IA-32 Intel® Architecture Software
Developer’s Manual

Documentation Changes

November 2003

Notice: The IA-32 Intel® Architecture may contain design defects or errors known as errata that
may cause the product to deviate from published specifications. Current characterized errata are
documented in this specification update.

Document Number: 252046-006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-32 Intel® Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the 12c bus/protocol and was developed by Intel.
Implementations of the 12c bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel, Pentium, Celeron, Intel SpeedStep, Intel Xeon and the Intel logo, and the Intel logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2002-2003, Intel Corporation

2 IA-32 Software Developer’s Manual Documentation Changes

intel.

Contents

Summary Table of Changes............oovviiiiiiiiiii e,

Documentation Changescccooiiiiiiiiiiieieec e

IA-32 Software Developer’s Manual Documentation Changes

Revision History

Revision History

Version Description Date

-001 Initial Release November 2002
Added 1-10 Documentation Changes.

-002 Removed old Documentation Changes items that already have been December 2002
incorporated in the published Software Developer’s manual
Added 9 -17 Documentation Changes
Removed Documenation Change #6 - References to bits Gen and Len

-003 Deleted February 2003
Removed Documenation Change #4 - VIF Information Added to CLI
Discussion
Removed Documentation changes 1-17

-004 . June 2003
Added Documentation changes 1-24
Removed Documentation Changes 1-24

-005 . September 2003
Added Documentation Changes 1-15

-006 Added Documentation Changes 16- 34 November 2003

1A-32 Software Developer’s Manual Documentation Changes

intel 6 Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of documentation changes. It is intended
for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents/Related Documents

Document Title Dﬁgx‘rggpt
IA-32 Intel® Architecture Software Developer's Manual: Volume 1, Basic Architecture 245470-011
IA-32 Intel® Architecture Software Developer's Manual: Volume 2, Instruction Set 245471-011
Reference
IA-32 Intel® Architecture Software Developer's Manual: Volume 3, System Programming 245472-011
Guide
Nomenclature

Documentation Changes include errors or omissions from the current published specifications.
These changes will be incorporated in the next release of the Software Development Maunal.

IA-32 Software Developer’s Manual Documentation Changes 5

Summary Table of Changes I n

Summary Table of Changes

The following table indicates documentation changes which apply to the IA-32 Intel Architecture.
This table uses the following notations:

Codes Used in Summary Table

Change bar to left of table row indicates this erratum is either new or modified from the previous
version of the document.

Summary Table of Documentation Changes

Number DOCUMENTATION CHANGES

1. IA32_THERM_CONTROL has Been Changed to IA32_CLOCK_MODULATION

2. INTER-PRIVILEGE" was not Spelled Corretly in Pseudocode Entry

3. Confusing Text Artifact Removed

4. IA32_MISC_CTL has Been Removed From the List of Architectural MSRs

5. Typo Corrected in Figure 8-24

6. Typo Corrected in Figure 8-23

7. Corrupted Text Corrected

8. Corrected an Error in PACKSSDW lllustration

9. SSM Corrected to SMM

10. Exiting From SMM Text Updated

11. L1 Data Cache Context Mode Description has Been Udpated

12. #DE Should be #DB in Description of EFLAGS.RF

13. There Have Been Revisions to the Table That States Priority Among Simultaneous Exceptions
and Interrupts

14. Corrections to Page-Directory-Pointer-Table Entry Desciption

15. Behavior Notes on the Accessed (A) Flag and Dirty (D) Flag

16. Interrupt 11 Discussion Concerning EXT Flag Functioning Has Been Updated

17. Improved Information on Interpreting Machine-Check Error Codes

18. More information on the Functioning of Debug BPs after POP SS/MOV SS Has Been Provided

19. More Information on the LBR Stack Has Been Provided

20. Limited Availability of Two MSRs Has Been Documented

21. The Section On Microcode Update Facilities Has Been Refreshed

22. A Mechanism for Determining Sync/Async SMis Has Been Documented

6 1A-32 Software Developer’s Manual Documentation Changes

intel.

Summary Table of Changes

Summary Table of Documentation Changes

Number

DOCUMENTATION CHANGES

23.

Omitted Debug Data Has Been Restored

24.

CLTS Exception Information Improved

25.

The MOVSS Description Have Been Updated

26.

An Instruction Listing (PULLHUW) Has Been Deleted

27.

Some Data Entry Errors in Table B-20 Have Been Corrected

28.

Figure 8-22 Has Been Corrected

29.

The Description of Minimum Thermal Monitor Activation Time Has Been Updated

30.

Corrected Description of Exception- or Interrupt-Handler Procedures

31.

CMPSD and CMPSS Exception Information Updated

32.

PUNPCKHB*/PUNPCKLB* Exception Information Improved

33.

MOVHPD, MOVLPD, UNPCKHPS, UNPCKLPS Exception Information Improved.

34.

PEXTRW - PINSRW Exception Information Improved

IA-32 Software Developer’s Manual Documentation Changes

n
Documentation Changes I nt9I ®

Documentation Changes

1. IA32_THERM_CONTROL has been Changed to I1A32_CLOCK_MODULATION

The name of the MSR 1A32 THERM_ CONTROL has been changed to
[IA32 CLOCK_MODULATION. This was done to avoid confusion about the MSR’s function.

The following corrected table segment is from Appendix B, Table B-3, the 4-32 Intel Architecture
Software Developer s Manual, Volume 3. See the reproduced text below

Register Address

Hex Dec Register Name Bit Description
19AH 410 I1A32_CLOCK_MODULATI | Clock Modulation. (R/W) Enables and disables on-
ON demand clock modulation and allows the selection of

the on-demand clock modulation duty cycle. (See
Section 13.15.3., Software Controlled Clock
Modulation.

NOTE: IA32_CLOCK_MODULATION MSR was
originally named 1A32_THERM_CONTROL MSR.

2, INTER-PRIVILEGE" Was Not Spelled Correctly in Pseudocode Entry

The term inter-privilege was incorrectly spelled in pseudocode provided as part of the “INT n/INTO/
INT 3—Call to Interrupt Procedure” section, Chapter 3, /4-32 Intel Architecture Software Devel-
oper's Manual, Volume 2.

The corrected text segment is reproduced below.

...INTER-PRIVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress « (new code segment DPL * 8) + 4.....

8 1A-32 Software Developer’s Manual Documentation Changes

u
Intel ® Documentation Changes

3. Confusing text Artifact Removed

There were some materials in the OPCODE table that should have been deleted. This error has
been corrected. The corrected table segment (reproduced below) is in Appendix A, Table A-3, 14-
32 Intel Architecture Software Developer s Manual, Volume 2. See address 0x0f0b

8 9 A B C D E F
0 INVD WBINVD uD2
4. IA32_MISC_CTL Has Been Removed from the List of Architectural MSRs

The MSR 1A32 MISC_CTL has been removed from the list of architectural MSRs . Note that this
MSR is still listed in other locations.

The impacted segment (reproduced below) is from Appendix B, Table B-5, I4-32 Intel Architecture
Software Developer’s Manual, Volume 3. The change bars show where the table row was deleted.

79H 121 IA32_BIOS_UPDT_TRIG BIOS_UPDT_TRIG P6 Family Processors
8BH 139 IA32_BIOS_SIGN_ID BIOS_SIGN/BBL_CR_D3 | P6 Family Processors
FEH 254 I1A32_MTRRCAP MTRRcap P6 Family Processors
174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR P6 Family Processors
175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR | P6 Family Processors

IA-32 Software Developer’s Manual Documentation Changes 9

n
Documentation Changes I nt9I ®

5. Typographical Error Corrected in Figure 8-24

EXINT should be ExtINT in Figure 8-24, located in the “Message Data Register Format™ section,
Chapter 8, [4-32 Intel Architecture Software Developer s Manual, Volume 3. The corrected figure is

reproduced below.
63 32
Reserved
31 16 15 14 13 11 10 8 7 0
Reserved Reserved Vector
Trigger Mode Delivery Mode
0 - Edge 000 - Fixed
1 - Level 001 - Lowest Priority
010 - SMI
Level for Trigger Mode =0 011 - Reserved
, 001 - NMI
X - Don't care
Level for Trigger Mode = 1 101 - INIT
110 - Reserved
0 - Deassert
1 - Assert 111 - ExtINT

Figure 8-24. Layout of the MSI Message Data Register

6. Typographical Error Corrected in Figure 8-23

OFEEH was incorrectly represented as OFEEEH in Figure 8-23, located the “Message Address

Register Format” section, Chapter 8, [A-32 Intel Architecture Software Developer s Manual, Volume
3.

The corrected figure is reproduced below.

31 20 19 12 1 4 3 2 1 0

OFEEH Destination ID | Reserved RH DM XX

Figure 8-23. Layout of the MS| Message Address Register

10 1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Corrupted Text Corrected

There was some corrupted text in the “State of the Logical Processors” section, Chapter 7, [4-32
Intel Architecture Software Developer s Manual, Volume 3.

The correction is shown in the segment below. See the changebar.

7.6.1.1 State of the Logical Processors

The following features are considered part of the architectural state of a logical processor with HT
Technology. The features can be subdivided into three groups:

* Duplicated for each logical processor

» Shared by logical processors in a physical processor

e Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:

* General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)

Corrected an Error in PACKSSDW lllustration

Operation of the PACKSSDW instruction was incorrectly illustrated in Figure 3-6, the
“PACKSSWB/PACKSSDW—Pack with Signed Saturation” section, Chapter 3, [4-32 Intel Archi-
tecture Software Developer’s Manual, Volume 2.

The corrected figure is reproduced below.

64-Bit SRC 64-Bit DEST
D C B A
D|C|B|A
64-Bit DEST

Figure 3.6. Operation of the PACKSSDW Instruction Using 64-bit Operands

IA-32 Software Developer’s Manual Documentation Changes 11

Documentation Changes I n

10.

12

SSM Corrected to SMM

In several places, SSM was still being used as an acronym for ‘system management mode.” The
correct usage is SMM. Corrections were made in the “Modes of Operation” section, Chapter 3, /4-
32 Intel Architecture Software Developers Manual, Volume 1. The updated paragraph is reproduced
below.

System management mode (SMM). This mode provides a transparent mechanism for implementing plat-
form-specific functions such as power management and system security. The processor enters SMM when
the external SMM interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable
interrupt controller (APIC). In SMM, the processor switches to a separate address space while saving the
basic context of the currently running program or task. SMM-specific code may then be executed transpar-
ently. Upon returning from SMM, the processor is placed back into is state prior to the system management
interrupt. SMM was introduced with the Intel386 ~ SL and Intel486 ~ SL processors and became a standard
IA-32 feature with the Pentium processor family.

This change was also made in the “RSM—Resume from System Management Mode” section,
Chapter 3, I4-32 Intel Architecture Software Developer s Manual, Volume 2. The corrected
segments are reproduced below.

Returns program control from system management mode (SMM) to the application program or operating-
system procedure that was interrupted when the processor received an SMM interrupt. The processor’s state
is restored from the dump created upon entering SMM. If the processor detects invalid state information
during state restoration, it enters the shutdown state....

ReturnFromSMM;
ProcessorState <« Restore(SMMDump);

Exiting from SMM Text Updated

A paragraph in the “Exiting from SMM” section, Chapter 13, I4-32 Intel Architecture Sofiware
Developer'’s Manual, Volume 3 has been updated. The information previously provided was not
complete. The corrected text segment is reproduced below. See the change bar for location.

+ (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an
RSM instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the
P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted.
Processors do recognize the FLUSH# signal in the shutdown state. While Pentium family processors recognize
the SMI# signal in shutdown state, P6 family and Intel486 processors do not. Intel does not support using SMI#
to recover from shutdown states for any processor family; the response of processors in this circumstance is not
well defined. On Pentium 4 and later processors, shutdown will inhibit INTR and A20M but will not change
any of the other inhibits. On these processors, NMIs will be inhibited if no action is taken in the SMM handler
to uninhibit them (see Section 13.7.).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM
slightly differently (see Section 13.10., “Auto HALT Restart™). Also, the SMBASE address can be changed on
a return from SMM (see Section 13.11., “SMBASE Relocation”).

1A-32 Software Developer’s Manual Documentation Changes

I n ® Documentation Changes

1. L1 Data Cache Context Mode Description Has Been Udpated

In Appendix B, Table B-1, 14-32 Intel Architecture Software Developer s Manual, Volume 3; the “L1
Data Cache Context Mode (RW)” table cell has been updated. Information about adaptive mode was
clarified.

The updated table segment is reproduced below.

Register Address Register Name Sharedl1
Fields and Flags Unique

Bit Description
Hex Dec

24 L1 Data Cache Context Mode (R/W). When
set to 1, this bit places the L1 Data Cache
into shared mode. When set to 0 (the
default), this bit places the L1 Data Cache
into adaptive mode. When the L1 Data
Cache is running in adaptive mode and the
CR3s are identical, data in L1 is shared
across logical processors. Otherwise, data in
L1 is not shared and cache use is
competitive.

NOTE: If the Context ID feature flag,
ECX[10], is not set to 1 after executing
CPUID with EAX = 1; the ability to switch
modes is not supported and the BIOS must
not alter the contents of
IA32_MISC_ENABLE[24].

12. #DE Should Be #DB in Description of EFLAGS.RF

In the “System Flags and Fields in the EFLAGS Register” section, Chapter 2, 14-32 Intel Architec-
ture Software Developer s Manual, Volume 3; there was a sentence that began "When set, this flag
temporarily disables debug exceptions (#DE)". Debug exceptions are noted as #DB, not #DE. This
error has been corrected.

The corrected entry is reproduced below.

RF Resume (bit 16). Controls the processor’s response to instruction-breakpoint conditions. When set,
this flag temporarily disables debug exceptions (#DB) from being generated for instruction break-
points; although, other exception conditions can cause an exception to be generated. When clear,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug
exception that was caused by an instruction breakpoint condition. Here, debugger software must set
this flag in the EFLAGS image on the stack just prior to returning to the interrupted program with the
IRETD instruction, to prevent the instruction breakpoint from causing another debug exception. The
processor then automatically clears this flag after the instruction returned to has been successfully
executed, enabling instruction breakpoint faults again.

See Section 15.3.1.1., Instruction-Breakpoint Exception Condition, for more information on the use
of this flag.

IA-32 Software Developer’s Manual Documentation Changes 13

n
Documentation Changes I nt9I ®

13. There Have Been Revisions to the Table That States Priority among Simulta-
neous Exceptions and Interrupts

We have made a number of updates to Table 5-2, located in the “Priority Among Simultaneous
Exceptions and Interrupts” section, Chapter 5, [4-32 Intel Architecture Software Developer's
Manual, Volume 3.

The updated cells are reproduced below.

Priority Descriptions (continued)...

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Code Breakpoint Fault

7 Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

8 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

9 (Lowest) Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

14 1A-32 Software Developer’s Manual Documentation Changes

u
Intel ® Documentation Changes

14. Corrections to Page-Directory-Pointer-Table Entry Desciption

In Figure 3-20 and 3-21, located in the “Page-Directory and Page-Table Entries With Extended
Addressing Enabled” section, Chapter 3, 14-32 Intel Architecture Sofiware Developer s Manual,
Volume 3; Bit 0 of both representations of the Page-Directory-Pointer-Table Entry now indicate P
(showing the the location of the ‘present flag’ bit).

The corrected tables are reproduced below.

Page-Directory-Pointer-Table Entry
63 36 35 32
Base
Reserved (set to 0) Addr
31 1211 98 543210
PlP
Page-Directory Base Address Avail | Reserved 8 \4v Res.| P
Page-Directory Entry (4-KByte Page Table)
63 36 35 32
B
Reserved (set to 0) A
31 1211 9876543210
P|P|U[R
Page-Table Base Address Avail [o|o|o|A|C|W|/|/|P
D|T|S|W
Page-Table Entry (4-KByte Page)
63 36 35 32
B
Reserved (set to 0) A
31 1211 9876543210
P P|P|U|R
Page Base Address Avail |G|A|D|A|C|W|/|/|P
T D|T|S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled

IA-32 Software Developer’s Manual Documentation Changes 15

Documentation Changes I n

16

Page-Directory-Pointer-Table Entry

63 36 35 32
Base
Reserved (set to 0) Addr.
31 1211 98 543210
. PP
Page Directory Base Address Avail. | Reserved |C |W|Res.| P
D|T

Page-Directory Entry (2-MByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 21 20 131211 9876543210
P) P|P[U|R

Page Base Address | Reserved (setto 0) |A| Avail. [G|1|D|A|C(W|/|/|P
T D|T|s|w

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory
Entries for 2-MByte Pages with PAE Enabled

In addition, the paragraph discussing the present flag has been updated. this text is also located in
the “Page-Directory and Page-Table Entries With Extended Addressing Enabled” section, Chapter
3, 14-32 Intel Architecture Software Developers Manual, Volume 3.

The applicable text segment is reproduced below. Note the change bar.

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in the page
base address are interpreted as the 24 most-significant bits of a 36-bit physical address, which forces page
tables and pages to be aligned on 4-KByte boundaries. When a page-directory entry points to a 2-MByte
page, the base address is interpreted as the 15 most-significant bits of a 36-bit physical address, which
forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 or 1. If the present flag is
clear, the remaining bits in the page-directory-pointer-table entry are available to the operating system. If
the present flag is set, the fields of the page-directory-pointer-table entry are defined in Figures for 4KB
pages and Figures for 2MB pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page table or a
2-MByte page. When this flag is clear, the entry points to a page table; when the flag is set, the entry points
to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be mixed within one set of paging
tables.

1A-32 Software Developer’s Manual Documentation Changes

16.

Documentation Changes

Behavior Notes on the Accessed (A) Flag and Dirty (D) Flag

Notes have been added to two sub-paragraphs of the “Page-Directory and Page-Table Entries”
section, Chapter 3, I4-32 Intel Architecture Software Developer s Manual, Volume 3. The notes
clarify a limitation on the processor’s Self-Modifying Code detection logic in the Accessed (A) flag
and Dirty (D) flag context.

The applicable sections are reproduced below. See the change bars.

Accessed (A) flag, bit 5
Indicates whether a page or page table has been accessed (read from or written to) when set.
Memory management software typically clears this flag when a page or page table is initially
loaded into physical memory. The processor then sets this flag the first time a page or page
table is accessed.

This flag is a “sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only software can clear this flag. The accessed and dirty flags are provided for use by
memory management software to manage the transfer of pages and page tables into and out
of physical memory.

NOTE: The accesses used by the processor to set this bit may or may not be exposed to the
processor’s Self-Modifying Code detection logic. If the processor is executing code from the
same memory area that is being used for page table structures, the setting of the bit may or
may not result in an immediate change to the executing code stream.

Dirty (D) flag, bit 6
Indicates whether a page has been written to when set. (This flag is not used in page-direc-
tory entries that point to page tables.) Memory management software typically clears this
flag when a page is initially loaded into physical memory. The processor then sets this flag
the first time a page is accessed for a write operation.

This flag is “sticky,” meaning that once set, the processor does not implicitly clear it. Only
software can clear this flag. The dirty and accessed flags are provided for use by memory
management software to manage the transfer of pages and page tables into and out of phys-
ical memory.

NOTE: The accesses used by the processor to set this bit may or may not be exposed to the
processor’s Self-Modifying Code detection logic. If the processor is executing code from the
same memory area that is being used for page table structures, the setting of the bit may or
may not result in an immediate change to the executing code stream.

Interrupt 11 Discussion Concerning EXT Flag Functioning Has Been
Updated

The Volume 3, Chapter 5, Interrupt 11: Error Code section has been updated. This section now
provides a more complete description of the EXT flag. The impacted text is reproduced below.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the viola-
tion is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that the
exception resulted from either:

* an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a
not-present segment.

e a benign exception that subsequently referenced a not-present segment. A contributory
exception or page fault that subsequently referenced a not-present segment would cause a
double fault (#DF) to be generated instead of #NP.

IA-32 Software Developer’s Manual Documentation Changes 17

n
Documentation Changes I nt9I ®

Improved Information on Interpreting Machine-Check Error Codes

In Volume 3, Appendix E has been re-written to incorporate new IA32 MCi STATUS data.
Encoding of the model-specific and other information fields is different for the 06H and OFH
processor families. Changes are documented in the following sections.

17.

E.1. DECODING FAMILY 06H SPECIFIC MACHINE ERROR CODES

Machine error code reporting by processor family 06H is based on values read from
IA32 MCi STATUS (Figure E-1).

Architectural MCA Error Code
56

10 0

Internal watchdog timer timeout

External Bus Error Codes

56 32-31 16-15 0

Other information j

Model specific error codes
MCA error codes

|:| Reserved

Figure E-1. 1A32_MCi_STATUS Encoding for Family 06H

Table E-1 shows how to interpret internal watchdog timer timeout machine-check errors reported in
[IA32 MCi STATUS for processor family 06H.

18 1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table E-1. Family 06H Encoding of Internal Watchdog Timer Errors Reported in
IA32_MCi_STATUS

Bit No. Bit Function Bit Description
Architectural MCA 0-15 0000010000000000 Internal watchdog timer timeout. Note that a
error code watch-dog timer time-out only occurs if the
BINIT driver is enabled.
Model-specific error 16-31 Reserved Reserved
codes
Other information 32-56 Reserved Reserved

Table E-2 shows how to interpret errors that occur on the external bus.

Table E-2. Family 06H Encoding 32_MCi_STATUS for External Bus Errors

Type Bit No. | Bit Function Bit Description
MCA error 0-1 Reserved Reserved.
codes
2-3 For external bus errors: For external bus errors:
special cycle or I/0 + Bit2is set to 1 if the access was a special
cycle.
+ Bit3is set to 1 if the access was a special
cycle OR a I/O cycle.
For internal timeout: For internal timeout:
Reserved Reserved
4-7 For external bus errors: For external bus errors, 00WR:
Read/Write W = 1 for writes
R =1 for reads
For internal timeout: For internal timeout:
Reserved Reserved
8-9 Reserved Reserved
10-11 10 External bus errors
01 Internal watchdog timer timeout
12-15 Reserved Reserved
Model specific 16-18 Reserved Reserved
errors

IA-32 Software Developer’s Manual Documentation Changes

19

n
Documentation Changes I nt9I ®

Table E-2. Family 06H Encoding 32_MCi_STATUS for External Bus Errors (Continued)

Type Bit No. | Bit Function Bit Description
Model specific 19-24 Bus queue request type | 000000 for BQ_DCU_READ_TYPE error
errors 000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error
000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error
000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error
011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific | 27-25 | Bus queue error type 000 for BQ_ERR_HARD_TYPE error
errors 001 for BQ_ERR_DOUBLE_TYPE error
010 for BQ_ERR_AERR2_TYPE error
100 for BQ_ERR_SINGLE_TYPE error
101 for BQ_ERR_AERR1_TYPE error

20 1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table E-2. Family 06H Encoding 32_MCi_STATUS for External Bus Errors (Continued)

Type

Bit No.

Bit Function

Bit Description

Model specific
errors

28

FRC error

1 if FRC error active

29

BERR

1if BERR is driven

30

Internal BINIT

1 if BINIT driven for this processor

31

Reserved

Reserved

Other
information

32-34

Reserved

Reserved

35

External BINIT

1 if BINIT is received from external bus.

36

RESPONSE PARITY
ERROR

This bit is asserted in IA32_MCj_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external

pin.

37

BUS BINIT

This bit is asserted in IA32_MCi_STATUS if this
component has received a hard error response
on a split transaction (one access that has
needed to be split across the 64-bit external bus
interface into two accesses).

38

TIMEOUT BINIT

This bit is asserted in IA32_MCj_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high order
bit. The timer is cleared when a micro-instruction
retires, an exception is detected by the core
processor, RESET is asserted, or when a ROB
BINIT occurs.

The ROB time-out counter is prescaled by the 8-
bit PIC timer which is a divide by 128 of the bus
clock (the bus clock is 1:2, 1:3, 1:4 of the core
clock). When a carry out of the 8-bit PIC timer
occurs, the ROB counter counts up by one.
While this bit is asserted, it cannot be overwritten
by another error.

39-41

Reserved

Reserved

42

HARD ERROR

This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43

IERR

This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

IA-32 Software Developer’s Manual Documentation Changes

21

n
Documentation Changes I nt9I ®

Table E-2. Family 06H Encoding 32_MCi_STATUS for External Bus Errors (Continued)

Type Bit No. | Bit Function Bit Description
Other 44 AERR This bit is asserted in IA32_MCj_STATUS if this
information component has initiated 2 failing bus

transactions which have failed due to Address
Parity Errors (AERR asserted). While this bit is
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in
IA32_MCi_STATUS for uncorrected ECC errors.
While this bit is asserted, the ECC syndrome
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in
IA32_MCi_STATUS for corrected ECC errors.
47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS

contains the 8-bit ECC syndrome only if the error
was a correctable/uncorrectable ECC error and
there wasn't a previous valid ECC error
syndrome logged in IA32_MCj_STATUS.

A previous valid ECC error in
IA32_MCi_STATUS is indicated by
IA32_MCi_STATUS.bit45 (uncorrectable error
occurred) being asserted. After processing an
ECC error, machine-check handling software
should clear IA32_MCi_STATUS.bit45 so that
future ECC error syndromes can be logged.

55-56 Reserved Reserved.

22 1A-32 Software Developer’s Manual Documentation Changes

u
Intel ® Documentation Changes

E.2. DECODING FAMILY OFH SPECIFIC MACHINE ERROR CODES

Machine error code reporting by processor family OFH is also based on values read from

[IA32 MCi STATUS (Figure E-2).

Architectural MCA Error Codes
56 27-26 10

Thread timeout indicator Q

Internal watchdog timer timeout

External Bus Error Codes
56 32-31 16 - 15

Other informationj
Model specific error codes
Architectural compound MCA error codes

Memory Hierarchy Error Codes
56 32-31 16 - 15

Other informati(ﬁ
Model specific error codes
Architectural compound MCA error codes

|:| Reserved

Figure E-2. 1A32_MCi_STATUS Encoding for Family OFH

Table E-3 provides information on how to interpret processor family OFH error code fields for

internal watchdog timer timeout machine-checks.

IA-32 Software Developer’s Manual Documentation Changes

23

Documentation Changes I n

Table E-3. Family OFH Encoding of IA32_MCi_STATUS for Internal Watchdog Timer Errors

Bit Bit Function Bit Description

No.
Architectural 0-15 0000010000000000 Internal watchdog timer timeout. Note that a
MCA error code watch-dog timer time-out only occurs if the BINIT

driver is enabled.

Model-specific 16-25 | Reserved Reserved
error code) ; L L
26-27 | Thread timeout Contains the indication of the thread which timed
indicator (TT) out:

01 - Thread 0 timed out
10 - Thread 1 timed out
11 - Both threads timed out

28-31 | Reserved Reserved

Other information | 32-56 | Reserved Reserved

Table E-4 provides the information to interpret errors that occur on the external bus. Note that
processor family OFH uses the compound MCA code format for external bus errors. Refer to
Chapter 14, Machine-Check Architecture for more information.

24 1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table E-4. Family OFH Encoding of IA32_MCi_STATUS for External Bus Errors

Bit Bit Function Bit Description
No.
Architectural | 0-1 Memory hierarchy level (LL) Refer to Table 14-5 for detailed decoding of the
compound memory hierarchy level (LL) sub-field.
MCA error - -
codes 2-3 Memory and 1/O (II) Refer to Table 14-7 for a detailed decoding of
the memory or 10 (ll) sub-field.
4-7 Request (RRRR) Refer to Table 14-6 for a detailed decoding of
the request (RRRR) sub-field.
8 Timeout (T) Refer to Table 14-7 for a detailed decoding of
the Timeout (T) Sub-Field.
9-10 Participation (PP) Refer to Table 14-7 for a detailed decoding of
the participation (PP) sub-field.
11-15 | 00001 Bus and interconnect errors
Model- 16 FSB address parity Address parity error detected:
specific error 1 = Address parity error detected
codes 0 = No address parity error
17 Response hard fail Hardware failure detected on response
18 Response parity Parity error detected on response
19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access
20 Processor Signature = Processor Signature = 00000F04H. Indicates
00000F04H: Invalid PIC error due to an invalid PIC request (access was
request made to PIC space with WB memory):
1 = Invalid PIC request error
0 = No Invalid PIC request error
All other processors: Reserved
Reserved
21 Pad state machine The state machine that tracks P and N data-
strobe relative timing has become
unsynchronized or a glitch has been detected.
22 Pad strobe glitch Data strobe glitch
23 Pad address glitch Address strobe glitch
24-31 | Reserved Reserved
Other 32-56 | Reserved Reserved
Information

IA-32 Software Developer’s Manual Documentation Changes

25

n
Documentation Changes I nt9I ®

Table E-5 provides information on how to interpret errors that occur within the memory hierarchy.

Table E-5. Family OFH Encoding of IA32_MCi_STATUS for Memory Hierarchy Errors
Bit No. | Bit Function Bit Description

Architectural 0-1 Memory Hierarchy Level (LL) | Refer to Table 14-5 for a detailed decoding of
compound the memory hierarchy level (LL) sub-field.
MCA error
code

2-3 Transaction Type (TT) Refer to Table 14-5 for a detailed decoding of
the transaction type (TT) sub-field.

4-7 Request (RRRR) Refer to Table 14-6 for a detailed decoding of
the request type (RRRR) sub-field.

8-15 00000001 Memory hierarchy error format

Model specific | 16-17 Tag Error Code Contains the tag error code for this machine
error codes check error:

00 = No error detected

01 = Parity error on tag miss with a clean
line

10 = Parity error/multiple tag match on tag
hit

11 = Parity error/multiple tag match on tag
miss

18-19 Data Error Code Contains the data error code for this machine
check error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error
originated in the L3 (it can be ignored for
invalid PIC request errors):

1=L3error

0=L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request
(access was made to PIC space with WB
memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 32-39 8-bit Error Count Holds a count of the number of errors since
Information reset. The counter begins at 0 for the first error
and saturates at a count of 254.

40-56 Reserved Reserved

26 1A-32 Software Developer’s Manual Documentation Changes

18.

19.

tel.

Documentation Changes

More information on the Functioning of Debug BPs after POP SS/MOV SS
Has Been Provided

In Volume 3, Section 15.3.1.1; more information has been provided on the functioning of code
instruction breakpoints immediately after POP SS/MOV SS instructions. This data is reprinted
below (in context). Footnotes have been added to the POP and MOV sections in Volume 2 of the 14-
32 Intel Architecture Software Developer s Manual which contain the same information for POP SS/
MOV SS (the footnotes are not reproduced here).

15.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
address specified in a breakpoint-address register (DBO through DR3) that has been set up to detect
instruction execution (R/W flag is set to 0). Upon reporting the instruction breakpoint, the processor
generates a fault-class, debug exception (#DB) before it executes the target instruction for the break-
point.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other
exceptions detected during the decoding or execution of an instruction. Note, however, that if a code
instruction breakpoint is placed on an instruction located immediately after a POP SS/MOV SS
instruction, it may not be triggered. In most situations, POP SS/MOV SS will inhibit such interrupts
(see "MOV-Move" and "POP-Pop a Value from the Stack" in the 14-32 Intel Architecture Sofiware
Developer’s Manual, Volume 2).

More Information on the LBR Stack Has Been Provided

The following information has been added to Volume 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Section 15.5. This information describes the LBR stack and
MSR _LASTBRANCH TOS

* Last Branch Record (LBR) Stack — The LBR stack is a circular stack that consists of four
MSRs (MSR_LASTBRANCH_0 through MSR_ LASTBRANCH _3) for the Pentium 4 and
Intel Xeon processor family [CPUID family OFH, models OH-02H]. The LBR stack consists of
16 MSR pairs (MSR_LASTBRANCH_0 FROM_LIP through
MSR_LASTBRANCH 15 FROM LIP and MSR_ LASTBRANCH 0 TO LIP through
MSR _LASTBRANCH 15 TO LIP) for the Pentium 4 and Intel Xeon processor family
[CPUID family OFH, model 03H].

e Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 2-bit
pointer (0-3) to the MSR in the LBR stack that contains the most recent branch, interrupt, or
exception recorded for the Pentium 4 and Intel Xeon processor family [CPUID family OFH,
models OH-02H]. This pointer becomes a 4-bit pointer (0-15) for the Pentium 4 and Intel Xeon
processor family [CPUID family OFH, model 03H].

See also: Table 15-2, Figure 15-3, and Figure 15-4 below.

IA-32 Software Developer’s Manual Documentation Changes 27

n
Documentation Changes I nt9I ®

Table 15-2. LBR MSR Stack Structure for the Pentium 4 and Intel Xeon Processor Family
LBR MSRs for Family 0FH, Models OH- Decimal Value of TOS Pointer in

02H; MSRs at locations 1DBH-1DEH. MSR_LASTBRANCH_TOS (bits
0-1)

MSR_LASTBRANCH_0 0

MSR_LASTBRANCH_1 1

MSR_LASTBRANCH_2 2

MSR_LASTBRANCH_3 3

LBR MSRs for Family OFH, Models; Decimal Value of TOS Pointer in

MSRs at locations 680H-68FH. MSR_LASTBRANCH_TOS (bits
0-3)

MSR_LASTBRANCH_0_FROM_LIP 0

MSR_LASTBRANCH_1_FROM_LIP 1

MSR_LASTBRANCH_2_FROM_LIP 2

MSR_LASTBRANCH_3_FROM_LIP 3

MSR_LASTBRANCH_4_FROM_LIP 4

MSR_LASTBRANCH_5_FROM_LIP 5

MSR_LASTBRANCH_6_FROM_LIP 6

MSR_LASTBRANCH_7_FROM_LIP 7

MSR_LASTBRANCH_8 FROM_LIP 8

MSR_LASTBRANCH_9 FROM_LIP 9

MSR_LASTBRANCH_10_FROM_LIP 10

MSR_LASTBRANCH_11_FROM_LIP 11

MSR_LASTBRANCH_12_FROM_LIP 12

MSR_LASTBRANCH_13_FROM_LIP 13

MSR_LASTBRANCH_14_FROM_LIP 14

MSR_LASTBRANCH_15_FROM_LIP 15

LBR MSRs for Family 0FH, Model 03H;
MSRs at locations 6COH-6CFH.

MSR_LASTBRANCH_0_TO_LIP 0
MSR_LASTBRANCH_1_TO_LIP 1
MSR_LASTBRANCH_2_TO_LIP 2
MSR_LASTBRANCH_3_TO_LIP 3
MSR_LASTBRANCH_4_TO_LIP 4
MSR_LASTBRANCH_5_TO_LIP 5
6
7
8
9

MSR_LASTBRANCH_6_TO_LIP
MSR_LASTBRANCH_7_TO_LIP
MSR_LASTBRANCH_8_TO_LIP
MSR_LASTBRANCH_9_TO_LIP

MSR_LASTBRANCH_10_TO_LIP 10
MSR_LASTBRANCH_11_TO_LIP 11
MSR_LASTBRANCH_12_TO_LIP 12
MSR_LASTBRANCH_13_TO_LIP 13
MSR_LASTBRANCH_14_TO_LIP 14
MSR_LASTBRANCH_15_TO_LIP 15

28 1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

31

Reserved

Family OFH, Models 01-02H 4
Top-of-stack pointer (TOS)

31 80

Reserved

Family OFH, Model 03H+ 4|
Top-of-stack pointer (TOS)

Figure 15-3. MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4 and Intel Xeon

Processor Family

CPUID Family OFH, Models 0H-02H
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
63 32-31 0

To Linear Address From Linear Address

CPUID Family OFH, Model 03H
MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

63 32-31 0

Reserved From Linear Address

MSR_LASTBRANCH_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
63 32-31 0

Reserved To Linear Address

Figure 15-4. LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor

Family

Volume 3, Appendix B, Table B-1 has also been updated to reflect new LBR stack information.

Impacted cells are reproduced below.

IA-32 Software Developer’s Manual Documentation Changes

29

Documentation Changes

30

In

Table B-1. MSRs in the Pentium 4 and Intel Xeon Processors

Register
Address

Register Name
Fields and Flags

Hex

Dec

Model
Avail-
ability

Shared/

Unique

1

Bit Description

1DAH

474

MSR_LASTBRANCH
_TOS

0,1, 2,

3

Unique

Last Branch Record Stack TOS. (R)
Contains an index (0-3 or 0-15) that
points to the top of the last branch
record stack (that is, that points the
index of the MSR containing the most
recent branch record.

1DBH

475

MSR_LASTBRANCH
0

0,1,2

Unique

Last Branch Record 0. (R/W) One of
four last branch record registers on the
last branch record stack. It contains
pointers to the source and destination
instruction for one of the last four
branches, exceptions, or interrupts that
the processor took.

NOTE: MSR_LASTBRANCH_O
through MSR_LASTBRANCH_3 at
1DBH-1DEH are available only on
family OFH, models 0H-02H. They
have been replaced by the MSRs at
680H-68FH and 6COH-6CFH..

1DCH

476

MSR_LASTBRANCH
1

0,1,2

Unique

Last Branch Record 1. See
description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DDH

477

MSR_LASTBRANCH
2

0,1,2

Unique

Last Branch Record 2. See
description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DEH

478

MSR_LASTBRANCH
3

0,1,2

Unique

Last Branch Record 3. See
description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

680H

1664

MSR_LASTBRANCH
_0_FROM_LIP

Unique

Last Branch Record 0. (R/W) One of
16 pairs of last branch record registers
on the last branch record stack (680H-
68FH). This part of the stack contains
pointers to the source instruction for
one of the last 16 branches,
exceptions, or interrupts taken by the
processor.

NOTE: The MSRs at 680H-68FH,
6COH-6CfH are not available in
processor releases before family OFH,
model 03H. These MSRs replace
MSRs previously located at 1DBH-
1DEH.which performed the same
function for early releases.

681H

1665

MSR_LASTBRANCH
_1_FROM_LIP

Unique

Last Branch Record 1. See
description of MSR_LASTBRANCH_0
at 680H.

682H

1666

MSR_LASTBRANCH
2 FROM_LIP

Unique

Last Branch Record 2. See
description of MSR_LASTBRANCH_0
at 680H.

1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

Table B-1. MSRs in the Pentium 4 and Intel Xeon Processors (Continued)

Register Register Name Model Shared/
Address Fields and Flags Ql\olﬁiltl; Unique Bit Description
Hex Dec
683H 1667 MSR_LASTBRANCH 3 Unique Last Branch Record 3. See
_3_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
684H 1668 MSR_LASTBRANCH 3 Unique Last Branch Record 4. See
_4 FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
685H 1669 MSR_LASTBRANCH 3 Unique Last Branch Record 5. See
_5_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
686H 1670 MSR_LASTBRANCH 3 Unique Last Branch Record 6. See
_6_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
687H 1671 MSR_LASTBRANCH 3 Unique Last Branch Record 7. See
_7_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
688H 1672 MSR_LASTBRANCH 3 Unique Last Branch Record 8. See
_8_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
689H 1673 MSR_LASTBRANCH 3 Unique Last Branch Record 9. See
_9 FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68AH | 1674 MSR_LASTBRANCH 3 Unique Last Branch Record 10. See
_10_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68BH | 1675 MSR_LASTBRANCH 3 Unique Last Branch Record 11. See
_1_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68CH | 1676 MSR_LASTBRANCH 3 Unique Last Branch Record 12. See
_12_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68DH | 1677 MSR_LASTBRANCH 3 Unique Last Branch Record 13. See
_13_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68EH | 1678 MSR_LASTBRANCH 3 Unique Last Branch Record 14. See
_14_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
68FH 1679 MSR_LASTBRANCH 3 Unique Last Branch Record 15. See
_15_FROM_LIP description of MSR_LASTBRANCH_0
at 680H.
6COH | 1728 MSR_LASTBRANCH 3 Unique Last Branch Record 0. (R/W) One of
_0_TO_LIP 16 pairs of last branch record registers
on the last branch record stack (6COH-
6CFH). This part of the stack contains
pointers to the destination instruction
for one of the last 16 branches,
exceptions, or interrupts that the
processor took.

IA-32 Software Developer’s Manual Documentation Changes

31

Documentation Changes

intel.

Table B-1. MSRs in the Pentium 4 and Intel Xeon Processors (Continued)

32

Register Register Name Model Shared/
Address Fields and Flags Ql\)lﬁiltl; Unique Bit Description
Hex Dec
6C1H | 1729 MSR_LASTBRANCH 3 Unique Last Branch Record 1. See
_1.TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C2H | 1730 MSR_LASTBRANCH 3 Unique Last Branch Record 2. See
_2 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C3H [1731 MSR_LASTBRANCH 3 Unique Last Branch Record 3. See
3 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C4H | 1732 MSR_LASTBRANCH 3 Unique Last Branch Record 4. See
_4 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C5H | 1733 MSR_LASTBRANCH 3 Unique Last Branch Record 5. See
5 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C6H | 1734 MSR_LASTBRANCH 3 Unique Last Branch Record 6. See
_6_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C7H | 1735 MSR_LASTBRANCH 3 Unique Last Branch Record 7. See
_7_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C8H | 1736 MSR_LASTBRANCH 3 Unique Last Branch Record 8. See
_8 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6C9H | 1737 MSR_LASTBRANCH 3 Unique Last Branch Record 9. See
9 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CAH | 1738 MSR_LASTBRANCH 3 Unique Last Branch Record 10. See
_10_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CBH | 1739 MSR_LASTBRANCH 3 Unique Last Branch Record 11. See
_11_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CCH | 1740 MSR_LASTBRANCH 3 Unique Last Branch Record 12. See
_12_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CDH | 1741 MSR_LASTBRANCH 3 Unique Last Branch Record 13. See
_13_TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CEH | 1742 MSR_LASTBRANCH 3 Unique Last Branch Record 14. See
14 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.
6CFH | 1743 MSR_LASTBRANCH 3 Unique Last Branch Record 15. See
15 TO_LIP description of MSR_LASTBRANCH_0
at 6COH.

1A-32 Software Developer’s Manual Documentation Changes

I n ® Documentation Changes

20. Limited Availability of Two MSR’s Have Been Documented

A note has been added to Volume 3, Chapter 15, Table 15-4. The note indicates the availability of
MSR _1Q ESCRO and MSR 1Q ESCRI. The impacted table cells are reproduced below.

Counter CCCR ESCR
Name No. | Addr Name Addr Name No. Addr
MSR_IQ_COUNTERO 12 | 30CH | MSR_IQ_CCCRO 36CH | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 | 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCRO' 0 | 3BAH
MSR_RAT_ESCRO 2 3BCH
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER1 13 | 30DH | MSR_IQ_CCCR1 36DH | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 | 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCRO
MSR_RAT_ESCRO 9 | A
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER2 14 | 30EH | MSR_IQ_CCCR2 36EH | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 | 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1' 0 | 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 3CBH
MSR_IQ_COUNTER3 15 | 30FH MSR_IQ_CCCR3 36FH | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1' 0 | 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 3CBH
MSR_IQ_COUNTER4 16 | 310H | MSR_IQ_CCCR4 370H | MSR_CRU_ESCRO 4 3B8H
MSR_CRU_ESCR2 5 3CCH
MSR_CRU_ESCR4 6 3EOH
MSR_IQ_ESCRO' 0 | 3BAH
MSR_RAT_ESCRO 2 3BCH
MSR_SSU_ESCRO 3 3BEH
MSR_ALF_ESCRO 1 3CAH
MSR_IQ_COUNTER5 17 | 311H | MSR_IQ_CCCR5 371H | MSR_CRU_ESCR1 4 3B9H
MSR_CRU_ESCR3 5 | 3CDH
MSR_CRU_ESCR5 6 3E1H
MSR_IQ_ESCR1' 0 | 3BBH
MSR_RAT_ESCR1 2 3BDH
MSR_ALF_ESCR1 1 3CBH
"MSR_IQ ESCRO and MSR_IQ_ESCR1 are available only on early processor builds (family OFH,
models 0TH-02H). These MSRs are not available on later versions.

IA-32 Software Developer’s Manual Documentation Changes 33

n
Documentation Changes I nt9I ®

21.

34

The Microcode Update Facilities Section Has Been Updated

Volume 3 of the I4-32 Intel Architecture Software Developer'’s Manual, Section 9.11 has been
updated. The new information has been added that documents the microcode update facilities added
ONn new processors.

9.11. MICROCODE UPDATE FACILITIES

The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct errata by loading
an Intel-supplied data block into the processor. The data block is called a microcode update. This
section describes the mechanisms the BIOS needs to provide in order to use this feature during
system initialization. It also describes a specification that permits the incorporation of future updates
into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a
processor stepping and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader,
is responsible for loading the update on processors during system initialization (Figure 9-7). There
are two steps to this process: the first is to incorporate the necessary update data blocks into the
BIOS; the second is to load update data blocks into the processor.

Update
Loader
Y
- Update
New Update > Blocks CPU
BIOS

Figure 9-7. Applying Microcode Updates

9.11.1. Microcode Update

A microcode update consists of an Intel-supplied binary that contains a descriptive header and data.
No executable code resides within the update. Each microcode update is tailored for a specific list
of processor signatures. A mismatch of the processor’s signature with the signature contained in the
update will result in a failure to load. A processor signature includes the extended family, extended
model, type, family, model, and stepping of the processor (starting with processor family 0fH, model
03H, a given microcode update may be associated with one of multiple processor signatures; see
Section 9.11.2. for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then by an
optional extended signature table. Table 9-1 provides a definition of the fields; Table 9-2 shows the
format of an update.

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update header
and its reserved fields are interpreted by software based upon the header version. An encoding
scheme guards against tampering and provides a means for determining the authenticity of any given

1A-32 Software Developer’s Manual Documentation Changes

Documentation Changes

update. For microcode updates with a data size field equal to 00000000H, the size of the microcode
update is 2048 bytes. The first 48 bytes contain the microcode update header. The remaining 2000
bytes contain encrypted data.

For microcode updates with a data size not equal to 00000000H, the total size field specifies the size
of the microcode update. The first 48 bytes contain the microcode update header. The second part
of the microcode update is the encrypted data. The data size field of the microcode update header
specifies the encrypted data size, its value must be a multiple of the size of DWORD. The optional
extended signature table if implemented follows the encrypted data, and its size is calculated by
(Total Size — (Data Size + 48)).

NOTE

The optional extended signature table is supported starting with processor family
O0FH, model 03H.

Table 9-1. Microcode Update Field Definitions

Field Name

Offset
(bytes)

Length
(bytes)

Description

Header Version

0

4

Version number of the update header.

Update Revision

4

4

Unique version number for the update, the basis for

the update signature provided by the processor to
indicate the current update functioning within the
processor. Used by the BIOS to authenticate the
update and verify that the processor loads
successfully. The value in this field cannot be used for
processor stepping identification alone. This is a
signed 32-bit number.

Date 8 4 Date of the update creation in binary format:

mmddyyyy (e.g. 07/18/98 is 07181998H).

Processor 12 4
Signature

Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor. The BIOS uses the
processor signature field in conjunction with the
CPUID instruction to determine whether or not an
update is appropriate to load on a processor. The
information encoded within this field exactly
corresponds to the bit representations returned by the
CPUID instruction.

Checksum 16 4 Checksum of update data and header. Used to verify
the integrity of the update header and data. Checksum
is correct when the summation of the DWORDs that

comprise the microcode update results in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is

00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.

IA-32 Software Developer’s Manual Documentation Changes 35

Documentation Changes

In

Table 9-1. Microcode Update Field Definitions (Continued)

Offset
(bytes)

Field Name

Length
(bytes)

Description

Data Size 28

4

Specifies the size of the encrypted data in bytes, and
must be a multiple of DWORDs. If this value is
00000000H, then the microcode update encrypted
data is 2000 bytes (or 500 DWORDs).

Total Size 32

Specifies the total size of the microcode update in
bytes. It is the summation of the header size, the
encrypted data size and the size of the optional
extended signature table.

Reserved 36

12

Reserved fields for future expansion

Update Data 48

Data Size
or 2000

Update data

Extended Data Size +
Signature Count 48

4

Specifies the number of extended signature structures
(Processor Signature[n], processor flags[n] and
checksum[n]) that exist in this microcode update.

Extended Data Size +
Checksum 52

Checksum of update extended processor signature
table. Used to verify the integrity of the extended
processor signature table. Checksum is correct when
the summation of the DWORDs that comprise the
extended processor signature table results in
00000000H.

Data Size +
56

Reserved

12

Reserved fields

Data Size +
68 + (n *12)

Processor
Signature[n]

Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and
stepping of the processor. The BIOS uses the
processor signature field in conjunction with the
CPUID instruction to determine whether or not an
update is appropriate to load on a processor. The
information encoded within this field exactly
corresponds to the bit representations returned by the
CPUID instruction.

Data Size +
72+ (n*12)

Processor Flags[n]

Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an
update is appropriate to load on a processor. Multiple
bits may be set representing support for multiple
platform IDs.

Data Size +
76 +(n*12)

Checksum[n]

Used by utility software to decompose a microcode
update into multiple microcode updates where each of
the new microcode updates is constructed without the
optional extended processor signature table.

36

1A-32 Software Developer’s Manual Documentation Changes

I n Documentation Changes

Table 9-2. Microcode Update Format

31 24 16 8 0 Bytes
Header Version
Update Revision 4
Month: 8 Day: 8 Year: 16
Processor Signature (CPUID) 12
8 S5 25| 8| 3 E] 2 8
N g2 221 3| g - B
o3 =2 8 » - a
R ~
Checksum 16
Loader Revision 20
Processor Flags 24

Reserved (24 bits)

/ld
9d
Sd
vd
ed
cd
ld
od

Data Size 28
Total Size 32
Reserved (12 Bytes) 36
Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48
Extended Signature Count ‘n’ Data Size
+48
Extended Processor Signature Table Checksum Data Size
+52
Reserved (12 Bytes) Data Size
+ 56
Processor Signature[n] Data Size
+68 +
(n*12)
Processor Flags[n] Data Size
+72 +
(n*12)
Checksum[n] Data Size
+76 +
(n*12)

9.11.2. Optional Extended Signature Table

The extended signature table is a structure that may be appended to the end of the encrypted data
when the encrypted data only supports a single processor signature (optional case). The extended
signature table will always be present when the encrypted data supports multiple processor step-
pings and/or models (required case).

The extended signature table consists of a 20-byte extended signature header structure, which
contains the extended signature count, the extended processor signature table checksum, and 12
reserved bytes (Table 9-3). Following the extended signature header structure, the extended signa-
ture table contains 0-to-n extended processor signature structures.

IA-32 Software Developer’s Manual Documentation Changes 37

n
Documentation Changes I nt9I ®

38

Each processor signature structure consist of the processor signature, processor flags, and a
checksum (Table 9-4).

The extended signature count in the extended signature header structure indicates the number of
processor signature structures that exist in the extended signature table.

The extended processor signature table checksum is a checksum of all DWORDs that comprise the
extended signature table. That