
IA-32 Intel® Architecture Software
Developer’s Manual
Documentation Changes

March 27, 2006

Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

Document Number: 252046-016

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2006, Intel Corporation. All rights reserved.

IA-32 Software Developer’s Manual Documentation Changes 3

Contents
Revision History ...4

Preface...5

Summary Table of Changes...6

Documentation Changes..7

4 IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 • Initial Release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual

December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and

Len Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion.

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24.

June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.

July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015
• Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Manual.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer’s Manual: Volume 1, Basic Architecture 253665

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2A, Instruction Set
Reference 253666

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2B, Instruction Set
Reference 253667

IA-32 Intel® Architecture Software Developer’s Manual: Volume 3A, System
Programming Guide 253668

IA-32 Intel® Architecture Software Developer’s Manual: Volume 3B, System
Programming Guide 253669

6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel®
Architecture. This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number Documentation Changes

1 Note added on use of spurious vectors for LVT entries

2 Documentation of settings for FPU flags updated

3 PSUBUSB/PSUBUSW compiler intrinsics corrected

4 Updates made to WRMSR description

5 Documentation on enabling/disabling APIC updated

6 Updated information on MOV CR8

7 Updated data on semaphores and the WC memory type

8 Updates made to VMCALL information

9 Thermal monitor information updated

10 Error in example corrected

11 Documentation for guest error handling updated

12 Missing text and footnote addressed

13 Sentence corrected (where change impacts sense)

14 Text updated to a address a numbered list problem

15 More APIC documentation clarifications (for C6 support)

16 Register reference corrected

17 Appendix A updated to include 3-byte opcode information

18 Segment reference corrected

19 Figure callout corrected

20 Error in table corrected

21 Encodings added for Multi-Byte No Operation

22 Update RMDPMC documentation adding more family-specific data

23 Sections covering variable range MTRRs updated

IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. Note added on use of spurious vectors for LVT entries
In Section 8.9, “Spurious Interrupt,” of the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 3A. A note has been added to cover a usage restriction. See the change bar.

8.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to
the level of the interrupt for which the processor INTR signal is currently being asserted. If at the
time the INTA cycle is issued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will deliver a spurious-interrupt vector. Dispensing the
spurious-interrupt vector does not affect the ISR, so the handler for this vector should return without
an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector
register (see Figure 8-23). The functions of the fields in this register are as follows:

Spurious Vector Determines the vector number to be delivered to the processor when the
local APIC generates a spurious vector.

(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field
are programmable by software.

(P6 family and Pentium processors). Bits 4 through 7 of the this field are
programmable by software, and bits 0 through 3 are hardwired to logical
ones. Software writes to bits 0 through 3 have no effect.

APIC Software Allows software to temporarily enable (1) or disable (0) the local

Enable/Disable APIC (see Section 8.4.3, “Enabling or Disabling the Local APIC”).

Focus Processor Determines if focus processor checking is enabled (0) or disabled (1)

Checking when using the lowest-priority delivery mode. In Pentium 4 and Intel
Xeon processors, this bit is reserved and should be cleared to 0.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if
you set the mask bit. A spurious vector ISR does not do an EOI. If for
some reason an interrupt is generated by an LVT or RTE entry, the bit in
the in-service register will be left set for the spurious vector. This will
mask all interrupts at the same or lower priority

8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

2. Documentation of settings for FPU flags updated
In Chapter 3, “Instruction Set Reference, A-M,” of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A, see the “FXCH—Exchange Register Contents” section. Flag
settings have been corrected in the discussion of FXCH. Corrected settings are marked with a
change bar.

FXCH—Exchange Register Contents

Description
Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the contents
of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top of
the stack [ST(0)], so that they can be operated on by those floating-point instructions that can only
operate on values in ST(0). For example, the following instruction sequence takes the square root of
the third register from the top of the register stack:
FXCH ST(3);
FSQRT;
FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Figure 8-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking1

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector2

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

2. For the P6 family and Pentium processors, bits 0 through 3
of the spurious vector are hardwired to 1.

1. Not supported in Pentium 4 and Intel Xeon processors.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and
ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and
ST(1).

IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

Operation
IF (Number-of-operands) is 1

THEN
temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 1.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

Same exceptions as in Protected Mode.

3. PSUBUSB/PSUBUSW compiler intrinsics corrected
In Chapter 4, “Instruction Set Reference, N-Z,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 2B, see the “PSUBUSB/PSUBUSW—Subtract Packed Unsigned
Integers with Unsigned Saturation” section. Compiler instrinsics were corrected. The same
correction was made to Appendix C of the same volume (not listed below).

10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Description
Performs an SIMD subtract of the packed unsigned integers of the source operand (second operand)
from the packed unsigned integers of the destination operand (first operand), and stores the packed
unsigned integer results in the destination operand. See Figure 9-4 in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Overflow is
handled with unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand can
be either an MMX technology register or a 64-bit memory location. When operating on 128-bit
operands, the destination operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte result
is less than zero, the saturated value of 00H is written to the destination operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an individual word
result is less than zero, the saturated value of 0000H is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSUBUSB instruction with 64-bit operands:

DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D8 /r PSUBUSB mm,
mm/m64

Valid Valid Subtract unsigned packed bytes in
mm/m64 from unsigned packed bytes
in mm and saturate result.

66 0F D8 /r PSUBUSB xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned byte
integers in xmm2/m128 from packed
unsigned byte integers in xmm1 and
saturate result.

0F D9 /r PSUBUSW mm,
mm/m64

Valid Valid Subtract unsigned packed words in
mm/m64 from unsigned packed words
in mm and saturate result.

66 0F D9 /r PSUBUSW xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned word
integers in xmm2/m128 from packed
unsigned word integers in xmm1 and
saturate result.

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is
3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is
3.

4. Updates made to WRMSR description
In Chapter 4, “Instruction Set Reference, N-Z,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 2B, see the “WRMSR—Write to Model Specific Register”
section.Changes have been made to the Description subsection. See the change bars.

IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

WRMSR—Write to Model Specific Register

Description
In legacy and compatibility mode, writes the contents of registers EDX:EAX into the 64-bit model
specific register (MSR) specified by the ECX register. The value loaded into the ECX register is the
address of the MSR. The contents of the EDX register are copied to high-order 32 bits of the selected
MSR and the contents of the EAX register are copied to low-order 32 bits of the MSR. Undefined
or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general
protection exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in
ECX will also cause a general protection exception. The processor will also generate a general
protection exception if software attempts to write reserved bits in a MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes
global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine
check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, lists all MSRs that can be read with this instruction and
their addresses. Note that each processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7 of
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

In 64-bit mode, operation is the same as legacy mode, except that targeted registers are updated by
MSR[63:32] = RDX[31:0], MSR[31:0] = RAX[31:0].

IA-32 Architecture Compatibility
The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-
32 architecture with the Pentium processor. Execution of this instruction by an IA-32 processor
earlier than the Pentium processor results in an invalid opcode exception #UD.

Operation
IF 64-BIt Mode and REX.W used

THEN
MSR[RCX] ← RDX:RAX;

ELSE IF (Non-64-Bit Modes or Default 64-Bit Mode)
MSR[ECX] ← EDX:EAX; FI;

FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.

REX.W + 0F 30 WRMSR Valid N.E. Write the value in RDX[31:0]:
RAX[31:0] to MSR specified by RCX.

14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Real-Address Mode Exceptions
#GP(0) If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

5. Documentation on enabling/disabling APIC updated
In Section 8.4.3, “Enabling or Disabling the Local APIC,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3A, the change details APIC state during C6 transitions. See the
change bars.

8.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address
1BH; see Figure 8-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32
processor without an on-chip APIC. The CPUID feature flag for the APIC (see Section
8.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus
cannot be generally re-enabled until a system hardware reset. The 3-wire bus looses track
of arbitration that would be necessary for complete re-enabling. Certain APIC function-
ality can be enabled (for example: performance and thermal monitoring interrupt gener-
ation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable
or enable the APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is
not required to re-start APIC functionality.

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and
the APIC may return to the state described in Section 8.4.7.1, “Local APIC State After
Power-Up or Reset”.

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see
Figure 8-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time
by clearing the APIC software enable/disable flag in the spurious-interrupt vector register
(see Figure 8-23). The state of the local APIC when in this software-disabled state is
described in Section 8.4.7.2, “Local APIC State After It Has Been Software Disabled”.

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by
setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during
power-up or RESET to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being
delivered to the processor from selected local interrupt sources (the LINT0 and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and/or the internal APIC
error detector).

6. Updated information on MOV CR8
In Chapter 3, “Instruction Set Reference, A-M,” of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A, see the “MOV—Move to/from Control Registers” section.

MOV CR8 is not defined in the architecture as being a serializing instruction. Existing text has been
updated to reflect this. The same change was made in Chapter 7, “Multiple-Processor Management,”
in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A (not listed below).

MOV—Move to/from Control Registers

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 22 /r MOV CR0,r32 N.E. Valid Move r32 to CR0.
REX + 0F 22 /r MOV CR0,r64 Valid N.E. Move r64 to extended CR0.
0F 22 /r MOV CR2,r32 N.E. Valid Move r32 to CR2.
REX + 0F 22 /r MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
0F 22 /r MOV CR3,r32 N.E. Valid Move r32 to CR3.
REX + 0F 22 /r MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
0F 22 /r MOV CR4,r32 N.E. Valid Move r32 to CR4.
REX + 0F 22 /r MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
0F 20 /r MOV r32,CR0 N.E. Valid Move CR0 to r32.
REX + 0F 20 /r MOV r64,CR0 Valid N.E. Move extended CR0 to r64.
0F 20 /r MOV r32,CR2 N.E. Valid Move CR2 to r32.
REX + 0F 20 /r MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
0F 20 /r MOV r32,CR3 N.E. Valid Move CR3 to r32.
REX + 0F 20 /r MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
0F 20 /r MOV r32,CR4 N.E. Valid Move CR4 to r32.
REX + 0F 20 /r MOV r64,CR4 Valid N.E. Move extended CR4 to r64.

16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

7. Updated data on semaphores and the WC memory type
In Section 7.1.2.2, “Software Controlled Bus Locking,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3A, the additions document behavior of the WC memory type. See the
change bars.

--

7.1.2.2 Software Controlled Bus Locking

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instructions when they are used to modify a memory location. An invalid-opcode exception (#UD)
is generated when the LOCK prefix is used with any other instruction or when no write operation is
made to memory (that is, when the destination operand is in a register).

• The bit test and modify instructions (BTS, BTR, and BTC).

• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).

• The LOCK prefix is automatically assumed for XCHG instruction.

• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and NEG.

• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB, AND,
OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple
processors) using identical addresses and operand lengths. For example, if one processor accesses a
semaphore using a word access, other processors should not access the semaphore using a byte
access. Do not use semaphores on the WC memory type.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics are followed for as many bus cycles as necessary to update the entire operand. However,
it is recommend that locked accesses be aligned on their natural boundaries for better system
performance:

• Any boundary for an 8-bit access (locked or otherwise).

• 16-bit boundary for locked word accesses.

• 32-bit boundary for locked doubleword accesses.

• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all externally visible
events. Only instruction fetch and page table accesses can pass locked instructions. Locked
instructions can be used to synchronize data written by one processor and read by another processor.

0F 20 /r MOV r32,CR8 N.E. N.E. Move CR8 to r32.1

REX + 0F 20 /r MOV r64,CR8 Valid N.E. Move extended CR8 to r64.

NOTE:
1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not architectur-

ally defined as a serializing instruction. For more information, see Chapter 7 in IA-32 Intel® Architec-
ture Software Developer’s Manual, Volume 3A.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

For the P6 family processors, locked operations serialize all outstanding load and store operations
(that is, wait for them to complete). This rule is also true for the Pentium 4 and Intel Xeon
processors, with one exception. Load operations that reference weakly ordered memory types (such
as the WC memory type) may not be serialized.

Locked instructions should not be used to insure that data written can be fetched as instructions.

NOTE
The locked instructions for the current versions of the Pentium 4, Intel Xeon, P6
family, Pentium, and Intel486 processors allow data written to be fetched as
instructions. However, Intel recommends that developers who require the use of
self-modifying code use a different synchronizing mechanism, described in the
following sections.

8. Updates made to VMCALL information
In Chapter 5, “VMX Instruction Reference,” of the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2B, see the “VMCALL—Call to VM Monitor” section. Pseudocode in the
“Operation” subsection has been updated. See the change bars.

VMCALL—Call to VM Monitor

Description
This instruction allows guest software can make a call for service into an underlying VM monitor.
The details of the programming interface for such calls are VMM-specific; this instruction does
nothing more than cause a VM exit, registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 24.16.2 in IA-
32 Intel® Architecture Software Developer’s Manual, Volume 3B). This invocation will activate the
dual-monitor treatment of system-management interrupts (SMIs) and system-management mode
(SMM) if it is not already active (see Section 24.16.6 in IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3B).

Operation
IF not in VMX operation

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF in SMM or if the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail(VMCALL executed in VMX root operation);
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF CPL > 0

THEN #GP(0);
ELSIF dual-monitor treatment of SMIs and SMM is active

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.

18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

THEN perform an SMM VM exit (see Section 24.16.2
 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields pertinent to saving state are not valid1

THEN VMfailValid(VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field, MSEG (see Section 24.16.6.2,
in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is in VMX

root operation.

#UD If executed outside VMX operation.

1. This includes the “save” VM-exit controls and the VM-exit MSR-store address and count fields.

IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMCALL instruction is not recognized outside VMX
operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.

9. Thermal monitor information updated
In Section 13.2.2, “Thermal Monitor,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3A, the thermal monitor section has been updated to clarify the data provided about
enabling mechanisms.

13.2.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is
factory-calibrated to trip when the processor’s core temperature crosses a level corresponding to the
recommended thermal design envelop. The trip-temperature of the second sensor is calibrated below
the temperature assigned to the catastrophic shutdown detector.

13.2.2.1 Thermal Monitor 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism
called TM1 (Thermal Monitor 1) to control the core temperature of the processor. TM1 controls the
processor’s temperature by modulating the duty cycle of the processor clock. Modulation of duty
cycles is processor model specific. Note that the processors STPCLK# pin is not used here; the stop-
clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see
Appendix B, “Model-Specific Registers (MSRs)”]. Following a power-up or reset, the flag is
cleared, disabling TM1. BIOS is required to enable only one automatic thermal monitoring modes.
Operating systems and applications must not disable the operation of these mechanisms.

13.2.2.2 Thermal Monitor 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was
introduced in the Intel Pentium M processor and also incorporated in newer models of the Pentium
4 processor family. TM2 controls the core temperature of the processor by reducing the operating
frequency and voltage of the processor and offers a higher performance level for a given level of
power reduction than TM1.

20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be
implemented differently across various IA-32 processor families with different CPUID signatures
in the family encoding value, but will be uniform within an IA-32 processor family.

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

13.2.2.3 Two Methods for Enabling TM2

On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early
Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16) of the
MSR_THERM2_CTL register is set to 1 (Figure 13-2) and bit 3 of the IA32_MISC_ENABLE
register is set to 1.

Following a power-up or reset, the TM_SELECT flag is cleared. BIOS is required to enable either
TM1 or TM2. Operating systems and applications must not disable the mechanisms that enable TM1
or TM2. If bit 3 of the IA32_MISC_ENABLE register is set and TM_SELECT flag of the
MSR_THERM2_CTL register is cleared, TM1 is enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors),
the method used to enable TM2 is different. TM2 is enable by setting bit 13 of
IA32_MISC_ENABLE register to 1.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified
by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 13-3). Following a power-up or
reset, BIOS is required to enable at least one of these two thermal monitoring mechanisms. If both
TM1 and TM2 are supported, BIOS may choose to enable TM2 instead of TM1. Operating systems
and applications must not disable the mechanisms that enable TM1or TM2; and they must not alter
the value in bits 15:0 of the MSR_THERM2_CTL register.

10. Error in example corrected
In Chapter 3, “Instruction Set Reference, A-M,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 2B, see the “CPUID—CPU Identification” subsection. Example 3-1
has been updated to address an error. See the change bar.

Figure 13-2. MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping
Signature Encoded as 0x69n or 0x6Dn

Figure 13-3. MSR_THERM2_CTL Register for Supporting TM2

TM_SELECT

Reserved
31 0

Reserved

16

63 0

Reserved

15

TM2 Transition Target

IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes

Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about
caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID
needs to be executed once with an input value of 2 to retrieve complete information about
caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line
size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-µop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache
line size.

— 00H - NULL descriptor.

11. Documentation for guest error handling updated
Section 25.7.1.2, “Resuming Guest Software after Handling an Exception,” of the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3B has been re-structured for clarity. See the
change bars.

25.7.1.2 Resuming Guest Software after Handling an Exception

If the VMM determines that a VM exit was caused by an exception due to a condition established
by the VMM itself, it may choose to resume guest software after removing the condition. The
approach for removing the condition may be specific to the VMM’s software architecture. and
algorithms This section describes how guest software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The following
items provide details of cases that may require special handling:

22 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• Bit 12 of the VM-exit interruption-information field indicates that the VM exit was due to a
fault encountered during an execution of the IRET instruction that unblocked non-maskable
interrupts (NMIs). In particular, it provides this indication if the following are all true:

— The “NMI exiting” VM-execution control is 0.

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not 8 (the
VM exit is not due to a double-fault exception).

If these are all true and bit 12 of the VM-exit interruption-information field is 1, NMIs were
blocked before guest software executed the IRET instruction that caused the fault that caused
the VM exit. The VMM should set bit 3 (blocking by NMI) in the interruptibility-state field
(using VMREAD and VMWRITE) before resuming guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the exception causing
the VM exit occurred while another event was being delivered to guest software. The VMM
should ensure that the other event is delivered when guest software is resumed. It can do so
using VM-entry event injection, as described in and below: It can do so using the VM-entry
event injection described in Section 22.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-vectoring
information field (which is presumed valid) to the VM-entry interruption-information field
(which, if valid, will cause the exception to be delivered as part of the next VM entry).
Care should be taken to ensure that reserved bits 30:12 in the VM-entry interruption-
information field are 0. In particular, the value of bit 12 in the IDT-vectoring information
field is undefined after all VM exits. If this bit is copied as 1 into the VM-entry inter-
ruption-information field, the next VM entry will fail because the bit should be 0.

— The VMM can also copy the contents of the IDT-vectoring error-code field to the VM-
entry exception error-code field. This need not be done if bit 11 (error code valid) is clear
in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to the VM-
entry instruction-length field. This need be done only if bits 10:8 (interruption type) in the
IDT-vectoring information field indicate either software interrupt, privileged software
exception, or software exception.

12. Missing text and footnote addressed
In Section 24.16.4.2, “Checks on VM-Execution Control Fields,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, information has been corrected and added. See the
change bars.

24.16.4.2 Checks on VM-Execution Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks performed
on the VM-execution control fields specified in Section 22.2.1.1. They do not apply the checks to
the current VMCS. Instead, VM-entry behavior depends on whether the executive-VMCS pointer
field contains the VMXON pointer: 4

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in
VMX root operation), the checks are not performed at all.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation), the checks are performed on the VM-execution control fields
in the executive VMCS (the VMCS referenced by the executive-VMCS pointer field in the

IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes

current VMCS). These checks are performed after checking the executive-VMCS pointer field
itself (for proper alignment).

24.16.4.3 Checks on Guest Non-Register State

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI
state if the executive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX
root operation).4

4 An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field in the cur-

rent VMCS after the SMM VM exit that activates the dual-monitor treatment.

13. Sentence corrected (where change impacts sense)
In Section 24.15.3, “Protection of CR4.VMXE in SMM,” of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3B, a sentence has been corrected. See the change bar.

24.15.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in
SMM. Any attempt by software running in SMM to set this bit causes a general-protection
exception. In addition, software cannot use VMX instructions or enter VMX operation while in
SMM.

14. Text updated to a address a numbered list problem
In Section 22.7, “VM-Entry Failures During or After Loading Guest State,” of the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3B, a numbered list was corrected and text was
edited. See the change bar.

22.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST
STATE

VM-entry failures due to the checks identified in Section 22.3.1 and failures during the MSR loading
identified in Section 22.4 are treated differently from those that occur earlier in VM entry. In these
cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks
identified in Section 22.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load
MSRs (see Section 22.4).

41. VM-entry failure due to machine check. A machine check occurred during
VM entry (see Section 22.8).

24 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is
cleared to 0. The following non-zero values are used in the cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTRs (see Section 22.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a
guest that is blocking events through the STI blocking bit in the interruptibility-
state field. Such failures are implementation-specific (see Section 22.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section 22.3.1.5).

Note that VM-entry checks on guest-state fields may be performed in any order. Thus,
an indication by exit qualification of one cause does not imply that there are not also
other errors. Different processors may give different exit qualifications for the same
VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate
which entry in the VM-entry MSR-load area caused the problem (1 for the first entry,
2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 23.5). If this
results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory
pointers (PDPTRS) may be checked and loaded (see Section 23.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 23.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur
for these VM-entry failures:

• Most VM-exit information fields are not updated (see step 1 above).

• The valid bit in the VM-entry interruption-information field is not cleared.

• The guest-state area is not modified.

• No MSRs are saved into the VM-exit MSR-store area.

15. More APIC documentation clarifications (for C6 support)
In Section 8.4.1, “The Local APIC Block Diagram,” and Section 8.6.1, “Interrupt Command
Register (ICR),” of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A,
additional APIC documentation clarifications have been included. See the change bars and bold text.

8.4.1 The Local APIC Block Diagram
Figure 8-4 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. APIC registers are memory-mapped to a 4-KByte region
of the processor’s physical address space with an initial starting address of FEE00000H. For correct

IA-32 Software Developer’s Manual Documentation Changes 25

Documentation Changes

APIC operation, this address space must be mapped to an area of memory that has been designated
as strong uncacheable (UC). See Section 10.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for IA-32 processors on the system bus are initially
mapped to the same 4-KByte region of the physical address space. Software has the option of
changing initial mapping to a different 4-KByte region for all the local APICs or of mapping the
APIC registers for each local APIC to its own 4-KByte region. Section 8.4.5, “Relocating the Local
APIC Registers,” describes how to relocate the base address for APIC registers.

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all
memory accesses to addresses within the 4-KByte APIC register space
internally and no external bus cycles are produced. For the Pentium processors
with an on-chip APIC, bus cycles are produced for accesses to the APIC
register space. Thus, for software intended to run on Pentium processors,
system software should explicitly not map the APIC register space to regular
system memory. Doing so can result in an invalid opcode exception (#UD)
being generated or unpredictable execution.

26 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table 8-1 shows how the APIC registers are mapped into the 4-KByte APIC register space.
Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit
registers should be accessed using 128-bit aligned 32-bit loads or stores. Some processors may
support loads and stores of less than 32 bits to some of the APIC registers. This is model specific
behavior and is not guaranteed to work on all processors. Wider registers (64-bit or 256-bit) must
be accessed using multiple 32-bit loads or stores, with the first access being 128-bit aligned. If a
LOCK prefix is used with a MOV instruction that accesses the APIC address space, the prefix is

Figure 8-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4

IA-32 Software Developer’s Manual Documentation Changes 27

Documentation Changes

ignored. The locking operation does not take place. All the registers listed in Table 8-1 are described
in the following sections.

The local APIC registers listed in Table 8-1 are not MSRs. The only MSR associated with the
programming of the local APIC is the IA32_APIC_BASE MSR (see Section 8.4.3, “Enabling or
Disabling the Local APIC”).

Table 8-1. Local APIC Register Address Map
Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Reserved

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Bits 0-27 Read only; bits 28-31
Read/Write.

FEE0 00F0H Spurious Interrupt Vector Register Bits 0-8 Read/Write; bits 9-31
Read Only.

FEE0 0100H through
FEE0 0170H

In-Service Register (ISR) Read Only.

FEE0 0180H through
FEE0 01F0H

Trigger Mode Register (TMR) Read Only.

FEE0 0200H through
FEE0 0270H

Interrupt Request Register (IRR) Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02F0H

Reserved

FEE0 0300H Interrupt Command Register (ICR) [0-31] Read/Write.

FEE0 0310H Interrupt Command Register (ICR) [32-63] Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

28 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

-------------------------------------- Second correction ---

8.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit local APIC register (see Figure 8-12) that allows
software running on the processor to specify and send interprocessor interrupts (IPIs) to other IA-
32 processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the
destination processor or processors. (All fields of the ICR are read-write by software with the
exception of the delivery status field, which is read-only.) The act of writing to the low doubleword
of the ICR causes the IPI to be sent.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function

are implementation dependent and may not be present in future IA-32 processors.
3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implemen-

tation dependent and may not be present in future IA-32 processors.

Table 8-1. Local APIC Register Address Map (Continued)
Address Register Name Software Read/Write

IA-32 Software Developer’s Manual Documentation Changes 29

Documentation Changes

The ICR consists of the following fields.

Vector The vector number of the interrupt being sent.

Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI
message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to
the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors specified in the
destination field. The ability for a processor to send a
lowest priority IPI is model specific and should be
avoided by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target processor or
processors. The vector field must be programmed to
00H for future compatibility.

011 (Reserved)

Figure 8-12. Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.

30 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

100 (NMI) Delivers an NMI interrupt to the target processor or
processors. The vector information is ignored.

101 (INIT) Delivers an INIT request to the target processor or
processors, which causes them to perform an INIT. As
a result of this IPI message, all the target processors
perform an INIT. The vector field must be
programmed to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon
processors.) Sends a synchronization message to all
the local APICs in the system to set their arbitration
IDs (stored in their Arb ID registers) to the values of
their APIC IDs (see Section 8.7, “System and APIC
Bus Arbitration”). For this delivery mode, the level
flag must be set to 0 and trigger mode flag to 1. This
IPI is sent to all processors, regardless of the value in
the destination field or the destination shorthand field;
however, software should specify the “all including
self” shorthand.

110 (Start-Up) Sends a special “start-up” IPI (called a SIPI) to the
target processor or processors. The vector typically
points to a start-up routine that is part of the BIOS
boot-strap code (see Section 7.5, “Multiple-Processor
(MP) Initialization”). IPIs sent with this delivery mode
are not automatically retried if the source APIC is
unable to deliver it. It is up to the software to
determine if the SIPI was not successfully delivered
and to reissue the SIPI if necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section
8.6.2, “Determining IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) There is currently no IPI activity for this local APIC,
or the previous IPI sent from this local APIC was
delivered and accepted by the target processor or
processors.

1 (Send Pending)
Indicates that the last IPI sent from this local APIC has
not yet been accepted by the target processor or
processors.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for
all other delivery modes it must be set to 1. (This flag has no meaning in
Pentium 4 and Intel Xeon processors, and will always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery
mode: edge (0) or level (1). It is ignored for all other delivery modes.
(This flag has no meaning in Pentium 4 and Intel Xeon processors, and
will always be issued as a 0.)

IA-32 Software Developer’s Manual Documentation Changes 31

Documentation Changes

Destination Shorthand Indicates whether a shorthand notation is used to specify the destination
of the interrupt and, if so, which shorthand is used. Destination
shorthands are used in place of the 8-bit destination field, and can be sent
by software using a single write to the low doubleword of the ICR.
Shorthands are defined for the following cases: software self interrupt,
IPIs to all processors in the system including the sender, IPIs to all
processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the
IPI. This destination shorthand allows software to
interrupt the processor on which it is executing. An
APIC implementation is free to deliver the self-
interrupt message internally or to issue the message to
the bus and “snoop” it as with any other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including
the processor sending the IPI. The APIC will broadcast
an IPI message with the destination field set to FH for
Pentium and P6 family processors and to FFH for
Pentium 4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the
exception of the processor sending the IPI. The APIC
broadcasts a message with the physical destination
mode and destination field set to 0xFH for Pentium
and P6 family processors and to 0xFFH for Pentium 4
and Intel Xeon processors. Support for this destination
shorthand in conjunction with the lowest-priority
delivery mode is model specific. For Pentium 4 and
Intel Xeon processors, when this shorthand is used
together with lowest priority delivery mode, the IPI
may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when
the destination shorthand field is set to 00B. If the destination mode is set
to physical, then bits 56 through 59 contain the APIC ID of the target
processor for Pentium and P6 family processors and bits 56 through 63
contain the APIC ID of the target processor the for Pentium 4 and Intel
Xeon processors. If the destination mode is set to logical, the
interpretation of the 8-bit destination field depends on the settings of the
DFR and LDR registers of the local APICs in all the processors in the
system (see Section 8.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 8-3 shows the valid combinations for
the fields in the ICR for the Pentium 4 and Intel Xeon processors; Table 8-4 shows the valid
combinations for the fields in the ICR for the P6 family processors. Also note that the lower half
of the ICR may not be preserved over transitions to the deepest C-States.

32 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table 8-3. Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI,
Start-Up

X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI,
Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and

issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be

redirected back to the issuing APIC, which is essentially the same as the “all including self” destination
mode.

Table 8-4. Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI,
Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI,
Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

IA-32 Software Developer’s Manual Documentation Changes 33

Documentation Changes

16. Register reference corrected
In Section 6.3.4, “Saving Procedure State Information,” of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, a register name has been corrected. See the bold type and the change
bar.

6.3.4 Saving Procedure State Information
The processor does not save the contents of the general-purpose registers, segment registers, or the
EFLAGS register on a procedure call. A calling procedure should explicitly save the values in any
of the general-purpose registers that it will need when it resumes execution after a return. These
values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the general-
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in the
following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing the PUSHA instruction),
EBP, ESI, and EDI. The POPA instruction pops all the register values saved with a PUSHA
instruction (except the ESP value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former values before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save and restore all
or part of the register using the PUSHF/PUSHFD and POPF/POPFD instructions. The PUSHF
instruction pushes the lower word of the EFLAGS register on the stack, while the PUSHFD
instruction pushes the entire register. The POPF instruction pops a word from the stack into the
lower word of the EFLAGS register, while the POPFD instruction pops a double word from the
stack into the register.

17. Appendix A updated to include 3-byte opcode information
In Appendix A, “Opcode Map,” of the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 2B, has been updated to include 3-byte opcodes. The appendix is reproduced below. See the
change bars.

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when

level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the level bit set to
0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 8-4. Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Continued)

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

34 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 architecture object code. Instructions are
divided into encoding groups:

• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX
technology, SSE/SSE2/SSE3, and VMX instructions. Maps for these instructions are given in
Table A-2 through Table A-6.

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-
point instructions. The maps for these instructions are provided in Table A-7 through Table A-
22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not depend on
the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode
extensions in associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved
or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte.
For 1-byte encodings (Table A-2), use the four high-order bits of an opcode to index a row of the
opcode table; use the four low-order bits to index a column of the table. For 2-byte opcodes
beginning with 0FH (Table A-3), skip any instruction prefixes, the 0FH byte (0FH may be preceded
by 66H, F2H, or F3H) and use the upper and lower 4-bit values of the next opcode byte to index
table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or 0F3AH (Table A-
4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit values of the
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples
for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For
information on how an opcode extension in the ModR/M byte modifies the opcode map in Table A-
2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits of
opcodes at the top of each page. See Section A.5. If the accompanying ModR/M byte is in the range
of 00H-BFH, bits 3-5 (the top row of the third table on each page) along with the reg bits of ModR/
M determine the opcode. ModR/M bytes outside the range of 00H-BFH are mapped by the bottom
two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the type of
operand.

IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded
in the instruction. No base register, index register, or scaling factor can be applied (for ex-
ample, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20,
0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a gen-
eral-purpose register or a memory address. If it is a memory address, the address is com-
puted from a segment register and any of the following values: a base register, an index
register, a scaling factor, a displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

I Immediate data: the operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register (for
example, JMP (0E9), LOOP).

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a word or dou-
ble word (depending on address size attribute) in the instruction. No base register, index
register, or scaling factor can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either an
MMX technology register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for example, MOV
(0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register.

V The reg field of the ModR/M byte selects a 128-bit XMM register.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-
bit XMM register or a memory address. If it is a memory address, the address is computed
from a segment register and any of the following values: a base register, an index register,
a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or
LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS,
or SCAS).

36 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depending
on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit or 48-bit pointer, depending on operand-size attribute.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

ss Scalar element of a 128-bit packed single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes
When an opcode requires a specific register as an operand, the register is identified by name (for
example, AX, CL, or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-
size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit
sizes are possible. For example: eAX indicates that the AX register is used when the operand-size
attribute is 16 and the EAX register is used when the operand-size attribute is 32. rAX can indicate
AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact
is indicated by adding “/x” to the register name to indicate the additional possibility. For example,
rCX/r9 is used to indicate that the register could either be rCX or r9. Note that the size of r9 in this
case is determined by the operand size attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is
arranged by row (the least-significant 4 bits of the hexadecimal value) and column (the most-

IA-32 Software Developer’s Manual Documentation Changes 37

Documentation Changes

significant 4 bits of the hexadecimal value). Each entry in the table lists one of the following types
of opcodes:

• Instruction mnemonics and operand types using the notations listed in Section A.2

• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the
byte following the primary opcode fall into one of the following cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section
A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2A. Operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M
byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction prefix or entries for instructions without operands that use ModR/M (for example:
60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table
A-2) as follows:

• The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the
table column. This locates an opcode for ADD with two operands.

• The first operand (type Gv) indicates a general register that is a word or doubleword depending
on the operand-size attribute. The second operand (type Ev) indicates a ModR/M byte follows
that specifies whether the operand is a word or doubleword general-purpose register or a
memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows
(00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the
EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group
numbers indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode
extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes
or three bytes in length. Primary opcodes that are 2 bytes in length begin with an escape opcode 0FH.
The upper and lower four bits of the second opcode byte are used to index a particular row and
column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and
the escape opcode (OFH). The upper and lower four bits of the third byte are used to index a
particular row and column in Table A-3 (except when the second opcode byte is the 3-byte escape
opcodes 38H or 3AH; in this situation refer to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode
fall into one of the following cases:

38 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section
A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2A. The operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M
byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction without operands that are encoded using ModR/M (for example: 0F77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.

• The opcode is located in row A, column 4. The location indicates a SHLD instruction with
operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate
that a 32-bit displacement is used to locate the first operand in memory and eAX as the second
operand.

• The next part of the opcode is the 32-bit displacement for the destination memory operand
(00000000H). The last byte stores immediate byte that provides the count of the shift (03H).

• By this breakdown, it has been shown that this opcode represents the instruction: SHLD
DS:00000000H, EAX, 3.

A.2.4.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are
either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes
0F38H or 0F3A. The upper and lower four bits of the third opcode byte are used to index a particular
row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and
two escape bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are used to
index a particular row and column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode
fall into the following case:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section
A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2A. The operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0, column
F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands
as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

IA-32 Software Developer’s Manual Documentation Changes 39

Documentation Changes

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or
memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is
XMM0. The mod shows that the R/M field specifies a register and the R/M indicates that the
second operand is XMM1.

• The last byte is the immediate byte (08H).

• By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR
XMM0, XMM1, 8.

A.2.5 Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode
maps by superscripts. Gray cells indicate instruction groupings.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and
columns with sequential relationships are placed on facing pages to make look-up tasks easier. Note
that table footnotes are not presented on each page. Table footnotes for each table are presented on
the last page of the table.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4,
“Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately
trying to generate an invalid opcode exception (#UD).

1C Some instructions added in the Pentium III processor may use the same two-byte
opcode. If the instruction has variations, or the opcode represents different
instructions, the ModR/M byte will be used to differentiate the instruction. For the
value of the ModR/M byte needed to decode the instruction, see Table A-6.

These instructions include SFENCE, STMXCSR, LDMXCSR, FXRSTOR, and
FXSAVE, as well as PREFETCH and its variations.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte
INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF Grp 4
and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode
32-bit operand size.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes
that change operand size are ignored for this instruction in 64-bit mode).

40 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table A-2. One-byte Opcode Map: (00H — F7H)*

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Xb, Yb

MOVS/W/D/Q
Xv, Yv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
LDSi64

Gz, Mp
Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
(Prefix)

REP/
REPE
(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

IA-32 Software Developer’s Manual Documentation Changes 41

Documentation Changes

Table A-2. One-byte Opcode Map: (08H — FFH)*

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64 Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 EvEb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, XvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15, Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

AP
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

42 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH)*

0 1 2 3 4 5 6 7

0 Grp 61A Grp 71A LAR
Gv, Ew

LSL
Gv, Ew

 SYSCALLo64 CLTS SYSRETo64

1 movups
Vps, Wps

movss (F3)
Vss, Wss

movupd (66)
Vpd, Wpd

movsd (F2)
Vsd, Wsd

movups
Wps, Vps

movss (F3)
Wss, Vss

movupd (66)
Wpd, Vpd

movsd (F2)
Vsd, Wsd

movlps
Vq, Mq

movlpd (66)
Vq, Mq
movhlps
Vq, Uq

movddup(F2)
Vq, Wq

movsldup(F3)
Vq, Wq

movlps
Mq, Vq

movlpd (66)
Mq, Vq

unpcklps
Vps, Wq

unpcklpd (66)
Vpd, Wq

unpckhps
Vps, Wq

unpckhpd (66)
Vpd, Wq

movhps
Vq, Mq

movhpd (66)
Vq, Mq
movlhps
Vq, Uq

movshdup(F3)
Vq, Wq

movhps
Mq, Vq

movhpd(66)
Mq, Vq

2 MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT

4 CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5 movmskps
Gd, Ups

movmskpd
(66)

Gd, Upd

sqrtps
Vps, Wps
sqrtss (F3)
Vss, Wss

sqrtpd (66)
Vpd, Wpd
sqrtsd (F2)
Vsd, Wsd

rsqrtps
Vps, Wps

rsqrtss (F3)
Vss, Wss

rcpps
Vps, Wps
rcpss (F3)
Vss, Wss

andps
Vps, Wps

andpd (66)
Vpd, Wpd

andnps
Vps, Wps

andnpd (66)
Vpd, Wpd

orps
Vps, Wps
orpd (66)
Vpd, Wpd

xorps
Vps, Wps
xorpd (66)
Vpd, Wpd

6 punpcklbw
Pq, Qd

punpcklbw
(66)

Vdq, Wdq

punpcklwd
Pq, Qd

punpcklwd
(66)

Vdq, Wdq

punpckldq
Pq, Qd

punpckldq (66)
Vdq, Wdq

packsswb
Pq, Qq

packsswb (66)
Vdq, Wdq

pcmpgtb
Pq, Qq

pcmpgtb (66)
Vdq, Wdq

pcmpgtw
Pq, Qq

pcmpgtw (66)
Vdq, Wdq

pcmpgtd
Pq, Qq

pcmpgtd (66)
Vdq, Wdq

packuswb
Pq, Qq

packuswb (66)
Vdq, Wdq

7 pshufw
Pq, Qq, Ib
pshufd (66)
Vdq,Wdq,Ib
pshufhw(F3)
Vdq,Wdq,Ib
pshuflw (F2)
Vdq Wdq,Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqb (66)
Vdq, Wdq

pcmpeqw
Pq, Qq

pcmpeqw (66)
Vdq, Wdq

pcmpeqd
Pq, Qq

pcmpeqd (66)
Vdq, Wdq

emms

IA-32 Software Developer’s Manual Documentation Changes 43

Documentation Changes

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH)*

8 9 A B C D E F

0 INVD WBINVD 2-byte Illegal
Opcodes
UD21B

NOP Ev

1 Prefetch1C

(Grp 161A)
NOP Ev

2 movaps
Vps, Wps

movapd (66)
Vpd, Wpd

movaps
Wps, Vps

movapd (66)
Wpd, Vpd

cvtpi2ps
Vps, Qq

cvtsi2ss (F3)
Vss, Ed/q

cvtpi2pd (66)
Vpd, Qq

cvtsi2sd (F2)
Vsd, Ed/q

movntps
Mps, Vps

movntpd (66)
Mpd, Vpd

cvttps2pi
Qq, Wps

cvttss2si (F3)
Gd, Wss

cvttpd2pi (66)
Qdq, Wpd

cvttsd2si (F2)
Gd, Wsd

cvtps2pi
Qq, Wps

cvtss2si (F3)
Gd/q, Wss

cvtpd2pi (66)
Qdq, Wpd

cvtsd2si (F2)
Gd/q, Wsd

ucomiss
Vss, Wss

ucomisd (66)
Vsd, Wsd

comiss
Vps, Wps

comisd (66)
Vsd, Wsd

3 3-byte escape
(Table A-4)

3-byte escape
(Table A-5)

4 CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5 addps
Vps, Wps
addss (F3)
Vss, Wss

addpd (66)
Vpd, Wpd
addsd (F2)
Vsd, Wsd

mulps
Vps, Wps
mulss (F3)
Vss, Wss

mulpd (66)
Vpd, Wpd
mulsd (F2)
Vsd, Wsd

cvtps2pd
Vpd, Wps

cvtss2sd (F3)
Vss, Wss

cvtpd2ps (66)
Vps, Wpd

cvtsd2ss (F2)
Vsd, Wsd

cvtdq2ps
Vps, Wdq

cvtps2dq (66)
Vdq, Wps

cvttps2dq (F3)
Vdq, Wps

subps
Vps, Wps
subss (F3)
Vss, Wss

subpd (66)
Vpd, Wpd
subsd (F2)
Vsd, Wsd

minps
Vps, Wps
minss (F3)
Vss, Wss

minpd (66)
Vpd, Wpd
minsd (F2)
Vsd, Wsd

 divps
Vps, Wps
divss (F3)
Vss, Wss
divpd (66)
Vpd, Wpd
divsd (F2)
Vsd, Wsd

maxps
Vps, Wps

maxss (F3)
Vss, Wss

maxpd (66)
Vpd, Wpd

maxsd (F2)
Vsd, Wsd

6 punpckhbw
Pq, Qd

punpckhbw
(66)

Pdq, Qdq

punpckhwd
Pq, Qd

punpckhwd
(66)

Pdq, Qdq

punpckhdq
Pq, Qd

punpckhdq
(66)

Pdq, Qdq

packssdw
Pq, Qd

packssdw (66)
Pdq, Qdq

punpcklqdq
(66)

Vdq, Wdq

punpckhqdq
(66)

Vdq, Wdq

movd/q/
Pd, Ed/q

movd/q (66)
Vdq, Ed/q

movq
Pq, Qq

movdqa (66)
Vdq, Wdq

movdqu (F3)
Vdq, Wdq

7 VMREAD
Ed/q, Gd/q

VMWRITE
Gd/q, Ed/q

haddps(F2)
Vps, Wps

haddpd(66)
Vpd, Wpd

hsubps(F2)
Vps, Wps

hsubpd(66)
Vpd, Wpd

movd/q
Ed/q, Pd

movd/q (66)
Ed/q, Vdq
movq (F3)

Vq, Wq

movq
Qq, Pq

movdqa (66)
Wdq, Vdq

movdqu (F3)
Wdq, Vdq

44 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH)*

0 1 2 3 4 5 6 7

8 Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9 SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B CMPXCHG LSS
Gv, Mp

BTR
Ev, Gv

LFS
Gv, Mp

LGS
Gv, Mp

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C XADD
Eb, Gb

XADD
Ev, Gv

cmpps
Vps, Wps, Ib
cmpss (F3)

Vss, Wss, Ib
cmppd (66)

Vpd, Wpd, Ib
cmpsd (F2)

Vsd, Wsd, Ib

movnti
Md/q, Gd/q

pinsrw
Pq, Ew, Ib
pinsrw (66)
Vdq, Ew, Ib

pextrw
Gd, Nq, Ib
pextrw (66)
Gd, Udq, Ib

shufps
Vps, Wps, Ib
shufpd (66)

Vpd, Wpd, Ib

Grp 91A

D addsubps(F2)
Vps, Wps

addsubpd(66)
Vpd, Wpd

psrlw
Pq, Qq

psrlw (66)
Vdq, Wdq

psrld
Pq, Qq

psrld (66)
Vdq, Wdq

psrlq
Pq, Qq

psrlq (66)
Vdq, Wdq

paddq
Pq, Qq

paddq (66)
Vdq, Wdq

pmullw
Pq, Qq

pmullw (66)
Vdq, Wdq

movq (66)
Wq, Vq

movq2dq (F3)
Vdq, Nq

movdq2q (F2)
Pq, Uq

pmovmskb
Gd, Nq

pmovmksb (66)
Gd, Udq

E pavgb
Pq, Qq

pavgb (66)
Vdq, Wdq

psraw
Pq, Qq

psraw (66)
Vdq, Wdq

psrad
Pq, Qq

psrad (66)
Vdq, Wdq

pavgw
Pq, Qq

pavgw (66)
Vdq, Wdq

pmulhuw
Pq, Qq

pmulhuw (66)
Vdq, Wdq

pmulhw
Pq, Qq

pmulhw (66)
Vdq, Wdq

cvtpd2dq (F2)
Vdq, Wpd

cvttpd2dq (66)
Vdq, Wpd

cvtdq2pd (F3)
Vpd, Wdq

movntq
Mq, Pq

movntdq (66)
Mdq, Vdq

F lddqu (F2)
Vdq, Mdq

psllw
Pq, Qq

psllw (66)
Vdq, Wdq

pslld
Pq, Qq

pslld (66)
Vdq, Wdq

psllq
Pq, Qq

psllq (66)
Vdq, Wdq

pmuludq
Pq, Qq

pmuludq (66)
Vdq, Wdq

pmaddwd
Pq, Qq

pmaddwd (66)
Vdq, Wdq

psadbw
Pq, Qq

psadbw (66)
Vdq, Wdq

maskmovq
Pq, Nq

maskmovdqu
(66)

Vdq, Udq

IA-32 Software Developer’s Manual Documentation Changes 45

Documentation Changes

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH)*

8 9 A B C D E F

8 Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

C BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D psubusb
Pq, Qq

psubusb (66)
Vdq, Wdq

psubusw
Pq, Qq

psubusw (66)
Vdq, Wdq

pminub
Pq, Qq

pminub (66)
Vdq, Wdq

pand
Pq, Qq

pand (66)
Vdq, Wdq

paddusb
Pq, Qq

paddusb (66)
Vdq, Wdq

paddusw
Pq, Qq

paddusw (66)
Vdq, Wdq

pmaxub
Pq, Qq

pmaxub (66)
Vdq, Wdq

pandn
Pq, Qq

pandn (66)
Vdq, Wdq

E psubsb
Pq, Qq

psubsb (66)
Vdq, Wdq

psubsw
Pq, Qq

psubsw (66)
Vdq, Wdq

pminsw
Pq, Qq

pminsw (66)
Vdq, Wdq

por
Pq, Qq
por (66)

Vdq, Wdq

paddsb
Pq, Qq

paddsb (66)
Vdq, Wdq

paddsw
Pq, Qq

paddsw (66)
Vdq, Wdq

pmaxsw
Pq, Qq

pmaxsw (66)
Vdq, Wdq

pxor
Pq, Qq

pxor (66)
Vdq, Wdq

F psubb
Pq, Qq

psubb (66)
Vdq, Wdq

psubw
Pq, Qq

psubw (66)
Vdq, Wdq

psubd
Pq, Qq

psubd (66)
Vdq, Wdq

psubq
Pq, Qq

psubq (66)
Vdq, Wdq

paddb
Pq, Qq

paddb (66)
Vdq, Wdq

paddw
Pq, Qq

paddw (66)
Vdq, Wdq

paddd
Pq, Qq

paddd (66)
Vdq, Wdq

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

46 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H)*

0 1 2 3 4 5 6 7
0 pshufb

Pq, Qq
pshufb (66)
Vdq, Wdq

phaddw
Pq, Qq

phaddw (66)
Vdq, Wdq

phaddd
Pq, Qq

phaddd (66)
Vdq, Wdq

phaddsw
Pq, Qq

phaddsw (66)
Vdq, Wdq

pmaddubsw
Pq, Qq

pmaddubsw
(66)

Vdq, Wdq

phsubw
Pq, Qq

phsubw (66)
Vdq, Wdq

phsubd
Pq, Qq

phsubd (66)
Vdq, Wdq

phsubsw
Pq, Qq

phsubsw (66)
Vdq, Wdq

1

2
3
4
5
6
7
8
9
A
B
C
D
E
F

IA-32 Software Developer’s Manual Documentation Changes 47

Documentation Changes

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H)*

8 9 A B C D E F
0 psignb

Pq, Qq
psignb (66)
Vdq, Wdq

psignw
Pq, Qq

psignw (66)
Vdq, Wdq

psignd
Pq, Qq

psignd (66)
Vdq, Wdq

pmulhrsw
Pq, Qq

pmulhrsw (66)
Vdq, Wdq

1 pabsb
Pq, Qq

pabsb (66)
Vdq, Wdq

pabsw
Pq, Qq

pabsw (66)
Vdq, Wdq

pabsd
Pq, Qq

pabsd (66)
Vdq, Wdq

2
3
4
5
6
7
8
9
A
B
C
D
E
F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

48 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH)*

0 1 2 3 4 5 6 7
0

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

IA-32 Software Developer’s Manual Documentation Changes 49

Documentation Changes

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE
OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as
an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number.
Group numbers (from 1 to 16, second column) provide a table entry point. The encoding for the r/
m field for each instruction can be established using the third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-3. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:

• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this
instruction is 000B.

• The r/m field can be encoded to access a register (11B) or a memory address using a specified
addressing mode (for example: mem = 00B, 01B, 10B).

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH)*

8 9 A B C D E F
0 palignr

Pq, Qq, Ib
palignr(66)

Vdq, Wdq, Ib
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

50 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Example A-4. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and Table
A-6:

• 0F tells us that this instruction is in the 2-byte opcode map.

• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of
the Group 7 rows in Table A-6.

• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.

• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME
instruction.

A.4.2 Opcode Extension Tables
See Table A-6 below.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number*

Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0, C1 reg,
imm

D0, D1 reg, 1
D2, D3 reg, CL

2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Ep
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7 mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL
(001)

VMLAUNCH
(010)

VMRESUME
(011)

VMXOFF
(100)

MONITOR
(000)

MWAIT
(001)

SWAPGS
o64(000)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9 mem CMPXCH8B
Mq

CMPXCHG16B
Mdq

VMPTRLD
Mq

VMCLEAR
(66)
Mq

VMXON (F3)
Mq

VMPTRST
Mq

11B

0F B9 10 mem

11B

C6 11 mem, 11B MOV
Eb, Ib

C7 mem MOV
Ev, Iz11B

IA-32 Software Developer’s Manual Documentation Changes 51

Documentation Changes

A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes)
are in Table A-7 through Table A-22. These maps are grouped by the first byte of the opcode, from
D8-DF. Each of these opcodes has a ModR/M byte. If the ModR/M byte is within the range of 00H-
BFH, bits 3-5 of the ModR/M byte are used as an opcode extension, similar to the technique used
for 1-and 2-byte opcodes (see Section A.4). If the ModR/M byte is outside the range of 00H through
BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-5. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:

• The instruction encoded with this opcode can be located in Section. Since the ModR/M byte
(05H) is within the 00H through BFH range, bits 3 through 5 (000) of this byte indicate the
opcode for an FLD double-real instruction (see Table A-9).

• The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and
belongs to this opcode).

Example A-6. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:

• This example illustrates an opcode with a ModR/M byte outside the range of 00H through
BFH. The instruction can be located in Section A.4.

0F 71 12 mem

11B psrlw
Nq, Ib

psrlw (66)
Udq, Ib

psraw
Nq, Ib

psraw (66)
Udq, Ib

psllw
Nq, Ib

psllw (66)
Udq, Ib

0F 72 13 mem

11B psrld
Nq, Ib

psrld (66)
Udq, Ib

psrad
Nq, Ib

psrad (66)
Udq, Ib

pslld
Nq, Ib

pslld (66)
Udq, Ib

0F 73 14 mem

11B psrlq
Nq, Ib

psrlq (66)
Udq, Ib

psrldq (66)
Udq, Ib

psllq
Nq, Ib

psllq (66)
Udq, Ib

pslldq (66)
Udq, Ib

0F AE 15 mem fxsave fxrstor ldmxcsr stmxcsr clflush

11B lfence mfence sfence

0F 18 16 mem prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number* (Continued)

Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

52 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using
ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables
Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-
7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B
FADD single-

real
FMUL single-

real
FCOM single-

real
FCOMP single-

real
FSUB single-

real
FSUBR single-

real
FDIV single-real FDIVR single-

real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH*
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

IA-32 Software Developer’s Manual Documentation Changes 53

Documentation Changes

A.5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9
shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn
field in Figure A-1) selects the instruction.
.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

54 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

A.5.2.3 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-
11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

IA-32 Software Developer’s Manual Documentation Changes 55

Documentation Changes

A.5.2.4 Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-
13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP dword-
integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

56 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

A.5.2.5 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-
15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD double-
real

FMUL double-
real

FCOM
double-real

FCOMP
double-real

FSUB double-
real

FSUBR
double-real

FDIV double-
real

FDIVR
double-real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

IA-32 Software Developer’s Manual Documentation Changes 57

Documentation Changes

A.5.2.6 Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-
17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of
the ModR/M byte selects the table row and the second digit selects the column.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD double-
real

FISTTP
integer64

FST double-
real

FSTP double-
real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW 2
bytes

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

58 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

A.5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH.
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case, the
value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP word-
integer

FISUB
word-integer

FISUBR word-
integer

FIDIV
word-integer

FIDIVR
word-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

IA-32 Software Developer’s Manual Documentation Changes 59

Documentation Changes

A.5.2.8 Escape Opcodes with DF As First Byte

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH.
Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here, the value
of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

18. Segment reference corrected
In Section 4.6, “Privilege Level Checking When Accessing Data Segments,” of the IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3A, the wrong segment indicated in a statement
has been corrected. See the bold type and the change bar.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST
word-integer

FISTP
word-integer

FBLD packed-
BCD

FILD
qword-integer

FBSTP packed-
BCD

FISTP
qword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

60 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

4.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA
SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded into
the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment
registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before
the processor loads a segment selector into a segment register, it performs a privilege check (see
Figure 4-4) by comparing the privilege levels of the currently running program or task (the CPL),
the RPL of the segment selector, and the DPL of the segment’s segment descriptor. The processor
loads the segment selector into the segment register if the DPL is numerically greater than or equal
to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

Figure 4-5 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1,
because the CPL of code segment A and the RPL of segment selector E1 are equal to the DPL
of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2,
because the CPL of code segment B and the RPL of segment selector E2 are both numerically
lower than (more privileged) than the DPL of data segment E. A code segment B procedure
can also access data segment E using segment selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector
E3 (dotted line), because the CPL of code segment C and the RPL of segment selector E3 are
both numerically greater than (less privileged) than the DPL of data segment E. Even if a code
segment C procedure were to use segment selector E1 or E2, such that the RPL would be
acceptable, it still could not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL of
segment selector E3 (which the code segment D procedure is using to access data segment E)
is numerically greater than the DPL of data segment E, so access is not allowed. If the code
segment D procedure were to use segment selector E1 or E2 to access the data segment, access
would be allowed.

Figure 4-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment

IA-32 Software Developer’s Manual Documentation Changes 61

Documentation Changes

As demonstrated in the previous examples, the addressable domain of a program or task varies as
its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when the
CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is 3, only
data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for a data-
segment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will provide
protection against deliberate, direct attempts to violate privilege-level security for the data segment.
To prevent these types of privilege-level-check violations, a program or procedure can check access
privileges whenever it receives a data-segment selector from another procedure (see Section 4.10.4,
“Checking Caller Access Privileges (ARPL Instruction)”).

19. Figure callout corrected
In Figure 4-7 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A, a box
indicating DPL has been corrected. See the bold text and the change bar.

Figure 4-5. Examples of Accessing Data Segments From Various Privilege Levels

Data

Lowest Privilege

Highest Privilege

Segment E

3

2

1

0

CPL=1

CPL=3

CPL=0

DPL=2CPL=2

Segment Sel. E3
RPL=3

Segment Sel. E1
RPL=2

Segment Sel. E2
RPL=1

Code
Segment C

Code
Segment A

Code
Segment B

Code
Segment D

62 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

20. Error in table corrected
In Table 2-2 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A, a typing
error has been corrected in a summary table entry. See the change bar and the bold text below.

--

Figure 4-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

Code
Segment D

Code
Segment CCode

Segment A

Lowest Privilege

Highest Privilege

CPL=3

Code
Segment B

Nonconforming
Code Segment

Conforming
Code Segment

3

2

1

0

CPL=2
DPL=2

DPL=1

Segment Sel. D1
RPL=2

Segment Sel. D2
RPL=3

Segment Sel. C2
RPL=3

Segment Sel. C1
RPL=2

Table 2-2. Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No

LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

IA-32 Software Developer’s Manual Documentation Changes 63

Documentation Changes

21. Encodings added for Multi-Byte No Operation
See Table B-13 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B. Infor-
mation has been added about the Multi-Byte No Operation. This information is reprinted below.
Note that only new cells from the table are provided. Other parts of the table have not changed.

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a

memory operation.

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the

Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.

Table 2-2. Summary of System Instructions (Continued)

Instruction Description
Useful to
Application?

Protected from
Application?

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

64 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Information about multi-byte no operations has also been added to the “NOP—No Operation”
section of Chapter 4 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 2B. This
section is reprinted below.

NOP—No Operation

Description
This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up space in the
instruction stream but does not impact machine context, except for the EIP register.

The multi-byte form of NOP is available on processors with model encoding:

• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of the register and will not issue a memory
operation. The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

The multi-byte NOP instruction performs no operation on supported processors and generates unde-
fined opcode exception on processors that do not support the multi-byte NOP instruction.

The memory operand form of the instruction allows software to create a byte sequence of “no oper-
ation” as one instruction. For situations where multiple-byte NOPs are needed, the recommended
operations (32-bit mode and 64-bit mode) are:

Flags Affected
None.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

90 NOP Valid Valid One byte no-operation instruction.
0F 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.
0F 1F /0 NOP r/m32 Valid Valid Multi-byte no-operation instruction.

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence
2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H

IA-32 Software Developer’s Manual Documentation Changes 65

Documentation Changes

Exceptions (All Operating Modes)
None.

22. Update RMDPMC documentation adding more family-specific data
See the “RDPMC—Read Performance-Monitoring Counters” subsection in Chapter 4 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 2B. The section has been updated to
provide more information on processor family specific behavior. The section has been reproduced
below.

RDPMC—Read Performance-Monitoring Counters

Description
Loads the 40-bit performance-monitoring counter specified in the ECX register into registers
EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter and the EAX
register is loaded with the low-order 32 bits. The counter to be read is specified with an unsigned
integer placed in the ECX register.

The indices used to specify performance counters are model-specific and may vary by processor
implementations. See Table 4-2 for valid indices for each processor family.

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow” (40-bit) reads on
the first 18 performance counters. Selected this option using ECX[bit 31]. If bit 31 is set, RDPMC
reads only the low 32 bits of the selected performance counter. If bit 31 is clear, all 40 bits are read.
A 32-bit result is returned in EAX and EDX is set to 0. A 32-bit read executes faster on Pentium 4
processors and Intel Xeon processors than a full 40-bit read.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.

Table 4-2. Valid Performance Counter Index Range for RDPMC

Processor Family
CPUID Family/Model/
Other Signatures

Valid PMC
Index Range 40-bit Counters

P6 Family 06H 0, 1 0, 1
Pentium 4, Intel Xeon processors Family 0FH; Model 00H,

01H, 02H
≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (Family 0FH; Model 03H,
04H, 06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors Family 06H, Model 09H,
0DH

0, 1 0, 1

64-bit Intel Xeon processors with
L3 (see Chapter 18of the IA-32
Intel® Architecture Software
Developer’s Manual, Volume 3B)

(Family 0FH; Model 03H,
04H) and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel Core Solo and Core Duo
processors

Family 06H, Model 0EH 0, 1 0, 1

66 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 are 32-bit
counters. EDX is cleared after executing RDPMC for these counters.

When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE) flag
in register CR4 restricts the use of the RDPMC instruction as follows. When the PCE flag is set, the
RDPMC instruction can be executed at any privilege level; when the flag is clear, the instruction can
only be executed at privilege level 0. (When in real-address mode, the RDPMC instruction is always
enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when
executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to count events
such as the number of instructions decoded, number of interrupts received, or number of cache
loads. Appendix A, “Performance Monitoring Events,” in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3B, lists the events that can be counted for the Pentium 4, Intel Xeon,
and earlier IA-32 processors.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events
caused by the preceding instructions have been completed or that events caused by subsequent
instructions have not begun. If an exact event count is desired, software must insert a serializing
instruction (such as the CPUID instruction) before and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are not guaranteed
to be monotonic. To guarantee monotonicity on back-to-back reads, a serializing instruction must
be placed between the tow RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the
full contents of the ECX register are used to select the counter, and the event count is stored in the
full EAX and EDX registers. The RDPMC instruction was introduced into the IA-32 Architecture
in the Pentium Pro processor and the Pentium processor with MMX technology. The earlier Pentium
processors have performance-monitoring counters, but they must be read with the RDMSR instruc-
tion.

In 64-bit mode, RDPMC behavior is unchanged from 32-bit mode. The upper 32 bits of RAX and
RDX are cleared.

Operation
(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN

EAX ← PMC(ECX)[31:0];

EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)

#GP(0);

FI;

(* Processors with CPUID family 15 *)

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)

THEN IF ECX[31] = 0

THEN IF 64-Bit Mode

THEN

IA-32 Software Developer’s Manual Documentation Changes 67

Documentation Changes

RAX[31:0] ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)

RAX[63:32] ← 0;

RDX[31:0] ← PMC(ECX[30:0])[39:32];

RDX[63:32] ← 0;

ELSE

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)

EDX ← PMC(ECX[30:0])[39:32];

FI;

ELSE IF ECX[31] = 1

THEN IF 64-Bit Mode

THEN

RAX[31:0] ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

RAX[63:32] ← 0;

RDX ← 0;

ELSE

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

FI;

ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

ELSE (* Invalid PMC index in ECX[30:0], see Table 4-4. *)
GP(0);

FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is

clear.

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within
the valid range.

68 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within
the valid range.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within
the valid range.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is

clear.

If an invalid performance counter index is specified in ECX[30:0] (see Table
4-2).

23. Sections covering variable range MTRRs updated
See Chapter 10 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A. Sections
covering variable range MTRRs have been updated. These are reproduced below. See the change
bars.

10.11.2.3 variable Range MTRRs

The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type
for eight variable-size address ranges, using a pair of MTRRs for each range. The first entry in each
pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range; the
second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range.
The “n” suffix indicates register pairs 0 through 7.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and
MTRRphysMask.

Table 10-9. Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

IA-32 Software Developer’s Manual Documentation Changes 69

Documentation Changes

Figure 10-6 shows flags and fields in these registers. The functions of these flags and fields are:

• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 10-8 for
the encoding of this field).

• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base address of the
address range. This 24-bit value, in the case where MAXPHYADDR is 36 bits, is extended by
12 bits at the low end to form the base address (this automatically aligns the address on a 4-
KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 bits if the
maximum physical address size is 36 bits, 28 bits if the maximum physical address size is 40
bits). The mask determines the range of the region being mapped, according to the following
relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more infor-
mation: see Section 10.11.3, “Example Base and Mask Calculations.”

— The width of the PhysMask field depends on the maximum physical address size
supported by the processor.

CPUID.80000008H reports the maximum physical address size supported by the
processor. If CPUID.80000008H is not available, software may assume that the processor
supports a 36-bit physical address size (then PhysMask is 24 bits wide and the upper 28
bits of IA32_MTRR_PHYSMASKn are reserved). See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000

Table 10-9. Address Mapping for Fixed-Range MTRRs (Continued)
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers are
reserved; the processor generates a general-protection exception (#GP) if software attempts to write
to them.

Some mask values can result in ranges that are not continuous. In such ranges, the area not mapped
by the mask value is set to the default memory type. Intel does not encourage the use of “discontin-
uous” ranges because they could require physical memory to be present throughout the entire 4-
GByte physical memory map. If memory is not provided, the behaviour is undefined.

NOTE
It is possible for software to parse the memory descriptions that BIOS provides
by using the ACPI/INT15 e820 interface mechanism. This information then can
be used to determine how MTRRs are initialized (for example: allowing the
BIOS to define valid memory ranges and the maximum memory range supported
by the platform, including the processor).

See Section 10.11.4.1, “MTRR Precedences,” for information on overlapping variable MTRR
ranges.

10.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical address size of
36 bits. The base and mask values entered in variable-range MTRR pairs are 24-bit values that the
processor extends to 36-bits.

For example, to enter a base address of 2 MBytes (200000H) in the IA32_MTRR_PHYSBASE3
register, the 12 least-significant bits are truncated and the value 000200H is entered in the PhysBase

Figure 10-6. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.

IA-32 Software Developer’s Manual Documentation Changes 71

Documentation Changes

field. The same operation must be performed on mask values. For example, to map the address range
from 200000H to 3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required.
Again, the 12 least-significant bits of this mask value are truncated, so that the value entered in the
PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so that when any
address in the 200000H to 3FFFFFH range is AND’d with the mask value, it will return the same
value as when the base address is AND’d with the mask value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base value of
000400H is entered in the PhysBase field and a mask value of FFFC00H is entered in the PhysMask
field.

Example 1-1. Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system has the
following characteristics:

• 96 MBytes of system memory is mapped as write-back memory (WB) for highest system
performance.

• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of
64 MBytes. This restriction forces the 96 MBytes of system memory to be addressed from 0 to
64 MBytes and from 68 MBytes to 100 MBytes, leaving a 4-MByte hole for the I/O card.

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at address
A0000000H.

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

72 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

The following settings for the MTRRs will yield the proper mapping of the physical address space
for this system configuration.
IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 000F FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are
mapped to WB and UC memory types) to minimize the number of MTRR registers that are required
to configure the memory environment. This setup also fulfills the requirement that two register pairs
are left for operating system usage.

10.11.3.1 Base and Mask Calculations with Intel EM64T

For IA-32 processors that support greater than 36 bits of physical address size, software should
query CPUID.80000008H to determine the maximum physical address.

Example 8-2. Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation, Example 8-1
should be modified as follows:
IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 00FF FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 00FF FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 00FF FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 00FF FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 00FF FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA-32 Software Developer’s Manual Documentation Changes 73

Documentation Changes

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 00FF FF80 0800H
Caches A0000000-A0800000 as WC type.

10.11.4 Range Size and Alignment Requirement
The range that is to be mapped to a variable-range MTRR must meet the following “power of 2”
size and alignment rules:

1. The minimum range size is 4 KBytes, and the base address of this range must be on at least a
4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address must be
aligned on a 2n boundary, where n is a value equal to or greater than 12. The base-address
alignment value cannot be less than its length. For example, an 8-KByte range cannot be
aligned on a 4-KByte boundary. It must be aligned on at least an 8-KByte boundary.

10.11.4.1 MTRR Precedences

If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR), then
all memory accesses are of the UC memory type. If the MTRRs are enabled, then the memory type
used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs are
enabled, the processor uses the memory type stored for the appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type set by the
variable-range MTRRs:

a. If one variable memory range matches, the processor uses the memory type stored in the
IA32_MTRR_PHYSBASEn register for that range.

b. If two or more variable memory ranges match and the memory types are identical, then
that memory type is used.

c. If two or more variable memory ranges match and one of the memory types is UC, the UC
memory type used.

d. If two or more variable memory ranges match and the memory types are WT and WB, the
WT memory type is used.

e. For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.

74 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes

