3

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
4

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
5

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
7

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
8

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
10

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
11

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
13

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
14

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
16

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
17

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-20 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
18

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
19

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
20

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
22

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
23

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
25

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
26

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
28

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
29

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H:
EDX.MTRR[12] =1

2:0 Default Memory Type

9:3 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-21

MODEL-SPECIFIC REGISTERS (MSRS)

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 2
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES Read Only MSR that enumerates the
existence of performance monitoring
features. (RO)

If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-22 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-23

MODEL-SPECIFIC REGISTERS (MSRS)

58 LBR_Frz: LBRs are frozen due to

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core
PMU are frozen due to

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-24 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-25

MODEL-SPECIFIC REGISTERS (MSRS)

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

62:35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-26 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-27

MODEL-SPECIFIC REGISTERS (MSRS)

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-28 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-29

MODEL-SPECIFIC REGISTERS (MSRS)

46AH IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-30 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63] && (
IA32_VMX_PROCBASED_C
TLS2[33] ||
IA32_VMX_PROCBASED_C
TLS2[37]))

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-31

MODEL-SPECIFIC REGISTERS (MSRS)

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL Allows software to signal some MCEs to
only single logical processor in the system.
(R/W)

See Section 15.3.1.4, “IA32_MCG_EXT_CTL
MSR”.

If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support
for ACM (RO).

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

0 Lock. See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 41.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

63:24 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-32 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register
(R/W)

If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

18 Reserved, MBZ

22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-33

MODEL-SPECIFIC REGISTERS (MSRS)

23 Reserved, MBZ

27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

31:28 Reserved, MBZ

35:32 ADDR0_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

63:48 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 FilterEn (writes ignored) If (CPUID.(EAX=07H,
ECX=0):EBX[2] = 1)

1 ContexEn (writes ignored)

2 TriggerEn (writes ignored)

3 Reserved

4 Error

5 Stopped

31:6 Reserved, MBZ

48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):EBX[1] > 3)

63:49 Reserved

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-34 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

If(CPUID.01H:EDX.DS[21]
= 1

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If CPUID.01H:ECX.[24] = 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1

0 HWP_ENABLE (R/W1-Once)

See Section 14.4.2, “Enabling HWP”

If CPUID.06H:EAX.[7] = 1

63:1 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-35

MODEL-SPECIFIC REGISTERS (MSRS)

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If CPUID.06H:EAX.[7] = 1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1

0 EN_Guaranteed_Performance_Change

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

1 EN_Excursion_Minimum

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-36 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[10] =
1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[11] =
1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum
(R/W)

If CPUID.06H:EAX.[7] = 1

0 Guaranteed_Performance_Change
(R/WC0)

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

1 Reserved.

2 Excursion_To_Minimum (R/WC0)

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If CPUID.01H:ECX[21] = 1
&& IA32_APIC_BASE.[10]
= 1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-37

MODEL-SPECIFIC REGISTERS (MSRS)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-38 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-39

MODEL-SPECIFIC REGISTERS (MSRS)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0

If CPUID.01H:ECX.[11] = 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1

63:32 Reserved.

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=1):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode.

63:1 Reserved. Attempts to write to reserved
bits result in a #GP(0).

C82H 3202 IA32_L2_QOS_CFG L2 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=2):ECX.[2] = 1)

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-40 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 Enable (R/W)

Set 1 to enable L2 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode.

63:1 Reserved. Attempts to write to reserved
bits result in a #GP(0).

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[12] =1) or
(CPUID.(EAX=07H,
ECX=0):EBX[15] =1))

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W). The class of service (COS) to
enforce (on writes); returns the current
COS when read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[15] = 1)

C90H -
D8FH

Reserved MSR Address Space for CAT
Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

C90H 3216 IA32_L3_MASK_0 L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-41

MODEL-SPECIFIC REGISTERS (MSRS)

C90H+
n

3216+n IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D10H -
D4FH

Reserved MSR Address Space for L2
CAT Mask Registers

See Section 17.19.4.1, “Enumeration and
Detection Support of Cache Allocation
Technology”.

D10H 3344 IA32_L2_MASK_0 L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D10H+
n

3344+n IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration.
(R/W)

If (CPUID.(EAX=07H,
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode

1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix

11:2 Reserved, must be 0

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[3]
= 1

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-42 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If CPUID.06H:EAX.[13] = 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If CPUID.06H:EAX.[13] = 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will not
implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001H:EDX.[2
0] ||
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME
(R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

Target RIP for the called procedure when
SYSCALL is executed in 64-bit mode.

If
CPUID.80000001:EDX.[29]
= 1

C000_
0083H

IA32_CSTAR IA-32e Mode System Call Target Address
(R/W)

Not used, as the SYSCALL instruction is not
recognized in compatibility mode.

If
CPUID.80000001:EDX.[29]
= 1

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Vol. 4 2-43

MODEL-SPECIFIC REGISTERS (MSRS)

2.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 2-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 2-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 2-1.

MSRs listed in Table 2-2 and Table 2-3 are also supported by processors based on the Enhanced Intel Core micro-
architecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS
(R/W)

If
CPUID.80000001:EDX.[29]
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as

model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section

15.3.2.4 for more information.
3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2.

Table 2-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

2-44 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-45

MODEL-SPECIFIC REGISTERS (MSRS)

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible
and writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This To_IP part of the stack contains pointers to the
destination instruction.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-46 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-47

MODEL-SPECIFIC REGISTERS (MSRS)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R)

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-48 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Current performance status. See Section 14.1.1, “Software
Interface For Initiating Performance State Transitions”.

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-49

MODEL-SPECIFIC REGISTERS (MSRS)

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor
performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-50 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that contains
data currently required by the processor. When set to 0, the
processor fetches cache lines that comprise a cache line pair (128
bytes).

Single processor platforms should not set this bit. Server platforms
should set or clear this bit based on platform performance
observed in validation and testing.

BIOS may contain a setup option that controls the setting of this
bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-51

MODEL-SPECIFIC REGISTERS (MSRS)

34 Unique XD Bit Disable (R/W)

See Table 2-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The
default value after reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache prefetcher. When the DCU
prefetcher detects multiple loads from the same line done within a
time limit, the DCU prefetcher assumes the next line will be
required. The next line is prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic
Acceleration feature (IDA) is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of IDA. If power-on default value is 1, IDA is
available in the processor. If power-on default value is 0, IDA is not
available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value
after reset is 0. BIOS may write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher
looks for sequential load history to determine whether to prefetch
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-52 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-53

MODEL-SPECIFIC REGISTERS (MSRS)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

345H 837 IA32_PERF_CAPABILITIES Unique See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural
perfmon version 2.

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W)

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATU
S

Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.6.2.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-54 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 IA32_MC3_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

414H 1044 IA32_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of #MC
for errors produced by a particular hardware unit (or group of
hardware units).

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-55

MODEL-SPECIFIC REGISTERS (MSRS)

415H 1045 IA32_MC5_STATUS Unique Machine Check Error Reporting Register - contains information
related to a machine-check error if its VAL (valid) flag is set.
Software is responsible for clearing IA32_MCi_STATUS MSRs by
explicitly writing 0s to them; writing 1s to them causes a general-
protection exception.

416H 1046 IA32_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address of
the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is
set.

417H 1047 IA32_MC5_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

419H 1045 IA32_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-56 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-57

MODEL-SPECIFIC REGISTERS (MSRS)

2.3 MSRS IN THE 45 NM AND 32 NM INTEL® ATOM™ PROCESSOR FAMILY
Table 2-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR
addresses are also included in Table 2-4. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 2-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 2-2.

Table 2-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-58 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-59

MODEL-SPECIFIC REGISTERS (MSRS)

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 2-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-60 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-61

MODEL-SPECIFIC REGISTERS (MSRS)

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

198H 408 MSR_PERF_STATUS Shared Performance Status

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-62 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

19DH 413 MSR_THERM2_CTL Shared Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Shared Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-63

MODEL-SPECIFIC REGISTERS (MSRS)

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W)

See Table 2-2.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-64 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 2-2.

277H 631 IA32_PAT Unique See Table 2-2.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-65

MODEL-SPECIFIC REGISTERS (MSRS)

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-66 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40EH 1038 IA32_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-67

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-5 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor with the CPUID signa-
ture with DisplayFamily_DisplayModel of 06_27H.

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) See Table 2-2.

Table 2-5. MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C2 Residency Counter. (R/O)

Time that this package is in processor-specific C2 states since last
reset. Counts at 1 Mhz frequency.

Table 2-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-68 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 2-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchitec-
ture. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH; see Table 2-1. The MSRs listed in Table 2-6 are also common to processors based on the
Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 2-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not
newer microarchitectures.

Table 2-8, Table 2-9, and Table 2-10 lists MSRs that are model-specific across processors based on the Silvermont
microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last
reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last
reset. Counts at 1 Mhz frequency.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Module Processor Hard Power-On Configuration (R/W) Writes ignored.

63:0 Reserved (R/O)

Table 2-5. MSRs Supported by Intel® Atom™ Processors (Contd.)with CPUID Signature 06_27H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-69

MODEL-SPECIFIC REGISTERS (MSRS)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 2-2.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-70 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 2-2.

175H 373 IA32_SYSENTER_ESP Core See Table 2-2.

176H 374 IA32_SYSENTER_EIP Core See Table 2-2.

179H 377 IA32_MCG_CAP Core See Table 2-2.

17AH 378 IA32_MCG_STATUS Core Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-71

MODEL-SPECIFIC REGISTERS (MSRS)

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 2-2.

198H 408 IA32_PERF_STATUS Module See Table 2-2.

199H 409 IA32_PERF_CTL Core See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Module Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Module Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 2-2.

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-72 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-73

MODEL-SPECIFIC REGISTERS (MSRS)

345H 837 IA32_PERF_CAPABILITIES Core See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-74 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-75

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Core See Table 2-2.

4C2H 1218 IA32_A_PMC1 Core See Table 2-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 2-2.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

2-76 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-7 lists model-specific registers (MSRs) that are common to Intel® Atom™ processors based on the Silver-
mont and Airmont microarchitectures but not newer microarchitectures.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Core Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 2-2

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

7:0 Reserved.

13:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 2-2

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5 and record format in Section 17.4.8.1

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-6. MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom
Processors

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-77

MODEL-SPECIFIC REGISTERS (MSRS)

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-78 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

11EH 281 MSR_BBL_CR_CTL3 Module Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Module Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 0.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-79

MODEL-SPECIFIC REGISTERS (MSRS)

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Module Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Module xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Module Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-80 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.1 MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 2-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS for precise event on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the maximum frequency that does not require
turbo. Frequency = ratio * Scalable Bus Frequency.

63:16 Reserved.

Table 2-7. MSRs Common to the Silvermont and Airmont Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-81

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-8. Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signatures 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

in unit of second. If 0 is specified in bits [23:17], defaults to 1
second window.

63:24 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 2-8

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 2-8

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture.

2-82 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-9 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H).

Table 2-10 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_4DH).

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

Table 2-9. Specific MSRs Supported by Intel® Atom™ Processor E3000 Series with CPUID Signature 06_37H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLI
CY_CONFIG

Package Core C6 demotion policy config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of 0 disables
core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLI
CY_CONFIG

Package Module C6 demotion policy config MSR

63:0 Controls module (i.e. two cores sharing the second-level cache) C6
demotion policy. Writing a value of 0 disables module level HW
demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

Table 2-10. Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Reserved

Table 2-8. Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signatures 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-83

MODEL-SPECIFIC REGISTERS (MSRS)

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

63:3 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0)

Table 2-10. Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-84 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.4.2 MSRs In Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-11. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel including 06_4CH; see Table 2-1.

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal
specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

3:0 • 0000B: 083.3 MHz
• 0001B: 100.0 MHz
• 0010B: 133.3 MHz
• 0011B: 116.7 MHz
• 0100B: 080.0 MHz
• 0101B: 093.3 MHz
• 0110B: 090.0 MHz
• 0111B: 088.9 MHz
• 1000B: 087.5 MHz

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved.

Table 2-10. Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-85

MODEL-SPECIFIC REGISTERS (MSRS)

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 2-8.

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

16 Reserved

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-86 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.5 MSRS IN INTEL ATOM PROCESSORS BASED ON GOLDMONT
MICROARCHITECTURE

Intel Atom processors based on the Goldmont microarchitecture support MSRs listed in Table 2-6 and Table 2-12.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_5CH; see Table 2-1.

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical
package share the same MSR or bit interface.

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 2-2.

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

Table 2-11. MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-87

MODEL-SPECIFIC REGISTERS (MSRS)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

63:19 Reserved.

3BH 59 IA32_TSC_ADJUST Core Per-Core TSC ADJUST (R/W)

See Table 2-2.

C3H 195 IA32_PMC2 Core Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Core Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the maximum frequency that does not require
turbo. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24]
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-88 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: No limit

0001b: C1

0010b: C3

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

17DH 381 MSR_SMM_MCA_CAP Core Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

188H 392 IA32_PERFEVTSEL2 Core See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Core See Table 2-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Package Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-89

MODEL-SPECIFIC REGISTERS (MSRS)

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Core Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 2-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 2-2.

23 Package xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-90 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:3 Reserved.

1AAH 426 MSR_MISC_PWR_MGMT Package Miscellaneous Power Management Control; various model specific
features enumeration. See http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

21:1 Reserved.

22 Thermal Interrupt Coordination Enable (R/W)

If set, then thermal interrupt on one core is routed to all cores.

63:23 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode by Core Groups (RW)

Specifies Maximum Ratio Limit for each Core Group. Max ratio
for groups with more cores must decrease monotonically.

For groups with less than 4 cores, the max ratio must be 32 or
less. For groups with 4-5 cores, the max ratio must be 22 or
less. For groups with more than 5 cores, the max ratio must be
16 or less.

7:0 Package Maximum Ratio Limit for Active cores in Group 0

Maximum turbo ratio limit when number of active cores is less or
equal to Group 0 threshold.

15:8 Package Maximum Ratio Limit for Active cores in Group 1

Maximum turbo ratio limit when number of active cores is less or
equal to Group 1 threshold and greater than Group 0 threshold.

23:16 Package Maximum Ratio Limit for Active cores in Group 2

Maximum turbo ratio limit when number of active cores is less or
equal to Group 2 threshold and greater than Group 1 threshold.

31:24 Package Maximum Ratio Limit for Active cores in Group 3

Maximum turbo ratio limit when number of active cores is less or
equal to Group 3 threshold and greater than Group 2 threshold.

39:32 Package Maximum Ratio Limit for Active cores in Group 4

Maximum turbo ratio limit when number of active cores is less or
equal to Group 4 threshold and greater than Group 3 threshold.

47:40 Package Maximum Ratio Limit for Active cores in Group 5

Maximum turbo ratio limit when number of active cores is less or
equal to Group 5 threshold and greater than Group 4 threshold.

55:48 Package Maximum Ratio Limit for Active cores in Group 6

Maximum turbo ratio limit when number of active cores is less or
equal to Group 6 threshold and greater than Group 5 threshold.

63:56 Package Maximum Ratio Limit for Active cores in Group 7

Maximum turbo ratio limit when number of active cores is less or
equal to Group 7 threshold and greater than Group 6 threshold.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-91

MODEL-SPECIFIC REGISTERS (MSRS)

1AEH 430 MSR_TURBO_GROUP_CORE
CNT

Package Group Size of Active Cores for Turbo Mode Operation (RW)

Writes of 0 threshold is ignored

7:0 Package Group 0 Core Count Threshold

Maximum number of active cores to operate under Group 0 Max
Turbo Ratio limit.

15:8 Package Group 1 Core Count Threshold

Maximum number of active cores to operate under Group 1 Max
Turbo Ratio limit. Must be greater than Group 0 Core Count.

23:16 Package Group 2 Core Count Threshold

Maximum number of active cores to operate under Group 2 Max
Turbo Ratio limit. Must be greater than Group 1 Core Count.

31:24 Package Group 3 Core Count Threshold

Maximum number of active cores to operate under Group 3 Max
Turbo Ratio limit. Must be greater than Group 2 Core Count.

39:32 Package Group 4 Core Count Threshold

Maximum number of active cores to operate under Group 4 Max
Turbo Ratio limit. Must be greater than Group 3 Core Count.

47:40 Package Group 5 Core Count Threshold

Maximum number of active cores to operate under Group 5 Max
Turbo Ratio limit. Must be greater than Group 4 Core Count.

55:48 Package Group 6 Core Count Threshold

Maximum number of active cores to operate under Group 6 Max
Turbo Ratio limit. Must be greater than Group 5 Core Count.

63:56 Package Group 7 Core Count Threshold

Maximum number of active cores to operate under Group 7 Max
Turbo Ratio limit. Must be greater than Group 6 Core Count and not
less than the total number of processor cores in the package. E.g.
specify 255.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-92 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

210H 528 IA32_MTRR_PHYSBASE8 Core See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Core See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Core See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Core See Table 2-2.

280H 640 IA32_MC0_CTL2 Module See Table 2-2.

281H 641 IA32_MC1_CTL2 Module See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Module See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

301H 769 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-93

MODEL-SPECIFIC REGISTERS (MSRS)

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI.

57:56 Reserved.

58 LBR_Frz.

59 CTR_Frz.

60 ASCI.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Set 1 to clear LBR_Frz.

59 Set 1 to clear CTR_Frz.

60 Set 1 to clear ASCI.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

Core See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Set 1 to cause Ovf_PMC0 = 1

1 Set 1 to cause Ovf_PMC1 = 1

2 Set 1 to cause Ovf_PMC2 = 1

3 Set 1 to cause Ovf_PMC3 = 1

31:4 Reserved.

32 Set 1 to cause Ovf_FixedCtr0 = 1

33 Set 1 to cause Ovf_FixedCtr1 = 1

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-94 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

34 Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1

59 Set 1 to cause CTR_Frz = 1

60 Set 1 to cause ASCI = 1

61 Set 1 to cause Ovf_Uncore

62 Set 1 to cause Ovf_BufDSSAVE

63 Reserved.

392H 914 IA32_PERF_GLOBAL_INUSE See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

406H 1030 IA32_MC1_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-95

MODEL-SPECIFIC REGISTERS (MSRS)

4C3H 1219 IA32_A_PMC2 Core See Table 2-2.

4C4H 1220 IA32_A_PMC3 Core See Table 2-2.

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked state to service
an SMI. The corresponding bit will be set if the logical processor is
in one of the following states: Wait For SIPI or SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

500H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 41.11.3, “Interactions with Authenticated Code
Modules (ACMs)”

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-96 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 41.11.3, “Interactions with
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Core Trace Output Base Register (R/W). See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Core Trace Output Mask Pointers Register (R/W). See Table 2-2.

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Core Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

48:32 PacketByteCnt

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-97

MODEL-SPECIFIC REGISTERS (MSRS)

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Core Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Core Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Core Region 0 End Address (R/W)

63:0 See Table 2-2.

582H 1410 IA32_RTIT_ADDR1_A Core Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Core Region 1 End Address (R/W)

63:0 See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in Watts) is in unit of, 1W/2^PU; where
PU is an unsigned integer represented by bits 3:0. Default value is
1000b, indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in Joules) is in unit of, 1Joule/ (2^ESU);
where ESU is an unsigned integer represented by bits 12:8. Default
value is 01110b, indicating energy unit is in 61 microJoules.

15:13 Reserved

19:16 Time Unit.

Time related information (in seconds) is in unit of, 1S/2^TU; where
TU is an unsigned integer represented by bits 19:16. Default value
is 1010b, indicating power unit is in 0.977 millisecond.

63:20 Reserved

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-98 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC_IRTL1 Package Package C6/C7S Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7S state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7S state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC_IRTL2 Package Package C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-99

MODEL-SPECIFIC REGISTERS (MSRS)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W)

14:0 Thermal Spec Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

15 Reserved.

30:16 Minimum Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

31 Reserved.

46:32 Maximum Power (R/W)

See Section 14.9.3, “Package RAPL Domain.”

47 Reserved.

54:48 Maximum Time Window (R/W)

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where “Y”
is the unsigned integer value represented. by bits
52:48, “Z” is an unsigned integer represented by bits
54:53. “Time_Unit” is specified by the “Time Units” field
of MSR_RAPL_POWER_UNIT

63:55 Reserved.

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,

63:0 Package C10 Residency Counter. (R/O)

Value since last reset that the entire SOC is in an S0i3 state. Count
at the same frequency as the TSC.

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-100 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64FH 1615 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the
operating system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

8:4 Reserved.

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum efficiency
frequency.

15 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-101

MODEL-SPECIFIC REGISTERS (MSRS)

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24:20 Reserved.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Maximum Efficiency Frequency Log

When set, indicates that the Maximum Efficiency Frequency Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:31 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-102 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6 and record format in Section 17.4.8.1

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Core Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Core Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Core Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Core Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Core Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Core Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Core Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Core Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Core Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-103

MODEL-SPECIFIC REGISTERS (MSRS)

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Core Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Core Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Core Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Core Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Core Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Core Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Core Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Core Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Core Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Core Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Core Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Core Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Core Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Core Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Core Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
Destination instruction and elapsed cycles from last LBR update.
See also:

• Section 17.6

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-104 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Core Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Core Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Core Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Core Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Core Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Core Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Core Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Core Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Core Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Core Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Core Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Core Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Core Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Core Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-105

MODEL-SPECIFIC REGISTERS (MSRS)

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Core Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Core Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Core Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Core Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Core Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Core Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Core Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Core Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Core Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Core Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Core x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Core x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Core x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Core x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Core x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Core x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Core x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Core x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Core x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Core x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Core x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Core x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Core x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Core x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Core x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Core x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Core x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Core x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Core x2APIC Trigger Mode register bits [127:96] (R/O)

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-106 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

81CH 2076 IA32_X2APIC_TMR4 Core x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Core x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Core x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Core x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Core x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Core x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Core x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Core x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Core x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Core x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Core x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Core x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Core x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Core x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Core x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Core x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Core x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Core x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Core x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Core x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Core x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Core x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Core x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Core x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Core x2APIC Self IPI register (W/O)

C8FH 3215 IA32_PQR_ASSOC Core Resource Association Register (R/W)

31:0 Reserved

33:32 COS (R/W).

63: 34 Reserved

D10H 3344 IA32_L2_QOS_MASK_0 Module L2 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D11H 3345 IA32_L2_QOS_MASK_1 Module L2 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-107

MODEL-SPECIFIC REGISTERS (MSRS)

2.6 MSRS IN INTEL ATOM PROCESSORS BASED ON GOLDMONT PLUS
MICROARCHITECTURE

Intel Atom processors based on the Goldmont Plus microarchitecture support MSRs listed in Table 2-6, Table 2-12
and Table 2-13. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_7AH; see Table
2-1. For an MSR listed in Table 2-13 that also appears in the model-specific tables of prior generations, Table 2-13
supercede prior generation tables.

In the Goldmont Plus microarchitecture, the scope column indicates the following: “Core” means each processor
core has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit
field is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the
physical package share the same MSR or bit interface.

D12H 3346 IA32_L2_QOS_MASK_2 Module L2 Class Of Service Mask - COS 2 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D13H 3347 IA32_L2_QOS_MASK_3 Package L2 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L2 ways for COS 3 enforcement

63:20 Reserved

D90H 3472 IA32_BNDCFGS Core See Table 2-2.

DA0H 3488 IA32_XSS Core See Table 2-2.

See Table 2-6, and Table 2-12 for MSR definitions applicable to processors with CPUID signature 06_5CH.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX
Launch Control via IA32_SGXLEPUBKEYHASHn MSR.

Valid if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL)

63:19 Reserved.

Table 2-12. MSRs in Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-108 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

8CH 140 IA32_SGXLEPUBKEYHASH0 Core See Table 2-2.

8DH 141 IA32_SGXLEPUBKEYHASH1 Core See Table 2-2.

8EH 142 IA32_SGXLEPUBKEYHASH2 Core See Table 2-2.

8FH 143 IA32_SGXLEPUBKEYHASH3 Core See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Core See Table 2-2. See Section 18.6.2.4, “Processor Event Based
Sampling (PEBS).”

0 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC0. (R/W)

1 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC1.

2 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC2.

3 Enable PEBS trigger and recording for the programmed event
(precise or otherwise) on IA32_PMC3.

31:4 Reserved.

32 Enable PEBS trigger and recording for IA32_FIXED_CTR0.

33 Enable PEBS trigger and recording for IA32_FIXED_CTR1.

34 Enable PEBS trigger and recording for IA32_FIXED_CTR2.

63:35 Reserved.

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

4 PwrEvtEn

5 FUPonPTW

6 FabricEn

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 PTWEn

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-109

MODEL-SPECIFIC REGISTERS (MSRS)

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

680H 1664 MSR_

LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of the three MSRs that make up the first entry of the 32-entry
LBR stack. The From_IP part of the stack contains pointers to the
source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.7, “Last Branch, Call Stack, Interrupt, and Exception

Recording for Processors based on Goldmont Plus
Microarchitecture.”

681H
-

69FH

1665
-

1695

MSR_

LASTBRANCH_i_FROM_IP

Core Last Branch Record i From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP; i = 1-31.

6C0H 1728 MSR_

LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of the 3 MSRs that make up the first entry of the 32-entry
LBR stack. The To_IP part of the stack contains pointers to the
Destination instruction. See also:

• Section 17.7, “Last Branch, Call Stack, Interrupt, and Exception
Recording for Processors based on Goldmont Plus
Microarchitecture.”

6C1H
-

6DFH

1729
-

1759

MSR_

LASTBRANCH_i_TO_IP

Core Last Branch Record i To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP; i = 1-31.

DC0H 3520 MSR_LASTBRANCH_INFO_
0

Core Last Branch Record 0 Additional Information (R/W)

One of the 3 MSRs that make up the first entry of the 32-entry
LBR stack. This part of the stack contains flag and elapsed cycle
information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1, “LBR Stack.”

DC1H 3521 MSR_LASTBRANCH_INFO_
1

Core Last Branch Record 1 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC2H 3522 MSR_LASTBRANCH_INFO_
2

Core Last Branch Record 2 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC3H 3523 MSR_LASTBRANCH_INFO_
3

Core Last Branch Record 3 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC4H 3524 MSR_LASTBRANCH_INFO_
4

Core Last Branch Record 4 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC5H 3525 MSR_LASTBRANCH_INFO_
5

Core Last Branch Record 5 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC6H 3526 MSR_LASTBRANCH_INFO_
6

Core Last Branch Record 6 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-110 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DC7H 3527 MSR_LASTBRANCH_INFO_
7

Core Last Branch Record 7 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC8H 3528 MSR_LASTBRANCH_INFO_
8

Core Last Branch Record 8 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DC9H 3529 MSR_LASTBRANCH_INFO_
9

Core Last Branch Record 9 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCAH 3530 MSR_LASTBRANCH_INFO_
10

Core Last Branch Record 10 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCBH 3531 MSR_LASTBRANCH_INFO_
11

Core Last Branch Record 11 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCCH 3532 MSR_LASTBRANCH_INFO_
12

Core Last Branch Record 12 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCDH 3533 MSR_LASTBRANCH_INFO_
13

Core Last Branch Record 13 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCEH 3534 MSR_LASTBRANCH_INFO_
14

Core Last Branch Record 14 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DCFH 3535 MSR_LASTBRANCH_INFO_
15

Core Last Branch Record 15 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD0H 3536 MSR_LASTBRANCH_INFO_
16

Core Last Branch Record 16 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD1H 3537 MSR_LASTBRANCH_INFO_
17

Core Last Branch Record 17 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD2H 3538 MSR_LASTBRANCH_INFO_
18

Core Last Branch Record 18 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD3H 3539 MSR_LASTBRANCH_INFO_
19

Core Last Branch Record 19 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD4H 3520 MSR_LASTBRANCH_INFO_
20

Core Last Branch Record 20 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD5H 3521 MSR_LASTBRANCH_INFO_
21

Core Last Branch Record 21 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD6H 3522 MSR_LASTBRANCH_INFO_
22

Core Last Branch Record 22 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD7H 3523 MSR_LASTBRANCH_INFO_
23

Core Last Branch Record 23 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD8H 3524 MSR_LASTBRANCH_INFO_
24

Core Last Branch Record 24 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DD9H 3525 MSR_LASTBRANCH_INFO_
25

Core Last Branch Record 25 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDAH 3526 MSR_LASTBRANCH_INFO_
26

Core Last Branch Record 26 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-111

MODEL-SPECIFIC REGISTERS (MSRS)

2.7 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 2-14 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 2-1. Additional MSRs specific to
06_1AH, 06_1EH, 06_1FH are listed in Table 2-15. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed once
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

DDBH 3527 MSR_LASTBRANCH_INFO_
27

Core Last Branch Record 27 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDCH 3528 MSR_LASTBRANCH_INFO_
28

Core Last Branch Record 28 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDDH 3529 MSR_LASTBRANCH_INFO_
29

Core Last Branch Record 29 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDEH 3530 MSR_LASTBRANCH_INFO_
30

Core Last Branch Record 30 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

DDFH 3531 MSR_LASTBRANCH_INFO_
31

Core Last Branch Record 31 Additional Information (R/W)

See description of MSR_LASTBRANCH_INFO_0.

See Table 2-6, Table 2-12 and Table 2-13 for MSR definitions applicable to processors with CPUID signature 06_7AH.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 2-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 2-2.

Table 2-13. MSRs in Intel Atom Processors Based on the Goldmont Plus Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

2-112 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-113

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-114 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-115

MODEL-SPECIFIC REGISTERS (MSRS)

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 2-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Core See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-116 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 2-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2. Default value is 1.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-117

MODEL-SPECIFIC REGISTERS (MSRS)

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control; Various model specific
features enumeration. See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-118 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-119

MODEL-SPECIFIC REGISTERS (MSRS)

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-120 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Package See Table 2-2.

281H 641 IA32_MC1_CTL2 Package See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Core See Table 2-2.

285H 645 IA32_MC5_CTL2 Core See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 2-2.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-121

MODEL-SPECIFIC REGISTERS (MSRS)

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

11:8 PEBS_REC_FORMAT. See Table 2-2.

12 SMM_FREEZE. See Table 2-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STATU
S

Thread Provides single-bit status used by software to query the overflow
condition of each performance counter. (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.” Allows software to clear counter overflow conditions on
any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single WRMSR.

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.3.1.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-122 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 IA32_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-123

MODEL-SPECIFIC REGISTERS (MSRS)

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 IA32_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 IA32_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 IA32_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-124 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-125

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration
(R/O).

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. The From_IP part of the stack contains
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-126 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-127

MODEL-SPECIFIC REGISTERS (MSRS)

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-128 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.7.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
Intel Xeon Processor 5500 and 3400 series support additional model-specific registers listed in Table 2-15. These
MSRs also apply to Intel Core i7 and i5 processor family CPUID signature with DisplayFamily_DisplayModel of
06_1AH, 06_1EH and 06_1FH, see Table 2-1.

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 2-2 and Section
17.17.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 2-14. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-129

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-15. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Actual maximum turbo frequency is multiplied by 133.33MHz. (not
available to model 06_2EH)

7:0 Maximum Turbo Ratio Limit 1C (R/O)

Maximum Turbo mode ratio limit with 1 core active.

15:8 Maximum Turbo Ratio Limit 2C (R/O)

Maximum Turbo mode ratio limit with 2 cores active.

23:16 Maximum Turbo Ratio Limit 3C (R/O)

Maximum Turbo mode ratio limit with 3 cores active.

31:24 Maximum Turbo Ratio Limit 4C (R/O)

Maximum Turbo mode ratio limit with 4 cores active.

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved.

391H 913 MSR_UNCORE_PERF_
GLOBAL_CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

392H 914 MSR_UNCORE_PERF_
GLOBAL_STATUS

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

393H 915 MSR_UNCORE_PERF_
GLOBAL_OVF_CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

394H 916 MSR_UNCORE_FIXED_CTR0 Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

395H 917 MSR_UNCORE_FIXED_CTR_
CTRL

Package See Section 18.3.1.2.1, “Uncore Performance Monitoring
Management Facility.”

396H 918 MSR_UNCORE_ADDR_
OPCODE_MATCH

Package See Section 18.3.1.2.3, “Uncore Address/Opcode Match MSR.”

3B0H 960 MSR_UNCORE_PMC0 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B1H 961 MSR_UNCORE_PMC1 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B2H 962 MSR_UNCORE_PMC2 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

2-130 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.7.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 2-14 (except MSR address 1ADH) and additional
model-specific registers listed in Table 2-16. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2EH.

3B3H 963 MSR_UNCORE_PMC3 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B4H 964 MSR_UNCORE_PMC4 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B6H 966 MSR_UNCORE_PMC6 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3B7H 967 MSR_UNCORE_PMC7 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C0H 944 MSR_UNCORE_
PERFEVTSEL0

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C1H 945 MSR_UNCORE_
PERFEVTSEL1

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C2H 946 MSR_UNCORE_
PERFEVTSEL2

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C3H 947 MSR_UNCORE_
PERFEVTSEL3

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C4H 948 MSR_UNCORE_
PERFEVTSEL4

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C5H 949 MSR_UNCORE_
PERFEVTSEL5

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C6H 950 MSR_UNCORE_
PERFEVTSEL6

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

3C7H 951 MSR_UNCORE_
PERFEVTSEL7

Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

Table 2-15. Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-131

MODEL-SPECIFIC REGISTERS (MSRS)

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FIXED_
CTR_CTL

Package Uncore U-box perfmon fixed counter control MSR

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-132 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 IA32_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 IA32_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 IA32_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 IA32_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 IA32_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_
CTRL

Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_
STATUS

Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_
OVF_CTRL

Package Uncore U-box perfmon global overflow control MSR.

C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-133

MODEL-SPECIFIC REGISTERS (MSRS)

C21H 3105 MSR_B0_PMON_BOX_
STATUS

Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_
CTRL

Package Uncore B-box 0 perfmon local box overflow control MSR.

C30H 3120 MSR_B0_PMON_EVNT_
SEL0

Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_
SEL1

Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.

C34H 3124 MSR_B0_PMON_EVNT_
SEL2

Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_
SEL3

Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_
STATUS

Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_
CTRL

Package Uncore S-box 0 perfmon local box overflow control MSR.

C50H 3152 MSR_S0_PMON_EVNT_
SEL0

Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_
SEL1

Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_
SEL2

Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_
SEL3

Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.

C61H 3169 MSR_B1_PMON_BOX_
STATUS

Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_
CTRL

Package Uncore B-box 1 perfmon local box overflow control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-134 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C70H 3184 MSR_B1_PMON_EVNT_
SEL0

Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_
SEL1

Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.

C74H 3188 MSR_B1_PMON_EVNT_
SEL2

Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_
SEL3

Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_
STATUS

Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_
CTRL

Package Uncore W-box perfmon local box overflow control MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_
STATUS

Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_
OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow control MSR.

CA4H 3236 MSR_M0_PMON_
TIMESTAMP

Package Uncore M-box 0 perfmon time stamp unit select MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.

CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-135

MODEL-SPECIFIC REGISTERS (MSRS)

CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.

CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_
SEL0

Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_
SEL1

Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_
SEL2

Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_
SEL3

Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_
SEL4

Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_
SEL5

Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_
STATUS

Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_
CTRL

Package Uncore S-box 1 perfmon local box overflow control MSR.

CD0H 3280 MSR_S1_PMON_EVNT_
SEL0

Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_
SEL1

Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_
SEL2

Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-136 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

CD6H 3286 MSR_S1_PMON_EVNT_
SEL3

Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_
STATUS

Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_
OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow control MSR.

CE4H 3300 MSR_M1_PMON_
TIMESTAMP

Package Uncore M-box 1 perfmon time stamp unit select MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_
SEL0

Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_
SEL1

Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_
SEL2

Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_
SEL3

Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_
SEL4

Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_
SEL5

Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.

D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-137

MODEL-SPECIFIC REGISTERS (MSRS)

D01H 3329 MSR_C0_PMON_BOX_
STATUS

Package Uncore C-box 0 perfmon local box status MSR.

D02H 3330 MSR_C0_PMON_BOX_OVF_
CTRL

Package Uncore C-box 0 perfmon local box overflow control MSR.

D10H 3344 MSR_C0_PMON_EVNT_
SEL0

Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_
SEL1

Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_
SEL2

Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_
SEL3

Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_
SEL4

Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_
SEL5

Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_
STATUS

Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_
CTRL

Package Uncore C-box 4 perfmon local box overflow control MSR.

D30H 3376 MSR_C4_PMON_EVNT_
SEL0

Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_
SEL1

Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.

D34H 3380 MSR_C4_PMON_EVNT_
SEL2

Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_
SEL3

Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-138 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D38H 3384 MSR_C4_PMON_EVNT_
SEL4

Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.

D3AH 3386 MSR_C4_PMON_EVNT_
SEL5

Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_
STATUS

Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_
CTRL

Package Uncore C-box 2 perfmon local box overflow control MSR.

D50H 3408 MSR_C2_PMON_EVNT_
SEL0

Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_
SEL1

Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_
SEL2

Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_
SEL3

Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_
SEL4

Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_
SEL5

Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.

D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_
STATUS

Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_
CTRL

Package Uncore C-box 6 perfmon local box overflow control MSR.

D70H 3440 MSR_C6_PMON_EVNT_
SEL0

Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-139

MODEL-SPECIFIC REGISTERS (MSRS)

D72H 3442 MSR_C6_PMON_EVNT_
SEL1

Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_
SEL2

Package Uncore C-box 6 perfmon event select MSR.

D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_
SEL3

Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_
SEL4

Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_
SEL5

Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_
STATUS

Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_
CTRL

Package Uncore C-box 1 perfmon local box overflow control MSR.

D90H 3472 MSR_C1_PMON_EVNT_
SEL0

Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_
SEL1

Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.

D94H 3476 MSR_C1_PMON_EVNT_
SEL2

Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_
SEL3

Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_
SEL4

Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_
SEL5

Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-140 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_
STATUS

Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_
CTRL

Package Uncore C-box 5 perfmon local box overflow control MSR.

DB0H 3504 MSR_C5_PMON_EVNT_
SEL0

Package Uncore C-box 5 perfmon event select MSR.

DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_
SEL1

Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_
SEL2

Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_
SEL3

Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_
SEL4

Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_
SEL5

Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.

DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_
STATUS

Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_
CTRL

Package Uncore C-box 3 perfmon local box overflow control MSR.

DD0H 3536 MSR_C3_PMON_EVNT_
SEL0

Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_
SEL1

Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_
SEL2

Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-141

MODEL-SPECIFIC REGISTERS (MSRS)

DD6H 3542 MSR_C3_PMON_EVNT_SEL
3

Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_
SEL4

Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_
SEL5

Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.

DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_
STATUS

Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_
CTRL

Package Uncore C-box 7 perfmon local box overflow control MSR.

DF0H 3568 MSR_C7_PMON_EVNT_
SEL0

Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_
SEL1

Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.

DF4H 3572 MSR_C7_PMON_EVNT_
SEL2

Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_
SEL3

Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_
SEL4

Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_
SEL5

Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_
STATUS

Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_
CTRL

Package Uncore R-box 0 perfmon local box overflow control MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-142 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select MSR.

E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_
SEL0

Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_
SEL1

Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.

E14H 3604 MSR_R0_PMON_EVNT_
SEL2

Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_
SEL3

Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_
SEL4

Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_
SEL5

Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_
SEL6

Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_
SEL7

Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_
STATUS

Package Uncore R-box 1 perfmon local box status MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-143

MODEL-SPECIFIC REGISTERS (MSRS)

E22H 3618 MSR_R1_PMON_BOX_OVF_
CTRL

Package Uncore R-box 1 perfmon local box overflow control MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select MSR.

E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select MSR.

E26H 3622 MSR_R1_PMON_IPERF1_
P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select MSR.

E27H 3623 MSR_R1_PMON_IPERF1_
P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select MSR.

E28H 3624 MSR_R1_PMON_IPERF1_
P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select MSR.

E29H 3625 MSR_R1_PMON_IPERF1_
P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_
P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_
P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select MSR.

E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_
SEL8

Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_
SEL9

Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_
SEL10

Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_
SEL11

Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_
SEL12

Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_
SEL13

Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_
SEL14

Package Uncore R-box 1 perfmon event select MSR.

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-144 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.8 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-14, Table 2-15, plus additional MSR listed in Table 2-17. These MSRs apply to Intel Core
i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table
2-1.

E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.

E3EH 3646 MSR_R1_PMON_EVNT_
SEL15

Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.

E54H 3668 MSR_M0_PMON_MM_
CONFIG

Package Uncore M-box 0 perfmon local box address match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_
MATCH

Package Uncore M-box 0 perfmon local box address match MSR.

E56H 3670 MSR_M0_PMON_ADDR_
MASK

Package Uncore M-box 0 perfmon local box address mask MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_
CONFIG

Package Uncore M-box 1 perfmon local box address match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_
MATCH

Package Uncore M-box 1 perfmon local box address match MSR.

E5EH 3678 MSR_M1_PMON_ADDR_
MASK

Package Uncore M-box 1 perfmon local box address mask MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.3.1.2.2, “Uncore Performance Event Configuration
Facility.”

Table 2-16. Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-145

MODEL-SPECIFIC REGISTERS (MSRS)

2.9 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 2-14 (except MSR address 1ADH), Table 2-15, plus additional MSR listed in Table 2-18.
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

Table 2-17. Additional MSRs Supported by Intel Processors
(Based on Intel® Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

2-146 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-18. Additional MSRs Supported by Intel® Xeon® Processor E7 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

F40H 3904 MSR_C8_PMON_BOX_CTRL Package Uncore C-box 8 perfmon local box control MSR.

F41H 3905 MSR_C8_PMON_BOX_
STATUS

Package Uncore C-box 8 perfmon local box status MSR.

F42H 3906 MSR_C8_PMON_BOX_OVF_
CTRL

Package Uncore C-box 8 perfmon local box overflow control MSR.

F50H 3920 MSR_C8_PMON_EVNT_
SEL0

Package Uncore C-box 8 perfmon event select MSR.

F51H 3921 MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter MSR.

F52H 3922 MSR_C8_PMON_EVNT_
SEL1

Package Uncore C-box 8 perfmon event select MSR.

F53H 3923 MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter MSR.

F54H 3924 MSR_C8_PMON_EVNT_
SEL2

Package Uncore C-box 8 perfmon event select MSR.

F55H 3925 MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter MSR.

F56H 3926 MSR_C8_PMON_EVNT_
SEL3

Package Uncore C-box 8 perfmon event select MSR.

F57H 3927 MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter MSR.

F58H 3928 MSR_C8_PMON_EVNT_
SEL4

Package Uncore C-box 8 perfmon event select MSR.

F59H 3929 MSR_C8_PMON_CTR4 Package Uncore C-box 8 perfmon counter MSR.

F5AH 3930 MSR_C8_PMON_EVNT_
SEL5

Package Uncore C-box 8 perfmon event select MSR.

F5BH 3931 MSR_C8_PMON_CTR5 Package Uncore C-box 8 perfmon counter MSR.

Vol. 4 2-147

MODEL-SPECIFIC REGISTERS (MSRS)

2.10 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 2-19 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel micro-
architecture code name Sandy Bridge. These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, 06_2DH, see Table 2-1. Additional MSRs specific to 06_2AH are listed in Table 2-20.

FC0H 4032 MSR_C9_PMON_BOX_CTRL Package Uncore C-box 9 perfmon local box control MSR.

FC1H 4033 MSR_C9_PMON_BOX_
STATUS

Package Uncore C-box 9 perfmon local box status MSR.

FC2H 4034 MSR_C9_PMON_BOX_OVF_
CTRL

Package Uncore C-box 9 perfmon local box overflow control MSR.

FD0H 4048 MSR_C9_PMON_EVNT_
SEL0

Package Uncore C-box 9 perfmon event select MSR.

FD1H 4049 MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter MSR.

FD2H 4050 MSR_C9_PMON_EVNT_
SEL1

Package Uncore C-box 9 perfmon event select MSR.

FD3H 4051 MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter MSR.

FD4H 4052 MSR_C9_PMON_EVNT_
SEL2

Package Uncore C-box 9 perfmon event select MSR.

FD5H 4053 MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter MSR.

FD6H 4054 MSR_C9_PMON_EVNT_
SEL3

Package Uncore C-box 9 perfmon event select MSR.

FD7H 4055 MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter MSR.

FD8H 4056 MSR_C9_PMON_EVNT_
SEL4

Package Uncore C-box 9 perfmon event select MSR.

FD9H 4057 MSR_C9_PMON_CTR4 Package Uncore C-box 9 perfmon counter MSR.

FDAH 4058 MSR_C9_PMON_EVNT_
SEL5

Package Uncore C-box 9 perfmon event select MSR.

FDBH 4059 MSR_C9_PMON_CTR5 Package Uncore C-box 9 perfmon counter MSR.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 2.22, “MSRs in Pentium Processors.”

Table 2-18. Additional MSRs Supported by Intel® Xeon® Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-148 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 2-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 2-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 2-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 2-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-149

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-150 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-151

MODEL-SPECIFIC REGISTERS (MSRS)

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 2-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 2-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 2-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 2-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-152 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18DH 397 IA32_
PERFEVTSEL7

Core See Table 2-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 2-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package Performance Status

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 2-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 2-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-153

MODEL-SPECIFIC REGISTERS (MSRS)

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 2-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 2-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Thread Processor Event Based Sampling Unavailable (RO)

See Table 2-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 2-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 2-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 2-2.

23 Thread xTPR Message Disable (R/W)

See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-154 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 2-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT Miscellaneous Power Management Control; various model specific
features enumeration. See http://biosbits.org.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-155

MODEL-SPECIFIC REGISTERS (MSRS)

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-156 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 2-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 2-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 2-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 2-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 2-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 2-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 2-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 2-2.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-157

MODEL-SPECIFIC REGISTERS (MSRS)

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 2-2.

277H 631 IA32_PAT Thread See Table 2-2.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 2-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 2-2.

11:8 PEBS_REC_FORMAT. See Table 2-2.

12 SMM_FREEZE. See Table 2-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-158 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-159

MODEL-SPECIFIC REGISTERS (MSRS)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.3.1.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-160 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-161

MODEL-SPECIFIC REGISTERS (MSRS)

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-162 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 2-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 2-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 2-2.

4C5H 1221 IA32_A_PMC4 Core See Table 2-2.

4C6H 1222 IA32_A_PMC5 Core See Table 2-2.

4C7H 1223 IA32_A_PMC6 Core See Table 2-2.

4C8H 1224 IA32_A_PMC7 Core See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-163

MODEL-SPECIFIC REGISTERS (MSRS)

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-164 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-165

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-166 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 2-20 and Table 2-21 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™
processor family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_2AH; see Table 2-1.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 2-2.

802H-
83FH

X2APIC MSRs Thread See Table 2-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W)

See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 2-2 and Section 17.17.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 2-19. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-167

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-20. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit
from C7 to a C0 state, where interrupt request can be delivered to
the core and serviced. Additional core-exit latency amy be
applicable depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

2-168 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-21 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_2AH.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-20, and Table 2-21 for MSR definitions applicable to processors with CPUID signature 06_2AH.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4 select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

Table 2-20. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-169

MODEL-SPECIFIC REGISTERS (MSRS)

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Report the number of C-Box units with performance counters,
including processor cores and processor graphics“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

702H 1794 MSR_UNC_CBO_0_
PERFEVTSEL2

Package Uncore C-Box 0, counter 2 event select MSR.

703H 1795 MSR_UNC_CBO_0_
PERFEVTSEL3

Package Uncore C-Box 0, counter 3 event select MSR.

705H 1797 MSR_UNC_CBO_0_UNIT_
STATUS

Package Uncore C-Box 0, unit status for counter 0-3

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

708H 1800 MSR_UNC_CBO_0_PERFCTR2 Package Uncore C-Box 0, performance counter 2.

709H 1801 MSR_UNC_CBO_0_PERFCTR3 Package Uncore C-Box 0, performance counter 3.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

712H 1810 MSR_UNC_CBO_1_
PERFEVTSEL2

Package Uncore C-Box 1, counter 2 event select MSR.

713H 1811 MSR_UNC_CBO_1_
PERFEVTSEL3

Package Uncore C-Box 1, counter 3 event select MSR.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-170 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

715H 1813 MSR_UNC_CBO_1_UNIT_
STATUS

Package Uncore C-Box 1, unit status for counter 0-3

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

718H 1816 MSR_UNC_CBO_1_PERFCTR2 Package Uncore C-Box 1, performance counter 2.

719H 1817 MSR_UNC_CBO_1_PERFCTR3 Package Uncore C-Box 1, performance counter 3.

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1825 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

722H 1826 MSR_UNC_CBO_2_
PERFEVTSEL2

Package Uncore C-Box 2, counter 2 event select MSR.

723H 1827 MSR_UNC_CBO_2_
PERFEVTSEL3

Package Uncore C-Box 2, counter 3 event select MSR.

725H 1829 MSR_UNC_CBO_2_UNIT_
STATUS

Package Uncore C-Box 2, unit status for counter 0-3

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

728H 1832 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

729H 1833 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

732H 1842 MSR_UNC_CBO_3_
PERFEVTSEL2

Package Uncore C-Box 3, counter 2 event select MSR.

733H 1843 MSR_UNC_CBO_3_
PERFEVTSEL3

Package Uncore C-Box 3, counter 3 event select MSR.

735H 1845 MSR_UNC_CBO_3_UNIT_
STATUS

Package Uncore C-Box 3, unit status for counter 0-3

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

738H 1848 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

739H 1849 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

740H 1856 MSR_UNC_CBO_4_
PERFEVTSEL0

Package Uncore C-Box 4, counter 0 event select MSR

741H 1857 MSR_UNC_CBO_4_
PERFEVTSEL1

Package Uncore C-Box 4, counter 1 event select MSR.

742H 1858 MSR_UNC_CBO_4_
PERFEVTSEL2

Package Uncore C-Box 4, counter 2 event select MSR.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-171

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 2-22 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 2-19 and Table 2-23.

743H 1859 MSR_UNC_CBO_4_
PERFEVTSEL3

Package Uncore C-Box 4, counter 3 event select MSR.

745H 1861 MSR_UNC_CBO_4_UNIT_
STATUS

Package Uncore C-Box 4, unit status for counter 0-3

746H 1862 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, performance counter 0.

747H 1863 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, performance counter 1.

748H 1864 MSR_UNC_CBO_4_PERFCTR2 Package Uncore C-Box 4, performance counter 2.

749H 1865 MSR_UNC_CBO_4_PERFCTR3 Package Uncore C-Box 4, performance counter 3.

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Table 2-21. Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-172 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

39CH 924 MSR_PEBS_NUM_ALT Package ENABLE_PEBS_NUM_ALT (RW)

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events
requiring additional configuration, see Table 19-17

63:1 Reserved (must be zero).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-173

MODEL-SPECIFIC REGISTERS (MSRS)

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-174 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.10.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 2-23. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 Product
Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-22, and Table 2-23 for MSR definitions applicable to processors with CPUID signature 06_2DH.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C08H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

C09H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

Table 2-22. Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-175

MODEL-SPECIFIC REGISTERS (MSRS)

C10H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

C11H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

C16H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

C17H MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

C24H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

C30H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

C31H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

C32H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

C33H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

C34H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

C36H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

C37H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

C38H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

C39H MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

D04H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon local box wide control.

D10H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

D11H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

D12H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

D13H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

D14H MSR_C0_PMON_BOX_FILTER Package Uncore C-box 0 perfmon box wide filter.

D16H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

D17H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

D18H MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

D19H MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

D24H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon local box wide control.

D30H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

D31H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

D32H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

D33H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

D34H MSR_C1_PMON_BOX_FILTER Package Uncore C-box 1 perfmon box wide filter.

D36H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

D37H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

D38H MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

D39H MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

D44H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon local box wide control.

D50H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

D51H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-176 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

D52H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

D53H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

D54H MSR_C2_PMON_BOX_FILTER Package Uncore C-box 2 perfmon box wide filter.

D56H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

D57H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

D58H MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

D59H MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

D64H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon local box wide control.

D70H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

D71H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

D72H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

D73H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

D74H MSR_C3_PMON_BOX_FILTER Package Uncore C-box 3 perfmon box wide filter.

D76H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

D77H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

D78H MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

D79H MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

D84H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon local box wide control.

D90H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

D91H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

D92H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

D93H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

D94H MSR_C4_PMON_BOX_FILTER Package Uncore C-box 4 perfmon box wide filter.

D96H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

D97H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

D98H MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

D99H MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

DA4H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon local box wide control.

DB0H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

DB1H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

DB2H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

DB3H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

DB4H MSR_C5_PMON_BOX_FILTER Package Uncore C-box 5 perfmon box wide filter.

DB6H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

DB7H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

DB8H MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

DB9H MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-177

MODEL-SPECIFIC REGISTERS (MSRS)

2.11 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family
(based on Intel microarchitecture code name Ivy Bridge) support the MSR interfaces listed in Table 2-19, Table
2-20, Table 2-21, and Table 2-24. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_3AH.

DC4H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon local box wide control.

DD0H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

DD1H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

DD2H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

DD3H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

DD4H MSR_C6_PMON_BOX_FILTER Package Uncore C-box 6 perfmon box wide filter.

DD6H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

DD7H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

DD8H MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

DD9H MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

DE4H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon local box wide control.

DF0H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

DF1H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

DF2H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

DF3H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

DF4H MSR_C7_PMON_BOX_FILTER Package Uncore C-box 7 perfmon box wide filter.

DF6H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

DF7H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

DF8H MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

DF9H MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

Table 2-23. Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-178 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-179

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register specified
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-180 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-181

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E
Microarchitecture)

Table 2-25 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3EH, see Table 2-1. These processors supports the MSR interfaces listed in
Table 2-19, and Table 2-25.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

See Table 2-19, Table 2-20 and Table 2-21 for other MSR definitions applicable to processors with CPUID signature
06_3AH

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

Table 2-24. Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-182 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O)

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24]
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-183

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-184 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

27:24 TCC Activation Offset (R/W)

Specifies a temperature offset in degrees C from the temperature
target (bits 23:16). PROCHOT# will assert at the offset target
temperature. Write is permitted only MSR_PLATFORM_INFO.[30] is
set.

63:28 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-185

MODEL-SPECIFIC REGISTERS (MSRS)

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

296H 662 IA32_MC22_CTL2 Package See Table 2-2.

297H 663 IA32_MC23_CTL2 Package See Table 2-2.

298H 664 IA32_MC24_CTL2 Package See Table 2-2.

299H 665 IA32_MC25_CTL2 Package See Table 2-2.

29AH 666 IA32_MC26_CTL2 Package See Table 2-2.

29BH 667 IA32_MC27_CTL2 Package See Table 2-2.

29CH 668 IA32_MC28_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-186 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

42DH 1069 IA32_MC11_STATUS Package Bank MC11 reports MC error from a specific channel of the
integrated memory controller.42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-187

MODEL-SPECIFIC REGISTERS (MSRS)

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package Bank MC20 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

458H 1112 IA32_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

459H 1113 IA32_MC22_STATUS Package

45AH 1114 IA32_MC22_ADDR Package

45BH 1115 IA32_MC22_MISC Package

45CH 1116 IA32_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

45DH 1117 IA32_MC23_STATUS Package

45EH 1118 IA32_MC23_ADDR Package

45FH 1119 IA32_MC23_MISC Package

460H 1120 IA32_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

461H 1121 IA32_MC24_STATUS Package

462H 1122 IA32_MC24_ADDR Package

463H 1123 IA32_MC24_MISC Package

464H 1124 IA32_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

465H 1125 IA32_MC25_STATUS Package

466H 1126 IA32_MC25_ADDR Package

467H 1127 IA32_MC2MISC Package

468H 1128 IA32_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

469H 1129 IA32_MC26_STATUS Package

46AH 1130 IA32_MC26_ADDR Package

46BH 1131 IA32_MC26_MISC Package

46CH 1132 IA32_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

46DH 1133 IA32_MC27_STATUS Package

46EH 1134 IA32_MC27_ADDR Package

46FH 1135 IA32_MC27_MISC Package

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-188 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 2-19, Table 2-25, and
Table 2-26.

470H 1136 IA32_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

471H 1137 IA32_MC28_STATUS Package

472H 1138 IA32_MC28_ADDR Package

473H 1139 IA32_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

Table 2-25. MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-189

MODEL-SPECIFIC REGISTERS (MSRS)

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved.

17AH 378 IA32_MCG_STATUS Thread Global Machine Check Status (R/WO)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT and MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

29DH 669 IA32_MC29_CTL2 Package See Table 2-2.

29EH 670 IA32_MC30_CTL2 Package See Table 2-2.

29FH 671 IA32_MC31_CTL2 Package See Table 2-2.

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-190 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.3.1.1.1, “Processor Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 IA32_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

475H 1141 IA32_MC29_STATUS Package

476H 1142 IA32_MC29_ADDR Package

477H 1143 IA32_MC29_MISC Package

478H 1144 IA32_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

479H 1145 IA32_MC30_STATUS Package

47AH 1146 IA32_MC30_ADDR Package

47BH 1147 IA32_MC30_MISC Package

47CH 1148 IA32_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

47DH 1149 IA32_MC31_STATUS Package

47EH 1150 IA32_MC31_ADDR Package

47FH 1147 IA32_MC31_MISC Package

See Table 2-19, Table 2-25 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature 06_3AH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 2-26. Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-191

MODEL-SPECIFIC REGISTERS (MSRS)

2.11.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2 Families
Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based
uncore PMU interfaces are listed in Table 2-23 and Table 2-27. For complete detail of the uncore PMU, refer to Intel
Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signa-
ture with DisplayFamily_DisplayModel of 06_3EH.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C00H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

C01H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

C06H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

C15H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

C35H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

D1AH MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter1.

D3AH MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

D5AH MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

D7AH MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

D9AH MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

DBAH MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

DDAH MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

DFAH MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E04H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E10H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E11H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E12H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E13H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

E14H MSR_C8_PMON_BOX_FILTER Package Uncore C-box 8 perfmon box wide filter.

E16H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E17H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E18H MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E19H MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E1AH MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E24H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E30H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E31H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E32H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E33H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E34H MSR_C9_PMON_BOX_FILTER Package Uncore C-box 9 perfmon box wide filter.

E36H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E37H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

2-192 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E38H MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

E39H MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

E3AH MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E44H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

E50H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

E51H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

E52H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

E53H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

E54H MSR_C10_PMON_BOX_FILTER Package Uncore C-box 10 perfmon box wide filter.

E56H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

E57H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

E58H MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

E59H MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

E5AH MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

E64H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

E70H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

E71H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

E72H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

E73H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

E74H MSR_C11_PMON_BOX_FILTER Package Uncore C-box 11 perfmon box wide filter.

E76H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

E77H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

E78H MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

E79H MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

E7AH MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

E84H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

E90H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

E91H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

E92H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

E93H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

E94H MSR_C12_PMON_BOX_FILTER Package Uncore C-box 12 perfmon box wide filter.

E96H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

E97H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

E98H MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

E99H MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

E9AH MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EA4H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-193

MODEL-SPECIFIC REGISTERS (MSRS)

2.12 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-21, and Table 2-28. For an MSR listed in Table
2-19 that also appears in Table 2-28, Table 2-28 supercede Table 2-19.

The MSRs listed in Table 2-28 also apply to processors based on Haswell-E microarchitecture (see Section 2.13).

EB0H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

EB1H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

EB2H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

EB3H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

EB4H MSR_C13_PMON_BOX_FILTER Package Uncore C-box 13 perfmon box wide filter.

EB6H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

EB7H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

EB8H MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EB9H MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EBAH MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

EC4H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

ED0H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

ED1H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

ED2H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

ED3H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

ED4H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter.

ED6H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

ED7H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

ED8H MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

ED9H MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EDAH MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

Table 2-27. Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-194 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 2-2 and the fields below.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-195

MODEL-SPECIFIC REGISTERS (MSRS)

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.3.6.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 2-2 and the fields below.

32 IN_TX: see Section 18.3.6.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 2-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-196 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_VMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2

60BH 1548 MSR_PKGC_IRTL1 Package Package C6/C7 Interrupt Response Limit 1 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7 state. The
latency programmed in this register is for the shorter-latency sub
C-states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60CH 1548 MSR_PKGC_IRTL2 Package Package C6/C7 Interrupt Response Limit 2 (R/W)

This MSR defines the interrupt response time limit used by the
processor to manage transition to package C6 or C7 state. The
latency programmed in this register is for the longer-latency sub C-
states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 or C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. See Table 2-19 for supported time unit encodings.

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-197

MODEL-SPECIFIC REGISTERS (MSRS)

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

62:47 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

62:47 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-198 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 2-29 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor family
and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors
have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 2-1.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

C80H 3200 IA32_DEBUG_INTERFACE Package Silicon Debug Feature Control (R/W)

See Table 2-2.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
states.

See http://biosbits.org.

Table 2-28. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-199

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

Package C states C7 are not available to processor with signature
06_3CH

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-200 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-201

MODEL-SPECIFIC REGISTERS (MSRS)

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONTR
OL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined
by the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-202 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or
SENTER Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-203

MODEL-SPECIFIC REGISTERS (MSRS)

690H 1680 MSR_CORE_PERF_LIMIT_REA
SONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the
operating system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is
low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio
changes.

15:14 Reserved

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-204 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-205

MODEL-SPECIFIC REGISTERS (MSRS)

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_
REASONS

Package Indicator of Frequency Clipping in the Processor Graphics
(R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-206 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-207

MODEL-SPECIFIC REGISTERS (MSRS)

63:30 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_REA
SONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-208 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was
last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-209

MODEL-SPECIFIC REGISTERS (MSRS)

2.12.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 2-19, Table 2-20, Table
2-28, Table 2-29, and Table 2-30.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

See Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H.

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

Table 2-29. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

2-210 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8
states. Count at the same frequency as the TSC.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-211

MODEL-SPECIFIC REGISTERS (MSRS)

2.13 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microarchi-
tecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 2-19, Table 2-28, and Table 2-31.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10
states. Count at the same frequency as the TSC.

63:60 Reserved

See Table 2-19, Table 2-20, Table 2-21, Table 2-28, Table 2-29 for other MSR definitions applicable to processors with CPUID
signature 06_45H.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

35H 53 MSR_CORE_THREAD_COUN
T

Package Configured State of Enabled Processor Core Count and Logical
Processor Count (RO)

• After a Power-On RESET, enumerates factory configuration of
the number of processor cores and logical processors in the
physical package.

• Following the sequence of (i) BIOS modified a Configuration Mask
which selects a subset of processor cores to be active post
RESET and (ii) a RESET event after the modification, enumerates
the current configuration of enabled processor core count and
logical processor count in the physical package.

15:0 Core_COUNT (RO)

The number of processor cores that are currently enabled (by
either factory configuration or BIOS configuration) in the physical
package.

31:16 THREAD_COUNT (RO)

The number of logical processors that are currently enabled (by
either factory configuration or BIOS configuration) in the physical
package.

63:32 Reserved

53H 83 MSR_THREAD_ID_INFO Thread A Hardware Assigned ID for the Logical Processor (RO)

7:0 Logical_Processor_ID (RO)

An implementation-specific numerical. value physically assigned to
each logical processor. This ID is not related to Initial APIC ID or
x2APIC ID, it is unique within a physical package.

63:8 Reserved

Table 2-30. Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-212 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-213

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-214 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

62:16 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-215

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-216 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-217

MODEL-SPECIFIC REGISTERS (MSRS)

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy Consumed by DRAM devices.

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

61EH 1566 MSR_PCIE_PLL_RATIO Package Configuration of PCIE PLL Relative to BCLK(R/W)

1:0 Package PCIE Ratio (R/W)

00b: Use 5:5 mapping for100MHz operation (default)

01b: Use 5:4 mapping for125MHz operation

10b: Use 5:3 mapping for166MHz operation

11b: Use 5:2 mapping for250MHz operation

2 Package LPLL Select (R/W)

if 1, use configured setting of PCIE Ratio

3 Package LONG RESET (R/W)

if 1, wait additional time-out before re-locking Gen2/Gen3 PLLs.

63:4 Reserved

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-218 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-219

MODEL-SPECIFIC REGISTERS (MSRS)

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-220 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.13.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore
PMU interfaces are listed in Table 2-32. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3
Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3FH.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

See Table 2-19, Table 2-28 for other MSR definitions applicable to processors with CPUID signature 06_3FH.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

700H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

701H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

702H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

703H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

704H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

Table 2-31. Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-221

MODEL-SPECIFIC REGISTERS (MSRS)

705H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

706H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

708H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

709H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

70AH MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

710H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

711H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

712H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

713H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

714H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

715H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

716H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

717H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

718H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

719H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

71AH MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

720H MSR_S0_PMON_BOX_CTL Package Uncore SBo 0 perfmon for SBo 0 box-wide control

721H MSR_S0_PMON_EVNTSEL0 Package Uncore SBo 0 perfmon event select for SBo 0 counter 0.

722H MSR_S0_PMON_EVNTSEL1 Package Uncore SBo 0 perfmon event select for SBo 0 counter 1.

723H MSR_S0_PMON_EVNTSEL2 Package Uncore SBo 0 perfmon event select for SBo 0 counter 2.

724H MSR_S0_PMON_EVNTSEL3 Package Uncore SBo 0 perfmon event select for SBo 0 counter 3.

725H MSR_S0_PMON_BOX_FILTER Package Uncore SBo 0 perfmon box-wide filter.

726H MSR_S0_PMON_CTR0 Package Uncore SBo 0 perfmon counter 0.

727H MSR_S0_PMON_CTR1 Package Uncore SBo 0 perfmon counter 1.

728H MSR_S0_PMON_CTR2 Package Uncore SBo 0 perfmon counter 2.

729H MSR_S0_PMON_CTR3 Package Uncore SBo 0 perfmon counter 3.

72AH MSR_S1_PMON_BOX_CTL Package Uncore SBo 1 perfmon for SBo 1 box-wide control

72BH MSR_S1_PMON_EVNTSEL0 Package Uncore SBo 1 perfmon event select for SBo 1 counter 0.

72CH MSR_S1_PMON_EVNTSEL1 Package Uncore SBo 1 perfmon event select for SBo 1 counter 1.

72DH MSR_S1_PMON_EVNTSEL2 Package Uncore SBo 1 perfmon event select for SBo 1 counter 2.

72EH MSR_S1_PMON_EVNTSEL3 Package Uncore SBo 1 perfmon event select for SBo 1 counter 3.

72FH MSR_S1_PMON_BOX_FILTER Package Uncore SBo 1 perfmon box-wide filter.

730H MSR_S1_PMON_CTR0 Package Uncore SBo 1 perfmon counter 0.

731H MSR_S1_PMON_CTR1 Package Uncore SBo 1 perfmon counter 1.

732H MSR_S1_PMON_CTR2 Package Uncore SBo 1 perfmon counter 2.

733H MSR_S1_PMON_CTR3 Package Uncore SBo 1 perfmon counter 3.

734H MSR_S2_PMON_BOX_CTL Package Uncore SBo 2 perfmon for SBo 2 box-wide control

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-222 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

735H MSR_S2_PMON_EVNTSEL0 Package Uncore SBo 2 perfmon event select for SBo 2 counter 0.

736H MSR_S2_PMON_EVNTSEL1 Package Uncore SBo 2 perfmon event select for SBo 2 counter 1.

737H MSR_S2_PMON_EVNTSEL2 Package Uncore SBo 2 perfmon event select for SBo 2 counter 2.

738H MSR_S2_PMON_EVNTSEL3 Package Uncore SBo 2 perfmon event select for SBo 2 counter 3.

739H MSR_S2_PMON_BOX_FILTER Package Uncore SBo 2 perfmon box-wide filter.

73AH MSR_S2_PMON_CTR0 Package Uncore SBo 2 perfmon counter 0.

73BH MSR_S2_PMON_CTR1 Package Uncore SBo 2 perfmon counter 1.

73CH MSR_S2_PMON_CTR2 Package Uncore SBo 2 perfmon counter 2.

73DH MSR_S2_PMON_CTR3 Package Uncore SBo 2 perfmon counter 3.

73EH MSR_S3_PMON_BOX_CTL Package Uncore SBo 3 perfmon for SBo 3 box-wide control

73FH MSR_S3_PMON_EVNTSEL0 Package Uncore SBo 3 perfmon event select for SBo 3 counter 0.

740H MSR_S3_PMON_EVNTSEL1 Package Uncore SBo 3 perfmon event select for SBo 3 counter 1.

741H MSR_S3_PMON_EVNTSEL2 Package Uncore SBo 3 perfmon event select for SBo 3 counter 2.

742H MSR_S3_PMON_EVNTSEL3 Package Uncore SBo 3 perfmon event select for SBo 3 counter 3.

743H MSR_S3_PMON_BOX_FILTER Package Uncore SBo 3 perfmon box-wide filter.

744H MSR_S3_PMON_CTR0 Package Uncore SBo 3 perfmon counter 0.

745H MSR_S3_PMON_CTR1 Package Uncore SBo 3 perfmon counter 1.

746H MSR_S3_PMON_CTR2 Package Uncore SBo 3 perfmon counter 2.

747H MSR_S3_PMON_CTR3 Package Uncore SBo 3 perfmon counter 3.

E00H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon for box-wide control

E01H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

E02H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

E03H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

E04H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

E05H MSR_C0_PMON_BOX_FILTER0 Package Uncore C-box 0 perfmon box wide filter 0.

E06H MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter 1.

E07H MSR_C0_PMON_BOX_STATUS Package Uncore C-box 0 perfmon box wide status.

E08H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

E09H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

E0AH MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

E0BH MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

E10H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon for box-wide control

E11H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

E12H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

E13H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

E14H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

E15H MSR_C1_PMON_BOX_FILTER0 Package Uncore C-box 1 perfmon box wide filter 0.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-223

MODEL-SPECIFIC REGISTERS (MSRS)

E16H MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

E17H MSR_C1_PMON_BOX_STATUS Package Uncore C-box 1 perfmon box wide status.

E18H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

E19H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

E1AH MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

E1BH MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

E20H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon for box-wide control

E21H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

E22H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

E23H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

E24H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

E25H MSR_C2_PMON_BOX_FILTER0 Package Uncore C-box 2 perfmon box wide filter 0.

E26H MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

E27H MSR_C2_PMON_BOX_STATUS Package Uncore C-box 2 perfmon box wide status.

E28H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

E29H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

E2AH MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

E2BH MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

E30H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon for box-wide control

E31H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

E32H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

E33H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

E34H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

E35H MSR_C3_PMON_BOX_FILTER0 Package Uncore C-box 3 perfmon box wide filter 0.

E36H MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

E37H MSR_C3_PMON_BOX_STATUS Package Uncore C-box 3 perfmon box wide status.

E38H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

E39H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

E3AH MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

E3BH MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

E40H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon for box-wide control

E41H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

E42H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

E43H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

E44H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

E45H MSR_C4_PMON_BOX_FILTER0 Package Uncore C-box 4 perfmon box wide filter 0.

E46H MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-224 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

E47H MSR_C4_PMON_BOX_STATUS Package Uncore C-box 4 perfmon box wide status.

E48H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

E49H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

E4AH MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

E4BH MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

E50H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon for box-wide control

E51H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

E52H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

E53H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

E54H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

E55H MSR_C5_PMON_BOX_FILTER0 Package Uncore C-box 5 perfmon box wide filter 0.

E56H MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

E57H MSR_C5_PMON_BOX_STATUS Package Uncore C-box 5 perfmon box wide status.

E58H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

E59H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

E5AH MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

E5BH MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

E60H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon for box-wide control

E61H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

E62H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

E63H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

E64H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

E65H MSR_C6_PMON_BOX_FILTER0 Package Uncore C-box 6 perfmon box wide filter 0.

E66H MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

E67H MSR_C6_PMON_BOX_STATUS Package Uncore C-box 6 perfmon box wide status.

E68H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

E69H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

E6AH MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

E6BH MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

E70H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon for box-wide control.

E71H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

E72H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

E73H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

E74H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

E75H MSR_C7_PMON_BOX_FILTER0 Package Uncore C-box 7 perfmon box wide filter 0.

E76H MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E77H MSR_C7_PMON_BOX_STATUS Package Uncore C-box 7 perfmon box wide status.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-225

MODEL-SPECIFIC REGISTERS (MSRS)

E78H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

E79H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

E7AH MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

E7BH MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

E80H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E81H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E82H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E83H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E84H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

E85H MSR_C8_PMON_BOX_FILTER0 Package Uncore C-box 8 perfmon box wide filter0.

E86H MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E87H MSR_C8_PMON_BOX_STATUS Package Uncore C-box 8 perfmon box wide status.

E88H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E89H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E8AH MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E8BH MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E90H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E91H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E92H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E93H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E94H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E95H MSR_C9_PMON_BOX_FILTER0 Package Uncore C-box 9 perfmon box wide filter0.

E96H MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E97H MSR_C9_PMON_BOX_STATUS Package Uncore C-box 9 perfmon box wide status.

E98H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E99H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

E9AH MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

E9BH MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

EA0H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

EA1H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

EA2H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

EA3H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

EA4H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

EA5H MSR_C10_PMON_BOX_FILTER0 Package Uncore C-box 10 perfmon box wide filter0.

EA6H MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

EA7H MSR_C10_PMON_BOX_STATUS Package Uncore C-box 10 perfmon box wide status.

EA8H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-226 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

EA9H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

EAAH MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

EABH MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

EB0H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

EB1H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

EB2H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

EB3H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

EB4H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

EB5H MSR_C11_PMON_BOX_FILTER0 Package Uncore C-box 11 perfmon box wide filter0.

EB6H MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

EB7H MSR_C11_PMON_BOX_STATUS Package Uncore C-box 11 perfmon box wide status.

EB8H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

EB9H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

EBAH MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

EBBH MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

EC0H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

EC1H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

EC2H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

EC3H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

EC4H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

EC5H MSR_C12_PMON_BOX_FILTER0 Package Uncore C-box 12 perfmon box wide filter0.

EC6H MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EC7H MSR_C12_PMON_BOX_STATUS Package Uncore C-box 12 perfmon box wide status.

EC8H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

EC9H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

ECAH MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

ECBH MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

ED0H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

ED1H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

ED2H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

ED3H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

ED4H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

ED5H MSR_C13_PMON_BOX_FILTER0 Package Uncore C-box 13 perfmon box wide filter0.

ED6H MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

ED7H MSR_C13_PMON_BOX_STATUS Package Uncore C-box 13 perfmon box wide status.

ED8H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

ED9H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-227

MODEL-SPECIFIC REGISTERS (MSRS)

EDAH MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EDBH MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EE0H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

EE1H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

EE2H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

EE3H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

EE4H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

EE5H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter0.

EE6H MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

EE7H MSR_C14_PMON_BOX_STATUS Package Uncore C-box 14 perfmon box wide status.

EE8H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

EE9H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

EEAH MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

EEBH MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EF0H MSR_C15_PMON_BOX_CTL Package Uncore C-box 15 perfmon local box wide control.

EF1H MSR_C15_PMON_EVNTSEL0 Package Uncore C-box 15 perfmon event select for C-box 15 counter 0.

EF2H MSR_C15_PMON_EVNTSEL1 Package Uncore C-box 15 perfmon event select for C-box 15 counter 1.

EF3H MSR_C15_PMON_EVNTSEL2 Package Uncore C-box 15 perfmon event select for C-box 15 counter 2.

EF4H MSR_C15_PMON_EVNTSEL3 Package Uncore C-box 15 perfmon event select for C-box 15 counter 3.

EF5H MSR_C15_PMON_BOX_FILTER0 Package Uncore C-box 15 perfmon box wide filter0.

EF6H MSR_C15_PMON_BOX_FILTER1 Package Uncore C-box 15 perfmon box wide filter1.

EF7H MSR_C15_PMON_BOX_STATUS Package Uncore C-box 15 perfmon box wide status.

EF8H MSR_C15_PMON_CTR0 Package Uncore C-box 15 perfmon counter 0.

EF9H MSR_C15_PMON_CTR1 Package Uncore C-box 15 perfmon counter 1.

EFAH MSR_C15_PMON_CTR2 Package Uncore C-box 15 perfmon counter 2.

EFBH MSR_C15_PMON_CTR3 Package Uncore C-box 15 perfmon counter 3.

F00H MSR_C16_PMON_BOX_CTL Package Uncore C-box 16 perfmon for box-wide control

F01H MSR_C16_PMON_EVNTSEL0 Package Uncore C-box 16 perfmon event select for C-box 16 counter 0.

F02H MSR_C16_PMON_EVNTSEL1 Package Uncore C-box 16 perfmon event select for C-box 16 counter 1.

F03H MSR_C16_PMON_EVNTSEL2 Package Uncore C-box 16 perfmon event select for C-box 16 counter 2.

F04H MSR_C16_PMON_EVNTSEL3 Package Uncore C-box 16 perfmon event select for C-box 16 counter 3.

F05H MSR_C16_PMON_BOX_FILTER0 Package Uncore C-box 16 perfmon box wide filter 0.

F06H MSR_C16_PMON_BOX_FILTER1 Package Uncore C-box 16 perfmon box wide filter 1.

F07H MSR_C16_PMON_BOX_STATUS Package Uncore C-box 16 perfmon box wide status.

F08H MSR_C16_PMON_CTR0 Package Uncore C-box 16 perfmon counter 0.

F09H MSR_C16_PMON_CTR1 Package Uncore C-box 16 perfmon counter 1.

F0AH MSR_C16_PMON_CTR2 Package Uncore C-box 16 perfmon counter 2.

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-228 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.14 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon®
Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR
interfaces listed in Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28, Table 2-29, Table 2-33, and Table
2-34. For an MSR listed in Table 2-34 that also appears in the model-specific tables of prior generations, Table 2-34
supercede prior generation tables.

Table 2-33 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID
signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

E0BH MSR_C16_PMON_CTR3 Package Uncore C-box 16 perfmon counter 3.

F10H MSR_C17_PMON_BOX_CTL Package Uncore C-box 17 perfmon for box-wide control

F11H MSR_C17_PMON_EVNTSEL0 Package Uncore C-box 17 perfmon event select for C-box 17 counter 0.

F12H MSR_C17_PMON_EVNTSEL1 Package Uncore C-box 17 perfmon event select for C-box 17 counter 1.

F13H MSR_C17_PMON_EVNTSEL2 Package Uncore C-box 17 perfmon event select for C-box 17 counter 2.

F14H MSR_C17_PMON_EVNTSEL3 Package Uncore C-box 17 perfmon event select for C-box 17 counter 3.

F15H MSR_C17_PMON_BOX_FILTER0 Package Uncore C-box 17 perfmon box wide filter 0.

F16H MSR_C17_PMON_BOX_FILTER1 Package Uncore C-box 17 perfmon box wide filter1.

F17H MSR_C17_PMON_BOX_STATUS Package Uncore C-box 17 perfmon box wide status.

F18H MSR_C17_PMON_CTR0 Package Uncore C-box 17 perfmon counter 0.

F19H MSR_C17_PMON_CTR1 Package Uncore C-box 17 perfmon counter 1.

F1AH MSR_C17_PMON_CTR2 Package Uncore C-box 17 perfmon counter 2.

F1BH MSR_C17_PMON_CTR3 Package Uncore C-box 17 perfmon counter 3.

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

Table 2-32. Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-229

MODEL-SPECIFIC REGISTERS (MSRS)

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 35.2.6.2, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2. See Section 18.6.2.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 35.2.6.2, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-230 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-34 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

620H MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

NOTES:
1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 2-33. Additional MSRs Common to Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-231

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-34. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

http://biosbits.org

2-232 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.15 MSRS IN INTEL® XEON® PROCESSORS E5 V4 FAMILY
The MSRs listed in Table 2-35 are available and common to Intel® Xeon® Processor D product Family (CPUID
DisplayFamily_DisplayModel = 06_56H) and to Intel Xeon processors E5 v4, E7 v4 families (CPUID
DisplayFamily_DisplayModel = 06_4FH). They are based on the Broadwell microarchitecture.

See Section 2.15.1 for lists of tables of MSRs that are supported by Intel® Xeon® Processor D Family.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 2-19, Table 2-20, Table 2-21, Table 2-24, Table 2-28, Table 2-29, Table 2-33 for other MSR definitions applicable to
processors with CPUID signature 06_3DH.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

See Table 2-25.

1 Enable_PPIN (R/W)

See Table 2-25.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-25.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-25.

22:16 Reserved.

Table 2-34. Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-233

MODEL-SPECIFIC REGISTERS (MSRS)

23 Package PPIN_CAP (R/O)

See Table 2-25.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-25.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-25.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-25.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-25.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6)

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

2-234 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-235

MODEL-SPECIFIC REGISTERS (MSRS)

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

See Table 2-25.

27:24 TCC Activation Offset (R/W)

See Table 2-25.

63:28 Reserved.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-236 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

15:8 Package Maximum Ratio Limit for 2C

23:16 Package Maximum Ratio Limit for 3C

31:24 Package Maximum Ratio Limit for 4C

39:32 Package Maximum Ratio Limit for 5C

47:40 Package Maximum Ratio Limit for 6C

55:48 Package Maximum Ratio Limit for 7C

63:56 Package Maximum Ratio Limit for 8C

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

15:8 Package Maximum Ratio Limit for 10C

23:16 Package Maximum Ratio Limit for 11C

31:24 Package Maximum Ratio Limit for 12C

39:32 Package Maximum Ratio Limit for 13C

47:40 Package Maximum Ratio Limit for 14C

55:48 Package Maximum Ratio Limit for 15C

63:56 Package Maximum Ratio Limit for 16C

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-237

MODEL-SPECIFIC REGISTERS (MSRS)

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-238 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-239

MODEL-SPECIFIC REGISTERS (MSRS)

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

1:0 Reserved.

2 Excursion to Minimum (RO)

63:3 Reserved.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-240 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-241

MODEL-SPECIFIC REGISTERS (MSRS)

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-242 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.15.1 Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 2-36 are available to Intel® Xeon® Processor D Product Family (CPUID
DisplayFamily_DisplayModel = 06_56H). The Intel® Xeon® processor D product family is based on the Broadwell
microarchitecture and supports the MSR interfaces listed in Table 2-19, Table 2-28, Table 2-33, Table 2-35, and
Table 2-36.

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 2-36. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

Table 2-35. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on
the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-243

MODEL-SPECIFIC REGISTERS (MSRS)

2.15.2 Additional MSRs Supported in Intel® Xeon® Processors E5 v4 and E7 v4 Families
The MSRs listed in Table 2-36 are available to Intel® Xeon® Processor E5 v4 and E7 v4 Families (CPUID
DisplayFamily_DisplayModel = 06_4FH). The Intel® Xeon® processor E5 v4 family is based on the Broadwell

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

See Table 2-19, Table 2-28, Table 2-33, and Table 2-35 for other MSR definitions applicable to processors with CPUID signature
06_56H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-36. Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-244 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

microarchitecture and supports the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-28, Table 2-33, Table
2-35, and Table 2-37.

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

294H 660 IA32_MC20_CTL2 Package See Table 2-2.

295H 661 IA32_MC21_CTL2 Package See Table 2-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Vol. 4 2-245

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-246 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

C81H 3201 IA32_L3_QOS_CFG Package Cache Allocation Technology Configuration (R/W)

0 CAT Enable. Set 1 to enable Cache Allocation Technology

63:1 Reserved.

See Table 2-19, Table 2-20, Table 2-28, and Table 2-29 for other MSR definitions applicable to processors with CPUID signature
06_45H.

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the fac-

tory-set configuration is dependent on features specific to the processor and the platform.

Table 2-37. Additional MSRs Supported by Intel® Xeon® Processors with DisplayFamily_DisplayModel 06_4FH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-247

MODEL-SPECIFIC REGISTERS (MSRS)

2.16 MSRS IN THE 6TH GENERATION INTEL® CORE™ PROCESSORS, INTEL®
XEON® PROCESSOR SCALABLE FAMILY, 7TH GENERATION INTEL® CORE™
PROCESSORS, AND FUTURE INTEL® CORE™ PROCESSORS

6th generation Intel® Core™ processors and the Intel® Xeon® Processor Scalable Family are based on the Skylake
microarchitecture and have CPUID DisplayFamily_DisplayModel signatures of 06_4EH, 06_5EH, and 06_55H. 7th
Generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and have CPUID
DisplayFamily_DisplayModel signatures of 06_8EH and 06_9EH. Future Intel® Core™ processors are based on
Cannon Lake microarchitecture and have a CPUID DisplayFamily_DisplayModel signature of 06_66H. These
processors support the MSR interfaces listed in Table 2-19, Table 2-20, Table 2-24, Table 2-28, Table 2-34, Table
2-38, and Table 2-39. For an MSR listed in Table 2-38 that also appears in the model-specific tables of prior gener-
ations, Table 2-38 supercede prior generation tables.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery
integration may vary by platform vendor’s implementation.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP Thread MTRR Capality (RO, Architectural). See Table 2-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

2-248 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-249

MODEL-SPECIFIC REGISTERS (MSRS)

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

18:2 Reserved.

19 Disable Race to Halt Optimization (R/W)

Setting this bit disables the Race to Halt optimization and avoid this
optimization limitation to execute below the most efficient
frequency ratio. Default value is 0 for processors that support Race
to Halt optimization. Default value is 1 for processors that do not
support Race to Halt optimization.

20 Disable Energy Efficiency Optimization (R/W)

Setting this bit disables the P-States energy efficiency
optimization. Default value is 0. Disable/enable the energy
efficiency optimization in P-State legacy mode (when
IA32_PM_ENABLE[HWP_ENABLE] = 0), has an effect only in the
turbo range or into PERF_MIN_CTL value if it is not zero set. In HWP
mode (IA32_PM_ENABLE[HWP_ENABLE] == 1), has an effect
between the OS desired or OS maximize to the OS minimize
performance setting.

63:21 Reserved.

300H 768 MSR_SGXOWNEREPOCH0 Package Lower 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Lower 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

301H 768 MSR_SGXOWNEREPOCH1 Package Upper 64 Bit CR_SGXOWNEREPOCH (W)

Writes do not update CR_SGXOWNEREPOCH if CPUID.(EAX=12H,
ECX=0):EAX.SGX1 is 1 on any thread in the package.

63:0 Upper 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-250 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved.

55 Thread Trace_ToPA_PMI.

57:56 Reserved.

58 Thread LBR_Frz.

59 Thread CTR_Frz.

60 Thread ASCI.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz.

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-251

MODEL-SPECIFIC REGISTERS (MSRS)

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 2-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore

62 Thread Set 1 to cause Ovf_BufDSSAVE

63 Reserved.

392H 913 IA32_PERF_GLOBAL_INUSE See Table 2-2.

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W)

2:0 Event Code Select

3 Reserved.

4 Event Code Select High

7:5 Reserved.

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 41.11.3, “Interactions with Authenticated Code
Modules (ACMs)”

15:1 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-252 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

23:16 SGX_SVN_SINIT. See Section 41.11.3, “Interactions with
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W). See Table 2-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Thread Trace Output Mask Pointers Register (R/W). See Table 2-2.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-253

MODEL-SPECIFIC REGISTERS (MSRS)

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Thread Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Thread Region 0 Start Address (R/W)

63:0 See Table 2-2.

581H 1409 IA32_RTIT_ADDR0_B Thread Region 0 End Address (R/W)

63:0 See Table 2-2.

582H 1410 IA32_RTIT_ADDR1_A Thread Region 1 Start Address (R/W)

63:0 See Table 2-2.

583H 1411 IA32_RTIT_ADDR1_B Thread Region 1 End Address (R/W)

63:0 See Table 2-2.

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

64DH 1613 MSR_PLATFORM_ENERGY_
COUNTER

Platform* Platform Energy Counter. (R/O).

This MSR is valid only if both platform vendor hardware
implementation and BIOS enablement support it. This MSR will read
0 if not valid.

31:0 Total energy consumed by all devices in the platform that receive
power from integrated power delivery mechanism, Included
platform devices are processor cores, SOC, memory, add-on or
peripheral devices that get powered directly from the platform
power delivery means. The energy units are specified in the
MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved.

64EH 1614 MSR_PPERF Thread Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

64FH 1615 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-254 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

4 Residency State Regulation Status (R0)

When set, frequency is reduced below the operating system
request due to residency state regulation limit.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced below the operating system
request due to Running Average Thermal Limit (RATL).

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from a processor Voltage Regulator
(VR).

7 VR Therm Design Current Status (R0)

When set, frequency is reduced below the operating system
request due to VR thermal design current limit.

8 Other Status (R0)

When set, frequency is reduced below the operating system
request due to electrical or other constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package/platform-level power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package/platform-level power limiting PL2/PL3.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-255

MODEL-SPECIFIC REGISTERS (MSRS)

20 Residency State Regulation Log

When set, indicates that the Residency State Regulation Status bit
has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR TDC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log

When set, indicates that the Other Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package or Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package or Platform Level PL2/PL3
Power Limiting Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

652H 1618 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-256 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1619 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

655H 1621 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1622 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1624 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1625 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1626 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1627 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

65CH 1628 MSR_PLATFORM_POWER_L
IMIT

Platform* Platform Power Limit Control (R/W-L)

Allows platform BIOS to limit power consumption of the platform
devices to the specified values. The Long Duration power
consumption is specified via Platform_Power_Limit_1 and
Platform_Power_Limit_1_Time. The Short Duration power
consumption limit is specified via the Platform_Power_Limit_2 with
duration chosen by the processor.

The processor implements an exponential-weighted algorithm in
the placement of the time windows.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-257

MODEL-SPECIFIC REGISTERS (MSRS)

14:0 Platform Power Limit #1.

Average Power limit value which the platform must not exceed
over a time window as specified by Power_Limit_1_TIME field.

The default value is the Thermal Design Power (TDP) and varies
with product skus. The unit is specified in MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1.

When set, enables the processor to apply control policy such that
the platform power does not exceed Platform Power limit #1 over
the time window specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1.

When set, allows the processor to go below the OS requested P
states in order to maintain the power below specified Platform
Power Limit #1 value.

This bit is writeable only when CPUID (EAX=6):EAX[4] is set.

23:17 Time Window for Platform Power Limit #1.

Specifies the duration of the time window over which Platform
Power Limit 1 value should be maintained for sustained long
duration. This field is made up of two numbers from the following
equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17].

The maximum allowed value in this field is defined in
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in
MSR_RAPLPOWER_UNIT[Time Unit].

31:24 Reserved

46:32 Platform Power Limit #2.

Average Power limit value which the platform must not exceed
over the Short Duration time window chosen by the processor.

The recommended default value is 1.25 times the Long Duration
Power Limit (i.e. Platform Power Limit # 1)

47 Enable Platform Power Limit #2.

When set, enables the processor to apply control policy such that
the platform power does not exceed Platform Power limit #2 over
the Short Duration time window.

48 Platform Clamping Limitation #2.

When set, allows the processor to go below the OS requested P
states in order to maintain the power below specified Platform
Power Limit #2 value.

62:49 Reserved

63 Lock. Setting this bit will lock all other bits of this MSR until system
RESET.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-258 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-259

MODEL-SPECIFIC REGISTERS (MSRS)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average thermal
limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a
processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other
constraints.

9 Reserved

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/platform-level
power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/platform-level
power limiting PL2/PL3.

12 Inefficient Operation Status (R0)

When set, processor graphics frequency is operating below target
frequency.

15:13 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-260 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24 Other Log

When set, indicates that the OTHER Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Inefficient Operation Log

When set, indicates that the Inefficient Operation Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:29 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced due to assertion of external
PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced due to a thermal event.

4:2 Reserved.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-261

MODEL-SPECIFIC REGISTERS (MSRS)

5 Running Average Thermal Limit Status (R0)

When set, frequency is reduced due to running average thermal
limit.

6 VR Therm Alert Status (R0)

When set, frequency is reduced due to a thermal alert from a
processor Voltage Regulator.

7 VR Thermal Design Current Status (R0)

When set, frequency is reduced due to VR TDC limit.

8 Other Status (R0)

When set, frequency is reduced due to electrical or other
constraints.

9 Reserved.

10 Package/Platform-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced due to package/Platform-level
power limiting PL1.

11 Package/Platform-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced due to package/Platform-level
power limiting PL2/PL3.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20:18 Reserved.

21 Running Average Thermal Limit Log

When set, indicates that the RATL Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 VR Thermal Design Current Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-262 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24 Other Log

When set, indicates that the OTHER Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved

26 Package/Platform-Level PL1 Power Limiting Log

When set, indicates that the Package/Platform Level PL1 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package/Platform-Level PL2 Power Limiting Log

When set, indicates that the Package/Platform Level PL2 Power
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:28 Reserved.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 2-38. Additional MSRs Supported by 6th Generation Intel® Core™ Processors and the Intel® Xeon® Processor
Scalable Family Based on Skylake Microarchitecture, 7th Generation Intel® Core™ Processors Based on Kaby Lake

Microarchitecture, and Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-263

MODEL-SPECIFIC REGISTERS (MSRS)

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

D90H 3472 IA32_BNDCFGS Thread See Table 2-2.

DA0H 3488 IA32_XSS Thread See Table 2-2.

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.

Vol. 4 2-267

MODEL-SPECIFIC REGISTERS (MSRS)

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

E01H 3585 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

E02H 3586 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

Table 2-39. Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors, 7th Generation Intel® Core™
Processors, and Future Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-268 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.1 MSRs Specific to 7th Generation Intel® Core™ Processors based on Kaby Lake
Microarchitecture

Table 2-41 lists additional MSRs for 7th generation Intel Core processors with a CPUID DisplayFamily_DisplayModel
signature of 06_8EH and 06_9EH. For an MSR listed in Table 2-41 that also appears in the model-specific tables of
prior generations, Table 2-41 supersedes prior generation tables.

Table 2-40. Additional MSRs Supported by 7th Generation Intel® Core™ Processors Based on Kaby Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

80H 128 MSR_TRACE_HUB_STH_ACPIB
AR_BASE

Package NPK address used by AET messages (R/W)

0 Lock Bit

If set then this MSR cannot be re-written anymore. Lock bit has
to be set in order for the AET packets to be directed to NPK
MMIO.

17:1 Reserved.

63:18 ACPIBAR_BASE_ADDRESS

AET target address in NPK MMIO space.

1F4H 500 MSR_PRMRR_PHYS_BASE Core Processor Reserved Memory Range Register - Physical Base
Control Register (R/W)

2:0 MemType

PRMRR BASE MemType.

11:3 Reserved.

45:12 Base

PRMRR Base Address.

63:46 Reserved.

1F5H 501 MSR_PRMRR_PHYS_MASK Core Processor Reserved Memory Range Register - Physical Mask
Control Register (R/W)

9:0 Reserved.

10 Lock

Lock bit for the PRMRR.

11 VLD

Enable bit for the PRMRR.

45:12 Mask

PRMRR MASK bits.

63:46 Reserved.

1FBH 507 MSR_PRMRR_VALID_CONFIG Core Valid PRMRR Configurations (R/W)

0 1M supported MEE size.

4:1 Reserved.

5 32M supported MEE size.

6 64M supported MEE size.

7 128M supported MEE size.

Vol. 4 2-269

MODEL-SPECIFIC REGISTERS (MSRS)

31:8 Reserved.

2F4H 756 MSR_UNCORE_PRMRR_PHYS_B
ASE

Package (R/W)

The PRMRR range is used to protect Xucode memory from
unauthorized reads and writes. Any IO access to this range is
aborted. This register controls the location of the PRMRR range
by indicating its starting address. It functions in tandem with the
PRMRR mask register.

11:0 Reserved.

38:12 Range Base

This field corresponds to bits 38:12 of the base address memory
range which is allocated to PRMRR memory.

63:39 Reserved.

2F5H 757 MSR_UNCORE_PRMRR_PHYS_
MASK

Package (R/W)

This register controls the size of the PRMRR range by indicating
which address bits must match the PRMRR base register value.

9:0 Reserved.

10 Lock

Setting this bit locks all writeable settings in this register,
including itself.

11 Range_En

Indicates whether the PRMRR range is enabled and valid.

38:12 Range_Mask

This field indicates which address bits must match PRMRR base
in order to qualify as an PRMRR access.

63:39 Reserved.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

63:15 Reserved.

Table 2-40. Additional MSRs Supported by 7th Generation Intel® Core™ Processors Based on Kaby Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-270 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.2 MSRs Specific to Future Intel® Core™ Processors
Table 2-41 lists additional MSRs for Future Intel Core processors with a CPUID DisplayFamily_DisplayModel signature
of 06_66H. For an MSR listed in Table 2-41 that also appears in the model-specific tables of prior generations, Table
2-41 supersede prior generation tables.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

17 SGX Launch Control Enable (R/WL)

This bit must be set to enable runtime reconfiguration of SGX
Launch Control via IA32_SGXLEPUBKEYHASHn MSR.

Available only if CPUID.(EAX=07H, ECX=0H): ECX[30] = 1.

18 SGX global functions enable (R/WL)

63:21 Reserved.

350H 848 MSR_BR_DETECT_CTRL Branch Monitoring Global Control (R/W)

0 EnMonitoring

Global enable for branch monitoring.

1 EnExcept

Enable branch monitoring event signaling on threshold trip.

The branch monitoring event handler is signaled via the existing
PMI signaling mechanism as programmed from the corresponding
local APIC LVT entry.

2 EnLBRFrz

Enable LBR freeze on threshold trip. This will result in causing
the LBR frozen bit 58 to be set in IA32_PERF_GLOBAL_STATUS
when a triggering condition occurs and this bit is enabled.

3 DisableInGuest

When set to ‘1’, branch monitoring, event triggering and LBR
freeze actions are disabled when operating at VMX non-root
operation.

7:4 Reserved.

17:8 WindowSize

Window size defined by WindowCntSel. Values 0 – 1023 are
supported.

Once the Window counter reaches the WindowSize count both
the Window Counter and all Branch Monitoring Counters are
cleared.

23:18 Reserved.

Vol. 4 2-271

MODEL-SPECIFIC REGISTERS (MSRS)

25:24 WindowCntSel

Window event count select:

‘00 = Instructions retired.

‘01 = Branch instructions retired

‘10 = Return instructions retired.

‘11 = Indirect branch instructions retired.

26 CntAndMode

When set to ‘1’, overall branch monitoring event triggering
condition is true only if all enabled counters’ threshold conditions
are true.

When ‘0’, the threshold tripping condition is true if any enabled
counters’ threshold is true.

63:27 Reserved.

351H 849 MSR_BR_DETECT_STATUS Branch Monitoring Global Status (R/W)

0 Branch Monitoring Event Signaled

When set to '1', Branch Monitoring event signaling is blocked until
this bit is cleared by software.

1 LBRsValid

This status bit is set to ‘1’ if the LBR state is considered valid for
sampling by branch monitoring software.

7:2 Reserved.

8 CntrHit0

Branch monitoring counter #0 threshold hit. This status bit is
sticky and once set requires clearing by software. Counter
operation continues independent of the state of the bit.

9 CntrHit1

Branch monitoring counter #1 threshold hit. This status bit is
sticky and once set requires clearing by software. Counter
operation continues independent of the state of the bit.

15:10 Reserved. Reserved for additional branch monitoring counters
threshold hit status.

25:16 CountWindow

The current value of window counter. The count value is frozen
on a valid branch monitoring triggering condition. This is an 10-
bit unsigned value.

31:26 Reserved. Reserved for future extension of CountWindow.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-272 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

39:32 Count0

The current value of counter 0 updated after each occurrence of
the event being counted. The count value is frozen on a valid
branch monitoring triggering condition (in which case CntrHit0
will also be set). This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F
(+127) and minimum value 0x80 (-128).

47:40 Count1

The current value of counter 1 updated after each occurrence of
the event being counted. The count value is frozen on a valid
branch monitoring triggering condition (in which case CntrHit1
will also be set). This is an 8-bit signed value (2’s complement).

Heuristic events which only increment will saturate and freeze at
maximum value 0xFF (256).

RET-CALL event counter saturate at maximum value 0x7F
(+127) and minimum value 0x80 (-128).

63:48 Reserved.

354H
-

355H

852
-

853

MSR_BR_DETECT_COUNTER_C
ONFIG_i

Branch Monitoring Detect Counter Configuration (R/W)

0 CntrEn

Enable counter.

7:1 CntrEvSel

Event select (other values #GP)

‘0000000 = RETs.

‘0000001 = RET-CALL bias.

‘0000010 = RET mispredicts.

‘0000011 = Branch (all) mispredicts.

‘0000100 = Indirect branch mispredicts.

‘0000101 = Far branch instructions.

14:8 CntrThreshold

Threshold (an unsigned value of 0 to 127 supported). The value
0 of counter threshold will result in event signaled after every
instruction. #GP if threshold is < 2.

15 MispredEventCnt

Mispredict events counting behavior:

‘0 = Mispredict events are counted in a window.

‘1 = Mispredict events are counted based on a consecutive
occurrence. CntrThreshold is treated as # of consecutive
mispredicts. This control bit only applies to events specified by
CntrEvSel that involve a prediction (0000010, 0000011,
0000100). Setting this bit for other events is ignored.

63:16 Reserved.

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-273

MODEL-SPECIFIC REGISTERS (MSRS)

2.16.3 MSRs Specific to Intel® Xeon® Processor Scalable Family
Intel® Xeon® Processor Scalable Family (CPUID DisplayFamily_DisplayModel = 06_55H) support the MSRs listed in
Table 2-42.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Package C3 Residency Counter (R/O)

63:0 Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

620H 1568 MSR_RING_RATIO_LIMIT Package Ring Ratio Limit (R/W)

This register provides Min/Max Ratio Limits for the LLC and Ring.

6:0 MAX_Ratio

This field is used to limit the max ratio of the LLC/Ring.

7 Reserved.

14:8 MIN_Ratio

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

63:15 Reserved.

660H 1632 MSR_CORE_C1_RESIDENCY Core Core C1 Residency Counter (R/O)

63:0 Value since last reset for the Core C1 residency. Counter rate is
the Max Non-Turbo frequency (same as TSC). This counter count
in case that both of the core's thread are in idle state and at least
one of the core's thread residency in C1 state or in one of its sub
state. The counter is updated only after core C state exit. Note:
Always reads 0 if core C1 is unsupported. A value of zero
indicates that this processor does not support core C1 or never
entered core C1 level state.

662H 1634 MSR_CORE_C3_RESIDENCY Core Core C3 Residency Counter (R/O)

63:0 Will always return 0.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

Table 2-41. Additional MSRs Supported by Future Intel® Core™ Processors Based on Cannon Lake Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-274 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20 LMCE_ON (R/WL)

63:21 Reserved.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

See Table 2-25.

1 Enable_PPIN (R/W)

See Table 2-25.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 2-25.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

See Table 2-25.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

See Table 2-25.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

See Table 2-25.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

See Table 2-25.

30 Package Programmable TJ OFFSET (R/O)

See Table 2-25.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

See Table 2-25.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

http://biosbits.org

Vol. 4 2-275

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6)

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-276 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

See Table 2-2.

1 Thermal status log (R/WC0)

See Table 2-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 2-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 2-2.

4 Critical Temperature status (RO)

See Table 2-2.

5 Critical Temperature status log (R/WC0)

See Table 2-2.

6 Thermal threshold #1 status (RO)

See Table 2-2.

7 Thermal threshold #1 log (R/WC0)

See Table 2-2.

8 Thermal threshold #2 status (RO)

See Table 2-2.

9 Thermal threshold #2 log (R/WC0)

See Table 2-2.

10 Power Limitation status (RO)

See Table 2-2.

11 Power Limitation log (R/WC0)

See Table 2-2.

12 Current Limit status (RO)

See Table 2-2.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-277

MODEL-SPECIFIC REGISTERS (MSRS)

13 Current Limit log (R/WC0)

See Table 2-2.

14 Cross Domain Limit status (RO)

See Table 2-2.

15 Cross Domain Limit log (R/WC0)

See Table 2-2.

22:16 Digital Readout (RO)

See Table 2-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 2-2.

31 Reading Valid (RO)

See Table 2-2.

63:32 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (RO)

See Table 2-25.

27:24 TCC Activation Offset (R/W)

See Table 2-25.

63:28 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package This register defines the ratio limits. RATIO[0:7] must be populated
in ascending order. RATIO[i+1] must be less than or equal to
RATIO[i]. Entries with RATIO[i] will be ignored. If any of the rules
above are broken, the configuration is silently rejected. If the
programmed ratio is:

• Above the fused ratio for that core count, it will be clipped to the
fuse limits (assuming !OC).

• Below the min supported ratio, it will be clipped.

7:0 RATIO_0

Defines ratio limits.

15:8 RATIO_1

Defines ratio limits.

23:16 RATIO_2

Defines ratio limits.

31:24 RATIO_3

Defines ratio limits.

39:32 RATIO_4

Defines ratio limits.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-278 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

47:40 RATIO_5

Defines ratio limits.

55:48 RATIO_6

Defines ratio limits.

63:56 RATIO_7

Defines ratio limits.

1AEH 430 MSR_TURBO_RATIO_LIMIT_
CORES

Package This register defines the active core ranges for each frequency
point. NUMCORE[0:7] must be populated in ascending order.
NUMCORE[i+1] must be greater than NUMCORE[i]. Entries with
NUMCORE[i] == 0 will be ignored. The last valid entry must have
NUMCORE >= the number of cores in the SKU. If any of the rules
above are broken, the configuration is silently rejected.

7:0 NUMCORE_0

Defines the active core ranges for each frequency point.

15:8 NUMCORE_1

Defines the active core ranges for each frequency point.

23:16 NUMCORE_2

Defines the active core ranges for each frequency point.

31:24 NUMCORE_3

Defines the active core ranges for each frequency point.

39:32 NUMCORE_4

Defines the active core ranges for each frequency point.

47:40 NUMCORE_5

Defines the active core ranges for each frequency point.

55:48 NUMCORE_6

Defines the active core ranges for each frequency point.

63:56 NUMCORE_7

Defines the active core ranges for each frequency point.

280H 640 IA32_MC0_CTL2 Core See Table 2-2.

281H 641 IA32_MC1_CTL2 Core See Table 2-2.

282H 642 IA32_MC2_CTL2 Core See Table 2-2.

283H 643 IA32_MC3_CTL2 Core See Table 2-2.

284H 644 IA32_MC4_CTL2 Package See Table 2-2.

285H 645 IA32_MC5_CTL2 Package See Table 2-2.

286H 646 IA32_MC6_CTL2 Package See Table 2-2.

287H 647 IA32_MC7_CTL2 Package See Table 2-2.

288H 648 IA32_MC8_CTL2 Package See Table 2-2.

289H 649 IA32_MC9_CTL2 Package See Table 2-2.

28AH 650 IA32_MC10_CTL2 Package See Table 2-2.

28BH 651 IA32_MC11_CTL2 Package See Table 2-2.

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-279

MODEL-SPECIFIC REGISTERS (MSRS)

28CH 652 IA32_MC12_CTL2 Package See Table 2-2.

28DH 653 IA32_MC13_CTL2 Package See Table 2-2.

28EH 654 IA32_MC14_CTL2 Package See Table 2-2.

28FH 655 IA32_MC15_CTL2 Package See Table 2-2.

290H 656 IA32_MC16_CTL2 Package See Table 2-2.

291H 657 IA32_MC17_CTL2 Package See Table 2-2.

292H 658 IA32_MC18_CTL2 Package See Table 2-2.

293H 659 IA32_MC19_CTL2 Package See Table 2-2.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC0 reports MC error from the IFU module.
401H 1025 IA32_MC0_STATUS Core

402H 1026 IA32_MC0_ADDR Core

403H 1027 IA32_MC0_MISC Core

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC1 reports MC error from the DCU module.
405H 1029 IA32_MC1_STATUS Core

406H 1030 IA32_MC1_ADDR Core

407H 1031 IA32_MC1_MISC Core

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC2 reports MC error from the DTLB module.
409H 1033 IA32_MC2_STATUS Core

40AH 1034 IA32_MC2_ADDR Core

40BH 1035 IA32_MC2_MISC Core

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC3 reports MC error from the MLC module.
40DH 1037 IA32_MC3_STATUS Core

40EH 1038 IA32_MC3_ADDR Core

40FH 1039 IA32_MC3_MISC Core

410H 1040 IA32_MC4_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC4 reports MC error from the PCU module.
411H 1041 IA32_MC4_STATUS Package

412H 1042 IA32_MC4_ADDR Package

413H 1043 IA32_MC4_MISC Package

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from a link interconnect module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-280 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the M2M 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the M2M 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA
425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC12 report MC error from each channel of a link
interconnect module.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-281

MODEL-SPECIFIC REGISTERS (MSRS)

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated
memory controllers.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a link interconnect module.
44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

Energy consumed by DRAM devices

31:0 Energy in 15.3 micro-joules. Requires BIOS configuration to enable
DRAM RAPL mode 0 (Direct VR).

63:32 Reserved

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-282 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

639H 1593 MSR_PP0_ENERGY_STATUS Package Reserved (R/O)

Reads return 0

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-283

MODEL-SPECIFIC REGISTERS (MSRS)

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-284 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.17 MSRS IN INTEL® XEON PHI™ PROCESSOR 3200/5200/7200 SERIES AND
FUTURE INTEL® XEON PHI™ PROCESSOR

Intel® Xeon Phi™ processor 3200, 5200, 7200 series, with CPUID DisplayFamily_DisplayModel signature 06_57H,
supports the MSR interfaces listed in Table 2-43. These processors are based on the Knights Landing microarchitec-
ture. Future Intel® Xeon Phi™ Processor, with CPUID DisplayFamily_DisplayModel signature 06_85H, supports the
MSR interfaces listed in Table 2-43 and Table 2-44. Some MSRs are shared between a pair of processor cores, the
scope is marked as module.

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 2.22, “MSRs in Pentium Processors.”

Table 2-42. MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Vol. 4 2-285

MODEL-SPECIFIC REGISTERS (MSRS)

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 2-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 2-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 2-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 2-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 2-2.

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-286 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 2-2.

CEH 206 MSR_PLATFORM_INFO Package Platform Information; contains power management and other
model specific features enumeration. See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Package C-State Configuration Control (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-287

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 Package C-State Limit (R/W)

Specifies the lowest C-state for the package. This feature does not
limit the processor core C-state. The power-on default value from
bit[2:0] of this register reports the deepest package C-state the
processor is capable to support when manufactured. It is
recommended that BIOS always read the power-on default value
reported from this bit field to determine the supported deepest C-
state on the processor and leave it as default without changing it.

000b - C0/C1 (No package C-state support)

001b - C2

010b - C6 (non retention)*

011b - C6 (Retention)*

100b - Reserved

101b - Reserved

110b - Reserved

111b - No package C-state limit. All C-States supported by the
processor are available.

Note: C6 retention mode provides more power saving than C6 non-
retention mode. Limiting the package to C6 non retention mode
does prevent the MSR_PKG_C6_RESIDENCY counter (MSR 3F9h)
from being incremented.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO registers at
MSR_PMG_IO_CAPTURE_BASE[15:0] to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (RO)

When set, locks bits [15:0] of this register for further writes until
the next reset occurs.

25 Reserved.

26 C1 State Auto Demotion Enable (R/W)

When set, processor will conditionally demote C3/C6/C7 requests
to C1 based on uncore auto-demote information.

27 Reserved.

28 C1 State Auto Undemotion Enable (R/W)

When set, enables Undemotion from Demoted C1.

29 PKG C-State Auto Demotion Enable (R/W)

When set, enables Package C state demotion.

63:30 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Tile Power Management IO Capture Base (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-288 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

15:0 LVL_2 Base Address (R/W)

Microcode will compare IO-read zone to this base address to
determine if an MWAIT(C2/3/4) needs to be issued instead of the
IO-read. Should be programmed to the chipset Plevel_2 IO address.

22:16 C-State Range (R/W)

The IO-port block size in which IO-redirection will be executed (0-
127). Should be programmed based on the number of LVLx
registers existing in the chipset.

63:23 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 2-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 2-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

140H 320 MISC_FEATURE_ENABLES Thread MISC_FEATURE_ENABLES

0 Reserved.

1 User Mode MONITOR and MWAIT (R/W)

If set to 1, the MONITOR and MWAIT instructions do not cause
invalid-opcode exceptions when executed with CPL > 0 or in
virtual-8086 mode. If MWAIT is executed when CPL > 0 or in
virtual-8086 mode, and if EAX indicates a C-state other than C0 or
C1, the instruction operates as if EAX indicated the C-state C1.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 2-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 2-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 2-2.

179H 377 IA32_MCG_CAP Thread See Table 2-2.

17AH 378 IA32_MCG_STATUS Thread See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-289

MODEL-SPECIFIC REGISTERS (MSRS)

17DH 390 MSR_SMM_MCA_CAP Thread Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

31:0 Bank Support (SMM-RO)

One bit per MCA bank. If the bit is set, that bank supports Enhanced
MCA (Default all 0; does not support EMCA).

55:32 Reserved.

56 Targeted SMI (SMM-RO)

Set if targeted SMI is supported.

57 SMM_CPU_SVRSTR (SMM-RO)

Set if SMM SRAM save/restore feature is supported.

58 SMM_CODE_ACCESS_CHK (SMM-RO)

Set if SMM code access check feature is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 2-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 2-2.

198H 408 IA32_PERF_STATUS Package See Table 2-2.

199H 409 IA32_PERF_CTL Thread See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-290 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 2-2.

0 Thermal status (RO)

1 Thermal status log (R/WC0)

2 PROTCHOT # or FORCEPR# status (RO)

3 PROTCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature status (RO)

5 Critical Temperature status log (R/WC0)

6 Thermal threshold #1 status (RO)

7 Thermal threshold #1 log (R/WC0)

8 Thermal threshold #2 status (RO)

9 Thermal threshold #2 log (R/WC0)

10 Power Limitation status (RO)

11 Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Digital Readout (RO)

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved.

7 Performance Monitoring Available (R)

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

12 Processor Event Based Sampling Unavailable (RO)

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-291

MODEL-SPECIFIC REGISTERS (MSRS)

34 XD Bit Disable (R/W)

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package Temperature Target

15:0 Reserved.

23:16 Temperature Target (R)

29:24 Target Offset (R/W)

63:30 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher.

1 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher.

63:2 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum
ratio limit for group 0.

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not
more than the group 0 maximum core count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores
plus the cores in group 0, operates under the group 1 turbo max
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores
plus all the cores in group 1, operates under the group 2 turbo max
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group
2”.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-292 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores
plus all the cores in group 2, operates under the group 3 turbo max
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores
plus all the cores in group 3, operates under the group 4 turbo max
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores
plus all the cores in group 4, operates under the group 5 turbo max
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group
5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores
plus all the cores in group 5, operates under the group 6 turbo max
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 2-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 2-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 2-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.9.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-293

MODEL-SPECIFIC REGISTERS (MSRS)

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

0 LBR

Setting this bit to 1 enables the processor to record a running trace
of the most recent branches taken by the processor in the LBR
stack.

1 BTF

Setting this bit to 1 enables the processor to treat EFLAGS.TF as
single-step on branches instead of single-step on instructions.

5:2 Reserved.

6 TR

Setting this bit to 1 enables branch trace messages to be sent.

7 BTS

Setting this bit enables branch trace messages (BTMs) to be logged
in a BTS buffer.

8 BTINT

When clear, BTMs are logged in a BTS buffer in circular fashion.
When this bit is set, an interrupt is generated by the BTS facility
when the BTS buffer is full.

9 BTS_OFF_OS

When set, BTS or BTM is skipped if CPL = 0.

10 BTS_OFF_USR

When set, BTS or BTM is skipped if CPL > 0.

11 FREEZE_LBRS_ON_PMI

When set, the LBR stack is frozen on a PMI request.

12 FREEZE_PERFMON_ON_PMI

When set, each ENABLE bit of the global counter control MSR are
frozen (address 3BFH) on a PMI request.

13 Reserved.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-294 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

14 FREEZE_WHILE_SMM

When set, freezes perfmon and trace messages while in SMM.

31:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 2-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 2-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 2-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 2-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 2-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 2-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 2-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 2-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 2-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 2-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 2-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 2-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 2-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 2-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 2-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 2-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 2-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 2-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 2-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 2-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 2-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 2-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 2-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 2-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 2-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 2-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 2-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 2-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 2-2.

277H 631 IA32_PAT Core See Table 2-2.

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-295

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 2-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 2-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 2-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 2-2.

345H 837 IA32_PERF_CAPABILITIES Package See Table 2-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 2-2.

38EH 910 IA32_PERF_GLOBAL_STATU
S

Thread See Table 2-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 2-2.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 2-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 2-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-296 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C1H 1217 IA32_A_PMC0 Thread See Table 2-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 2-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 2-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-297

MODEL-SPECIFIC REGISTERS (MSRS)

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

620H 1568 MSR UNCORE_RATIO_LIMIT Package Uncore Ratio Limit (R/W)

Out of reset, the min_ratio and max_ratio fields represent the
widest possible range of uncore frequencies. Writing to these fields
allows software to control the minimum and the maximum
frequency that hardware will select.

63:15 Reserved.

14:8 MIN_RATIO

Writing to this field controls the minimum possible ratio of the
LLC/Ring.

7 Reserved.

6:0 MAX_RATIO

This field is used to limit the max ratio of the LLC/Ring.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 2-24

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 2-24

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 2-24

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 2-24

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 2-24

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-298 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 2-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

Vol. 4 2-299

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-44 lists model-specific registers that are supported by future Intel® Xeon Phi™ Processors based on the
Knights Mill microarchitecture.

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE Thread Swap Target of BASE Address of GS (R/W) See Table 2-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 2-2

Table 2-43. Selected MSRs Supported by Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signatures
06_57H and 06_85H

Address
Register Name

Scope
Bit Description Hex Dec

2-300 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

Table 2-44. Additional MSRs Supported by Future Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel
Signature 06_85H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

9BH 155 IA32_SMM_MONITOR_CTL Core SMM Monitor Configuration (R/W).

This MSR is readable only if VMX is enabled, and writeable only if
VMX is enabled and in SMM mode, and is used to configure the VMX
MSEG base address. See Table 2-2.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution Controls
(R/O)

See Table 2-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based VM-
execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 2-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 2-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based

VM-execution Controls (R/O)

See Table 2-2.

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 2-2.

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 2-2.

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based

VM-execution Flex Controls (R/O)

See Table 2-2.

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 2-2.

Vol. 4 2-301

MODEL-SPECIFIC REGISTERS (MSRS)

2.18 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 2-45 lists MSRs (architectural and model-specific) that are defined across processor generations based on
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily
encoding of 0FH, see Table 2-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model

Availability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the
specified register address. The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 2-2.

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 2.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3,
4, 6

Shared See Section 2.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3,
4, 6

Unique Time Stamp Counter

See Table 2-2.

On earlier processors, only the lower 32 bits are
writable. On any write to the lower 32 bits, the
upper 32 bits are cleared. For processor family
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3,
4, 6

Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3,
4, 6

Unique APIC Location and Status (R/W)

See Table 2-2. See Section 10.4.4, “Local APIC
Status and Location.”

Table 2-44. Additional MSRs Supported by Future Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel
Signature 06_85H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

2-302 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1)
or disabled (0) as set by the strapping of SMI#.
The value in this bit is written on the deassertion
of RESET#; the bit is set to 1 when the address
bus signal is asserted.

1 Execute BIST (R)

Indicates whether the execution of the BIST is
enabled (1) or disabled (0) as set by the strapping
of INIT#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for
the system bus is 1 (1) or up to 12 (0) as set by
the strapping of A7#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled
(0) or disabled (1) as determined by the strapping
of A9#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled
(0) or disabled (1) as determined by the strapping
of A10#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

6:5 APIC Cluster ID (R)

Contains the logical APIC cluster ID value as set by
the strapping of A12# and A11#. The logical
cluster ID value is written into the field on the
deassertion of RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable (R)

Indicates whether bus park is enabled (0) or
disabled (1) as set by the strapping of A15#. The
value in this bit is written on the deassertion of
RESET#; the bit is set to 1 when the address bus
signal is asserted.

11:8 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-303

MODEL-SPECIFIC REGISTERS (MSRS)

13:12 Agent ID (R)

Contains the logical agent ID value as set by the
strapping of BR[3:0]. The logical ID value is
written into the field on the deassertion of
RESET#; the field is set to 1 when the address bus
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Soft Power-On Configuration (R/W)

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W)

Controls the driving of RCNT/SCNT on the request
encoding. Set to enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable (R/W)

Set to disable system data bus parity checking;
clear to enable parity checking.

2 Response Error Checking Disable (R/W)

Set to disable (default); clear to enable.

3 Address/Request Error Checking Disable (R/W)

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus
requests (default); clear to enable.

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal
errors (default); clear to enable.

6 BINIT# Driver Disable (R/W)

Set to disable BINIT# driver (default); clear to
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to
the MODEL value in the CPUID version
information. The following bit field layout applies
to Pentium 4 and Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current processor
frequency configuration.

15:0 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-304 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus
Frequency Ratio (R)

The processor core clock frequency to system bus
frequency ratio observed at the de-assertion of
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R)

The bit field layout of this MSR varies according to
the MODEL value of the CPUID version
information. This bit field layout applies to
Pentium 4 and Xeon Processors with MODEL
encoding less than 2.

Indicates current processor frequency
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-305

MODEL-SPECIFIC REGISTERS (MSRS)

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 2-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3,
4, 6

Shared BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3,
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 2-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 2-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3,
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3,
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3,
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 2-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3,
4, 6

Unique CPL 0 code entry point (R/W)

See Table 2-2. See Section 5.8.7, “Performing Fast
Calls to System Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3,
4, 6

Unique Machine Check Capabilities (R)

See Table 2-2. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3,
4, 6

Unique Machine Check Status. (R)

See Table 2-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 2-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3,
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-306 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

181H 385 MSR_MCG_RBX 0, 1, 2, 3,
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3,
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3,
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3,
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3,
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3,
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3,
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3,
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-307

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3,
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3,
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or
page fault occurred during DS normal operation.
The processors response is to shut down.

The bit is used as an aid for debugging DS
handling code. It is the responsibility of the user
(BIOS or operating system) to clear this bit for
normal operation.

63:1 Reserved.

18BH -
18FH

395 MSR_MCG_RESERVED1 -
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3,
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3,
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3,
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-308 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3,
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3,
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3,
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3,
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3,
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-309

MODEL-SPECIFIC REGISTERS (MSRS)

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 2-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3,
4, 6

Unique Thermal Monitor Control (R/W)

See Table 2-2.

See Section 14.7.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3,
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3,
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read,
specifies the value of the target TM2 transition
last written. When set, it sets the next target
value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6 processors:
When read, specifies the value of the target TM2
transition last written. Writes may cause #GP
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3,
4, 6

Shared Enable Miscellaneous Processor Features (R/W)

0 Fast-Strings Enable. See Table 2-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.7.2, “Thermal Monitor,” and see
Table 2-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be
issued instead of a split-lock cycle. Operating
systems that set this bit must align system
structures to avoid split-lock scenarios.

When the bit is clear (default), normal split-locks
are issued to the bus.

This debug feature is specific to the Pentium 4
processor.

5 Reserved.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-310 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when
clear (default) the third-level cache is enabled.
This flag is reserved for processors that do not
have a third-level cache.

Note that the bit controls only the third-level
cache; and only if overall caching is enabled
through the CD flag of control register CR0, the
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3
Cache.”

7 Performance Monitoring Available (R)

See Table 2-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is
suppressed during a Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W)

When set, interrupt reporting through the FERR#
pin is enabled; when clear, this interrupt reporting
function is disabled.

When this flag is set and the processor is in the
stop-clock state (STPCLK# is asserted), asserting
the FERR# pin signals to the processor that an
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that the processor
should return to normal operation to handle the
interrupt.

This flag does not affect the normal operation of
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not
asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE) (R)

See Table 2-2.

When set, the processor does not support branch
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Processor Event Based
Sampling Unavailable (R)

See Table 2-2.

When set, the processor does not support
processor event-based sampling (PEBS); when
clear, PEBS is supported.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-311

MODEL-SPECIFIC REGISTERS (MSRS)

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will reduce the bus to
core ratio and voltage according to the value last
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor
does not change the VID signals or the bus to core
ratio when the processor enters a thermal
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not alter
the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache
line of the 128-byte sector containing currently
required data. When set to 0, the processor
fetches both cache lines in the sector.

Single processor platforms should not set this bit.
Server platforms should set or clear this bit based
on platform performance observed in validation
and testing.

BIOS may contain a setup option that controls the
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W)

See Table 2-2.

Setting this can cause unexpected behavior to
software that depends on the availability of CPUID
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-312 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

24 L1 Data Cache Context Mode (R/W)

When set, the L1 data cache is placed in shared
mode; when clear (default), the cache is placed in
adaptive mode. This bit is only enabled for IA-32
processors that support Intel Hyper-Threading
Technology. See Section 11.5.6, “L1 Data Cache
Context Mode.”

When L1 is running in adaptive mode and CR3s
are identical, data in L1 is shared across logical
processors. Otherwise, L1 is not shared and cache
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0
after executing CPUID with EAX = 1, the ability to
switch modes is not supported. BIOS must not
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific
platform requirements. The details of the platform
requirements are listed in the respective data
sheets of the processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.13.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.13.3, “Last Exception Records.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-313

MODEL-SPECIFIC REGISTERS (MSRS)

31:0 From Linear IP

Linear address of the target of the last branch
instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3,
4, 6

Unique Debug Control (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced
section.

See Section 17.13.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3,
4, 6

Unique Last Branch Record Stack TOS (R/O)

Contains an index (0-3 or 0-15) that points to the
top of the last branch record stack (that is, that
points the index of the MSR containing the most
recent branch record).

See Section 17.13.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/O)

One of four last branch record registers on the last
branch record stack. It contains pointers to the
source and destination instruction for one of the
last four branches, exceptions, or interrupts that
the processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-1DEH are
available only on family 0FH, models 0H-02H.
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

1DCH 477 MSR_LASTBRANCH_1 0, 1, 2 Unique Last Branch Record 1

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3,
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-314 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-315

MODEL-SPECIFIC REGISTERS (MSRS)

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3,
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3,
4, 6

Shared Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-316 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-317

MODEL-SPECIFIC REGISTERS (MSRS)

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-318 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.6.3.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-319

MODEL-SPECIFIC REGISTERS (MSRS)

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3,
4, 6

Shared See Section 18.6.3.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3,
4, 6

Shared Processor Event Based Sampling (PEBS) (R/W)

Controls the enabling of processor event sampling
and replay tagging.

12:0 See Table 19-36.

23:13 Reserved.

24 UOP Tag

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is called ENABLE_PEBS in IA-32
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.6.4.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is reserved for IA-32 processors that do
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3,
4, 6

Shared See Table 19-36.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-320 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-321

MODEL-SPECIFIC REGISTERS (MSRS)

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-322 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities
(R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based
VM-execution Controls (R/O)

See Table 2-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see
Table 2-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see
Table 2-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see
Table 2-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 2-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 2-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see
Table 2-2.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-323

MODEL-SPECIFIC REGISTERS (MSRS)

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 2-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3,
4, 6

Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (680H-68FH). This
part of the stack contains pointers to the source
instruction for one of the last 16 branches,
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not
available in processor releases before family 0FH,
model 03H. These MSRs replace MSRs previously
located at 1DBH-1DEH.which performed the same
function for early releases.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-324 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (6C0H-6CFH). This
part of the stack contains pointers to the
destination instruction for one of the last 16
branches, exceptions, or interrupts that the
processor took.

See Section 17.12, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Vol. 4 2-325

MODEL-SPECIFIC REGISTERS (MSRS)

2.18.1 MSRs Unique to Intel® Xeon® Processor MP with L3 Cache
The MSRs listed in Table 2-46 apply to Intel® Xeon® Processor MP with up to 8MB level three cache. These proces-
sors can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (see CPUID instruction for more details).

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 2-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 2-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 2-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W)

See Table 2-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 2-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 2-2.

C000_
0102H

IA32_KERNEL_GS_BASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 2-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 2-45. MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

2-326 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

The MSRs listed in Table 2-47 apply to Intel® Xeon® Processor 7100 series. These processors can be detected by
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the
presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in Table 2-47 are shared between logical
processors in the same core, but are replicated for each core.

Table 2-46. MSRs Unique to 64-bit Intel® Xeon® Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control and Counter
Register (R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control and Counter
Register (R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control and Counter
Register (R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event Counter Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

Vol. 4 2-327

MODEL-SPECIFIC REGISTERS (MSRS)

2.19 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor
LV are listed in Table 2-48. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” means the
MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 2-47. MSRs Unique to Intel® Xeon® Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_CTL0 6 Shared GBUSQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_EMON_L3_CTR_CTL1 6 Shared GBUSQ Event Control and Counter
Register (R/W)

107CEH MSR_EMON_L3_CTR_CTL2 6 Shared GSNPQ Event Control and Counter
Register (R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_EMON_L3_CTR_CTL3 6 Shared GSNPQ Event Control and Counter
Register (R/W)

107D0H MSR_EMON_L3_CTR_CTL4 6 Shared FSB Event Control and Counter Register
(R/W)

See Section 18.6.6, “Performance
Monitoring on 64-bit Intel Xeon Processor
MP with Up to 8-MByte L3 Cache.”

107D1H MSR_EMON_L3_CTR_CTL5 6 Shared FSB Event Control and Counter Register
(R/W)

107D2H MSR_EMON_L3_CTR_CTL6 6 Shared FSB Event Control and Counter Register
(R/W)

107D3H MSR_EMON_L3_CTR_CTL7 6 Shared FSB Event Control and Counter Register
(R/W)

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 2.22, “MSRs in Pentium Processors,” and see Table 2-2.

1H 1 P5_MC_TYPE Unique See Section 2.22, “MSRs in Pentium Processors,” and see Table 2-2.

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and see Table 2-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

2-328 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot”
information for the processor and the proper microcode update to
load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see
Table 2-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-329

MODEL-SPECIFIC REGISTERS (MSRS)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W)

See Table 2-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 2-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 2-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 2-2.

C2H 194 IA32_PMC1 Unique Performance counter register

See Table 2-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-330 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 101B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count. (RW)

See Table 2-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. (RW)

See Table 2-2.

FEH 254 IA32_MTRRCAP Unique See Table 2-2.

11EH 281 MSR_BBL_CR_CTL3 Shared Control register 3.

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 2-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 2-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 2-2.

179H 377 IA32_MCG_CAP Unique See Table 2-2.

17AH 378 IA32_MCG_STATUS Unique Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If this bit is
cleared, the program cannot be reliably restarted.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-331

MODEL-SPECIFIC REGISTERS (MSRS)

1 EIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been
generated. If a second machine check is detected while this bit is
still set, the processor enters a shutdown state. Software should
write this bit to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 2-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 2-2.

198H 408 IA32_PERF_STATUS Shared See Table 2-2.

199H 409 IA32_PERF_CTL Unique See Table 2-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation (R/W)

See Table 2-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features

(R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 2-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 2-2.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-332 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

9:8 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 2-2.

12 Reserved.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing
CPUID with EAX = 1, then this feature is not supported and BIOS
must not alter the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1 bit are set to
disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 2-2.

19 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 2-2.

Setting this bit may cause behavior in software that depends on
the availability of CPUID leaves greater than 2.

33:23 Reserved.

34 Shared XD Bit Disable (R/W)

See Table 2-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-333

MODEL-SPECIFIC REGISTERS (MSRS)

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

Controls how several debug features are used. Bit definitions are
discussed in Table 2-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 MTRRphysBase0 Unique Memory Type Range Registers

201H 513 MTRRphysMask0 Unique Memory Type Range Registers

202H 514 MTRRphysBase1 Unique Memory Type Range Registers

203H 515 MTRRphysMask1 Unique Memory Type Range Registers

204H 516 MTRRphysBase2 Unique Memory Type Range Registers

205H 517 MTRRphysMask2 Unique Memory Type Range Registers

206H 518 MTRRphysBase3 Unique Memory Type Range Registers

207H 519 MTRRphysMask3 Unique Memory Type Range Registers

208H 520 MTRRphysBase4 Unique Memory Type Range Registers

209H 521 MTRRphysMask4 Unique Memory Type Range Registers

20AH 522 MTRRphysBase5 Unique Memory Type Range Registers

20BH 523 MTRRphysMask5 Unique Memory Type Range Registers

20CH 524 MTRRphysBase6 Unique Memory Type Range Registers

20DH 525 MTRRphysMask6 Unique Memory Type Range Registers

20EH 526 MTRRphysBase7 Unique Memory Type Range Registers

20FH 527 MTRRphysMask7 Unique Memory Type Range Registers

250H 592 MTRRfix64K_00000 Unique Memory Type Range Registers

258H 600 MTRRfix16K_80000 Unique Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Unique Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Unique Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Unique Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Unique Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Unique Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Unique Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Unique Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Unique Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Unique Memory Type Range Registers

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-334 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 2-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

414H 1044 MSR_MC5_CTL Unique Machine Check Error Reporting Register - controls signaling of #MC
for errors produced by a particular hardware unit (or group of
hardware units).

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-335

MODEL-SPECIFIC REGISTERS (MSRS)

415H 1045 MSR_MC5_STATUS Unique Machine Check Error Reporting Register - contains information
related to a machine-check error if its VAL (valid) flag is set.
Software is responsible for clearing IA32_MCi_STATUS MSRs by
explicitly writing 0s to them; writing 1s to them causes a general-
protection exception.

416H 1046 MSR_MC5_ADDR Unique Machine Check Error Reporting Register - contains the address of
the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is
set.

417H 1047 MSR_MC5_MISC Unique Machine Check Error Reporting Register - contains additional
information describing the machine-check error if the MISCV flag in
the IA32_MCi_STATUS register is set.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 2-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

2-336 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.20 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 2.21 for P6
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium
M processor.

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 2-2.

See Section 18.6.3.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 2-2.

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.

Table 2-49. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.22, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.22, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.17, “Time-Stamp Counter,” and see Table 2-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 2-2.

The operating system can use this MSR to determine “slot” information
for the processor and the proper microcode update to load.

Table 2-48. MSRs in Intel® Core™ Solo, Intel® Core™ Duo Processors, and Dual-Core Intel® Xeon® Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Vol. 4 2-337

MODEL-SPECIFIC REGISTERS (MSRS)

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-338 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits
31-0 hold the ‘from’ address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL Control register

Used to program L2 commands to be issued via cache configuration
accesses mechanism. Also receives L2 lookup response.

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3 Control register 3

Used to configure the L2 Cache.

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-339

MODEL-SPECIFIC REGISTERS (MSRS)

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always
generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is
always enabled.

7:6 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP Read-only register that provides information about the machine-check
architecture of the processor.

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS Global Machine Check Status

0 RIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) can be used to restart the program. If this bit is cleared, the
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check was
generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a
second machine check is detected while this bit is still set, the processor
enters a shutdown state. Software should write this bit to 0 after
processing a machine check exception.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-340 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 2-2.

199H 409 IA32_PERF_CTL See Table 2-2.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W).

See Table 2-2.

See Section 14.7.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 2-2.

See Section 14.7.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

1 = Setting this bit enables the thermal control circuit (TCC) portion of
the Intel Thermal Monitor feature. This allows processor clocks to
be automatically modulated based on the processor's thermal
sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit determines if the
thermal control circuit (TCC) will be activated when the processor's
internal thermal sensor determines the processor is about to exceed its
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control
circuit enable bit.

6:4 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-341

MODEL-SPECIFIC REGISTERS (MSRS)

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (RO)

1 = Processor does not support processor event based sampling
(PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional
messages that allow the processor to inform the chipset of its priority.
The default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the most
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.15, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W)

Controls how several debug features are used. Bit definitions are
discussed in the referenced section.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors).”

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-342 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch instruction
that the processor executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

See Section 17.15, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)” and Section 17.16.2, “Last Branch and Last
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W)

Sets the memory type for the regions of physical memory that are not
mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no
address if the ADDRV flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-343

MODEL-SPECIFIC REGISTERS (MSRS)

2.21 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this
list have been designated as “architectural” and have had their names changed. See Table 2-2 for a list of the archi-
tectural MSRs.

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or contains no
address if the ADDRV flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 2-2.

Points to the DS buffer management area, which is used to manage the
BTS and PEBS buffers. See Section 18.6.3.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Table 2-50. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 2.22, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 2.22, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID (R)

The operating system can use this MSR to determine “slot” information for
the processor and the proper microcode update to load.

49:0 Reserved.

Table 2-49. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-344 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable (R/W)

1 = Enabled
0 = Disabled

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-345

MODEL-SPECIFIC REGISTERS (MSRS)

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled (R)

1 = Enabled
0 = Disabled

9 Execute BIST (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled (R)

1 = Enabled
0 = Disabled

13 In Order Queue Depth (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

27 Clock Frequency Ratio

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-346 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

29:0 Reserved.

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88H 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

 89H 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

 8AH 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2

8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0) Performance Counter Register

See Table 2-2.

C2H 194 PerfCtr1 (PERFCTR1) Performance Counter Register

See Table 2-2.

FEH 254 MTRRcap Memory Type Range Registers

 116H 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during
cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118H 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

 119H 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-347

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11AH 282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access,
Write only with Data = 0.

 11BH 283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command
is in progress. D[0] = 1 = BUSY

11EH 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-348 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP Machine Check Global Control Register

17AH 378 MCG_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

17BH 379 MCG_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

186H 390 PerfEvtSel0 (EVNTSEL0) Performance Event Select Register 0 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-349

MODEL-SPECIFIC REGISTERS (MSRS)

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

187H 391 PerfEvtSel1 (EVNTSEL1) Performance Event Select for Counter 1 (R/W)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-350 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR Enables last branch, interrupt, and exception recording; taken branch
breakpoints; the breakpoint reporting pins; and trace messages. This
register can be written to using the WRMSR instruction, when operating
at privilege level 0 or when in real-address mode.

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DCH 476 LASTBRANCHTOIP 32-bit register for recording the instruction pointers for the last branch,
interrupt, or exception that the processor took prior to a debug exception
being generated.

1DDH 477 LASTINTFROMIP Last INT from IP

1DEH 478 LASTINTTOIP Last INT to IP

200H 512 MTRRphysBase0 Memory Type Range Registers

201H 513 MTRRphysMask0 Memory Type Range Registers

202H 514 MTRRphysBase1 Memory Type Range Registers

203H 515 MTRRphysMask1 Memory Type Range Registers

204H 516 MTRRphysBase2 Memory Type Range Registers

205H 517 MTRRphysMask2 Memory Type Range Registers

206H 518 MTRRphysBase3 Memory Type Range Registers

207H 519 MTRRphysMask3 Memory Type Range Registers

208H 520 MTRRphysBase4 Memory Type Range Registers

209H 521 MTRRphysMask4 Memory Type Range Registers

20AH 522 MTRRphysBase5 Memory Type Range Registers

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-351

MODEL-SPECIFIC REGISTERS (MSRS)

20BH 523 MTRRphysMask5 Memory Type Range Registers

20CH 524 MTRRphysBase6 Memory Type Range Registers

20DH 525 MTRRphysMask6 Memory Type Range Registers

20EH 526 MTRRphysBase7 Memory Type Range Registers

20FH 527 MTRRphysMask7 Memory Type Range Registers

250H 592 MTRRfix64K_00000 Memory Type Range Registers

258H 600 MTRRfix16K_80000 Memory Type Range Registers

259H 601 MTRRfix16K_A0000 Memory Type Range Registers

268H 616 MTRRfix4K_C0000 Memory Type Range Registers

269H 617 MTRRfix4K_C8000 Memory Type Range Registers

26AH 618 MTRRfix4K_D0000 Memory Type Range Registers

26BH 619 MTRRfix4K_D8000 Memory Type Range Registers

26CH 620 MTRRfix4K_E0000 Memory Type Range Registers

26DH 621 MTRRfix4K_E8000 Memory Type Range Registers

26EH 622 MTRRfix4K_F0000 Memory Type Range Registers

26FH 623 MTRRfix4K_F8000 Memory Type Range Registers

2FFH 767 MTRRdefType Memory Type Range Registers

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL Machine Check Error Reporting Register - controls signaling of #MC for
errors produced by a particular hardware unit (or group of hardware
units).

401H 1025 MC0_STATUS Machine Check Error Reporting Register - contains information related to a
machine-check error if its VAL (valid) flag is set. Software is responsible
for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

2-352 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

2.22 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor)
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without
generating exceptions (see Section 2.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to
Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to

“1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled
until the processor is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected
is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency
the BIOS may choose to use bit 11 to implement its own shutdown policy.

Table 2-50. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Vol. 4 2-353

MODEL-SPECIFIC REGISTERS (MSRS)

2.23 MSR INDEX
MSRs of recent processors are indexed here for convenience. IA32 MSRs are excluded from this index.

Table 2-51. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

10H 16 TSC See Section 17.17, “Time-Stamp Counter.”

11H 17 CESR See Section 18.6.9.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.6.9.3, “Events Counted.”

13H 19 CTR1 Section 18.6.9.3, “Events Counted.”

MSR Name and CPUID DisplayFamily_DisplayModel Location

MSR_ALF_ESCR0

0FH . See Table 2-45

MSR_ALF_ESCR1

0FH . See Table 2-45

MSR_ANY_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_ANY_GFXE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_B0_PMON_BOX_CTRL

06_2EH . See Table 2-16

MSR_B0_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_B0_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_B0_PMON_CTR0

06_2EH . See Table 2-16

MSR_B0_PMON_CTR1

06_2EH . See Table 2-16

MSR_B0_PMON_CTR2

06_2EH . See Table 2-16

MSR_B0_PMON_CTR3

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL1

06_2EH . See Table 2-16

2-354 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_B0_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_B0_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_B0_PMON_MASK

06_2EH . See Table 2-16

MSR_B0_PMON_MATCH

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_CTRL

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_B1_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_B1_PMON_CTR0

06_2EH . See Table 2-16

MSR_B1_PMON_CTR1

06_2EH . See Table 2-16

MSR_B1_PMON_CTR2

06_2EH . See Table 2-16

MSR_B1_PMON_CTR3

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL1

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_B1_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_B1_PMON_MASK

06_2EH . See Table 2-16

MSR_B1_PMON_MATCH

06_2EH . See Table 2-16

MSR_BBL_CR_CTL

06_09H . See Table 2-49

MSR_BBL_CR_CTL3

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-355

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_BPU_CCCR0

0FH . See Table 2-45

MSR_BPU_CCCR1

0FH . See Table 2-45

MSR_BPU_CCCR2

0FH . See Table 2-45

MSR_BPU_CCCR3

0FH . See Table 2-45

MSR_BPU_COUNTER0

0FH . See Table 2-45

MSR_BPU_COUNTER1

0FH . See Table 2-45

MSR_BPU_COUNTER2

0FH . See Table 2-45

MSR_BPU_COUNTER3

0FH . See Table 2-45

MSR_BPU_ESCR0

0FH . See Table 2-45

MSR_BPU_ESCR1

0FH . See Table 2-45

MSR_BR_DETECT_COUNTER_CONFIG_i

06_66H. See Table 2-41

MSR_BR_DETECT_CTRL

06_66H. See Table 2-41

MSR_BR_DETECT_STATUS

06_66H. See Table 2-41

MSR_BSU_ESCR0

0FH . See Table 2-45

MSR_BSU_ESCR1

0FH . See Table 2-45

MSR_C0_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C0_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C0_PMON_BOX_OVF_CTRL

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-356 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

MSR_C0_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C0_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR4

06_2EH . See Table 2-16

MSR_C0_PMON_CTR5

06_2EH . See Table 2-16

MSR_C0_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_CTR2

06_2EH . See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-357

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C0_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C0_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C1_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C1_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C1_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C1_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C1_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-358 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C1_PMON_CTR4

06_2EH . See Table 2-16

MSR_C1_PMON_CTR5

06_2EH . See Table 2-16

MSR_C1_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C1_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C1_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C10_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C10_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C10_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C11_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C11_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C11_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C12_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C12_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-359

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_C12_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C13_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C13_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C13_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C14_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C14_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C14_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_CTL

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C15_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C15_PMON_CTR0

06_3FH . See Table 2-32

MSR_C15_PMON_CTR1

06_3FH . See Table 2-32

MSR_C15_PMON_CTR2

06_3FH . See Table 2-32

MSR_C15_PMON_CTR3

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL1

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C15_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_CTL

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-360 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C16_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C16_PMON_CTR0

06_3FH . See Table 2-32

MSR_C16_PMON_CTR3

06_3FH . See Table 2-32

MSR_C16_PMON_CTR2

06_3FH . See Table 2-32

MSR_C16_PMON_CTR3

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL1

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C16_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_CTL

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_FILTER1

06_3FH . See Table 2-32

MSR_C17_PMON_BOX_STATUS

06_3FH . See Table 2-32

MSR_C17_PMON_CTR0

06_3FH . See Table 2-32

MSR_C17_PMON_CTR1

06_3FH . See Table 2-32

MSR_C17_PMON_CTR2

06_3FH . See Table 2-32

MSR_C17_PMON_CTR3

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL0

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL1

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-361

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL2

06_3FH . See Table 2-32

MSR_C17_PMON_EVNTSEL3

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C2_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C2_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C2_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C2_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_CTR4

06_2EH . See Table 2-16

MSR_C2_PMON_CTR5

06_2EH . See Table 2-16

MSR_C2_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-362 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C2_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C2_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C3_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C3_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C3_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C3_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C3_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-363

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C3_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_CTR4

06_2EH . See Table 2-16

MSR_C3_PMON_CTR5

06_2EH . See Table 2-16

MSR_C3_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C3_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C3_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C4_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C4_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_FILTER1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-364 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C4_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C4_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C4_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_CTR4

06_2EH . See Table 2-16

MSR_C4_PMON_CTR5

06_2EH . See Table 2-16

MSR_C4_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-365

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C4_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C4_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C5_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C5_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C5_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C5_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C5_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_CTR4

06_2EH . See Table 2-16

MSR_C5_PMON_CTR5

06_2EH . See Table 2-16

MSR_C5_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-366 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C5_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C5_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C6_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C6_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C6_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C6_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C6_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-367

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C6_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_CTR4

06_2EH . See Table 2-16

MSR_C6_PMON_CTR5

06_2EH . See Table 2-16

MSR_C6_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C6_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C6_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C7_PMON_BOX_CTRL

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_FILTER

06_2DH . See Table 2-23

MSR_C7_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_FILTER1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-368 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C7_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_C7_PMON_BOX_STATUS

06_2EH . See Table 2-16

06_3FH . See Table 2-32

MSR_C7_PMON_CTR0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_CTR4

06_2EH . See Table 2-16

MSR_C7_PMON_CTR5

06_2EH . See Table 2-16

MSR_C7_PMON_EVNT_SEL0

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL1

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL2

06_2EH . See Table 2-16

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL3

06_2EH . See Table 2-16

06_2DH . See Table 2-23

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-369

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C7_PMON_EVNT_SEL4

06_2EH . See Table 2-16

MSR_C7_PMON_EVNT_SEL5

06_2EH . See Table 2-16

MSR_C8_PMON_BOX_CTRL

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C8_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-18

MSR_C8_PMON_BOX_STATUS

06_2FH . See Table 2-18

06_3FH . See Table 2-32

MSR_C8_PMON_CTR0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_CTR4

06_2FH . See Table 2-18

MSR_C8_PMON_CTR5

06_2FH . See Table 2-18

MSR_C8_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-370 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C8_PMON_EVNT_SEL4

06_2FH . See Table 2-18

MSR_C8_PMON_EVNT_SEL5

06_2FH . See Table 2-18

MSR_C9_PMON_BOX_CTRL

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_FILTER

06_3EH . See Table 2-27

MSR_C9_PMON_BOX_FILTER0

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_FILTER1

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_BOX_OVF_CTRL

06_2FH . See Table 2-18

MSR_C9_PMON_BOX_STATUS

06_2FH . See Table 2-18

06_3FH . See Table 2-32

MSR_C9_PMON_CTR0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-371

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH . See Table 2-32

MSR_C9_PMON_CTR2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_CTR4

06_2FH . See Table 2-18

MSR_C9_PMON_CTR5

06_2FH . See Table 2-18

MSR_C9_PMON_EVNT_SEL0

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL1

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL2

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL3

06_2FH . See Table 2-18

06_3EH . See Table 2-27

06_3FH . See Table 2-32

MSR_C9_PMON_EVNT_SEL4

06_2FH . See Table 2-18

MSR_C9_PMON_EVNT_SEL5

06_2FH . See Table 2-18

MSR_CC6_DEMOTION_POLICY_CONFIG

06_37H . See Table 2-9

MSR_CONFIG_TDP_CONTROL

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CONFIG_TDP_LEVEL1

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-372 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_57H . See Table 2-43

MSR_CONFIG_TDP_LEVEL2

06_3AH. See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CONFIG_TDP_NOMINAL

06_3AH . See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_CORE_C1_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_66H . See Table 2-41

MSR_CORE_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_CORE_C6_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H . See Table 2-43

MSR_CORE_C7_RESIDENCY

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_CORE_GFXE_OVERLAP_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_CORE_HDC_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_CORE_PERF_LIMIT_REASONS

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_CORE_THREAD_COUNT

06_3FH. See Table 2-31

MSR_CRU_ESCR0

0FH . See Table 2-45

MSR_CRU_ESCR1

0FH . See Table 2-45

MSR_CRU_ESCR2

0FH . See Table 2-45

MSR_CRU_ESCR3

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-373

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_CRU_ESCR4

0FH . See Table 2-45

MSR_CRU_ESCR5

0FH . See Table 2-45

MSR_DAC_ESCR0

0FH . See Table 2-45

MSR_DAC_ESCR1

0FH . See Table 2-45

MSR_DRAM_ENERGY_ STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_PERF_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_POWER_INFO

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_DRAM_POWER_LIMIT

06_5CH, 06_7AH . See Table 2-12

06_2DH . See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3F . See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H . See Table 2-43

MSR_EBC_FREQUENCY_ID

0FH . See Table 2-45

MSR_EBC_HARD_POWERON

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-374 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_EBC_SOFT_POWERON

0FH . See Table 2-45

MSR_EBL_CR_POWERON

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR_EFSB_DRDY0

0F_03H, 0F_04H . See Table 2-46

MSR_EFSB_DRDY1

0F_03H, 0F_04H . See Table 2-46

MSR_EMON_L3_CTR_CTL0

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL1

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL2

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL3

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL4

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL5

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL6

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_CTR_CTL7

06_0FH, 06_17H . See Table 2-3

0F_06H . See Table 2-47

MSR_EMON_L3_GL_CTL

06_0FH, 06_17H . See Table 2-3

MSR_ERROR_CONTROL

06_2DH . See Table 2-22

06_3EH . See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-375

MODEL-SPECIFIC REGISTERS (MSRS)

06_3F . See Table 2-31

MSR_FEATURE_CONFIG

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH. See Table 2-17

06_2FH . See Table 2-18

06_2AH, 06_2DH. See Table 2-19

06_57H . See Table 2-43

MSR_FIRM_ESCR0

0FH . See Table 2-45

MSR_FIRM_ESCR1

0FH . See Table 2-45

MSR_FLAME_CCCR0

0FH . See Table 2-45

MSR_FLAME_CCCR1

0FH . See Table 2-45

MSR_FLAME_CCCR2

0FH . See Table 2-45

MSR_FLAME_CCCR3

0FH . See Table 2-45

MSR_FLAME_COUNTER0

0FH . See Table 2-45

MSR_FLAME_COUNTER1

0FH . See Table 2-45

MSR_FLAME_COUNTER2

0FH . See Table 2-45

MSR_FLAME_COUNTER3

0FH . See Table 2-45

MSR_FLAME_ESCR0

0FH . See Table 2-45

MSR_FLAME_ESCR1

0FH . See Table 2-45

MSR_FSB_ESCR0

0FH . See Table 2-45

MSR_FSB_ESCR1

0FH . See Table 2-45

MSR_FSB_FREQ

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH . See Table 2-11

06_0EH . See Table 2-48

MSR_GQ_SNOOP_MESF

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-376 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_GRAPHICS_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_IFSB_BUSQ0

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_BUSQ1

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_CNTR7

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_CTL6

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_SNPQ0

0F_03H, 0F_04H . See Table 2-46

MSR_IFSB_SNPQ1

0F_03H, 0F_04H . See Table 2-46

MSR_IQ_CCCR0

0FH . See Table 2-45

MSR_IQ_CCCR1

0FH . See Table 2-45

MSR_IQ_CCCR2

0FH . See Table 2-45

MSR_IQ_CCCR3

0FH . See Table 2-45

MSR_IQ_CCCR4

0FH . See Table 2-45

MSR_IQ_CCCR5

0FH . See Table 2-45

MSR_IQ_COUNTER0

0FH . See Table 2-45

MSR_IQ_COUNTER1

0FH . See Table 2-45

MSR_IQ_COUNTER2

0FH . See Table 2-45

MSR_IQ_COUNTER3

0FH . See Table 2-45

MSR_IQ_COUNTER4

0FH . See Table 2-45

MSR_IQ_COUNTER5

0FH . See Table 2-45

MSR_IQ_ESCR0

0FH . See Table 2-45

MSR_IQ_ESCR1

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-377

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_IS_ESCR0

0FH . See Table 2-45

MSR_IS_ESCR1

0FH . See Table 2-45

MSR_ITLB_ESCR0

0FH . See Table 2-45

MSR_ITLB_ESCR1

0FH . See Table 2-45

MSR_IX_ESCR0

0FH . See Table 2-45

MSR_IX_ESCR1

0FH . See Table 2-45

MSR_LASTBRANCH_0

0FH . See Table 2-45

06_0EH . See Table 2-48

06_09H . See Table 2-49

MSR_LASTBRANCH_0_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_0_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_1_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-378 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH . See Table 2-45

MSR_LASTBRANCH_1_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_10_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_10_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_11_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_11_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_12_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_12_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_13_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-379

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_13_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_14_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_14_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_15_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH . See Table 2-45

MSR_LASTBRANCH_15_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_16_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_16_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_17_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_17_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_18_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-380 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LASTBRANCH_18_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_19_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_19_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_2

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_2_FROM_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_2_TO_IP

06_0FH, 06_17H. See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H. See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH. See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_20_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_20_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_21_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_21_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_22_FROM_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-381

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_22_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_23_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_23_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_24_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_24_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_25_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_25_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_26_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_26_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_27_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_27_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_28_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_28_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_29_FROM_IP

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-382 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_29_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_3

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_3_FROM_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_3_TO_IP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_30_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_30_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_31_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_31_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_LASTBRANCH_4

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_4_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-383

MODEL-SPECIFIC REGISTERS (MSRS)

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_4_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_5

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_5_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_5_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_6

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_6_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_6_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-384 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_7

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_7_FROM_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_7_TO_IP

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_8_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_8_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH. See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_9_FROM_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_9_TO_IP

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

0FH. See Table 2-45

MSR_LASTBRANCH_TOS

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-385

MODEL-SPECIFIC REGISTERS (MSRS)

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LASTBRANCH_INFO_0

06_7AH. See Table 2-13

MSR_LBR_INFO_1

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_10

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_11

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_13

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_14

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_15

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_16

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_17

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_18

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-386 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_19

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_2

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_20

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_21

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_22

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_23

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_24

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_25

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_26

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_27

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_28

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_29

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_3

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_30

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-387

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_LBR_INFO_31

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_4

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_5

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_6

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_7

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_8

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_INFO_9

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

06_7AH. See Table 2-13

MSR_LBR_SELECT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H . See Table 2-43

MSR_LER_FROM_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_LER_TO_LIP

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-388 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_M0_PMON_ADDR_MASK

06_2EH. See Table 2-16

MSR_M0_PMON_ADDR_MATCH

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_M0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_M0_PMON_CTR0

06_2EH. See Table 2-16

MSR_M0_PMON_CTR1

06_2EH. See Table 2-16

MSR_M0_PMON_CTR2

06_2EH. See Table 2-16

MSR_M0_PMON_CTR3

06_2EH. See Table 2-16

MSR_M0_PMON_CTR4

06_2EH. See Table 2-16

MSR_M0_PMON_CTR5

06_2EH. See Table 2-16

MSR_M0_PMON_DSP

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_M0_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-389

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_M0_PMON_ISS

06_2EH. See Table 2-16

MSR_M0_PMON_MAP

06_2EH. See Table 2-16

MSR_M0_PMON_MM_CONFIG

06_2EH. See Table 2-16

MSR_M0_PMON_MSC_THR

06_2EH. See Table 2-16

MSR_M0_PMON_PGT

06_2EH. See Table 2-16

MSR_M0_PMON_PLD

06_2EH. See Table 2-16

MSR_M0_PMON_TIMESTAMP

06_2EH. See Table 2-16

MSR_M0_PMON_ZDP

06_2EH. See Table 2-16

MSR_M1_PMON_ADDR_MASK

06_2EH. See Table 2-16

MSR_M1_PMON_ADDR_MATCH

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_M1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_M1_PMON_CTR0

06_2EH. See Table 2-16

MSR_M1_PMON_CTR1

06_2EH. See Table 2-16

MSR_M1_PMON_CTR2

06_2EH. See Table 2-16

MSR_M1_PMON_CTR3

06_2EH. See Table 2-16

MSR_M1_PMON_CTR4

06_2EH. See Table 2-16

MSR_M1_PMON_CTR5

06_2EH. See Table 2-16

MSR_M1_PMON_DSP

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-390 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_M1_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_M1_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR_M1_PMON_ISS

06_2EH. See Table 2-16

MSR_M1_PMON_MAP

06_2EH. See Table 2-16

MSR_M1_PMON_MM_CONFIG

06_2EH. See Table 2-16

MSR_M1_PMON_MSC_THR

06_2EH. See Table 2-16

MSR_M1_PMON_PGT

06_2EH. See Table 2-16

MSR_M1_PMON_PLD

06_2EH. See Table 2-16

MSR_M1_PMON_TIMESTAMP

06_2EH. See Table 2-16

MSR_M1_PMON_ZDP

06_2EH. See Table 2-16

IA32_MC0_MISC / MSR_MC0_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_MC0_RESIDENCY

06_57H. See Table 2-43

IA32_MC1_MISC / MSR_MC1_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

IA32_MC10_ADDR / MSR_MC10_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_CTL / MSR_MC10_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-391

MODEL-SPECIFIC REGISTERS (MSRS)

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_MISC / MSR_MC10_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC10_STATUS / MSR_MC10_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC11_ADDR / MSR_MC11_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_CTL / MSR_MC11_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_MISC / MSR_MC11_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC11_STATUS / MSR_MC11_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-392 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC12_ADDR / MSR_MC12_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_CTL / MSR_MC12_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_MISC / MSR_MC12_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC12_STATUS / MSR_MC12_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_ADDR / MSR_MC13_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_CTL / MSR_MC13_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC13_MISC / MSR_MC13_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-393

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC13_STATUS / MSR_MC13_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_ADDR / MSR_MC14_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_CTL / MSR_MC14_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_MISC / MSR_MC14_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC14_STATUS / MSR_MC14_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_ADDR / MSR_MC15_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_CTL / MSR_MC15_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-394 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC15_MISC / MSR_MC15_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC15_STATUS / MSR_MC15_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_ADDR / MSR_MC16_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_CTL / MSR_MC16_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_MISC / MSR_MC16_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC16_STATUS / MSR_MC16_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC17_ADDR / MSR_MC17_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-395

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC17_CTL / MSR_MC17_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC17_MISC / MSR_MC17_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC17_STATUS / MSR_MC17_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_ADDR / MSR_MC18_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_CTL / MSR_MC18_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC18_MISC / MSR_MC18_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-396 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC18_STATUS / MSR_MC18_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_ADDR / MSR_MC19_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_CTL / MSR_MC19_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_MISC / MSR_MC19_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC19_STATUS / MSR_MC19_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC2_MISC / MSR_MC2_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

IA32_MC20_ADDR / MSR_MC20_ADDR

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-397

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC20_CTL / MSR_MC20_CTL

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC20_MISC / MSR_MC20_MISC

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC20_STATUS / MSR_MC20_STATUS

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC21_ADDR / MSR_MC21_ADDR

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_CTL / MSR_MC21_CTL

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_MISC / MSR_MC21_MISC

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC21_STATUS / MSR_MC21_STATUS

06_2EH. See Table 2-16

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4F. See Table 2-37

IA32_MC22_ADDR / MSR_MC22_ADDR

06_3EH. See Table 2-25

IA32_MC22_CTL / MSR_MC22_CTL

06_3EH. See Table 2-25

IA32_MC22_MISC / MSR_MC22_MISC

06_3EH. See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-398 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC22_STATUS / MSR_MC22_STATUS

06_3EH. See Table 2-25

IA32_MC23_ADDR / MSR_MC23_ADDR

06_3EH. See Table 2-25

IA32_MC23_CTL / MSR_MC23_CTL

06_3EH. See Table 2-25

IA32_MC23_MISC / MSR_MC23_MISC

06_3EH. See Table 2-25

IA32_MC23_STATUS / MSR_MC23_STATUS

06_3EH. See Table 2-25

IA32_MC24_ADDR / MSR_MC24_ADDR

06_3EH. See Table 2-25

IA32_MC24_CTL / MSR_MC24_CTL

06_3EH. See Table 2-25

IA32_MC24_MISC / MSR_MC24_MISC

06_3EH. See Table 2-25

IA32_MC24_STATUS / MSR_MC24_STATUS

06_3EH. See Table 2-25

IA32_MC25_ADDR / MSR_MC25_ADDR

06_3EH. See Table 2-25

IA32_MC25_CTL / MSR_MC25_CTL

06_3EH. See Table 2-25

IA32_MC25_MISC / MSR_MC25_MISC

06_3EH. See Table 2-25

IA32_MC25_STATUS / MSR_MC25_STATUS

06_3EH. See Table 2-25

IA32_MC26_ADDR / MSR_MC26_ADDR

06_3EH. See Table 2-25

IA32_MC26_CTL / MSR_MC26_CTL

06_3EH. See Table 2-25

IA32_MC26_MISC / MSR_MC26_MISC

06_3EH. See Table 2-25

IA32_MC26_STATUS / MSR_MC26_STATUS

06_3EH. See Table 2-25

IA32_MC27_ADDR / MSR_MC27_ADDR

06_3EH. See Table 2-25

IA32_MC27_CTL / MSR_MC27_CTL

06_3EH. See Table 2-25

IA32_MC27_MISC / MSR_MC27_MISC

06_3EH. See Table 2-25

IA32_MC27_STATUS / MSR_MC27_STATUS

06_3EH. See Table 2-25

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-399

MODEL-SPECIFIC REGISTERS (MSRS)

IA32_MC28_ADDR / MSR_MC28_ADDR

06_3EH. See Table 2-25

IA32_MC28_CTL / MSR_MC28_CTL

06_3EH. See Table 2-25

IA32_MC28_MISC / MSR_MC28_MISC

06_3EH. See Table 2-25

IA32_MC28_STATUS / MSR_MC28_STATUS

06_3EH. See Table 2-25

IA32_MC29_ADDR / MSR_MC29_ADDR

06_3EH. See Table 2-26

IA32_MC29_CTL / MSR_MC29_CTL

06_3EH. See Table 2-26

IA32_MC29_MISC / MSR_MC29_MISC

06_3EH. See Table 2-26

IA32_MC29_STATUS / MSR_MC29_STATUS

06_3EH. See Table 2-26

IA32_MC3_ADDR / MSR_MC3_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC3_CTL / MSR_MC3_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC3_MISC / MSR_MC3_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_0EH. See Table 2-48

IA32_MC3_STATUS / MSR_MC3_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-400 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC30_ADDR / MSR_MC30_ADDR

06_3EH. See Table 2-26

IA32_MC30_CTL / MSR_MC30_CTL

06_3EH. See Table 2-26

IA32_MC30_MISC / MSR_MC30_MISC

06_3EH. See Table 2-26

IA32_MC30_STATUS / MSR_MC30_STATUS

06_3EH. See Table 2-26

IA32_MC31_ADDR / MSR_MC31_ADDR

06_3EH. See Table 2-26

IA32_MC31_CTL / MSR_MC31_CTL

06_3EH. See Table 2-26

IA32_MC31_MISC / MSR_MC31_MISC

06_3EH. See Table 2-26

IA32_MC31_STATUS / MSR_MC31_STATUS

06_3EH. See Table 2-26

IA32_MC4_ADDR / MSR_MC4_ADDR

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC4_CTL / MSR_MC4_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

06_0EH. See Table 2-48

06_09H. See Table 2-49

IA32_MC4_CTL2 / MSR_MC4_CTL2

06_2AH, 06_2DH . See Table 2-19

IA32_MC4_STATUS / MSR_MC4_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_57H. See Table 2-43

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-401

MODEL-SPECIFIC REGISTERS (MSRS)

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_MC5_ADDR / MSR_MC5_ADDR

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC5_CTL / MSR_MC5_CTL

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC5_MISC / MSR_MC5_MISC

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_0EH. See Table 2-48

IA32_MC5_STATUS / MSR_MC5_STATUS

06_0FH, 06_17H . See Table 2-3

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_4FH. See Table 2-37

06_57H. See Table 2-43

06_0EH. See Table 2-48

IA32_MC6_ADDR / MSR_MC6_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-402 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC6_CTL / MSR_MC6_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MC6_DEMOTION_POLICY_CONFIG

06_37H. See Table 2-9

IA32_MC6_MISC / MSR_MC6_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MC6_RESIDENCY_COUNTER

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_37H. See Table 2-9

06_57H. See Table 2-43

IA32_MC6_STATUS / MSR_MC6_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_ADDR / MSR_MC7_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_CTL / MSR_MC7_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-403

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_MISC / MSR_MC7_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC7_STATUS / MSR_MC7_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC8_ADDR / MSR_MC8_ADDR

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_CTL / MSR_MC8_CTL

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_MISC / MSR_MC8_MISC

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_4FH. See Table 2-37

IA32_MC8_STATUS / MSR_MC8_STATUS

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-404 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_4FH. See Table 2-37

IA32_MC9_ADDR / MSR_MC9_ADDR

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_CTL / MSR_MC9_CTL

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_MISC / MSR_MC9_MISC

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

IA32_MC9_STATUS / MSR_MC9_STATUS

06_2EH. See Table 2-16

06_2DH. See Table 2-22

06_3EH. See Table 2-25

06_3F. See Table 2-31

06_56H, 06_4FH . See Table 2-36

06_4FH. See Table 2-37

MSR_MCG_MISC

0FH. See Table 2-45

MSR_MCG_R10

0FH. See Table 2-45

MSR_MCG_R11

0FH. See Table 2-45

MSR_MCG_R12

0FH. See Table 2-45

MSR_MCG_R13

0FH. See Table 2-45

MSR_MCG_R14

0FH. See Table 2-45

MSR_MCG_R15

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-405

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

MSR_MCG_R8

0FH. See Table 2-45

MSR_MCG_R9

0FH. See Table 2-45

MSR_MCG_RAX

0FH. See Table 2-45

MSR_MCG_RBP

0FH. See Table 2-45

MSR_MCG_RBX

0FH. See Table 2-45

MSR_MCG_RCX

0FH. See Table 2-45

MSR_MCG_RDI

0FH. See Table 2-45

MSR_MCG_RDX

0FH. See Table 2-45

MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5

0FH. See Table 2-45

MSR_MCG_RFLAGS

0FH. See Table 2-45

MSR_MCG_RIP

0FH. See Table 2-45

MSR_MCG_RSI

0FH. See Table 2-45

MSR_MCG_RSP

0FH. See Table 2-45

MSR_MISC_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_MISC_PWR_MGMT

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_MOB_ESCR0

0FH. See Table 2-45

MSR_MOB_ESCR1

0FH. See Table 2-45

MSR_MS_CCCR0

0FH. See Table 2-45

MSR_MS_CCCR1

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-406 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

MSR_MS_CCCR2

0FH. See Table 2-45

MSR_MS_CCCR3

0FH. See Table 2-45

MSR_MS_COUNTER0

0FH. See Table 2-45

MSR_MS_COUNTER1

0FH. See Table 2-45

MSR_MS_COUNTER2

0FH. See Table 2-45

MSR_MS_COUNTER3

0FH. See Table 2-45

MSR_MS_ESCR0

0FH. See Table 2-45

MSR_MS_ESCR1

0FH. See Table 2-45

MSR_MTRRCAP

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_OFFCORE_RSP_0

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

MSR_OFFCORE_RSP_1

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_25H, 06_2CH . See Table 2-17

06_2FH. See Table 2-18

06_2AH, 06_2DH . See Table 2-19

06_57H. See Table 2-43

MSR_PCIE_PLL_RATIO

06_3FH. See Table 2-31

MSR_PCU_PMON_BOX_CTL

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_BOX_FILTER

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_BOX_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR0

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-407

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR1

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR2

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_CTR3

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL0

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL1

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL2

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PCU_PMON_EVNTSEL3

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_PEBS_ENABLE

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH. See Table 2-12

06_7AH. See Table 2-13

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3EH. See Table 2-26

06_57H. See Table 2-43

0FH. See Table 2-45

MSR_PEBS_FRONTEND

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PEBS_LD_LAT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_PEBS_MATRIX_VERT

0FH. See Table 2-45

MSR_PEBS_NUM_ALT

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-408 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

MSR_PERF_CAPABILITIES

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR_CTRL

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR0

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR1

06_0FH, 06_17H . See Table 2-3

MSR_PERF_FIXED_CTR2

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_CTRL

06_0FH, 06_17H . See Table 2-3

MSR_PERF_GLOBAL_OVF_CTRL

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PERF_GLOBAL_STATUS

06_0FH, 06_17H . See Table 2-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PERF_STATUS

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_2AH, 06_2DH . See Table 2-19

MSR_PKG_C10_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_45H. See Table 2-29 and
Table 2-30

06_4FH. See Table 2-37

MSR_PKG_C2_RESIDENCY

06_27H. See Table 2-5

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C3_RESIDENCY

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_66H. See Table 2-41

06_57H. See Table 2-43

MSR_PKG_C4_RESIDENCY

06_27H. See Table 2-5

MSR_PKG_C6_RESIDENCY

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-409

MODEL-SPECIFIC REGISTERS (MSRS)

06_27H. See Table 2-5

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C7_RESIDENCY

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . See Table 2-14

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_C8_RESIDENCY

06_45H. See Table 2-30

06_4FH. See Table 2-37

MSR_PKG_C9_RESIDENCY

06_45H. See Table 2-30

06_4FH. See Table 2-37

MSR_PKG_CST_CONFIG_CONTROL

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_4CH. See Table 2-11

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_45H. See Table 2-30

06_3F. See Table 2-31

06_3DH. See Table 2-34

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_PKG_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

MSR_PKG_HDC_CONFIG

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_HDC_DEEP_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_HDC_SHALLOW_RESIDENCY

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PKG_PERF_STATUS

06_5CH, 06_7AH . See Table 2-12

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-410 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2DH. See Table 2-22

06_3EH, 06_3FH . See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-29

06_57H. See Table 2-43

MSR_PKG_POWER_INFO

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKG_POWER_LIMIT

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PKGC_IRTL1

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-28

MSR_PKGC_IRTL2

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H. See Table 2-28

MSR_PKGC3_IRTL

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH . See Table 2-19

MSR_PKGC6_IRTL

06_2AH, 06_2DH . See Table 2-19

MSR_PKGC7_IRTL

06_2AH. See Table 2-20

MSR_PLATFORM_BRV

0FH. See Table 2-45

MSR_PLATFORM_ENERGY_COUNTER

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PLATFORM_ID

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . See Table 2-7

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_PLATFORM_INFO

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-411

MODEL-SPECIFIC REGISTERS (MSRS)

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_3CH, 06_45H, 06_46H . See Table 2-28 and
Table 2-29

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_PLATFORM_POWER_LIMIT

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PMG_IO_CAPTURE_BASE

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4CH. See Table 2-11

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3AH. See Table 2-24

06_3EH. See Table 2-25

06_57H. See Table 2-43

MSR_PMH_ESCR0

0FH. See Table 2-45

MSR_PMH_ESCR1

0FH. See Table 2-45

MSR_PMON_GLOBAL_CONFIG

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PMON_GLOBAL_CTL

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_PMON_GLOBAL_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_POWER_CTL

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR_PP0_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PP0_POLICY

06_2AH, 06_45H . See Table 2-20

MSR_PP0_POWER_LIMIT

06_4CH. See Table 2-11

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-412 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_57H. See Table 2-43

MSR_PP1_ENERGY_STATUS

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_PP1_POLICY

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_PP1_POWER_LIMIT

06_2AH, 06_45H . See Table 2-20

06_3CH, 06_45H, 06_46H See Table 2-29

MSR_PPERF

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_PPIN

06_3EH. See Table 2-25

06_56H, 06_4FH . See Table 2-35

MSR_PPIN_CTL

06_3EH. See Table 2-25

06_56H, 06_4FH . See Table 2-35

MSR_PRMRR_PHYS_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-40

MSR_PRMRR_VALID_CONFIG

06_8EH, 06_9EH . See Table 2-40

MSR_RING_RATIO_LIMIT

06_8EH, 06_9EH . See Table 2-40

MSR_R0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_R0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_R0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_R0_PMON_CTR0

06_2EH. See Table 2-16

MSR_R0_PMON_CTR1

06_2EH. See Table 2-16

MSR_R0_PMON_CTR2

06_2EH. See Table 2-16

MSR_R0_PMON_CTR3

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-413

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R0_PMON_CTR4

06_2EH. See Table 2-16

MSR_R0_PMON_CTR5

06_2EH. See Table 2-16

MSR_R0_PMON_CTR6

06_2EH. See Table 2-16

MSR_R0_PMON_CTR7

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL4

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL5

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL6

06_2EH. See Table 2-16

MSR_R0_PMON_EVNT_SEL7

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P0

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P1

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P2

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P3

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P4

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P5

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P6

06_2EH. See Table 2-16

MSR_R0_PMON_IPERF0_P7

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P0

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-414 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R0_PMON_QLX_P1

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P2

06_2EH. See Table 2-16

MSR_R0_PMON_QLX_P3

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_R1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_R1_PMON_CTR10

06_2EH. See Table 2-16

MSR_R1_PMON_CTR11

06_2EH. See Table 2-16

MSR_R1_PMON_CTR12

06_2EH. See Table 2-16

MSR_R1_PMON_CTR13

06_2EH. See Table 2-16

MSR_R1_PMON_CTR14

06_2EH. See Table 2-16

MSR_R1_PMON_CTR15

06_2EH. See Table 2-16

MSR_R1_PMON_CTR8

06_2EH. See Table 2-16

MSR_R1_PMON_CTR9

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL10

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL11

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL12

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL13

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL14

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL15

06_2EH. See Table 2-16

MSR_R1_PMON_EVNT_SEL8

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-415

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_R1_PMON_EVNT_SEL9

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P10

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P11

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P12

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P13

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P14

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P15

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P8

06_2EH. See Table 2-16

MSR_R1_PMON_IPERF1_P9

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P4

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P5

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P6

06_2EH. See Table 2-16

MSR_R1_PMON_QLX_P7

06_2EH. See Table 2-16

MSR_RAPL_POWER_UNIT

06_37H, 06_4AH, 06_5AH, 06_5DH . See Table 2-8

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . See Table 2-19

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_RAT_ESCR0

0FH. See Table 2-45

MSR_RAT_ESCR1

0FH. See Table 2-45

MSR_RING_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_S0_PMON_BOX_CTRL

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-416 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3FH. See Table 2-32

MSR_S0_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S0_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR_S0_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_S0_PMON_CTR0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_CTR3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_EVNT_SEL3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S0_PMON_MASK

06_2EH. See Table 2-16

MSR_S0_PMON_MATCH

06_2EH. See Table 2-16

MSR_S1_PMON_BOX_CTRL

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S1_PMON_BOX_OVF_CTRL

06_2EH. See Table 2-16

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-417

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S1_PMON_BOX_STATUS

06_2EH. See Table 2-16

MSR_S1_PMON_CTR0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_CTR3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL0

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL1

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL2

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_EVNT_SEL3

06_2EH. See Table 2-16

06_3FH. See Table 2-32

MSR_S1_PMON_MASK

06_2EH. See Table 2-16

MSR_S1_PMON_MATCH

06_2EH. See Table 2-16

MSR_S2_PMON_BOX_CTL

06_3FH. See Table 2-32

MSR_S2_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S2_PMON_CTR0

06_3FH. See Table 2-32

MSR_S2_PMON_CTR1

06_3FH. See Table 2-32

MSR_S2_PMON_CTR2

06_3FH. See Table 2-32

MSR_S2_PMON_CTR3

06_3FH. See Table 2-32

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-418 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_S2_PMON_EVNTSEL0

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL1

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL2

06_3FH. See Table 2-32

MSR_S2_PMON_EVNTSEL3

06_3FH. See Table 2-32

MSR_S3_PMON_BOX_CTL

06_3FH. See Table 2-32

MSR_S3_PMON_BOX_FILTER

06_3FH. See Table 2-32

MSR_S3_PMON_CTR0

06_3FH. See Table 2-32

MSR_S3_PMON_CTR1

06_3FH. See Table 2-32

MSR_S3_PMON_CTR2

06_3FH. See Table 2-32

MSR_S3_PMON_CTR3

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL0

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL1

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL2

06_3FH. See Table 2-32

MSR_S3_PMON_EVNTSEL3

06_3FH. See Table 2-32

MSR_SAAT_ESCR0

0FH. See Table 2-45

MSR_SAAT_ESCR1

0FH. See Table 2-45

MSR_SGXOWNEREPOCH0

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_SGXOWNEREPOCH1

06_5CH, 06_7AH . See Table 2-12

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_SMI_COUNT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-419

MODEL-SPECIFIC REGISTERS (MSRS)

06_57H. See Table 2-43

MSR_SMM_BLOCKED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_DELAYED

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_FEATURE_CONTROL

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

MSR_SMM_MCA_CAP

06_5CH, 06_7AH . See Table 2-12

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

06_57H. See Table 2-43

MSR_SMRR_PHYSBASE

06_0FH, 06_17H . See Table 2-3

MSR_SMRR_PHYSMASK

06_0FH, 06_17H . See Table 2-3

MSR_SSU_ESCR0

0FH. See Table 2-45

MSR_TBPU_ESCR0

0FH. See Table 2-45

MSR_TBPU_ESCR1

0FH. See Table 2-45

MSR_TC_ESCR0

0FH. See Table 2-45

MSR_TC_ESCR1

0FH. See Table 2-45

MSR_TC_PRECISE_EVENT

0FH . See Table 2-45

MSR_TEMPERATURE_TARGET

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

06_2AH, 06_2DH . See Table 2-19

06_3EH. See Table 2-25

06_56H, 06_4FH. See Table 2-35

06_57H. See Table 2-43

MSR_THERM2_CTL

06_0FH, 06_17H . See Table 2-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . See Table 2-4

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-420 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

0FH. See Table 2-45

06_0EH. See Table 2-48

06_09H. See Table 2-49

MSR_THREAD_ID_INFO

06_3FH. See Table 2-31

MSR_TRACE_HUB_STH_ACPIBAR_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_TURBO_ACTIVATION_RATIO

06_5CH, 06_7AH . See Table 2-12

06_3AH. See Table 2-24

06_3CH, 06_45H, 06_46H . See Table 2-28

06_57H. See Table 2-43

MSR_TURBO_GROUP_CORECNT

06_5CH, 06_7AH . See Table 2-12

MSR_TURBO_POWER_CURRENT_LIMIT

06_1AH, 06_1EH, 06_1FH, 06_2EH . See Table 2-14

MSR_TURBO_RATIO_LIMIT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH, 06_5CH, 06_7AH. See Table 2-6

06_4DH. See Table 2-10

06_5CH, 06_7AH . See Table 2-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH . See Table 2-14

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

06_2EH. See Table 2-16

06_25H, 06_2CH . See Table 2-17

06_2FH. See Table 2-18

06_2AH, 06_45H . See Table 2-20

06_2DH. See Table 2-22

06_3EH. See Table 2-25 and
Table 2-26

06_3CH, 06_45H, 06_46H . See Table 2-29

06_3FH. See Table 2-31

06_3DH. See Table 2-34

06_56H, 06_4FH . See Table 2-35

06_55H. See Table 2-42

06_57H. See Table 2-43

MSR_TURBO_RATIO_LIMIT1

06_3EH. See Table 2-25 and
Table 2-26

06_3FH. See Table 2-31

06_56H, 06_4FH . See Table 2-35

MSR_TURBO_RATIO_LIMIT2

06_3FH. See Table 2-31

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-421

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_TURBO_RATIO_LIMIT3

06_56H. See Table 2-36

06_4FH. See Table 2-37

MSR_TURBO_RATIO_LIMIT_CORES

06_55H. See Table 2-42

MSR_U_PMON_BOX_STATUS

06_3EH. See Table 2-27

06_3FH. See Table 2-32

MSR_U_PMON_CTR

06_2EH. See Table 2-16

MSR_U_PMON_CTR0

06_2DH. See Table 2-23

06_3FH. See Table 2-32

MSR_U_PMON_CTR1

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_EVNT_SEL

06_2EH . See Table 2-16

MSR_U_PMON_EVNTSEL0

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_EVNTSEL1

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_GLOBAL_CTRL

06_2EH . See Table 2-16

MSR_U_PMON_GLOBAL_OVF_CTRL

06_2EH . See Table 2-16

MSR_U_PMON_GLOBAL_STATUS

06_2EH . See Table 2-16

MSR_U_PMON_UCLK_FIXED_CTL

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U_PMON_UCLK_FIXED_CTR

06_2DH . See Table 2-23

06_3FH . See Table 2-32

MSR_U2L_ESCR0

0FH . See Table 2-45

MSR_U2L_ESCR1

0FH . See Table 2-45

MSR_UNC_ARB_PERFCTR0

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-422 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_ARB_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_0_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_0_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_0_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFCTR0

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-423

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_1_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_1_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_1_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFEVTSEL1

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-424 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_2_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_2_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_2_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFCTR0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFCTR1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFCTR3

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFEVTSEL0

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFEVTSEL1

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_CBO_3_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_3_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_3_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR0

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR1

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR2

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFCTR3

06_2AH . See Table 2-21

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-425

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_UNC_CBO_4_PERFEVTSEL0

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL1

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL2

06_2AH . See Table 2-21

MSR_UNC_CBO_4_PERFEVTSEL3

06_2AH . See Table 2-21

MSR_UNC_CBO_4_UNIT_STATUS

06_2AH . See Table 2-21

MSR_UNC_CBO_CONFIG

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_FIXED_CTR

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_FIXED_CTRL

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_GLOBAL_CTRL

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNC_PERF_GLOBAL_STATUS

06_2AH . See Table 2-21

06_3CH, 06_45H, 06_46H . See Table 2-29

06_4EH, 06_5EH . See Table 2-39

MSR_UNCORE_ADDR_OPCODE_MATCH

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_FIXED_CTR_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_FIXED_CTR0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERF_GLOBAL_STATUS

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-426 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MSR_UNCORE_PERFEVTSEL0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PERFEVTSEL7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

06_2EH . See Table 2-16

MSR_UNCORE_PMC6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PMC7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . See Table 2-15

MSR_UNCORE_PRMRR_BASE

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_UNCORE_PRMRR_MASK

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MSR_UNCORE_PRMRR_PHYS_BASE

06_8EH, 06_9EH . See Table 2-40

MSR_UNCORE_PRMRR_PHYS_MASK

06_8EH, 06_9EH . See Table 2-40

MSR_W_PMON_BOX_CTRL

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-427

MODEL-SPECIFIC REGISTERS (MSRS)

06_2EH . See Table 2-16

MSR_W_PMON_BOX_OVF_CTRL

06_2EH . See Table 2-16

MSR_W_PMON_BOX_STATUS

06_2EH . See Table 2-16

MSR_W_PMON_CTR0

06_2EH . See Table 2-16

MSR_W_PMON_CTR1

06_2EH . See Table 2-16

MSR_W_PMON_CTR2

06_2EH . See Table 2-16

MSR_W_PMON_CTR3

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL0

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL1

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL2

06_2EH . See Table 2-16

MSR_W_PMON_EVNT_SEL3

06_2EH . See Table 2-16

MSR_W_PMON_FIXED_CTR

06_2EH . See Table 2-16

MSR_W_PMON_FIXED_CTR_CTL

06_2EH . See Table 2-16

MSR_WEIGHTED_CORE_C0

06_4EH, 06_5EH, 06_55H, 06_8EH, 06_9EH, 06_66H. See Table 2-38

MTRRfix16K_80000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix16K_A0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_C0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_C8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_D0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-428 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRfix4K_D8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_E0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_E8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_F0000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix4K_F8000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRfix64K_00000

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase0

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase1

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase2

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase3

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase4

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase5

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase6

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysBase7

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

Vol. 4 2-429

MODEL-SPECIFIC REGISTERS (MSRS)

MTRRphysMask0

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask1

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask2

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask3

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask4

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask5

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask6

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MTRRphysMask7

06_0EH . See Table 2-48

P6 Family . See Table 2-50

MSR Name and CPUID DisplayFamily_DisplayModel Location

2-430 Vol. 4

MODEL-SPECIFIC REGISTERS (MSRS)

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 3, Volume 1
	Chapter 3 Basic Execution Environment

	2. Updates to Chapter 4, Volume 1
	Chapter 4 Data Types

	3. Updates to Chapter 5, Volume 1
	Chapter 5 Instruction Set Summary

	4. Updates to Chapter 8, Volume 1
	Chapter 8 Programming with the x87 FPU

	5. Updates to Chapter 11, Volume 1
	Chapter 11 Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2)

	6. Updates to Chapter 19, Volume 1
	Chapter 19 Processor Identification and Feature Determination

	7. Updates to Appendix D, Volume 1
	Appendix D Guidelines for Writing x87 FPU Exception Handlers

	8. Updates to Appendix E, Volume 1
	Appendix E Guidelines for Writing SIMD Floating-Point Exception Handlers

	9. Updates to Chapter 2, Volume 2A
	Chapter 2 Instruction Format

	10. Updates to Chapter 3, Volume 2A
	11. Updates to Chapter 4, Volume 2B
	12. Updates to Chapter 5, Volume 2C
	13. Updates to Chapter 7, Volume 2D
	14. Updates to Chapter 8, Volume 3A
	Chapter 8 Multiple-Processor Management

	15. Updates to Chapter 9, Volume 3A
	Chapter 9 Processor Management and Initialization

	16. Updates to Chapter 10, Volume 3A
	Chapter 10 Advanced Programmable Interrupt Controller (APIC)

	17. Updates to Chapter 17, Volume 3B
	Chapter 17 Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) Features

	18. Updates to Chapter 18, Volume 3B
	Chapter 18 Performance Monitoring

	19. Updates to Chapter 19, Volume 3B
	Chapter 19 Performance Monitoring Events

	20. Updates to Chapter 24, Volume 3B
	Chapter 24 Virtual Machine Control Structures

	21. Updates to Chapter 28, Volume 3C
	Chapter 28 VMX Support for Address Translation

	22. Updates to Chapter 35, Volume 3C
	Chapter 35 Intel® Processor Trace

	23. Updates to Chapter 36, Volume 3D
	Chapter 36 Introduction to Intel® Software Guard Extensions

	24. Updates to Chapter 37, Volume 3D
	Chapter 37 Enclave Access Control and Data Structures

	25. Updates to Chapter 38, Volume 3D
	Chapter 38 Enclave Operation

	26. Updates to Chapter 40, Volume 3D
	Chapter 40 SGX Instruction References

	27. Updates to Chapter 41, Volume 3D
	Chapter 41 Intel® SGX Interactions with IA32 and Intel® 64 Architecture

	28. Updates to Appendix A, Volume 3D
	Appendix A VMX Capability Reporting Facility

	29. Updates to Chapter 2, Volume 4
	Chapter 2 Model-Specific Registers (MSRs)

