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CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System Programming
Guide (Order Number 245472), is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel Architecture processors. The other two volumes in
this set are:

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470)

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Number 2454791).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an IA-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instruction set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, describes the operating-system support environment
of an TA-32 processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides IA-32 processor
compatibility information. This volume is aimed at operating-system and BIOS designers and
programmers.

1.1. 1A-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes 1nformat10n pertaining primarily to the most recent IA- 32 processors,
which 1nclude the Pentium® processors, the P6 family processors, the Pentium® 4 processors,
and the Intel® Xeon™ processors. The P6 family processors are those 1A-32 processors based
on the P6 family micro-architecture, which include the Pentium® Pro, Pentium® II, and
Pentium® 1l processors. The Pentium 4 and Intel Xeon processors are based on the Inte]®
NetBurst™ micro-architecture.
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1.2. OVERVIEW OF THE /A-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM
PROGRAMMING GUIDE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an [A-32
processor and the mechanisms provided in the IA-32 architecture to support operating systems
and executives, including the system-oriented registers and data structures and the system-
oriented instructions. The steps necessary for switching between real-address and protected
modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the TA-32 architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the IA-32 architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each IA-
32 exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes the mechanisms the IA-32 architecture provides
to support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and Hyper-Threading tech-
nology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes the
programming interface to the local APIC and gives an overview of the interface between the
local APIC and the I/O APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an [A-32
processor after reset initialization. This chapter also explains how to set up an IA-32 processor
for real-address mode operation and protected- mode operation, and how to switch between
modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the IA-32 architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. Information on using the new cache control and memory streaming instructions
introduced with the Pentium Ill, Pentium 4, and Intel Xeon processors is also given.
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Chapter 11 — Intel MMX™ Technology System Programming. Describes those aspects of
the Intel MMX technology that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments. The Intel MMX technology was introduced into the IA-32 architecture with the
Pentium processor.

Chapter 12 — SSE and SSE2 System Programming. Describes those aspects of SSE and
SSE2 extensions that must be handled and considered at the system programming level,
including task switching, exception handling, and compatibility with existing system environ-
ments.

Chapter 13 — System Management. Describes the IA-32 architecture’s system management
mode (SMM) and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check architecture.

Chapter 15 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the IA-32 architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the TA-
32 architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — IA-32 Architecture Compatibility. Describes architectural compatibility
among the TA-32 processors, which include the Intel 286, Intel386™, Intel486™, Pentium, P6
family, Pentium 4, and Intel Xeon processors. The P6 family includes the Pentium Pro, Pentium
II, and Pentium Il processors. The differences among the 32-bit IA-32 processors are also
described throughout the three volumes of the IA-32 Software Developer’s Manual, as relevant
to particular features of the architecture. This chapter provides a collection of all the relevant
compatibility information for all IA-32 processors and also describes the basic differences with
respect to the 16-bit IA-32 processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium
processor and P6 family processor events are described.

Appendix B — Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
processors, the P6 family processors, and the Pentium 4 and Intel Xeon processors and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of how to use
of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.
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Appendix E — Interpreting Machine-Check Error Codes. Gives an example of how to inter-
pret the error codes for a machine-check error that occurred on a P6 family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for messages
transmitted on the APIC bus for P6 family and Pentium processors.

1.3. OVERVIEW OF THE /A-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC
ARCHITECTURE

The contents of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 are as
follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the IA-32 Architecture. Introduces the IA-32 architecture and
the families of Intel processors that are based on this architecture. It also gives an overview of
the common features found in these processors and brief history of the [A-32 architecture.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the
processor; provides an overview of real numbers and floating-point formats and of floating-
point exceptions.

Chapter 5 — Instruction Set Summary. Lists the all the IA-32 architecture instructions,
divided into technology groups (general-purpose, x87 FPU, Intel MMX technology, SSE, SSE2,
and system instructions). Within these groups, the instructions are presented in functionally
related groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 7 — Programming With the General-Purpose Instructions. Describes the basic
load and store, program control, arithmetic, and string instructions that operate on basic data
types and on the general-purpose and segment registers; describes the system instructions that
are executed in protected mode.

Chapter 8 — Programming With the x87 Floating Point Unit. Describes the x87 floating-
point unit (FPU), including the floating-point registers and data types; gives an overview of the
floating-point instruction set; and describes the processor’s floating-point exception conditions.

Chapter 9 — Programming with Intel MMX Technology. Describes the Intel MMX tech-
nology, including MMX registers and data types, and gives an overview of the MMX instruction
set.

1-4 I



Int9|® ABOUT THIS MANUAL

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes the SSE
extensions, including the XMM registers, the MXCSR register, and the packed single-precision
floating-point data types; gives an overview of the SSE instruction set; and gives guidelines for
writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes the
SSE2 extensions, including XMM registers and the packed double-precision floating-point data
types; gives an overview of the SSE2 instruction set; and gives guidelines for writing code that
accesses the SSE2 extensions. This chapter also describes the SIMD floating-point exceptions
that can be generated with SSE and SSE2 instructions, and it gives general guidelines for incor-
porating support for the SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Input/Output. Describes the processor’s I/O mechanism, including I/O port
addressing, the I/O instructions, and the I/O protection mechanism.

Chapter 13 — Processor Identification and Feature Determination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the
flags in the EFLAGS register.

Appendix B— EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by the x87 FPU floating-point and the SSE and SSE2 SIMD floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to
design and write MS-DOS* compatible exception handling facilities for FPU exceptions,
including both software and hardware requirements and assembly-language code examples.
This appendix also describes general techniques for writing robust FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives
guidelines for writing exception handlers to handle exceptions generated by the SSE and SSE2
SIMD floating-point instructions.

1.4. OVERVIEW OF THE /A-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 2:
INSTRUCTION SET REFERENCE

The contents of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, are as
follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. 1t also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.
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Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte
(ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and
immediate bytes.

Chapter 3 — Instruction Set Reference. Describes each of the IA-32 instructions in detail,
including an algorithmic description of operations, the effect on flags, the effect of operand- and
address-size attributes, and the exceptions that may be generated. The instructions are arranged
in alphabetical order. The FPU and MMX instructions are included in this chapter.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form
of each IA-32 instruction.

1.5. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.5.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. [A-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.5.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to a register.
¢ Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.
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Avoid any software dependence upon the state of reserved bits in [A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-

ibility with future processors.

. Data Structure
Highest

Address

28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 Byte0 | O

}

31 24 23 16 15 8 7 0 =«— Bit offset

Byte Offset

Lowest
Address

Figure 1-1. Bit and Byte Order

1.5.3. Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is

used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:

® Alabel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same

function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the

program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the

source and the left operand is the destination.
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For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.5.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.5.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS:EIP

1-8 I
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1.5.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF (fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP (0)

See Chapter 5, Interrupt and Exception Handling, for a list of exception mnemonics and their
descriptions.

1.6. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at the following Intel web site:
http://developer.intel.com/design/processors/

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types: applications notes, data sheets, manuals, papers, and specification updates. The following
literature may be of interest:

® Data Sheet for a particular Intel IA-32 processor.
® Specification Update for a particular Intel IA-32 processor.
®  AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

*  ntel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The TA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support is part of the IA-
32 system-level architecture and includes features to assist in the following operations:

® Memory management

® Protection of software modules

®  Multitasking

® Exception and interrupt handling

®  Multiprocessing

® Cache management

® Hardware resource and power management
® Debugging and performance monitoring

This chapter provides a brief overview of the IA-32 system-level architecture; a detailed
description of each part of this architecture given in the following chapters. This chapter also
describes the system registers that are used to set up and control the processor at the system level
and gives a brief overview of the processor’s system-level (operating system) instructions.

Many of the features of the [A-32 system-level architectural are used only by system program-
mers. Application programmers may need to read this chapter, and the following chapters which
describe the use of these features, in order to understand the hardware facilities used by system
programmers to create a reliable and secure environment for application programs.

NOTE

This overview and most of the subsequent chapters of this book focus on the
“native” or protected-mode operation of the IA-32 architecture. As described
in Chapter 9, Processor Management and Initialization, all IA-32 processors
enter real-address mode following a power-up or reset. Software must then
initiate a switch from real-address mode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The TA-32 system-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory management, interrupt
and exception handling, task management, and control of multiple processors (multipro-
cessing). Figure 2-1 provides a generalized summary of the system registers and data struc-
tures.
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Figure 2-1. 1A-32 System-Level Registers and Data Structures
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2.1.1. Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global
descriptor table (GDT) or the (optional) local descriptor table (LDT), shown in Figure 2-1.
These tables contain entries called segment descriptors. A segment descriptor provides the base
address of a segment and access rights, type, and usage information. Each segment descriptor
has a segment selector associated with it. The segment selector provides an index into the GDT
or LDT (to its associated segment descriptor), a global/local flag (that determines whether the
segment selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, both a segment selector and an offset must be supplied. The
segment selector provides access to the segment descriptor for the segment (in the GDT or
LDT). From the segment descriptor, the processor obtains the base address of the segment in the
linear address space. The offset then provides the location of the byte relative to the base
address. This mechanism can be used to access any valid code, data, or stack segment in the
GDT or LDT, provided the segment is accessible from the current privilege level (CPL) at which
the processor is operating. (The CPL is defined as the protection level of the currently executing
code segment.)

In Figure 2-1 the solid arrows indicate a linear address, the dashed lines indicate a segment
selector, and the dotted arrows indicate a physical address. For simplicity, many of the segment
selectors are shown as direct pointers to a segment. However, the actual path from a segment
selector to its associated segment is always through the GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT is contained in the LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors, and Gates

Besides the code, data, and stack segments that make up the execution environment of a program
or procedure, the system architecture also defines two system segments: the task-state segment
(TSS) and the LDT. (The GDT is not considered a segment because it is not accessed by means
of a segment selector and segment descriptor.) Each of these segment types has a segment
descriptor defined for it.

The system architecture also defines a set of special descriptors called gates (the call gate, inter-
rupt gate, trap gate, and task gate) that provide protected gateways to system procedures and
handlers that operate at different privilege levels than application programs and procedures.
For example, a CALL to a call gate provides access to a procedure in a code segment that is at
the same or numerically lower privilege level (more privileged) than the current code segment.
To access a procedure through a call gate, the calling procedureJr must supply the selector of the
call gate. The processor than performs an access rights check on the call gate, comparing the
CPL with the privilege level of the call gate and the destination code segment pointed to by the
call gate. If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from the call gate.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine).
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If the call requires a change in privilege level, the processor also switches to the stack for that
privilege level. (The segment selector for the new stack is obtained from the TSS for the
currently running task.) Gates also facilitate transitions between 16-bit and 32-bit code
segments, and vice versa.

2.1.3. Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes
the state of the general-purpose registers, the segment registers, the EFLAGS register, the EIP
register, and segment selectors and stack pointers for three stack segments (one stack each for
privilege levels 0, 1, and 2). It also includes the segment selector for the LDT associated with
the task and the page-table base address.

All program execution in protected mode happens within the context of a task, called the current
task. The segment selector for the TSS for the current task is stored in the task register. The
simplest method of switching to a task is to make a call or jump to the task. Here, the segment
selector for the TSS of the new task is given in the CALL or JMP instruction. In switching tasks,
the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4

Loads the state of the new task from the new TSS into the general-purpose registers, the
segment registers, the LDTR, control register CR3 (page-table base address), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Handling

External interrupts, software interrupts, and exceptions are handled through the interrupt
descriptor table (IDT), see Figure 2-1. The IDT contains a collection of gate descriptors, which
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a segment. The
linear address of the base of the IDT is contained in the IDT register (IDTR).

The gate descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access an
interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
number) from internal hardware, an external interrupt controller, or from software by means of
an INT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into the
IDT to a gate descriptor. If the selected gate descriptor is an interrupt gate or a trap gate, the asso-
ciated handler procedure is accessed in a manner very similar to calling a procedure through a
call gate. If the descriptor is a task gate, the handler is accessed through a task switch.
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2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can be paged, with only the most recently accessed pages being held in physical memory.

The location of pages (or page frames as they are sometimes called in the IA-32 architecture) in
physical memory is contained in two types of system data structures (a page directory and a set
of page tables), both of which reside in physical memory (see Figure 2-1). An entry in a page
directory contains the physical address of the base of a page table, access rights, and memory
management information. An entry in a page table contains the physical address of a page frame,
access rights, and memory management information. The base physical address of the page
directory is contained in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
offsets into the page directory, the page table, and the page frame.

A system can have a single page directory or several. For example, each task can have its own
page directory.

2.1.6. System Registers

To assist in initializing the processor and controlling system operations, the system architecture
provides system flags in the EFLAGS register and several system registers:

® The system flags and IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. See Section 2.3., “System Flags
and Fields in the EFLAGS Register”, for a description of these flags.

® The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. Other flags in these registers are used to indicate
support for specific processor capabilities within the operating system or executive. See
Section 2.5., “Control Registers”, for a description of these flags.

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. See Chapter 15, Debugging and Performance
Monitoring, for a description of these registers.

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. See Section 2.4., “Memory-Management Registers”, for a
description of these registers.

® The task register contains the linear address and size of the TSS for the current task. See
Section 2.4., “Memory-Management Registers”, for a description of this register.

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-
system or executive procedures (that is, code running at privilege level 0). These registers
control items such as the debug extensions, the performance-monitoring counters, the machine-
check architecture, and the memory type ranges (MTRRs).

I 2-5
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The number and functions of these registers varies among the different members of the IA-32
processor families. Section 9.4., “Model-Specific Registers (MSRs)”, for more information
about the MSRs and Appendix B, Model-Specific Registers (MSRs), for a complete list of the
MSRs.

Most systems restrict access to all system registers (other than the EFLAGS register) by appli-
cation programs. Systems can be designed, however, where all programs and procedures run at
the most privileged level (privilege level 0), in which case application programs are allowed to
modify the system registers.

2.1.7. Other System Resources

Besides the system registers and data structures described in the previous sections, the system
architecture provides the following additional resources:

® Operating system instructions (see Section 2.6., “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

The performance-monitoring counters are event counters that can be programmed to count
processor events such as the number of instructions decoded, the number of interrupts received,
or the number of cache loads. See Section 15.8., “Performance Monitoring Overview”, for more
information about these counters.

The processor provides several internal caches and buffers. The caches are used to store both
data and instructions. The buffers are used to store things like decoded addresses to system and
application segments and write operations waiting to be performed. See Chapter 10, Memory
Cache Control, for a detailed discussion of the processor’s caches and buffers.

2.2. MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

® Protected mode. This is the native operating mode of the processor. In this mode all
instructions and architectural features are available, providing the highest performance and
capability. This is the recommended mode for all new applications and operating systems.

¢ Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

® System management mode (SMM). The system management mode (SMM) is a standard
architectural feature in all IA-32 processors, beginning with the Intel386™ SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is entered
through activation of an external system interrupt pin (SMI#), which generates a system
management interrupt (SMI). In SMM, the processor switches to a separate address space
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while saving the context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is placed back
into its state prior to the SMI.

® YVirtual-8086 mode. In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor execute 8086 software in a
protected, multitasking environment.

Figure 2-2 shows how the processor moves among these operating modes.

> Real-Address

Mode
A
Reset or
_ PE=1
PE=0 Y
- System
Reset Protected Mode o Management
Mode
A
VM=0 VM=1
Y

Virtual-8086
Mode

RSM

Figure 2-2. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. Thereafter, the PE
flag in control register CRO controls whether the processor is operating in real-address or
protected mode (see Section 2.5., “Control Registers”). See Section 9.9., “Mode Switching”, for
detailed information on switching between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from an interrupt or exception handler
(see Section 16.2.5., “Entering Virtual-8086 Mode”).

The processor switches to SMM whenever it receives an SMI while the processor is in real-
address, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.

2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware inter-
rupts, debugging, task switching, and the virtual-8086 mode (see Figure 2-3). Only privileged
code (typically operating system or executive code) should be allowed to modify these bits.
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The functions of the system flags and IOPL are as follows:

TF

Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mode. In single-step mode, the processor generates a debug exception after each
instruction, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPEFED, or IRET instruction.

TF — Trap Flag

31 222120191817 161514 131211109 8 7 6 56 4 3 2 1 0

Vv
||AVR0N

olp|1|T|s|z]|,|A
F F

Reserved (set to 0) Flo|El0 ,'_3 1| F

ID — Identification Flag
VIP — Virtual Interrupt Pendlng
VIF — Virtual Interrupt Flag

3
—roUO—
m

AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level
IF — Interrupt Enable Flag

I:] Reserved

IF

IOPL

2-8

Figure 2-3. System Flags in the EFLAGS Register

Interrupt enable (bit 9). Controls the response of the processor to maskable hardware
interrupt requests (see Section 5.3.2., “Maskable Hardware Interrupts”). Set to respond
to maskable hardware interrupts; cleared to inhibit maskable hardware interrupts. The
IF flag does not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register CR4
determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD, and
IRET instructions.

1/0 privilege level field (bits 12 and 13). Indicates the I/O privilege level (IOPL) of
the currently running program or task. The CPL of the currently running program or
task must be less than or equal to the IOPL to access the I/O address space. This field
can only be modified by the POPF and IRET instructions when operating at a CPL of
0. See Chapter 12, Input/Output, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for more information on the relationship of the IOPL to I/O opera-
tions.

The IOPL is also one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when the virtual mode extensions
are in effect (the VME flag in control register CR4 is set).
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NT Nested task (bit 14). Controls the chaining of interrupted and called tasks. The
processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies this flag on returns from a task initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD
instructions; however, changing to the state of this flag can generate unexpected excep-
tions in application programs. See Section 6.4., “Task Linking”, for more information
on nested tasks.

RF Resume (bit 16). Controls the processor’s response to instruction-breakpoint condi-
tions. When set, this flag temporarily disables debug exceptions (#DE) from being
generated for instruction breakpoints; although, other exception conditions can
cause an exception to be generated. When clear, instruction breakpoints will generate
debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following
a debug exception that was caused by an instruction breakpoint condition. Here,
debugger software must set this flag in the EFLAGS image on the stack just prior to
returning to the interrupted program with the IRETD instruction, to prevent the instruc-
tion breakpoint from causing another debug exception. The processor then automati-
cally clears this flag after the instruction returned to has been successfully executed,
enabling instruction breakpoint faults again.

See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more infor-
mation on the use of this flag.

VM Virtual-8086 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
protected mode. See Section 16.2.1., “Enabling Virtual-8086 Mode”, for a detailed
description of the use of this flag to switch to virtual-8086 mode.

AC Alignment check (bit 18). Set this flag and the AM flag in control register CRO to
enable alignment checking of memory references; clear the AC flag and/or the AM flag
to disable alignment checking. An alignment-check exception is generated when refer-
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level O, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with other processors, which require all data to be aligned. The
alignment-check exception can also be used by interpreters to flag some pointers as
special by misaligning the pointer. This eliminates overhead of checking each pointer
and only handles the special pointer when used.

VIF Virtual Interrupt (bit 19). Contains a virtual image of the IF flag. This flag is used in
conjunction with the VIP flag. The processor only recognizes the VIF flag when either
the VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 3.
(The VME flag enables the virtual-8086 mode extensions; the PVI flag enables the
protected-mode virtual interrupts.)
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See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section 16.4., “Protected-
Mode Virtual Interrupts”, for detailed information about the use of this flag.

VIP Virtual interrupt pending (bit 20). Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunc-
tion with the VIF flag. The processor reads this flag but never modifies it. The
processor only recognizes the VIP flag when either the VME flag or the PVI flag in
control register CR4 is set and the IOPL is less than 3. (The VME flag enables the
virtual-8086 mode extensions; the PVI flag enables the protected-mode virtual inter-
rupts.) See Section 16.3.3.5., “Method 6: Software Interrupt Handling”, and Section
16.4., “Protected-Mode Virtual Interrupts”, for detailed information about the use of
this flag.

ID Identification (bit 21). The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

2.4. MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(see Figure 2-4). Special instructions are provided for loading and storing these registers.

System Table Registers

47 16 15 0
GDTR 32-bit Linear Base Address 16-Bit Table Limit
IDTR 32-bit Linear Base Address 16-Bit Table Limit

System Segment Segment Descriptor Registers (Automatically Loaded)

15 Registers ¢ Attributes
Reg-ir;sekr Seg. Sel. 32-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32-bit Linear Base Address Segment Limit

Figure 2-4. Memory Management Registers

24.1. Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit base address and 16-bit table limit for the GDT. The base
address specifies the linear address of byte 0 of the GDT; the table limit specifies the number of
bytes in the table. The LGDT and SGDT instructions load and store the GDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. A new base address must be loaded into the GDTR as part of the
processor initialization process for protected-mode operation. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the base address and limit fields.

2-10 I



Intel ® SYSTEM ARCHITECTURE OVERVIEW

2.4.2. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segment limit specifies the number of bytes in the segment. See Section
3.5.1., “Segment Descriptor Tables”, for more information on the base address and limit fields.

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descriptor Table Register

The IDTR register holds the 32-bit base address and 16-bit table limit for the IDT. The base
address specifies the linear address of byte O of the IDT; the table limit specifies the number of
bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. The base address and limit in the register can then be changed as part
of the processor initialization process. See Section 5.10., “Interrupt Descriptor Table (IDT)”, for
more information on the base address and limit fields.

2.4.4. Task Register (TR)

The task register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the TSS of the current task. It references a TSS descriptor in the
GDT. The base address specifies the linear address of byte O of the TSS; the segment limit spec-
ifies the number of bytes in the TSS. (See Section 6.2.3., “Task Register”, for more information
about the task register.)

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task register. On power up or reset of the processor, the base address is set to the default value
of 0 and the limit is set to FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector
and descriptor for the TSS for the new task. The contents of the task register are not automati-
cally saved prior to writing the new TSS information into the register.



SYSTEM ARCHITECTURE OVERVIEW I ntel ®

2.5. CONTROL REGISTERS

The control registers (CRO, CR1, CR2, CR3, and CR4, see Figure 2-5) determine operating
mode of the processor and the characteristics of the currently executing task, as described below:

® (CRO—Contains system control flags that control operating mode and states of the
processor.

® CR1—Reserved.

® CR2—Contains the page-fault linear address (the linear address that caused a page fault).

31 10 987 6543210
PIPIM[P(P|, TPV
Reserved (set to 0) c|G|c|A|s|2|s|V|M| CR4
E|E|E|E|E|-|D|I|E
OSXMMEXCPTQ
OSFXSR
31 121 5432 0
P|P
. CR3
Page-D B c|w
age-Directory Base olT (PDBR)
31 0
Page-Fault Linear Address CR2
31 0
CR1
31 30 29 30 191817 16 15 6543210
P[C|N Al (w N|E|T|E[M|P
G|D W M| |P E|T|s|m|p|E| CRO
I:l Reserved

Figure 2-5. Control Registers

® (CR3—Contains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page-directory base register (PDBR). Only
the 20 most-significant bits of the page-directory base address are specified; the lower 12
bits of the address are assumed to be 0. The page directory must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of the page directory in the
processor’s internal data caches (they do not control TLB caching of page-directory
information).
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When using the physical address extension, the CR3 register contains the base address of
the page-directory-pointer table (see Section 3.8., “36-Bit Physical Addressing Using the
PAE Paging Mechanism”).

® CR4—<Contains a group of flags that enable several architectural extensions, and indicate
operating system or executive support for specific processor capabilities.

The control registers can be read and loaded (or modified) using the move-to-or-from-control-
registers forms of the MOV instruction. In protected mode, the MOV instructions allow the
control registers to be read or loaded (at privilege level 0 only). This restriction means that appli-
cation programs or operating-system procedures (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

When loading the control register, reserved bits should always be set to the values previously
read.

The functions of the flags in the control registers are as follows:

PG Paging (bit 31 of CRO0). Enables paging when set; disables paging when clear. When
paging is disabled, all linear addresses are treated as physical addresses. The PG flag
has no effect if the PE flag (bit O of register CRO) is not also set; in fact, setting the PG
flag when the PE flag is clear causes a general-protection exception (#GP) to be gener-
ated. See Section 3.6., “Paging (Virtual Memory) Overview”, for a detailed description
of the processor’s paging mechanism.

CD Cache Disable (bit 30 of CR0). When the CD and NW flags are clear, caching of
memory locations for the whole of physical memory in the processor’s internal (and
external) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 10-5. To prevent the processor from accessing and updating its caches, the CD
flag must be set and the caches must be invalidated so that no cache hits can occur (see
Section 10.5.3., “Preventing Caching”). See Section 10.5., “Cache Control”, for a
detailed description of the additional restrictions that can be placed on the caching of
selected pages or regions of memory.

NW Not Write-through (bit 29 of CR0). When the NW and CD flags are clear, write-back
(for Pentium 4, Intel Xeon, P6 family, and Pentium processors) or write-through (for
Intel486 processors) is enabled for writes that hit the cache and invalidation cycles are
enabled. See Table 10-5 for detailed information about the affect of the NW flag on
caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CRO0). Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAGS register is set, the CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

WP Write Protect (bit 16 of CRO). Inhibits supervisor-level procedures from writing into
user-level read-only pages when set; allows supervisor-level procedures to write into
user-level read-only pages when clear. This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as
UNIX*.
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Numeric Error (bit 5 of CR0). Enables the native (internal) mechanism for reporting
x87 FPU errors when set; enables the PC-style x87 FPU error reporting mechanism
when clear. When the NE flag is clear and the IGNNE# input is asserted, x87 FPU
errors are ignored. When the NE flag is clear and the IGNNE# input is deasserted, an
unmasked x87 FPU error causes the processor to assert the FERR# pin to generate an
external interrupt and to stop instruction execution immediately before executing the
next waiting floating-point instruction or WAIT/FWAIT instruction. The FERR# pin is
intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag,
IGNNE# pin, and FERR# pin are used with external logic to implement PC-style error
reporting. (See “Software Exception Handling” in Chapter 8, and Appendix D in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information
about x87 FPU error reporting and for detailed information on when the FERR# pin is
asserted, which is implementation dependent.)

Extension Type (bit 4 of CR0). Reserved in the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. (In the Pentium 4, Intel Xeon, and P6 family processors, this flag
is hardcoded to 1.) In the Intel386 and Intel486 processors, this flag indicates support
of Intel 387 DX math coprocessor instructions when set.

Task Switched (bit 3 of CRO0). Allows the saving of the x87 FPU, MMX, SSE, and
SSE2 context on a task switch to be delayed until an x87 FPU, MMX, SSE, or SSE2
instruction is actually executed by the new task. The processor sets this flag on every
task switch and tests it when executing x87 FPU, MMX, SSE, and SSE2 instructions.

* Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available
exception (#NM) is raised prior to the execution of any x87 FPU, MMX, SSE, and
SSE2 instruction, with the exception of the PAUSE, PREFETCH#/, SFENCE,
LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions. (See the paragraph
below for the special case of the WAIT/FWAIT instructions.)

* Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM
exception is not raised prior to the execution of an x87 FPU WAIT/FWAIT
instruction.

¢ Ifthe EM flag is set, the setting of the TS flag has no affect on the execution of the
x87 FPU, MMX, SSE, and SSE2 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 FPU instruc-
tion based on the settings of the TS, EM, and MP flags. Tables 11-1 and 12-1 show the
actions taken when the processor encounters an MMX and or an SSE or SSE2 instruc-
tion, respectively.

The processor does not automatically save the context of the x87 FPU, XMM, and
MXCSR registers on a task switch. Instead it sets the TS flag, which causes the
processor to raise an #NM exception whenever it encounters an x87 FPU, MMX, SSE,
or SSE2 instruction in the instruction stream for the new task (with the exception of the
instructions listed above).
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The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS
instruction) and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never
encounters an x87 FPU, MMX, SSE, or SSE2 instruction, the x87 FPU, MMX, SSE, and SSE2
context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different Combinations of

EM, MP and TS
CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CR0). Indicates that the processor does not have an internal or

external x87 FPU when set; indicates an x87 FPU is present when clear. This flag also
affects the execution of MMX, SSE, and SSE?2 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-
available exception (#NM). This flag must be set when the processor does not have an
internal x87 FPU or is not connected to an external math coprocessor. Setting this flag
forces all floating-point instructions to be handled by software emulation. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-
opcode exception (#UD) to be generated (see Table 11-1). Thus, if an IA-32 processor
incorporates MMX technology, the EM flag must be set to 0 to enable execution of
MMX instructions.

Similarly for the SSE and SSE2 extensions, when the EM flag is set, execution of most
SSE and SSE2 instructions causes an invalid opcode exception (#UD) to be generated
(see Table 12-1). Thus, if an IA-32 processor incorporates the SSE and/or SSE2 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions. Those SSE
and SSE2 instructions that are not affected by the EM flag are the PAUSE,
PREFETCH#A, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instruc-
tions.

2-15



SYSTEM ARCHITECTURE OVERVIEW I ntel ®

MP

PE

PCD

PWT

VME

PVI

TSD

2-16

Monitor Coprocessor (bit 1 of CRO0). Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 9-2
shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
MP, EM, and TS flags.

Protection Enable (bit 0 of CR0). Enables protected mode when set; enables real-
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PG flags must be set. See
Section 9.9., “Mode Switching”, for information using the PE flag to switch between
real and protected mode.

Page-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc-
tory. When the PCD flag is set, caching of the page-directory is prevented; when the
flag is clear, the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this flag if
paging is not used (the PG flag in register CRO is clear) or the CD (cache disable) flag
in CRO is set. See Chapter 10, Memory Cache Control, for more information about the
use of this flag. See Section 3.7.6., “Page-Directory and Page-Table Entries”, for a
description of a companion PCD flag in the page-directory and page-table entries.

Page-level Writes Transparent (bit 3 of CR3). Controls the write-through or write-
back caching policy of the current page directory. When the PWT flag is set, write-
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only the internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CRO is clear) or the CD
(cache disable) flag in CRO is set. See Section 10.5., “Cache Control”, for more infor-
mation about the use of this flag. See Section 3.7.6., “Page-Directory and Page-Table
Entries”, for a description of a companion PCD flag in the page-directory and page-
table entries.

Virtual-8086 Mode Extensions (bit 0 of CR4). Enables interrupt- and exception-
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use of the virtual mode extensions can improve the performance of virtual-8086 appli-
cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter-
rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environments. See
Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode”, for detailed
information about the use of this feature.

Protected-Mode Virtual Interrupts (bit 1 of CR4). Enables hardware support for a
virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear. See Section 16.4., “Protected-Mode Virtual Interrupts”, for
detailed information about the use of this feature.

Time Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to procedures running at privilege level 0 when set; allows RDTSC instruction to be
executed at any privilege level when clear.



Intel ® SYSTEM ARCHITECTURE OVERVIEW

DE

PSE

PAE

MCE

PGE

PCE

Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DRS5 for compatibility with software
written to run on earlier IA-32 processors. See Section 15.2.2., “Debug Registers DR4
and DRS5”, for more information on the function of this flag.

Page Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4 KBytes when clear. See Section 3.6.1., “Paging Options”, for more information
about the use of this flag.

Physical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-bit physical addresses when set; restricts physical addresses to 32 bits when clear.
See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism”, for
more information about the physical address extension.

Machine-Check Enable (bit 6 of CR4). Enables the machine-check exception when
set; disables the machine-check exception when clear. See Chapter 14, Machine-Check
Architecture, for more information about the machine-check exception and machine-
check architecture.

Page Global Enable (bit 7 of CR4). (Introduced in the P6 family processors.) Enables
the global page feature when set; disables the global page feature when clear. The
global page feature allows frequently used or shared pages to be marked as global to
all users (done with the global flag, bit 8, in a page-directory or page-table entry).
Global pages are not flushed from the translation-lookaside buffer (TLB) on a task
switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag
in control register CRO) before the PGE flag is set. Reversing this sequence may affect
program correctness, and processor performance will be impacted. See Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for more information on the use of this bit.

Performance-Monitoring Counter Enable (bit 8 of CR4). Enables execution of the
RDPMC instruction for programs or procedures running at any protection level when
set; RDPMC instruction can be executed only at protection level O when clear.

OSFXSR

Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of
CR4). When set, this flag preforms the following functions: (1) indicates to software
that the operating system supports the use of the FXSAVE and FXRSTOR instructions,
(2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents
of the XMM and MXCSR registers along with the contents of the x87 FPU and MMX
registers, and (3) enables the processor to execute any of the SSE and SSE2 instruc-
tions, with the exception of the PAUSE, PREFETCHA, SFENCE, LFENCE,
MFENCE, MOVNTI, and CLFLUSH instructions.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the
contents of the x87 FPU and MMX instructions, but they may not save and restore the
contents of the XMM and MXCSR registers.
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Also, if this flag is clear, the processor will generate an invalid opcode exception (#UD) when-
ever it attempts to execute any of the SSE and SSE2 instruction, with the exception of the
PAUSE, PREFETCH#A, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
The operating system or executive must explicitly set this flag.

NOTE

The CPUID feature flags FXSR, SSE, and SSE2 (bits 24, 25, and 26)
indicate availability of the FXSAVE/FXRESTOR instructions, the SSE
extensions, and the SSE2 extensions, respectively, on a particular [A-32
processor. The OSFXSR bit provides operating system software with a
means of enabling these features and indicating that the operating
system supports the features.

OSXMMEXCPT

Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit
10 of CR4). Indicates that the operating system supports the handling of unmasked
SIMD floating-point exceptions through an exception handler that is invoked when a
SIMD floating-point exception (#XF) is generated. SIMD floating-point exceptions are
only generated by SSE and SSE2 SIMD floating-point instructions. The operating
system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD
floating-point exception.

2.5.1. CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMEXCPT flags
in control register CR4 are model specific. All of these flags (except the PCE flag) can be qual-
ified with the CPUID instruction to determine if they are implemented on the processor before
they are used.

2.6. SYSTEMINSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of these
instructions can be executed only by operating-system or executive procedures (that is, proce-
dures running at privilege level 0). Others can be executed at any privilege level and are thus
available to application programs. Table 2-2 lists the system instructions and indicates whether
they are available and useful for application programs. These instructions are described in detail
in Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2.

Table 2-2. Summary of System Instructions

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
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Table 2-2. Summary of System Instructions
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Useful to Protected from
Instruction Description Application? Application?
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes! No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC® Read Time-Stamp Counter Yes Yes?
NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the 1A-32 Architecture with the Pentium processor.

4. This instruction was introduced into the 1A-32 Architecture with the Pentium Pro processor and the Pen-
tium® processor with MMX™ technology.
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2.6.1. Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
data into and storing data from the register:

LGDT (Load GDTR Register) Loadsc the GDT base address and limit from memory into the
GDTR register.

SGDT (Store GDTR Register) Stores the GDT base address and limit from the GDTR register
into memory.

LIDT (Load IDTR Register) Loads the IDT base address and limit from memory into the
IDTR register.

SIDT (Load IDTR Register Stores the IDT base address and limit from the IDTR register
into memory.

LLDT (Load LDT Register)  Loads the LDT segment selector and segment descriptor from
memory into the LDTR. (The segment selector operand can
also be located in a general-purpose register.)

SLDT (Store LDT Register)  Stores the LDT segment selector from the LDTR register into
memory or a general-purpose register.

LTR (Load Task Register) Loads segment selector and segment descriptor for a TSS from
memory into the task register. (The segment selector operand
can also be located in a general-purpose register.)

STR (Store Task Register) Stores the segment selector for the current task TSS from the
task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits 0 through 15 of control register CRO. These instructions are provided for compat-
ibility with the 16-bit Intel 286 processor. Programs written to run on 32-bit [A-32 processors
should not use these instructions. Instead, they should access the control register CRO using the
MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-avail-
able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the x87
FPU context has been saved, preventing further #NM exceptions. See Section 2.5., “Control
Registers”, for more information about the TS flag.

The control registers (CRO, CR1, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction can load a control register from a general-purpose register or store the contents
of the control register in a general-purpose register.
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2.6.2. Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment
descriptors to determine if access to their associated segments is allowed. These instructions
duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the program or procedure that supplied the segment selector. See
Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”, for a detailed expla-
nation of the function and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads the access rights information from the segment’s segment descriptor into a general-
purpose register. Software can then examine the access rights to determine if the segment type
is compatible with its intended use. See Section 4.10.1., “Checking Access Rights (LAR Instruc-
tion)”, for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment’s segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. See Section 4.10.3., “Checking That the Pointer
Offset Is Within Limits (LSL Instruction)”, for a detailed explanation of the function and use of
this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at the CPL. See Section 4.10.2., “Checking
Read/Write Rights (VERR and VERW Instructions)”, for a detailed explanation of the function
and use of this instruction.

2.6.3. Loading and Storing Debug Registers

The internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DRO through DR7). The MOV instruction allows setup data to be loaded into and stored from
these registers.

2.6.4. Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and sends a signal to the external caches indicating that
they should be invalidated also.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back any modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, it signals the external
caches to write back modified data and invalidate their contents.
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The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified page.

2.6.5. Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI
or SMI, which are normally enabled), a debug exception, the BINIT# signal, the INIT# signal,
or the RESET# signal is received. The processor generates a special bus cycle to indicate that
the halt mode has been entered. Hardware may respond to this signal in a number of ways. An
indicator light on the front panel may be turned on. An NMI interrupt for recording diagnostic
information may be generated. Reset initialization may be invoked. (Note that the BINIT# pin
was introduced with the Pentium Pro processor.)

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. This mechanism is used to allow reliable communications between processors
in multiprocessor systems. In the Pentium and earlier IA-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction, which always causes an explicit
bus lock to occur. In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation
is handled with either a cache lock or bus lock. If a memory access is cacheable and affects only
a single cache line, a cache lock is invoked and the system bus and the actual memory location
in system memory are not locked during the operation. Here, other Pentium 4, Intel Xeon, or P6
family processors on the bus write-back any modified data and invalidate their caches as neces-
sary to maintain system memory coherency. If the memory access is not cacheable and/or it
crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does
not respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Performance-Monitoring and Time-Stamp
Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instructions allow an application program to read the processor’s performance-monitoring and
time-stamp counters, respectively.

The Pentium 4 and Intel Xeon processors have 18 40-bit performance-monitoring counters and
the P6 family processors have 2 40-bit counters. These counters can be used to record either the
occurrence of events or the duration of events. The events that can be monitored are model
specific and include the number of instructions decoded, number of interrupts received, of
number of cache loads. Each counter can be set up to monitor a different event, using the system
instruction WRMSR to set up values in the one of the 45 ESCR and one of the 18 CCCR MSRs
(for Pentium 4 and Intel Xeon processors) or in either the PerfEvtSelO or the PerfEvtSell MSR
(for the P6 family processors). The RDPMC instruction loads the current count from a counter
into the EDX:EAX registers.
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The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter will increment ~6.3 x 10" times per year when
the processor is operating at a clock rate of 200 MHz. At this clock frequency, it would take
over 2000 years for the counter to wrap around. The RDTSC instruction loads the current
count of the time-stamp counter into the EDX:EAX registers.

See Section 15.8., “Performance Monitoring Overview”, and Section 15.7., “Time-Stamp
Counter”, for more information about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor.
The RDPMC instruction was introduced into the IA-32 architecture with the Pentium Pro
processor and the Pentium processor with MMX technology. Earlier Pentium processors have
two performance-monitoring counters, but they can be read only with the RDMSR instruction,
and only at privilege level 0.

2.6.7. Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) allow
the processor’s 64-bit model-specific registers (MSRs) to be read and written to, respectively.
The MSR to be read or written to is specified by the value in the ECX register. The RDMSR
instructions reads the value from the specified MSR into the EDX:EAX registers; the WRMSR
writes the value in the EDX:EAX registers into the specified MSR. See Section 9.4., “Model-
Specific Registers (MSRs)”, for more information about the MSRs.

The RDMSR and WRMSR instructions were introduced into the IA-32 architecture with the
Pentium processor.
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, the segmentation mechanism, and the paging
mechanism. See Chapter 4, Protection, for a description of the processor’s protection mecha-
nism. See Chapter 16, 8086 Emulation, for a description of memory addressing protection in
real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmen-
tation and paging. Segmentation provides a mechanism of isolating individual code, data, and
stack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering with one another. Paging provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be
used. There is no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-
program (or single-task) systems, multitasking systems, or multiple-processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addressable memory space (called the linear address space) into smaller protected address
spaces called segments. Segments can be used to hold the code, data, and stack for a program
or to hold system data structures (such as a TSS or LDT). If more than one program (or task) is
running on a processor, each program can be assigned its own set of segments. The processor
then enforces the boundaries between these segments and insures that one program does not
interfere with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations that may be
performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a
byte in a particular segment, a logical address (also called a far pointer) must be provided. A
logical address consists of a segment selector and an offset. The segment selector is a unique
identifier for a segment. Among other things it provides an offset into a descriptor table (such
as the global descriptor table, GDT) to a data structure called a segment descriptor. Each
segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment
in the linear address space (called the base address of the segment). The offset part of the logical
address is added to the base address for the segment to locate a byte within the segment. The
base address plus the offset thus forms a linear address in the processor’s linear address space.
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Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (typically 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location.
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If the page being accessed is not currently in physical memory, the processor interrupts execu-
tion of the program (by generating a page-fault exception). The operating system or executive
then reads the page into physical memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programs written for 16-bit IA-32 processors can be paged (transparently) when
they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a
wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multi-segmented models that employ segmentation
to create a robust operating environment in which multiple programs and tasks can be executed
reliably.

The following sections give several examples of how segmentation can be employed in a system
to improve memory management performance and reliability.

3.2.1. Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
system and application programs have access to a continuous, unsegmented address space. To
the greatest extent possible, this basic flat model hides the segmentation mechanism of the archi-
tecture from both the system designer and the application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment
descriptors must be created, one for referencing a code segment and one for referencing a data
segment (see Figure 3-2). Both of these segments, however, are mapped to the entire linear
address space: that is, both segment descriptors have the same base address value of 0 and the
same segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
physical memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at FFFF_FFFOH. RAM
(DRAM) is placed at the bottom of the address space because the initial base address for the DS
data segment after reset initialization is O.

3.2.2. Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
include only the range of addresses for which physical memory actually exists (see Figure 3-3).
A general-protection exception (#GP) is then generated on any attempt to access nonexistent
memory. This model provides a minimum level of hardware protection against some kinds of
program bugs.
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Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level O for the supervisor. Usually these segments all
overlay each other and start at address O in the linear address space. This flat segmentation
model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica-
tions from each other. Similar designs are used by several popular multitasking operating

systems.
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3.2.3. Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
s J o hoees | Limi
ase Address Stack
:SS - Access \ Limit
Base Address
:DS - Access \ Limit
Base Address Code
I:ES > Access \ Limit
Base Address
Data
:FS | Access \ Limit
Base Address
Data
Access \ Limit
GS > >
: Base Address
— Data
Access \ Limit
Base Address
Access \ Limit
Base Address
D
Access \ Limit ata
Base Address
Access \ Limit
Base Address | T

Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.
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3.24. Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4.
The processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mapped
to pages in the physical address space. The paging mechanism offers several page-level protec-
tion facilities that can be used with or instead of the segment-protection facilities. For example,
it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes
(2% bytes). This is the address space that the processor can address on its address bus. This
address space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped I/0. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into segments and/or pages.

(Introduced in the Pentium Pro processor.) The IA-32 architecture also supports an extension of
the physical address space to 2% bytes (64 GBytes), with a maximum physical address of
FFFFFFFFFH. This extension is invoked in either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.

® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium III
processors).

(See Section 3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section
3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mechanism” for more information
about 36-bit physical addressing.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space

paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(see Figure 3-5). The segment selector identifies the segment the byte is located in and the offset
specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor’s linear address space. Like the physical address space, the linear
address space is a flat (unsegmented), 23?-byte address space, with addresses ranging from 0 to
FFFFFFFH. The linear address space contains all the segments and system tables defined for a
system.
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To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

31 0
| Offset |

15 0
Seg. Selector

Logical
Address

Descriptor Table

Segment

Base Address
! ——
Descriptor

31 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., “Paging (Virtual Memory) Overview”.

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2). Specifies the descriptor table to use: clearing this flag selects the GDT;
setting this flag selects the current LDT.
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15 3210
Index mRPL‘
Table Indicator *
0=GDT
1=LDT
Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. See Section 4.5.,
“Privilege Levels”, for a description of the relationship of the RPL to the CPL
of the executing program (or task) and the descriptor privilege level (DPL) of
the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.
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Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. TImplied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INT#n, INTO and
INT3 instructions. These instructions change the contents of the CS register (and
sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.

I 3-9
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31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|o|v| Limit [P| P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
AVL — Available for use by system software
BASE — Segment base address
D/B  — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

3-10

Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

e If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for more information
about segment types. For expand-up segments, the offset in a logical address
can range from O to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP). For expand-down segments, the
segment limit has the reverse function; the offset can range from the segment
limit to FFFFFFFFH or FFFFH, depending on the setting of the B flag. Offsets
less than the segment limit generate general-protection exceptions. Decreasing
the value in the segment limit field for an expand-down segment allocates new
memory at the bottom of the segment's address space, rather than at the top. [A-
32 architecture stacks always grow downwards, making this mechanism
convenient for expandable stacks.
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Base address fields

Type field

Defines the location of byte 0 of the segment within the 4-GByte linear address
space. The processor puts together the three base address fields to form a single
32-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programs to
maximize performance by aligning code and data on 16-byte boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (see Figure 4-1). See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for a description of how
this field is used to specify code and data-segment types.

S (descriptor type) flag

Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field

Specifies the privilege level of the segment. The privilege level can range from
0to 3, with 0 being the most privileged level. The DPL is used to control access
to the segment. See Section 4.5., “Privilege Levels”, for a description of the
relationship of the DPL to the CPL of the executing code segment and the RPL
of a segment selector.

P (segment-present) flag

Indicates whether the segment is present in memory (set) or not present (clear).
If this flag is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this flag to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this flag is clear, the operating system or executive is free
to use the locations marked “Available” to store its own data, such as informa-
tion regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag

Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a stack
segment. (This flag should always be set to 1 for 32-bit code and data segments
and to O for 16-bit code and data segments.)

* Executable code segment. The flag is called the D flag and it indicates the
default length for effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
operands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
operands are assumed.
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The instruction prefix 66H can be used to select an operand size other than
the default, and the prefix 67H can be used select an address size other than
the default.

e Stack segment (data segment pointed to by the SS register). The flag is
called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

* Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KBytes).

31 1615141312 11 8 7 0
' D '
Available o P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag

Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-
larity flag is set, a limit of O results in valid offsets from O to 4095.

Available and reserved bits

3-12

Bit 20 of the second doubleword of the segment descriptor is available for use
by system software; bit 21 is reserved and should always be set to 0.
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3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read-
only or read/write segments, depending on the setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field
i " 10 9 8 Descriptor
Decimal E w A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a nonwritable data segment generates a general-protection exception
(#GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment is intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register, assuming that the type of memory that contains
the segment descriptor supports processor writes. The bit remains set until explicitly cleared.
This bit can be used both for virtual memory management and for debugging.

I 3-13
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For code segments, the three low-order bits of the type field are interpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-
privileged conforming segment allows execution to continue at the current privilege level. A
transfer into a nonconforming segment at a different privilege level results in a general-protec-
tion exception (#GP), unless a call gate or task gate is used (see Section 4.8.1., “Direct Calls or
Jumps to Code Segments”, for more information on conforming and nonconforming code
segments). System utilities that do not access protected facilities and handlers for some types of
exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Util-
ities that need to be protected from less privileged programs and procedures should be placed in
nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged
(numerically higher privilege level) code segment, regardless of whether the
target segment is a conforming or nonconforming code segment. Attempting
such an execution transfer will result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged
programs or procedures (code executing at numerically high privilege levels). Unlike code
segments, however, data segments can be accessed by more privileged programs or procedures
(code executing at numerically lower privilege levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an
indefinite loop if software or the processor attempts to update (write to) the ROM-based
segment descriptors. To prevent this problem, set the accessed bits for all segment descriptors
that are placed in a ROM. Also, remove any operating-system or executive code that attempts
to modify segment descriptors that are located in ROM.

3.5. SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

® Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® (all-gate descriptor.
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® Interrupt-gate descriptor.
®  Trap-gate descriptor.
® Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-
tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates). Table 3-2
shows the encoding of the type field for system-segment descriptors and gate descriptors.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field
Decimal 1 10 9 8 Description

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 | 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 32-Bit TSS (Available)
10 1 0 1 0 Reserved

1 1 0 1 1 | 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call Gate
13 1 1 0 1 Reserved
14 1 1 1 0 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

For more information on the system-segment descriptors, see Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor”; for more information on the gate
descriptors, see Section 4.8.3., “Call Gates”, Section 5.11., “IDT Descriptors”, and Section
6.2.4., “Task-Gate Descriptor”.

3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriPtors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (2 3 8-byte descriptors. There are two
kinds of descriptor tables:

I 3-15



PROTECTED-MODE MEMORY MANAGEMENT

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

First Descriptor in

GDT is Not Used

GDTR Register

Limit

| Base Address

56

48

40

32

24

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
[ [T | ¢ ¢
I TI=0 TI=1
Segment
Selector

LDTR Register

[ Limit

Base Address

| Seg. Sel |

56

48

40

32

24

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
base linear address and limit of the GDT must be loaded into the GDTR register (see Section
2.4., “Memory-Management Registers”). The base addresses of the GDT should be aligned on
an eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of O results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an

integral multiple of eight (that is, 8N — 1).
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The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5., “System Descriptor Types”, information
on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4., “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is stored in memory (see Figure 3-11). To avoid alignment check faults in user mode (privilege
level 3), the pseudo-descriptor should be located at an odd word address (that is, address MOD
4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
doubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility
of generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo-descriptor should be located at a doubleword address (that is, address MOD 4 is
equal to 0).

47 16 15 0
| Base Address ‘ Limit

Figure 3-11. Pseudo-Descriptor Format

3.6. PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, the IA-32 architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is commonly referred to as virtual memory or demand-paged virtual
memory.

When paging is used, the processor divides the linear address space into fixed-size pages (of 4
KBytes, 2 MBytes, or 4 MBytes in length) that can be mapped into physical memory and/or disk
storage. When a program (or task) references a logical address in memory, the processor trans-
lates the address into a linear address and then uses its paging mechanism to translate the linear
address into a corresponding physical address.
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If the page containing the linear address is not currently in physical memory, the processor
generates a page-fault exception (#PF). The exception handler for the page-fault exception typi-
cally directs the operating system or executive to load the page from disk storage into physical
memory (perhaps writing a different page from physical memory out to disk in the process).
When the page has been loaded in physical memory, a return from the exception handler causes
the instruction that generated the exception to be restarted. The information that the processor
uses to map linear addresses into the physical address space and to generate page-fault excep-
tions (when necessary) is contained in page directories and page tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed size.
If segmentation is the only form of address translation used, a data structure present in physical
memory will have all of its parts in memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

To minimize the number of bus cycles required for address translation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current
page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when
the TLBs do not contain a page-table entry, which typically happens when a page has not been
accessed for a long time. See Section 3.11., “Translation Lookaside Buffers (TLBs)”, for more
information on the TLBs.

3.6.1. Paging Options
Paging is controlled by three flags in the processor’s control registers:

® PG (paging) flag. Bit 31 of CRO (available in all IA-32 processors beginning with the
Intel386 processor).

® PSE (page size extensions) flag. Bit 4 of CR4 (introduced in the Pentium processor).

® PAE (physical address extension) flag. Bit 5 of CR4 (introduced in the Pentium Pro
processors).

The PG flag enables the page-translation mechanism. The operating system or executive usually
sets this flag during processor initialization. The PG flag must be set if the processor’s page-
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag is
set). When the PSE flag is clear, the more common page length of 4 KBytes is used. See Section
3.7.2., “Linear Address Translation (4-MByte Pages)”, Section 3.8.2., “Linear Address Transla-
tion With PAE Enabled (2-MByte Pages)”, and Section 3.9., “36-Bit Physical Addressing Using
the PSE-36 Paging Mechanism” for more information about the use of the PSE flag.
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The PAE flag provides a method of extending physical addresses to 36 bits. This physical
address extension can only be used when paging is enabled. It relies on an additional page direc-
tory pointer table that is used along with page directories and page tables to reference physical
addresses above FFFFFFFFH. See Section 3.8., “36-Bit Physical Addressing Using the PAE
Paging Mechanism”, for more information about extending physical addresses using the PAE
flag.

The 36-bit page size extension (PSE-36) feature provides an alternate method of extending
physical addressing to 36 bits. This paging mechanism uses the page size extension mode
(enabled with the PSE flag) and modified page directory entries to reference physical addresses
above FFFFFFFFH. The PSE-36 feature flag (bit 17 in the EDX register when the CPUID
instruction is executed with a source operand of 1) indicates the availability of this addressing
mechanism. See Section 3.9., “36-Bit Physical Addressing Using the PSE-36 Paging Mecha-
nism”, for more information about the PSE-36 physical address extension and page size exten-
sion mechanism.

3.6.2. Page Tables and Directories

The information that the processor uses to translate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

® Page directory—An array of 32-bit page-directory entries (PDEs) contained in a 4-KByte
page. Up to 1024 page-directory entries can be held in a page directory.

® Page table—An array of 32-bit page-table entries (PTEs) contained in a 4-KByte page. Up
to 1024 page-table entries can be held in a page table. (Page tables are not used for 2-
MByte or 4-MByte pages. These page sizes are mapped directly from one or more page-
directory entries.)

® Page—A 4-KByte, 2-MByte, or 4-MByte flat address space.

® Page-Directory-Pointer Table—An array of four 64-bit entries, each of which points to a
page directory. This data structure is only used when the physical address extension is
enabled (see Section 3.8., “36-Bit Physical Addressing Using the PAE Paging
Mechanism™).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either 4-KByte or 2-MByte pages or 4-MByte pages only when
extended (36-bit) physical addressing is being used. Table 3-3 shows the page size and physical
address size obtained from various settings of the paging control flags and the PSE-36 CPUID
feature flag. Each page-directory entry contains a PS (page size) flag that specifies whether the
entry points to a page table whose entries in turn point to 4-KByte pages (PS set to 0) or whether
the page-directory entry points directly to a 4-MByte (PSE and PS set to 1) or 2-MByte page
(PAE and PS set to 1).
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3.7. PAGE TRANSLATION USING 32-BIT PHYSICAL
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism when
using 32-bit physical addresses and a maximum physical address space of 4 Gbytes. Section
3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9., “36-Bit
Physical Addressing Using the PSE-36 Paging Mechanism™ describe extensions to this page
translation mechanism to support 36-bit physical addresses and a maximum physical address
space of 64 Gbytes.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag, | PAE Flag, | PSE Flag, PS Flag, PSE-36 CPUID Physical
CRO CR4 CR4 PDE Feature Flag Page Size Address Size
0 X X X X — Paging Disabled
1 0 0 X X 4 KBytes 32 Bits
1 0 1 0 X 4 KBytes 32 Bits
1 0 1 1 0 4 MBytes 32 Bits
1 0 1 1 1 4 MBytes 36 Bits
1 1 X 0 X 4 KBytes 36 Bits
1 1 X 1 X 2 MBytes 36 Bits

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 2%°
pages, which spans a linear address space of 232 bytes (4 GBytes).
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Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

Y

Page-Table Entry

20

Directory Entry |—>»

L.
>
-
’

32*
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE * 1024 PTE = 220 Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

To select the various table entries, the linear address is divided into three sections:

® Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

® Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.7.2. Linear Address Translation (4-MByte Pages)
Figure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.

The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.
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Linear Address
31 22 21 0

| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry 0 >

1024 PDE = 1024 Pages

L.
>
>
>
*

2
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-13. Linear Address Translation (4-MByte Pages)

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections:

® Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(For the Pentium processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. See Section 10.9., “Invalidating the Translation
Lookaside Buffers (TLBs)”, for information on how to invalidate the TLBs.

3.7.3. Mixing 4-KByte and 4-MByte Pages

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
mance.
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The processor maintains 4-MByte page entries and 4-KByte page entries in separate TLBs. So,
placing often used code such as the kernel in a large page, frees up 4-KByte-page TLB entries
for application programs and tasks.

3.7.4. Memory Aliasing

The IA-32 architecture permits memory aliasing by allowing two page-directory entries to point
to a common page-table entry. Software that needs to implement memory aliasing in this manner
must manage the consistency of the accessed and dirty bits in the page-directory and page-table
entries. Allowing the accessed and dirty bits for the two page-directory entries to become incon-
sistent may lead to a processor deadlock.

3.7.5. Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page directory base register or PDBR). (See Figure 2-5 and Section 2.5., “Control Registers”,
for more information on the PDBR.) If paging is to be used, the PDBR must be loaded as part
of the processor initialization process (prior to enabling paging). The PDBR can then be changed
either explicitly by loading a new value in CR3 with a MOV instruction or implicitly as part of
a task switch. (See Section 6.2.1., “Task-State Segment (TSS)”, for a description of how the
contents of the CR3 register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may be not-
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.7.6. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-15 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.
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Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
P|P|U|R
Page-Table Base Address Avail (G g O|A|C|W|/|/|P
D|T|S|W
Available for system programmer’s use —l ‘
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4-KByte Page)
31 1211 9876543210
P P|P|U|R
Page Base Address Avail |G|A[D|A|C|W|/|/|P
T D|T|S|W

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Available for system programmer’s use 4‘ ‘
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Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages

and 32-Bit Physical Addresses

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a 4-MByte page. Only bits 22 through 31 of this field are used
(and bits 12 through 21 are reserved and must be set to 0, for IA-32 processors
through the Pentium II processor). The base address bits are interpreted as the
10 most-significant bits of the physical address, which forces 4-MByte pages
to be aligned on 4-MByte boundaries.
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Page-Directory Entry (4-MByte Page)

31 22 21 131211 9876543210
P P|P|U[R

Page Base Address Reserved A Avail. |G P DIA|C(W|/|/|P
D|T|S|W

Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page Table Attribute Index
Available for system programmer’s use

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag.

If the processor generates a page-fault exception, the operating system gener-
ally needs to carry out the following operations:

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other flags, such as the dirty and accessed flags, may also
be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program (or
task).

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.
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This flag interacts with the U/S flag and the WP flag in register CRO. See
Section 4.11., “Page-Level Protection”, and Table 4-2 for a detailed discussion
of the use of these flags.

User/supervisor (U/S) flag, bit 2

Specifies the user-supervisor privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag is
clear, the page is assigned the supervisor privilege level; when the flag is set,
the page is assigned the user privilege level. This flag interacts with the R/W
flag and the WP flag in register CRO. See Section 4.11., “Page-Level Protec-
tion”, and Table 4-2 for a detail discussion of the use of these flags.

Page-level write-through (PWT) flag, bit 3

Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
the CD (cache disable) flag in CRO is set. See Section 10.5., “Cache Control”,
for more information about the use of this flag. See Section 2.5., “Control
Registers”, for a description of a companion PWT flag in control register CR3.

Page-level cache disable (PCD) flag, bit 4

Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
disabled for pages that contain memory-mapped I/O ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumes it is set) if the CD (cache disable) flag in CRO is set. See Chapter 10,
Memory Cache Control, for more information about the use of this flag. See
Section 2.5., “Control Registers”, for a description of a companion PCD flag
in control register CR3.

Accessed (A) flag, bit 5

Indicates whether a page or page table has been accessed (read from or written
to) when set. Memory management software typically clears this flag when a
page or page table is initially loaded into physical memory. The processor then
sets this flag the first time a page or page table is accessed. This flag is a
“sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only software can clear this flag.

The accessed and dirty flags are provided for use by memory management soft-
ware to manage the transfer of pages and page tables into and out of physical
memory.

Dirty (D) flag, bit 6
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Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries that point to page tables.) Memory management soft-
ware typically clears this flag when a page is initially loaded into physical
memory. The processor then sets this flag the first time a page is accessed for
a write operation.
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This flag is “sticky,” meaning that once set, the processor does not implicitly
clear it. Only software can clear this flag. The dirty and accessed flags are
provided for use by memory management software to manage the transfer of
pages and page tables into and out of physical memory.

Page size (PS) flag, bit 7 page-directory entries for 4-KByte pages
Determines the page size. When this flag is clear, the page size is 4 KBytes and
the page-directory entry points to a page table. When the flag is set, the page
size is 4 MBytes for normal 32-bit addressing (and 2 MBytes if extended phys-
ical addressing is enabled) and the page-directory entry points to a page. If the
page-directory entry points to a page table, all the pages associated with that
page table will be 4-KByte pages.

Page attribute table index (PAT) flag, bit 7 in page-table entries for 4-KByte pages and
bit 12 in page-directory entries for 4-MByte pages
(Introduced in the Pentium Ill processor.) Selects PAT entry. For processors that
support the page attribute table (PAT), this flag is used along with the PCD and
PWT flags to select an entry in the PAT, which in turn selects the memory type
for the page (see Section 10.12., “Page Attribute Table (PAT)”). For processors
that do not support the PAT, this bit is reserved and should be set to 0.

Global (G) flag, bit 8

(Introduced in the Pentium Pro processor.) Indicates a global page when set.
When a page is marked global and the page global enable (PGE) flag in register
CR4 is set, the page-table or page-directory entry for the page is not invalidated
in the TLB when register CR3 is loaded or a task switch occurs. This flag is
provided to prevent frequently used pages (such as pages that contain kernel or
other operating system or executive code) from being flushed from the TLB.
Only software can set or clear this flag. For page-directory entries that point to
page tables, this flag is ignored and the global characteristics of a page are set
in the page-table entries. See Section 3.11., “Translation Lookaside Buffers
(TLBs)”, for more information about the use of this flag. (This bit is reserved
in Pentium and earlier IA-32 processors.)

Reserved and available-to-software bits
For all IA-32 processors. Bits 9, 10, and 11 are available for use by software.
(When the present bit is clear, bits 1 through 31 are available to software—see
Figure 3-16.) In a page-directory entry that points to a page table, bit 6 is
reserved and should be set to 0. When the PSE and PAE flags in control register
CR4 are set, the processor generates a page fault if reserved bits are not set to 0.

For Pentium IT and earlier processors. Bit 7 in a page-table entry is reserved and
should be set to 0. For a page-directory entry for a 4-MByte page, bits 12
through 21 are reserved and must be set to 0.

For Pentium Il and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.
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3.7.7. Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (see Figure 3-16).

31 0

‘ Available to Operating System or Executive ‘ 0‘

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.8. 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING
MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were introduced into the
IA-32 architecture in the Pentium Pro processors. Implementation of this feature in an IA-32
processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register when the source
operand for the CPUID instruction is 2). The physical address extension (PAE) flag in register
CR4 enables the PAE mechanism and extends physical addresses from 32 bits to 36 bits. Here,
the processor provides 4 additional address line pins to accommodate the additional address bits.
To use this option, the following flags must be set:

® PG flag (bit 31) in control register CRO—Enables paging
® PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or
a page table that in turn points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

® The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

® A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

® The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
27-bit page-directory-pointer-table base address field (see Figure 3-17). (In this case,
register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
physical address of the first byte of the page-directory-pointer table, which forces the table
to be located on a 32-byte boundary.

® Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.
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31 0
) ) P|P
Page-Directory-Pointer-Table Base Address 8 \1/\_/ 0|00

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

3.8.1. Linear Address Translation With PAE Enabled (4-KByte
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hierarchy when
mapping linear addresses to 4-KByte pages when the PAE paging mechanism enabled. This
paging method can be used to address up to 2% pages, which spans a linear address space of 232
bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

® Page offset—Bits O through 11 provide an offset to a physical address in the page.
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Linear Address
31 30 29 21 20 12 11 0
Directory Pointer »| | Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

Page-Table Entry

Y

Y

» Directory Entry

Page-Directory-
Pointer Table

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

— | Dir. Pointer Entry
—>

*

2
CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary

Figure 3-18. Linear Address Translation With PAE Enabled (4-KByte Pages)

3.8.2. Linear Address Translation With PAE Enabled (2-MByte
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte pages when the PAE paging mechanism enabled. This paging
method can be used to map up to 2048 pages (4 page-directory-pointer-table entries times 512
page-directory entries) into a 4-GByte linear address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) flag in a
page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag in control register
CR4 has no affect on the page size when PAE is enabled.) With the PS flag set, the linear address
is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page.
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® Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

Linear Address
31 30 29 21 20 0
»| | Directory Offset

Directory
Pointer

24 2-MByte Page

Page Directory Physical Address

Page-Directory-
Pointer Table

2
| Directory Entry 15 >
»| Dir. Pointer Entry >
—»
3o* 4 PDPTE * 512 PDE = 2048 Pages

CR3 (PDPTR)

*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With PAE Enabled (2-MByte Pages)

3.8.3. Accessing the Full Extended Physical Address Space
With the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
the 64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

® Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

® Change entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.

3.8.4. Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and
page-table entries when 4-KByte pages and 36-bit extended physical addresses are being
used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory
entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func-
tions of the flags in these entries are the same as described in Section 3.7.6., “Page-Directory
and Page-Table Entries”. The major differences in these entries are as follows:
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® A page-directory-pointer-table entry is added.
® The size of the entries are increased from 32 bits to 64 bits.
® The maximum number of entries in a page directory or page table is 512.

® The base physical address field in each entry is extended to 24 bits.

NOTE

Current IA-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. Future TA-32 processors may cache
page-directory-pointer table entries.

Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) 232?_

31 1211 98 543210

PlP
Page-Directory Base Address Avail | Reserved (E:) vTv Res.| 1
Page-Directory Entry (4-KByte Page Table)

63 36 35 32
Reserved (set to 0) ﬁggﬁ

31 1211 9876543210
PIP|U|R

Page-Table Base Address Avail |0o|0|0|A|C|W|/|/|P
D|T|S|W

Page-Table Entry (4-KByte Page)

63 36 35 32
Reserved (set to 0) ﬁggﬁ

31 1211 9876543210
P PIP|U[R

Page Base Address Avail |G|A|D|A[C(W|/|/|P
T D|T|S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages with PAE Enabled
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Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) 233?_

31 1211 98 543210

Page Directory Base Address Avail. | Reserved g \Zv Res.| 1

Page-Directory Entry (2-MByte Page)

63 36 35 32
Base
Reserved (set to 0) Addr.
31 21 20 1312 11 9876543210
P PlP|U|R
Page Base Address | Reserved (setto 0) |A| Avail. [G|1|D|A 8 \_/l_v é v/v P
T

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for
2-MByte Pages with PAE Enabled

The base physical address in an entry specifies the following, depending on the type of entry:

® Page-directory-pointer-table entry—the physical address of the first byte of a
4-KByte page directory.

® Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

® Page-table entry—the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KByte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in all page-directory-pointer-table entries must be set to 1 anytime
extended physical addressing mode is enabled; that is, whenever the PAE flag (bit 5 in register
CR4) and the PG flag (bit 31 in register CRO) are set. If the P flag is not set in all 4 page-direc-
tory-pointer-table entries in the page-directory-pointer table when extended physical addressing
is enabled, a general-protection exception (#GP) is generated.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.
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Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present flag is clear, bits 1 through 63 are available to software.) All bits
in Figure 3-14 that are marked reserved or O should be set to 0 by software and not accessed by
software. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and it generates a general-protection exception (#GP) if reserved bits in a page-directory-
pointer-table entry are not set to 0.

3.9. 36-BIT PHYSICAL ADDRESSING USING THE PSE-36
PAGING MECHANISM

The PSE-36 paging mechanism provides an alternate method (from the PAE mechanism) of
extending physical memory addressing to 36 bits. This mechanism uses the page size extension
(PSE) mode and a modified page-directory table to map 4-MByte pages into a 64-Gbyte phys-
ical address space. As with the PAE mechanism, the processor provides 4 additional address line
pins to accommodate the additional address bits.

The PSE-36 mechanism was introduced into the IA-32 architecture with the Pentium Il proces-
sors. The availability of this feature is indicated with the PSE-36 feature bit (bit 17 of the EDX
register when the CPUID instruction is executed with a source operand of 1).

As is shown in Table 3-3, the following flags must be set or cleared to enable the PSE-36 paging
mechanism:

® PSE-36 CPUID feature flag—When set, it indicates the availability of the PSE-36 paging
mechanism on the IA-32 processor on which the CPUID instruction is executed.

® PG flag (bit 31) in register CRO—Set to 1 to enable paging.

® PSE flag (bit 4) in control register CR4—Set to 1 to enable the page size extension for 4-
Mbyte pages.

® PAE flag (bit 5) in control register CR4—Clear to O to disable the PAE paging mechanism.
When the PSE-36 paging mechanism is enabled, one page size (4 MBytes) is supported.

Figure 3-22 shows how the expanded page directory entry can be used to map a 32-bit linear
address to a 36-bit physical address. Here, the linear address is divided into two sections:

® Page directory entry—Bits 22 through 35 provide an offset to an entry in the page
directory. The selected entry provides the 14 most significant bits of a 36-bit address,
which locates the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

This paging method can be used to map up to 1024 pages into a 64-GByte physical address
space.
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Linear Address
31 22 21 0
| Directory ‘ Offset

J 22 4-MByte Page

10 Page Directory

Physical Address

Directory Entry

147

-
>
=
?
*

2
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE = 1024 Pages

Figure 3-22. Linear Address Translation (4-MByte Pages)

Figure 3-23 shows the format for the page-directory entries when 4-MByte pages and 36-bit
physical addresses are being used. Section 3.7.6., “Page-Directory and Page-Table Entries”
describes the functions of the flags and fields in bits O through 11.

Page-Directory Entry (4-MByte Page)

31 22 21 1716 131211 9876543210

Page Base Address P ) PIPIUIR
(Bits 22 Through 31) Reserved _|/§ Avail. |G g D|A SVTVé V/V P

Page Base Address (Bits 32 Through 35) J

Page Attribute Table Index

Available for system programmer’s use

Global page

Page size (must be setto 1)

Dirty

Accessed

Cache disabled

Write-through

User/Supervisor

Read/Write

Present

Figure 3-23. Format of Page-Directory Entries for 4-MByte Pages and 36-Bit Physical
Addresses
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3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the IA-32 architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The IA-32 architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware is to give each segment its own page table, as shown in Figure 3-24. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.

Page Frames

LDT Page Directory Page Tables >
PTE —
PTE >
PTE —
Seg. Descript.—> PDE 4|—>
Seg. Descript.—> PDE >

PTE | =~

PTE —‘

Figure 3-24. Memory Management Convention That Assigns a Page Table to Each
Segment

3-36 I




Intel ® PROTECTED-MODE MEMORY MANAGEMENT

3.11. TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The P6 family and Pentium processors have
separate TLBs for the data and instruction caches. Also, the P6 family processors maintain sepa-
rate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to deter-
mine the sizes of the TLBs provided in the P6 family and Pentium processors.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the translation infor-
mation for a requested page.

The TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only, operating system or executive procedures running at priv-
ilege level of O can invalid TLBs or selected TLB entries. Whenever a page-directory or page-
table entry is changed (including when the present flag is set to zero), the operating-system must
immediately invalidate the corresponding entry in the TLB so that it can be updated the next
time the entry is referenced.

All of the (non-global) TLBs are automatically invalidated any time the CR3 register is loaded
(unless the G flag for a page or page-table entry is set, as describe later in this section). The CR3
register can be loaded in either of two ways:

® Explicitly, using the MOV instruction, for example:
MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.

® Implicitly by executing a task switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
Normally, this instruction invalidates only an individual TLB entry; however, in some cases, it
may invalidate more than the selected entry and may even invalidate all of the TLBs. This
instruction ignores the setting of the G flag in a page-directory or page-table entry (see following
paragraph).

(Introduced in the Pentium Pro processor.) The page global enable (PGE) flag in register CR4
and the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequently used pages from being automatically invalidated in the TLBs on a task switch or a
load of register CR3. (See Section 3.7.6., “Page-Directory and Page-Table Entries”, for more
information about the global flag.) When the processor loads a page-directory or page-table
entry for a global page into a TLB, the entry will remain in the TLB indefinitely. The only ways
to deterministically invalidate global page entries are as follows:
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® (Clear the PGE flag and then invalidate the TLBs.

¢ Execute the INVLPG instruction to invalidate individual page-directory or page-table
entries in the TLBs.

®  Write to control register CR3 to invalidate all TLB entries.

For additional information about invalidation of the TLBs, see Section 10.9., “Invalidating the
Translation Lookaside Buffers (TLBs)”.
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CHAPTER 4
PROTECTION

In protected mode, the IA-32 architecture provides a protection mechanism that operates at both
the segment level and the page level. This protection mechanism provides the ability to limit
access to certain segments or pages based on privilege levels (four privilege levels for segments
and two privilege levels for pages). For example, critical operating-system code and data can be
protected by placing them in more privileged segments than those that contain applications
code. The processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local-
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it
satisfies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla-
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

®  Limit checks.

® Type checks.

® Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 5, Interrupt and
Exception Handling, for an explanation of the exception mechanism. This chapter describes the
protection mechanism and the violations which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See
Chapter 16, 8086 Emulation, for information on protection in real-address and virtual-8086
mode.
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4.1. ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enables the segment-protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment-protection mechanism
that is based on privilege levels can essentially be disabled while still in protected mode by
assigning a privilege level of O (most privileged) to all segment selectors and segment descrip-
tors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag
in register CR0). Here again there is no mode bit for turning off page-level protection once
paging is enabled. However, page-level protection can be disabled by performing the following
operations:

® (lear the WP flag in control register CRO.

®  Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data
structures to control access to segments and pages:

® Descriptor type (S) flag—(Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for a system segment or a code or data segment.

® Type field—(Bits 8 through 11 in the second doubleword of a segment descriptor.)
Determines the type of code, data, or system segment.

® Limit field—(Bits O through 15 of the first doubleword and bits 16 through 19 of the
second doubleword of a segment descriptor.) Determines the size of the segment, along
with the G flag and E flag (for data segments).

® G flag—(Bit 23 in the second doubleword of a segment descriptor.) Determines the size of
the segment, along with the limit field and E flag (for data segments).

® E flag—(Bit 10 in the second doubleword of a data-segment descriptor.) Determines the
size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field—(Bits 13 and 14 in the second doubleword of a
segment descriptor.) Determines the privilege level of the segment.

® Requested privilege level (RPL) field. (Bits 0 and 1 of any segment selector.) Specifies the
requested privilege level of a segment selector.
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®  Current privilege level (CPL) field. (Bits O and 1 of the CS segment register.) Indicates the
privilege level of the currently executing program or procedure. The term current privilege
level (CPL) refers to the setting of this field.

® User/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry.) Determines the
type of page: user or supervisor.

® Read/write (R/W) flag. (Bit 1 of a page-directory or page-table entry.) Determines the type
of access allowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and system-
segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field in a segment
selector (or the CS register); and Figure 3-14 shows the location of the U/S and R/W flags in the
page-directory and page-table entries.
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Data-Segment Descriptor

31 242322212019 16151413 12 11 8 7
A . D Type
Base31:24  |G[B|o|v| HML |p| p yp Base 23:16
L : L |4 0|E‘W|A
31 16 15

Base Address 15:00 Segment Limit 15:00

Code-Segment Descriptor

31 242322212019 16151413 12 11 8 7
Al (i D Type
Base31:24  |G[p|o|v| HML |p| p yp Base 23:16
L : L |1 1|C‘R|A
31 16 15

Base Address 15:00 Segment Limit 15:00

System-Segment Descriptor

31 242322 212019 16 1514 1312 11 8 7
Base 3124 |G| |0 Limit o B o] T Base 23:16
: 19:16 ype ase 23:
L
31 1615
Base Address 15:00 Segment Limit 15:00

A Accessed E Expansion Direction

AVL Available to Sys. Programmer’s G Granularity

B Big R Readable

C Conforming LIMIT Segment Limit

D Default w Writable

DPL Descriptor Privilege Level P Present

D Reserved

Figure 4-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli-
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.
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4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (see Figure 4-1). For data segments, the limit also depends on the
E (expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The
E flag is one of the bits in the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from O to FFFFFH (1 MByte). When the G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
212 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4
GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset
(address) are not checked against the limit; for example, note that if the segment limit is O,
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last
address that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of the segment. The processor causes a general-protection exception any time an attempt is made
to access the following addresses in a segment:

® A byte at an offset greater than the effective limit

® A word at an offset greater than the (effective-limit — 1)

® A doubleword at an offset greater than the (effective-limit — 3)
® A quadword at an offset greater than the (effective-limit — 7)

For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the effective limit specifies the last address that is not allowed to be accessed
within the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the
B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1., “Segment
Descriptor Tables”, for more information on the GDT and LDT limit fields; see Section 5.10.,
“Interrupt Descriptor Table (IDT)”, for more information on the IDT limit field; and see Section
6.2.3., “Task Register”, for more information on the TSS segment limit field.
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4.4. TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
® The type field.

The processor uses this information to detect programming errors that result in an attempt to use
a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field
provides 4 additional bits for use in defining various types of code, data, and system descriptors.
Table 3-1 shows the encoding of the type field for code and data descriptors; Table 3-2 shows
the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed. This list is not exhaustive.

® When a segment selector is loaded into a segment register. Certain segment registers
can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
®  When a segment selector is loaded into the LDTR or task register.

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

® When instructions access segments whose descriptors are already loaded into
segment registers. Certain segments can be used by instructions only in certain predefined
ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

®  When an instruction operand contains a segment selector. Certain instructions can
access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.
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— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
® During certain internal operations. For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or jump to
another code segment, a call or jump through a gate, or a task switch) by checking the
type field in the segment (or gate) descriptor pointed to by the segment (or gate)
selector given as an operand in the CALL or JMP instruction. If the descriptor type is
for a code segment or call gate, a call or jump to another code segment is indicated; if
the descriptor type is for a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call
through a trap or interrupt gate), the processor automatically checks that the segment
descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-
handler call to a new task through a task gate), the processor automatically checks that
the segment descriptor being pointed to by the task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor automati-
cally checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks
that the previous task link field in the current TSS points to a TSS.

4.41. Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.1., “Segment Selectors”) into the CS
or SS segment register generates a general-protection exception (#GP). A null segment selector
can be loaded into the DS, ES, FS, or GS register, but any attempt to access a segment through
one of these registers when it is loaded with a null segment selector results in a #GP exception
being generated. Loading unused data-segment registers with a null segment selector is a useful
method of detecting accesses to unused segment registers and/or preventing unwanted accesses
to data segments.

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpreted as rings of protection.
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The center (reserved for the most privileged code, data, and stacks) is used for the segments
containing the critical software, usually the kernel of an operating system. Outer rings are used
for less critical software. (Systems that use only 2 of the 4 possible privilege levels should use
levels 0 and 3.)

Protection Rings

Operating

System

Kernel

Operating System
“

Services

Applications

Figure 4-2. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

®  Current privilege level (CPL). The CPL is the privilege level of the currently executing
program or task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally,
the CPL is equal to the privilege level of the code segment from which instructions are
being fetched. The processor changes the CPL when program control is transferred to a
code segment with a different privilege level. The CPL is treated slightly differently when
accessing conforming code segments. Conforming code segments can be accessed from
any privilege level that is equal to or numerically greater (less privileged) than the DPL of
the conforming code segment. Also, the CPL is not changed when the processor accesses a
conforming code segment that has a different privilege level than the CPL.
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® Descriptor privilege level (DPL). The DPL is the privilege level of a segment or gate. It is
stored in the DPL field of the segment or gate descriptor for the segment or gate. When the
currently executing code segment attempts to access a segment or gate, the DPL of the
segment or gate is compared to the CPL and RPL of the segment or gate selector (as
described later in this section). The DPL is interpreted differently, depending on the type of
segment or gate being accessed:

— Data segment. The DPL indicates the numerically highest privilege level that a
program or task can have to be allowed to access the segment. For example, if the DPL
of a data segment is 1, only programs running at a CPL of 0 or 1 can access the
segment.

— Nonconforming code segment (without using a call gate). The DPL indicates the
privilege level that a program or task must be at to access the segment. For example, if
the DPL of a nonconforming code segment is 0, only programs running at a CPL of 0
can access the segment.

— Call gate. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the call gate. (This is the
same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment accessed through a
call gate. The DPL indicates the numerically lowest privilege level that a program or
task can have to be allowed to access the segment. For example, if the DPL of a
conforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
segment.

— TSS. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the TSS. (This is the
same access rule as for a data segment.)

® Requested privilege level (RPL). The RPL is an override privilege level that is assigned
to segment selectors. It is stored in bits O and 1 of the segment selector. The processor
checks the RPL along with the CPL to determine if access to a segment is allowed. Even if
the program or task requesting access to a segment has sufficient privilege to access the
segment, access is denied if the RPL is not of sufficient privilege level. That is, if the RPL
of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and
vice versa. The RPL can be used to insure that privileged code does not access a segment
on behalf of an application program unless the program itself has access privileges for that
segment. See Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)” for
a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.
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4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded
into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).
(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions.) Before the processor loads a segment selector into a segment register, it performs a priv-
ilege check (see Figure 4-3) by comparing the privilege levels of the currently running program
or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is
numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-protection
fault is generated and the segment register is not loaded.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Privilege
Check

Data-Segment Descriptor

YYY

DPL

Figure 4-3. Privilege Check for Data Access

Figure 4-4 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

® The procedure in code segment A is able to access data segment E using segment selector
El, because the CPL of code segment A and the RPL of segment selector El are equal to
the DPL of data segment E.

® The procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment A and the RPL of segment selector E2 are both
numerically lower than (more privileged) than the DPL of data segment E. A code segment
B procedure can also access data segment E using segment selector E1.

® The procedure in code segment C is not able to access data segment E using segment
selector E3 (dotted line), because the CPL of code segment C and the RPL of segment
selector E3 are both numerically greater than (less privileged) than the DPL of data
segment E. Even if a code segment C procedure were to use segment selector E1 or E2,
such that the RPL would be acceptable, it still could not access data segment E because its
CPL is not privileged enough.
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® The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
of segment selector E3 (which the code segment D procedure is using to access data
segment E) is numerically greater than the DPL of data segment E, so access is not
allowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Segmont C| [ Segment Sel.E3
egmentC| | SegmentSel.E3 | _ _ _ _ .
CPL=3 RPL=3

Lowest Privilege

Code
S tSel. E1 | 5| Data
Segment A| | =€gmen %PL:Q > Segment E

Cod
Segn%eﬁt gLl Segment Sel. E2

ChLot | RPL=1

|
|
|
|
|
|
|
|
CPL=2 ;m :
|
|
|
|
|
|
|

Code
Segment D

CPL=0

m Highest Privilege

Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
as its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for a data-
segment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will
provide protection against deliberate, direct attempts to violate privilege-level security for the
data segment. To prevent these types of privilege-level-check violations, a program or procedure
can check access privileges whenever it receives a data-segment selector from another proce-
dure (see Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”).
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4.6.1. Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible:

® Load a data-segment register with a segment selector for a nonconforming, readable, code
segment.

® Load a data-segment register with a segment selector for a conforming, readable, code
segment.

® Use a code-segment override prefix (CS) to read a readable, code segment whose selector
is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a stack segment. Here all privilege levels related to the stack segment must match the CPL; that
is, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and performs various limit, type, and privilege checks. If these checks are successful, the CS
register is loaded, program control is transferred to the new code segment, and program execu-
tion begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT,
INT n, and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions,
interrupts, and the IRET instruction are special cases discussed in Chapter 5, Interrupt and
Exception Handling. This chapter discusses only the JMP, CALL, RET, SYSENTER, and
SYSEXIT instructions.
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I ntel ® PROTECTION

A JMP or CALL instruction can reference another code segment in any of four ways:
® The target operand contains the segment selector for the target code segment.

® The target operand points to a call-gate descriptor, which contains the segment selector for
the target code segment.

® The target operand points to a TSS, which contains the segment selector for the target code
segment.

® The target operand points to a task gate, which points to a TSS, which in turn contains the
segment selector for the target code segment.

The following sections describe first two types of references. See Section 6.3., “Task
Switching”, for information on transferring program control through a task gate an