

Document Number: 341431-001US

Remote Action Request
White Paper

July 2021

Revision 1.0

2 Document Number: 341431-001US, Revision: 1.0

Notice: This document contains information on products in the design phase of development. The
information here is subject to change without notice. Do not finalize a design with this information.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,
software, or service activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems
or any damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document. The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.
Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others
Copyright © 2021, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm

Document Number: 341431-001US, Revision: 1.0 3

Contents
1 Introduction .. 7

1.1 Overview of Software-based TLB Shootdown 7
1.2 Overview of RAR-based TLB Shootdown .. 8
1.3 Operating System Setup for Remote Action Request 9

2 Enumeration .. 10
2.1 Detection .. 10
2.2 RAR_INFO MSR .. 10
2.3 Enabling .. 10

3 Signaling a Remote Action Request ... 11

4 Remote Action Request MSRs .. 13

5 Remote Action Request Memory Structures 14
5.1 Payload Table .. 14
5.2 Action Vector ... 16

6 Remote Action Payloads .. 17
6.1 RAR Invalidation Payloads ... 17

6.1.1 RAR Address-specific Invalidation Payloads 17
6.2 Payload Type 0 - Page Invalidation ... 17
6.3 Payload Type 1 - Page Invalidation without CR3 Match.................... 18
6.4 Payload Type 2 - PCID Invalidation ... 18
6.5 Payload Type 3 - EPT Invalidation .. 19
6.6 Payload Type 4 - VPID Invalidation ... 20
6.7 Payload Type 5 - MSR Write .. 21

7 RLP Remote Action Request Handling ... 22
7.1 Remote Action Request Handling of Multiple Requests..................... 22
7.2 Remote Action Request RLP Handling Flow 23

8 Remote Action Request Interaction with Other Features 24
8.1 RAR Priority Relative to INTR ... 24

8.1.1 Behavior if RAR_CONTROL.IGNORE_IF is Clear 24
8.1.2 Behavior if RAR_CONTROL.IGNORE_IF is Set 24
8.1.3 Behavior in VMX Non-Root Mode .. 24

8.2 Sleep States .. 24
8.3 RAR and Intel® SGX ... 24
8.4 RAR Clear Conditions .. 25
8.5 RAR Inhibit States .. 25
8.6 RAR and Intel® PT; Tracing with GPA .. 25

Figures

Figure 1-1. Software-based TLB Shootdown .. 7
Figure 1-2. RAR-based TLB Shootdown ... 8
Figure 3-1. Interrupt Command Register (ICR) with RAR Availability 11

4 Document Number: 341431-001US, Revision: 1.0

Tables

Table 4-1. Remote Action Request MSRs ... 13
Table 5-1. Payload Table Details .. 15

Document Number: 341431-001US, Revision: 1.0 5

Revision History
Revision
Number Description Date

1.0 • Initial release of the document. July 2021

6 Document Number: 341431-001US, Revision: 1.0

Glossary
Abbreviation Description

RAR Remote Action Request

ILP Initiator Logical Processor

RLP Receiving Logical Processor

TLB Translation Lookaside Buffer

ICR Interrupt Command Register

MBZ Must Be Zero

Document Number: 341431-001US, Revision: 1.0 7

1 Introduction
We are interested in receiving feedback on this feature, which you can provide by visiting
this site: www.intel.com/sdm-experimental. We will read your feedback and reply to
comments and questions.

Remote Action Request (RAR) is introduced in Intel Architecture as a model-specific
feature to speed up inter-processor operations by moving parts of those operations from
software (OS, App) to hardware (the IA core).

Note: This document is relevant for future processors based on the Sapphire Rapids
microarchitecture only. These processors have a CPUID Signature
DisplayFamily_DisplayModel value of 06_8FH. If additional processors support
RAR in the future, the processor names will be added to future revisions of this
document.

RAR is used for speeding up remote TLB shootdowns and allowing them to be serviced
while a long instruction is executing on the remote processor or when interrupts are
disabled on that processor. RAR is architected to allow for future expansion.

1.1 Overview of Software-based TLB Shootdown
Figure 1-1 shows an example of a TLB shootdown process in an existing software-based
protocol. In this case, there is a need to remove a page mapping from the page table, so
software running on the initiating logical processor (ILP) starts by clearing the present bit
in the page-table-entry (PTE). It then sets up a payload in memory using some
predefined memory format and sends an IPI to the LP’s that require the TLB invalidation.
The recipient logical processor (RLP) transitions into ring 0 after receiving the interrupt
and the interrupt handler performs the actions specified by the ILP. After completion of
the action, the interrupt handler acknowledges the completion by writing an ACK value to
a predefined memory location. The ILP software can then read this location and detect
that the protocol has completed. If by the time this process completed no page fault for
this page has occurred, the ILP software can safely remove the mapping of the page from
the page table.

Figure 1-1. Software-based TLB Shootdown

http://www.intel.com/sdm-experimental

8 Document Number: 341431-001US, Revision: 1.0

1.2 Overview of RAR-based TLB Shootdown
Figure 1-2 shows an example of the same TLB shootdown process shown above but using
a RAR-based protocol where a hardware operation replaces software on the RLP.

1. Software on the ILP starts similarly by clearing the present bit in the page-
table-entry (PTE), or making some other modification to the page tables.

2. It then sets up a payload in memory location, as defined in section 5.1, using a
format defined in section 6.

3. The ILP software then indicates which RLPs are participating in the protocol by
setting up the action vector as defined in section 5.2.

4. The ILP software sends a RAR signal by writing to the ICR as defined in section
3. The ILP software must ensure all writes to the payload and action vector are
globally observed before sending the RAR.

a. At this point, the ILP may invalidate its own TLB by signaling RAR to
itself in order to invoke the RAR handler locally as well.

5. The RLP that receives the RAR performs the actions specified by the ILP in the
payload entirely by hardware. After completion of the action, the RLP hardware
acknowledges the completion by writing a RAR_SUCCESS value to the action
vector. The ILP must not modify the value.

6. The ILP software polls this action vector to detect that the RLP has completed
the action. If there are multiple RLPs, the ILP must poll multiple action vectors.

Figure 1-2. RAR-based TLB Shootdown

RAR supports several variations of the Remote TLB Shootdown process and additional
remote actions that follow the basic RAR nature where software running on the ILP
initiates, sets up, and checks completion of the Remote Action Request while the RLP
responds to the request in hardware.

Document Number: 341431-001US, Revision: 1.0 9

1.3 Operating System Setup for Remote Action
Request

In order to set up RAR, the operating system must perform the following actions:

1. First, the operating system must detect support for RAR by reading the MSRs
specified in section 2.

2. The operating system then allocates physical memory for a shared payload
table, and physical memory for an action vector per logical processor as
specified in section 5.

3. The operating system must then program all LPs with the addresses of these
memory structures and enable RAR on the LPs by using the MSRs specified in
section 4.

4. Once all LPs are programmed, the operating system can begin using RAR for
TLB shootdown or other actions supported by RAR.

10 Document Number: 341431-001US, Revision: 1.0

2 Enumeration

2.1 Detection
RAR support, as described in this document, is enumerated via the RAR bit (bit 1) in the
IA32_CORE_CAPABILITIES MSR (MSR address 0CFH) on parts with a CPUID Signature
DisplayFamily_DisplayModel value of 06_8FH. RAR is a model specific feature and thus
the RAR behavior may change on future parts that enumerate
IA32_CORE_CAPABILITIES[RAR].

When IA32_CORE_CAPABILITIES.RAR == 0, all RAR MSRs are inaccessible, and any
attempt to access these MSRs will result in a #GP.

2.2 RAR_INFO MSR
RAR capabilities are reported through the read-only RAR_INFO MSR. This MSR is a model
specific and available only if IA32_CORE_CAPABILITIES.RAR == 1. See section 4 for
detailed information on this MSR.

2.3 Enabling
RAR is enabled by setting the Enable bit in the RAR_CONTROL MSR; see section 4 for
details. Enabling is possible only when IA32_CORE_CAPABILITIES.RAR == 1.

Document Number: 341431-001US, Revision: 1.0 11

3 Signaling a Remote Action
Request

Signaling a RAR is done similar to sending an INTR, by writing to the Interrupt Command
Register (ICR). Figure 3-1 shows the Interrupt Command Register with RAR availability
added.

Figure 3-1. Interrupt Command Register (ICR) with RAR Availability

RAR uses the previously reserved delivery mode (0b011), and can be set up as follows:

• Destination: Can be any.

• Vector: Must be zero1 (other values are reserved for future use). Writing a
different value will be signaled to the Error Status Register (ESR) with bit “Send
Illegal Vector” and will be rejected (ICR Reject).

• Trigger mode: Ignored (always Edge).

• Level: Ignored (always 1).

1 On some implementations, a vector value of 1 will not be rejected, but will be ignored by the receiving LP.

12 Document Number: 341431-001US, Revision: 1.0

The ability to use RAR delivery mode is only available on processors when
IA32_CORE_CAPABILITIES.RAR == 1.

Document Number: 341431-001US, Revision: 1.0 13

4 Remote Action Request MSRs
All MSRs below are non-accessible when IA32_CORE_CAPABILITIES.RAR == 0. Reserved
fields must be zero; an attempt to write a non-zero value results in a #GP.

Table 4-1. Remote Action Request MSRs

Register
Address

MSR Name and Bit Scope MSR and Bit Description

EDH RAR_CONTROL Thread RAR Control (R/W)

63:32 Reserved

31 ENABLE: RAR events are recognized.
When RAR is not enabled, RARs are
dropped.

30 IGNORE_IF: Allow RAR servicing at the
RLP regardless of the value of
RFLAGS.IF.

29:0 Reserved

EEH RAR_ACTION_VECTOR Thread Pointer to RAR Action Vector (R/W)

63:MAXPHYADDR Reserved

MAXPHYADDR-1:6 VECTOR_PHYSICAL_ADDRESS: Pointer
to the physical address of the 64B
aligned RAR action vector.

5:0 Reserved

EFH RAR_PAYLOAD_TABLE_BASE Thread Pointer to Base of RAR Payload Table
(R/W)

63:MAXPHYADDR Reserved

MAXPHYADDR-1:12 TABLE_PHYSICAL_ADDRESS: Pointer
to the base physical address of the 4K
aligned RAR payload table.

11:0 Reserved

F0H RAR_INFO Thread Read Only RAR Information (RO)

63:38 Always zero.

37:32 TableMaxIndex: Maximum supported
payload table index.

31:0 Supported payload type bitmap. A
value of 1 in bit position [i] indicates
that payload type [i] is supported. For
additional details, see section 5.1.

14 Document Number: 341431-001US, Revision: 1.0

5 Remote Action Request
Memory Structures

5.1 Payload Table
The payload table contains RAR payloads. This table is allocated by the operating system
in contiguous physical memory and pointed to by each LP’s RAR_PAYLOAD_TABLE_BASE
MSR. This architecture doesn’t preclude the option for the operating system to allocate
multiple Payload Tables, one per a subset of LPs and set the RAR_PAYLOAD_TABLE_BASE
Logical Processor MSRs accordingly.

The payload table contains ‘N’ entries of 64 bytes, where N = RAR_INFO.TableMaxIndex
+ 1. For future processors based on the Sapphire Rapids microarchitecture, the table is
fixed size at 4KB, i.e., N = 64 entries.

The operating system can pre-allocate an entry per ILP. Alternatively, if there are more
LPs than N, the operating system can let ILPs dynamically look for empty slots in the
table.

In a PCID enabled system where software threads are allocated each with a different
PCID, the operating system may choose to allocate a separate Payload Table for each
RLP, i.e., each RLP is its own ‘RAR Island’.

The payload table must be 4KB-aligned and contiguous in physical memory.

On the RLP side, if action [j] in the Action Vector is pending (0 <= j < N), the RLP core
accesses the entry at physical address
(RAR_Payload_Table_Base_MSR.TablePhysicalAddress << 12) + j * 64.

If the RLP reads an illegal remote action request type, it signals a failure as described in
section 5.2.

16 Document Number: 341431-001US, Revision: 1.0

5.2 Action Vector
The action vector is a per-RLP 64 Bytes aligned vector of actions, used for ILP-RLP
communication of the RAR protocol. It is pointed to by the RAR Action Vector MSR.

Contains N entries of 8 bits, where N = RAR_INFO MSR.TableMaxIndex+1.

AN-1

[8N-1:8N-8]
…

A2
[23:16]

A1
[15:8]

A0
[7:0]

Each 8-bit entry j (0 <= j < N) defines the per-RLP status of the jth action request; see
details below.

• 0x00 = RAR_SUCCESS. Set by ILP to indicate that action j can be ignored by
RLP. Set by RLP to indicate successful handling of the RAR.

• 0x01 = RAR_PENDING. Set by ILP to indicate that action j is pending for this
RLP. While an action j is pending, software must not modify payload j as it may be
in use by the RLP.

• 0x80 = RAR_FAILURE. Set by RLP to indicate unsuccessful handling (e.g., bad
action request type in payload table).

• Other values are reserved for future use. Such values are ignored by the RLP.

Document Number: 341431-001US, Revision: 1.0 17

6 Remote Action Payloads

6.1 RAR Invalidation Payloads
• The RAR event is a serializing event, ensuring all subsequent memory operations

will not use the invalidated cached translations.

• Any invalidation resets the state of the monitor hardware as set up by a MONITOR
instruction.

• The RAR event ignores the CPL of the RLP, meaning that invalidations can happen
when CPL=3.

6.1.1 RAR Address-specific Invalidation Payloads
This section details the common fields of RAR address-specific invalidation payloads
(payloads 0, 1, 2 and 4), subtype 0:

• Stride: If NumPages > 1, the linear address (bits [255:192]) is incremented by
4K (value 0), 2M (value 1), or 1G (value 2).

o Remaining values are reserved. Using reserved values will result in failure
regardless of subtype.

• Num Pages: The number of pages to invalidate, minus one. That is, a value of
zero indicates just one page.

• Linear Address: The address of the page to invalidate (or the first page, if
NumPages > 0).

o The entire invalidation range is checked for canonicity upfront. Using a
non-canonical address will result in failure regardless of subtype and
regardless of addressing mode.

o Addresses are always calculated in 64-bit mode. If the address range
wraps around the 64-bit boundary, it results in a failure regardless of
subtype.

o Addresses are always taken as a linear address, that is, from a base of
zero.

6.2 Payload Type 0 - Page Invalidation
When the payload type is “Page invalidation”, the RAR handling in the RLP, depending on
the payload SubType field, imitates the operation of performing INVLPG instructions
corresponding with the “Num Pages” field in the payload, or the TLB invalidation
corresponding with “MOV CR3 / CR0”.

In this case, the payload table entry is interpreted as shown below.

22 Document Number: 341431-001US, Revision: 1.0

7 RLP Remote Action Request
Handling

The RLP begins handling the RAR upon arrival of a RAR signal if
RAR_CONTROL.Enable=1.

If the enable bit, RAR_CONTROL.Enable==0, then the RAR is not serviced and the CPU’s
internal pending RAR indication is cleared.

A RAR event is invoked on the RLP on an instruction boundary if all of the following
conditions hold:

1. A RAR event has been detected by the local APIC.

2. RAR is enabled in the RAR_CONTROL MSR.

3. There is no blocking by MOV SS or STI, or by any other condition specified in
section 8.4.

4. At least one of the following holds:

a. IGNORE IF is set in the RAR_CONTROL MSR.

b. EFLAGS.IF is set.

c. RLP is in VMX non-root mode.

7.1 Remote Action Request Handling of Multiple
Requests

If a RAR event is received and multiple RARs are pending in the action vector, all of them
are handled within the same event window sequentially starting from event 0.

Document Number: 341431-001US, Revision: 1.0 23

7.2 Remote Action Request RLP Handling Flow
The flow that the RLP hardware performs upon receiving a RAR event is as follows:

• Clear the pending RAR indication.

• Ensure all previous stores are globally observed.

• tmp_vector = load 64 bytes from the address MSR RAR_ACTION_VECTOR.”Vector
Physical Address” field.

• For each action j in the action vector:
If tmp_vector[j] == RAR_PENDING

Read slot j from payload table pointed by RAR Payload Table MSR

If payload not supported:

Write vector[j] = RAR_FAILURE

// Perform single byte store to vector at offset j

Else:

Handle action type according to payload

Write vector[j] = RAR_SUCCESS

// Perform single byte store to vector at offset j

Else

Ignore

End Flow

24 Document Number: 341431-001US, Revision: 1.0

8 Remote Action Request
Interaction with Other
Features

8.1 RAR Priority Relative to INTR
The operating system can configure the priority of RAR relative to INTR, as specified
below.

8.1.1 Behavior if RAR_CONTROL.IGNORE_IF is Clear
RAR is lower priority than any INTR. RAR cannot be serviced when RFLAGS.IF=0.

RAR is only handled when EFLAGS.IF is set.

8.1.2 Behavior if RAR_CONTROL.IGNORE_IF is Set
If IGNORE_IF is set, RAR is handled independent of the RFLAGS.IF value. If RAR and
INTR or NMI arrive at the same time, RAR is taken on the first instruction after the CPU
completes IDT vectoring, before the first instruction inside the software interrupt handler.

8.1.3 Behavior in VMX Non-Root Mode
In VMX non-root mode, the setting of the MSR RAR_CONTROL.IGNORE_IF or RFLAGS.IF
has no effect on the handling of RAR.

8.2 Sleep States
RAR is a wake event from any MWAIT sleep state. The operating system should avoid
sending a RAR to a CPU in C6 or higher sleep state as TLBs are invalidated in such sleep
states. RAR sent to an RLP in a sleep state with RAR_CONTROL.IGNORE_IF clear and
RFLAGS.IF clear may not wake the RLP.

RAR is accepted in halt state. After handling a RAR received while in halt state, the CPU
returns to halt state.

8.3 RAR and Intel® SGX
RAR is accepted while inside an enclave.

RAR is guaranteed to generate an asynchronous enclave exit (AEX) if the requested
address is inside the current enclave ELRANGE; see section 32.3 of the Intel® 64 and IA-
32 Architectures Software Developer’s Manual, Volume 3D. Additionally, see chapter 35

Document Number: 341431-001US, Revision: 1.0 25

of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D for
more information on AEX.

RAR may generate an AEX even if the requested address is not inside the current
enclave.

8.4 RAR Clear Conditions
RAR pending event is cleared on INIT and GETSEC SENTER/ENTERACCS.

RAR control MSR is reset on GETSEC SENTER/ENTERACCS and SENTER of the RLP, and
on some CPU’s also by launch of a BIOS Guard module.

8.5 RAR Inhibit States
RAR is inhibited while the processor is in any of the states listed below. A RAR received
during these states remains pending. For example, a RAR taken in SMM would remain
pending until after the SMI.

• Blocking by MOVSS or STI.

• System management mode (SMM, and SMM entered by dual-monitor).

• Wait-For-SIPI state.

• Shutdown state.

• SENTER sleep state.

• BIOS guard.

8.6 RAR and Intel® PT; Tracing with GPA
RAR may be used to invalidate EPT mappings in a guest while the guest is actively tracing
with RTIT to guest physical addresses.

In certain scenarios, a VMExit due to EPT violation/misconfiguration may occur as a result
of a RAR delivered to an RLP that is running in non-root mode:

• PT table EPT translations were invalidated or made non-writeable prior to the RAR.

• RAR payload type is INVVPID or INVEPT.

• The modification to the EPT was detected by the RLP during RAR handling.

• The VM guest is actively tracing with PT using PT2GPA mode.

VMM is expected not to modify the EPT addresses of pages currently in use by the guest
without first marking the entry as not present and performing TLB invalidation.
Performing such an invalidation may result in a write to the page mapped by the stale
TLB translation even after the RLP has signaled RAR_SUCCESS.

	1 Introduction
	1.1 Overview of Software-based TLB Shootdown
	1.2 Overview of RAR-based TLB Shootdown
	1.3 Operating System Setup for Remote Action Request

	2 Enumeration
	2.1 Detection
	2.2 RAR_INFO MSR
	2.3 Enabling

	3 Signaling a Remote Action Request
	4 Remote Action Request MSRs
	5 Remote Action Request Memory Structures
	5.1 Payload Table
	5.2 Action Vector

	6 Remote Action Payloads
	6.1 RAR Invalidation Payloads
	6.1.1 RAR Address-specific Invalidation Payloads

	6.2 Payload Type 0 - Page Invalidation
	6.3 Payload Type 1 - Page Invalidation without CR3 Match
	6.4 Payload Type 2 - PCID Invalidation
	6.5 Payload Type 3 - EPT Invalidation
	6.6 Payload Type 4 - VPID Invalidation
	6.7 Payload Type 5 - MSR Write

	7 RLP Remote Action Request Handling
	7.1 Remote Action Request Handling of Multiple Requests
	7.2 Remote Action Request RLP Handling Flow

	8 Remote Action Request Interaction with Other Features
	8.1 RAR Priority Relative to INTR
	8.1.1 Behavior if RAR_CONTROL.IGNORE_IF is Clear
	8.1.2 Behavior if RAR_CONTROL.IGNORE_IF is Set
	8.1.3 Behavior in VMX Non-Root Mode

	8.2 Sleep States
	8.3 RAR and Intel® SGX
	8.4 RAR Clear Conditions
	8.5 RAR Inhibit States
	8.6 RAR and Intel® PT; Tracing with GPA

