
IA-32 Intel® Architecture and
Intel® Extended Memory 64
Technology Software Developer’s
Manual
Documentation Changes

November 2004

Notice: The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain
design defects or errors known as errata that may cause the product to deviate from published
specifications. Current characterized errata are documented in the specification updates.

Document Number: 252046-011

2 IA-32 Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture and Intel® Extended Memory 64 Technology may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2004, Intel Corporation. All rights reserved.

IA-32 Software Developer’s Manual Documentation Changes 3

Contents
Revision History ...4

Preface ...5

Summary Table of Changes ...6

Documentation Changes..7

4 IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 • Initial Release November 2002

-002
• Added 1-10 Documentation Changes.

• Removed old Documentation Changes items that already have been
incorporated in the published Software Developer’s manual

December 2002

-003

• Added 9 -17 Documentation Changes.

• Removed Documentation Change #6 - References to bits Gen and
Len Deleted.

• Removed Documentation Change #4 - VIF Information Added to CLI
Discussion.

February 2003

-004
• Removed Documentation changes 1-17.

• Added Documentation changes 1-24.
June 2003

-005
• Removed Documentation Changes 1-24.

• Added Documentation Changes 1-15.
September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007
• Updated Documentation changes 14, 16, 17, and 28.

• Added Documentation Changes 35-45.
January 2004

-008
• Removed Documentation Changes 1-45.

• Added Documentation Changes 1-5.
March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010
• Removed Documentation Changes 1-27.

• Added Documentation Changes 1.
August 2004

-011 • Added Documentation Changes 2-28. November 2004

IA-32 Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Nomenclature

Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Manual.

Document Title Document
Number

IA-32 Intel® Architecture Software Developer’s Manual: Volume 1, Basic Architecture 253665

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2A, Instruction Set
Reference 253666

IA-32 Intel® Architecture Software Developer’s Manual: Volume 2B, Instruction Set
Reference 253667

IA-32 Intel® Architecture Software Developer’s Manual: Volume 3, System
Programming Guide 253668

Intel® Extended Memory 64 Technology Software Developer’s Guide Volumes 1 and 2 300835

6 IA-32 Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table

Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes
Number Documentation Changes

1 The mechanism for handling the Extended Family ID and Extended Model ID fields has been
updated

2 INT n/INTO/INT 3—Call to Interrupt Procedure Section Updated

3 Table 1-37 Corrected

4 Appendix E Corrected

5 Chapter 15 Corrected

6 IA-32e Updates for CVTSI2SD, CVTSI2SS, CVTTSD2SI

7 Table 9-6 Corrected

8 Figure 4-6 Corrected

9 Table B-1 Updated

10 POPF/POPFD—Pop Stack into EFLAGS Section Updated

11 LAR and LSL Sections Updated

12 Chapter 15 and Appendix B Updated

13 CPUID Leaf 4 Section Updated

14 Bit(BitBase, BitOffset) Subsection Updated

15 CPUID Section Updated

17 INVLPG Description Information Updated

18 LEA Summary Table Updated

19 IA32_MCi_CTL MSRs Section Updated

20 Section 7.7.5 Updated

21 CALL and JMP Summary Tables Updated

22 Memory Options Table Updated

23 LAHF/SAHF Section Updated

24 Chapter 3 Corrected

25 Appendix E Corrected

26 Section 7.1 Corrected

27 Table 10-5 Corrected

28 Section 10.3 Corrected

IA-32 Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. The mechanism for handling the Extended Family ID and Extended Model ID
fields has been updated

In Chapter 3, IA-32 Intel Architecture Software Developer’s Manual, Volume 2B; the CPUID
section has been updated. Text defining the recommended mechanisms for handling the Extended
Family ID and the Extended model ID fields have been updated. The updated text is reproduced
below.

The Extended Family ID is to be examined only if the Family ID is 0FH; the Extended Model ID is
to be examined only if the Family ID is 0FH or 06H. Often software displays processor information
as a combination of family, model and stepping.

The recommended mechanism for integrating Family ID fields into a display follows:

Displayed_Family = (Extended_Family_ID) (8-bits) + Family_ID (4-bits zero extended to 8-bits)

The recommended mechanism for integrating Model ID fields into a display follows:

Displayed_Model = ((Extended_Model_ID (4-bits) << 4))(8-bits) + Model_ID (4-bits zero
extended to 8-bits)

2. INT n/INTO/INT 3—Call to Interrupt Procedure Section Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Chapter 3, INT n/INTO/INT 3—
Call to Interrupt Procedure section: text has been re-written. The updated text is marked by a
change bar.

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INT n instruction. If the IOPL is less than 3, the processor generates a #GP(selector)
exception; if the IOPL is 3, the processor executes a protected mode interrupt to privilege level 0.
The interrupt gate's DPL must be set to 3 and the target CPL of the interrupt handler procedure
must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT.
The initial base address value of the IDTR after the processor is powered up or reset is 0.

3. Table 1-37 Corrected

Table 1-37, Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1 has
been corrected. The updated table is reprinted below.

8 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

4. Appendix E Corrected

Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 2; Appendix e: a
description of the SMRAM state save map has been added in table form. Change bars mark the
additions.

Table 1-37 TSS Format in IA-32e Mode

Byte Offset 31:16 15:0

+64H I/O Map Base Reserved

+60H Reserved

+5CH Reserved

+58H IST7 (upper 32-bits)

+54H IST7 (lower 32-bits)

+50H IST6 (upper 32-bits)

+4CH IST6 (lower 32-bits)

+48H IST5 (upper 32-bits)

+44H IST5 (lower 32-bits)

+40H IST4 (upper 32-bits)

+3CH IST4 (lower 32-bits)

+38H IST3 (upper 32-bits)

+34H IST3 (lower 32-bits)

+30H IST2 (upper 32-bits)

+2CH IST2 (lower 32-bits)

+28H IST1 (upper 32-bits)

+24H IST1 (lower 32-bits)

+20H Reserved

+1CH Reserved

+18H RSP2 (upper 32-bits)

+14H RSP2 (lower 32-bits)

+10H RSP1 (upper 32-bits)

+0CH RSP1 (lower 32-bits)

+08H RSP0 (upper 32-bits)

+04H RSP0 (lower 32-bits)

00H Reserved

IA-32 Software Developer’s Manual Documentation Changes 9

Documentation Changes

E.1 SMRAM STATE SAVE MAP

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM.
The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE +
8000H + 7C00H]. If the processor reports CPUID.80000001.EDX[29] = 1, The layout of the
SMRAM state save map is shown in Table E-1.

Offset
(Added to SMBASE
+ 8000H)

Register

7FF8H CR0

7FF0H CR3

7FFE8 RFLAGS

7FE0H IA32_EFER

7FD8H RIP

7FD0H DR6

7FC8H DR7

7FC4H TR SEL

7FC0H LDTR SEL

7FBCH GS SEL

7FB8H FS SEL

7FB4H DS SEL

7FB0H SS SEL

7FACH CS SEL

7FA8H ES SEL

7FA4H IO_MISC

7F9CH IO_MEM_ADDR

7F94H RDI

7F8CH RSI

7F84H RBP

7F7CH RSP

7F74H RBX

7F6CH RDX

7F64H RCX

7F5CH RAX

7F54H R8

7F4CH R9

7F44H R10

7F3CH R11

7F34H R12

7F2CH R13

10 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

5. Chapter 15 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Chapter 15: text has been added
to clarify PMI mask conditions. Changes bars mark the additions (with context paragraphs also
included).

Section 15.5.7.3 (text is at the end of the section):

• The ISR must clear the mask bit in the performance counter LVT entry.

• The ISR must re-enable the CCCR's ENABLE bit if it is servicing an overflow PMI due to
PEBS.

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt.
Clear this condition before leaving the interrupt handler.

7F24H R14

7F1CH R15

7F08H-7F1BH Reserved

7F04H IEDBASE

7F02H I/O Instruction Restart Field (Word)

7F00H Auto HALT Restart Field (Word)

7EFCH SMM Revision Identifier Field (Doubleword)

7EF8H SMBASE Field (Doubleword)

7EF7H - 7EA8H Reserved

7EA4H LDT Info

7EA0H LDT Limit

7E9CH LDT Base (Lower 32 bits)

7E98H IDT Limit

7E94H IDT Base (Lower 32 bits)

7E90H GDT Limit

7E8CH GDT Base (Lower 32 bits)

7E8BH - 7E44H Reserved

7E40H CR4

7E3FH - 7DF0H Reserved

7DE8H IO_EIP

7DE7H - 7DDCH Reserved

7DD8H IDT Base (Upper 32 bits)

7DD4H LDT Base (Upper 32 bits)

7DD0H GDT Base (Upper 32 bits)

7DCFH - 7C00H Reserved

Offset
(Added to SMBASE
+ 8000H)

Register

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes

Section 15.10.6.9 (text is in the middle of section):

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR
MSR must be set. When overflow occurs, a PMI is generated through the local APIC. (Here, the
performance counter entry in the local vector table [LVT] is set up to deliver the interrupt generated
by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when
multiple counters have been configured to generate PMIs. Also, note that these processors mask
PMIs upon receiving an interrupt. Clear this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to
value that will cause an overflow after a specified number of events are counted plus 1. The
simplest way to select the preset value is to write a negative number into the counter, as described
in Section 15.10.6.6., “Cascading Counters”. Here, however, if an interrupt is to be generated after
100 event counts, the counter should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter
will then overflow after it counts 99 events and generate an interrupt on the next (100th) event
counted. The difference of 1 for this count enables the interrupt to be generated immediately after
the selected event count has been reached, instead of waiting for the overflow to be propagation
through the counter.

6. IA-32e Updates for CVTSI2SD, CVTSI2SS, CVTTSD2SI

For CVTS12SD - CVTTSD2SI; Chapter 2 in the Intel® Extended Memory 64 Technology Software
Developer’s Guide, Volume 1; IA-32e Mode Operation section have been updated. Change bars
mark the corrections.

CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15.
Promoted to 64 bits.
Enables access to new registers R8-R15.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 2A /r CVTSI2SD xmm, r/
m32

Valid Valid Convert one signed doubleword
integer from r/m32 to one
double-precision floating-point
value in xmm.

REX.W + F2 0F
2A /r

CVTSI2SD xmm, r/
m64

Valid N.E. Convert one signed quadword
integer from r/m64 to one
double-precision floating-point
value in xmm.

12 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15. XMMn[31:0] = CVT(reg/mem64), XMMn[127:32] =
unchanged.

Promoted to 64 bits.

Enables access to new registers R8-R15

CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15. XMMn[31:0] = CVT(reg/mem64), XMMn[127:32] =
unchanged.

Promoted to 64 bits.

Enables access to new registers R8-R15.

....

7. Table 9-6 Corrected

In Table 9-6, IA-32 Intel Architecture Software Developer’s Manual, Volume 3; the microcode
update checksum has been corrected. The corrected cells are marked by change bars.

Opcode Instruction 64-Bit
Mode

Compat/
Leg
Mode

Description

F3 0F 2A /r CVTSI2SS xmm, r/
m32

Valid Valid Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in xmm.

REX.W + F3 0F
2A /r

CVTSI2SS xmm, r/
m64

Valid N.E. Convert one signed quadword integer
from r/m64 to one single-precision
floating-point value in xmm.

Opcode Instruction 64-Bit
Mode

Compat/
Leg
Mode

Description

F3 0F 2A /r CVTSI2SS xmm, r/
m32

Valid Valid Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in xmm.

REX.W + F3 0F
2A /r

CVTSI2SS xmm, r/
m64

Valid N.E. Convert one signed quadword integer
from r/m64 to one single-precision
floating-point value in xmm.

IA-32 Software Developer’s Manual Documentation Changes 13

Documentation Changes

.

Field Name
Offset
(bytes)

Length
(bytes) Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for
the update signature provided by the processor to
indicate the current update functioning within the
processor. Used by the BIOS to authenticate the
update and verify that the processor loads
successfully. The value in this field cannot be used for
processor stepping identification alone. This is a
signed 32-bit number.

Date 8 4 Date of the update creation in binary format:
mmddyyyy (e.g. 07/18/98 is 07181998H).

Processor
Signature

12 4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify
the integrity of the update header and data. Checksum
is correct when the summation of all DWORDs that
comprise the microcode update result in 00000000H.
Note that extended processor signature table, by itself,
should checksum to zero.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and
must be a multiple of DWORDs. If this value is
00000000H, then the microcode update encrypted
data is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in
bytes. It is the summation of the header size, the
encrypted data size and the size of the optional
extended signature table.

Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size
or 2000

Update data

Extended
Signature Count

Data Size +
48

4 Specifies the number of extended signature structures
(Processor Signature[n], processor flags[n] and
checksum[n]) that exist in this microcode update.

14 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

8. Figure 4-6 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Figure 4-6: a line that incorrectly
indicated privilege access was removed. The corrected figure is reprinted below.

Extended
Checksum

Data Size +
52

4 Checksum of update extended processor signature
table. Used to verify the integrity of the extended
processor signature table. Checksum is correct when
the summation of the DWORDs that comprise the
extended processor signature table results in
00000000H.

Reserved Data Size +
56

12 Reserved fields

Processor
Signature[n]

Data Size +
68 + (n * 12)

4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Processor Flags[n] Data Size +
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.

Checksum[n] Data Size +
76 + (n * 12)

4 Used by utility software to decompose a microcode
update into multiple microcode updates where each of
the new updates is constructed without the optional
Extended Processor Signature Table.

To calculate the Checksum, substitute the Primary
Processor Signature entry and the Processor Flags
entry with the corresponding Extended Patch entry.
Delete the Extended Processor Signature Table
entries. The Checksum is correct when the summation
of all DWORDs that comprise the created Extended
Processor Patch results in 00000000H.

Field Name
Offset
(bytes)

Length
(bytes) Description

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes

9. Table B-1 Updated

In Table B-1, MSR_EBC_FREQUENCY_ID has been updated to address the Core Clock
Frequency to System Bus Frequency Ratio entry (see bits 19-63). Updated text are marked by
change bars.

Figure 4-6. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

Code
Segment D

Code
Segment CCode

Segment A

Lowest Privilege

Highest Privilege

CPL=3

Code
Segment B

Nonconforming
Code Segment

Conforming
Code Segment

3

2

1

0

CPL=2
DPL=2

DPL=3

Segment Sel. D1
RPL=2

Segment Sel. D2
RPL=3

Segment Sel. C2
RPL=3

Segment Sel. C1
RPL=2

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

....

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3 Shared Processor Frequency
Configuration.
The bit field layout of this MSR varies
according to the MODEL value in the
CPUID version information. The
following bit field layout applies to
Pentium 4 and Xeon Processors with
MODEL encoding equal or greater
than 2.

(R) The field Indicates the current
processor frequency configuration.

16 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

10. POPF/POPFD—Pop Stack into EFLAGS Section Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2B; Chapter 4, POPF/POPFD—
Pop Stack into EFLAGS Register section: text has been updated to clarify the instructions’ impact
on the EFLAGS register. Updated text are marked by change bars (additional material is included
to show the context).

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32)
and stores the value in the EFLAGS register, or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is, the
FLAGS register). These instructions reverse the operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The
POPF instruction is intended for use when the operand-size attribute is 16 and the POPFD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when POPF is used and to 32 when POPFD is used. Others may treat these mnemonics as
synonyms (POPF/POPFD) and use the current setting of the operand-size attribute to determine the
size of values to be popped from the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly, depending
on the mode of operation of the processor. When the processor is operating in protected mode at
privilege level 0 (or in real-address mode, which is equivalent to privilege level 0), all the non-

15:0 Reserved.

18:16 Scalable Bus Speed. (R/W)
Indicates the intended scalable bus
speed:

Encoding Scalable Bus Speed
000B 100 MHz
001B 133 MHz
010B 200 MHz
011B 166 MHz

133.33 MHz should be utilized if
performing calculation with System
Bus Speed when encoding is 001B.

166.67 MHz should be utilized if
performing calculation with System
Bus Speed when encoding is 011B

All Others Reserved

23:19 Reserved

31:24 Core Clock Frequency to System
Bus Frequency Ratio. (R)
The processor core clock frequency
to system bus frequency ratio
observed at the de-assertion of the
reset pin.

63:25 Reserved.

.....

.....

IA-32 Software Developer’s Manual Documentation Changes 17

Documentation Changes

reserved flags in the EFLAGS register except the VIP, VIF, and VM flags can be modified. The
VIP, VIF and VM flags remain unaffected.

When operating in protected mode, with a privilege level greater than 0, but less than or equal to
IOPL, all the flags can be modified except the IOPL field and the VIP, VIF, and VM flags. Here,
the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaffected.
The interrupt flag (IF) is altered only when executing at a level at least as privileged as the IOPL. If
a POPF/POPFD instruction is executed with insufficient privilege, an exception does not occur but
the privileged bits do not change.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3 to use
POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are unaffected. If the IOPL
is less than 3, the POPF/POPFD instructions cause a general-protection exception (#GP).

11. LAR and LSL Sections Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Chapter 3, LAR and LSL
sections: summary data has been updated. Updated text are marked by change bars.

From the LAR section in Chapter 3:

LAR—Load Access Rights Byte

From the LSL section in Chapter 3:

LSL—Load Segment Limit

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 Valid Valid r16 ← r16/m16 masked by FF00H.

0F 02 /r LAR r32, r32/m161 Valid Valid r32 ← r32/m16 masked by
00FxFF00H

REX + 0F
02 /r

LAR r64, r32/m161 Valid N.E. r64 ← r32/m16 masked by
00FxFF00H

NOTES:
1. For all loads (regardless of source or destination sizing), only bits 16-0 are used.

Other bits are ignored.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 Valid Valid Load: r16 ← segment limit,
selector r16/m16.

0F 03 /r LSL r32, r32/m161 Valid Valid Load: r32 ← segment limit,
selector r32/m16.

REX.W + 0F 03 /r LSL r64, r32/m161 Valid Valid Load: r64 ← segment limit,
selector r32/m64

NOTES:
1. For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

18 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

12. Chapter 15 and Appendix B Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Chapter 15 and Appendix B, the
IA32_TIME_STAMP_COUNTER information has been updated. Updated text is marked by
change bars.

The information details differences in operation between new and older processors.

From IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Chapter 15,

15.1 Time-Stamp Counter

The IA-32 architecture (beginning with the Pentium processor) defines a time-stamp counter
mechanism that can be used to monitor and identify the relative time of occurrence of processor
events. The time-stamp counter architecture includes the time-stamp counter
(IA32_TIME_STAMP_COUNTER MSR [called the TSC MSR in the P6 family and Pentium
processors]), an instruction for reading the time-stamp counter (RDTSC), a feature bit (TCS flag)
that can be read with the CPUID instruction, and a time-stamp counter disable bit (TSD flag) in
control register CR4.

Following execution of the CPUID instruction, the TSC flag in register EDX (bit 4) indicates
(when set) that the time-stamp counter is present in a particular IA-32 processor implementation.
(See “CPUID—CPU Identification” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2.)

The time-stamp counter (as implemented in the Pentium 4, Intel Xeon, P6 family, and Pentium
processors) is a 64-bit counter that is set to 0 following the hardware reset of the processor.
Following reset, the counter is incremented every processor clock cycle, even when the processor
is halted by the HLT instruction or the external STPCLK# pin. However, the assertion of the
external DPSLP# pin may cause the time-stamp counter to stop and Intel® SpeedStep® technology
transitions may cause the frequency at which the time-stamp counter increments to change in
accordance with the processor's internal clock frequency.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically
increasing unique value whenever executed, except for 64-bit counter wraparound. Intel
guarantees, architecturally, that the time-stamp counter frequency and configuration will be such
that it will not wraparound within 10 years after being reset to 0. The period for counter wrap is
much longer for Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any
privilege level and in virtual-8086 mode. The TSD flag in control register CR4 (bit 2) allows use of
this instruction to be restricted to only programs and procedures running at privilege level 0. A
secure operating system would set the TSD flag during system initialization to disable user access
to the time-stamp counter. An operating system that disables user access to the time-stamp counter
should emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the RDTSC instruction operation is
performed.

IA-32 Software Developer’s Manual Documentation Changes 19

Documentation Changes

The RDMSR and WRMSR instructions can read and write the time-stamp counter, respectively, as
an MSR (MSR address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of
the time-stamp counter can be read with the RDMSR instruction (just as with the RDTSC
instruction). When the WRMSR instruction is used to write to the time-stamp counter on
processors before family 0FH, models 3 and 4: only the low order 32-bits of the time-stamp
counter can be written (the high-order 32 bits are cleared to 0). For family 0FH, models 3 and 4: all
bits are writeable.

--

From IA-32 Intel Architecture Software Developer’s Manual, Volume 3, Table B-1,

13. CPUID Leaf 4 Section Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Chapter 3, CPUID—CPU
Identification section: the footnotes associated with Table 3-12, under Deterministic Cache
Parameters Leaf heading, will be re-positioned and re-numbered for clarity. The affected cells in
the table are marked by change bars.

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

...

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3

Unique Time Stamp Counter. See Section
15.8.

63:0 Timestamp Count Value.
A 64-bit register accessed when
referenced as a Qword through a
RDMSR, WRMSR or RDTSC
instruction. Returns the current time
stamp count value. All 64 bits are
readable.

On earlier processors, only the lower
32 bits are writeable. On any write to
the lower 32 bits, the upper 32 bits
are cleared. For processor family
0FH, models 3 and 4: all 64 bits are
writeable.

....

20 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

14. Bit(BitBase, BitOffset) Subsection Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Section 3.1.1.7: text in the
Bit(BitBase, BitOffset) subsection will be updated to accommodate 64 bits. Data in this section
impacts the following instructions: BT, BTC, BTR and BCS. All affected areas are marked with
change bars.

• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a
sequence of bits in memory or a register. Bits are numbered from low-order to high-order
within registers and within memory bytes. If the BitBase is a register, the BitOffset can be in
the range 0 to [15, 31, 63] depending on the mode and register size. See Figure 3-1: the
function Bit[RAX, 21] is illustrated.

Initial EAX
Value Information Provided about the Processor

..

04H
EAX

EBX

ECX

Deterministic Cache Parameters Leaf
Bits 4-0: Cache Type*
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Number of threads sharing this cache (see note)**
Bits 31-26: Number of processor cores on this die**
Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**
Bits 31-00: S = Number of Sets**

* Cache Type fields:
0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

** Add one to the value in the register to get the number.
For example, the number of processor cores is EAX[31:26]+1.

EDX Reserved = 0

NOTE: CPUID leaves > 3 < 80000000 are only visible when
IA32_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (default)

...

Figure 3-1. Bit Offset for BIT[RAX, 21]

02131

Bit Offset ← 21

63

IA-32 Software Developer’s Manual Documentation Changes 21

Documentation Changes

If BitBase is a memory address, the BitOffset can range has different ranges depending on the
operand size (see Table 3-7).

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)) where DIV is signed division with rounding towards negative infinity and
MOD returns a positive number (see Figure 3-2).

15. CPUID Section Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Chapter 3, CPUID section: the
subsection on family and model information has been updated. The updated text has been marked
by change bars (in context).

INPUT EAX = 1: Returns Model, Family, Stepping Information

\When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure
3-5). For example: model, family, and processor type for the first processor in the Intel Pentium 4
family is returned as follows:

• Model—0000B

• Family—1111B

• Processor Type—00B

See Table 3-14 for available processor type values. Stepping IDs are provided as needed.

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 −215 to 215 − 1
32 0 to 31 −231 to 231 − 1
64 0 to 63 −263 to 263 − 1

Figure 3-2. Memory Bit Indexing

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ← +13

BitOffset ← −11

BitBase − 1BitBase

22 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Note:

See AP-485, Intel Processor Identification and the CPUID Instruction (Order
Number 241618) and Chapter 13 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH.
Integrate the fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field; display Family ID as HEX Field. *)

FI;

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H OR Family_ID = 0FH)
THEN Displayed_Model = Model_ID
ELSE Displayed Model = (Extended_Model_ID << 4) + Model_ID.
(* Right justify and zero-extend 4-bit field; display Model ID as HEX Field. *)

FI;

16. Section 8.4.6 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Section 8.4.6: text has been
added to clarify the APIC ID value returned when CPUID is executed with a value of 1 in EAX.
The additional text has been marked by a change bar.

Figure 3-5. Version Information Returned by CPUID in EAX

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® technology
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 extensions

Reserved

CMPXCHG16B

Table 3-14. Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B

IA-32 Software Developer’s Manual Documentation Changes 23

Documentation Changes

8.4.6. Local APIC ID

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating
system. Some processors permit software to modify the APIC ID. However, the ability of software
to modify the APIC ID is processor model specific. Because of this, operating system software
should avoid writing to the local APIC ID register. The value returned to bits 31-24 of the EBX
register (when the CPUID instruction is executed with a source operand value of 1 in the
EAX register) is always the Initial APIC ID (determined by the platform initialization). This
is true even if software has changed the value in the Local APIC ID register.

17. INVLPG Description Information Updated

Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1; in the INVLPG-
Invalidate TLB Entry section: the IA-32e Mode Operation and 64-Bit Mode Exceptions sections
have been updated to document a situation in which INVLPG acts as a NOP. The updated text is
marked by a change bar.

INVLPG—Invalidate TLB Entry

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode with the following exception. In 64-bit mode if the memory address is in
non-canonical form, INVLPG behaves the same as a NOP.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real-Address Mode Exceptions

#UD Operand is a register.

Virtual-8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

Opcode Instructio
n

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG
m

Valid Valid Invalidate TLB Entry for page that
contains m

24 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

18. LEA Summary Table Updated

Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1; in the LEA—Load
Effective Address section: the summary table needs to be updated. The affected table cells are
marked by a change bar.

LEA—Load Effective Address

19. IA32_MCi_CTL MSRs Section Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Section 14.3.2.1: text has been
updated to clarify MC Reporting/Logging. The updated text is marked by a change bar.

IA32_MCi_CTL MSRs

The IA32_MCi_CTL MSR (called MCi_CTL in P6 family processors) controls error reporting for
errors produced by a particular hardware unit (or group of hardware units). Each of the 64 flags
(EEj) represents a potential error. Setting an EEj flag enables reporting of the associated error and
clearing it disables reporting of the error. The processor does not write changes to bits that are not
implemented. Figure 14-5 shows the bit fields of IA32_MCi_CTL.

Note:

For P6 family processors only: the operating system or executive software must
not modify the contents of the MC0_CTL MSR. This MSR is internally aliased to
the EBL_CR_POWERON MSR and controls platform-specific error handling

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

8D /r LEA r16,m N.E Valid Store effective address for m in register
r16

8D /r LEA r32,m Valid Valid Store effective address for m in register
r32

8D /r LEA r64,m Valid N.E. Store effective address for m in register
r64. Zero extended 32-bit register
results to 64-bits.

Figure 14-5. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.

 (where j is 00 through 63)

IA-32 Software Developer’s Manual Documentation Changes 25

Documentation Changes

features. System specific firmware (the BIOS) is responsible for the appropriate
initialization of the MC0_CTL MSR. P6 family processors only allow the writing
of all 1s or all 0s to the MCi_CTL MSR.

20. Section 7.7.5 Updated

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Section 7.7.5: text has been
updated to correct inconsistencies in naming processor IDs and calculation of the ID bits. The
affected areas have been marked by change bars.

7.7.5. Identifying Logical Processors in an MP System

For any IA-32 processor, the system hardware establishes an initial APIC ID for the processor
during power-up or RESET (see Section 7.6.4.). For an IA-32 processor supporting Hyper-
Threading Technology, system hardware assigns a unique APIC ID to each logical processor on the
system bus.

The APIC ID for a logical processor is made up of three fields: logical processor number, physical
package ID, and cluster ID. Figure 7-5 shows the layout of these fields. Bit 0 is used to identify the
two logical processor within the package, bits 1-2 are the 2-bit package ID, and bits 3-4 are the 2-
bit cluster ID.

Table 7-1 shows the APIC IDs that are generated for logical processors in a system with four MP-
type Intel Xeon processors (a total of 8 logical processors). Of the two logical processors within a
Intel Xeon processor MP, logical processor 0 is designated the “primary logical processor” and
logical processor 1 is designated the “secondary logical processor.”

Figure 7-5. Interpretation of the APIC ID

Initial APIC ID of a Logical
Processor

Package ID Logical Processor Number

0H 0H 0H

1H 0H 1H

2H 1H 0H

3H 1H 1H

4H 2H 0H

5H 2H 1H

6H 3H 0H

7H 3H 1H

0

Package ID
Logical Processor Number

17 4 3 25

Cluster ID

Reserved

26 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Software can determine the APIC IDs of the logical processor in the system in either of two ways
described in Section 7.5.5. Note that only the APIC IDs of the primary logical processors in each
physical package are included in the MP table created by the BIOS. All the logical processors in
the system are included in the ACPI table, with the primary logical processors at the top of the table
followed by the secondary logical processors.

In future IA-32 processors supporting Hyper-Threading Technology that implement more than two
logical processors per physical processor, the logical processor bit shown in Figure 7-5 will be
expanded to a 2- or 3-bit field to allow each of the logical processors to be identified. The package
ID and cluster ID fields will be shifted left. Also, the package ID may be expanded to more than 2
bits, requiring the cluster ID field to be shifted left.

Operating system and application software can determine the layout of an APIC ID for a particular
processor by interpreting the number of logical processors field and the local APIC physical ID
field. These are returned to the EBX register when CPUID is executed with 1 in EAX.

As with IA-32 processors without HT Technology, software can assign a different APIC ID to a
logical processor by writing a value into the local APIC ID register. However, the CPUID
instruction will always report the processor’s initial APIC ID (the value assigned during power-up
or RESET).

Figure 7-5 depicts the layout of cluster ID, package ID and logical processor number bit fields of
an APIC ID for current implementations of HT Technology (two logical processors per package).
The number of bits that are reserved for the logical processor number can be computed by:

(1+((int)log2(max(Logical_Per_Package-1,1))))

The content of an APIC ID (excluding cluster ID) for a logical processor in a package with a finite
number of logical processors per package is given by:

(Package_ID<<(1+((int)log2(max(Logical_Per_Package-1,1))))) | Logical_Processor_Number;

Use this formula to determine the association between logical processors and their physical
packages for future implementations of HT Technology. The pseudo-code below (Examples 7-1
and 7-2) shows an algorithm to determine the relationship between logical and physical processors.
This algorithm supports any number of logical processors per package. The algorithm is run on
each logical processor in the system using an operating system specific affinity to accomplish
binding. After running the algorithm, logical processors that have the same Processor ID exist
within the same physical package. All processors present in the system must support the same
number of logical processors per physical processor.

The algorithm for detecting support for HT Technology and identifying the relationships between a
logical processor to the corresponding package ID consists of five steps:

1) Detect support for HT Technology in the processor.

2) Identify the number of logical processors available in a physical processor package.

3) Extract the initial APIC ID for this processor.

4) Compute a mask value and bit-shift value.

5) Compute a logical processor number and physical processor package ID.

See Example 7-2.

IA-32 Software Developer’s Manual Documentation Changes 27

Documentation Changes

Example 7-2. Algorithm for Detecting Support for HT Technology and Identifying the
Relationships Between a Logical Processor to the Corresponding Package ID

1. Detect support for Hyper-Threading Technology in a processor.

// Returns non-zero if Hyper-Threading Technology is supported on
// the processors and zero if not. This does not mean that
// Hyper-Threading Technology is enabled.

unsigned int HTSupported(void)
{

try { // verify cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

}
except (EXCEPTION_EXECUTE_HANDLER) {
return 0 ; // CPUID is not supported and so Hyper-Threading

// Technology is not supported
}

// Check to see if this a Genuine Intel Processor
// and a member of the Pentium 4 processor family
// supporting Hyper-Threading Technology

if (vendor string EQ GenuineIntel)
if (family signature EQ Pentium4Family)

return (feature_flag_edx & HTT_BIT);
return 0;

}

2. Identify the number of logical processors per physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000 // EBX[23:16] indicate number of
 // logical processor per package

// Returns the number of logical processors per physical processor
package.

unsigned char LogicalProcessorsPerPackage(void)
{

if (!HTSupported()) return (unsigned char) - 1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

3. Extract the initial APIC ID of a processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor that
// the code is running on. The default value returned is 0xFF if
// Hyper-Threading Technology is not supported.

28 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

unsigned char GetAPIC_ID (void)
{

unsigned int reg_ebx = 0;
if (!HTSupported()) return (unsigned char) -1;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned char) ((reg_ebx & INITIAL_APEIC_ID_BITS) >> 24;

}

4. Compute the mask value and the bit-shift value, the logical processor
number and physical processor package ID.

unsigned char i = 1;
unsigned char PHY_ID_MASK = 0xFF;
unsigned char PHY_ID_SHIFT = 0;
unsigned char APIC_ID;
unsigned char LOG_ID, PHY_ID;

Logical_Per_Package = LogicalProcessorsPerPackage();
While (i < Logical_Per_Package){

i *= 2;
PHY_ID_MASK <<= 1;
PHY_ID_SHIFT++;

}
// Assume this thread is running on the logical processor from
// which the logical processor number and its physical processor
// package ID is extracted. If not, use the OS-specific affinity
// service to bind this thread to the target logical processor.

APIC_ID = GetAPIC_ID();
LOT_ID = APIC_ID & ~PHY_ID_MASK;
PHY_ID = APIC_ID >> PHY_ID_SHIFT;

5. Compute the logical processor number and physical processor package
ID.

// The OS may limit the processor on which this process may run.

hCurrentProcessHandle = GetCurrentProcess();
GetProcessAffinityMask(hCurrentProcessHandle,

&dwProcessAffinity, &dwSystemAffinity);

// If the available process affinity mask does not equal the
// available system affinity mask, determining if
// Hyper-Threading Technology is enabled may not be possible.

if (dwProcessAffinity != dwSystemAffinity)
printf (“This process can not utilize all processors. \n”),

dwAffinityMask = 1;
while (dwAffinityMask != 0 &&

dwAffinityMask <= dwProcessAffinity) {
// Check to make sure we can utilize this processor first.
if (dwAffinityMask & dwProcessAffinity){

if (SetProcessAffinityMask(hCurrentProcessHandle,

IA-32 Software Developer’s Manual Documentation Changes 29

Documentation Changes

dwAffinityMask)) {

Sleep(0); // May not be running on the logical processor
// on the affinity just set. Sleep gives the
// OS a chance to switch to the desired
// logical processor.

// Retrieve APIC_ID for this logical processor;
// Extract logical processor number and physical processor
// package ID.

}
}

}

21. CALL and JMP Summary Tables Updated

Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1; in the CALL and
JMP sections: summary tables have been updated. The updated tables are reprinted below.

CALL—Call Procedure

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 N.S. Valid Call near, relative, displacement relative
to next instruction.

E8 cd CALL rel32 Valid Valid Call near, relative, displacement relative
to next instruction. 32-bit displacement
sign extended to 64-bits in 64-bit mode.

FF /2 CALL r/m16 N.E. Valid Call near, absolute indirect, address
given in r/m16.

FF /2 CALL r/m32 N.E. Valid Call near, absolute indirect, address
given in r/m32. 32-bit displacement sign
extended to 64-bits in 64-bit mode.

FF /2 CALL r/m64 Valid N.E. Call near, absolute indirect, address
given in r/m64.

9A cd CALL
ptr16:16

Invalid Valid Call far, absolute, address given in
operand.

9A cp CALL
ptr16:32

Invalid Valid Call far, absolute, address given in
operand.

30 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

JMP—Jump

22. Memory Options Table Updated

Table 10-7 in IA-32 Intel Architecture Software Developer’s Manual, Volume 3 has been updated.
Additional options are being documented. The affected table cells are marked by change bars.

FF /3 CALL
m16:16

Valid Valid Call far, absolute indirect address given
in m16:16.

In 32-bit mode: if selector points to a
gate, then RIP = 32-bit zero extended
displacement taken from gate; else RIP
= zero extended 16-bit offset from far
pointer referenced in the instruction.

FF /3 CALL
m16:32

Valid Valid In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = zero
extended 32-bit offset from far pointer
referenced in the instruction.

REX.W + FF /3 CALL
m16:64

Valid N.E. In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = 64-bit offset
from far pointer referenced in the
instruction.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 Valid Valid Jump short, RIP = RIP + 8-bit displacement
sign extended to 64-bits

E9 cw JMP rel16 N.S. Valid Jump near, relative, displacement relative to
next instruction. Not supported in 64-bit
mode.

E9 cd JMP rel32 Valid Valid Jump near, relative, RIP = RIP + 32-bit
displacement sign extended to 64-bits

FF /4 JMP r/m16 N.S. Valid Jump near, absolute indirect, address =
sign-extended r/m16. Not supported in 64-bit
mode.

FF /4 JMP r/m32 N.S. Valid Jump near, absolute indirect, address =
sign-extended r/m32. Not supported in 64-bit
mode.

FF /4 JMP r/m64 Valid N.E. Jump near, absolute indirect, RIP = 64-Bit
offset from register or memory

EA cd JMP
ptr16:16

Inv. Valid Jump far, absolute, address given in
operand

EA cp JMP
ptr16:32

Inv. Valid Jump far, absolute, address given in
operand

FF /5 JMP
m16:16

Valid Valid Jump far, absolute indirect, address given in
m16:16

FF /5 JMP
m16:32

Valid Valid Jump far, absolute indirect, address given in
m16:32.

REX.W
+ FF /5

JMP
m16:64

Valid N.E.
Jump far, absolute indirect, address given in
m16:64.

IA-32 Software Developer’s Manual Documentation Changes 31

Documentation Changes

Table 10-7. Effective Page-Level Memory Types for Pentium III, Pentium 4, and Intel
Xeon Processors

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3

32 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

23. LAHF/SAHF Section Updated

Intel® Extended Memory 64 Technology Software Developer’s Guide, Volumes 1 & 2; in the LAHF
and SAHF sections: text in the list has been edited to remove #UD from the list of 64-bit mode
exceptions. No exceptions are listed for these instructions in this mode.

24. Chapter 3 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 2A; Chapter 3, CPUID section:
information about the CMPXCHG16B feature flag has been added to the extended feature
information returned when EAX =1. Added text has been marked by change bars.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES:

1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches
since the data could never have been cached. This attribute is preferred for performance reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required to check
their caches because the data may be cached due to page aliasing, which is not recommended.

3. These combinations were specified as “undefined” in previous editions of the IA-32 Intel Architecture
Software Developer’s Manual. However, all processors that support both the PAT and the MTRRs deter-
mine the effective page-level memory types for these combinations as given.

Table 10-7. Effective Page-Level Memory Types for Pentium III, Pentium 4, and Intel
Xeon Processors (Continued)

MTRR Memory Type PAT Entry Value Effective Memory Type

IA-32 Software Developer’s Manual Documentation Changes 33

Documentation Changes

25. Appendix E Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; in Section E-2: 07H was
incorrectly used instead of 0FH for a processor family designation. In addition (near the end of the
table), 254 was used instead of 255 for error count. Areas of correction are marked by change bars.

Figure 3-6. Extended Feature Information Returned in the ECX Register

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family

Model

Extended
Family ID

Extended
Model ID

Family
ID Model

Stepping
ID

Extended Family ID (0)

Extended Model ID (0)

Reserved

Table 3-15. More on Extended Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1-2 Reserved Reserved

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this
feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for branch
message storage qualified by CPL.

5-6 Reserved Reserved

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that
the processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 Reserved Reserved

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be
set to either adaptive mode or shared mode. A value of 0 indicates this
feature is not supported. See definition of the IA32_MISC_ENABLE
MSR Bit 24 (L1 Data Cache Context Mode) for details.

4-12 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes section in this chapter for a description.

14-31 Reserved Reserved

34 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

E.2. Incremental Decoding Information: Processor
Family 0FH Machine Error Codes For Machine
Check

Table E-2 provides information for interpreting additional family 0FH model-specific fields for
external bus errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported
(architecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the MCA
error code field. See Chapter 14 for information on the interpretation of compound error codes.

Table E-3 provides information on interpreting additional family 0FH, model specific fields for
memory hierarchy errors. These errors are reported in one of the IA32_MCi_STATUS MSRs.
These errors are reported, architecturally, as compound errors with a general form of 0000 0001
RRRR TTLL in the MCA error code field. See Chapter 14 for how to interpret the compound error
code.

Table E-2. Incremental Decoding Information: Processor Family 0FH Machine
Error Codes For Machine Check

Type
Bit
No. Bit Function Bit Description

MCA error
codesa

a. These fields are architecturally defined. Refer to Chapter 14, Machine-Check Architecture
for more information.

0-15

Model-specific
error codes

16 FSB address parity Address parity error detected:
1 = Address parity error detected
0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access

20 Processor Signature =
00000F04H: Invalid PIC
request

All other processors:
Reserved

Processor Signature = 00000F04H. Indicates
error due to an invalid PIC request (access
was made to PIC space with WB memory):

1 = Invalid PIC request error
0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N data-
strobe relative timing has become
unsynchronized or a glitch has been detected.

22 Pad strobe glitch Data strobe glitch

23 Pad address glitch Address strobe glitch

Other
Information

24-56 Reserved Reserved

Status register
validity
indicators1

57-63

IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

26. Section 7.1 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Section 7.1: a note has been
added to address the subject of “lock starvation.” Added text has been marked by a change bar.

Table E-3. Decoding Family 0FH Machine Check Codes for Memory Hierarchy
Errors

Type Bit No. Bit Function Bit Description

MCA error
codesa

a. These fields are architecturally defined. Refer to Chapter 14, Machine-Check Architecture for more information.

0-15

Model specific
error codes

16-17 Tag Error Code Contains the tag error code for this machine
check error:

00 = No error detected
01 = Parity error on tag miss with a clean
line
10 = Parity error/multiple tag match on tag
hit
11 = Parity error/multiple tag match on tag
miss

18-19 Data Error Code Contains the data error code for this machine
check error:

00 = No error detected
01 = Single bit error
10 = Double bit error on a clean line
11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error
originated in the L3 (it can be ignored for
invalid PIC request errors):

1 = L3 error
0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request
(access was made to PIC space with WB
memory):

1 = Invalid PIC request error
0 = No invalid PIC request error

22-31 Reserved Reserved

Other
Information

32-39 8-bit Error Count Holds a count of the number of errors since
reset. The counter begins at 0 for the first error
and saturates at a count of 255.

40-56 Reserved Reserved

Status register
validity
indicators1

57-63

36 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

7.1. Locked Atomic Operations

The 32-bit IA-32 processors support locked atomic operations on locations in system memory.
These operations are typically used to manage shared data structures (such as semaphores, segment
descriptors, system segments, or page tables) in which two or more processors may try
simultaneously to modify the same field or flag. The processor uses three interdependent
mechanisms for carrying out locked atomic operations:

• guaranteed atomic operations

• bus locking, using the LOCK# signal and the LOCK instruction prefix

• cache coherency protocols that insure that atomic operations can be carried out on cached data
structures (cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and P6 family
processors

These mechanisms are interdependent in the following ways. Certain basic memory transactions
(such as reading or writing a byte in system memory) are always guaranteed to be handled
atomically. That is, once started, the processor guarantees that the operation will be completed
before another processor or bus agent is allowed access to the memory location. The processor also
supports bus locking for performing selected memory operations (such as a read-modify-write
operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in a
processor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s caches
without asserting the bus lock. Here the processor’s cache coherency protocols insure that other
processors that are caching the same memory locations are managed properly while atomic
operations are performed on cached memory locations.

Note:

Where there are contested lock accesses, software may need to implement
algorithms that ensure fair access to resources in order to prevent lock starvation.
The hardware provides no resource that guarantees fairness to participating
agents. It is the responsibility of software to manage the fairness of semaphores
and exclusive locking functions.

The mechanisms for handling locked atomic operations have evolved as the complexity of IA-32
processors has evolved. As such, more recent IA-32 processors (such as the Pentium 4, Intel Xeon,
and P6 family processors) provide a more refined locking mechanism than earlier IA-32
processors. These are described in the following sections.

27. Table 10-5 Corrected

IA-32 Intel Architecture Software Developer’s Manual, Volume 3; Table 10-5: an incorrect entry
has been deleted. A change bar marks the correction (not all cells in the table have been included).

IA-32 Software Developer’s Manual Documentation Changes 37

Documentation Changes

28. Section 10.3 Corrected

A note will be added in section 10.3, IA-32 Intel Architecture Software Developer’s Manual,
Volume 3; Section 10.3: a note has been added that clarifies UC memory behavior for FP and SSE/
SSE2 operations. Added text is marked by a change bar.

10.3. Methods of Caching Available

The processor allows any area of system memory to be cached in the L1, L2, and L3 caches. In
individual pages or regions of system memory, it allows the type of caching (also called memory
type) to be specified (see Section 10.5). Memory types currently defined for the IA-32 architecture
are as follows (see Table 10-2):

• Strong Uncacheable (UC)—System memory locations are not cached. All reads and writes
appear on the system bus and are executed in program order without reordering. No
speculative memory accesses, page-table walks, or prefetches of speculated branch targets are
made. This type of cache-control is useful for memory-mapped I/O devices. When used with
normal RAM, it greatly reduces processor performance.

Note:

The behavior of FP and SSE/SSE2 operations on operands in UC memory is
implementation dependent. In some implementations, accesses to UC memory
may occur more than once. To ensure predictable behavior, use loads and stores
of general purpose registers to access UC memory that may have read or write
side effects.

Additional bullets follow....

CD NW Caching and Read/Write Policy L1 L2/L31

... ...

1 0 No-fill Cache Mode. Memory coherency is maintained.
- (Pentium 4 and Intel Xeon processors.) State of processor after a power
 up or reset.
- Read hits access the cache; read misses do not cause replacement
 (see Pentium 4 and Intel Xeon processors reference below).
- Write hits update the cache.
- Only writes to shared lines and write misses update system memory.
- Write misses access memory.
- Write hits can change shared lines to exclusive under control of the
 MTRRs and with associated read invalidation cycle.
- (Pentium processor only.) Write hits can change shared lines to
 exclusive under control of the WB/WT#.
- (Pentium 4, Intel Xeon, and P6 family processors only.) Strict memory
 ordering is not enforced unless the MTRRs are disabled and/or all
 memory is referenced as uncached (see Section 7.2.4., “Strengthening
 or Weakening the Memory Ordering Model”).
- Invalidation is allowed.
- External snoop traffic is supported.

Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes

... ...

38 IA-32 Software Developer’s Manual Documentation Changes

Documentation Changes

	Revision History
	Preface
	Summary Table of Changes
	Documentation Changes

