
IA-32 Intel® Architecture Software
Developer’s Manual
Documentation Changes

September 2005

Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

Document Number: 252046-014

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2005, Intel Corporation. All rights reserved.

IA-32 Software Developer’s Manual Documentation Changes 3

Contents
Revision History ...4

Preface...5

Summary Table of Changes...6

Documentation Changes..7

4 IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 • Initial Release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual

December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and

Len Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion.

February 2003

-004
• Removed Documentation changes 1-17.
• Added Documentation changes 1-24.

June 2003

-005
• Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008
• Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012
• Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.

July 2005

-014 • Added Documentation Changes 1-21. September 2005

IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Manual.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer’s Manual: Volume 1, Basic Architecture 253665

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2A, Instruction Set
Reference 253666

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2B, Instruction Set
Reference 253667

IA-32 Intel® Architecture Software Developer’s Manual: Volume 3, System
Programming Guide 253668

6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number Documentation Changes

1 Table addressing CPUID return values has been updated

2 Changes made to clarify the impact on TLBs when code modifies CR4.PGE

3 More information provided on the handling override prefixes in 64-bit mode

4 IA32_MISC_ENABLE information updated for clarity

5 Opcode map updated

6 Count operand usage issue corrected

7 Note on interrupt delivery added

8 Error corrected in Table 9-1, Volume 3

9 Updated CPUID operation description

10 Information on IA32_CLOCK_MODULATION MSR updated

11 MOVUPS/MOVUPD inconsistencies corrected

12 Information on IRET treatment of EFLAGS.NT updated

13 Incorrect diagram of page directory entry corrected

14 MOV to/from control registers updated

15 LGDT/LIDT exceptions updated

16 Underflow description corrected

17 IN/OUT virtual-8086 mode exceptions updated

18 SYSENTER and SYSEXIT sections updated

19 LTR section updated

20 Table updated

21 Corrections to Jcc summary table

IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. Table addressing CPUID return values has been updated
In Table 3-12, “CPUID—CPU Identification” section, IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 2A; a number of issues have been addressed:

• Associativity field values have been corrected.

• The relationship between CPUID.EAX = 04H, ECX, and specific return values has been
clarified using an extended note.

• Formatting issues have been addressed.

Table 3-12 has been reproduced below. See the change bars for the impacted area.

--

Table 3-12. Information Returned by CPUID Instruction
Initial EAX

Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-13)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of logical processors in this physical package.
Bits 31-24: Initial APIC ID

Extended Feature Information (see Figure 3-6 and Table 3-15)
Feature Information (see Figure 3-7 and Table 3-16)

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-17)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTE: Processor serial number (PSN) is not supported in the Pentium 4
processor or later. On all models, use the PSN flag (returned using CPUID)
to check for PSN support before accessing the feature. See AP-485, Intel
Processor Identification and the CPUID Instruction (Order Number 241618)
for more information on PSN.

8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H

EAX

EBX

ECX

EDX

NOTE:
04H output also depends on the inital value in ECX. See also: “INPUT
EAX = 4: Returns Deterministic Cache Parameters for Each Level” on
page 3-172.

Bits 4-0: Cache Type*
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a physical
package (see note)**
Bits 31-26: Maximum number of processor cores in this physical package**

Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

Bits 31-00: S = Number of Sets**

Reserved = 0

MORE NOTES:
* Cache Type fields:

0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

** Add one to the value in the register to get the number.
For example, the number of processor cores is EAX[31:26]+1.

MONITOR/MWAIT Leaf

5H EAX

EBX

ECX
EDX

Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0

Reserved = 0
Reserved = 0

Table 3-12. Information Returned by CPUID Instruction (Continued)
Initial EAX

Value Information Provided about the Processor

IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see
Table 3-13).

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

EDX

Extended Processor Signature and Extended Feature Bits.

Reserved

Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved

Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel EM64T available = 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

Table 3-12. Information Returned by CPUID Instruction (Continued)
Initial EAX

Value Information Provided about the Processor

10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

2. Changes made to clarify the impact on TLBs when code modifies CR4.PGE
In Section 3.12, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; updates that
clarify the relationship between CR4.PGE and TLB have been made. The text has been reproduced
below (with changes introduced in context). See the change bars for the impacted area.

...

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in register CR4 and
the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent frequently
used pages from being automatically invalidated in the TLBs on a task switch or a load of register
CR3. (See Section 3.7.6, “Page-Directory and Page-Table Entries”, for more information about the
global flag.) When the processor loads a page-directory or page-table entry for a global page into a
TLB, the entry will remain in the TLB indefinitely. The only ways to deterministically invalidate
global page entries are as follows:

• Clear the PGE flag; this will invalidate the TLBs.

• Execute the INVLPG instruction to invalidate individual page-directory or page-table entries
in the TLBs.

For additional information about invalidation of the TLBs, see Section 10.9, “Invalidating the Trans-
lation Lookaside Buffers (TLBs)”.

..

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

ECX

EDX

Reserved = 0
Reserved = 0

Bits 7-0: Cache Line size
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units

Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-12. Information Returned by CPUID Instruction (Continued)
Initial EAX

Value Information Provided about the Processor

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

Sections 10.11.7.2 and 10.11.8, IA-32 Intel Architecture Software Developer’s Manual, Volume 3;
changes have also been made to to address the same issue. The text has been reproduced below (with
changes introduced in context). See the change bars for the impacted area.

10.11.7.2 MemTypeSet() Function

The MemTypeSet() function in Example 10-6 sets a MTRR for the physical memory range specified
by the parameters base and size to the type specified by type. The base address and size are multiples
of 4 KBytes and the size is not 0.

Example 10-6. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID;

FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;
FI;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family processors

THEN return UNSUPPORTED;
FI;
IF TYPE is WC and not supported

THEN return UNSUPPORTED;
FI;
IF IA32_MTRRCAP.FIX is set AND range can be mapped using a fixed-range MTRR

THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)
IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED;
FI;
IF conflicts with current variable ranges

THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available

THEN return VAR_NOT_AVAILABLE;
FI;
IF BASE and SIZE do not meet the power of 2 requirements for variable MTRRs

THEN return INVALID_VAR_REQUEST;
FI;
pre_mtrr_change();
Update affected MTRRs;
post_mtrr_change();

FI;

pre_mtrr_change()
BEGIN

12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects
conflicts with current variable range registers by cycling through them and determining whether the
physical address in question matches any of the current ranges. During this scan, the algorithm can
detect whether any current variable ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid
executing code with a partially valid MTRR setup. The algorithm disables caching by setting the CD
flag and clearing the NW flag in control register CR0. The caches are invalidated using the
WBINVD instruction. The algorithm flushes all TLB entries either by clearing the page-global
enable (PGE) flag in control register CR4 (if PGE was already set) or by updating control register
CR3 (if PGE was already clear). Finally, it disables MTRRs by clearing the E flag in the
IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and again
invalidates the caches and TLBs. This second invalidation is required because of the processor's
aggressive prefetch of both instructions and data. The algorithm restores interrupts and re-enables
caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache invalida-
tions occur.

10.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency
between all the processors in the system. The Pentium 4, Intel Xeon, and P6 family processors
provide no hardware support to maintain this consistency. In general, all processors must have the
same MTRR values.

This requirement implies that when the operating system initializes an MP system, it must load the
MTRRs of the boot processor while the E flag in register MTRRdefType is 0. The operating system
then directs other processors to load their MTRRs with the same memory map. After all the proces-
sors have loaded their MTRRs, the operating system signals them to enable their MTRRs. Barrier
synchronization is used to prevent further memory accesses until all processors indicate that the
MTRRs are enabled. This synchronization is likely to be a shoot-down style algorithm, with shared
variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat the
loading and enabling process to maintain consistency, using the following procedure:

IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to
0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that supports self-
snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV from
control register CR3 to another register and then a MOV from that register back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only variable
ranges are being modified, software may clear the valid bits for the affected register pairs
instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only variable-
range registers were modified and their individual valid bits were cleared, then set the valid
bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4, Intel
Xeon, and P6 family processors. Executing the WBINVD instruction is not needed when using
Pentium 4, Intel Xeon, and P6 family processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control
register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

3. More information provided on the handling override prefixes in 64-bit mode
Section 3.3.7.1, IA-32 Intel Architecture Software Developer’s Manual, Volume 1; information on
the handling of override prefixes has been added. The added text has been reproduced below (with
changes reproduced in context). See the change bars for the impacted area.

3.3.7.1 Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the
most-significant implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel EM64T defines a 64-bit linear address. Implementations can support less. The first implemen-
tation of IA-32 processors with Intel EM64T supports a 48-bit linear address. This means a canon-
ical address must have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero
or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63
through the most-significant implemented bit to see if the address is in canonical form. If a linear-
memory reference is not in canonical form, the implementation should generate an exception. In
most cases, a general-protection exception (#GP) is generated. However, in the case of explicit or
implied stack references, a stack fault (#SS) is generated.

14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Instructions that have implied stack references, by default, use the SS segment register. These
include PUSH/POP-related instructions and instructions using RSP/RBP as base registers. In these
cases, the canonical fault is #SF.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-
SS segment, a canonical fault generates a #GP (instead of an #SF). In 64-bit mode, only FS and GS
segment-overrides are applicable in this situation. Other segment override prefixes (CS, DS, ES and
SS) are ignored. Note that this also means that an SS segment-override applied to a “non-stack”
register reference is ignored. Such a sequence still produces a #GP for a canonical fault (and not an
#SF).

4. IA32_MISC_ENABLE information updated for clarity
In Table B-1, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; corrections have
been made to IA32_MISC_ENABLE data. The applicable table cells are reproduced below (with
the changes marked in context). See the change bars for the impacted area.

Table B-1 MSRs in the Pentium 4 and Intel Xeon Processors
Register
Address Register Name

Fields and Flags
Model
Avail-
ability

Shared/
Unique1 Bit Description Hex Dec

1A0H 416 IA32_MISC_ENABLE 0, 1, 2,
3, 4

Shared Enable Miscellaneous Processor
Features. (R/W)
Allows a variety of processor
functions to be enabled and disabled.

0 Fast-Strings Enable.
When set, the fast-strings feature on
the Pentium 4 processor is enabled
(default); when clear, fast-strings are
disabled.

1 Reserved.

2 x87 FPU Fopcode Compatibility
Mode Enable.
When set, fopcode compatibility
mode is enabled; when clear
(default), mode is disabled.
See “Fopcode Compatibility Mode“ in
Chapter 8 of the IA-32 Intel
Architecture Software Developer’s
Manual, Volume 1.

3 Thermal Monitor 1 Enable.
When set, clock modulation
controlled by the processor’s internal
thermal sensor is enabled; when
clear (default), automatic clock
modulation is disabled.
See Section 13.16.2, “Thermal
Monitor”.

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

4 Split-Lock Disable.
This debug feature is specific to the
Pentium 4 processor.
When set, the bit causes an #AC
exception to be issued instead of a
split-lock cycle. Operating systems
that set this bit must align system
structures to avoid split-lock
scenarios.
When the bit is clear (default),
normal split-locks are issued to the
bus.

5 Reserved.

6 Third-Level Cache Disable. (R/W)
When set, the third-level cache is
disabled; when clear (default) the
third-level cache is enabled. This flag
is reserved for processors that do not
have a third-level cache.
Note that the bit controls only the
third-level cache; and only if overall
caching is enabled through the CD
flag of control register CR0, the
page-level cache controls, and/or the
MTRRs.
See Section 10.5.4, “Disabling and
Enabling the L3 Cache”.

7 Performance Monitoring
Available. (R)
When set, performance monitoring is
enabled; when clear, performance
monitoring is disabled.

8 Suppress Lock Enable.
When set, assertion of LOCK on the
bus is suppressed during a Split Lock
access. When clear (default), LOCK
is not suppressed.

9 Prefetch Queue Disable.
When set, disables the prefetch
queue. When clear (default), enables
the prefetch queue.

Table B-1 MSRs in the Pentium 4 and Intel Xeon Processors

16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

10 FERR# Interrupt Reporting
Enable. (R/W)
When set, interrupt reporting through
the FERR# pin is enabled; when
clear, this interrupt reporting function
is disabled.
When this flag is set and the
processor is in the stop-clock state
(STPCLK# is asserted), asserting the
FERR# pin signals to the processor
that an interrupt (such as, INIT#,
BINIT#, INTR, NMI, SMI#, or
RESET#) is pending and that the
processor should return to normal
operation to handle the interrupt.
This flag does not affect the normal
operation of the FERR# pin (to
indicate an unmasked floating-point
error) when the STPCLK# pin is not
asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE). (R)
When set, the processor does not
support branch trace storage (BTS);
when clear, BTS is supported.

12 Precise Event Based
Sampling Unavailable
(PEBS_UNAVILABLE). (R)
When set, the processor does not
support precise event-based
sampling (PEBS); when clear, PEBS
is supported.

13 3 TM2 Enable. (R/W)
When this bit is set (1) and the
thermal sensor indicates that the die
temperature is at the pre-determined
threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will
reduce the bus to core ratio and
voltage according to the value last
written to MSR_THERM2_CTL bits
15:0.
When this bit is clear (0, default), the
processor does not change the VID
signals or the bus to core ratio when
the processor enters a thermal
managed state.
NOTE: If the TM2 feature flag
(ECX[8]) is not set to 1 after
executing CPUID with EAX = 1, then
this feature is not supported and
BIOS must not alter the contents of
this bit location. The processor is
operating out of spec if both this bit
and the TM1 bit are set to disabled
states.

17:14 Reserved.

Table B-1 MSRs in the Pentium 4 and Intel Xeon Processors

IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

18 3 ENABLE MONITOR FSM. (R/W)
When set (default), the MONITOR
and MWAIT instructions are enabled.
When clear, these instructions are
disabled and attempting to execute
them results in an invalid opcode
exception.
NOTE: CPUID.1:EAX.MONITOR[bit
3] indicates the setting of the Enable
Monitor FSM bit. If
CPUID.1:ECX.SSE3[bit 0] is not set,
then the operating system must not
attempt to alter the setting of the
Enable Monitor FSM bit. BIOS
should leave this bit in the default
state.

19 Adjacent Cache Line Prefetch
Disable. (R/W)
When set to 1, the processor fetches
the cache line of the 128-byte sector
containing currently required data.
When set to 0, the processor fetches
both cache lines in the sector.
Single processor platforms should
not set this bit. Server platforms
should set or clear this bit based on
platform performance observed in
validation and testing.
BIOS may contain a setup option that
controls the setting of this bit.

21:20 Reserved.

22 3 Limit CPUID MAXVAL. (R/W)
When set to 1, CPUID with EAX = 0
returns a maximum value in EAX[7:0]
of 3. When set to a 0 (default),
CPUID with EAX = 0 returns the
number corresponding to the
maximum standard function
supported.
NOTE: Some older OS's cannot
handle a MAXVAL greater than 3.
BIOS should contain a setup
question that allows the user to
specify such an OS is installed.
Before setting this bit, BIOS must
execute the CPUID instruction with
EAX = 0 and examine the maximum
value returned in EAX[7:0]. If the
maximum value is greater than 3,
then this bit is supported. Otherwise,
this bit is not supported and BIOS
must not alter the contents of this bit
location.

23 Reserved.

Table B-1 MSRs in the Pentium 4 and Intel Xeon Processors

18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Changes to support IA32_MISC_ENABLE have also been made to Section 10.5.6 through 10.5.6.2,
IA-32 Intel Architecture Software Developer’s Manual, Volume 3. The text has been reproduced
below (with changes reproduced in context). See the change bars for the impacted area.

10.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of IA-32 processors that support Hyper-Threading Tech-
nology. When CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context mode
using the L1 data cache context mode flag (IA32_MISC_ENABLE[bit 24]). Selectable modes are
adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

10.5.6.1 Adaptive Mode

Adaptive mode facilitates L1 data cache sharing between logical processors. When running in adap-
tive mode, the L1 data cache is shared across logical processors in the same core if:

• CR3 control registers for logical processors sharing the cache are identical.

• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor (instead of being
competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the logical proces-
sors use different paging modes, processors compete for cache resources. This reduces the effective
size of the cache for each logical processor. Aliasing of the cache is not allowed (which prevents
data thrashing).

24 L1 Data Cache Context Mode.
(R/W)
When set, the L1 data cache is
placed in shared mode; when clear
(default), the cache is placed in
adaptive mode. This bit is only
enabled for IA-32 processors that
support Intel Hyper-Threading
Technology. See Section 10.5.6, “L1
Data Cache Context Mode” for
additional information about the use
of this flag.
When L1 is running in adaptive mode
and CR3s are identical, data in L1 is
shared across logical processors.
Otherwise, L1 is not shared and
cache use is competitive.
NOTE: If the Context ID feature flag
(ECX[10]) is set to 0 after executing
CPUID with EAX = 1, the ability to
switch modes is not supported. BIOS
must not alter the contents of
IA32_MISC_ENABLE[24].

Table B-1 MSRs in the Pentium 4 and Intel Xeon Processors

IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

10.5.6.2 Shared Mode

In shared mode, the L1 data cache is competitively shared between logical processors. This is true
even if the logical processors use identical CR3 registers and paging modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that one linear address
in the cache can point to different physical locations. The mechanism for resolving aliasing can lead
to thrashing. For this reason, IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for
IA-32 processors that support Hyper-Threading Technology.

5. Opcode map updated
In Table A-4, IA-32 Intel Architecture Software Developer’s Manual, Volume 2B; two table cells
have been updated to reflect the operation of modern processors. The impacted rows and columns
are reproduced below. See the shaded cells.

--

6. Count operand usage issue corrected

See the “PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical,” “PSRAW/PSRAD—Shift
Packed Data Right Arithmetic,” and “PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical”
sections of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2B.

The PRM did not explicitly state how much of the count operand is used to determine whether the
count exceeds the datatype. One could have interpreted that the full 128-bit operand (for the SSE-2
integer xmm/m128 versions) is parsed for the count. Actually, only 64 bits of xmm/m128 are
checked.

This problem has been corrected for all of the above sections. Only the “PSLLW/PSLLD/
PSLLQ—Shift Packed Data Left Logical” section is reproduced below. See the change bars for the
impacted area.

Table A-4. Two-Byte Opcode Map for Non-64-Bit Mode (First Byte is 0FH)
8 9 A B C D E F

0 INVD1D WBINVD1D UD2 NOP Ev

1 PREFETCH1C

(Grp 161A)
NOP Ev

20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destina-
tion operand (first operand) to the left by the number of bits specified in the count operand (second
operand). As the bits in the data elements are shifted left, the empty low-order bits are cleared (set
to 0). If the value specified by the count operand is greater than 15 (for words), 31 (for double-
words), or 63 (for a quadword), then the destination operand is set to all 0s. Figure 10-1 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM register
or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of a 128-bit
count operand are checked to compute the count.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F1 /r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in 0s.

66 0F F1 /r PSLLW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in 0s.

66 0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by imm8
while shifting in 0s.

0F F2 /r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in 0s.

66 0F F2 /r PSLLD xmm1,
xmm2/m128

Valid Valid Shift doublewords in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 72 /6 ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in 0s.

66 0F 72 /6 ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left by
imm8 while shifting in 0s.

0F F3 /r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in 0s.

66 0F F3 /r PSLLQ xmm1,
xmm2/m128

Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 73 /6 ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in 0s.

66 0F 73 /6 ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by
imm8 while shifting in 0s.

Figure 10-1. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension

IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes

The PSLLW instruction shifts each of the words in the destination operand to the left by the number
of bits specified in the count operand; the PSLLD instruction shifts each of the doublewords in the
destination operand; and the PSLLQ instruction shifts the quadword (or quadwords) in the destina-
tion operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation
PSLLW instruction with 64-bit operand:

IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD instruction with 64-bit operand:
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

PSLLW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

22 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

PSLLQ instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

Intel C/C++ Compiler Intrinsic Equivalents
PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

PSLLD __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ __m128i _mm_slli_si64(__m128i m, int count)

PSLLQ __m128i _mm_sll_si64(__m128i m, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from 0 to
FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

24 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

7. Note on interrupt delivery added
In Section 5-10, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; a note has been
added. The note clarifies the relationship between interrupts and the IDT configuration task. Text
from the applicable section has been reproduced below (with the note reproduced in context). See
the change bars for the impacted area.

10.5 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like the
GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the GDT, the
first entry of the IDT may contain a descriptor. To form an index into the IDT, the processor scales
the exception or interrupt vector by eight (the number of bytes in a gate descriptor). Because there
are only 256 interrupt or exception vectors, the IDT need not contain more than 256 descriptors. It
can contain fewer than 256 descriptors, because descriptors are required only for the interrupt and
exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag
for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance
of cache line fills. The limit value is expressed in bytes and is added to the base address to get the
address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because IDT entries
are always eight bytes long, the limit should always be one less than an integral multiple of eight
(that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents
of the IDTR register, respectively. The LIDT instruction loads the IDTR register with the base
address and limit held in a memory operand. This instruction can be executed only when the CPL is
0. It normally is used by the initialization code of an operating system when creating an IDT. An
operating system also may use it to change from one IDT to another. The SIDT instruction copies
the base and limit value stored in IDTR to memory. This instruction can be executed at any privilege
level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP)
is generated.

NOTE
Because interrupts are delivered to the processor core only once, an incorrectly
configured IDT could result in incomplete interrupt handling and/or the blocking
of interrupt delivery. IA-32 architecture rules need to be followed for setting up
IDTR base/limit/access fields and each field in the gate descriptors. This includes
the implicit referencing of the destination code segment through the GDT or
LDT, and the accessing of the stack.

8. Error corrected in Table 9-1, Volume 3
In Table 9-1, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; a change has been
made to correct an error. Cells from the table have been reproduced below (with the change

IA-32 Software Developer’s Manual Documentation Changes 25

Documentation Changes

reproduced in context). There is a change to one cell and a change to notes that follow the table. See
the change bars for the impacted area.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT

Register
Pentium 4 and Intel Xeon
Processor P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

SS, DS, ES, FS,
GS

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI,
EDI, EBP, ESP

00000000H 00000000H 00000000H

ST0 through
ST75

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and
Inst. Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through
MM75

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX
Technology Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through
XMM7

Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

Pentium III processor
Only—
Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

26 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

9. Updated CPUID operation description
In the “Description” subsection, “CPUID—CPU Identification” section, Chapter 3, IA-32 Intel
Architecture Software Developer’s Manual, Volume 2A; input value ranges have been updated. The
paragraphs have been reproduced below so that changes can be displayed in context. See the change
bars for the impacted area.

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2,
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters
and Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code
Cache, TLBs

Invalid Invalid Invalid

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should

not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST can-

not be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT (Continued)

Register
Pentium 4 and Intel Xeon
Processor P6 Family Processor Pentium Processor

IA-32 Software Developer’s Manual Documentation Changes 27

Documentation Changes

...

Description
The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a soft-
ware procedure can set and clear this flag, the processor executing the procedure supports the
CPUID instruction. This instruction operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The instruction’s output is dependent on the contents of the EAX register upon execution.
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a
Maximum Return Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-12 shows information returned, depending on the initial value loaded into the EAX register.
Table 3-13 shows the maximum CPUID input value recognized for each family of IA-32 processors
on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a value is entered
for CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf
is returned. For example, using the Intel Pentium 4 Processor Extreme Edition, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 09H (* INVALID: Returns the same information as CPUID.EAX = 05H. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 05H. *)

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruc-
tion execution guarantees that any modifications to flags, registers, and memory for previous
instructions are completed before the next instruction is fetched and executed.

...

10. Information on IA32_CLOCK_MODULATION MSR updated
Section 13.16.3, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; has been
updated. Text from section has been reproduced below (with changes reproduced in context). See
the change bars for the impacted area.

.---

13.16.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modula-
tion. This provides a means for operating systems to implement a power management policy to
reduce the power consumption of the processor. Here, the stop-clock duty cycle is controlled by soft-
ware through the IA32_CLOCK_MODULATION MSR (see Figure 13-11).

Figure 13-11. IA32_CLOCK_MODULATION MSR

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved

28 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable soft-
ware-controlled clock modulation and to select the clock modulation duty cycle:

• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled
clock modulation when set; disables software-controlled clock modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand
clock modulation duty cycle (see Table 13-8). This field is only active when the on-demand
clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the
processor’s stop-clock circuitry internally to modulate the clock signal. The STPCLK# pin is not
used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power consumption.
Power management software can write to the IA32_CLOCK_MODULATION MSR to enable clock
modulation and to select a modulation duty cycle. If on-demand clock modulation and TM1 are both
enabled and the thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is
set), clock modulation at the duty cycle specified by TM1 takes precedence, regardless of the setting
of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register
is duplicated for each logical processor. In order for the On-demand clock modulation feature to
work properly, the feature must be enabled on all the logical processors within a physical processor.
If the programmed duty cycle is not identical for all the logical processors, the processor clock will
modulate to the highest duty cycle programmed.

For the P6 family processors, on-demand clock modulation was implemented through the chipset,
which controlled clock modulation through the processor’s STPCLK# pin.

11. MOVUPS/MOVUPD inconsistencies corrected
In the “Interrupt 17—Alignment Check Exception (#AC)” section, Chapter 5, IA-32 Intel
Architecture Software Developer’s Manual, Volume 3; text has been added to correct an issue with
the MOVUPS and MOVUPD description. The updated text is reproduced below. See the change
bars for the impacted area.

Table 13-8. On-Demand Clock Modulation Duty Cycle Field Encoding
Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

IA-32 Software Developer’s Manual Documentation Changes 29

Documentation Changes

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was
enabled. Alignment checks are only carried out in data (or stack) segments (not in code or system
segments). An example of an alignment-check violation is a word stored at an odd byte address, or
a doubleword stored at an address that is not an integer multiple of 4. Table 13-9 lists the alignment
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that must be aligned
on word, doubleword, and quadword boundaries. A general-protection exception (#GP) is generated
128-bit data types that are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:

• AM flag in CR0 register is set.

• AC flag in the EFLAGS register is set.

• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user
mode). Memory references that default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check exceptions, even when caused by a memory reference made from privi-
lege level 3.

Table 13-9. Alignment Requirements by Data Type
Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-bits) 8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

30 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level
3 can generate an alignment-check exception. Although application programs do not normally store
these registers, the fault can be avoided by aligning the information stored on an even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure, the first byte
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is
enabled when executing these instructions (and CPL is 3), a misaligned memory operand can cause
either an alignment-check exception or a general-protection exception (#GP) depending on the IA-
32 processor implementation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and
“FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 2.

The MOVUPS and MOVUPD instructions perform 128-bit unaligned loads or stores. They do not
generate general-protection exceptions (#GP) when operands are not aligned on a 16-byte boundary.
If alignment checking is enabled, alignment-check exceptions (#AC) are generated when instruc-
tions are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions generate unaligned references, which can cause alignment-check
faults. These instructions are rarely needed by application programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is
not executed.

--

In addition, exception information in the “MOVUPD—Move Unaligned Packed Double-Precision
Floating-Point Values” and “MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values” sections of Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, Volume 2A,
have been updated. Information on alignment check exceptions has been added. Exception data for
both instructions is reprinted below, with changes marked in context. See the change bars for the
impacted area.

--

MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
Values

Protected Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

IA-32 Software Developer’s Manual Documentation Changes 31

Documentation Changes

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

GP(0) If any part of the operand lies outside the effective address space from 0 to
FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
Values

Protected Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.

#SS(0) For an illegal address in the SS segment.

32 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

GP(0) If any part of the operand lies outside the effective address space from 0 to
FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

12. Information on IRET treatment of EFLAGS.NT updated
In the “IRET/IRETD—Interrupt Return” section, Chapter 3, IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; EFLAGS.NT data has been updated. The section is reprinted
below. See the change bars for the impacted area.

IA-32 Software Developer’s Manual Documentation Changes 33

Documentation Changes

IRET/IRETD—Interrupt Return

Description
Returns program control from an exception or interrupt handler to a program or procedure that was
interrupted by an exception, an external interrupt, or a software-generated interrupt. These instruc-
tions are also used to perform a return from a nested task. (A nested task is created when a CALL
instruction is used to initiate a task switch or when an interrupt or exception causes a task switch to
an interrupt or exception handler.) See the section titled “Task Linking” in Chapter 6 of the IA-32
Intel Architecture Software Developer’s Manual, Volume 3.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) is intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respec-
tively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task)
and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on the current
stack. Depending on the setting of these flags, the processor performs the following types of inter-
rupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally or
less privileged than the interrupt handler routine (as indicated by the RPL field of the code segment
selector popped from the stack). As with a real-address mode interrupt return, the IRET instruction
pops the return instruction pointer, return code segment selector, and EFLAGS image from the stack
to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure. If the return is to another privilege level, the IRET instruction also pops the
stack pointer and SS from the stack, before resuming program execution. If the return is to virtual-
8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task
called with a CALL instruction, an interrupt, or an exception) back to the calling or interrupted task.
The updated state of the task executing the IRET instruction is saved in its TSS. If the task is re-
entered later, the code that follows the IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general
protection exception.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

CF IRET Valid Valid Interrupt return (16-bit operand size).
CF IRETD Valid Valid Interrupt return (32-bit operand size).
REX.W + CF IRETQ Valid N.E. Interrupt return (64-bit operand size).

34 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes
operation to 64 bits (IRETQ). See the summary chart at the beginning of this section for encoding
data and limits.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS; FI;
tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();

IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;

IF tempEFLAGS(VM) = 1 and CPL = 0
THEN

GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE = 1, VM = 1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE = 1, VM = 0 in EFLAGS image *)

FI;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

36 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 1, NT = 1 *)
Read segment selector in link field of current TSS;

IA-32 Software Developer’s Manual Documentation Changes 37

Documentation Changes

IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1, VM = 0 in flags image *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, VM = 0 in flags image, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;

38 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

IF CPL ≤ IOPL
THEN EFLAGS(IF) ← tempEFLAGS; FI;

IF CPL = 0
THEN EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;

IA-32 Software Developer’s Manual Documentation Changes 39

Documentation Changes

IF CPL = 0
THEN

EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1, VM = 0 in flags image *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected
All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of
operation of the processor. If performing a return from a nested task to a previous task, the EFLAGS
register will be modified according to the EFLAGS image stored in the previous task’s TSS.

40 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of the
code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return code
segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is not busy.

If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.

Compatibility Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

Other exceptions same as in Protected Mode.

IA-32 Software Developer’s Manual Documentation Changes 41

Documentation Changes

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.

If the stack segment selector is NULL going back to compatibility mode.

If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to non-
CPL3 64-bit mode.

If the return instruction pointer is not within the return code segment limit.

If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the proposed new code segment descriptor has both the D-bit and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the RPL of the
code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return code
segment selector.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical address to be
referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

13. Incorrect diagram of page directory entry corrected
In Figure 3-27, Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; the
page directory entry was incorrect. The corrected figure is reprinted below. See the change bars for
the impacted area.

42 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

14. MOV to/from control registers updated
In the “MOV—Move to/from Control Registers” section, IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; the summary table and paragraph have been updated. The updates
correct omissions in the REX.W information. The section is reprinted below. See the change bars
for the impacted area.

MOV—Move to/from Control Registers

Figure 3-27. Format of Paging Structure Entries for 2-MByte Pages in IA-32e Mode

63 62 32

BaseReserved (set to 0)

Page-Directory-Pointer-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPage-Directory Base Address

Addr.

Rsvd

63 62 52 32
Page Base

Reserved (set to 0)

Page-Directory Entry (2-MByte Page)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0
P
C
D

P
P
W
T

Page Base Address G 1 A
R
/

W

U
/
S

Avail

P

1

63 62 32

BaseReserved (set to 0)

Page-Map-Level-4-Table Entry

31 12 11 9 8 5 4 3 2 0
P
C
D

P
W
T

AvailPML4 Base Address

Addr.

Rsvd. P

1

39

Avail
E
X
B

51

39

Avail
E
X
B

51

R
/

W

U
/
S

39

Avail
E
X
B

51

6

A

6

A
R
/

W

U
/
S

Addr,

P
A
T

Reserved (set to 0) D

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 22 /r MOV CR0,r32 N.E. Valid Move r32 to CR0.
REX + 0F 22 /r MOV CR0,r64 Valid N.E. Move r64 to extended CR0.
0F 22 /r MOV CR2,r32 N.E. Valid Move r32 to CR2.
REX + 0F 22 /r MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
0F 22 /r MOV CR3,r32 N.E. Valid Move r32 to CR3.
REX + 0F 22 /r MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
0F 22 /r MOV CR4,r32 N.E. Valid Move r32 to CR4.
REX + 0F 22 /r MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
0F 20 /r MOV r32,CR0 N.E. Valid Move CR0 to r32.
REX + 0F 20 /r MOV r64,CR0 Valid N.E. Move extended CR0 to r64.
0F 20 /r MOV r32,CR2 N.E. Valid Move CR2 to r32.

IA-32 Software Developer’s Manual Documentation Changes 43

Documentation Changes

Description
Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose register or
vice versa. The operand size for these instructions is always 32 bits in non-64-bit modes, regardless
of the operand-size attribute. (See “Control Registers” in Chapter 2 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, for a detailed description of the flags and fields in the
control registers.) This instruction can be executed only when the current privilege level is 0.

When loading control registers, programs should not attempt to change the reserved bits; that is,
always set reserved bits to the value previously read. An attempt to change CR4's reserved bits will
cause a general protection fault. Reserved bits in CR0 and CR3 remain clear after any load of those
registers; attempts to set them have no impact. On Pentium 4, Intel Xeon and P6 family processors,
CR0.ET remains set after any load of CR0; attempts to clear this bit have no impact.

At the opcode level, the reg field within the ModR/M byte specifies which of the control registers
is loaded or read. The 2 bits in the mod field are always 11B. The r/m field specifies the general-
purpose register loaded or read.

These instructions have the following side effect:

• When writing to control register CR3, all non-global TLB entries are flushed (see “Translation
Lookaside Buffers (TLBs)” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

The following side effects are implementation specific for the Pentium 4, Intel Xeon, and P6
processor family. Software should not depend on this functionality in all IA-32 processors:

• When modifying any of the paging flags in the control registers (PE and PG in register CR0
and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including global entries.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to enable
the physical address extension mode), the pointers in the page-directory pointers table (PDPT)
are loaded into the processor (into internal, non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will cause the
PDPTRs to be reloaded into the processor. If the PAE flag is set to 1 and control register CR0 is
written to set the PG flag, the PDPTRs are reloaded into the processor.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.R prefix permits
access to additional registers (R8-R15). Use of the REX.W or 66H prefix is ignored. See the
summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

REX + 0F 20 /r MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
0F 20 /r MOV r32,CR3 N.E. Valid Move CR3 to r32.
REX + 0F 20 /r MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
0F 20 /r MOV r32,CR4 N.E. Valid Move CR4 to r32.
REX + 0F 20 /r MOV r64,CR4 Valid N.E. Move extended CR4 to r64.
0F 20 /r MOV r32,CR8 N.E. N.E. Move CR8 to r32.
REX + 0F 20 /r MOV r64,CR8 Valid N.E. Move extended CR8 to r64.

44 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting
the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when
the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If any of the reserved bits are set in the page-directory pointers table (PDPT)
and the loading of a control register causes the PDPT to be loaded into the
processor.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write invalid bit combinations in CR0 (such as setting
the PG flag to 1 when the PE flag is set to 0).

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting
the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when
the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as setting
the PG flag to 1 when the PE flag is set to 0, or setting the CD flag to 0 when
the NW flag is set to 1).

Attempting to clear CR0.PG[bit 32].

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

15. LGDT/LIDT exceptions updated
In the “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” section, IA-32 Intel
Architecture Software Developer’s Manual, Volume 2A; virtual-8086 mode exceptions have been
updated. The updated list is printed below. See the change bars for the impacted area.

IA-32 Software Developer’s Manual Documentation Changes 45

Documentation Changes

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) The LGDT and LIDT instructions are not recognized in virtual-8086 mode.

#GP If the current privilege level is not 0.

16. Underflow description corrected
In Section 4.9.1.5, IA-32 Intel Architecture Software Developer’s Manual, Volume 1; the language
has been updated to correct an ambiguity. The updated material is provided below (with changes
shown in context). See the change bars for the impacted area.

4.9.1.5 Numeric Underflow Exception (#U)

The processor detects a floating-point numeric underflow condition whenever the result of rounding
with unbounded exponent (taking into account precision control for x87) is tiny; that is, less than the
smallest possible normalized, finite value that will fit into the destination operand. Table 4-10 shows
the threshold range for numeric underflow for each of the floating-point formats (assuming normal-
ized results); underflow occurs when a rounded result falls strictly within the threshold range. The
ability to detect and handle underflow is provided to prevent a vary small result from propagating
through a computation and causing another exception (such as overflow during division) to be gener-
ated at a later time.

How the processor handles an underflow condition, depends on two related conditions:

• creation of a tiny result

• creation of an inexact result; that is, a result that cannot be represented exactly in the
destination format

Which of these events causes an underflow exception to be reported and how the processor responds
to the exception condition depends on whether the underflow exception is masked:

• Underflow exception masked — The underflow exception is reported (the UE flag is set)
only when the result is both tiny and inexact. The processor returns a denormalized result to
the destination operand, regardless of inexactness.

• Underflow exception not masked — The underflow exception is reported when the result is
tiny, regardless of inexactness. The processor leaves the source and destination operands
unaltered or stores a biased result in the designating operand (depending whether the
underflow exception was generated during an SSE/SSE2/SSE3 floating-point operation or an
x87 FPU operation) and invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception when
detected while executing x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:

• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”

Table 4-10. Numeric Underflow (Normalized) Thresholds
Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.

46 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception (#U)”

17. IN/OUT virtual-8086 mode exceptions updated
In the “IN—Input from Port” section, IA-32 Intel Architecture Software Developer’s Manual,
Volume 2A and the “OUT—Output to Port” section, IA-32 Intel Architecture Software Developer’s
Manual, Volume 2B; the description of Virtual-8086 mode exceptions has been updated. The update
for both sections is reprinted below. See the change bars for the impacted area.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.

#PF(fault-code) If a page fault occurs.

18. SYSENTER and SYSEXIT sections updated
In the “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return from Fast System Call”
sections, IA-32 Intel Architecture Software Developer’s Manual, Volume 2B; a number of updates
have been made to address errors and omissions. The sections are reprinted below. See the change
bars for the impacted area.

SYSENTER—Fast System Call

Description
Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction
to SYSEXIT. The instruction is optimized to provide the maximum performance for system calls
from user code running at privilege level 3 to operating system or executive procedures running at
privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code
segment and code entry point, and the privilege level 0 stack segment and stack pointer by writing
values to the following MSRs:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the segment
selector for the privilege level 0 code segment. This value is also used to compute the segment
selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code segment to
the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level 0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register addresses are listed
in Table 4-28. The addresses are defined to remain fixed for future IA-32 processors.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 34 SYSENTER Valid Valid Fast call to privilege level 0 system
procedures.

IA-32 Software Developer’s Manual Documentation Changes 47

Documentation Changes

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling procedure.

The SYSENTER instruction always transfers program control to a protected-mode code segment
with a DPL of 0. The instruction requires that the following conditions are met by the operating
system:

• The segment descriptor for the selected system code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit stack segment of
up to 4 GBytes, with read, write, accessed, and expand-up permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute
a call/return pair. When executing a SYSENTER instruction, the processor does not save state infor-
mation for the user code, and neither the SYSENTER nor the SYSEXIT instruction supports passing
parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions
between privilege level 3 code and privilege level 0 operating system procedures, the following
conventions must be followed:

• The segment descriptors for the privilege level 0 code and stack segments and for the privilege
level 3 code and stack segments must be contiguous in the global descriptor table. This
convention allows the processor to compute the segment selectors from the value entered in the
SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or
DLLs) must save the required return IP and processor state information if a return to the calling
procedure is required. Likewise, the operating system or executive procedures called with
SYSENTER instructions must have access to and use this saved return and state information
when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For example:

Table 4-28. MSRs Used By the SYSENTER and SYSEXIT Instructions
MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H

48 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation
IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* Insures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.SEL.RPL ← 0;
CS.ARbyte.P ← 1;
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ←;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.SEL.RPL ← 0;
SS.ARbyte.P ← 1;

ESP ← SYSENTER_ESP_MSR;
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation
In IA-32e mode, SYSENTER executes a fast system calls from user code running at privilege level
3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at privilege level
0. This instruction is a companion instruction to the SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

IA-32 Software Developer’s Manual Documentation Changes 49

Documentation Changes

• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit = FFFFFFFFH.

• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.

• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected
VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

SYSEXIT—Fast Return from Fast System Call

Description
Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the
SYSENTER instruction. The instruction is optimized to provide the maximum performance for
returns from system procedures executing at protections levels 0 to user procedures executing at
protection level 3. It must be executed from code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code
entry point, and the privilege level 3 stack segment and stack pointer by writing values into the
following MSR and general-purpose registers:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the segment
selector for the privilege level 0 code segment in which the processor is currently executing.
This value is used to compute the segment selectors for the privilege level 3 code and stack
segments.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.
REX.W +
0F 35

SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
user code.

50 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the first
instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR/WRMSR. The
register address is listed in Table 4-28. This address is defined to remain fixed for future IA-32
processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” for information about using the SYSENTER and
SYSEXIT instructions as companion call and return instructions.

The SYSEXIT instruction always transfers program control to a protected-mode code segment with
a DPL of 3. The instruction requires that the following conditions are met by the operating system:

• The segment descriptor for the selected user code segment selects a flat, 32-bit code segment
of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit stack segment of
up to 4 GBytes, with expand-up, read, write, and accessed permissions.

The SYSENTER can be invoked from all operating modes except real-address mode and virtual
8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor family
and model to ensure that the SYSENTER/SYSEXIT instructions are actually present. For example:
IF CPUID SEP bit is set

THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE

SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)

IA-32 Software Developer’s Manual Documentation Changes 51

Documentation Changes

CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.SEL.RPL ← 3;
CS.ARbyte.P ← 1;
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← ;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.SEL.RPL ← 3;
SS.ARbyte.P ← 1;

ESP ← ECX;
EIP← EDX;

IA-32e Mode Operation
In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive procedures running
at privilege level 0 to user code running at privilege level 3 (in compatibility mode or 64-bit mode).
This instruction is a companion instruction to the SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the
following fields are generated and bits set:

• Target code segment — Computed by adding 32 to the value in the IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode).

• Target instruction — Reads 64-bit canonical address in RDX.

• Stack segment — Computed by adding 8 to the value of CS selector.

• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute
is 32 bits, the following fields are generated and bits set:

• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).

• Target instruction — Fetch the target instruction from 32-bit address in EDX.

• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• Stack pointer — Update ESP from 32-bit address in ECX.

52 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
#GP(0) Always

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.

If ECX or EDX contains a non-canonical address.

19. LTR section updated
In the “LTR—Load Task Register” section, Chapter 3, IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; omissions have been corrected. The updated section is reproduced
below. See the change bars for the impacted area.

LTR—Load Task Register

Description
Loads the source operand into the segment selector field of the task register. The source operand (a
general-purpose register or a memory location) contains a segment selector that points to a task state
segment (TSS). After the segment selector is loaded in the task register, the processor uses the
segment selector to locate the segment descriptor for the TSS in the global descriptor table (GDT).
It then loads the segment limit and base address for the TSS from the segment descriptor into the
task register. The task pointed to by the task register is marked busy, but a switch to the task does
not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in appli-
cation programs. It can only be executed in protected mode when the CPL is 0. It is commonly used
in initialization code to establish the first task to be executed.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /3 LTR r/m16 Valid Valid Load r/m16 into task register.

IA-32 Software Developer’s Manual Documentation Changes 53

Documentation Changes

The operand-size attribute has no effect on this instruction.

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 16-byte
descriptor to load the 64-bit base.

Operation
IF SRC is a null selector

THEN #GP(0);

IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global
THEN #GP(segment selector); FI;

Read segment descriptor;

IF segment descriptor is not for an available TSS
THEN #GP(segment selector); FI;

IF segment descriptor is not present
THEN #NP(segment selector); FI;

TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)

TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the source operand contains a NULL segment selector.

If the DS, ES, FS, or GS register is used to access memory and it contains a
NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task
that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

54 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

If the source operand contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task
that is already busy.

If the selector points to LDT or is beyond the GDT limit.

If the descriptor type of the upper 8-byte of the 16-byte descriptor is non-zero.

#NP(selector) If the TSS is marked not present.

#PF(fault-code) If a page fault occurs.

20. Table updated
In Table 4-3, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; an earlier correction
introduced confusion. Three table cells and the footnote have been updated to address the issue. The
updated table is provided below. See the change bars for the impacted area.

NOTE:
* If the CR0.WP = 1, the access type is determined by the R/W flags of the page-directory and page-table

entries. IF CR0.WP = 0, supervisor privilege always permits read-write access.

Table 4-3. Combined Page-Directory and Page-Table Protection
Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

IA-32 Software Developer’s Manual Documentation Changes 55

Documentation Changes

21. Corrections to Jcc summary table
In the “Jcc—Jump if Condition Is Met” section, IA-32 Intel Architecture Software Developer’s
Manual, Volume 2A; corrections have been made to the summary table at the beginning of the
chapter. Applicable cells in the table are reprinted below in context. See the change bars for the
impacted area.

Jcc—Jump if Condition Is Met

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

77 cb JA rel8 Valid Valid Jump short if above (CF=0 and ZF=0).
73 cb JAE rel8 Valid Valid Jump short if above or equal (CF=0).
72 cb JB rel8 Valid Valid Jump short if below (CF=1).
76 cb JBE rel8 Valid Valid Jump short if below or equal (CF=1 or

ZF=1).
72 cb JC rel8 Valid Valid Jump short if carry (CF=1).
E3 cb JCXZ rel8 N.E. Valid Jump short if CX register is 0.
E3 cb JECXZ rel8 Valid Valid Jump short if ECX register is 0.
E3 cb JRCXZ rel8 Valid N.E. Jump short if RCX register is 0.
74 cb JE rel8 Valid Valid Jump short if equal (ZF=1).
7F cb JG rel8 Valid Valid Jump short if greater (ZF=0 and SF=OF).
7D cb
...

JGE rel8
...

Valid
...

Valid
...

Jump short if greater or equal (SF=OF).
...

56 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Symbol
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /IntelLogo
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

