Pentium® Pro Family
Developer’'s Manual

Volume 2:
Programmer’s Reference Manual

NOTE: The Pentium Pro Family Developers Manuabnsists of three
books:Pentium Pro Family Developers Manual, Volume 1: Specifications
(Order Number 242690)Pentium Pro Family Developer’s Manual,
Volume 2: Programmer’s Reference Mang@rder Number 242691); and
the Pentium Pro Family Developer’s &hual, Voume 3: Operating System
Writer's Guide(Order Number 242692).

Please refer to all three volumes when evaluating your design needs.

December 1995

PATENT NOTICE

Through its investment in computer technology, Intel Corporation (Intel) has acquired numerous
proprietary rights, including patents issued by the U.S. Patent and Trademark Office. Intel has
patents covering the use or implementation of processors in combination with other products,
e.g., certain computer systems. System and method patents or pending patents, of Intel and
others, may apply to these systems. A separate license may be required for their use (see Intel
Terms and Conditions for details). Specific Intel patents include U.S. patent 4,972,338.

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except
as provided in Intel's Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing
your product order.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

intel.
TABLE OF CONTENTS

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE PENTIUM" PRO FAMILY DEVELOPER’'S MANUAL,

VOLUME 2. . o 1-1
1.2. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER'S MANUAL,

VOLUME 3. . 1-2
1.3. NOTATIONAL CONVENTIONS e e 1-4
1.3.1. Bitand Byte Order. 1-4
1.3.2. Reserved Bits and Software Compatibility 1-4
1.3.3. Instruction Operands. o i e 1-5
1.3.4. Hexadecimal and Binary Numbers 1-6
1.3.5. Segmented ADAressiNgottt 1-6
1.3.6. EXCEPLONS. . . .o 1-6
14, RELATED LITERATUREo e 1-7
CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR
2.1. NEW ARCHITECTURAL FEATURES e 2-1
2.1.1. New and Extended InStructions. i 2-2
2.1.2. New Memory Management Features e, 2-2
2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES 2-3
2.2.1. Model-Specific Registers. 2-3
2.2.2. Memory Type Range Registers. e 2-4
2.2.3. Machine-Check Exception and Architecture 2-4
2.24. Performance Monitoring Counters.ttt 2-5
2.3. INTRODUCTION TO THE PENTIUM PRO PROCESSOR’'S ADVANCED

MICROARCHITECTUREo e 2-5
2.4, DETAILED DESCRIPTION OF THE PENTIUM PRO PROCESSOR

MICROARCHITECTURE e 2-7
2.4.1. Memory SUbSYStEM. 2-8
2.4.2. The Fetch/Decode Unit e 2-9
2.4.3. Instruction Pool (Reorder Buffer). o 2-10
2.4.4. Dispatch/Execute Unit. e 2-10
2.4.5. Retirement Unit. 2-11
CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1 MODES OF OPERATIONo e e 3-1
3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT 3-2
3.3. MEMORY ORGANIZATION. .. . e 3-2
3.4. MODES OF OPERATIONo e e 3-4
3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES. 3-4
3.6. REGISTERS. .. 3-5
3.6.1. General-Purpose Data Reqgisters 3-5
3.6.2. Segment Registers 3-7
3.6.3. EFLAGS Registero e 3-9
3.6.3.1. Status FIags oo 3-10
3.6.3.2. DE Flag. . . oo 3-11
3.6.4. System Flagsand IOPL Field i 3-11

TABLE OF CONTENTS Int€I®

3.7. INSTRUCTION POINTER e e 3-12
3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES. 3-13
CHAPTER 4

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.1. PROCEDURE CALL TYPES e e 4-1
4.2. PROCEDURE STACK . . .o e e 4-1
4.2.1. Stack Alignment. 4-2
4.2.2. Address-Size Attribute for Stack 4-3
4.2.3. Procedure Linking Information. 4-3
4.2.3.1. Stack-Frame Base POINtert 4-3
4.2.3.2. Return Instruction Pointer. 4-4
4.3. CALLING PROCEDURES USING CALLAND RET ... 4-4
4.3.1. Near CALL and RET Operation.t 4-4
4.3.2. Far CALL and RET Operation.t 4-5
4.3.3. Parameter Passing 4-5
4.3.3.1. Passing Parameters Through the General-Purpose Registers 4-5
4.3.3.2. Passing Parametersonthe Stack L. 4-6
4.3.3.3. Passing Parameters inan Argument List., 4-6
4.3.4. Saving Procedure State Information L. 4-6
4.3.5. Calls to Other Privilege Levels 4-6
4.3.6. CALL and RET Operation Between Privilege Levels 4-8
4.4, INTERRUPTS AND EXCEPTIONS e 4-9
4.4.1. Call and Return Operation for Interrupt or Exception Handling Procedures . .. 4-11
4.42. Calls to an Interrupt or Exception Handler Tasks 4-13
4.4.3. Interrupt and Exception Handling in Real-Address Mode 4-14
4.4.4. INTn, INTO, INT3, and BOUND Instructions.couiu..... 4-14
4.5, PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES. 4-15
4.5.1. ENTER INStrUCHON. . . . oot e e 4-15
452, LEAVE INStrUCtioN o e 4-21
CHAPTER 5

DATA TYPES AND ADDRESSING MODES

5.1. FUNDAMENTAL DATA TYPES e e 5-1
5.1.1. Alignment of Words, Doublewords, and Quadwords. 5-1
5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATATYPES 5-2
5.2.1. INEEgEIS . . 5-2
5.2.2. unsigned INtegersot 5-4
5.2.3. BCD INtegerS. . o oo 5-4
5.2.4. POINtErS . . o 5-4
5.2.5. Bit Fields 5-4
5.2.6. SHINGS . . . et 5-4
5.2.7. Floating-Point Data TYpesS. ottt 5-4
5.3. OPERAND ADDRESSING.o e 5-5
5.3.1. Immediate Operands. 5-5
5.3.2. Register Operands 5-5
5.3.3. Memory Operands.ot 5-6
5.3.3.1. Specifying a Segment Selector. i 5-6
5.3.3.2. Specifyingan Offset 5-7
5.3.3.3. Assembler Addressing Modest e 5-9
5.3.4. /O Port AdAressing . . . oo ov v e 5-9

Int€|® TABLE OF CONTENTS

CHAPTER 6

INSTRUCTION SET SUMMARY

6.1. NEW INSTRUCTIONS IN THE PENTIUM PRO PROCESSOR. 6-1
6.2. INSTRUCTION SET LIST ... e 6-1
6.2.1. Integer INStructions 6-2
6.2.1.1. Data Transfer Instructions. 6-2
6.2.1.2. Binary Arithmetic. 6-3
6.2.1.3. Decimal Arithmetic e 6-3
6.2.1.4. Logic INStrUCtiONSo 6-4
6.2.1.5. Bit and Byte INStructions 6-4
6.2.1.6. Control Transfer Instructions. i 6-5
6.2.1.7. String INStructionsS 6-6
6.2.1.8. Flag Control InStructions. 6-7
6.2.1.9. Segment Register Instructions i 6-7
6.2.1.10. Miscellaneous Instructions 6-8
6.2.2. Floating-Point INStructions 6-8
6.2.2.1. Data Transfer 6-8
6.2.2.2. Basic Arithmetic 6-9
6.2.2.3. COMPANISON. .« . o et et e 6-9
6.2.2.4. Transcendental 6-10
6.2.2.5. Load CoNnStantS.ttt e 6-10
6.2.2.6. FPU Controlo 6-11
6.2.3. System INSETUCLIONS 6-11
6.3. DATA MOVEMENT INSTRUCTIONS e 6-12
6.3.1. General-Purpose Data Movement Instructions 6-13
6.3.1.1. Move INStruCtion 6-13
6.3.1.2. Conditional Move Instructions. i 6-13
6.3.1.3. Exchange Instructions. 6-15
6.3.2. Stack Manipulation Instructions. 6-16
6.3.2.1. Type Conversion INStructionsSo 6-18
6.3.2.2. Simple CONVErSION 6-18
6.3.2.3. Move and CONVErt. oo e 6-19
6.4. BINARY ARITHMETIC INSTRUCTIONS e 6-19
6.4.1. Addition and Subtraction Instructions 6-19
6.4.2. Increment and Decrement InStructions i 6-19
6.4.3. Comparison and Sign Change Instruction. 6-20
6.4.4. Multiplication and Divide Instructions. 6-20
6.5. DECIMAL ARITHMETIC INSTRUCTIONS. e 6-20
6.5.1. Packed BCD Adjustment Instructions 6-21
6.5.2. Unpacked BCD Adjustment Instructions, 6-21
6.6. LOGICAL INSTRUCTIONS e 6-22
6.7. SHIFT AND ROTATE INSTRUCTIONS e 6-22
6.7.1. Shift INStrUCtions 6-22
6.7.2. Double-shift Instructions 6-24
6.7.3. Rotate INStrUCtIONS. o 6-25
6.8. BIT AND BYTE INSTRUCTIONS e 6-26
6.8.1. Bit Test and Modify Instructions. 6-26
6.8.2. Bit Scan INStrUCtiONS 6-26
6.8.3. Byte-Set-On-Condition Instructions i, 6-27
6.8.4. Test INStruCtion 6-27
6.9. CONTROL TRANSFER INSTRUCTIONS e 6-27
6.9.1. Unconditional Transfer Instructions i 6-27

TABLE OF CONTENTS Int€I®

6.9.1.1. Jump INStrucCtiono e 6-27
6.9.1.2. Calland Return Instructions o 6-28
6.9.1.3. Return-From-Interrupt Instruction. 6-29
6.9.2. Conditional Transfer Instructions. i 6-29
6.9.2.1. Conditional Jump Instructions. 6-29
6.9.2.2. LOOp INSEIUCLIONS . . . o o 6-30
6.9.2.3. Jump If Zero INStructions 6-31
6.9.3. Software INterrupts 6-31
6.10. STRING OPERATIONSo e e e 6-32
6.10.1. Repeating String Operations.t 6-33
6.11. FO INSTRUCTIONS. . . .o e 6-33
6.12. ENTER AND LEAVE INSTRUCTIONS e e 6-34
6.13. EFLAGS INSTRUCTIONS s 6-34
6.13.1. Carry and Direction Flag Instructions 6-34
6.13.2. Interrupt Flag Instructions 6-34
6.13.3. EFLAGS Transfer Instructions. i 6-35
6.13.4. Interrupt Flag Instructions 6-35
6.14. SEGMENT REGISTER INSTRUCTIONS e 6-36
6.14.1. Segment-Register Load and Store Instructions. 6-36
6.14.2. Far Control Transfer Instructions.t 6-36
6.14.3. Software Interrupt INStructions. 6-36
6.14.4. Load Far Pointer Instructions 6-36
6.15. MISCELLANEOUS INSTRUCTIONS.o 6-37
6.15.1. Address Computation InStruction 6-37
6.15.2. Table Lookup INStruCtions oo e 6-37
6.15.3. Processor Identification Instruction 6-37
6.15.4. No-Operation and Undefined Instructions. 6-38
CHAPTER 7

FLOATING-POINT UNIT
7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH COPROCESSORS 7-1

7.2. REAL NUMBERS AND FLOATING-POINT FORMATS.o 7-1
7.2.1. Real Number System 7-1
7.2.2. Floating-Point Format 7-2
7.2.2.1. Normalized NUMDbErs e 7-3
7.2.2.2. Biased EXponent. e 7-4
7.2.3. Real Number and Non-Number Encodings.c i .. 7-4
7.2.3.1. SIGNed ZEr0S . .. 7-4
7.2.3.2. Normalized and Denormalized Finite Numbers 7-5
7.2.3.3. Signed Infinities 7-6
7.2.3.4. NaNS. 7-7
7.2.4. Indefinite e 7-7
7.3. FPU ARCHITECTURE. oot e e e e 7-7
7.3.1. The FPU Data Registerso e e 7-8
7.3.1.1. Parameter Passing With the FPU Register Stack 7-10
7.3.2. FPU Status Register 7-11
7.3.2.1. Top of Stack (TOP) Pointer e 7-11
7.3.2.2. Condition Code Flags oo 7-11
7.3.2.3. Exception Flagso 7-13
7.3.2.4. Stack Fault Flag oo 7-13
7.3.3. Branching and Conditional Moves on FPU Condition Codes 7-13
7.3.4. FPU Control Word e 7-15

Vi

Int€|® TABLE OF CONTENTS

7.3.4.1. Exception-Flag Masks. 7-15
7.3.4.2. Precision Control Field 7-15
7.3.4.3. Rounding Control Field 7-16
7.3.5. Infinity Control Flag 7-18
7.3.6. FPU Tag Word.o e 7-18
7.3.7. The Floating-Point Instruction and Data Pointers 7-19
7.3.8. Last Instruction Opcode. 7-19
7.3.9. Savingthe FPU's State 7-20
7.4. FLOATING-POINT DATATYPES AND FORMATSo 7-22
7.4.1. Real NUMbErS 7-23
7.4.2. Binary Integers.o 7-25
7.4.3. Decimal Integers 7-27
7.4.4. Unsupported Extended-Real Encodings 7-28
7.5. FPU INSTRUCTION SETttt it ittt e et e e e i 7-28
7.5.1. Escape (ESC) INStructions. i 7-29
7.5.2. FPU Instruction Operands i 7-29
7.5.3. Data Transfer Instructions 7-30
7.5.4. Load Constant INStruCtionst 7-31
7.5.5. Basic Arithmetic Instructions 7-32
7.5.6. Comparison and Classification Instructions. 7-33
7.5.6.1. Branching on the FPU Condition Codes. 7-35
7.5.7. Trigonometric INStructions i 7-35
7.5.8. Pl 7-36
7.5.9. Logarithmic, Exponential, and Scale 7-37
7.5.10. Transcendental INStruction ACCUracCy.o vt e e 7-37
7.5.11. FPU Control INStructionsot 7-38
7.5.12. Waiting Vs. Non-Waiting Instructions 7-39
7.5.13. Unsupported FPU INStrUCtions.o e e 7-39
7.6. OPERATING ON NANS . . .o e 7-39
7.7. FLOATING-POINT EXCEPTION HANDLING e 7-40
7.7.1. Arithmetic vs. Non-Arithmetic Instructions. 7-41
7.7.2. Automatic Exception Handling. i 7-41
7.7.3. Software Exception Handling. o 7-41
7.8. FLOATING-POINT EXCEPTION CONDITIONSt 7-44
7.8.1. Invalid Operation Exception.t 7-44
7.8.1.1. Stack Overflow or Underflow Exception (#I1S)......... 7-44
7.8.1.2. Invalid Arithmetic Operand Exception (#1A) 7-45
7.8.2. Division-By-Zero Exception (#Z)t 7-45
7.8.3. Denormal Operand Exception (#D)ot 7-47
7.8.4. Numeric Overflow Exception (#O)ottt e 7-47
7.8.5. Numeric Underflow Exception (#U) 7-48
7.8.6. Inexact-Result (Precision) Exception (#P). 7-49
7.8.7. Exception Priority. o e 7-50
7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATIONt 7-51
CHAPTER 8

INPUT/QUTPUT

8.1. /O PORT ADDRESSING ottt e e e 8-1
8.2. /O PORT HARDWARE e e 8-1
8.3. /O ADDRESS SPACE ottt e 8-2
8.3.1. Memory-Mapped [/O e 8-2
8.4. HO INSTRUCTIONS . . .ot e e 8-2

Vii

TABLE OF CONTENTS Int€I®

8.5. PROTECTED-MODE /O e 8-4
8.5.1. I/O Privilege Level 8-4
8.5.2. /O Permission Bit Map e 8-5
8.5.3. Cachingand Paging 8-6
8.6. ORDERING /O . . e e 8-6
CHAPTER 9
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
9.1. PROCESSOR IDENTIFICATION.o e e 9-1
9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE PROCESSORS 9-2
CHAPTER 10
INTEL ARCHITECTURE COMPATIBILITY
10.1. RESERVED BITS. 10-1
10.2. ENABLING NEW FUNCTIONS AND MODES. e 10-2
10.3. DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE . 10-2
10.4. NEW INSTRUCTIONS e e 10-2
10.4.1. New Pentium Pro Processor Instructions 10-3
10.4.2. New Pentium Processor Instructions. 10-3
10.4.3. New Intel486 Processor Instructions. 10-3
10.4.4. New Intel386 Processor Instructions. 10-4
10.5. OBSOLETE INSTRUCTIONS e 10-4
10.6. UNDEFINED OPCODES e 10-4
10.7. NEW FLAGS IN THE EFLAGS REGISTER.o e 10-4
10.7.1. New Pentium Processor Flags i 10-5
10.7.2. New Intel486 Processor Flags. i 10-5
10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel

Architecture ProCeSSOrSottt e 10-5
10.8. STACK OPERATIONS. . . .o e e e 10-5
10.8.1. PUSH SP. . 10-5
10.8.2. EFLAGS Pushed OnThe Stack i 10-6
10.9. FPU o 10-6
10.9.1. Control Register CROFIags. oo 10-6
10.9.2. FPU Status Word. e 10-7
10.9.2.1. Condition Code Flags (COthrough C3) 10-7
10.9.2.2. Stack Fault Flag 10-8
10.9.3. FPU Control Word 10-8
10.9.4. FPU Tag Word. e 10-8
10.9.5. Data TYPES . o oot 10-9
10.9.5.1. NaNS. . 10-9
10.9.5.2. Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 10-9
10.9.6. Floating-Point Exceptions 10-10
10.9.6.1. Denormal Operand Exception (#D) 10-10
10.9.6.2. Numeric Overflow Exception (#O) 10-10
10.9.6.3. Numeric Underflow Exception (#U) 10-11
10.9.6.4. Exception Precedence 10-11
10.9.6.5. CS and EIP For FPU EXceptions 10-11
10.9.6.6. FPUError Signals.t e e e e 10-11
10.9.6.7. Assertionofthe FERR#PIN 10-12
10.9.6.8. Invalid Operation Exception On Denormals 10-12
10.9.6.9. Alignment Check Exceptions (#AC) e 10-12
10.9.6.10. Segment Not Present Exception During FLDENV 10-12

viii

intel.

TABLE OF CONTENTS

10.9.6.11. Device Not Available Exception (#NM) 10-13
10.9.6.12. Coprocessor Segment Overrun Exception 10-13
10.9.6.13. General Protection Exception (#GP). i i 10-13
10.9.6.14. Floating-Point Error Exception (#MF) 10-13
10.9.7. Changes to Floating-Point Instructions 10-13
10.9.7.1. New Floating-Point Instructions in the Intel Pentium Pro Processor. 10-13
10.9.7.2. FDIV, FPREM, and FSQRT Instructions. 10-14
10.9.7.3. FSCALE InStruction e 10-14
10.9.7.4. FPREMI INStruction e 10-14
10.9.7.5. FPREM INStruction e 10-14
10.9.7.6. FUCOM, FUCOMP, and FUCOMPRP Instructions. 10-14
10.9.7.7. FPTAN Instruction. e 10-14
10.9.7.8. Stack Overflow 10-15
10.9.7.9. FSIN, FCOS, and FSINCOS Instructions oo it i 10-15
10.9.7.10. FPATAN Instruction e 10-15
10.9.7.11. F2XMI1 INStruction. oo e 10-15
10.9.7.12. FLD INStruCtionot e 10-15
10.9.7.13. FXTRACT INStrUCtiON o oo e e e 10-16
10.9.7.14. Load Constant Instructions e 10-16
10.9.7.15. FSETPM INStruction e 10-16
10.9.7.16. FXAM InStruction e 10-16
10.9.7.17. FSAVE and FSTENV Instructions. 10-17
10.9.8. Transcendental INStructions. 10-17
10.9.9. Obsolete INStruCtions. 10-17
10.9.10. WAIT/FWAIT Prefix Differences 10-17
10.9.11. Operands Split Across Segments and/orPages 10-17
10.9.12. FPU Instruction Synchronization 10-18
CHAPTER 11
INSTRUCTION SET REFERENCE
11.1. INSTRUCTION FORMAT . . . o e e 11-1
11.1.1. Instruction Prefixes 11-1
11.1.2. OPCOE . .ot 11-2
11.1.3. ModR/M and SIB Byteso 11-2
11.1.4. Displacement and Immediate Bytes i 11-3
11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES. 11-7
11.2.1. Instruction Format 11-7
11.2.1.1. Opcode Column 11-7
11.2.1.2. Instruction Column 11-8
11.2.1.3. Description Column. e 11-10
11.2.1.4. DesSCription . . . oo 11-10
11.2.2. OPeratioNt 11-10
11.2.3. Flags Affected 11-12
11.2.4. FPU Flags Affected 11-13
11.2.5. Protected Mode EXceptions. e 11-13
11.2.6. Real-Address Mode Exceptions i 11-14
11.2.7. Virtual-8086 Mode EXceptions.t 11-14
11.2.8. Floating-Point EXCEPLIONSo o 11-14
11.3. INSTRUCTION REFERENCE e 11-14
AAA—ASCII Adjust After Addition e 11-15
AAD—ASCII Adjust AX Before Division, 11-16
AAM—ASCII Adjust AX After Multiply 11-17

TABLE OF CONTENTS Int€I®

AAS—ASCII Adjust AL After Subtraction 11-18
ADC—Add with Carry 11-19
ADD—Add 11-21
AND—Logical AND 11-23
ARPL—Adjust RPL Field of Segment Selector 11-25
BOUND—Check Array Index AgainstBounds 11-27
BSF—Bit Scan Forward 11-29
BSR—BIit Scan Reverset 11-31
BSWAP—BYIE SWaPttt 11-33
BT—Bit TeSt . ..ot 11-34
BTC—BIit Test and Complement i, 11-36
BTR—BIit Testand Resetot 11-38
BTS—BitTestand Set i e 11-40
CALL—Call Proceduret e 11-42
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword 11-52
CDQ—Convert DoubletoQuad 11-53
CLC—Clear Carry Flag e 11-54
CLD—Clear Direction Flag 11-55
CLI—Clear Interrupt Flag 11-56
CLTS—Clear Task-Switched FlaginCRO 11-58
CMC—Complement Carry Flag 11-59
CMOVcc—Conditional Move 11-60
CMP—Compare TWO Operandst i e e 11-64
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands 11-66
CMPXCHG—Compare and Exchange 11-69
CMPXCHG8B—Compare and Exchange 8 Bytes 11-71
CPUID—CPU ldentification 11-73
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword

O QUAdWOId . . .o e 11-80
CWDE—Convert Word to Doubleword 11-81
DAA—Decimal Adjust AL after Addition 11-82
DAS—Decimal Adjust AL after Subtraction 11-83
DEC—Decrement by 1 11-84
DIV—Unsigned Divide e 11-86
ENTER—Make Stack Frame for Procedure Parameters 11-89
F2XM1—Compute 2X—1 11-92
FABS—ADbsolute Value 11-94
FADD/FADDP/FIADD—Ad 11-95
FBLD—Load Binary Coded Decimal 11-98
FBSTP—Store BCD Integerand Pop i 11-100
FCHS—Change Sign e 11-103
FCLEX/FNCLEX—Clear Exceptions 11-105
FCMOVcc—Floating-Point Conditional Move 11-106
FCOM/FCOMP/FCOMPP—Compare Real 11-108
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS . 11-111
FCOS—CO0SINE . . o\ttt 11-114
FDECSTP—Decrement Stack-Top Pointer 11-116
FDIVIEDIVP/FIDIV—Divide e 11-117
FDIVR/FDIVRP/FIDIVR—Reverse Divide 11-121
FFREE—Free Floating-Point Register 11-125
FICOM/FICOMP—Compare Integer i, 11-126

FILD—Load Integert e e 11-128

TABLE OF CONTENTS

FINCSTP—Increment Stack-Top Pointer 11-130
FINIT/ENINIT—Initialize Floating-Point Unit 11-131
FIST/FISTP—Store Integer e 11-132
FLD—Load Real 11-135
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant .. 11-137
FLDCW—Load Control Word 11-139
FLDENV—Load FPU Environment, 11-141
FMUL/FMULP/FIMUL—Multiply s 11-143
FNOP—NoO Operation e 11-146
FPATAN—Partial Arctangent e 11-147
FPREM—Partial Remainder i 11-149
FPREM1—Partial Remaindert 11-152
FPTAN—Partial Tangent i 11-155
FRNDINT—Round to Integer i, 11-157
FRSTOR—Restore FPU State 11-158
FSAVE/FNSAVE—Store FPU State 11-160
FSCALE—Scale 11-163
FSIN—SINE .. o 11-165
FSINCOS—Sineand CoSINettt 11-167
FSQRT—Square ROOt e e 11-169
FST/FSTP—Store Real e 11-171
FSTCW/FNSTCW—Store Control Wordo 11-174
FSTENV/FNSTENV—Store FPU Environment 11-176
FSTSW/FNSTSW—Store Status Wordoiviinn... 11-178
FSUB/FSUBP/FISUB—Subtractt 11-180
FSUBR/FSUBRP/FISUBR—Reverse Subtract 11-183
FTST—TEST .. e 11-186
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real 11-188
FWAIT—WaIt ... e 11-191
FXAM—EXamINe e e 11-192
FXCH—Exchange Register Contents 11-194
FXTRACT—Extract Exponent and Significand 11-196
FYL2X—Compute y T10g2Xottt e e 11-198
FYL2XP1—Compute y O1og2(X +1) oot e 11-200
HLT—Halt . .. 11-202
IDIV—Signed Divide 11-203
IMUL—Signed Multiply 11-206
IN—Input from Port 11-209
INC—Increment by 1 11-211
INS/INSB/INSW/INSD—Input from Portto String 11-213
INTn/INTO/INT3—Call to Interrupt Procedure 11-216
INVD—Invalidate Internal Caches 11-227
INVLPG—Invalidate TLB ENtry i 11-229
IRET/IRETD—Interrupt Return e 11-230
Jec—Jump if ConditionIsMet 11-237
JMP—JUMP . 11-241
LAHF—Load Status Flags into AH Register 11-248
LAR—Load Access Rights Byte i 11-249
LDS/LES/LFS/LGS/LSS—Load Far Pointer 11-252
LEA—Load Effective Address i 11-255
LEAVE—High Level Procedure Exit, 11-257
LES—Load Full Pointer 11-259

xi

TABLE OF CONTENTS Int€I®

Xii

LFS—Load Full Pointer 11-260
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register 11-261
LGS—Load Full Pointer 11-263
LLDT—Load Local Descriptor Table Register 11-264
LIDT—Load Interrupt Descriptor Table Register 11-266
LMSW—Load Machine Status Word, 11-267
LOCK—Assert LOCK# Signal Prefix 11-269
LODS/LODSB/LODSW/LODSD—Load String Operand 11-271
LOOP/LOOPcc—Loop According to ECX Counter 11-273
LSL—Load Segment Limit 11-275
LSS—Load Full Pointer e 11-278
LTR—Load Task Register i 11-279
MOV—/MOVEt 11-281
MOV—Move to/from Control Registers 11-285
MOV—Move to/from Debug Registers 11-287
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String 11-289
MOVSX—Move with Sign-Extension 11-291
MOVZX—Move with Zero-Extend 11-292
MUL—Unsigned Multiplication of AL, AX, or EAX 11-294
NEG—Two's Complement Negation 11-296
NOP—NO Operationt e 11-298
NOT—One's Complement Negation 11-299
OR—Logical Inclusive OR e 11-301
OUT—OuUtputto Port e e 11-303
OUTS/OUTSB/OUTSW/OUTSD—Output Stringto Port 11-305
POP—Pop a Value fromthe Stack 11-308
POPA/POPAD—Pop All General-Purpose Registers 11-312
POPF/POPFD—Pop Stack into EFLAGS Register 11-314
PUSH—Push Word or Doubleword Onto the Stack 11-317
PUSHA/PUSHAD—Push All General-Purpose Registers 11-320
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack 11-322
RCL/RCR/ROL/ROR-—ROtateot 11-324
RDMSR—Read from Model Specific Register 11-328
RDPMC—Read Performance-Monitoring Counters 11-330
RDTSC—Read Time-Stamp Counter i .. 11-332
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 11-333
RET—Return from Procedure 11-336
ROL/ROR—ROAtet e 11-342
RSM—Resume from System ManagementMode 11-343
SAHF—Store AHINtOFlagso 11-344
SAL/SAR/SHL/SHR—SHhift Instructions 11-345
SBB—Integer Subtraction with Borrow, 11-349
SCAS/SCASB/SCASW/SCASD—Scan StringData 11-351
SETcc—Set Byte on Conditiono 11-353
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register 11-356
SHL/SHR—SHhift Instructions 11-359
SHLD—Double Precision ShiftLeft 11-360
SHRD—Double Precision ShiftRight 11-362
SIDT—Store Interrupt Descriptor Table Register 11-364
SLDT—Store Local Descriptor Table Register 11-365
SMSW—Store Machine Status Word 11-367
STC—SetCarryFlag 11-369

TABLE OF CONTENTS

STD—Set Direction Flag 11-370
STI—SetInterrupt Flago 11-371
STOS/STOSB/STOSW/STOSD—Store String Data 11-373
STR—Store Task Register i 11-375
SUB—Integer Subtraction 11-376
TEST—Logical Comparet 11-378
UD2—Undefined Instruction 11-380
VERR, VERW—Verify a Segment for Reading or Writing 11-381
WAIT/FWAIT—Wait ... e 11-383
WBINVD—Write-Back and Invalidate Cache 11-384
WRMSR—Write to Model Specific Register 11-386
XADD—Exchange and Add i 11-388
XCHG—Exchange Register/Memory with Register 11-390
XLAT/XLATB—Table Look-up Translation 11-392
XOR—Logical Exclusive OR e 11-394
APPENDIX A

EFLAGS CROSS-REFERENCE

APPENDIX B
EFLAGS CONDITION CODES

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

Figures
Title Page

Bitand Byte Order 1-4
The Processing Units in the Pentium Pro Processor Microarchitecture and

Their Interface with the Memory Subsystem. 2-6
Functional Block Diagram of the Pentium Pro Processor Microarchitecture. . 2-8
Pentium Pro Processor Basic Execution Environment. 3-2
Three Memory ManagementModels 3-3
Application Programming Registers i 3-6
Alternate General-Purpose Register Names 3-7
Use of Segment Selectors for Flat Memory Model 3-8
Use of Segment Selectors in Segmented Memory Model 3-8
EFLAGS Registero e 3-9
Procedure Stack Structure 4-2
Protection RINGSo 4-7
Stack Switch on a Call to a Different Privilege Level 4-9
Stack Usage on Calls to Interrupt and Exception Handling Routines. 4-12
Nested Procedures 4-17
Stack Frame after Entering the MAIN Procedure 4-18
Stack Frame after Entering Procedure A 4-19
Stack Frame after Entering Procedure B 4-20
Stack Frame after Entering Procedure C 4-21
Fundamental Data TYPeS oottt 5-1
Bytes, Words, Doublewords and Quadwords in Memory 5-2

xiii

TABLE OF CONTENTS

1 1 1 D 1 1 1 1 1 1 1 1 1 1 1
o

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NogpwdbPROT

PONNNNNNNNNNNNNNNNNOOOOOOPO O DO UGG
NRRPRERPRPRPRPRRPOONORONRPRPEROONOORONROA®

el el e
e
wWN P

11-4.

;u
=2
)

Noooo g A WN o
PORONRPRRPER

Xiv

Numeric, Pointer, and Bit Field Data Types oL 5-3
Memory Operand Addressot 5-6
Offset (or Effective Address) Computation. 5-8
Operation of the PUSH Instruction 6-16
Operation of the PUSHA Instruction. 6-17
Operation of the POP Instruction 6-17
Operation of the POPA Instruction 6-18
Sign EXTENSIONo 6-18
SHL/SAL Instruction Operation.t 6-22
SHR Instruction Operation i 6-23
SAR Instruction Operationt 6-24
SHLD and SHRD Instruction Operations 6-24
ROL, ROR, RCL, and RCR Instruction Operations 6-25
Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions . 6-35
Binary Real Number System 7-2
Binary Floating-Point Format 7-3
Real Numbersand NaNs i 7-5
Relationship Between the Integer Unitandthe FPU 7-7
FPU Execution Environment. i 7-8
FPU Data Register Stack 7-9
Example FPU Dot Product Computation 7-10
FPU Status Wordo e 7-11
Moving the FPU Condition Codes to the EFLAGS Register. 7-14
FPU Control Word 7-15
FPUTagWord e 7-18
Contents of FPU Opcode Registers.o, 7-20
Protected-Mode FPU State Image in Memory, 32-Bit Format 7-20
Real Mode FPU State Image in Memory, 32-Bit Format 7-21
Protected-Mode FPU State Image in Memory, 16-Bit Format 7-21
Real Mode FPU State Image in Memory, 16-Bit Format 7-21
Floating-Point Unit Data Type Formats 7-22
Memory-Mapped I/O. 8-3
/O Permission Bit Map. e 8-5
Instruction Format. 11-1
Bit Offset for BIT[EAX,21].ottt e 11-12
Memory Bit INndexing. 11-12
Version and Feature Information in Registers EAX and EDX. 11-74
Tables

Title Page
Overview of the Pentium Pro Processor Features 2-1
Effective Operand- and Address-Size Attributes 3-13
Exceptions and Interrupts. 4-11
Default Segment SelectionRules. 5-7
Move Instruction Operations.t 6-13
Conditional Move INStruCtions.o 6-14
Bit Test and Modify Instructions 6-26
Conditional Jump Instructions. 6-30
Information Provided by the CPUID Instruction 6-37
Real Number Notation e 7-3

&

INENENENENENENENENENENENENEN
PRERERRBROONOORALDN

~
el
No

7-18.
7-19.
7-20.
7-21.
7-22.
8-1.

11-1.
11-2.
11-3.
11-4.

RRRRR R
LR RREE e
= © o0~ O U
=%

oOw>
[

TABLE OF CONTENTS

Denormalization ProCesst 7-6
FPU Condition Code Interpretation. 7-12
Precision Control Field (PC) s 7-16
Rounding Control Field (RC). e 7-16
Rounding of Positive Numbers 7-17
Rounding of Negative Numbers 7-17
Length, Precision, and Range of FPU Data Types. 7-23
Real Number and NaN Encodings 7-25
Binary Integer ENncodingso 7-26
Packed Decimal Integer Encodings 7-27
Unsupported Extended-Real Encodings. 7-29
Data Transfer Instructions. i 7-30
Floating-Point Conditional Move Instructions 7-31
Setting of FPU Condition Code Flags for

Real Number Comparisons.ttt 7-34
Setting of EFLAGS Status Flags for Real Number Comparisons. 7-34
TEST Instruction Constants for Conditional Branching. 7-35
Rules for Generating QNaNs 7-40
Arithmetic and Non-Arithmetic Instructions. 7-42
Invalid Arithmetic Operations and the Masked Responses to Them 7-46
Divide-By-Zero Conditions and the Masked Responses to Them 7-46
Masked Responses to Numeric Overflow. 7-48
I/O Instruction Serialization. 8-7
16-Bit Addressing Forms with the ModR/M Byte 11-4
32-Bit Addressing Forms with the ModR/MByte 11-5
32-Bit Addressing Forms withthe SIBByte 11-6
Register Encodings Associates With

the +rb, +rw, and +rd Nomenclature. 11-8
Exception Mnemonics, Names, and Vector Numbers. 11-13
Floating-Point Exception Mnemonics and Names 11-14
Information Returned by CPUID Instruction 11-73
Processor Type Field 11-75
Feature Flags Returned in EDX Register 11-75
Encoding of Cache and TBL Descriptors.. 11-77
EFLAGS Cross-Reference A-1
EFLAGS Condition Codesttt B-1
Floating-Point Exceptions Summary.t C-1

XV

CHAPTER 1
ABOUT THIS MANUAL

The Pentiunt Pro Family Developers Manual, Volume 2: Programmer’s Reference Manual
(Order Number 242691) is part of a three-volume set thatriees the architecturerqgram-

ming environment, and hardware features of the Pentium Pro processor. The other two manuals
in this set are as follows:

® Pentium Pro Family Developers &hual, Voume 1: SpecificationgOrder Number
242690)

® Pentium Pro Family Developers Manual, Volume 3: Operating System Writer's Guide
(Order Number 242692)

The Pentium Pro Family Developer's Manual, Volumeard thePentium Pro Family Devel-

opers Manual, Volume 3Jescribe the architecture ampdogramming environment of the
processor. ThEBentium Pro Family Developer's&hual, \Wlume 2describes the basic program-

ming environment and the instructions set of the processor. It is aimed at applicagjcanp

mers who are writing programs to run under existing operating systems or executives. The
Pentium Pro Family Developers &hual, Voume 3describes the operating system support
environment of the processor, including memory management, protection, task management,
interrupt and exception handling, and system management mode. It also describes the opcode
structure and requirements for compiler writers. Both manuals provide Intel Architecture
processor compatibility information.

1.1. OVERVIEW OF THE PENTIUM"” PRO FAMILY DEVELOPER’S
MANUAL, VOLUME 2

The contents of this manual are as follows:

Chapter 1 — About the Manual. Gives an overview of this manual and tRentium Pro

Family Developer’s Manual, Volume & also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2— Introduction to the Intel Pentium Pro Processor.Introduces the Intel Pentium
Pro processor family, gives an overview of the new features found in these processors, and
describes the Pentium Pro processor’s microarchitecture.

Chapter 3 — Program Execution Environment.Introduces the models of memory organiza-
tion and describes the register set used by applications.

Chapter 4 — Basic Calls, Interrupts, and ExceptionsDescribes the procedure stack and the
mechanisms provided for making procedure calls and for servicing interrupts and exceptions.

1-1

ABOUT THIS MANUAL Intel®

Chapter 5 — Data Types and Addressing ModesDescribes the data types and addressing
modes recognized by the processor.

Chapter 6 — Instruction Set Summary.Gives an overview of all the Pentium Pro processor
instructions except those executed by the processor’s floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 — Floating-Point Unit. Describes the Pentium Pro processor’s floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor's floating-point exception conditions.

Chapter 8 — Input/Output. Describes the processor’s 1/0O architecture, including I/O port
addressing, the I/O instructions, and the 1/O protection mechanism.

Chapter 9 — Processor Identification and Feature DeterminationDescribes how to deter-
mine the CPU type and the features that are available in the processor.

Chapter 10 — Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Intel38§ Intel486™, Pentium, and Pentium Pro presers.

Chapter 11 — Instruction Set Reference Describes each of the Pentium Pro processor
instructions in detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be generated. The
instructions are arranged in alphabetical order.

Appendix A — EFLAGS Cross-Reference.Summaries how the Pentium Pro processor
instructions affect the flags in the EFLAGS register.

Appendix B— EFLAGS Condition Codes.Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions SummarySummatrizes the exceptions that can be
raised by floating-point instructions.

1.2. OVERVIEW OF THE PENTIUM PRO FAMILY DEVELOPER’S
MANUAL, VOLUME 3

The contents of thBentium Pro Family Developers Manual, Volumarg as follows:

Chapter 1 — About the Manual. Gives an overview of this manual and thentium Pro
Family Developers Manual, Volume £ also describes the notational conventions in these
manuals and lists related Intel manuals and decuation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview.Describes the modes of operation of the
Pentium Pro processor and those processor features used to build operating systems and execu-
tives, including the system-oriented registers and data structures and the system-oriented
instructions. The steps necessary for switching between real-address and protected modes are
also identified.

1-2

Intel ® ABOUT THIS MANUAL

Chapter 3 — Protected-Mode Memory ManagementDescribes the data structures, registers,
and instructions that support segmentation and paging and exjptainthey can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection.Describes the Pentium Pro processor’s support for page and segment
protection. This chapter also explains the implementation of privilege rules, stack switching,
pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
of the Pentium Pro processor, shows how interrupts anepéens relate to protection, and
describes how the processor handles each exception type.

Chapter 6 — Task ManagementDescribes how the Pentium Pro processor supports multi-
tasking with context-switching operations and inter-task protection.

Chapter 7 — Multiple Processor Management.Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program-
mable interrupt controller (APIC).

Chapter 8 — Processor Management and InitializationDefines the state of the processor

and floating-point unit after reset initialization. This chaptep axplains how to set up the
processor for real-address mode operation and protected mode operation, and how to switch
between modes.

Chapter 9 — System Management Mode (SMM)Describes the Pentium Pro processor’s
implementation of system management mode (SMM), which can be used to implement power
management functions.

Chapter 10 — Debugging and Performance MonitoringDescribes the debugging registers
and other debug features of the Pentium Pro processor. This chapter also describes the time-
stamp counter and thenfermance nonitoring counters.

Chapter 11 — Memory Cache Control.Describes the general concept of caching and the
specific mechanisms used by the Pentium Pro processor’s internal caches. This chapter also
describes the memory type range registers (MTRRs) and how they can be used tanmap me
types of physical memory.

Chapter 12 — 8086 Emulation.Describes the real-address and virtual-8086 modes of the
Pentium Pro processor.

Chapter 13 — Mixing 16-Bit and 32-Bit Code.Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 14 — Code Optimization.Discusses general optimization technigtersprogram-
ming an Intel Architecture processor.

Chapter 15 — Intel Architecture Compatibility. Describes the differences between 8086, the
Intel 286, Intel386, Intel486, Pentium, and Pentium Pro processors. This chapter covers the
system architecture of the Intel Architecture processors.

Chapter 16 — Machine Check Architecture. Describes the processor’s machine check
architecture.

1-3

ABOUT THIS MANUAL Intel®

Appendix A — Opcode Map.Gives an opcode map for the Pentium Pro processor instruction
set.

Appendix B — Performance-Monitoring Counters.Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events.

Appendix C — Model Specific Registers (MSRs)Lists the MSRs available in the Pentium
Pro processor and their functions.

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.3.1. Bitand Byte Order

In illustrations of data structures in mery, smaller addressappear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. The Pentium
Pro processor is a “little endian” machine; this means the bytes of a word are numbered starting
from the least significant byte. Figure 1-1 on page 1-4 illustrates these conventions.

Data Structure
31 24 23 16 15 8 7 0 -«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 ByteO0 | O

A

Byte Offset

Highest
Address

Lowest
Address

Figure 1-1. Bit and Byte Order

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are mariestaged When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be

1-4

Intel ® ABOUT THIS MANUAL

regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved Pentium Pro
processor register bits. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incom-
patibility with future processors.

1.3.3. Instruction Operands
When instructions are represented symbolically, a subset of the assembly language for the

Pentium Pro processor is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:
® A labelis an identifier which is followed by a colon.

® A mnemonids a reserved name for a class of instruction opcodes which have the same
function.

®* The operandargumentlargument2 andargument3are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is soairce operand. Sonassembly languages put
the source and destination in reverse order.

1-5

ABOUT THIS MANUAL Intel®

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set:0,1,2,3,45,6,7,8,9,A,B,C,D,E,and F.

Base 2 (binary) numbegege represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This meamsorgeis organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
address memory. The memory that can be addressed with a byte address is calbrdsmn

space

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces,ssdl@éntsFor example, a program

can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack spacewirg foll
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at aB&#&3d inthe segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions vghnartuce errocodes may not

be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

1-6

Intel ® ABOUT THIS MANUAL

See Chapter Snterrupt and Exeption Handling in the Pentium Pro Family Developers
Manual, Volume 3or a list of exception mnemonics and their descriptions.

1.4. RELATED LITERATURE

The followingbooks contain additional material related to Intel processors:
® Intel Pentium Pro Processor Specification Updaeder Number £2689.

® AP-485, Intel Processor Identification with the CPUID Instructio®@rder Number
241618.

® PentiumProcessor Data BoglOrder Number 21428.

® 82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium
ProcessorOrder Number 241429.

* Intel486Microprocessor Data BoglkOrder Number 240440.

® Intel486 Processor Hardware Reference Man@der Number 240552,

® Intel486 DX Processor Programmer’'s ReferencanMal Order Number 240486.

® Intel486 SX CPU/Intel487™ SX Math CoProcessor Data BG@uker Number 22950.
* Intel486 DX2 Microprocessor Data BooRrder Number 241245.

* Intel486 Microprocessor Product Brief BqdRrder Number 23459.

® Intel386 Processor Hardware Reference Man@der Number 231732,

® Intel386 DX Processor Programmer’s ReferencanMal Order Number 230985.

®* Intel386 SX Processor Programmer's Reference Mar@er Number 240331.

® Intel386 Processor System Software Writer's Gu@leler Number 231499.

* Intel386 High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
ManagementOrder Number 231630.

® 376 Embedded Processor Programmer's Reference MaDudér Number 20314.
® 80387 DX User's Manual Programmer's Referer@eder Number 231917.

® 376 High-Performance 32-Bit Embedded ProcesSwder Number 240182.

® Intel386 SX MicroprocesspOrder Number 240187.

® Microprocessor and Peripheral Handbo@kol. 1), Order Number 230843.

® AP-485, Intel Processor Identification with the CPUID Instructio®@rder Number
241618.

® AP-500,0ptimizations for Intel's 32-Bit Processp@rder number £1799.

1-7

CHAPTER 2
INTRODUCTION TO THE INTEL
PENTIUM PRO PROCESSOR

The Intel Pentium Pro processor is the first of a new family of Intel Architecture processors.
While fully software compatible with earlier Intel Architecture processors, it offers several
important new architectural and model-specific features. It also provides sigh#idvances in
processing speed. The PentiBimo processor running at a 150 MHadk rate executes industry
standard benchmark programs more than twice as fast as the Intel Pentium pracessgmat

100 MHz. Table 2-1 on page 2-1 provides an overview of the Pentium Pro processor’s features.

Table 2-1. Overview of the Pentium Pro Proc essor Features

Feature Description

Number of Transistors 5.5 Million in CPU core.

Clock Rate First processors, 150 MHz and 166 MHz; up to 200 MHz in the future.

Compatibility with Earlier Intel Fully compatible.
Architecture Processors

Microarchitecture Three-way superscalar; five parallel execution units (two integer, two
FPU, and one memory interface); dynamic execution.

Caches Level 1 (L1) cache: 8-KByte, four-way set-associative, primary
instruction cache; 8-KByte, dual-ported, two-way set-associative,
primary data cache; both located on the CPU die.

Level 2 (L2) cache: 256-KByte (static RAM) secondary cache; located
on a separate die and closely coupled to the CPU die by means of a
dedicated full clock-speed bus.

Process Technology Four-layer metal BICMOS; 0.6 microns; 2.9 Volts.

Package Design and Die Size | Package: Dual cavity PGA ceramic package; 387 pins.
CPU die size: 306 millimeter square
L2 Cache SRAM die size: 202 millimeter square

Power consumption 23 watts typical at 150 MHz clock rate.

The new features found in the Pentium Pro processor can be divided into three categories: new
architectural features, nemodel-specific features, and advances in the microarchitecture.
These features are described in the following sections.

2.1. NEW ARCHITECTURAL FEATURES

The new features that the Pentium Pro processor adds to the Intel Archiiteciudle several

new and extended instructions and new memory management capabilities. Several model-
specific features have also been added to the Pentium Pro processor. The following sections
describe these new features.

2-1

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR Intel®

2.1.1. New and Extended Instructions

The following instructions are new in the Pentimo processor:

® CMOVcc (conditional move) instructions—Checks the state of the status flags in the
EFLAGS registers and performs a move operation if the specified condition (state of the
flags) is true. These instructions can be used to move a value from a memory location or
general-purpose register to another register. They are provided to improve branch
prediction performance. (See “CMOVcc—Conditional Move” on page 11-60).

® FCMOVcc (floating-point conditional move) instructions—Check the state of the status
flags in the EFLAGS registers and perform a flegtpointmove operation if the specified
condition is true. These instructions move the contents of a specifieiddlqatint register
[ST(@)] to the top of the register stack [ST(0)]. (see “FCMOVcc—Floating-Point
Conditional Move” on page 11-106).

® FCOMI (floating-point compare and set EFLAGS) instructions—Compare the values in
two floating-point registers and stte status flags in the EFLAGS register according to
the results. (See “FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS” on page 11-111).

® RDPMC (read performance monitoring counters) instruction—Reads the contents of the
specified performance monitoring counter. This instruction is associated with a new flag in
control register CR4, bit 8. This flag, called the PCE (performance counter enable) flag,
permits programs or procedures running at protection levels 1, 2, or 3 to execute the
RDPMC instruction, which can normally only be executed only at privilege level 0. (See
“RDPMC—Read Performance-Monitoring Counters” on paty330).

® UD?2 (undefined) instruction—Generates an invalid opaadeeption. This instruction is a
no-op instruction provided for testing invalid-opcode exception handlers. (See
“UD2—Undefined Instruction” on page 11-380).

In addition to these new instructions, the functions of the CPUID, RDMSR, and WRMSR
instructions have been extended. The CPUID (CPU identification) instruction now indicates the
existence of additional model-specific features and displays cache information (see
“CPUID—CPU Identification” on page 11-73).

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions now recognize a much larger number of model-specifistees. (See
“RDMSR—Read from Model Specific Register” on page 11-328 and “WRMSR—Write to
Model Specific Register” on page 11-386 for mor®imaion about these instructions.

2.1.2. New Memory Management Features

The Pentium Pro processor provides three new memory management features: physical memory
addressing extension, the global bit in page table entries, and general support for larger page
sizes. These features are only available when operating in protected mode.

2-2

Intel® INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

The new PAE (physical address extension) flag in control register CR4, bit 5, éfoabladdi-

tional address lines on the processor, allowing 36-bit physical addresses. This option can only
be used when paging is enabled, using an advance page-table mechanism provided to support
the larger physical address range.

The new PGE (page global enable) flag in control register CR4,ibvides a mechanism for
preventing frequently used pages from being flushed from the translation lookaside buffer
(TLB). When this flag is set, frequently used pages (such as pages containing kernel procedures
or common data tables) can be marked global by setting the global flag in a page-table-directory
or page-table entry. On a task switch or a write to control register CR3 (which normally causes
the TLBs to be flushed), the entries in the TLB marked global will normally not be flushed.
Marking pages global in this manner provides software with a mechanism for contuoltiag-

essary reloading of the TLB due to TLB misses on frequently used pages.

One of the new features available in the Pentium Pro processor is support for large page sizes.
This support is enabled with tHeSE (page size extension) flag in control register CR4, bit 4.
When this flag is set, the processwpports 4-KByte and 4-MByte page sizes when normal
paging is used and 4-KByte and 2-MByte page sizes when the physical address extension is
used.

See Chapter Rrotected-Mode Memory ManagemeintthePentium Pro Family Developerss
Manual, Volume 3For more information about the physical memory addressing extension,
global pages, and large page sizes.

2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES

The Pentium Pro processor provides several model-specific features that are either new to Intel
Architecture processors or extensions of existing features. Model-specific features appear in
some Intel Architecture processors, but are not part of the Intel Architecture; that is, they are not
guaranteed to be implemented in the same manner in future Intel Architecture processors. The
new and extended model-specific featui@msnd in the Bntium Pro processor include more
model specific registers, nanwemory type range gisters(MTRRS), extensions to theachine

check architectureand new performance monitoring counters.

2.2.1. Model-Specific Registers

The concept of model-specific registers (MSRs) to control hardware functions in the processor

or to monitor processor activity was introduced in the Pentium processor. The number of MSRs

is greatly increased in the Pentium Pro processor. The new registers control the debug exten-
sions, the performance counters, the machine-check exception capability, the machine check
architecture, and the MTRRs. The MSRs can be read and written to using the RDMSR and

WRMSR instructions, respectively.

See Chapter 8Processor Management and Initializatioand Appendix CModel-Specific
Registers (MSRsin thePentium Pro Family Developer's Manual, Volumé&8more informa-
tion on the MSRs.

2-3

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR Intel®

2.2.2. Memory Type Range Registers

Memory type range registers (MTRRs) are a new feature introduced in the Pentium Pro
processor that allow the processor to optimize memory opasdir different types of memory,
such as RAM, ROM, frame buffer memory, and memory-mapped 1/O.

MTRRs are MSRs that configure an internal mapaf physical address ranges are mapped to
various types of memory. The processor uses this internal memory map to determine the cache-
ability of various physical memory locations and the optimal method of accessing memory loca-
tions. For example, if a memory location is specified in an MTRR as thribeigh memory, the
processor handles accesses to this location as follows. It reads data from that location in lines
and caches the read data or maps all writes to that location to the bus and updates the cache to
maintain cache coherency. In mapping the physical address space with MTRRS, teeoproce
recognizes five types of memory: uncacheable (UC), write-combining (WC), write-through
(WT), write-protected (WP), and writeback (WB).

Earlier Intel Architecture processors (such as the Intel486 and the Pentium processor) used the
#KEN (cache enable) pin and external logic to maintain an external memory map and signal
cacheable accesses to the processor. The MTRR mechanism simplifies hardware designs by
eliminating the #KEN pin and the external logic required to drive it.

See Chapter 8Processor Manageemt and Initialization, and Appendix CModel-Specific
Registers (MSRsin thePentium Pro Family Developersamual, Volume 3or more informa-
tion on the MTRRs.

2.2.3. Machine-Check Exception and Architecture

The Pentium processor introduced a new exception called the machine-check exception (inter-

rupt 18). This exception is used to signal hardware-related errors, such as a parity error on a read
cycle. The Pentium Pro processor extends the types of errors that can be detected and that
generate a machine-check exception. It also provides a new machine-check architecture that
records information about a machine-check error and provides the basis for an extended error

logging capability.

The machine-check architecture provides several banks of reporting registers for recording
machine-check errors. Each bank of registers is associated with a specific hardware unit in the
processor. The primary focus of the machine checks is on bus and interconnect operations;
however, checks are also made of translation lookaside buffer (TLB) and cache integrity.

The machine-check architecture can correct some errors automatically and allow for reliable
restart of instruction execution. It also collects sufficient information for software to use in
logging other machine errors not corrected by hardware.

See Chapter Bnterrupt and Exception Handlingnd Chapter 1®/achine Check Architecture
in thePentium Pro Family Developer’s Manual, VolumBBmore information otthe machine-
check exception and the machine-check architecture.

2-4

Intel® INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

2.2.4. Performance Monitoring Counters

The Pentium Pro processor has two performance-monitoring counters for use in monitoring
internal hardware operations. These counters are duration or event counters that can be
programmed to count any of approximately 100 different types of events, such as the number of
instructions decoded, number of interrupts received, or number of cache loads. Appendix C,
Model-Specific Registers (MSR#&) the Pentium Pro Family Developers Manual, Volume 3

lists all the events that can be counted. The counters are set up, started, and stopped using two
MSRs and the RDMSR and WRMSR instructions. The current count for a particular counter can
be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code,
diagnosing system failures, or refining hardware designs. See ChaptBeli@gging and
Performance Monitoringin thePentium Pro Family Developer’s Manual, Voluméo8 more
information on these counters.

2.3. INTRODUCTION TO THE PENTIUM PRO PROCESSOR’S
ADVANCED MICROARCHITECTURE

The Pentium processor (introduced by Intel893) set an impres® performance standard

with its superscalar microarchitecture. In designing the Pentium Pro processor, one of the
primary goals of the Intel chip architects was to exceed the performance of the 100-MHz
Pentiumprocessor significantly while still using the same 0.6-microméberr-layer, metal
BICMOS manufacturing process. Using the same manufacturing process as the Pentium
processor meant that performance gains could only be achieved through substantial advances in
the microarchitecture.

The resulting Pentium Pro processor microarchitecture is a three-way superscalar, pipelined
architecture. The term “three-way superscalar” means that using parallel processing techniques,
the processor is able on average to decode, dispatch, and complete execution of (retire) three
instructions per clock cycle. To handle this level of instructltmoughput, the Pentium Pro
processor uses a decoupled, 12-stage superpipelireufiairts out-of-ordenstruction execu-

tion. Figure 2-1 on page 2-6 shows a conceptual view of this pipeline, with the pipeline divided
into four processing units (the fetch/decode unit, the dispatch/execute unit, the retire unit, and
the instruction pool). Instructions and data sueplied to these units through the bustifzce

unit.

To insure a steady supply of instructions and data to the instruction execution pipeline, the
Pentium Pro processor microarchitecture incorporates two cache levels. The L1 cache provides
an 8-KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline.
The L2 cache is a 256-KByte static RAM that is coupleth&ocore processorribugh a full
clock-speed, 64-bit, cache bus.

2-5

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR Intel®

The centerpiece of the Pentium Pro processor microarchitecture is an innovative out-of-order
execution mechanism called “dynamic executi@yhamic execution incorporatésree data-
processing concepts:

® Deep branch prediction.
®* Dynamic data flow analysis.

® Speculative execution.

System Bus

Y L2 Cache

A

Cache Bus

Y

Bus Interface Unit

¢ ¢

L1 Instruction
Cache L1 Data Cache
A
y Fetch y Load Store
Fetch/Decode Dispatch/ Intel
Unit Execute Unit Retire Unit [Archlt_ecture
Registers

A

/

Dispatch/
Execute Unit

Figure 2-1. The Processing Units in the Pentium Pro Processor Microarchitecture and
Their Interface with the Memory Subsystem

Branch prediction is a concept found in most mainframe and high-speed microprocessor archi-
tectures. It allows the processor to decode instructions beyond branches to keep the instruction
pipeline full. In the Pentium Pro processor, the instruction fetch/decode unit uses a highly opti-
mized branch prediction algorithm to predict the direction of the instruction stream through
multiple levels of branches, procedure calls, and returns.

Dynamic data flow analysis involves real-time analysis of the flow of dataghritne processor

to determine data and register dependencies and to detect opportuniigsdborderinstruc-

tion execution. The Pentium Pro dispatch/execute unit can simultaneously monitor many
instructions and execute these instructions in the order that optimizes the use of tb&opoce

2-6

Intel® INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

multiple execution units, while maintaining the integrity of the data being operated on. This out-
of-order exeution keeps the execution units even when cache misses and data dependencies
among instructions occur.

Speculative execution refers to the processor’s ability to execute instructions ahead of the
program counter but ultimately to comntiite results in the order of the original instruction
stream. To make speculative execution possible, the Pentium Pro processor microarchitecture
decouples the dispatching and executing of instructions from the commitment of results. The
processor’s dispatch/execute unit uses data-flow analysis to execute all available instructions in
the instruction pool and store the results in temporary registers. The retirement unit then linearly
searches the instruction pool for completed instructions that no longer have data dependencies
with other instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory and/or the Intel
Architecture registers (the processor’s eight general-purpose registers and eight floating-point
unit data registers) in the order they were originally issued and retires the instructions from the
instruction pool.

Through deep branch prediction, dynamic data-flow analysis, and speculative execution,
dynamic execution removes the constraint of linear instruction sequencing between the tradi-
tional fetch and execute phases of instruction execution. It allows instructions to be decoded
deep into multi-level branches to keep the instruction pipeline full. It promotes out-of-order
instruction execution to keep the processor’s six instruction executionruniting at full
capacity. And finally it commits the results of executed instructions in origiogkam order to
maintain data integrity and program coherency.

The following section describes the Pentium Pro processor microarchitecture in greater detail.

2.4. DETAILED DESCRIPTION OF THE PENTIUM PRO
PROCESSOR MICROARCHITECTURE

Figure 2-2 on page 2-8 shows a functional block diagram of the Pentium Pro processor microar-
chitecture. In this diagram, the following blocks make upfthe processing units and the
memory subsystem shown in Figure 2-1 on page 2-6:

® Memory subsystem—System bus, L2 cache, bus interface unit, instruction cache (L1),
data cache unit (L1), memory interface unit, and memory reorder buffer.

® Fetch/decode unit—Instruction fetch unit, branch target buffer, instruction decoder,
microcode sequencer, and register alias table.

® Instruction pool—Reorder buffer

® Dispatch/execute unit—Reservation station, two integer units, two floating-point units,
and two address generation units.

® Retire unit—Retire unit and retirement register file.

2-7

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR Intel®

2.4.1. Memory Subsystem

The memory subsystem for the Pentium Pro processor consists of main systery,nilee

primary cache (L1), and the secondary cache (L2). The bus interface unit accesses system
memory through the external system bus. Bdisit bus is a transaction-erited bus, medng

that each bus access is handled as separate requestforecoperations. While the bus inter-

face unit is waiting for a response to one bus request, it can issue numerous additional requests.

System Bus (External)
e——— L2 Cache

A
A
Y y Cache Bus

|

Bus Interface Unit

-
<

¢ T - # Next IP
| Instruction Fetch Unit ! Instruction Cache (L1) |<—> Unit Y
Branch Memory
Instruction Decoder > Target Reorder
- - Buffer Buffer
Simple Simple Complex
Instruction Instruction Instruction
Decoder Decoder Decoder Microcode From
7| Instruction | Integer
Sequencer Unit

Y YYVYY
Register Alias Table |

Retirement
Retirement Unit »| Register File Data Cache
Fr———="——=—==-=—== ==] Intel Arch. i
»| Reorder Buffer (Instruction Pool) (Registers) Unit (1)

A
A Y

Reservation Station

IR B ! '

A

Floating- Floating- Memory
Point Unit Point Unit Integer InLtJeg_er Interface |-«
(FPU) (FPU) Unit nit Unit
A ¢
To Branch

Target Buffer

Y

Internal Data-Results Buses

Figure 2-2. Functional Block Diagram of the Pentium Pro Pro cessor Microarchitecture

Intel® INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

The bus interface unit accesses the close-coupled L2 cache through a 64-bit cache bus. This bus
is also transactional oriented, supporting up to four concurrent cachees;casd operates at
the full clock speed of the progsor.

Access to the L1 cachestisrough internal buses, also at full clock speed. The 8-KByte L1
instruction cache i®ur-way set asociative; the 8-KByte L1 data cache is dual-portedand
way set associative, supporting one load and one store operation per cycle.

Coherency between the caches and system memory are maintained using the MESI (modified,
exclusive, shared, invalid) cache protocol. This protocol fosters cache coherency in single- and
multiple-processor systems. It is also able to detect coherency problems created by self-modi-
fying code.

Memory requests from the processor’s execution units go through the memory interface unit and
the memory order buffer. These units have been designed to support a smooth flonooy me
access requests through the cache and system memory hierarchy to prevent memory access
blocking. The L1 data cache automatically forwards a cache miss on to the L2 cache, and then,
if necessary, the bus interface unit forwards an L2 cache miss to systaoryne

Memory requests to the L2 cache or systermamy go through the memory order buffer, which
functions as a scheduling and dispatch station. This unit keeps track of all memory requests and
is able to reorder some requests to prevent blocks and improve throughput. rapleexhe
memory reorder buffer allows loads to pass stores. It also issues speculative loads. (Stores are
always dispatched in order, and speculative stores are never issued.)

2.4.2. The Fetch/Decode Unit

The fetch/decode unit reads a stream of Intel Architecture instructions from the L1 instruction
cache and decodes them into a series of micro-operations called “micro-ops.” Gtasomi
stream (still in the order of the original instruction stream) is then sent to the instruction pool.

The instruction fetch unit fetches one 32-byte cache line per clock from the instruction cache. It
marks the beginning and end of the Intel Architecture instructions in the cache lines and trans-
mits 16 aligned bytes to the decoder.

The instruction fetch unit computes the instruction pointer, based on inputs from the branch
target buffer, the exception/interrupt status, and branch-misprediction indications from the
integer execution units. The most important part of this process is the branch prediction
performed by the branch target buffer. Using an extension of Yeh’s algorithm, the 512 entry
branch target buffer looks many instructions ahead of the retirement program counter. Within
this instruction window there may be numerous branches, procedure calls, and returns that must
be correctly predicted if the dispatch/execute unit is to do useful work.

The instruction decoder contains three parallel decoders: two simple-instruction decoders and
one complex instruction decoder. Each decoder converts an Intel Architecture instruction into
one or more triadic micro-ops (two logical sources and one logical destination per micro-op).

Micro-ops are primitive instructions that are executed by the processor’s six parallel execution
units.

2-9

INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR Intel®

Many Intel Architecture instructions are converted directly into single micro-ops by the simple
instruction decoders, and some instructions are decoded into from one to doatops. The

more complex Intel Architecture instructions are decoded into sequenpespobgrammed
micro-ops obtained from the microcode instruction sequencer. The instruction decoders also
handle the decoding of instruction prefixes and looping operations. The instruction decoder can
generate up to six micro-ops per clock cycle (one eacthéosimple instruction decoders and

four for the complex instruction decoder).

The Intel Architecture’s register set can cause resource stalls due to register dependencies. To
solve this problem, the processor provides 40 internal, general-purpose registers, which are used
for the actual computations. These registers can handle both integer and floating-point values.
To allocate the internal registers, the enqueued micro-ops from the instruction decoder are sent
to the register alias table unit, where references to the logical Intel Architecture registers are
converted into internal physical register references.

In the final step of the decoding process, the allocator in the resister alias table unit adds status
bits and flags to the micro-ops to prepare them for out-of-order execution and sensgltingre
micro-ops to the instruction pool.

2.4.3. Instruction Pool (Reorder Buffer)

Prior to entering the instruction podtnown formally asthe reorder buffer), the micro-op
instruction stream is in the same order as the Intel Architecture instruction stream that was sent
to the instruction decoder. No reordering of instructions has taken place.

The reorder buffer is an array of content-addressabieang arranged into 40 micro-op regis-

ters. It contains micro-ops that are waiting to be executed, as well as those that have already been
executed but not yet committed to machine state. The dispatch/execute unit can execute instruc-
tions from the reorder buffer in any order.

2.4.4. Dispatch/Execute Unit

The dispatch/execute unit is an out-of-order unit that schedules and executes thepsicr
stored in the reorder buffer according to data dependencies and resource availability and tempo-
rarily stores the results of these speculative executions.

The scheduling and dispatching of micro-ops from the reorder buffer is handled by the reserva-
tion station. It continuously scans the reorder buffer for micro-ops that are ready to be executed
(that is, all the source operands are available) and dispatches them to the available execution
units. The results of a micro-op execution are returned to the reorder buffer and stored along
with the micro-op until it is retired. This scheduling and dispatching process supports classic
out-of-order execution, where micro-ops are dispatched to the execution units strictly according
to data-flow constraints and execution resource availability, without regard to the original
ordering of the instructions. When two or more micro-ops of the same type (for example, integer
operations) are available at the same time, they are executed in a pseudo FIFO order in the
reorder buffer.

2-10

Intel® INTRODUCTION TO THE INTEL PENTIUM PRO PROCESSOR

Execution of micro-ops is handled by two integer units, two floating-point units, and one
memory-interface unit, allowing up to five micro-ops can be scheduled per clock.

The two integer units can handle two integer micro-ops in parallel. One of the integer units is
designed to handle branch micro-ops. This unit has the ability to detect branch mispredictions
and signal the branch target buffer to restart the pipeline. This operation is handled as follows.
The instruction decoder tags each branctroaop with both branch destination addresses (the
predicted destination and the fétlFough destin&n). When the integer unit executes the
branch micro-op, itis able to determine whether the predicted or the falgthdestination was
taken. If the predicted branch is taken, then speculatively executedapeare marked usable

and execution continues along the predicted instruction path. If the predicted branch was not
taken, a jump execution unit in the integer unit changes the status of all of dreaps
following the branch to remove them from the instruction pool. It then provides the proper
branch destination to the branch target buffer, which in turn restarts the pipelinthéomw

target address.

The memory interface unit handles load and store micro-ops. A load access only needs to

specify the memory address, so it can be encoded in one micro-op. A store access needs to
specify both an address and the data to be written, so it is encoded in two micro-ops. The part of
the memory interface unit that handles stores has two ports allowing it to process the address
and the data micro-op in parallel. The memory interface unit can thus execute both a load and a
store in parallel in one clock cycle.

The floating-point execution units are similar to thémend in the Pentium process&everal
new floating-pointinstructions have been added to the Pentium Pro processor to streamline
conditional branches and moves.

2.4.5. Retirement Unit

The retirement unit commits the results of speculatively executed micro-ops to permanent
machine state and removes the micro-ops from the reorder buffethieikeservation station,

the retirement unit continuously checks the status ofavdps in the reorder buffer, looking for

ones that have been executed and no longer have any dependencies with other micro-ops in the
instruction pool. It then retires completed micro-ops in their original program order, taking into
accounts interrupts, exceptions, breakpoints, and branch mispredictions.

The retirement unit can retire three micro-ops per clock. In retiring a micro-op, it writes the
results to the retirement register file and/or memory. The retirement register file contains the
Intel Architecture registers (eight general-purpose registers and eight floating-point data regis-
ters). After the results have been committed to machine state, theapicgoemoved from the
reorder buffer.

2-11

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of the Pentium Pro processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

The execution environment for the floating-point unit (FPU) is described in Chapieaiing-
Point Unit

3.1. MODES OF OPERATION

The Pentium Pro processor has three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

® Protected mode This is the native state of the processor. In this mode all instructions and
architectural features are available, providing the highest performance and capability. This
is the recommended mode for all new applications and operating systems.

Among the capabilities of protected mode is the ability to directly execute “real-address
mode” 8086software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode although it is not d@oally a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

® Real-address modeThis operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such asiiiggy to switch to protected or
system management mode). The processor is placed in real-address mode following
power-up or a reset. From real-address mode, only a sirggiaction is required to switch
to protected mode.

® System management modelhe system management mode (SMM) is a standard archi-
tectural feature unique to all Intel processors, beginning with the Intel386 SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing platform-specific functions such as power management. The processor
enters SMM the external SMM interrupt pin (SMI#) is activated or an SMI is received
from the advanced programmable interrupt controller (APIC). In SMM, the processor
switches to a separate address space while saving the entire context of the currently
running program or task. SMM-specific code may then be executed transp&ugatty.
returning from SMM, the processor is placed back into its state prior to the system
management interrupt.

The basic execution environment is the same for each of these operating modes, as is described
in the remaining sections of this chapter.

3-1

BASIC EXECUTION ENVIRONMENT Intel®

3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on Rentium Pro processor is given a set of resources for
executing instructions and for storing code, data, and state information. These restanwas

in Figure 3-1 on page 3-2) include an address space of dhlgt@s, a set of general data regis-

ters, a set of segment registers, and a set of status and control registers. When a program calls a
procedure, a procedure stack is added to the execution environment. (Procedure calls and the
procedure stack implementation are described in Chapf@modedure Calls, Interrupts, and
Exceptiong

2% -1
Eight 32-bit General-Purpose
Registers Registers
Six 16-bit :
p Segment Registers Address
Registers Space*
| 32-hits | EFLAGS Register
| 32-hits | EIP (Instruction
Pointer Register)
*The address space can be flat or segmented.
0

Figure 3-1. Pentium Pro Pr ocessor Basic Execution Environment

3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus ispaigidal memoryPhysical memory
is organized as a sequence of 8-bit bytes. Each byte is assigned a unique addresphyalied a
ical addressThephysical address spacanges from zero to a maximum &f2 (4 gigabytes).

Virtually any operating system or executive designed to work with the Pentium Prasmoce

will use the processor’s meory management facilities to access memory. These facilities
provide features such as segmentation and paging, which allow memory to be managed effi-
ciently and reliably. Memory management is described in detail in Chageotdcted-Mode
Memory Managementof the Pentium Pro Family Developer’s Manual, Volume Bhe
following paragraphs describe the basic methods of addressing memory when memory manage-
ment is used.

When employing the processor's memory management facilities, programs direwoly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

3-2

Intel® BASIC EXECUTION ENVIRONMENT

With theflat memory model (see Figure 3-2 on page 3-3), memory appears to a program as a
single, continuous address space, callitear address spac&€ode (a program’s instructions),

data, and the procedure stack are all contained in this address space. The linear address space is
byte addressable, with addresses running contiguously from?®-tb. 2An address for any byte

in the linear address space is calldthear address

Flat Model
Linear Address
Linear
Address
Space

Segmented Model

Segments

Linear

I:IOffset Address
Logical Space
Addgrless Segment Selector
S =
Real-Address Mode Model
Linear Address
Offset Space Divided | — — A

Into Equal
Sized Segments | _ _ |

Ala%gréc:s{ Segment Selector

H

H

Figure 3-2. Three Memory Management Models

With the segmentednemory mode, memory appears tpragram as a group of independent
address spaces calledgmentsWhen using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program musgissiie a
addresswhich consists of a segment selector and an offset. (A logical address is often referred
to as afar pointer) Thesegment selectddentifies the segment to be accessed and the offset
identifies a byte in the address space of the segmenfprdlgeams running on a Pentium Pro
processor can address up to 16,383 segments of different sizes and types.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. So, the processor translates each logical address into a linear address to access a
memory location. This translation is transparent to the application program.

3-3

BASIC EXECUTION ENVIRONMENT Intel®

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. And
placing the operating system'’s or executive’s code, data, and stack in separate segments protects
them from the application program and vice versa.

The real-address modenodel, uses the memory model for the Intel 8086 processor. It is
provided in the Pentium Pro processor for compatibility with existing programs written to run
on the Intel 8086. The real-address mode uses a specific implementation of segmented memory
in which the linear address space for pnegram and the operatirsgstem/executive consists

of an array of equally sized segments. (See Chapte8QBB Emulationin the Pentium Pro

Family Developer's Manual, Volumef8r more information on this memory model.)

3.4. MODES OF OPERATION

When writing code for the Pentium Pro processor, a programmer needs to know the operating
mode the processor is going to be in when executing the code and the memory model being used.
The relationship between operating modes and memory models is as follows:

®* Protected mode.When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mod®iyenodel is ordinarily
used only when the processor is in the vir8@86 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple-
mented, individual tasks can use different memory models.

® Real-address modeWhen in real-address mode, the processor only supportedhe
address mode memory model.

® System management modé/Nhen in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
9, System Management Mode (SMNA) the Pentium Pro Family Developers Manual,
Volume 3for more information on the memory model used in SMM.)

3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES

The processor can be configured 8-bit or 16-bit addresand operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFEEFFH (2
and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes, the
maximum linear address or segment offset is FFFE®, ¢éihd operand sizes are typically 8 bits

or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

3-4

Intel® BASIC EXECUTION ENVIRONMENT

When operating in protected mode, the segment descfimtdhe currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives ahewdefault
addressing and operand size to be chosen for a program. The assembler then sets up the segment
descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32 bit addressing; however, the
maximum allowable 32-bit address is still 0000FFFFH)(2

3.6. REGISTERS

The processor provides 16 registers for use in general system and application programing. As
shown in Figure 3-3 on page 3-6, these registers can be grouped as follows:

® General-purpose data registersThese eight registers are availatile storing operands
and pointers.

® Segment registersThese registers hold up to six segment selectors.

® Status and control registers These registers report and allow modification of the state of
the processor and of the program being executed.

3.6.1. General-Purpose Data Registers

The 32-bit general-purpose data registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

® Operands for logical and arithmetic operations
® Operands for address calculations
® Memory pointers.

Although all of these gisters are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment.

The special uses of general-purpose registers by instructions are described in Chegitac6,
tion Set Summargnd Chapter 1lipstruction Set Referenc&he following is a summary of
these special uses:

® EAX—Accumulator for operands and results data.

® EBX—Pointer to data in the DS segment.

3-5

BASIC EXECUTION ENVIRONMENT Intel®

31 General-Purpose Registers

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Segment Registers
15 0

CSs
DS
SS
ES
FS
GS

31 Status and Control Registers g
| | EFLAGS

31 0
| |EIP

Figure 3-3. Application Programming Registers
® ECX—Counter for string and loop operations.
® EDX—I/O pointer.

® ES|—Pointer to data in the segment pointed to by the DS register; source pointéndor st
operations.

® EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

® ESP—Stack pointer (in the SS segment).
® EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4 on page 3-7, the lower 16 bits of the general-purpose registers map
directly to the register saeptind in the 8086 and Intel 286 processors and can be referenced with
the names AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX,
ECX, and EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and
AL, BL, CL, and DL (low bytes).

3-6

Intel® BASIC EXECUTION ENVIRONMENT

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX

BH BL BX EBX
CH CL CX ECX

DH DL DX EDX

BP EBP

SI ESI

DI EDI

SP ESP

Figure 3-4. Alternate General-Purpose Register Names

3.6.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment mane To acess a particular segment

in memory, the segent selector for that segment must be present in the appropriate segment
registers.

When writing application code, you generally create segment selectors with assembler direc-
tives and symbols. The assembler and/or linker then creates the actual segment selectors asso-
ciated with these directives and symbols. If yoe writing system codgpu may need to create
segment selectors directly. (A detailed description of the segment-selector data structure is given
in Chapter 3Protected-Mode Memory Managemeat the Pentium Pro Family Developers
Manual, Volume 3

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, all
the segment registers are loaded with the same segment seleshafasn Figure 3-5 on page

3-8). Thus all memory accesses that a program makes are to a single linear-address space.

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment (as shown
in Figure 3-6 on page 3-8). At any time, a program can thus access up to six segments of
memory. To access a segment not pointed to by one of the segment registegsammust

first load the segment selector for the segment to be accessed into a segment register.

Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contains the segment selectordod¢hgegmentvhere

the instructions being executed are stored. The processor fetches instructions from the code
segment, using a logical address made up of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the linear address within the code segment
of the next instruction to be executed. The CS register cannot be loaded explicitly by an appli-
cation program. Instead it is loaded implicitly by instructions or internal processor operations
that change mgram control (such as, procedure calls, interrupt handling, or task switching).

3-7

BASIC EXECUTION ENVIRONMENT Intel®

Linear Address
Space for Program

Segment Registers
15 0

CS—
DS —
SS ——
ES —
FS —
GS—

\

Each segment register
contains the same
segment selector.

Figure 3-5. Use of Segment Selectors for Flat Memory ~ Model

The DS, ES, FS, and GS registers point to ftata segmentsThe availability of four data
segments permits efficient and secure access to different types of data structures. For example,
separate data segments can be created for the data structures of the current module, data
exported from a higher-level module, a dynamically-created data structure, and data shared with
anotherprogram. To accesadditional data segments, the application program must load
segment selectors for these segments into the DS, ES, FS, and GS registers, as needed.

Code
Segment

Segment Registers

15 0
CSs r>

DS
ss

ES—

FS ——

GS—

Data
Segment

Stack
Segment

=
?

Data
Segment

Data
Segment

Y

Data
Segment

S —

L.
:

Figure 3-6. Use of Segment Selectors in Segmented Memory Model

3-8

Intel® BASIC EXECUTION ENVIRONMENT

The SS register contains the segment selectordtack segmentwhere the procedure stack is
stored for theprogram, tak, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded
explicitly, which permits application programs to set up multiple stacks and swwitagethem.

See “Modes of Operation” on page 3-1 for an overview of how the segment registers are used
in the virtual 8086 mode.

The four segment registers CS, DS, SS, and ES are the same as the segment segidters f
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the
Intel Architecture with the Intel386 family of processors.

3.6.3. EFLAGS Regqister

The 32-bit EFLAGS r@gister contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 on page 3-9 defines the flags within this register. Following initializa-
tion of the processor (either by asserting the RESET pin or the INIT pin), the state of the
EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved.
Software should not use or depend on the states of any of these bits.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

I

V(v

I AlVIR[,IN| O |O|D|I|T|s|Z Pl,|C

OOOOOOOOOOD;'IZCMFOTPFFFFFF ElL|E
L

ID Flag (ID) ‘
Virtual Interrupt Pending (VIP)
Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Virtual 8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
1/0O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

VDNV NNXXXXXXXXXXXX

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOWm

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-7. EFLAGS Register

3-9

BASIC EXECUTION ENVIRONMENT Intel®

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHF, PUSHFD, POPF, and POPFD. Atftee contents of the EFLAGS register have been
transferred to the procedure stack or EAX register, the flags can be examined and modified using
the processor’s bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automati-
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception
is handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.

As the Intel Architecture has evolved, various flags have been added to the EFLAGS register,
but the arrangement of flags in the register has remained the same. As a result, all actions
regarding these flags in software written for the Intel Architecture should work as expected.

3.6.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a bor-
row out of the most-significant bit @he result; cleared otherwise.
This flag indicates an overflow condition for unsigned-integer arith-
metic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an
even number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a bor-
row out of bit 3 ofthe result; cleared otherwise. This flag is used in
binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag.Set equal to the most-significant bit of the result, which is
the sign bit of a signed integer. (0 indicates a positive value and 1 in-
dicates a negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number
or too small a negative number (excluding the sign-bit) to fit in the
destination operand; cleared otherwise. This flag indicates an over-
flow condition for signed-integer (two’'s complement) arithmetic.

3-10

Intel® BASIC EXECUTION ENVIRONMENT

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions.

The status flags allow a single arithmetic operatioprtmuce results for three téfent data

types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signhed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on unsigned integers, the CF flag is used in
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instructions to prop-
agate a carry or borrow from one computation to the next.

The condition instructionscé (jump on condition codec), SETc (byte set on condition code
cc), LOORec, and CMO\c (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

3.6.3.2. DF FLAG

The direction flag (DF) is the only control flag in the EFLAGS register. This flag (bit 10 of the
register) controls the string instructions (MOVS, CMPS, SCAS, LODS, and STOS). Setting the
DF flag causes the string instructions to auto-decrement (that is, to process strings from high
addresses to low addresses). Clearing the DF flag causes the string instructions to auto-incre-
ment (process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.6.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operationsThey should not be modified by application programsThe functions of the status
flags are as follows:

IF (bit 9) Interrupt enable flag. Controls the response of the processor to
maskable interrupt requests. Set to respond to maskable interrupts;
cleared to inhibit maskable interrupts.

TF (bit 8) Trap flag. Set to enable single-step mode for debugging; clear to dis-
able single-step mode.

IOPL (bits 12 and 13) 1/O privilege level field.Indicates the I/O privilege level of the cur-
rently running program or task. The current privilege level (CPL) of
the currently runningnegram or task must be less than or equal to
the I/O privilege level to access the I/O address space. This field can
only be modified by the POPF and IRET instructions when operating
ata CPL of 0.

3-11

BASIC EXECUTION ENVIRONMENT Intel®

NT (bit 14) Nested task flag.Controls the chaining of interrupted and called
tasks. Set when the current task is linked to the previously executed
task; cleared when the current task is not linked to another task.

RF (bit 16) Resume flag.Controls the processor’s responsedgbug excep-
tions.

VM (bit 17) Virtual 8086 mode flag. Set to enable virtual-8086 mode; clear to
return to protected mode.

AC (bit 18) Alignment check flag. Set this flag and the AM bit in the CRO reg-

ister to enable alignment checking of memory references; clear the
AC flag and/or the AM bit to disable alignment checking.

VIF (bit 19) Virtual interrupt flag. Virtual image of the IF flag. Used in con-
junction with the VIP flag. (To use this flag and the VIP flag the vir-
tual mode extensions are enabled by setting the VME flag in control
register CR4.)

VIP (bit 20) Virtual interrupt pending flag. Set to indicate to that an imtept
is pending; clear when no interrupts are pending. (Software sets and
clears this flag. The processor only reads it.) Used in conjunction
with the VIF flag.

ID (bit 21) Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter Frotected-Mode Memory ManagemeintthePentium Pro Family Developer’s
Manual, Volume 3or a detail description of these flags.

3.7. INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jcc, CALL, RET, and IRET instructions. The EIP cannot be accessed directly by software; it is

controlled implicitly by control-transfer instructions (such as JM&, GALL, and RET), inter-

rupts, and exceptions. The EIP register can be loaded indirectly by modifying the value of a
return instruction pointer on the procedure stack and executing a return instruction (RET or

IRET). See “Return Instruction Pointer” on page 4-4.

Because of instruction prefetching, an instruction address read from the bus during an instruc-
tion load does not match the value of the EIP. The only way to read the EIP is to execute a CALL
instruction and then read the value of the return instruction pointer from the procedure stack.

The EIP register is fully compatible with all software written to run on Intel Architecture
processors.

3-12

Intel® BASIC EXECUTION ENVIRONMENT

3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When processor is executing in protected mode, every code segment has a default operand-size
attribute and address-size attribute. These attributes are selected with the D (default size) flag in
the segment descriptor for the code segment (see Chapiet&sted-Mode Memory Manage-

ment in thePentium Pro Family Developers Manual, VolumeV8hen the B flag is set, the

32Hbit operand-size and address-size attributes are extlechen the flag is clear, tié-bit

size attributes are selected. When the processor is executing in real-address moldg08tua
mode, or SMM, the default operand-size and address-size attributes are always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32
bits. When the 16-bit address-size attribute is in force, segment offsets and displacements are
16-bits. This restriction limits the size of a segment that can be addressed 64 KBytes. When the
32-bit address-size attribute is in force, segment offsets and displaceme&fsies alowing

segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular
instruction by adding an operand-size and/or address-sized prefix to an instruction (see
“Instruction Prefixes” on page 11-1). The effect of this prefix applies only to the instruction it is
attached to.

Table 3-1 on page 3-13 shows effective operand size and address size (when executing in
protected mode), depending on the settings of the B flag and the operand-size and address-size
prefixes.

Table 3-1. Effective Operand- and Address-Size Attributes

B Flag in Code Segment
Descriptor 0 0 0 0 1 1

Operand-Size Prefix 66H
Address-Size Prefix 67H

Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16
Notes

Y Yes, this instruction prefix is present
N No, this instruction prefix is not present

3-13

intel.

CHAPTER 4
PROCEDURE CALLS, INTERRUPTS, AND
EXCEPTIONS

This chapter describes the facilities in the Pentium Pro processor for executing pediseto
dures or subroutines. It also descrithesv interrupts and exceptions are handled from the
perspective of an application programmer.

4.1. PROCEDURE CALL TYPES

The processosupports procedure calls wo different ways:
® CALL and RET instructions.
® ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply
as “the stack,” to save the state of the calling procedure, pass parameters to the called procedure,
and store local variables for the currently executing procedure.

The processor’s facilities for handling interrupts and exceptions is similar to those used by the
CALL and RET instructions.

4.2. PROCEDURE STACK

The procedure stack (shown in Figure 4-1 on page 4-2) is a contiguous array of memory loca-
tions. It is contained in a segment and identified by the segment selector in the SS register.
(When using the flat memory model, the stack can be located anywhere in the linear address
space for the program.) A stack can be up to 4 gigabytes long, the maximum size of a segment.

The next available memory location on the stack is called the top of stack. At any given time,
the stack pointer (contained in the ESP register) gives the address (that is the offset from the base
of the SS segment) of the top of the stack.

Items are placed on the stack using the PUSH instruction and removed from the stack using the
POP instruction. When an item is pushed onto the stack, the processor decrements the ESP
register, then writes the item at the new top of stack. When an item is popped off the stack, the
processor reads the item from the top of stack, then increments the ESP register. In this manner,
the stack gpwsdownin memory (towards lesser addresses) when items are pushed on the stack
and growaup (towards greater addresses) when the items are popped from the stack.

41

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

A program, operating system, or executive can set up many stacks. For example, in multitasking
systems, each task can be given its own stack. The number of stacks in a system is limited by
the maximum number of segments and the available physical memory. When a system sets up
many stacks, only one stack, tharent stackis available at a time. The current stack is the one
contained in the segment referenced by the SS register.

Procedure Stack

Bottom of Stack
(Initial ESP Value)

Local Variables

g’rrogg(ljlmg The Stack Can Be
| 16 or 32 Bits Wide
Parameters
Passed to The EBP register is
Called typically set to point
Procedure

to the return
instruction pointer.

Return Instruction :
Pointer 4—{ EBP Register ‘

4—{ ESP Register ‘
Top of Stack

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to

Lower Addresses Higher Addresses

Frame Boundary ‘

Figure 4-1. Procedure Stack Structure

The processor references the SS register automatically for all stack operations. For example,
when the ESP register is used as a memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE instructions all perform
operations on the current stack.

4.2.1. Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (w8&tpdr(double-word)
boundaries, depending on the width of the stack segment. The Bflag in the segment descriptor
for the current code segment sets the stack-segment width (see the discussion of segment
descriptors in Chapter Brotected-Mode Memory ManagemgntthePentium Pro Family De-
veloper’s Manual, Volume)3The PUSH and POP instructions use the Bflag to determine how

4-2

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

much to decrement or increment the stack pointer pasa or pop operation, respectively.
When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit incre-
ments; when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit in-
crements. If a 16-bit value gished onto a 32-bitide stack, the value is automatically padded
with zeros out to 32 bits.

The processor does not check stack pointer alignment. It isghensibility of the programs,

tasks, and system procedures running on the processor to maintain proper alignment of stack
pointers. Misaligning a stack pointer can cause serious performance degradation and in some
instances program failures.

4.2.2. Address-Size Attribute for Stack

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have an
address-size attribute of either 16 or 32 bits. Instructions with a address-size attribute of 16 use
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH; instructions
with a address-size attribute of 32 bits use the 32-bit ESP register and can use a maximum
address of FFFFFFFFH.

The default address-size attribute for data segments used as stacks is controlled by the Bflag of
the segment’s segment descriptor. When this flag is clear, the default address-size attribute is 16;
when the flag is set, the address-size attribute is 32.

4.2.3. Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and
the retirn instruction pointer. When used in conjunction with a standard software procedure-call
technique, these pointers permit reliable and coherent linking of procedures

4.2.3.1. STACK-FRAME BASE POINTER

The stack is typically divided into frames. Each stack frame can then contain local variables,
parameters to be passed to another procedure, and procedure linking information. The stack-
frame base pointer (contained in the EBP register) identifies a fixed reference point within the
stack frame for the called procedure. To use the stack-frame base pointer, the called procedure
typically copies the contents of the ESP register into the EBP register prior to pushing any local
variables on the stack. The stack-frame base pointer then permits easy access to data structures
passed on the stack, to the return instruction pointer, and to local variables added to the stack by
the called procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack.

4-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

4.2.3.2. RETURN INSTRUCTION POINTER

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes
the address in the EIP register into onto the current stack. This address is then called the return-
instruction pointer and it points to the instruction where execution of the calling procedure
should resume following a return from the called procedure. Upon returning from a called
procedure, the RET instruction pops the return-instruction pointer from the stack back into the
EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up
to the programmer to insure that stack pointer is pointing to the return-instruction pointer on the
stack, prior to issuing a RET instruction. A common way to reset the stack pointer to the point
to the return-instruction pointer is to move the contents of the EBP register into the ESP register.
If the EBP register is loaded with the stack pointer following a procedure call, it should point to
the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling proce-
dure. Prior to executing the RET instruction, the return instruction pointer can be manipulated
in software to point to any address in the code segment. Performing such an operation, however,
should be undertaken very cautsly, using only well defined code entry points.

4.3. CALLING PROCEDURES USING CALL AND RET

The CALL instructions allows jumps to procedures within the current code segmantc@l)

and in a different code segmefar(call). (When using the flat memory model, a near call refer-
ences a procedure within the current linear address space and a far call references a procedure
in another linear address space.) Near calls provide access to procedures within the currently
running program or task. Far calls are used to access operating system procedures or procedures
in a different task. See “CALL—Call Procedure” on page 11-42 for a detailed description of the
CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the
CALL instruction. In addition, the RET instruction allowgpeogram to incement the stack

pointer on a return to release parameters from the stack. The number of bytes released from the
stack is determined by an optional argument to the RET instruction. See “REUr-Rem
Procedure” on page 11-336 for a detailed description of the RET instruction.

4.3.1. Near CALL and RET Operation

When executing a near call, the processor does the following:

1. Pushes the current value of the EIP register on the stack.

2. Loads the address of the called procedure in the EIP register.

3. Begins execution of the called procedure.

4-4

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

3. Resumes execution of the calling procedure.

4.3.2. Far CALL and RET Operation

When executing a far call, the processor performs these actions:
1. Pushes current value of the CS register on the stack.
2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS
register.

4. Loads the address of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does trenfioll):

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the codergdoging returned to)
into the CS register.

3. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

4. Resumes execution of the calling procedure.

4.3.3. Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose
registers, in an argument list, or on the stack.

4.3.3.1. PASSING PARAMETERS THROUGH THE GENERAL-PURPOSE
REGISTERS

The processor does not save the state of the general-purpose registers on procedure calls. A
calling procedure can thus pass up to six parameter to the called procedure by copying the
parameters into any of these registers (except the ESP and EBP registers) prior to executing the
CALL instruction. The called procedure can likewise pass parameters back to thepraltieg

dure through general-purpose registers.

4-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

4.3.3.2. PASSING PARAMETERS ON THE STACK

To pass a large number of parameters to the called procedure, the parameters can be placed on
the stack, in the stack frame for the calling procedure. Here, it is useful to use the stack-frame
base pointer (in the EBP register) to make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling
procedure.

4.3.3.3. PASSING PARAMETERS IN AN ARGUMENT LIST

An alternate method of passing a larger number of parameters (or a data structure) to the called
procedure is to place the parameters in an argument list in memory (in one of the data segments).
A pointer to the argument list can then be passed to the called procedure through a general-
purpose register or the stack. Parameters can also be passed back to the calling procedure in this
same manner.

4.3.4. Saving Procedure State Information

The processor does not save the contents of the general-purpose registenst sEgjsters, or

the EFLAGS register on a procedure call. A calling procedure should explicitly save the values
in any of the general-purpose regist that it will need when it resumes execution afteranet
These values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA itsiction facilitates saving and restoring the contents of the general-
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in
the following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing tHSHA
instruction), EBP, ESI, and EDI. The POPA instruction pops all the register values saved with a
PUSHA instruction (except the ESI value) from the stadkédr respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former value before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register it can save and restore
all or part of the register using tiJSHF, PUSHFH, POPF, and POPFH instructions. The
PUSHF instruction pushes the lower word of the EFLAGS register on the stack and the
PUSHFHinstruction pushes thentire register. The POPF instruction popaad from the

stack into the lower word of the EFLAGS register and the POPFH instruction pops a double
word from the stack into the register.

4.3.5. Calls to Other Privilege Levels

The Pentium Pro processor’s protection mechanism recognizes four privilege levels, numbered
from 0 to 3, where greater numbers mean lesser privileges. The primary reason to use these priv-
ilege levels is to improve the reliability of operating systems. For example, Figure 4-2 on page
4-7 shows how privilege levels can be interpreted as rings of protection.

4-6

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments
that contain the most critical code modules in the systsally the kernel of an operating
system. The outer rings (witirogressivelyower privileges) are used for segments that contain
codemodulesfor less critical software.

Code modules in lower privilege segments can only access modules operating gbrivgher

lege segments by means of a tightly controlled and protected interface cgédtl Attempts

to access higher privilege segments without going through a protection gate and without having
sufficient access rights causes a genpratecton exception (#GP) to be generated.

Protection Rings

Operating

System

Kernel

Operating System
‘

Services (Device
Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

Figure 4-2. Protection Rings

If an operating system or executive uses this multilevel protection mechanism, a call to a proce-
dure that is in a more privileged protection level than the calling procedure is handled in a
similar manner as a far call (see “Far CALL and RET Operation” on page 4-5). The differences
are as follows:

® The segment selector provided in the CALL instruction references a special data structure
called acall gate descriptorAmong other things, the call gate descriptor provides the
following:

— Access rights information.
— The segment selector for the code segment of the called procedure.

— An offset into the code segment (that is, the instruction pointer for the called
procedure).

4-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

® The processor switches to a new stack to execute the called procedure. The segment
selector for the new stack is also contained in the call gate descriptor. On a return from the
called procedure, the processor restores the stack of the calling procedure.

The use of a call gate and the stack switch are transparent to the calling procedure, except when
a general-protection exception is raised.

4.3.6. CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see
Figure 4-3 on page 4-9):

1. Pushes current values of the CS and EIP register on the stack.
Performs an access rights check (privilege check).
Switches to the stack for the privilege level being called.

Copies the SS and ESP values for the calling procedure’s stack to the new stack.

o~ 0D

Copies the parameters from the calling procedure’s stack to the new stack. (A value in the
call gate descriptor determines how many parameters to copy to the new stack.)

o

Copies the CS and EIP values from the calling procedure’s stack to the new stack.
Loads the address of the called procedure in the EIP register.

8. Begins execution of the called procedure.

4-8

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack for Stack for
Calling Procedure Called Procedure

Calling SS | —
Calling ESP
Parm 1 Parm 1

Parm 2 Parm 2 Stack Frame

Parm 3 «—ESP Before Call Parm 3 After Call
Error Code Error Code
Calling CS Calling CS
Calling EIP ESP After Call—>| Calling EIP |—

Stack Frame
Before Call

[<«— ESP After Return Calling SS
Calling ESP
Parm 1
Parm 2
Parm 3
Error Code
Calling CS
ESP Before Return—>| Calling EIP

Figure 4-3. Stack Switch on a Call to a Different Privilege Level
When executing a return from the privileged procedure, the processor performs these actions:
1. Performs a privilege check.
2. Restoresthe CS, EIP, SS, and ESP registers to their values prior to the call.
3. Switches back to the stack of the calling procedure
4

(Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

5. Resumes execution of the calling procedure.

See Chapter £rotection in thePentium Pro Family Developer’s Manual, VolumimBdetailed
information on calls to privileged levels and the call gate descriptor.

4.4. INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution: interrupts and
exceptions:

® Aninterruptis an asynchronous events that is typically triggered by an 1/O device.

® An exceptionis a synchronous event that is generated when the processor detects one or
more predefined conditions while executing an instruction.

4-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

The processor responds to interrupts and elarepin essentially the same way. When an inter-

rupt and exception is signaled, the processor halts execution of the current program or task and
switches to a handler procedure that has been written specifically to handle the interrupt or
exception condition. When the handler has completed handling the interrupt or exception,
program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and excep-
tions independently from application programs or tasks. Applicgtiograms an, however,

access the interrupt and exception handlers incorporated in an operating system or executive
through assembly-language calls. The remainder of this section gives a brief overview of the

processor’s interrupt and exception handling mechanism. See Chalptierzipt and Excep-

tion Handling in thePentium Pro Family Developer's Manual, Volum&Ba detailed descrip-

tion of this mechanism.

The Pentium Pro processor defines 16 predefined interrupts and exceptions and 224 user defined
interrupts. Each interrupt and exception is identified with a number, calledter Table 4-1

on page 4-11 lists the interrupts and exceptions that the processor recognizes and their respective
vector numbers. Vectors 0 through 8, 10 through 14, and 16 through 18 are the predefined inter-
rupts and exceptions, and vectors 32 through 255 are the user-defined interrupts, called
maskable interrupts

When the processor detects an interrupt or exception, it does one of the following things:
® Executes an implicit call to a handler procedure.

® Executes an implicit call to a handler task.

4-10

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 4-1. Exceptions and Interrupts

Vector No. Description Source
0 Divide Error (#DE) DIV and IDIV instructions.
1 Debug (#DB) Any code or data reference.
2 NMI Interrupt External interrupt.
3 Breakpoint (#BP) INT 3 instruction.
4 Overflow (#OF) INTO instruction.
5 BOUND Range Exceeded (#BR) | BOUND instruction.
6 Invalid Opcode (#UD) UD?2 instruction or reserved opcode.
7 Device Not Available (#NM) Floating-point or WAIT/FWAIT instruction.
8 Double Fault (#DF) Any instruction.
9 CoProcessor Segment Overrun | Floating-point instruction. Pentium Pro processor does
(reserved) not generate this exception.
10 Invalid TSS (#TS) Task switch.
11 Segment Not Present (#NP) Loading segment registers or accessing system
segments.
12 Stack Fault (#SS) Stack operations.
13 General Protection (#GP) Any memory reference.
14 Page Fault (#PF) Any memory reference.
15 (Intel reserved. Do not use.)
16 Floating-Point Error (#MF) Floating-point or WAIT/FWAIT instruction.
17 Alignment Check (#AC) Any data reference in memory.
18 Machine Check (#MC) Model dependent.
19-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts External interrupt or INT ninstruction.

4.4.1. Call and Return Operation for Interrupt or Exception
Handling Procedures

A call to an interrupt or exaption handler procedure is similar to a procedure call to another
protection level (as described in “CALL and RET Operation Between Privilege Levels” on
page 4-8). Here, the interrupt vector references one of two kinds of gateteranpt gateor a

trap gate Interrupt and trap gates are similar to call gates in that they provide the following
information:

® Access rights information.
® The segment selector for the code segment that contains the handler procedure.

®* An offset into the code segment to the first instruction of the handler procedure.

4-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

The difference between an interrupt gate and a trap gate are as follows. If an interrupt or excep-
tion handler is called through an interrupt gate, the processor tiedanterupt enable (IF) flag

in the EFLAGS register to prevent subsequent interrupts from interfering with the execution of
the handler. When a handler is called through a trap gate, the state of the IF flag is not changed.

If the code segment for the handler procedure has the same privilege level as the currently
executing program or task, the handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or excep-
tion handler (see Figure 4-4 on page 4-12):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the
stack.

Pushes an error code dibpropriate) on the stack.
If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

4. Transfers program control to the handler procedure.

Stack Usage with No

Calling and Handler Privilege-Level Change

Procedure’s Stack

EFLAGS
Calling CS
Calling EIP

Error Code [<«——ESP After
Call to Handler

Stack Usage with
Privilege-Level Change

Calling Procedure’s Stack Handler Procedures’s Stack

~«——ESP Before

Calling SS Call to Handler Calling SS
Calling ESP Calling ESP
EFLAGS Calling EFLAGS
Calling CS Calling CS
Calling EIP Calling EIP

ESP After —— > Error Code
Call to Handler

Figure 4-4. Stack Usage on Calls to Interrupt and Exception Handling Routines

4-12

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If a stack switch does occur, the processor does the following:

1. Pushes the current contents of the SS, ESP, EFLAGS, CS, and EIP registers (in that order)
on the stack.

Switches to the handler’s stack.

3. Copies the SS, ESP, EFLAGS, CS, and EIP values from the interrupted procedure’s stack
to the new stack.

4. Pushes an error code on the new stack (if appropriate).
5. If the call isthrough an interrupt gate, clears the IF flaghiea EFLAGS register.
6. Transfers program control to the handler procedure.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET
instruction is similar to the RET instruction, except that it also restores the contents of the
EFLAGS register for the interrupted procedure:

When executing a return from an interrupt or exception handler from the same privilege level as
the interrupted procedure, the processafqums hese actions:

1. Restoresthe CS and EIP registers to their values prior to the interrupt or exception.
2. Restores the EFLAGS register.

3. Increments the stack pointgppropriately

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level
than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.

Restores the SS and ESP registers to their values prior to the interrupt or exception.

Switches back to the stack of the calling procedure

S T

Resumes execution of the calling procedure.

4.4.2. Calls to an Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an inter-
rupt or exception causes a task switch to a handler task. The handler task is given its own address
space and (optionally) can execute at a higher protection level than application programs or
tasks.

4-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

The switch to the handler task is accomplished with an implicit task call that refereasks a

gate descriptarThe task gate provides access to the address space for the handler task. As part
of the task switch, the processor saves complete state information for the interrupted program or
task. Upon returning from the handler task, the state of the interrupted program or task is
restored and execution continues. See Chaptémt&rrupt and Exception Handlingn the
Pentium Pro Family Developer’'s Manual, Volum&Ba detailed description of the processor’s
mechanism for handling interrupts and exceptionsutgfinchandler tasks.

4.4.3. Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with
a far call to an interrupt or exception handler. The processor uses the interrupt or exception
vector number as an index into an interrupt table. The interrupt table cotsinstion
pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an
optional error code on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction.

See Chapter 18086 Emulationin thePentium Pro Family Developer's Manual, Volumé&B
more information on handling interrupts and exceptions in real-address mode.

4.4.4. INTn, INTO, INT3, and BOUND Instructions

The INTh, INTO, INT3, and BOUND instructions allowgogram or task to explicitly call an
interrupt or exception handler. The INThstruction uses an interrupt vector as an argument,
which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag
(OF) in the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions,
but it does not automatically raise an overflow exception. An overflow exception can only be
raised explicitly in either of the following ways:

® Execute the INTO instruction.

®* Test the OF flag and execute the INihstruction with an argument of 4 (the vector
number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at
specific places in the instruction stream.

The INT3 instruction explicitly calls the breakpoint exception (#BP) handler. The action of this
instruction is slightly different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call
to Interrupt Procedure” on page 11-216).

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler
if an operand is found to be not within predefirexindaries in memoryhis instruction is
provided for checking references to arrays and other data structures. Like the overflow

4-14

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

exception, the BOUND-range exceeded exception can only be raised explicitly with the
BOUND instruction or the INf instruction with an argument of 5 (the vector number of the
bounds-check exception). The processor does not implicitly perform bounds checks and raise
the BOUND-range exceeded exception.

4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The Pentium Pro processor supports an alternate method of performing procedure calls with the
ENTER (enter procedure) and LEAVE (leave procedure) instructions. These instructions auto-
matically create and release, respectively, stack frames for called procedures. The stack frames
have predefined spaces for local variables and the necessary pointers to allow coherent returns
from called procedures. They also allow scope rules to be implemented, so that procedures can
access their own local variables and some number of other varlabétsed in other stack
frames.

The ENTER and LEAVE instructions offer two benefits:

®* They provide machine-languageipport for impleranting block-structured languages,
such as C and Pascal.

® They simplify procedure entry and exit in compiler-generated code.

45.1. ENTER Instruction

The enter procedure instruction (ENTER) creates a stack frame compatible with the scope rules
typically used in block-structured languages. In block-structured languages, the scope of a
procedure is the set of variables to which it has access. The rules for scope vary among
languages. They may be based on the nesting of procedures, the division of the program into
separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be reserved
on the stack for dynamic storage fbe procedure being callddynamic storage is the memory
allocated for variables created when the procedure is called, also known as automatic variables.
The second parameter is the lexical nesting Iéveim O to 31) of the procedur&he nesting

level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unrelated
to either the protection privilege level or to the I/O privilege level of the currently running
program or task.

The ENTER instruction in the following example, allocates 2K bytes of dynamic storage on the
stack and sets up pointers to two previous stack frames in the stack frame for this procedure.
ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new

stack frame from the preceding frame. A stack frame pointer is a doubleword used to access the
variables of a procedure. The set of stack frame pointers used by a procedure to access the

4-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

variables of other procedures is called the display. The doableword in the dplay is a
pointer to the previous stack frame. This pointer is used by a LEAVE instructiordéothe
effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic (auto-
matic) local variables for the procedure by decrementing the contents of the ESP register by the
number of bytes specified in the first parameter. This new value in the ESP register serves as the
initial top-of-stack for all PUSH and POP operations within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doublgord in the display. Beese stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions that specify
the EBP register as a base register automatically address locations within the stack segment
instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is
0, the non-nested form is used. The non-nested form pushes the contents of the EBP register on
the stack, copies the contents of the ESP register into the EBP register, and subtracts the first
operand from the contents of the ESP register to allocate dynamic storagenfinested form

differs from the nested form in that no stack frame pointers are copied. The nested form of the
ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE
is the number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

PUSH EBP;
FRAME_PTR ~ ESP;
IF LEVEL >0
THEN
REPEAT (LEVEL - 1) times
EBP — EBP -4,
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)
TAEPER
PUSH FRAME_PTR;
Fl;
EBP - FRAME_PTR,;
ESP ~ ESP - STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A level
2 procedure can access the variables of the pragramwhich are at fixed locations specified

by the compiler. In the case of level 1, the ENTER instruction allocates only the requested
dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical levels.

4-16

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The new stack frame does not include the pointer for addressing the calling procedure's stack
frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical
level. In this case, each succeeding iteration of the re-entrant procedure can address only its own
variables and the variables of the procedures within which it is nested. A re-entrant procedure
always can address its own \ables; it does not require pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels, not
those at parallel lexical levels (see Figure 4-5 on page 4-17).

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

| Procedure B (Lexical Level 3) |

Procedure C (Lexical Level 3)

| Procedure D (Lexical Level 4) |

Figure 4-5. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to the
variables of nested procedures. In Figure 4-5, for example, if procedure A calls procedure B

which, in turn, calls procedure C, then procedure C will have access to the variables of the

MAIN procedure and procedure A, but not those of procedure B because they are at the same
lexical level. The following definition describes the access to variables for the nested procedures
in Figure 4-5.

1. MAIN has variables at fixed locations.
2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot
access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. procedure C cannot
access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure
D cannot access the variables of procedure B.

In Figure 4-6 on page 4-18, an ENTER instruction at the beginning of the MAIN procedure
creates thredoublewads of dynamic storage for MAIN, but copies no pointers from other stack
frames. The first doubleword in the display holds a copy of the last value in the EBP register

4-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

before the ENTER instruction was executed. The second doubleword holds a copy of the
contents of the EBP register following the ENTER instruction. After the instruction is executed,
the EBP register points to the first doukterd pushed on the stls, and the ESP register points

to the last doubleword in the stack frame.

Old EBP ~— EBP
Display -
Main’s EBP
Dynamic
Storage
~— ESP

Figure 4-6. Stack Frame after Entering the MAIN Procedure

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 4-7
on page 4-19). The first doubleword is the last value held in MAIN's EBP register. ddralse
doubleword is a pointer to MAIN's stack frame which is copied from tbergkdoubleword in
MAIN's display. This happens to be another copy of the last value held in MAIN's EBP register.
Procedure A can access variables in MAIN because MAIN is at level 1. Therefore the base
address for the dynamic storage used in MAIN is the current address in the EBP register, plus
four bytes to account for the saved contents of MAIN's EBP register. All dynamic variables for
MAIN are at fixed, positive offsets from this value.

4-18

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP
Main's EBP
s Main's EBP < EBP
Display -
| Main's EBP
Procedure A's EBP
Dynamic
Storage
| -<— ESP

Figure 4-7. Stack Frame after Entering Procedure A

When procedure A calls procedure B, the ENTER instruction creates a new display (see
Figure 4-8 on page 4-20). The first doulterd holds a copy of the last value in procedure A's
EBP register. The second and third doublewords are copies of the two stack frame pointers in

procedure A's display. Procedure B can access variables in procedure A and MAIN by using the
stack frame pointers in its display.

4-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

Old EBP
Main's EBP

Main's EBP
Main's EBP
Procedure A's EBP

B Procedure A's EBP << EBP
. Main’s EBP
Display
Procedure A's EBP
| Procedure B's EBP
Dynamic
Storage
-— ESP

Figure 4-8. Stack Frame after Entering Proc edure B

When procedure B calls procedure C, the ENTER instruction creates a new display for proce-
dure C (see Figure 4-9 on page 4-21). The first doutnié holds a copy of the last value in
procedure B's EBP register. This is used by the LEAVE instruction to restore procedure B's stack
frame. The second and third doublewords are copies of the two stack frame pointers in proce-
dure A's display. If procedure C were at the next deeper lexical level from proceddoriBha
doubleword would be copied, which would be the stack frame pointer to procedure B's local
variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to
access procedure B's variables. This does not mean that procedure C is completely isolated from
procedure B; procedure C is called by procedure B, so the pointer to the returning stack frame
is a pointer to procedure B's stack frame. In addition, procedure B can pass parameters to proce-
dure C either on the stack or through variables global to both procéthatis, variables in the

scope of both procedures).

4-20

Intel® PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP
Main's EBP

Main's EBP
Main's EBP
Procedure A's EBP

Procedure A's EBP
Main's EBP
Procedure A's EBP
Procedure B's EBP

[| Procedure BsEBP | <€—EBP
) Main's EBP
Display
Procedure A's EBP
| Procedure C's EBP
Dynamic
Storage
L -<— ESP

Figure 4-9. Stack Frame after Entering Procedure C

45.2. LEAVE Instruction

The LEAVE instruction reverses the action of the previous ENTER instruction. The LEAVE
instruction does not have any operands. The LEAVE instruction copies the contents of the EBP
register into the ESP register to release all stack space allocated to the procedure. Then the
LEAVE instruction restores the old value of the EBP register from the stack. This simulta-
neously restores the ESP register to its original value. A subsequent RET instruction then can
remove any arguments and the return address pushed on the stack by the calling program for use
by the procedure.

4-21

intel.

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes data types and addressing modes available to programmers of the
Pentium Pro processor.

5.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the Pentium Pro processor arewgtds, doublewords, and
qguadwords (see Figure 5-1 on page 5-1). A byte is eight bits, a word is 2 bytes (16 bits), a
doubleword is 4 bytes (32 bits), andj@adword is 8 bytes (64 bits).

7 0
Byte
N
15 87 0
High Low
Byte Byte Word
N+1 N
31 16 15 0
High Word Low Word Doubleword
N+2 N
63 3231 0
High Doubleword Low Doubleword Quadword
N+4 N

Figure 5-1. Fundamental Data Types

Figure 5-2 on page 5-2 shows the byte order of each of the fundamental data types when refer-
enced as operands in memory. The low byte (bitsdutir 7) of each data type occupies the
lowest address in memory and that address is also the address of the operand.

5.1.1. Alignment of Words, Doublewords, and Quadwords

Words,doublewads, and quadwords do not need to be aligned in memory on natural bound-
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisibléooy, and addreses evenly divisible by eight, respec-
tively.) To improve the performance of programs, however, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the
processor requires two clock cycles to make an unaligned memory access; whereas, aligned

5-1

DATA TYPES AND ADDRESSING MODES Intel®

accesses require only one clock cycle. For the Pentium Pro processor, a word or doubleword
operand that crosses a 4-bgtaundaryand a quadword operand tleapsses an 8-byte boundary

is considered an unaligned and requires two clock cycles to access; a worartbainsan odd
address but does not cross a wibedindary is condiered aligned and can still be accessed in
one clock cycle.

EH
7AH DH
Word at Address BH FEH CH Doubleword at Address AH
Contains FEO6H 06H BH Contains 7AFE0636H
36H AH
Byte at Add_ress 9H 1EH 9H
Contains 1IFH ___ Quadword at Address 6H
f A4H 8H Contains 7AFE06361FA4230BH
Word at Address 6H 23H 7H
Contains 230BH OHB 6H
5H
4H
Word at Address 2H e
Contains 74CBH i 74H SH
Word at Address 1H v CBH 2H
Contains CB31H 31H 1H
OH

Figure 5-2. Bytes, Words, Doublewords and Quadwords in Memory

5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES

Although bytes, words, and doublewords are the fundamental data types for the Pentium Pro
processor, some instructions recognize and operate on additional numeric, pointer, bit field, and
string data types (see in Figure 5-3 on page 5-3). These additional data types are described in the
following sections.

5.2.1. Integers

Integers are signed binary numbers held in a byte, word, or doubleword. All operations assume
a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a
word integer, and bit 31 in a doubleword integer. The sign bit is set for negative integers and
cleared for posite integers and zero. Integer values range from —128 tofet 2/byte integer,

from —32,768 to +32,767 for a word integer, and frorft +2+2! — 1 for a doubleword integer.

5-2

DATA TYPES AND ADDRESSING MODES

Byte Signed Integer

Sign
76 0
Word Signed Integer
Sign ~)} \ |
15 14 0
Doubleword Signed Integer
Sign ~>} \ |
31 30 0
Byte Unsigned Integer
7 0
Word Unsigned Integer
15 0
Doubleword Unsigned Integer
31 0
BCD Integers
[x [8cp]. .. .[x [Bco] x [Bcp]

7 43 0
Packed BCD Integers

5coleco] [6cb ecp]Bc]ecD]
7

43 0

Near Pointer
| Offset or Linear Address |
31 0
Far Pointer or Logical Address

Segment Selector \ Offset |

47

32 31 0
Bit Field

| |
F Field Length «‘

Least
Significant
Bit

Figure 5-3. Numeric, Pointer, and Bit Field Data Types

5-3

DATA TYPES AND ADDRESSING MODES Intel®

5.2.2. Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, or doubleword.
Unsigned integer values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for
an unsigned word integer, and from 0 #8-21 for an unsigned doubleword integer. Unsigned
integers are sometimes referred tmaBnals

5.2.3. BCD Integers

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from 0 to 9. BCD integers can be unpacked (one BCD digit per byte) or packed (two
BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits Othrough 3). The high Hiabyte (bits 4 through 7) can be anylwa during addition

and subtraction, but must be zero during multiplication and division.

Packed BCD integers allow two BCD digits to be contained in one byte. Here, the digit in the
high half-byte is more significant than the digit in the low half-byte.

5.2.4. Pointers

Pointers are addresses of locations immoey. The Pentium Pro processor recognizes two types

of pointers: anear pointer(32 bits) and #ar pointer (48 bits). A near pointer is a 32-bit offset

(also called aeffective addregswithin a segment. Near pointers are used for all memory refer-
ences in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied. A far pointer is a 48-bit logical address, consisting of a 16-bit
segment selector and a 32-bit offset. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be specified explicitly.

5.2.5. BitFields

A bit field is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

5.2.6. Strings

Strings are continuous sequences of bits, bytes, words, or doublewdsitisting can begin
at any bit position of any byte and can contain up*te 2 bits. Abyte stringcan contain bytes,
words, or doublewords and can range from zerdte 2 bytes (4 gigabytes).

5.2.7. Floating-Point Data Types

The processor’s floating-point instructions also recognize a set of real, integer, and BCD integer
data types (see Chapterigating-Point Uni).

5-4

Intel® DATA TYPES AND ADDRESSING MODES

5.3. OPERAND ADDRESSING

A Pentium Pro processor machine-instruction acts on zero or more operands. Some operands are
specified explicitly in an instruction and others are implicit to an instruction. Whether specified
explicitly or implicitly, an operand can be located in any of the following places:

® The instruction itself (an immediate opad).
® Aregister.

®* A memory location.

® An |/O port.

5.3.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are calledimmediateoperands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:

ADD EAX, 14

All the arithmetic instructions (except the DIV alilV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate waxries enong
instructions, but can never be greater than the maximum value of an unsignedvdodible
integer (29).

5.3.2. Register Operands

Source and destination operands can be located in any of the following registers, depending on
the instruction being executed:

® The 32-bit generapurpose registrs (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).
® The 16-bit generapurpose registrs (AX, BX, CX, DX, Sl, DI, SP, or BP).

® The 8-bit general-purposegisters (AH, BH, CH, DH, AL, BL, CL, or DL).

® The segment registers (CS, DS, SS, ES, FS, and GS).

® The EFLAGS register.

® System registers, such as the global descriptor (&1ETR) or the interrupt descriptor
table register (IDTR).

Some instructions (such as the DIV and MUL instructions) usevepraldoperands contained

in a pair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, in the register pair EDX:EAX, EDX contains the high order bits and EAX contains the
low order bits of a quadword operand.

5-5

DATA TYPES AND ADDRESSING MODES Intel®

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as theclinstructions) use the state of the status flags in the EFLAGS register
as condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory manage-
ment, interrupt and exception handling, task management, processor management, and debug-
ging activities. Some of these system registers are accessible by an appticagiam, the
operating system, or the executive through a set of systetmuctions. When accessing a
system register with a system instruction, the register is generally an implied operand of the
instruction.

5.3.3. Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 5-4 on page 5-6). The segment selector specifies the segment containing
the operand and the offset (the number of bytes from the beginning of the segment to the first
byte of the operand) specifies the linear or effective address of the operand.

15 0 31 0

Segment Offset (or Linear Address)
Selector

Figure 5-4. Memory Operand Address

5.3.3.1. SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector is to load it in a segment register and then allow teequroce

to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 5-1 on page 5-7.

5-6

Intel® DATA TYPES AND ADDRESSING MODES

Table 5-1. Default Segment Selection Rules

Type of Register Segment
Reference Used Used Default Selection Rule

Instructions CSs Code Segment | All instruction fetches.

Stack SS Stack Segment | All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination ES Data Segment Destination of string instructions.

Strings pointed to with

the ES register

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is
contained in the EBX register:

MOV ES:[EBX], EAX;

(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

® Instruction fetches must be made from the code segment.

® Destination strings in string instructions must be stored in the data segment pointed to by
the ES register.

® Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cadghithe
segment selector can be located in a memory location ot éakdt register. For example, the
following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the wexdl contains the segment
selector.

5.3.3.2. SPECIFYING AN OFFSET

The offset part of a memory address can be specified either directly as an static value (called a
displacementor through an address computation made up of one or more of the following
components:

® Displacement—An 8-, 16-, or 32-bit value.

® Base—The value in a genefalirpose register.

5-7

DATA TYPES AND ADDRESSING MODES Intel®

®* Index—The value in a general-purposgister.
® Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding thesenponets is called arffective addresach of

these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 5-5 on page 5-8 shows all the possible ways that these compo-
nents can be combined to create an effective address in the selected segment.

Base Index Scale Displacement
EAX
EBX EAX 1 None
EBX
ECX .
EDX ECX 2 8-bit
ESP + EDX | % +
EBP 3 16-bit
EBP
ESI .
ESI EDI 4 32-bit
EDI
Offset = Base + (Index [0Scale) + Displacement

Figure 5-5. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restrictedawithg foll
manner:

® The ESP register cannot be used as an index register.

®* When the ESP or EBP register is used as the base, the SS segment is the default selection.
In all other cases, the DS segment is the default selection.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing sugtgssuses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputdsgtab the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

5-8

Intel® DATA TYPES AND ADDRESSING MODES

Base + Displacement
A base register and a displacement can be used together for two distinct purposes:

® As an index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

® To access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. This is a compact encoding for this common function.

(Index [OScale) + Displacement

This address mode offers an efficient way to index into a static array when the element size is 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registers togethsupports either a two-dimensal array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index OScale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

5.3.3.3. ASSEMBLER ADDRESSING MODES

At the machine level, the selected combination of displacement, base register, index register, and
scale factor is encoded in an instruction. All assemblers provide addressing modes based on
combinations of these addressing components.

5.3.4. 1/O Port Addressing

The processor supports an 1/O address space that contains up to 65,536 8-bit I/O ports. An I/O
port can be addressed with either an immediate operand or a value in the DX register. See
Chapter 8]nput/Output for more hformaion about I/O port addressing.

5-9

CHAPTER 6
INSTRUCTION SET SUMMARY

This chapter lists all the instructions in the Pentium Pro procesgssiraction set, divided into
three functional groups: integer, floating-point, and system. It also briefly describes each of the
integer instructions.

Brief descriptions of the floatg-pointinstructions are given in ChapterHopating-Point Unit
brief descriptions of the system instructions are given irPdrium Pro Family Developers
Manual, Volume 3

Detailed descriptions of all the Pentium Pro instructions are given in Chaptesttaction Set
Referencelncluded in this chapter are a description of each instruction’s encoding and opera-
tion, the effect of an instruction on the EFLAGS flags, and the exceptions an instruction may
generate.

6.1. NEW INSTRUCTIONS IN THE PENTIUM PRO PROCESSOR

The following instructions are new in the Pentium Pro processor:
® CMOVcc—Conditional move (see “Conditional Move Instructions” on page 6-13).

® FCMOVcc—Floating-point conditional move on condition-code flags in EFLAGS register
(see “Data Transfer Instructions” on page 7-30).

* FCOMI/FCOMIP/FUCOMI/FUCOMIP—Floatig-point compareind set condition-code
flags in EFLAGS register (see “Comparison and Classification Instructions” on page
7-33).

® RDPMC—Read performance monitoring counters (see “RDPMC—Read Performance-
Monitoring Counters” on pagel1330).

® UD2—Undefined instruction (see “No-Operation and Undefined Instructions” on page
6-38).

6.2. INSTRUCTION SET LIST

This section lists all the Pentium Pro processor instructions divided into three major groups:
inter, floating-point, and system instructions. For each instruction, the mnemonicsznig-de

tive names are given. When two or more mnemonics are given (for example,
CMOVA/CMOVNBE), they represent different mnemonics fbe same instruction opcode.
Assemblersupport redundant mnemonics for some instructions to make it easier to read code
listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Conditional
move is not below or equal) represent the same condition.

6-1

INSTRUCTION SET SUMMARY Intel®

6.2.1.

Integer instructions perform the integer arithmetic, logic, and program flow control operations
that programrars commonly use to write application and system software to run on the Pentium
Pro processor. In the following sections, the integer instructions are divided into several instruc-

Integer Instructions

tion subgroups.

6.2.1.1. DATA TRANSFER INSTRUCTIONS

MOV Move

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below
or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater
or equal

CMOVLE/CMOVNG Conditional move if less aqual/Conditional move if
not greater

CcmMovC Conditional move if carry

CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even

CMOVNP/CMOVPO Conditional move if not parity/Conidihal move if parity odd

XCHG Exchange

6-2

intel.

BSWAP
XADD
CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD

IN

ouT

CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

INSTRUCTION SET SUMMARY

Byte swap
Exchange and add
Compare and exchange
Compare and exchange 8 bytes
Push onto stack
Pop off of stack
Push general-purpose registers onto stack
Pop general-purposgigters from stack
Read from a port
Write to a port
Convert word to doubleword/Convert doubleword to quadword
Convert byte to word/Convestord to doubleword
Move and sigrextend

Move and zero extend

6.2.1.2. BINARY ARITHMETIC

ADD
ADC
SUB
SBB
IMUL
MUL
IDIV
DIv
INC
DEC
NEG
CMP

Integer add

Add with carry
Subtract
Subtract with borrow
Signed multiply
Unsigned multiply
Signed divide
Unsigned divide
Increment
Decrement
Negate

Compare

6.2.1.3. DECIMAL ARITHMETIC

DAA
DAS

Decimal adjust after addition
Decimal adjust after subtraction

6-3

INSTRUCTION SET SUMMARY Intel®

AAA
AAS
AAM
AAD

ASCII adjust after addition
ASCII adjust after subtraction
ASCII adjust after multiplication
ASCII adjust before division

6.2.1.4. LOGIC INSTRUCTIONS

AND
OR
XOR
NOT
SAR
SHR
SAL/SHL
SHRD
SHLD
ROR
ROL
RCR
RCL

And

Or

Exclusive or

Not

Shift arithmetic right

Shift logical right

Shift arithmetic left/Shift logical left
Shift right double

Shift left double

Rotate right

Rotate left

Rotate through carry right
Rotate through carry left

6.2.1.5. BIT AND BYTE INSTRUCTIONS

BT

BTS

BTR

BTC

BSF

BSR
SETE/SETZ
SETNE/SETNZ
SETA/SETNBE

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward

Bit scan reverse

Set byte if equal/Set byte if zero

Set byte if not equal/Set byte if not zero

Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte

6-4

if not carry

intel.

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte

INSTRUCTION SET SUMMARY

if carry
SETBE/SETNA Set byte if below or equal/Set byte if not above
SETG/SETNLE Set byte if greater/Set byte if not less or equal
SETGE/SETNL Set byte if greater or equal/Set byte if not less
SETL/SETNGE Set byte if less/Set byte if not greater or equal
SETLE/SETNG Set byte if less or equal/Set byte if not greater
SETS Set byte if sign (negative)
SETNS Set byte if not sign (non-negative)
SETO Set byte if overflow
SETNO Set byte if not overflow
SETPE/SETP Set byte if parity even/Set byte if parity
SETPO/SETNP Set byte if parity odd/Set byte if not parity
TEST Logical compare

6.2.1.6. CONTROL TRANSFER INSTRUCTIONS

JMP Jump

JE/JZ Jump if equal/Jump if zero

JNE/INZ Jump if not equal/Jump if not zero
JA/INBE Jump if above/Jump if not below or equal
JAE/INB Jump if above or equal/Jump if not below
JB/INAE Jump if below/Jump if not above or equal
JBE/INA Jump if below or equal/Jump if not above
JG/INLE Jump if greater/Jump if not less or equal
JGE/JNL Jump if greater or equal/Jump if not less
JL/INGE Jump if less/Jump if not greater or equal
JLE/ING Jump if less or equal/Jump if not greater
JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

6-5

INSTRUCTION SET SUMMARY

JS

JINS

JPO/INP
JPE/JP
JCXZIJECXZ
LOOP
LOOPZ/LOOPE
LOOPNZ/LOOPNE
CALL

RET

IRET

INT

INTO

BOUND
ENTER

LEAVE

6.2.1.7.
MOVS/MOVSB
MOVS/MOVSW
MOVS/MOVSD
CMPS/CMPSB
CMPS/CMPSW
CMPS/CMPSD
SCAS/SCASB
SCAS/SCASW
SCAS/SCASD
LODS/LODSB
LODS/LODSW
LODS/LODSD
STOS/STOSB

6-6

Jump if sign (negative)
Jump if not sign (non-negative)
Jump if parity odd/Jump if not parity
Jump if parity even/Jump if parity
Jump register CX zero/Jump register ECX zero
Loop with ECX counter
Loop with ECX and zero/Loop with ECX and equal
Loop with ECX and not zero/Loop with ECX and not equal
Call procedure
Return
Return from interrupt
Software interrupt
Interrupt on overflow
Detect value out of range
High-level procedure entry
High-level procedure exit

STRING INSTRUCTIONS

Move string/Move byte string
Movestring/Move word string
Movestring/Move doubleword string
Compare string/Compare byte string
Compare string/Compare word string
Compare string/Compare doubleword string
Scan string/Scan byte string

Scan string/Scan word string

Scan string/Scan doublewshdng
Load string/Load byte string

Load string/Load word string

Load string/Load doublerd string
Store string/Store byte string

intel.

STOS/STOSW
STOS/STOSD
REP
REPE/REPZ
REPNE/REPNZ
INS/INSB
INS/INSW
INS/INSD
OUTS/OUTSB
OUTS/OUTSW
OUTS/OUTSD

INSTRUCTION SET SUMMARY

Store string/Store word string

Store string/Store doubleword string

Repeat while ECX not zero

Repeat while equal/Repeat while zero

Repeat while not equal/Repeat while not zero
Input string from port/Input bytgtringfrom port
Input string from port/Input worstring from port
Input string from port/Input doubderd string from port
Outpustring to port/Output byte string to port
Outpustring to port/Output word string to port
Outpustring to port/Output doubleord sting to port

6.2.1.8. FLAG CONTROL INSTRUCTIONS

STC
CLC
CMC
CLD
STD
LAHF
SAHF

PUSHF/PUSHFD

POPF/POPFD
STI
CLI

Set carry flag

Clear the carry flag

Complement the carry flag

Clear the direction flag

Set direction flag

Load flags into AH register

Store AH rgister into flags
Push EFLAGS onto stack
Pop EFLAGS from stack

Set interrupt flag

Clear the interupt flag

6.2.1.9. SEGMENT REGISTER INSTRUCTIONS

LDS
LES
LFS
LGS
LSS

Load far pointer using DS
Load far pointer using ES
Load far pointer using FS
Load far pointer using GS
Load far pointer using SS

6-7

INSTRUCTION SET SUMMARY

6.2.1.10. MISCELLANEOUS INSTRUCTIONS
LEA Load effective address
NOP No operation

uB2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor Identification

6.2.2. Floating-Point Instructions

The floating-point instructions are those that are executed by the processairigffmant unit
(FPU). These instructions are used to operate on floating-poir}, (eetended integer, and
binary-coded decimal (BCD) operands. As with the integer instructions, the following list of
floating-point instructions is divided into sulogips.

6.2.2.1. DATA TRANSFER

FLD Load real

FST Store real

FSTP Store real and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below
FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below
FCMOVNBE Floating-point conditional move if not below or equal
FCMOVU Floating-point conditional move if unordered
FCMOVNU Floating-pointconditional move if not unordered

6-8

intel.

6.2.2.2.
FADD
FADDP
FIADD
FSUB
FSUBP
FISUB
FSUBR
FSUBRP
FISUBR
FMUL
FMULP
FIMUL
FDIV
FDIVP
FIDIV
FDIVR
FDIVRP
FIDIVR
FPREM
FPREMI
FABS
FCHS
FRNDINT
FSCALE
FSQRT
FXTRACT

6.2.2.3.
FCOM
FCOMP

INSTRUCTION SET SUMMARY

BASIC ARITHMETIC

Add real

Add real and pop
Add integer

Subtract real

Subtract real and pop
Subtract integer

Subtract real reverse
Subtract real reverse and pop
Subtract integer reverse
Multiply real

Multiply real and pop
Multiply integer

Divide real

Divide real and pop

Divide integer

Divide real reverse

Divide real reverse and pop
Divide integer reverse
Partial remainder

IEEE Partial remainder
Absolute value

Change sign

Round to integer

Scale by power of two
Square root

Extract exponent and significand

COMPARISON

Compare real
Compare real and pop

6-9

INSTRUCTION SET SUMMARY Intel®

FCOMPP
FUCOM
FUCOMP
FUCOMPP
FICOM
FICOMP
FCOMI
FUCOMI
FCOMIP
FUCOMIP
FTST
FXAM

6.2.2.4.
FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP1

6.2.2.5.
FLD1
FLDZ
FLDPI
FLDL2E
FLDLN2
FLDL2T
FLDLG2

6-10

Compare real and pop twice

Unordeed compare real

Unordeed compare real and pop
Unordeed compare real and pop twice
Compare integer

Compare integer and pop

Compare real and set EFLAGS
Unordeed compare real and set EFLAGS
Compare real, set EFLAGS, and pop
Unordeed compare real, set EFLAGS, and pop
Test real

Examine real

TRANSCENDENTAL
Sine
Cosine
Sine and cosine
Partial tangent
Partial arctangent
X-1
yOogx
ylogzx+1)

LOAD CONSTANTS

Load +1.0
Load +0.0
Loadmt
Load loge
Load log2
Load logl0
Load log@

Intel® INSTRUCTION SET SUMMARY

6.2.2.6. FPU CONTROL

FINCSTP Increment FPU register stack pointer

FDECSTP Decrement FPU register stack pointer

FFREE Free floating-point register

FINIT Initialize FPU after checking error conditions

FNINIT Initialize FPU without checking error conditions

FCLEX Clear floating-point exception flags after checking for error
conditions

FNCLEX Clear floating-point exception flags without checking for error
conditions

FSTCW Store FPU control word after checking error conditions

FNSTCW Store FPU control word without checking error conditions

FLDCW Load FPU control word

FSTENV Store FPU environment after checking error conditions

FNSTENV Store FPU environment without checking error conditions

FLDENV Load FPU environment

FSAVE Save FPU state after checking error conditions

FNSAVE Save FPU state without checking error conditions

FRSTOR Restore FPU state

FSTSW Store FPU status word after checking error conditions

FNSTSW Store FPU status word without checking error conditions

WAIT/FWAIT Wait for FPU

FNOP FPU no operation

6.2.3. System Instructions

The following system instructions are used to control those functions of the processor that are
provided to support for operatimystems and executives.

LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register

6-11

INSTRUCTION SET SUMMARY Intel®

STR
LIDT
SIDT
MOV
LMSW
SMSW
CLTS
ARPL
LAR
LSL
VERR
VERW
MOV
INVD
WBINVD
INVLPG
LOCK (prefix)
HLT
RSM
RDMSR
WRMSR
RDPMC
RDTSC

Store task register

Load interrupt descriptor table (IDT) register
Store interrupt descriptor table (IDT) register
Load and store control registers

Load machine status word

Store machine status word

Clear the task-switched flag

Adjust requested privilege level

Load access rights

Load segment limit

Verify segment for reading

Verify segment for writing

Load and store debug registers

Invalidate cache, with writeback

Invalidate cache, no writeback

Invalidate TLB Entry

Lock Bus

Halt processor

Return from system management mode (SSM)
Read model-specific register

Write model-specific register

Read performance monitoring counters

Read time stamp counter

6.3. DATA MOVEMENT INSTRUCTIONS

The data movement instructions move bytesrds, doublewords, or quadwords both between
memory and the processor’s registers and between registers. These instructions are divided into

three groups:

® General-purpose data movement.

® Exchange.
® Stack manipulation.
® Type-conversion.

6-12

Intel® INSTRUCTION SET SUMMARY

6.3.1. General-Purpose Data Movement Instructions

The MOV (move) and CMOVcc (conditional move) instructions transfer data betweeomne
and registers or between registers.

6.3.1.1. MOVE INSTRUCTION

The MOV instruction performs basic load data and store data operations between memory and
the processor’s registers and data movement operations between registers. It handles data trans-
fers along the paths listed in Table 6-1. (See “MOV—Move to/from Control Registers” on page
11-285 and “MOV—Move to/from Debug Registers” on page 11-287 for information on
moving data to and from the control and debug registers.)

Table 6-1. Move Instruction Operations

Type of Data Movement Source - Destination

From memory to a register Memory location - General-purpose register
Memory location - Segment register

From a register to memory General-purpose register -~ Memory location
Segment register - Memory location

Between registers General-purpose register - General-purpose register
General-purpose register . Segment register
Segment register - General-purpose register
General-purpose register - Control register

Control register - General-purpose register
General-purpose register - Debug register

Debug register - General-purpose register

Immediate data to a register Immediate - General-purpose register

Immediate data to memory Immediate —~ Memory location

The MOV instruction cannot move data from one memory location to another or from one
segment register to another segment register. Memory-toemyemoves can be performed with
the MOVS (string move) instruction (see “String Operations” on page 6-32).

6.3.1.2. CONDITIONAL MOVE INSTRUCTIONS

The CMOVcc instructions aregroup ofinstructions that check the state of the status flags in
the EFLAGS register and perform a move operation if the flags are in a specifiddistaiedi-

tion). These instructions can be used to move a 16- or 32-bit value from memory to a general-
purpose register or from one general-purpogéster to another. The flag state being tested for
each instruction is specified with a condition code (cc) that is associated with the instruction. If
the condition is not satisfied, a move is not performed and execution continues with the instruc-
tion following the CMOVcc instruction.

6-13

INSTRUCTION SET SUMMARY Intel®

Table 6-4 on page 6-30 shows the mnemonics for the CMOVcc instructions and the conditions
being tested for each instruction. The condition code mnemonics are appended to the letters
“CMOV” to form the mnemonics for the CMOVcc instructions. The instructions listed in
Table 6-4 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the same instruc-
tion. The assembler provides these alternate names to make it easier to read program listings.

Table 6-2. Conditional Move Inst ructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

CMOVA/CMOVNBE (CF or ZF)=0 Above/not below or equal
CMOVAE/CMOVNB CF=0 Above or equal/not below
CMOVNC CF=0 Not carry
CMOVB/CMOVNAE CF=1 Below/not above or equal
CMOVvC CF=1 Carry
CMOVBE/CMOVNA (CFor ZF)=1 Below or equal/not above
CMOVE/CMOVZ ZF=1 Equal/zero
CMOVNE/CMOVNZ ZF=0 Not equal/not zero
CMOVP/CMOVPE PF=1 Parity/parity even
CMOVNP/CMOVPO PF=0 Not parity/parity odd
Signed Conditional Moves
CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less
CMOVL/CMOVNGE (SF xor OF)=1 Less/not greater or equal
CMOVLE/CMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater
CMOVO OF=1 Overflow
CMOVNO OF=0 Not overflow
CMOVS SF=1 Sign (negative)
CMOVNS SF=0 Not sign (non-negative)

The CMOVcec instructions are useful for optimizing small IF constructions. They also help elim-
inate branching overhead for IF statements and the possibility of branch mispredictions by the
processor.

These instructions may not Isipported on some processors in the Pentium Pro processor
family. Software can check if the CMOVcc instructions awgpported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
on page 11-73).

6-14

Intel® INSTRUCTION SET SUMMARY

6.3.1.3. EXCHANGE INSTRUCTIONS

The exchange instructions swap the contents of one or more operands and, in some cases,
performs additional operations such as asserting the LOCK signal or modifying flags in the
EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes
the place of three MOV instructions and does not require a temporary location to save the
contents of one operand location while the other is being loaded. Whemaryneperand is

used with the XCHG instruction, the processor’s LOCK signal is automatically asserted. This
instruction is thus useful for implementing semaphores or similar data structures for process
synchronization. (See ChapterMultiple Processor Managemernh thePentium Pro Family
Developer’s Manual, Volumef8r more information on bus locking.)

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit
positions 0 through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 2Bxecuting this instruction twice in a row leaves the register in
the same value as before. The BSWAP instruction is ulsefabnverting between “big-endian”

and “little-endian” data formats. This instruction also speeds execution of decimal arithmetic.
(The XCHG instruction can be used two swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the
two operands in the destination operand. The status flags in the EFLAGS register indicate the
result of the addition. This instruction can be combined with the LOCK prefix (see
“LOCK—Assert LOCK# Signal Prefix” on pagel2269) in a multiprocesng system to allow
multiple processors to execute one ROp.

The CMPXCHG (compare and exchange) and CMPXCHGS8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of
the other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register
reflect the result that would have been obtained by subtracting the destination operand from the
value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks
to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the
ID of the current owner. This is all done in one uninterruptible operation. In a single-processor
system, the CMPXCHG instruction eliminates the need to switch to protection level O (to disable
interrupts) before executing multiple instructions to test and modify a semaphonsulkipte
processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare
and exchange operation atomically.

The CMPXCHGS8B instruction also requires three operands: a 64-bit value in EDX:EAX, a
64-bit value in ECX:EBX, and a destination operand in memory. The instruction compares the
64-bit value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit
value in the ECX:EBX register is stored in the destination operand. If the EDX:EAX register

6-15

INSTRUCTION SET SUMMARY Intel®

and the destination are not equal, the destination is loaded in the EDX:EAX register. The
CMPXCHGSB instruction can be combined with the LOCK prefix to perform the operation
atomically.

6.3.2. Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop alleegjigistructions let you

move data to and from the procedure stack. The PUSH instruction decrements the stack pointer
(contained in the ESP register), then copiesstihece operand to the top of stdske Figure

6-1 on page 6-16). It operates on memory operands, immediate operands, and register operands
(including segment registers). The PUSH instruction is commonly used to place parameters on
the stack before calling a procedure. It can also be used to reserve space on the stack for tempo-
rary variables.

Procedure Stack

Before Pushing Doubleword After Pushing Doubleword
Stack
Growth 31 0 31 0
n < ESP
n-4
n-8 Doubleword Value |<—ESP

Figure 6-1. Operation of the PUSH Instruction

The PUSHA instruction saves the contents of the eight geperaose registers on the stack

(see Figure 6-2 on page 6-17). This instruction simplifies procedure calls by reducing the
number of instructions required to save the contents of the general-purpose registers. The regis-
ters are pushed on the stack in the following order: EAX, ECX, EDX, EBX, the initial value of
ESP before EAX was pushed, EBP, ESI, and EDI.

6-16

Intel® INSTRUCTION SET SUMMARY

Procedure Stack
Before Pushing Registers After Pushing Registers
Stack 31 0 31 0
n

n-4 - ESP

n-8 EAX
n-12 ECX
n-16 EDX
n-20 EBX
n-24 Old ESP
n-28 EBP
n-32 ESI
n-36 EDI << ESP

Figure 6-2. Operation of the PUSHA Instruction

The POP instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 6-3 on page 6-17). The destination operand
may specify a general-purpose register, a segment register, or a memory location.

Procedure Stack

Before Popping Doubleword After Popping Doubleword
Stack g 0 31 0
n
n-4 <—ESP
n-8 Doubleword Value < ESP

Figure 6-3. Operation of the POP Instruction

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words
or doublewords from the top of the staokoi the general-purpose registers, except for the ESP
register (see Figure 6-4 on page 6-18). If the address-size attribute is 32, the doublewords on the
stack are transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword,
EBX, EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. If
the address-size attribute is 16, the words on the stack are transferred to the registers in the
following order: DI, Sl, BP, ignore word, BX, DX, CX, and AX.

6-17

INSTRUCTION SET SUMMARY Intel®

Procedure Stack
Before Popping Registers After Popping Registers
Stack 0 31 0 31
Growth
n
l n-4 < ESP
n-8 EAX

n-12 ECX

n-16 EDX

n-20 EBX

n-24 Ignored

n-28 EBP

n-32 ESI

n- 36 EDI < ESP

Figure 6-4. Operation of the POPA Instruction

6.3.2.1. TYPE CONVERSION INSTRUCTIONS

The type conversion instructions convert bytesimbods, words into doublewords, and double-
words into quadwords. These instructions are especially useful for converting integers to larger
integer formats, because they perform sign extension (see Figure 6-5 on page 6-18).

Two kinds of type conversion instructions are provided: simple conversion and move and
convert.

Before Sign

15 0
[ST[WWN W W[N]]] B
Extension

31

After Sign

15 0
[5[STs[[STs[Ts[s[s s[5][5]] W W NN WNa] Aer s
Extension

Figure 6-5. Sign Extension

6.3.2.2. SIMPLE CONVERSION

The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD
(convert word to doubleword), and CDQ (convert doubleword to quadwostjuctions
perform sign extension to double the sizéhaf source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position
of the upper byte of the AX register. The CWDE instruction copies the sigtbjbitf the word
in the AX register into every bit position of the high word of the EAX register.

6-18

Intel® INSTRUCTION SET SUMMARY

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit posi-
tion in the DX register. The CDQ instruction copies the sign3bjtof the doubleword in the
EAX register into every bit position in the EDX register. The CWD instruction can be used to
produce a doubleword dividend from a word before a word division, and the CDQ instruction
can be used to produce a quadword dividend from a doubleword before doublexisicch di

6.3.2.3. MOVE AND CONVERT

The MOVSX (move with sign extension) and MOVZX (move with zero extension) instructions
move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value tbGabit value or an 8- or 16-bit ltee to 32-bit

value by sign extending the source operand, as shown in Figure 6-5 on page 6-18. The MOVZX
instruction extends an 8-bit value t@@:bit value or an 8- or 16-bit value to 32-bit value by zero
extending the source o@ad.

6.4. BINARY ARITHMETIC INSTRUCTIONS

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed
or unsigned binary integers. Operations include the add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign (negate). The binary arithmetic instructions
may also be used in algorithms that operate on decimal (BCD) values.

6.4.1. Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), S{dBbtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on
signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is
set. This instruction is used to propagate a borrow when subtracting numbers in stages.

6.4.2. Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.

6-19

INSTRUCTION SET SUMMARY Intel®

6.4.3. Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are
not modified, nor is the result saved. The CMP instruction is commonly used in conjunction with

a Xrc(jump) or SE€c (byte set on condition) instruction, with the latter instructions performing

an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the
NEG instruction is to change the sign of a two's complement operand while keeping its
magnitude.

6.4.4. Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMghesl
multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice
the size of the source operands (for example, if word operands are being multipliesijittie re
a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice
the size of the source operands; however, in some cases the result is truncated to the size of the
source operands (see “IMUL—Signed Multiply” on page 11-206).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performsgyaesi
division.

6.5. DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic can be performed with the PentRnm processor by combining the binary
arithmetic instructions ADD, SUB, MUL, and DIV (discussed in “Binary Arithmetic Instruc-
tions” on page 6-19) with the decimal arithmetic instructions. The decimal arithmetic instruc-
tions are provided to carry out the following operations:

® To adjust the results of a previous binary arithmetic operation to produce a valid BCD
result.

® To adjust the operands of a subsequent binary arithmetic operation so that the operation
will produce a valid BCD rsult.

These instructions operate only on both packed and unpacked BCD values.

6-20

Intel® INSTRUCTION SET SUMMARY

6.5.1. Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see “BCD Integers” on page
5-4). Adding two packed BCD values requires two instructions: an ADD instruction followed
by a DAA instruction. The ADD instruction adds (binary addition) the two values and stores the
result in the AL register. The DAA instruction then adjusts the value in the AL register to obtain

a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as the result
of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed
by a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from
another and stores the result in the AL register. The DAS instruction then adjusts the value in
the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal
borrow occurred as the result of the subtraction.

6.5.2. Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the
results of arithmetic operations performed in unpacked BCD values (see “BCD Integers” on
page 5-4). All these instructions assume that the value to be adjusted in stored in the AL register
or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the result in the AL register in unpacked BCD format (the decimal number is stored in the
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a result
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value. If
a borrow was required to complete the decimal subtract, the CF flag is set and the contents of
the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
the most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
DIV instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD
value in registers AH (most significant digit) and AL (least significant digit) into a binary value
and stores the result in register AL. When the value in AL is divided by an unpacked BCD value,
the quotient and remainder will be automatically encoded in unpacked BCD format.

6-21

INSTRUCTION SET SUMMARY Intel®

6.6. LOGICAL INSTRUCTIONS

The logical instructions AND, OR, XOR (exclusive or), and NOfifgren the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper-
ands; the NOT instruction operates on a single operand.

6.7. SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

® Shift.
® Doubleshift.
® Rotate.

6.7.1. Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 6-6 on page 6-22). They
shift the source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The
CF flag is loaded with the last bit shifted out of the operand.

Initial State
CF Operand

‘10001000100010001000100010001111‘

After 1-bit SHL/SAL Instruction

4—{000100010001000lOOOlOOOlOOOllllO‘(*O

After 10-bit SHL/SAL Instruction

|Z|<—{00100010001000100011llOOOOOOOOOO‘(*O

Figure 6-6. SHL/SAL Instruction Operation

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 6-7
on page 6-23). As with the SHL/SAL instruction, the empty bit positions are cleared and the CF
flag is loaded with the last bit shifted out of the operand.

6-22

Intel® INSTRUCTION SET SUMMARY

Initial State Operand CF

‘10001000100010001000100010001111‘

After 1-bit SHR Instruction

O~>‘0100010001000lOOOlOOOlOOOlOOOlll}—)

After 10-bit SHR Instruction

O*)‘00000000001000100010001000100010}—>|Z|

Figure 6-7. SHR Instruction Operation

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 6-8
on page 6-24). This instruction differs from the SHR instruction in that it preserves the sign of
the source operand by clearing empty bit positions if the operand is positive or setting the empty
bits if the operand is negative. Again, the CF flag is loaded with the last bit shifted out of the
operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” on page 11-345).

6-23

INSTRUCTION SET SUMMARY Intel®

Initial State (Positive Operand) Operand CF

‘01000100010001000100010001000111‘

After 1-bit SAR Instruction

l—iTO10001000lOOOlOOOlOOOlOOOlOOOll}—)

Initial State (Negative Operand) CF

‘1100010001000lOOOlOOOlOOOlOOOlll}—)

After 1-bit SAR Instruction

EllOOOlOOOlOOOlOOOlOOOlOOOlOOOll}—)

Figure 6-8. SAR Instruction Operation

6.7.2. Double-shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified
number of bits from one operand to another (see Figure 6-9 on page 6-24). They are provided to
facilitate operations on unaligned bit strings. They can also be used to implement a variety of bit
string move operations.

SHLD Instruction
31 0

4—{ Destination (Memory or Register) ‘47

31 0

Source (Register) ‘

SHRD Instruction

‘ Source (Register) ‘—

31 0
‘ Destination (Memory or Register) ‘*»

Figure 6-9. SHLD and SHRD Instruction Operations

6-24

Intel® INSTRUCTION SET SUMMARY

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can
range from 0 to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the desti-
nation operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the
left in the destination operand, with the empty bit positions filled with bits shifted out of the
source operand.

6.7.3. Rotate Instructions

The ROL (Rotate Left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate
through carry rightjnstructions rotate the bits in the destination operand out of one end of an
operand and back through the other end (see Figure 6-10 on page 6-25). Unlike a shift, no bits
are lost during a rotation. The rotate count can range from 0 to 31.

ROL Instruction

31 0
4 Destination (Memory or Register) <
31 ROR Instruction 0
»‘ Destination (Memory or Register) ‘—+

a1 RCL Instruction 0

4—{ Destination (Memory or Register) ‘4*

a1 RCR Instruction 0
‘ Destination (Memory or Register) }—»

Figure 6-10. ROL, ROR, RCL, and RCR Instruction Operations

The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca-
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

6-25

INSTRUCTION SET SUMMARY Intel®

The RCL instruction rotates the bits in the operand to theheftughthe CF flag). This instruc-

tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of thage

The RCR instruction rotates the bits in the operand to thethightighthe CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

6.8. BIT AND BYTE INSTRUCTIONS

The bit and byte instructions operate on bit or byte strings. They are divided into three groups:
® Bit test and modify instructions.

® Bit scan instructions.

® Byte set on condition.

® Test

6.8.1. Bit Test and Modify Instructions

The bit test and modify instructions (see Table 6-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined
by the modify operation for the instruction.

Table 6-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag — Selected Bit No effect
BTS (Bit Test and Set) CF flag — Selected Bit Selected Bit ~ 1
BTR (Bit Test and Reset) CF flag — Selected Bit Selected Bit — 0
BTC (Bit Test and CF flag — Selected Bit Selected Bit — NOT (Selected Bit)
Complement)

6.8.2. Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first s&iunid in adestination register. The
bit index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The

6-26

Intel® INSTRUCTION SET SUMMARY

BSF instruction scans the source operand low-to-high (from bit O of the source operand toward
the most significant bit); the BSR instruction scans high-to-low (from the most significant bit
toward the least significant bit).

6.8.3. Byte-Set-On-Condition Instructions

The SETcc (set byte on conditioimstructions set a destinan-operand byte to 0 or 1,
depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register.
The suffix €c) added to the SET mnemonic determines the condition being tested for. For
example, the SETO instruction tests for overflow. If the OF flag is set, destination byte is set to
1; if OF is clear, the destination byte is cleared to 0. AppendeFBAGS Condition Codédists

the conditions it is possible to test for with this instruction.

6.8.4. Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions
or the SE€cinstructions. The TEST instruction differs from the AND instruction in that it does
not alter either of the operands.

6.9. CONTROL TRANSFER INSTRUCTIONS

The processarovides botttonditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the
status flags in the EFLAGS register. Unconditional control transfers are always executed.

6.9.1. Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

6.9.1.1. JUMP INSTRUCTION

The JMP (jump) instruction unconditionally transfers program control to a destination instruc-
tion. The transfer is a one-way: a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address caeldté/e
addressor anabsolute address

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the
EIP register. The displacement is specified with a signed integer, allowing jumps either forward
or backward in the instruction stream.

6-27

INSTRUCTION SET SUMMARY Intel®

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

® An address in a general-purpose registeilhis address is treated as a near pointer, which
is copied into the EIP register. Program execution then continues at the new address within
the current code segment.

® An address specified using the standard addressing modes of the processtare, the
address can be a near pointer or a far pointer. If the address is for a neartheintidress
is translated into an offset and copied into the EIP register. If the address is for a far
pointer, the address is translated into a segment selector (which is copied into the CS
register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-
state segment.

6.9.1.2. CALL AND RETURN INSTRUCTIONS

The CALL (call procedure) and RET (return from procedure) instructions allow a fjamp
one procedure (or subroutine) to another and a subsequent jump back (return) to the calling
procedure.

The CALL instruction transferprogramcontrol from the current (or calling procedure) to
another procedure (the called procedure). To allow a subsequent return to the calling procedure,
the CALL instructions saves the current contents of the EIP register on the procedure stack
before jumping to the called procedure. The EIP register (prior to transferring program control)
contains address of the instruction following the CALL instruction. When this addpeshisd

on the stack is referred to as tkeéurn instruction pointer

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see
“Jump Instruction” on page 6-27). The address can be specified with as a relative address or an
absolute address. If an absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the
called procedure) back to the procedure that called it (the calling procedure). Transfer of control
is accomplished by copying the retunstruction pointer from the stack into the EIP register.
Program exeution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the
ESP register as part of the return operation. This operand allows to stack pointer to be incre-
mented to remove parameters from the stack that were pushed on the stack by the calling
procedure.

See “Calling Procedures Using CALL and RET” on page 4-4, for more information on the
mechanics of making procedure calls with the CALL and RET instructions.

6-28

Intel® INSTRUCTION SET SUMMARY

6.9.1.3. RETURN-FROM-INTERRUPT INSTRUCTION

When the processor services in interrupt, it performs an implicit call to amupt&andling
procedure. The IRET (return from interrupt¥truction returns program control from an inter-

rupt handler to the interrupted procedure (that is, the procedure that was executing when the
interrupt occurred). The IRET instruction performs a similar operation to the RET instruction
(see “Call and Return Instructions” on page 6-28) except that it also restores the EFLAGS
register from the procedure stack. The contents of the EFLAGS register are automatically stored
on the stack along with the return instruction pointer when the processor services an interrupt.
(As with the RET instruction, the IRET instruction has an optional operand for adjusting the
stack pointer.)

6.9.2. Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions for
control transfer are specified with a set of condition codes that define various states of the status
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

6.9.2.1. CONDITIONAL JUMP INSTRUCTIONS

The &c (conditional) jump instructions transfers program control to a destination instruction if
the conditions specified with the condition code (cc) associated with the instruction are satisfied.
If the condition is not sadfied, execution continues with the instruction following tloe J
instruction. As with the JMP instruction, the transfer is a one-way; that is, a return address is not
saved.

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to a instruction in the current code segmentcihstidictions

do not supportar transfers; however, far transfers can be accomplished with a combination of

a rcand a JMP instruction (see “Jcc—Jump if Condition Is Met” on page 11-237).

Table 6-4 on page 6-30 shows the mnemonics forabedtructions and the conditions being
tested for each instruction. Thendition code mnemonics are appended to the letter “J” to form

the mnemonic for acg instruction. The instructions are divided into tgrups: unsigned and

signed condibnal jumps. Thesgroups correspond tilne results of operations performed on
unsigned and signed integers, respectively. Those instructions listed agfgraggample,
JA/INBE) are alternate names for the same instruction. The assembler provides these alternate
names to make it easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one
or more status flags. See “Jump If Zero Instructions” on page 6-31 for nformaion about
these instructions.

6-29

INSTRUCTION SET SUMMARY Intel®

Table 6-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

JA/INBE (CF or ZF)=0 Above/not below nor equal
JAE/INB CF=0 Above or equal/not below
JB/INAE CF=1 Below/not above nor equal
JBE/INA (CFor ZF)=1 Below or equal/not above
JC CF=1 Carry

JENZ ZF=1 Equal/zero

JNC CF=0 Not carry

JNE/INZ ZF=0 Not equal/not zero
JNP/IPO PF=0 Not parity/parity odd
JP/IIPE PF=1 Parity/parity even

JCXZ CX=0 Register CX is zero
JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

JG/INLE ((SF xor OF) or ZF) =0 Greater/not less nor equal
JGE/INL (SF xor OF)=0 Greater or equal/not less
JL/INGE (SF xor OF)=1 Less/not greater nor equal
JLE/ING ((SF xor OF) or ZF)=1 Less or equal/not greater
JNO OF=0 Not overflow

JINS SF=0 Not sign (non-negative)
JO OF=1 Overflow

JS SF=1 Sign (negative)

6.9.2.2. LOOP INSTRUCTIONS

The LOOP (loop while ECX not zero), LOOPE (loop while equa®QPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while naibénstructions areondi-

tional jump instructions that use the value of the ECX register as a count for the number of times
to execute a loop. All the loop instructions decrement the count in the ECX register each time
they are executed and terminate a loop when zero is reached. Some of the loop instructions also
accept the ZF flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the
count in the ECX register are non-zero, program control is transferred to the instruction address
specified by the destination operand. The destination operand is a relative address (that is, a
offset relative to the contents of the EIP register), and it generally points the first instruction in

6-30

Intel® INSTRUCTION SET SUMMARY

the block of code that is to be executed in the loop. When the count in the ECX register reaches
zero, programantrol is transferred to the instruction immediately following the LOOP instruc-
tion, which terminates the loop. If the count in the ECX register is zero when the LOOP instruc-
tion is first executed, the register is pre-decremented to FFFFFFFFH, causing the loop to be
executed Ztimes.

The LOOPE and LOOPZ instructiopgrform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag. If the count in the ECX register is not zerohendF flag is set, program

control is transferred to destination operand. When the count reaches zero or the ZF flag is clear,
the loop is terminated by transferringpgram control to thestruction immediately following

the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the
same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is
set.

6.9.2.3. JUMP IF ZERO INSTRUCTIONS

The JECXZ (jump if ECX zero) instruction jumps to the location specified in the destination
operand if the ECX register contains the value zero. This instruction can be used in combination
with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX
register prior to beginning a loop. As described in “Loop Instructions” on page 6-30, the loop
instructions decrement the contents of the ECX register before testing for zero. If the value in
the ECX register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc-
tion, causing the loop to be executédtimes. To prevent this problem, a JECXZ instruction

can be inserted at the beginning of the code block for the loop, causing a jump out the loop if
the EAX register count is initially zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated because the
count reached zero or because the scan or compare conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the
16-bit address-size attribute is used. Here, the CX register is tested for zero.

6.9.3. Software Interrupts

The INTn (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of
range) instructions allow a program to explicitly raise a specifiegrint or exception, which
in turn causes the handler routine for the interrupt or exception to be called.

The INTh instruction can raise any of the processors interrupts or exceptions by encoding the
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception handlers.
The IRET instruction (see “Return-From-Interrupt Instruction” on page 6-29) allows returns
from interrupt handling routines.

6-31

INSTRUCTION SET SUMMARY Intel®

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access the
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises
the “BOUND range exceeded” exception if the value is less than the lower bound or greater than
the upper bound. This instruction is useful for operations such as checking an array index to
make sure it falls within the range defined for the array.

6.10. STRING OPERATIONS

The MOVS (Move String), CMPS (Compastring), SCAS (Scan string), LODS (Load string),

and STOS (Store string) instructions permit large data structures, such as alphanumeric char-
acter strings, to be moved and examined in memory. These instructions operate on individual
elements in a string, which can be a byte, word, or doubleword. The string elements to be oper-
ated on are identified with the ESI (source string element) and EDI (destination string element)
registers. Both of these registers contain absolute addresses (offsets into a segment) that point to
a string element.

By default, the ESI register addresses the segment identified with the DS segment register. A
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS
segment register. The EDI register addresses the segment identified with the ES segment
register; no segment override is allowedtfue EDI register. The use of two different segment
registers in the string instructions permits operations to be performed on strings located in
different segments. Or by associating the ESI register with the ES segment register, both the
source and destination strings can be located in the same segment.

The MOVS instruction moves the string element addressed by the ESI register to the location
addressed by the EDI register. The assembler recognizes three versions of this instruction, which
specify the size of the string to be moved: MOVSB (move byte string), MOVSW (maonck

string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element
and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to
the results. Neither string element is written back tonony. The asembler recognizes three
versions of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compede
strings), and CMPSD (compare doulted strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,

AX, or AL register (depending on operand length) and updates the status flags according to the
results. The string element and register contents are not modified. The following variations of

the SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan
word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the
EAX regqister (for adoubleword string), the AXegister (for a word string), or the AL register

(for a byte string). The mnemonics normally used for thigiction are LODSB (load byte
string), LODSW (load word string), and LODSD (load doubleword string). This instruction is

6-32

Intel® INSTRUCTION SET SUMMARY

usually used in a loop, where other instructions process each element of the string after they are
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI
register. The mnemonics normally used for this instruction are STOSB (store byte string),
STOSW (store wordtring), and STOSD (store doubleword string). This instruction is also
normally used in a loop. Here a string is commonly loaded into the register with a LODS instruc-
tion, operated on by other instructions, and then stored again in memory with a STOS instruc-
tion.

The 1/O instructions (see “I/O Instructions” on page 6-33) also perform operations on strings in
memory.

6.10.1. Repeating String Operations

The string instructions described in “String Operations” on page 6-32 perform one iteration of
a string operation. To operate strings longer thatoablewad, the string instructions can
combined with a repeat prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in thestring. String operations can thus begin at higher addressesantbward

lower ones, or they can begin at lower addressesvarkitoward higher ones. The DF flag in

the EFLAGS register controls whether the registers are incremented (DF=0) or decremented
(DF=1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to
cause a string instruction to repeat:

® REP—Repeat while the ECX register not zero.
* REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set.
* REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes
are used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
is the fastest way to initialize a large block of memory.

6.11. I/O INSTRUCTIONS

The IN (input from port to register), INS (input from port to string), OUT (output from register
to port), and OUTS (output string to port) instructions move data between the processor’s /O
ports and either a register or memory.

The register 1/O instructions (IN and OUT) move data between an I/O port and the EAX register
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read
or written to is specified with an immediate operand or an address in the DX register.

6-33

INSTRUCTION SET SUMMARY Intel®

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between
an I/O port and memory. These instructions operate similar to the string instructionsrisee “St
Operations” on page 6-32). The ESI and EDI registers are used to specify string elements in
memory and the repeat prefixes (REP) are used to repeat the instructions to implement block
moves. The assembler recognizes the following alternate mnemonics for these instructions:
INSB (input byte)JNSW (input word), and INSD (input doubleword), and OUTB (output byte),
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be
read or written to.

6.12. ENTER AND LEAVE INSTRUCTIONS

The ENTER and LEAVE instructions provide machine-language support for procedures calls in
block-structured languages, such as C and Pascal. These instructions and the caltrand re
mechanism that they spprt are described in detail in “Procedure Calls for Block-Stnect
Languages” on page 4-15

6.13. EFLAGS INSTRUCTIONS

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read or
modified.

6.13.1. Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the state the flag in an oper-
ation is executed. They are also used in conjunction with the rotate-with-carry instructions (RCL
and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers ESI and EDI are stepped when executing string processing instructions. If the DF flag
is clear, the index registers are incremented after each iteration of a string instruction; if the DF
flag is set, the registers are decremented.

6.13.2. Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow tkerimt IF flag

in the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware-
generated interrupts (those received at the gemrés INTR pin). If the IF flag is set, the
processor services hardware interrupts; if the F flag is clear, hardware interrupts are masked.

6-34

Intel® INSTRUCTION SET SUMMARY

6.13.3. EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to copied to a
register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of
the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags
to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the
register 5, 3, and 1 are undefined, and the contents of the EFLAGS register remain unchanged.
The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF,
and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and R@RFD
flags double) instructions copy the flags in the EFLAGS register to and from the procedure
stack. The PUSHF instruction pushes the lowerd of the EFLAGSegister onto the stack (see
Figure 6-11 on page 6-35). The PUSHFD instruction pushes the entire EFLAGS register onto
the stack (with the RF and VM flags read as clear).

PUSHFD/POPFD

A
A

PUSHF/POPF

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

IHMANME
D[s|e|cIM|F

ojo|o|0j0|OfO|0O|O]|O

olN olp|1|T|s|z|,|A|,|P],]C
F F|F F

I
o

T| p |F|F|F|F Olr|OfF|L|F
L

Figure 6-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD inst ructions

The POPF instruction pops a word from the stack into the EFLAGiStee Only bits 11, 10,

8,7, 6, 4,2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the
current privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits
(bits 13 and 12) also are affected. If the /O privilege level (IOPL) is 0, the IF flag (bit 9) also is
affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can
change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a
POPF instruction.

6.13.4. Interrupt Flag Instructions

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt
flag (IF) in the EFLAGS register, respectivelye@ting the IF flag causes external interrupts to

be ignored. The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to execute
these instructions.

6-35

INSTRUCTION SET SUMMARY Intel®

6.14. SEGMENT REGISTER INSTRUCTIONS

The processoprovides a variety of instructions that address the segment registers of the
processor directly. These instructions are only used when an operating system or executive is
using the segmented or the real-address mode memory model.

6.14.1. Segment-Register Load and Store Instructions

The MOV instruction (introduced in “GenefBurpose Data Movement Instructions” on page
6-13) and the PUSH and POP instructiom¢réiduced in “Stack Manipulation Itisctions” on

page 6-16) can transfer 16-bit segment selectors to and from segment registers (DS, ES, FS, GS,
and SS). The transfers are always made to or from a segment register and a general-purpose
register or memory. Transfers between segment registers asepputrted.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-
transfer versions of the JMP, CALL, and RET instructions (see “Far Control Transfer Instruc-
tions” on page 6-36) affect the CS register directly.

6.14.2. Far Control Transfer Instructions

The JMP and CALL instructions (see “Control Transfer Instructions” on page 6-27) both accept

a far pointer as a source operand to transfer program control to a segment other than the segment
currently being pointed to by the CS register. When a far call is made with the CALL instruction,
the current values of the EIP and CS registers are both pushed on the stack.

The RET instruction (see “Call and Return Instructions” on page 6-28) can be used to execute a
far return. Here, program control is transferred from a code segment that contains a called proce-
dure back to the code segment that contained the catimgdure. The RET instruction restores

the values of the CS and EIP registers for the calling procedure from the stack.

6.14.3. Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and IRET (see “Software Interrupts”

on page 6-31) can also call and return from interrupt and exception handler procedures that are
located in a code segment other than the current code segment. With these instructions, however,
the switching of code segments is handled transparently from the application program.

6.14.4. Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
ES), LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer
using SS) load a far pointer from memory into a segment register and a-gempose general
register. The segment selector part of the far pointer is loaded into the selected segment register
and the offset is loaded into the selected geymmpose register.

6-36

Intel® INSTRUCTION SET SUMMARY

6.15. MISCELLANEOUS INSTRUCTIONS

The following instructions perform miscellaneous operations that are of interest to applications
programmers.

6.15.1. Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruc-
tion can interpret any of the Pentium Pro processor’s addressing modes and can perform any
indexing or scaling that may be needed. It is especially useful for initializing the ESI or EDI
registers before the execution of string instructions or for initializing the EBX register before an
XLAT instruction.

6.15.2. Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with

a byte read from a translation table in memhge initial value in the AL register is interpreted

as an unsigned index into the translation table. This index is added to the contents of the EBX
register (which contains the base address of the table) to calculate the address of the table entry.
These instructions are used for applications such as converting character codes from one
alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equiv-
alent in a table).

6.15.3. Processor Identification Instruction

The CPUID (processor identification) instruction provides information about the processor on
which the instruction is executed. To obtain processor information, a value of from 0 to 2 is
loaded in the EAX register and then the CPUID instruction is executed. The resulting processor
information is placed in the EAX, EBX, ECX, and EDX registers. Table 6-5 on page 6-37 shows
the information that is provided depending on the value initially entered in the EAX register. See
“Processor Identification” on page 9-1 for detailed information on the output of the CPUID
instruction.

Table 6-5. Information Provided by the CPUID Instruction

Initial EAX
Value Information Provided about the Processor
0 Maximum CPUID input value.
Vendor identification string (“Genuinelntel”).
1 Version information (family ID, model ID, and stepping ID).
Feature information (identifies the feature set for the processor model).
2 Cache information (about the processor’s internal cache memory).

6-37

INSTRUCTION SET SUMMARY Intel®

6.15.4. No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instruction,
but affects nothing else.

The UD2 (undefined)nstruction generates an invalid opcode exception. Intel reserves the
opcode for this instruction for this function. The instruction is provided to allow software to test
an invalid opcode exception handler.

6-38

CHAPTER 7
FLOATING-POINT UNIT

The Pentium Pro processor’s Floating-Point Unit (FPU) provides high-performance floating-
point processing capabilities. It supports the real, integer, and BCD-integer data types and the
floating-point processing algorithms and exception handling architecture defined in the IEEE
754 and 854 Standards for Floating-Point Arithmetic. The FPU executasctitns from the
processor’s normal instruction stream and greatly improves the efficiency of the processor in
handling the types of high-precision flogg-point pro@ssing operations commonlyufed in
scientific, engineering, and business applications.

This chapter describes the data types that the FPU operates on, the FPU’s execution environ-
ment, and the FPU-specific instruction set. Detailed descriptions of the FPU instructions are
given in Chapter 11lnstruction Set Reference

7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH
COPROCESSORS

The Pentium Pro processor’s FPU extends the floating-point processing capability of earlier
math coprocessors in the Intel Architecture family of processors. It is fully compatible with the
Intel486 DX and Pentium processors.

The Pentium Pro processor's FPU offers several new instructionspimie processing
throughput. The FCMO¥C (floating-point conditional move) instructions perform a floating-
point move operation based on the state of the status flags in the EFLAGS register (see
“FCMOVcc—Floating-Point Conditional Move” on page 11-106). The FCOMI (floating-point
compare and set EFLAGS) instructions set the status flags in the EFLAGS register according to
the results of a comparison of two floating-point values (see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111).

7.2. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the Pentium
Pro processor’s FPU. It also introduces terms such as normalized numbers, denormalized
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar with
floating-point processing techniques and the IEEE standards may wish to skip this section.

7.2.1. Real Number System

As shown in Figure 7-1 on page 7-2, the real-number system comprises the continuum of real
numbers from minus infinity—o) to plus infinity (4e0).

7-1

FLOATING-POINT UNIT Intel®

Binary Real Number System

-100 -10 -1 0 1 10 100
| |

| | | | |
- T T T T T T T G -

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

-G . | ||||| | NS

i
*

=1
10.0000000000000000000000

1.11111111111111111111111
Precision |<— 24 Binary Digits ——»

Numbers within this range
cannot be represented.

Figure 7-1. Binary Real Number System

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number calculations. As shown at the bottom of

Figure 7-1, the subset of real numbers that a particular FPU supports represents an approxima-
tion of the real number system. The range and precision of this real-number subset is determined
by the format that the FPU uses to represent real numbers.

7.2.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers or FPUs typically
represent real numbers in a binary floating-point format. In this format, a real number has three
parts: a sign, a significand, and an exponent. Figure 7-2 on page 7-3 shows the binary floating-
point format that the Pentium Pro processor uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The
significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary frac-
tion. The J-bit is often not represented, but instead is an implied value. The exponent is a binary
integer that represents the base-2 power that the significand is raised to.

7-2

Intel® FLOATING-POINT UNIT

Sign

H Exponent ‘ Significand ‘

&

‘ ‘ Fraction ‘

Integer or J-Bit)

Figure 7-2. Binary Floating-Point Format

Table 7-1 shows hothe real numbet78.125 (in ordinary decimal format) is stored in floating-
point format. The table lists a progression of real number notations that leads to the format that
the FPU uses. In this format, the binary neainber is normalized and the exponent is biased
(see “Normalized Numbers” on page 7-3 and “Biased Exponent” on page 7-4).

Table 7-1. Real Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125E 2
Scientific Binary 1.0110010001E2111
Scientific Binary 1.0110010001E210000110
(Biased Exponent)
Single Format (Normalized) Sign Biased Exponent Significand
0 10000110 01100100010000000000000
1. (Implied)

7.2.2.1. NORMALIZED NUMBERS

In most cases, the FPU represents real numbers in hormalized form. This means that except for
zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

7-3

FLOATING-POINT UNIT Intel®

7.2.2.2. BIASED EXPONENT

The FPU represents exponents in a biased form. This means that a constant is added to the actual
exponent so that the biased exponent is always a positive number. llilaeo¥/ghe biasing
constant depends on the number of bits available for rpiagexponents in the floating-point

format being used. The biasing constant is chosen so that the smatfesiized number can

be reciprocated without overflow.

(See “Real Numbers” on page 7-23 for a list of the biasing constants that the FPU uses for the
various sizes of real data-types.)

7.2.3. Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the FPU'’s floating-point format.
These numbers and values are generally divided into the following classes:

® Signed zeros.

® Denormalized finite numbers.

® Normalized finite numbers.

® Signed infinities.

® NaNs.

® Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 7-3 on page 7-5 shows how the encodings for these numbers and rm@arsnfiinto

the real number continuum. The encodings showndrefer the IEEE single-precision (32-bit)
format, where the term “S” indicates the sign bit, “E” the biased exponent, and “F” the fraction.
(The exponent values are given in decimal.)

The FPU can operate on and/or return any of these values, depending on the type of computation
being performed. The following sections describe these number and non-number classes.

7.2.3.1. SIGNED ZEROS

Zero can be represented as a +0 60 @epending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed amahthiegr
mode being used. Signed zeros have lprevided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of ane that has been reciprocated.

7-4

Intel® FLOATING-POINT UNIT

7.2.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classesmalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero @nth the single-real format shown in Figure

7-3 on page 7-5, this group of numbers includes all the numbers with biased exponents ranging
from 1 to 254, (unbiagd, the exponent range is frorh26,,to +127,).

NaN NaN
—Denormalized Finite +Denormalized Finite

-0 —Normalized Finite \ —IO I+0I / +Normalized Finite +00
T T T

Real Number and NaN Encodings For 32-bit Floating-point Format
S E F s E F
[1] o | o]-0 +0fo] o] o |

—-Denormalized +Denormalized

|l| 0 | 0.XXX? | Finite Finite|0| 0 | O-XXXZ|

[1]1..254] Any value | “Normalized +Normalized 5 T7 564 T any value |
[1[255] 0 |-w +0 [0] 255 | 0 |
[xJ 255 | 1.0xx2]| -SNaN +SNaN [x} 255 | 1.0xx2]
X} 255 [1.1XX | -QNaN +QNaN [xJ 255 | 1.1xx]

Notes
1. Sign bit ignored
2. Fractions must be non-zero

Figure 7-3. Real Numbers and NaNs

When real numbers become very close to zero, the noedatiumber format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
calleddenormalizedor tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented. However, this denormalization causes a loss of preci-
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an FPU normally operates on
normalized numbers and produces normalized numberssaisteDenormalized numbers
represent annderflowcondition.

A denormalized number is computed through a technique called gradual underflow. Table 7-2
on page 7-6 gives an example of gradual underflow in the denormalization process. Here the
single-real format is being used, so the minimum exponent (unbiaseld6g. The true result

7-5

FLOATING-POINT UNIT Intel®

in this example requires an exponentbf9,, in order to have a normalized numberincg
-129,,is beyondhe allowable exponent range, the result is denormalized by insertifigdea
zeros until the minimum exponent €126, is reached.

Table 7-2. Denormalization Process

Operation Sign Exponent* Significand
True Result 0 -129 1.01011100000...00
Denormalize 0 -128 0.10101110000...00
Denormalize 0 -127 0.01010111000...00
Denormalize 0 -126 0.00101011100...00
Denormal Result 0 -126 0.00101011100...00

Note
* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The FPU deals with denormal values in the following ways:
® |t avoids creating denormals by normalizing numbers whenever possible.

® |t provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

® |t provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

When a denormal number in single- or double-real format is used as a source operand and the
denormal exception is masked, the FPU automatigabsmalizesthe number when it is
converted to extended-real format.

7.2.3.3. SIGNED INFINITIES

The two infinities, +o and-o, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero significand (fraction and integer bit) and the maximum biased exponent allowed in the
specified format (for example, 255or the single-real format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that iy is less than any finite number ané is greater than any

finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as aource operand constitutesiaualid operation.

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

7-6

Intel® FLOATING-POINT UNIT

7.2.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3 on
page 7-5, the encoding space for NaNs in the FPU figgtoint formats is shown above the
ends of the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet N@¥aNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal ardiogdraion excep-

tion whenever they appear as operands in arithmetic operations. Exceptions are discussed in
“Floating-Point Exception Handling” on page 7-40

See “Operating on NaNs” on page 7-39 for detailed information on how the FPU handles NaNs.

7.2.4. Indefinite

For each FPU data type, one unique encoding is reserved for representing the special value
indefinite For example, when operating on real values, the real indefinite value is a QNaN (see
“Real Numbers” on page 7-23). The FPU produadefinite values as responses to a masked
floating-point exceptions.

7.3. FPU ARCHITECTURE

From an abstract, architectural view, the FPU is a coprocessor that operates in parallel with the
processor’s integer unit (see Figure 7-4 on page 7-7). The FPU gets its instructions from the
same instruction decoder and sequencer as the integer unit and shares the system bus with the
integer unit. Other than these connections, the integer unit and FPU operate independently and
in parallel. (The actual microarchitecture of the Pentium Pro processor has two integer units and
two FPUs, see “Dispatch/Execute Unit” on page 2-10.)

Instruction
Decoder and
Sequencer

Integer
Unit FPU

Data Bus

-

Figure 7-4. Relationship Between the Integer Unit and the FPU

7-7

FLOATING-POINT UNIT Intel®

The instruction execution environment of the FPU (see Figure 7-5 on page 7-8) consists of 8
data registers (called the FPU data registers) and the following special-purposgsegist

® The status register.

® The control register.

® The tag word register.

® Instruction pointer register.

® |ast operand (data pointer) register.
® Opcode register.

These registers are described in the following sections.

FPU Data Registers
Sign \19 78 64 63 0
R7 Exponent Significand
R6
R5
R4
R3
R2
R1
RO
15 0 47 0
Control Instruction Pointer
Register
R%t&tsutgr Data Pointer
Tag 10 0
Register Opcode

Figure 7-5. FPU Execution Environment

7.3.1. The FPU Data Registers

The FPU data registers (shown in Figure 7-5 on page 7-8) consist of eight 8@idti¢trse

Values are stored in these registers in the extended-real format shown in Figure 7-17 on
page 7-22. When real, integer, or packed BCD integer values are loaded from memory into any
of these registers, the values are automatically converted into extended-real format (see
“Floating-Point Data Types and Formats” on page 7-22). Computation results are subsequently
converted back into one of the FPU data formats when they are transferred back into memory
from any of the FPU registers.

7-8

Intel® FLOATING-POINT UNIT

The FPU instructions treat the eight FPU data registers as a register stack (see Figure 7-6 on
page 7-9). All addressing of the data registers is relative to the register on the top of the stack.
The register number of the current top-of-stack register is stored in the TOP (stack TOP) field
in the FPU status word. Load operations decrement TOP by one and load a value into the new
top-of-stack register, and store operations store the value from the current TOP register in
memory and then increment TOP by one. (For the FPU, a load operation is equivalent to a push
and a store operation is equivalent to a pop.)

FPU Data Register Stack

Growth
Stack

l

ST(2)
ST(1) Top

ST(0) 011B

O B N W b o N

Figure 7-6. FPU Data Register Stack

If a load operation is performed when TOP is at O, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicate wheyawmand might

cause an unsaved value to be overwritten (see “Stack Overflow or Underflow Exception (#1S)”
on page 7-44).

Many floating-pointinstructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and)3$d Epecify thdth register from TOP in

the stack (& i < 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);
Figure 7-7 on page 7-10 shows an example of how the stack structure of thegidPéigand

instructions are typically used to perform a series of computations. Hares-dimensional dot
product is computed, as follows:

1. The first instruction(FLD valuel_ptr) decrements the stack register pointer (TOP) and
loads the value 5.6 from memory into ST(0). The result of this operation is shown in snap-
shot (a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

7-9

FLOATING-POINT UNIT Intel®

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

The style of programming demonstrated in this examplsupported by thdloating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange FPU register contents) instruction can be used to streamline a computation.

Computation
Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:

FLD valuel_ptr ;(a) valuel=5.6
FMUL value2_ptr ;(b) value2=2.4
FLD value3_ptr ; value3=3.8
FMUL value4_ptr ;(c)value4=10.3
FADD ST(1) ;(d)

@ (b) (© @

R7 R7 R7 R7
R6 R6 R6 R6
R5 R5 R5 R5
R4 5.6 ST(0) R4| 1344 |ST(0) R4| 1344 |ST@A) R4| 1344 |[STQ)
R3 R3 R3| 3914 |ST(O) R3| 5258 |ST(0)
R2 R2 R2 R2
R1 R1 R1 R1
RO RO RO RO

Figure 7-7. Example FPU Dot Product Computation

7.3.1.1. PARAMETER PASSING WITH THE FPU REGISTER STACK

Like the general-purpose registers in the processor’s integer unit, the conténet$-8U data
registers are unaffected by procedure calls, or in other words, the aatuesintained aoss
procedure boundaries. A calling procedure can thus use the FPU data registers (as well as the
procedure stack) for passing parameter between procedures. The called procedure can reference
parameters passed through the register stack using the current stack register pointer (TOP) and
the ST(0) and ST(nomenclature.

7-10

Intel® FLOATING-POINT UNIT

7.3.2. FPU Status Reqgister

The 16-bit FPU status register (see in Figure 7-8 on page 7-11) indicates the current state of the
FPU. The flags in the FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The FPU
sets the flags in this register to show the results of operations.

The contents of the FPU status register (referred to as the FPUwstatl)scan be stored in
memory using the FSTSW/FNSTSW, FSTENV/FNSTENYV, and FSRXEAVE instructions.
It can also be stored in the AX register of the integer unit, using the FSTSW/FNSTSW

instructions.
FPU Busy
’7 Top of Stack Pointer

151413 11109 8 76 543210

C
3

C|C|C|E|S|P|U(O|Z|D]|I
2|1|0|S|F|E|E|E|E|E|E

Condition ‘ ‘ ‘
Code
Error Summary Status

Stack Fault
Exception Flags
Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

B TOP

Figure 7-8. FPU Status Word

7.3.2.1. TOP OF STACK (TOP) POINTER

A pointer to the FPU data register that is currently at the top of the FPU register stack is
contained in bits 11 through 13 of the FPU statwsd. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See “The FPU Data Regis-
ters” on page 7-8 for more information about the TOP pointer.

7.3.2.2. CONDITION CODE FLAGS

The four FPU condition code dlgs (CO through C3indicate the results of floating-point
comparison and arithmetic operations. Table 7-3 on page 7-12 summarizes the manner in which
the floating-point instructions set the condition code flags. These condition code bits are used
principally for conditional branching and for storage of information used in exception handling
(see “Branching and Conditional Moves on FPU Condition Codes” on page 7-13).

7-11

FLOATING-POINT UNIT

As shown in Table 7-3 on page 7-12, the C1 condition code flag is used for a variety of functions.
When both the IE and SF flags in the FPU statasd are set, indicating a stack overflow or
underflow exception (#1S), the C1 flag distinguishes between overflow (C1=1) and underflow
(C1=0). When the PE flag in the status word is set, indicating an inexact (rounded) result, the
Clflagis setto 1 if the last rounding by the instruction was upward. The FXAM instruction sets

C1 to the sign of the value being examined.

Table 7-3. FPU Condition Code Interpretation

intgl.

Instruction

Co C3

Cc2

C1

FCOM, FCOMP, FCOMPP,
FICOM, FICOMP, FTST,
FUCOM, FUCOMP,
FUCOMPP

Result of Comparison

Operands
are not
Comparable

0 or#IS

FCOMI, FCOMIP, FUCOMI,
FUCOMIP

Undefined. (These instructions set the
status flags in the EFLAGS register.)

#IS

FXAM

Operand class

Sign

FPREM, FPREM1

Q2 Q1

O=reduction
complete
1=reduction
incomplete

QO or #IS

F2XM1, FADD, FADDP,
FBSTP, FCMOVcc, FIADD,
FDIV, FDIVP, FDIVR,
FDIVRP, FIDIV, FIDIVR,
FIMUL, FIST, FISTP, FISUB,
FISUBR,FMUL, FMULP,
FPATAN, FRNDINT, FSCALE,
FST, FSTP, FSUB, FSUBP,
FSUBR, FSUBRP,FSQRT,
FYL2X, FYL2XP1

Undefined

Roundup or #1S

FCOS, FSIN, FSINCOS,
FPTAN

Undefined

1=source
operand out of
range.

Roundup or #1S
(Undefined if
C2=1)

FABS, FBLD, FCHS,
FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. real), FXCH, FXTRACT

Undefined

0 or #IS

FLDENV, FRSTOR

Each bit loaded from memory

FFREE, FLDCW,
FCLEX/FNCLEX, FNOP,
FSTCW/FNSTCW,
FSTENV/FNSTENV,
FSTSW/FNSTSW,

Undefined

FINIT/ENINIT,
FSAVE/FNSAVE

7-12

Intel® FLOATING-POINT UNIT

The C2 condition code flag is used by the FPREM and FPREML1 instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the CO, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, Q1, and QO, respectively. See “FPREM—Partial Remainder” on page 11-149 or
“FPREM1—Partial Remainder” on page 11-152 for more information on how these instructions
use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range &f +2

Where the state of the condition code flags are listed as undefined in Table 7-3, do not rely on
any specific value in these flags.

7.3.2.3. EXCEPTION FLAGS

The 6 exception flags (bits 0 thrgh 5) of the status word and the exception summary status
(ES) flag (bit 7) indicate that one or more floating-point exceptions has been detected since the
bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are
described in detail in “Floating-Point Exception Handling” on page 7-40. Each of the exception
flags can be masked by an exception mask bit in the FPU camardl(se¢'FPU Control Word”

on page 7-15). The ES flag is set when any of the unmasked exception bits are set. The exception
flags are “sticky” bits, meaning that once set, they remain set until explicitly cleared. They can
be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing
the FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by overwriting the flags

with an FRSTOR or FLDENYV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

7.3.2.4, STACK FAULT FLAG

The stack fault flag (bit 6 of the FPU status word) indicates that stack overflow or stack under-
flow has occurred. The FPU explicitly sets the SF flag when it detects a stack overflow or under-
flow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-
operand condition. When this flag is set, the condition code flag C1 indicates the nature of the
fault: overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that
after it is set, the processor does not clear it until it is explicitly instructed to(ftr example,

by an FINIT/FNINIT or FSAVE/FNSAVE instruction).

See “FPU Tag Word” on page 7-18 for more information on FPU stack faults.

7.3.3. Branching and Conditional Moves on FPU Condition
Codes

The PentiunPro processor supports two mectsams for branching and performing conditional
moves according to comparisons of two floating-point values. These mechanism are referred to
here as the “old mechanism” and the “new mechanism.”

7-13

FLOATING-POINT UNIT Intel®

The old mechanism is available in FPU’s prior to the Pentium Pro processor and in the Pentium
Pro processor. This mechanism uses the floating-point cormsdrections (FCOM, FCOMP,
FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two figgtioint values and

set the condition code flags (@rough C3) according to the results. The contents of the condi-
tion code flags are then copied into the status flags of the EFLAGS register using a two step
process (see Figure 7-9 on page 7-14):

1. The FSTSW AX instruction moves the FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of tHELRGS register.

15 FPU Status Word 0
Condition Status c clele
Code Flag 3 51700
co CF [
C1 (none)) #
Cc2 PE FSTSW AX Instruction
C3 ZF 15 AX Register 0
c clc|c
3 2|1|0
SAHF Instruction
' Y
31 EFLAGS Register 7 0
z Pl,|C
F FILIF

Figure 7-9. Moving the FPU Condition Codes to the EFLAGS Register

When the condition code flags have been loaded into the EFLAGS register, conditopsl! j
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

The new mechanism is available only in the Pentium Pro processor. Using this mechanism, the
new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and
FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags in the EFLAGS
register directly. A single instruction thus replaces a three instructions, using the old mechanism.

Note also that the FCMQ3¢ instructions (also new in the Pentium Pro processor) allow condi-
tional moves of floating-point values (values in the FPU data registers) based on the setting of
the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the need
for an IF statement to perform conditional moves of floating-point values.

7-14

Intel® FLOATING-POINT UNIT

7.3.4. FPU Control Word

The 16-bit FPU contralord (see in lgure 7-10 on page 7-15) controls the precision of the FPU
and rounding method used. It also contains the exception-flag mask bits. The control word is
cached in the FPU in the FPU control register. The contents of this register can be loaded with
the FLDCW instruction and stored in memory with the FSTCW/FNSTCW instructions.

When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the
FPU control word is set to 037FH, which masks all floating-point exceptions, sets rounding to
nearest, and sets the FPU precision to 64 bits.

Infinity Control

Rounding Control
r Precision Control

1514131211109 8 7 6 543 210

PlUu|O|Z|D]| I

X| RC | PC M{M[M|M|M[m

Exception Masks
Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

|:| Reserved

Figure 7-10. FPU Control Word

7.3.4.1. EXCEPTION-FLAG MASKS

The exception-flag mask bits (bitslrough 5 of the FPU comtl word) mask the 6 exception
flags in the FPU statuwsord (also bits 0 through 5). When oneluése mask bits is set, its corre-
sponding floating-point exception is inhibited from being generated.

7.3.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the FPU comtoot) determines the precision

(64, 53, or 24 bits) of floating-point calculations made by the FPU (see Table 7-4 on page 7-16).

The default precision is extended precision, which uses thefibit dgnificand available with

the extended-real format of the FPU data registers. This setting is best suited for most applica-
tions, because it allows applications to take full advantage of the precision of the extended-real
format.

7-15

FLOATING-POINT UNIT Intel®

Table 7-4. Precision Control Field (PC)

Precision PC Field
Single Precision (24-Bits*) 00B
Reserved 01B
Double Precision (53-Bits*) 10B
Extended Precision (64-Bits) 11B

L\lote
Includes the implied integer bit.

The double precision and single precision settings, reduce the size of the significand to 53 bits
and 24 bits, respectively. These settings mi@vided to support the IEEE standard and to
provide compatibility with the earlier Intel Architecture NPXs. Using these settings nullifies the
advantages of the extended-real format's 64-bit significand length. When reduced precision is
specified, the rounding of the significand value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-poiritucisons:
FADD, FADDP, FSUB, FSUBP, FSUBR, FSUBRP, FMUL, FMULP, FDIV, FDIVP, FDIVR,
FDIVRP, and FSQRT.

7.3.4.3. ROUNDING CONTROL FIELD

The rounding-control (RC) field of the FPU control register (bits 10 and 11) controls how the
results of floating-point instructions are rounded. Four rounding modssippertedqsee Table

7-5 on page 7-16): round to nearest, round up, round down, and round toward zero. Round to
nearest is the defautbunding mode and is suitable foost applications. It provides the most
accurate and statistically unbiased estimate of the true result.

Table 7-5. Rounding Control Fi eld (RC)

Rounding RC Field
Mode Setting Description
Round to 00B Rounded result is the closest to the infinitely precise result. If two values
nearest (even) are equally close, the result is the even value (that is, the one with the
least-significant bit of zero).
Round down 01B Rounded result is close to but no greater than the infinitely precise
(toward —o) result.
Round up 10B Rounded result is close to but no less than he infinitely precise result.
(toward +o0)
Round toward 11B Rounded result is close to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

The round up and round down modes are terdietted roundingand can be used to imple-
ment interval arithmetic. Interval arithmetic is used to determine upper anddoweds for the

true result of a multistep computation, when the intermediate results of the computation are
subject to rounding.

7-16

Intel® FLOATING-POINT UNIT

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
performing integer arithmetic with the FPU.

Whenever possible, the FPyfoduces arninfinitely precise result in the destination format
(single, double, or extended real). However, it is often the case that the infinitely precise result
of an arithmetic or store operation cannot be encoded exactly in the format of the destination
operand. For example, the following valzg (las a 24-bit fraction. The least-significant bit of

this fraction (the underlined bit) cannot be encoded exactly in the single-real format (which has
only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 OEpPNO1

To round thisresult @), the FPU first selects two representable fractioredc that most
closely bracke& in value p <a<c).

(b) 1.0001 0000 1000 0011 1001 0311

(c) 1.0001 0000 1000 0011 1001 1G0BM1
The FPU then sets the resulbtor toc according to the rounding mode selected in the RC field.

Rounding introduces an error in &uét that is less than one unit in the last place to which the
result is rounded.

Theroundedresult is called the inexact result. When the FPU produces an inexact result, the
floating-point precision (inexact) flag (PE) is set in the FPU status word.

When the infinitely precise result is between the largest positive finite value allowed in a partic-
ular format andre, the FPU rounds the selt as shown in Table 7-6 on page 7-17.

Table 7-6. Rounding of Positive Numbers

Rounding Mode Result
Rounding to nearest (even) +00
Rounding toward zero (Truncate) Maximum, positive finite value
Rounding up (toward +c) +00
Rounding down) (toward —o) Maximum, positive finite value

When the infinitely precise result is between the largest negative finite value allowed in a partic-
ular format and-e, the FPU rounds the selt as shown in Table 7-7 on page 7-17.

Table 7-7. Rounding of Negative Numbers

Rounding Mode Result
Rounding to nearest (even) -00
Rounding toward zero (Truncate) Maximum, negative finite value
Rounding up (toward +o) Maximum, negative finite value
Rounding down) (toward —c) -00

The rounding modes have no effect on qmarison operations, operations that produce exact
results, or operations that produce NaN results.

7-17

FLOATING-POINT UNIT Intel®

7.3.5. Infinity Control Flag

The infinity control flag (bit 12 of the FPU control word) is provided for compatibility with the
Intel287™ MathCoprocessor; it is not meagful for the Pentium Pro processor FPU or for the
PentiumFPU, the Intel486 FPU, or Intel387™ NPX. See “Signed Infinities” on page 7-6 for
information on how the Pentium Pro processor handles infinity values.

7.3.6. FPU Tag Word

The 16-bit tag word (see kigure 7-11 on page 7-18) indicates the contents of each the 8 regis-
ters in the FPU data-register stack (one 2-bit tag per register). The tag codes indicate whether a
register contains a valid number, zero, or a special figgibint humber (NaNijnfinity,
denormal, or unsupported format), or whether it is empty. The FPU tag word is cached in the
FPU in the FPU tag word register. When the FPU is initialized with either an FINIT/FNINIT or
FSAVE/FNSAVE instruction, the FPU tag word is set to FFFFH, which marks all the FPU data
registers as empty.

15 0

TAG(7) | TAG(6) | TAG(5) | TAG(4) | TAG(3) | TAG(2) | TAG(L) | TAG(0)

TAG Values
00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty

Figure 7-11. FPU Tag Word

Each tag in the FPU tag word corresponds to a physegadter (numbers through 7). The
current top-of-stack (TOP) pointer stored in the FPU status word can be used to associate tags
with registers relative to ST(0).

The FPU uses the tag values to detect stack overflow and underflow conditions. Stack overflow

occurs when the TOP pointer is decremented (due to a register load or push operation) to point
to a non-empty register. Stack underflow occurs when the TOP pointer is incremented (due to a
save or pop operation) to point to an empty register or when an empty register is also referenced
as a source operand. A non-empty register is defined as a register containing a zero (01), a valid
value (00), or an special (10) value.

Applicationprogramsand exception handlers can use this tag information to check the contents
of an FPU data register without performing complex decoding of the actual data in the register.
To read the tag register, it must be stored in memory using either the FSTENV/FNSTENV or
FSAVE/FNSAVE instructions. The location of the tag word immoey after being saved with

one of these instructions is shown in Figure 7t8ugh kgure 7-14.

7-18

Intel® FLOATING-POINT UNIT

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR
instructions load an image of the tag register into the FPU; however, the FPU uses those tag
values only to determine if the data registers are empty (11B) or non-empty (00B, 01B, or 10B).

If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (11B); if the tag register image indicates that the data register is
non-empty, the FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action preventgpeogram from setting the valuestire tag register to incor-

rectly represent the actual contents of non-empty data registers.

7.3.7. The Floating-Point Instruction and Data Pointers

The FPU stores pointers to the instruction and data (operarntgfasinon-ontrol instruction
executed in two 48-bit registers: the FPU instruction pointer and FPU data pointer registers (see
Figure 7-5 on page 7-8). (This information is savegnuvide staténformation for exception
handlers.)

The contents of the FPU instruction and data pointer registers remain unchanged when any of
the control instructions (FINIENINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and
WAIT/FWAIT) are executed. The contents of the data register are undefined if thexqmior
control instruction did not have a memory operand.

The pointers stored in the FPU instruction and data pointer registers consist of an offset (stored
in bits 0 through 31) and a segment selector (stored in bits 32 through 47).

These registers can be accessed by the FSTENV/FNSTENV, FLDENYV, FINIT/FNINIT,
FSAVE/FNSAVE and RSTOR instructions. The FINIT/FNINIT and FSAVE/FNSAVE instruc-
tions clear these registers.

For all the Intel Architecture FPUs and NPXs except the 8087, the FPU instruction pointer
points to any prefixes that preceded the instruction. For the 8087, the instruction pointer points
only to the actual opcode.

7.3.8. Last Instruction Opcode

The FPU stores the opcode of the last non-control instruction executed in an 11-bit FPU opcode
register. (This informatioprovides state information for exception handlers.) Only tisedind

second opcode bytes (after all prefixes) are stored in the FPU opcode register. Figure 7-12 on
page 7-20 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte
are the samfor all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored

in the opcode register.

7-19

FLOATING-POINT UNIT

1st Instruction Byte 2nd Instruction Byte

FPU Opcode Register

7.3.9.

Figure 7-12. Contents of FPU Opcode Registers

Saving the FPU'’s State

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENV/FNSTENYV instruction saves the contents of the status, control, tag, instruction
pointer, data pointer, and opcode registers. The FSAVE instruction storeddahatition plus

the contents of the FPU data registers.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 7-13 through 7-16. In virtual-8086 mode, the real-address mode
formats are used.

32-bit Protected Mode Format

31 16 15

Control Word

Status Word

Tag Word
IP Offset
0000/ Opcode10..00 | CS Selector
Data Operand Offset
‘ Operand Selector

|:| Reserved

12
16
20
24

7-20

Figure 7-13. Protected- Mode FPU State Image in Memory, 32-Bit Format

FLOATING-POINT UNIT

32-bit Real-address Mode Format

31 16 15
Control Word
Status Word
Tag Word
Instruction Pointer 15...00
0000 ‘ Instruction Pointer 31...16 ‘O‘ Opcode 10...00
Reserved ‘ Operand Pointer 15...00
0000‘ Operand Pointer 31...16 ‘ 00000000000O0
|:| Reserved

12
16
20
24

Figure 7-14. Real Mode FPU State Image in Memory, 32-Bit Format

15

16-bit Protected Mode Format

Control Word

Status Word

IP Offset

0
2
Tag Word 4
6
8

CS Selector

Operand Offset 10

Operand Selector 12

Figure 7-15. Protected-Mode FPU State Image in Memory, 16-Bit Format

15

16-bit Real-address Mode and
Virtual 8086 Mode Format

Control Word

Status Word

Instruction Pointer 15...00

0
2
Tag Word 4
6
8

IP 19...16 ‘O‘ Opcode 10...00

Operand Pointer 15...00 10

DP 19..16/0/0000

000000012

Figure 7-16. Real Mode FPU State Image in Memory, 16-Bit Format

7-21

FLOATING-POINT UNIT Intel®

The FLDENV and FRSTOR instructions allow FPU statéoimaion to be loaded from
memory into the FPU. Here, the FLDENYV instruction loads only the status, control, tag, instruc-
tion pointer, data pointer, and opcode registers, and the FRSTOR instruction loads all the FPU
registers, including the data registers.

7.4. FLOATING-POINT DATA TYPES AND FORMATS

The Pentium Pro processor’s FPU recognizes and operates on 7 data types, divided into three
groups: reals, integers, and packed BCD integers. Figure 7-17 on page 7-22 shows the data
formats for each of the FPU data types. Table 7-8 on page 7-23 gives the length, precision, and
approximate normalized range that can be represented of each FPU data type. Denormal values
are alscsupported in each of the real typesrexguired by IEEE Std. 854.

With the exception of the 80-bit extended-real format, all of these data types existioryn
only. When they are loaded into FPU data registers, they are converted into extended-real format
and operated on in that format.

Single Real
Sign —»t | Exp. N Fraction
3130 2322 Implied Integer O
Double Real
Sign—»}| Exponent |~ Fraction |
6362 52 51 Implied Integer 0
Sign
+ Extended Real
| \ Exponent H‘\ Fraction |
7978 6463 62 Integer 0
Word Integer
Sign —»f | |
15 14 0
Short Integer
Sign —>t | |
3130 0
Long Integer
Sign —>»t | |
Sign 6362 0
Packed BCD
[[x [p17, D16 D15 D14 D13 D12 D11, D10, D9, 6 D8 D7 D6 D5 D4 D3 D2 D1, DO |
7978 7271 4 Bits = 1 BCD Digit 0

Figure 7-17. Floating-Point Unit Data Type Formats

7-22

intel.

When stored in memory, the least significant byte an FPU data-type value is stored at the initial
address specified for the value. Successive bytes from the value are then stored in successively
higher addresses in memory. The floating-point instructions load and store memory operands
using only the initial address of the operand.

FLOATING-POINT UNIT

7.4.1. Real Numbers

The FPU's three real data types (single-real, double-real, and extended-real) correspond directly
to the single-precision, double-precision, atmlible-extended-precision formatstire IEEE
standard. The extended-precision format is the format used by the data registers in the FPU.
Table 7-8 on page 7-23 gives the precision and range of these data types and Figure 7-17 on
page 7-22 gives the formats.

For the single-real and double-real formats, only the fraction part of the significand is encoded.
The integer is assumed to be 1 for all numbergx@ and denormalized finitumbers. For

the extended-real format, the integer is contained in bit 63, and the most-significant fraction bit
is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs,

and to O for zero and denormalized numbers.

Table 7-8. Length, Precision, and Range of FPU Data Types

Data Type Length Precision Approximate Normalized Range
Bits
(Bits) Binary Decimal
Binary Real
Single real 32 24 2-126 to 2127 1.18 x 1078 to 3.40 x 1038
Double real 64 53 271022 g 21023 2.23 x 107808 o 1,79 x 10308
Extended real 80 64 2716382 tg 16383 3.37 x 107982 t0 1.18 x 104932
Binary Integer
Word integer 16 15 —215t0 215 -1 -32,768 to 32,767
Short integer 32 31 —23ltp 2811 —2.14 x10°t0 2.14 x 10°
Long integer 64 63 —263t0 263 -1 —9.22 x 1018 t0 9.22 x 1018
Packed BCD 80 18 (decimal | Not Pertinent (-1018 + 1) to (1028 - 1)
Integers digits)

The exponent of each real data type is encoded in biased format. The biasing cobgwfdris
the single-real formaf,023 for the double-real format, and 383 for theextended-real format.

Table 7-9 on page 7-25 shows the encodings for all the classes of real numbers (that is, zero,
denormalized-finite, normalized-finite, and and NaNs for each of the three real data-types. It
also gives the format for the real indefinite value.

When storing real values in memory, single-real values are stored in 4 consecutive bytes in
memory; double-real values are stored in 8 consecutive bytes; and extended-real values are
stored in 10 consecutive bytes.

7-23

FLOATING-POINT UNIT Intel®

As a general rule, values should be stored in memory in double-real format. This format
provides sufficient range and precision to return correct results with a minimpragsdmmer
attention. The single-real format is appropri@teapplications that are constrained by memory;
however, it provides less precision and a greater chance of overflow. The single-real format is
also useful for debugging algorithms, becausending problems will manifest themselves
more quickly in this format. The extended-real format is normally reserved for holding interme-
diate results in the FPU registers and constants. Its extra length is designed to shield final results
from the effects of rounding and overflow/underflowiiermediate calculation$dowever,

when an application requires the maximum range and precision of théf&giPdata storage,
computations, and results), values can be stored in memory in extended-real format.

The real indefinite value is a QNaN encoding that is stored by several floating-point instructions
in response to a masked floating-point indadperaion exception (see Table-20 on
page 7-46).

7-24

Intel® FLOATING-POINT UNIT

Table 7-9. Real Number and NaN Encodings

Class Sign Biased Exponent Significand
Integer ! Fraction
Positive +00 0 11.11 1 00..00
+Normals 0 11..10 1 11.11
0 00..01 1 00..00
+Denormals 0 00..00 0 1.1
0 00..00 0 00..01
+Zero 0 00..00 0 00..00
Negative -Zero 1 00..00 0 00..00
—-Denormals 1 00..00 0 00..01
1 00..00 0 11.11
-Normals 1 00..01 1 00..00
i 11..i0 1 11..i1
-00 1 11..11 1 00..00
NaNs SNaN X 11..11 1 0X..XX?
QNaN X 11..11 1 1X. XX
Real Indefinite 1 11.11 1 10..00
(QNaN)
Single-Real: <0 8Bits O - <0 23Bits 0 -
Double-Real: <0 1nBitsO - ~0 52Bits 0 -
Extended-Real ~0 15Bits 0 - ~0 63Bits 0 -

Notes
1. Integer bitis implied and not stored for single-real and double-real formats.
2. The fraction for SNaN encodings must be non-zero.

7.4.2. Binary Integers

The FPU's three binary integer data types (word, short, and long) have identical formats, except

for length. Table 7-8 on page 7-23 gives the precision and range of these data types and Figure
7-17 on page 7-22 gives the formats. Table 7-10 on page 7-26 gives the encodings of the three
binary integer types.

7-25

FLOATING-POINT UNIT

Table 7-10. Binary Integer Encodings

Class Sign Magnitude
Positive Largest 0 11.11
Smallest 0 00..01
Zero 00..00
Negative Smallest 11.11
Largest 1 00..00
Integer Indefinite 1 00..00
Word Integer: ~ 15 bits -
Short Integer: ~ 31 Bits -
Long Integer: ~ 63 Bits -

The most significant bit of each format is the sign bit (O for positive and 1 for negative). Nega-
tive values are represented in standard two's complement notation. The quantity zero is repre-
sented with all bits (including the sign bit) set to zero. Note that the FPU’s word-integer data
type is identical to the word-integer data type used by the processor’s integer unit and the short-
integer format is identical to the integer unit's doubleword-integer data type.

Word-integer values are stored in 2 consecutive bytes in memory; short-integer valugredre st

in 4 consecutive bytes; and long-integer values are stored in 8 consecutive bytes. When loaded
into the FPU’s data registers, all the binary integers are exactly representable in the extended-
real format.

The binary integer encoding 100..00B represents either of two things, depending on the circum-
stances of its use:

® The largest negative number supported by the formag, 21, or —23).
® Theinteger indefinitevalue.

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruc-
tion), the FPU interprets it as the largest negative number representable in the format being used.
If the FPU detects an invalid operation when storing an integer value in memory with an
FIST/FISTP instruction and the invadoperaion exception is masked, the FPU stores the
integer indefinite encoding in the destination operand as a masked response to the exception. In
situations where the origin of a value with this encoding may be ambiguous, the invalid-opera-
tion exception flag can be examined to see if the value was produced as a response to an
exception.

7-26

Intel® FLOATING-POINT UNIT

If the integer indefinite is stored in memory and is later loaded back into an FPU data register,
it is interpreted as the largest negative number supported by the format.

7.4.3. Decimal Integers

Decimal integers are stored in a 10-byte, packed BCD format. Table 7-8 on page 7-23 gives the
precision and range of this data type and Figure 7-17 on page 7-22 shows the format. In this
format, the first 9 bytes hold 18 BCD digits, 2 digits per byte (see “BCD Integers” on page 5-4).
The least-significant digit is contained in the lower half-byte of byte 0 and the most-significant
digit is contained in the upper half-byte of byte 9. The most significant bit of byte 10 contains
the sign bit (0 = positive and 1 = negative). (Bitth@ough 6 of byte 10 are don't care bits.)
Negative decimal integers are not stored in two's complement form; they are distinguished from
positive decimal integers only by the sign bit.

Table 7-11 on page 7-27 gives the possible encodings of value in the decimal integer data type.

Table 7-11. Packed Decimal Integer Encodings

Magnitude
Class | Sign digt | digit | digi | digi B [digit
Positive
Largest 0 0000000 1001 1001 1001 1001 1001
0 0000000 0000 0000 0000 0000 0001
Smallest
Zero 0 0000000 0000 0000 0000 0000 0000
Negative
Zero 1 0000000 0000 0000 0000 0000 0000
1 0000000 0000 0000 0000 0000 0001
Smallest
Largest 1 0000000 1001 1001 1001 1001 1001
Decimal 1 1111111 1111 1111 UUuUuU* Uuuu Uuuu
Integer
Indefinite
~ 1byte - ~ 9 bytes -
NOTE:

* UUUU means bit values are undefined and may contain any value.

The decimal integer format exists in memory only. When a decimal integer is loaded in a data
register in the FPU, it is automatically converted to the extended-real format. All decimal inte-
gers are exactly representable in extended-real format.

7-27

FLOATING-POINT UNIT Intel®

The packed decimal indefinitencoding is stored by the FBSTP instruction in response to a
masked floating-point invalid-operation exception. Attempting to load this valuehefhBLD
instruction produces an undefined result.

7.4.4. Unsupported Extended-Real Encodings

The extended-real format permits many encodings that do not fall into any of the categories
shown in Table 7-9 on page 7-25. Table 7-12 on page 7-29 shows these unsupported encodings.
Some of these encodings were supported byrited?287 math coprocessor; however, most of
them are not supported by the Intel387 math coprocessitne anternal FPUs in the Int#86,

Pentium, or Pentium Pro processors. These encodnegso longer supported due to changes
made in the final version of IEEE Std. 754 that eliminated these encodings.

The categories of encodings formerly known as pseudo-NaNs, pseudo-infinitias-aomnal
numbers are not supported. Theel387 math coprocessor and the internal FPUs in the
Intel486, Pentium, and Pentium Pro processors generate the invalid-operation exception when
they are encountered as operands.

The encodings formerly known as pseudo-denormal numbers are not generated by the Pentium
Pro processor; however, they are used correctly when encountered as operands. The exponent is
treated as if it were 00..01B and the mantissa is unchanged. The denormal exception is
generated.

7.5. FPUINSTRUCTION SET

The floating-poininstruction set available on the Pentium Pro processor’s FPU ganiyged
into six functional categories:

® Data transfer instructions

® Basic arithmetic instructions
® Comparison instructions

® Transcendental instructions
® |oad constant instructions
® FPU control instructions

See “Floating-Point Instructions” on page 6-8 for a listhaf floatingpoint instructions by
category.

The following section briefly describes the instructions in each category. Detailed descriptions
of the floating-poininstructions are given in Chapter l1dstruction Set Reference

7-28

Intel® FLOATING-POINT UNIT

Table 7-12. Unsupported Extended-Real Encodings

Class Sign Biased Exponent Significand
Integer Fraction
Positive 0 11..11 0 11.11
Pseudo-NaNs Quiet . . .
0 11..11 10..00
0 11..11 0 01..11
Signaling . . .
0 11..11 00..01
Positive Reals Pseudo-infinity 0 1.1 0 00..00
0 11..10 0 11.11
Unnormals . . .
0 00..01 00..00
Pseudo-denormals 0 00..00 1 11.11
0 00..00 00..00
Negative Reals Pseudo-denormals 1 00..00 1 11.11
1 00..00 00..00
1 11..10 0 11..01
Unnormals . . .
1 00..01 00..00
Pseudo-infinity 1 1.1 0 00..00
Negative 1 1.1 0 01..11
Pseudo-NaNs Signaling . . .
1 1.1 00..01
1 1.1 0 11..11
Quiet . . .
1 1.1 10..00
« 15 bits - ~ 63 bits -

7.5.1. Escape (ESC) Instructions

All of the instructions in the FPU instruction set fall into a class of instruckioo@n as escape
(ESC) instructions. All of these instructions have a common opcode format, which is slightly
different from the format used by the integer and operating-system instructions.

7.5.2. FPU Instruction Operands

Most floating-point instructions require one or two operands, which are located on the FPU data-
register stack or in memory. (None of the floating-paimstructions accept immediate
operands.)

7-29

FLOATING-POINT UNIT Intel®

When an operand is located in a data register, it is referenced relative to the ST(0) register (the
register at the top of the register stack), rather than by a physical register number. Often the
ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods available
for the integer and system instructions.

7.5.3. Data Transfer Instructions

The data transfer instructions (see Table 7-13 on page 7-30) perform the following operations:
® |oad real, integer, or packed BCD operands from memory into the ST(0) register.

® Store the value in the ST(0) register in memory in real, integer, or packed BCD format.

® Move values between registers in the FPU register stack.

Table 7-13. Data Transfer Instructions

Real Integer Packed Decimal
FLD Load Real FILD Load Integer FBLD Load Packed
Decimal
FST Store Real FIST Store Integer
FSTP Store Real and FISTP Store Integer FBSTP | Store Packed
Pop and Pop Decimal and Pop
FXCH Exchange Register
Contents
FCMOVcc Conditional Move

Operands are normally stored in the FPU data registers in extended-real format (see “Precision
Control Field” on page 7-15). The FLD (load real) instruction pushes a real ogfeoamd
memory onto the top of the FPU data-register stack. If the operand is in single- or double-real
format, it is automatically converted to extended-real format. This instruction can also be used
to push the value in a selected FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into extended-real
format and pushes the value onto the top of the register stack. The FBLD (load packed decimal)
instruction performs the same load operation for a packed BCD operandioryne

The FST (store real) and FIST (store integer) instructions store the value in register ST(0) in
memory in the debstationformat (real or integer, respectively). Again, the format conversion is
carried out automatically.

The FSTP (store real and pop), FISTP (store integer and pop), and FBSTP (store packed decimal
and pop) inguctions store the value in the ST(0) registers into memory in the destination format
(real, integer, or packed BCD), then performmopoperation on the register stackpap oper-

ation causes the ST(0) register to be marked empty and the stack pointer (TOP) in the FPU
control work to be incremented by 1. The FSm$truction can also be used to copy the value

in the ST(0) register to another FPU register [§T(

7-30

FLOATING-POINT UNIT

intel.

The FXCH (exchange register contents) instruction exchanges the value in a selected register in
the stack [STi{] with the value in ST(0).

The FCMO\tc (conditional move) instructions move the value in a selected register in the stack
[ST()] to register ST(0). These instructions move the value only if the conditions specified with
a condition coded) are satisfied (see Table 7-14 on page 7-31). The conditions being tested
with the FCMO\tc instructions are represented by the status flags in the EFLAGS register. The
condition code mnemonics are appended to the letters “FCMOV” to form the mnemonic for a

FCMOVcc instruction.

Table 7-14. Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description
FCMOVB CF=1 Below
FCMOVNB CF=0 Not below
FCMOVE ZF=1 Equal
FCMOVNE ZF=0 Not equal
FCMOVBE (CF or ZF)=1 Below or equal
FCMOVNBE (CF or ZF)=0 Not below nor equal
FCMOVU PF=1 Unordered
FCMOVNU PF=0 Not unordered

Like the CMO\tc instructions, the FCMO& instructions are useful for optimizing small IF
constructions. They also help eliminate branching overfaed# operations and the possibility
of branch mispredictions by the processor.

NOTE

The FCMOVcc instructions may not be supported on some processors in the
Pentium Pro processor family. Software can check if the FCMOVcc instruc-
tions are supported by checking the processor’s feature information with the
CPUID instruction (see “CPUID—CPU lIdentification” on page 11-73).

7.5.4.

The following instructions push commonly used constants onto the top [ST(0)] of the FPU
register stack:

Load Constant Instructions

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Loadmt
FLDL2T Load log10
FLDL2E Load loge
FLDLG2 Load log®
FLDLN2 Load log2

7-31

FLOATING-POINT UNIT Intel®

The constant values have full extended-real precision (64 bits) and are accurate to approximately
19 decimal digits. They are stored internally in a format more precise than extended real. When
loading the constant, the FRYunds the more precise internal constant according to the RC
(roundingcontrol) field of the FPU control word. See “Pi” on page 7-36 for information on the

T constant.

7.5.5. Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on real numbers.
Where applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add real

FIADD Add integer to real
FSUB/FSUBP Subtract real

FISUB Subtract integer from real
FSUBR/FSUBRP Reverse subtract real

FISUBR Reverse subtract real from integer
FMUL/FMULP Multiply real

FIMUL Multiply integer by real
FDIV/FDIVP Divide real

FIDIV Divide real by integer
FDIVR/FDIVRP Reverse divide

FIDIVR Reverse divide integer by real
FABS Absolute value

FCHS Change sign

FSQRT Square root

FPREM Partial remainder

FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:
®* Two FPU register values.
® Aregister value and a real or integer value immogy.

Operands in memory can be in single-rgaluble-real, short-integer, or word-integer format.
They are converted to extended-real format automatically.

Reverse versions of the subtract and divide instructions are provided to foster efficient coding.
For example, the FSUB instruction subtracts the value in a specified FPU registgrff8i(

the value in register ST(0); whereas, the FSUBR instruction subtracts the value irfir&T(0)

the value in STij. The results of both operations are stored in register ST(0). These instructions
eliminate the need to exchange values between register ST(0) and another FPU register to
perform a subtraction or division.

The pop versions of the add, subtract, multiply and divide instructions pop the FPU register
stack following the arithmetic operation.

7-32

Intel® FLOATING-POINT UNIT

The FPREM instruction computes the remainder from the division of two operands in the
manner used by the Intel 8087 and Intel287 math coprocessors; the FPREML1 instructions
computes the remainder is the manner specified in the IEEE specification.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instructionsaunds a real value to its nearest integer value, according to the
current rounding mode specified in the RC fieldtleé FPU control word. This instruction
performs a function similar to the FIST/FISTP instructions, except that the result is saved in a
real format.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The
FABS instructionproduces the absolute value of the sourceapk The FCHS instruction
changes the sign of the source operand. The FXTRACT instruction separates the source operand
into its exponent and fraction and stores each value in a register in real format.

7.5.6. Comparison and Classification Instructions

The following instructions compare or classify real values:

FCOM/FCOMP/FCOMPP Compare real and set FPU condition code flags.
FUCOM/FUCOMP/FUCOMPP Unordered compare real and set FPU condition code flags.
FICOM/FICOMP Compare integer and set FPU condition code flags.
FCOMI/FCOMIP Compare real and set EFLAGS status flags.
FUCOMI/FUCOMIP Unordered compare real and set EFLAGS status flags.
FTST Test (compare real with 0.0).

FXAM Examine.

Comparison of real values differ from comparison of integers because real valudsurave
(rather than three) mutually exclusive relationships: less than, equal, greater than, and
unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an undefined format. This additional relationship is required because, by definition, NaNs
are notnumbers, so they cannot have less than, equal, or greater than relationships with other
real values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a real
source operand and set the condition code flags (CO, C2, and C3) in the FPUvetatus
according to the results (see Table 7-15). If an unordered condition is detected (one or both of
the values is a NaN or in an undefined fothna floating-point invalid-operation exception is
generated.

The pop versions dhe instructiorpop the FPU rgister stack once or twice after the comparison
operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP,
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and
FUCOMPP instructions, if annordeed condition is detected because one or both of the oper-
ands is a QNaN, the floating-point invalid-operation exception is not generated.

7-33

FLOATING-POINT UNIT Intel®

Table 7-15. Setting of FPU Condition Code Flags for
Real Number Comparisons

Condition C3 c2 co
ST(0) > Source Operand 0 0 0
ST(0) < Source Operand 0 0 1
ST(0) = Source Operand 1 0 0
Unordered 1 1 1

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instruc-
tions, except that the source operand is an integer valuenmomeThe integer value is auto-
matically converted into an extended real value prior to making the comparison. The FICOMP
instruction pops the FPU register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the
value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions are new in the Intel Pentium Pro processor. They
perform the same comparison as the FCOM and FCOMP instructions, except that they set the
status flags (ZF, PF, and CF) in the EFLAGS register to indicate the results of the comparison
(see Table 7-16) instead of the FPU condition code flags. The FCOMI and FCOMIP instructions
allow condition branch instructionsc@ to be executed directly from the results of their
comparison.

Table 7-16. Setting of EFLAGS Status Flags for Real Number Comparisons

Comparison Results ZF PF CF
STO > ST(j) 0 0 0
STO < ST(j) 0 0 1
STO = ST()) 1 0 0
Unordered 1 1 1

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI| and FCOMIP

instructions, except that they do not generate a floating-point invalid-operation exception if the
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP
and FUCOMIP instructions pop the FPU register stack following the comparison operation.

The FXAM instruction determines the classification of the real value in the ST(0) register (that
is, whether the value is zero, a denormal number, a normal finite numbaexaN, or an unsup-
ported format) or that the register is empty. It sets the FPU condition code flags to indicate the
classification (see “FXAM—Examine” on pagé-192). It also sets the C1 flag taicate the

sign of the value.

7-34

Intel® FLOATING-POINT UNIT

7.5.6.1. BRANCHING ON THE FPU CONDITION CODES

The processor does not offer any control-flow instructions that branch on the setting of the
condition code flags (CO, C2, and C3) in the FPU status word. To branch on the state of these
flags, the FPU status word must first be moved to the Agister in the integer unit. The
FSTSW AX (store statusord) indruction can be used for thigirpose. Whethese flags are

in the AX register, the TEST instruction can be used to control conditional branching as follows:

1. Check for an unorded result. Use the TEST instruction to compare the contents of the
AX register with the constant 0400H (see Table 7-17). This operation will clear the ZF flag
in the EFLAGS register if the condition code flags indicate an unordered result; otherwise,
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if
necessary) to a procedure for handling unordered operands.

Table 7-17. TEST Instruction Constants for Conditional Branching

Order Constant Branch
ST(0) > Source Operand 4500H Jz
ST(0) < Source Operand 0100H JINZ
ST(0) = Source Operand 4000H JINZ
Unordered 0400H JINZ

2. Check ordered comparison result. Use the constants given in Table 7-17 in the TEST
instruction to test for a less than, equal to, or greater than result, then use thgocwlirey
conditional branch instruction to transfer program control to the appropriate procedure or
section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for
QNaN results, then it is not necessary to check for the unordered result every time a comparison
is made.

Some non-comparison FPU instructions updatedimelition code flags in the FPU status word.
To ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

7.5.7. Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine

FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the FPU register stack and they
return their results to the stack. The source operands must be given in radians.

7-35

FLOATING-POINT UNIT Intel®

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper-
ates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0). It is useful for
converting rectangular coordinates to polar coordinates.

7.5.8. Pi

When the argument (source operand) of atr@netric function is within the range of the func-

tion, the argument is automatically reduced byappropriatemultiple of 2tthrough the same
reduction mechanism used by the FPREM and FPREM1 instructions. The internal value of
that the Pentium Pro processor uses for argument reduction and other computations is as
follows:

n=0.f02¢

where:

f= C90FDAA2 2168C234 C

e = 2 if the significand is O.f

(The spaces in the fraction above indicate 32bitndaries.)

This internalrt value has a@bit mantissa, which is 2 bits more than is allowed in the signifi-
cand of an extended-real value. (Since 66 bits is not an even number of hexadiegisyao
additional zeros have been added to the value so that it can be represented in hexadecimal
format. The least-significant hexadecimal digit (C) is thus 1100B, where the two least-signifi-
cant bits represent bits 67 and 68 of the mantissa.)

This value ofrt has been chosen to guarantee no loss of significance in a source operand,
provided the operand is within the specified range for the instruction.

If the results of computations that explicitly usare to be used in the FSIN, FCOS, FSINCOS,

or FPTAN instructions, the full 66-bit fraction afshould be used. This insures that the results
are consistent with the argument-reduction algorithms that these instructions use. Using a
rounded version oft can cause inaccuracies in result values, whigbrépagated through
several calculations, might result in meaningless results.

A common method of representing the full 66-bit fractiomd$ to separate the value into two
numbers. For example, the following tvdmuble-real values (gén in hexadecimal) added
together give the value farshown earlier in this section with the full 66-bit fraction:

1= highrt + lowrt

where:

highrt= 400921FB 54400000
lowrt = 3DD0B4661 1A600000

Here highr gives the most-significant 33 bits mfand lowrt gives the least-significant 33 bits.
Similar versions oft can also be written in extended-real format.

7-36

Intel® FLOATING-POINT UNIT

When using this two-part value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

The complications of maintaining a consistent value fofr argunent reduction can be avoided,
either by applying the trigonometric functions only to arguments within the range of the
automatic reduction mechanism, or by performing all argument reductions (down to a magni-
tude less tham/4) explicitly in software.

7.5.9. Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function,
and a scale function.

FYL2X Compute log (yJlog,x)

FYL2XP1 Compute log gsilon (yOlog,(x + 1))
F2XM1 Compute exponential {2 1)
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations.
The FYL2X instruction computes the log of [(fog,x). This operation permits the calculation
of the log of any base using the following equation:

logpx = (L/logh) Ologox

The FYEXP1 instruction computes the log epsilon dfl{gg, (x + 1)). This operation provides
optimum accuracy for values of epsil@) that are close to O.

The F2XM1 instruction computes the exponential{2L). This instruction only operates on
source values in the rang#.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

7.5.10. Transcendental Instruction Accuracy

The algorithms that the Intel Pentium and Pentium Pro processors use for the transcendental
instructions (FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and EXB1)

allow a higher level of accuracy than was possible in earlier Intel Architecture math coproces-
sors and FPUs. The accuracy of these instructions is measured in temnits iof the last place

(ulp). For a given argument letf(x) andF(x) be the correct and computed (approximate) func-

tion values, respectively. The error in ulps is defined to be:

FO) —F ()

k—63

error =
2

wherek is an integer such that< Z_kf x) <2

7-37

FLOATING-POINT UNIT Intel®

With the Pentium Pro processor, the worst case error on transcendental funceésashah 1

ulp whenrounding to the neast-even and less than 1.5 ulps wieamding in oher modes. The
functions are guaranteed to be monotonic, with respect to the input operands, throughout the
domain supported by the instruction.

7.5.11. FPU Control Instructions

The following instructions control the state and modes of operation of the FPU. They also allow
the status of the FPU to be examined:

FINIT/ENINIT Initialize FPU

FLDCW Load FPU control word
FSTCW/FNSTCW Store FPU control word
FSTSW/FNSTSW Store FPU status word
FCLEX/FNCLEX Clear FPU exception flags

FLDENV Load FPU environment
FSTENV/FNSTENV Store FPU environment

FRSTOR Restore FPU state

FSAVE/FNSAVE Save FPU state

FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked FPU exceptions

The FINIT/FNINIT instructions initialize the FPU and its internal regyisto default values.

The FLDCW instructions loads the FPU contnalrd register with a iae from menory. The
FSTCW/FENSTCW and FSTSW/FNSTSW instructions store the FPU control and status words,
respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the FPU environment and
state, respectively, in memory. The FPU environment includes all the FPU’s control and status
registers; the FPU state includes the FPU environment and the data registers in the FPU register
stack. The FLDENV and FRSTOR instructions load the FPU environment and state, respec-
tively, from memory into the FPU. These instructions are commonly used when switching tasks

or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics
for the same opcode.) These instructions check FPU status word for pending unmasked FPU
exceptions. If any pending unmasked FPU exception$oarel, hey are handled before the
processor resumes execution of the instructions (integerinpoint, or system irauction)

in the instruction stream. The WAIT/FWAIT instructions are provided to allow synchronization

of instruction execution between the FPU and the processor’s integer unit. See “Floating-Point
Exception Synchronization” on page 7-51 for more information on the use of the WAIT/FWAIT
instructions.

7-38

Intel® FLOATING-POINT UNIT

7.5.12. Waiting Vs. Non-Waiting Instructions

All of the floating-point instructions except a few special control instructions perform a wait
operation (similar to the WAIT/FWAIT instructions), to check for and handle pending unmasked
FPU exceptions, before they perform their primary operation (such as adding two real numbers).
These instructions are callagiting instructions. Some of the FPU control instructions, such as
FSTSW/FNSTSW, have both a waiting and a non-waiting versions. The version waiting version
(with the “F” prefix) executes a wait operation before it performs its primary operation; whereas,
the non-waiting version (with the “FN” prefixynores pending unmaskexkceptionsNon-

waiting instructions allow software to save the current FPU state without first handling pending
exceptions or to reset or reinitialize the FPU withogtrd for pending exceptions.

7.5.13. Unsupported FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel287 math coprocessor instruction
FSETPM perform no function in the Pentium Pro processor. If these opcodes are detected in the
instruction stream, the FPU performs no specific operation and no internal FPU states are
affected.

7.6. OPERATING ON NANS

As was described in “NaNs” on page 7-7, the FRigports two types of NaNs: SNaNs and
QNaNs. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the valueoid ArQNaN is

any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not inter-
preted.

As a general rule, when a QNaN is used in one or more arithmetic floatingrbiottions, it

is allowed to propagate through a computation. An SNaN on the other hand causes a floating-
point invalid-operation exception to be signaled. SNaNs are typically used to trap or invoke an
exception handler.

The floating-poininvalid-operation exception has a flag and a mask bit associated with it in the
FPU status and control registers, respectively (see “Floating-Point Exception Handling” on page
7-40). The mask bit determines how the FPU handles an SNaN value. If the floating-point
invalid-operation mask bit is set, the SNaN is convert to a QNaN by setting the most-significant
fraction bit of the value to 1. The result is then stored in the destination operand and the floating-
point invalid-operation flag is set. If the invalid-operation mask is clear, a floating-point invalid-
operation fault is signaled and no result is stored in the destinatioanobe

When a real operation or exception delivers a QNaN result, the value of the result depends on
the source operands, as shown in Table 7-18 on page 7-40.

Except for the rules given at the beginning of this section for encoding SNaNs and QNaNs, soft-
ware is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs
can be encoded to carry and store data, such as diagnostic information.

7-39

FLOATING-POINT UNIT Intel®

Table 7-18. Rules for Generating QNaNs

Source Operands QNaN Result
An SNaN and a QNaN. The QNaN source operand.
Two SNaNs. The SNaN with the larger significand converted
into a QNaN.
Two QNaNs. The QNaN with the larger significand.
An SNaN and a real value. The SNaN converted into a QNaN.
A QNaN and a real value. The QNaN source operand.
Neither source operand is a NaN and a floating- The default QNaN real indefinite.
point invalid-operation exception is signaled.

7.7. FLOATING-POINT EXCEPTION HANDLING

The FPU detects six classes of exception conditions while executing floating-point instructions:

® Invalid operation (#l)
— Stack overflow or underflow (#1S)
— Invalid arithmetic operation (#lA)

® Divide-by-zero (#2)

® Denormalized operand (#D)

® Numeric overflow (#O)

® Numeric underflow (#U)

® |nexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #1S) is used in this
manual to indicate exception conditions. It is merely a short-hand form and is not related to
assembler mnemonics.

Each of the six exception classes has a corresponding flag bit in the FPU status word and a mask
bit in the FPU control word (see “FPU Status Register” on page 7-11 and “FPU Control Word”
on page 7-15, respectively). In addition, the exception summary (ES) flag in thevstadus
indicates when any of the exceptions has been detected, and the stack fault (SF) flag (also in the
status word) distinguishes between the two types of invalid-operation exceptions.

When the FPU detects a floating-point exception, it sets the appropriate flags in the FPU status
word, then takes one of two possible courses of action:

® Handles the exception automatically, producing a predefined (and often times usable
result), while allowing program execution to continue undisturbed.

® Invokes a software erption handler to handle the exception.

7-40

Intel® FLOATING-POINT UNIT

The following sections describe how the FPU handles exceptions (either automatically or by
calling a software exception handler), how the FPU detects the various floating-point excep-
tions, and the automatic (masked) response to the floating-point exceptions.

7.7.1. Arithmetic vs. Non-Arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish betweigmmetic
instructionsandnon-arithmetic instructionsNon-arithmetic inguctions have no operands or

do not make substantial changes to their operands. Arithmetic instructions do make significant
changes to their operands; in particular, they make changes that could result in a floating-point
exception being signaled. Table 7-19 on page 7-42 lists the non-arithmetic and arithmetic
instructions. It should be noted that some non-arithmetic instructions can signal a floating-point
stack (fault) exception, but this exception is not the result of an operation onranape

7.7.2. Automatic Exception Handling

If the FPU detects an exception condition for a masked exception (an exception with its mask
bit set), it delivers a predefined (default) response and continues executing instructions. The
masked (default) responses to exceptions have been chosen to deliver a reasonable result for
each exception condition and are generally satisfactory for most floating-point applications. By
masking or unmasking specific floating-point exceptions in the FPU control word, programmers
can delegate responsibility for most exceptions to the FPU and reserve the most severe excep-
tion conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
have occurred since they were last clearegrdgrammer can thusask all exceptions, run a
calculation, and then inspect the exception flags to see if any exceptions were detected during
the calculation.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its magheuse

For example, the FPU can detect a denormalized operand, perform its masked response to this
exception, and then detect numeric underflow.

7.7.3. Software Exception Handling

If the FPU detects an exception condition for an unmasked exception (an exception with its
mask bit cleared), a software exception handler is invoked immediately before execution of any
of the following instructions in the processor’s instruction stream:

® The next floating-point instruction, unless it is one of the non-waiting instructions
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENYV, and FNSAVE).

® The next WAIT/FWAIT instruction.

7-41

FLOATING-POINT UNIT Intel®

Table 7-19. Arithmetic and Non-Arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (conversion)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS
FSQRT
FST/FSTP (conversion)
FSUB/FSUBP/FSUBR/FSUBRP
FTST
FUCOM/FUCOMP/FUCOMPP
FXTRACT
FYL2X/FYL2XP1

The method the processor uses to invoke the floating-point exception handler depends on the
setting of the NE flag of the CRO control register and the state of the procé6oNE# pin.

7-42

Intel® FLOATING-POINT UNIT

If the NE flag is set, the exception handler is invoked through arflpgitbint-error exception
(#MF, vector 16). (When the NE flag is set, the IGNNE# signal has no effect on the processor.)

If the NE flag is cleared, but the IGNNE# pin is asserted, the processor disregards the exception
and continues executing instructions. (Here, the FPU never calls the flpatitigexception
handler, but still generates masked and unmasked excepgjmonses.)

If the NE bit is cleared and the IGNNE# pin issdserted, an unmasked floating-point exception
causes the processor to do the following:

1. Stop instruction execution immediately before executing the next waiting floating-point
instruction or WAIT/FWAIT instruction and wait for an external interrupt. (Waiting
instructions are those floating-point instructions that cause the processor to check for and
service pending unmasked interrupts beforeithuctions are executed.)

2. Assert its FERR# pin to generate a external interrupt.

When using this external interrupt mechanism, the FERR# pin must be connected to an input to
an external interrupt controller. An external interrupt is then generated when the FERR# output

drives the input to the interrupt controller. (Regardless of the value of NE, an unmasked floating-

point exception always causes the FERR# pin to be asserted upon completion of the instruction
that caused the exception.)

Error reporting by means of an external interruptr@/ided to support PC-style error reporting.
See Chapter Zystem Architecture Overvieim thePentium Pro Family Developer’s Manual,
Volume 3for more information about the NE bit.

After a floating-point exception handler is invoked, the processor handles the exception in the
same manner that it handles non-FPU exceptions. (The floating-point exception handler is
normally part of the operating system or executive software.) A typical action of the exception
handler is to store FPU state information in memory (with the FSTENV/FNSTENV or
FSAVE/FNSAVE ingructions) so that it can evaluate the exception and formulatpopriate
response (see “Saving the FPU’s State” on page 7-20). Other typical exception handler actions
include:

® Examine stored FPU stateformation (control, status, and tag words, and operand and
instruction pointers) to determine the nature of the error.

® Taking action to correct the condition that causecether.
® Clear the exception bits in the status word.
® Return to the interrupted program and resume normal execution.

If the faulting floating-point instruction is followed by one or more non-fragpoint instruc-

tions, it may not be useful to re-execute the faulting instruction. See “Floating-Point Exception
Synchronization” on page 7-51 for more information on synchronizing fiiggtoint excep-

tions.

In cases where the handler needs to restart program execution with the faulting instruction, the
IRET instruction cannot be used directly. The reason for thimibecause the exception is not
generated until the next floating-point or WAIT/FWAIT instruction following the faulting
floating-point instruction, the return instruction pointer on the stack may not point to the faulting

7-43

FLOATING-POINT UNIT Intel®

instruction. To restart program execution at the faulting instruction, the exception handler must
obtain a pointer to the instruction from the saved FPU state information, load it into the return
instruction pointer location on the stack, and then execute the IRET instruction.

In lieu of writing recovery procedures, the exception handler can do tbeviiog:

® Increment an exception counter for later display or printing.

® Print or display diagnostic information (such as, the FPU environment and registers).
® Halt further program execution.

7.8. FLOATING-POINT EXCEPTION CONDITIONS

The following sections describe the various conditions that cause a floating-point exception to

be generated and the masked response of the FPU when these conditions are detected. Chapter
11, Instruction Set Referenchsts the floating-point exceptions that can be signaled for each
floating-point instruction.

7.8.1. Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two general types of oper-
ations:

® Stack overflow or underflow (#1S).
® |nvalid arithmetic operand (#lA).

The flag for this exception (IE) is bit 0 of the FPU status word, and the mask bit (IM) is bit 0 of
the FPU control word. The stack fault flag (SF) of the FPU status word indicates the type of
operation caused the exception. When the SF flag is set to 1, a stack operation has resulted in
stack overflow or underflow; when the flag is cleared to 0, an arithmetic instruction has encoun-
tered an invalid operand. Note that the FPU explicitly sets the SF flag when it detects a stack
overflow or underflow condition, but it does not explicitly clear the flag when it detects an
invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an
invalid-arithmetic-operation exception, if it was not cleared from the last time a stack overflow

or underflow condition occurred. See “Stack Fault Flag” on page 7-13 for more information
about the SF flag.

7.8.1.1. STACK OVERFLOW OR UNDERFLOW EXCEPTION (#1S)

The FPU tag word keeps track of the contents of the registers in the FPU register stack (see “FPU
Tag Word” on page 7-18). It then uses this information to detect two different types of stack
faults:

® Stack overflow—an instruction attempts to write a value into a non-empty FPU register
® Stack underflow—an instruction attempts to read a value from an empty FPU register.

7-44

Intel® FLOATING-POINT UNIT

When the FPU detects stack overflow or underflow, it sets the IE and SF flags in the FPU status
word to 1. It then sets condition-code flag C1 in the FPU status word to 1 if stack overflow
occurred or to 0 if stack underflow occurred.

If the invalid-operation exception is masked, the FPU then returns the real, integer, or BCD-
integer indefinite value to the destination operand, depending on the instruction being executed
This value overwrites the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see
“Software Exception Handling” on page 7-41) and thye-of-stack pointer (TOP) and source
operands remain unchanged.

The term stack overflow comes from the condition where tiregramhas pushed eight values

onto the FPU register stack and the next value pushed on the stack causes a stack wraparound
to a register that already contains a value. The term stack underflow refers to the opposite condi-
tion from stack overflow. Here, a program has popped eight values from the FPU register stack
and the next value popped frahe stack causes stack wraparound to an empty register.

A possible action of the invalid-operand exception handler for handling stack faults is to create
and maintain an extension of the FPU register stack (a virtual stack) in memory. The handler can
then adjust the stack contents by writing values to memory when stack overflow occurs or
reading values from memory when stack underflow occurs.

7.8.1.2. INVALID ARITHMETIC OPERAND EXCEPTION (#lA)

The FPU is able to detect a variety of invalid arithmetic operations that can be coded in a
program. These operations generally indicapragramning error, such as dividing by co.

Table 7-20 on page 7-46 lists the invalid arithmetic operations that the FPU detects. This group
includes the invalid operations defined in IEEE Std. 854.

When the FPU detects an invalid arithmetic operand, it sets the IE flag in the FPWvstatus

to 1. If the invalid-operation exception is masked, the FPU then returns an indefinite value to the
destination operand or sets the floating-point condition codes, as shown in Table 7-20. If the
invalid-operation exception is not masked, a software exception handler is invoked (see “Soft-
ware Exception Handling” on page 7-41) and the top-of-stack pointer (TOP) and source oper-
ands remain unchanged.

7.8.2. Division- By-Zero Exception (#2Z)

The FPU reports a float-point zero-divide excejpn whenever an instruction attempts to
divide a finite non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the FPU status
word, and the mask bit (ZM) is bit 2 of the FPU control word. The FDIV, FDIVP, FDIVR,
FDIVRP, FIDIV, and FIDIVRinstructions and the other instructions that perform division inter-
nally (FYL2X and FXTRACT) can report the divide-by-zero exception.

7-45

FLOATING-POINT UNIT

intgl.

Table 7-20. Invalid Arithmetic Operations and the Masked Responses to Them

Condition

Masked Response

Any arithmetic operation on an operand that is in an
unsupported format.

Return the real indefinite value to the destination
operand.

Any arithmetic operation on a SNaN.

Return a QNaN to the destination operand (see
“Operating on NaNs” on page 7-39).

Compare and test operations: one or both operands
are NaNs.

Set the condition code flags (CO, C2, and C3) in
the FPU status word to 111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the real indefinite value to the destination
operand.

Multiplication: « by 0; O by co.

Return the real indefinite value to the destination
operand.

Division: o by ; 0 by 0.

Return the real indefinite value to the destination
operand.

Remainder instructions FPREM, FPREML1: modulus
(divisor) is 0 or dividend is co.

Return the real indefinite; clear condition code
flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN,
FSINCOS: source operand is o.

Return the real indefinite; clear condition code
flag C2 to 0.

FSQRT: negative operand (except FSQRT (-0) = -0);
FYL2X: negative operand (except FYL2X (-0) = —);
FYL2XP1: operand more negative than —1.

Return the real indefinite value to the destination
operand.

FBSTP: source register is empty or it contains a NaN,
o, or a value that cannot be represented in 18
decimal digits.

Store BDC integer indefinite value in the
destination operand.

FXCH: one or both registers are tagged empty.

Load empty registers with the real indefinite
value, then perform the exchange.

When a divide-by-zero exception occurs and the exception is masked, the FPU sets the ZE flag
and returns the values shown in Table 7-20 on page 7-46. If the divide-by-zero exception is not
masked, the ZE flag is set, a software exception handler is invoked (see “Software Exception
Handling” on page 7-41), and the top-of-stack pointer (TOP) and source operands remain
unchanged.

Table 7-21. Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation
with a O divisor.

Returns an « signed with the exclusive OR of the sign of the two
operands to the destination operand.

FYL2X instruction. Returns an « signed with the opposite sign of the non-zero

operand to the destination operand.

FXTRACT instruction. ST(1) is set to —eo; ST(0) is set to 0 with the same sign as the

source operand.

7-46

Intel® FLOATING-POINT UNIT

7.8.3. Denormal Operand Exception (#D)

The FPU signals the denormal-operand exception under the following conditions:

® If an arithmetic instruction attempts to operate on a denormal operand (see “Normalized
and Denormalized Finite Numbers” on page 7-5).

* If an attempt is made to load a denormal single- or double-real value into an FPU register.
(If the denormal value being loaded is an extended-real value, the denormal-operand
exception is not reported.)

The flag (DE) for this exception is bit 1 of the FPU status word, and the mask bit (DM) is bit 1
of the FPU control word.

When a denormal-operand exception occurs and the exception is masked, the FPU sets the DE
flag, then proceeds with the instruction. The denormal operand in single- or double-real format
is automatically normalized when converted to the extended-real format. Operating on denormal
numbers will produce results at least as good as, and often better than, what can be obtained
when denormal numbers are flushed to zero. In fact, subsequent operations will benefit from the
additional precision of the internal extended-real format. Nosgramners mask this excep-

tion so that a computation may proceed, then analyze any loss of accuracy when the final result
is delivered.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set
and a software exception handler is invoked (see “Software Exception Handling” on page 7-41).
The top-of-stack pointer (TOP) and source operands remain unchanged. When denormal oper-
ands have reduced significance due to losswfdrder bits, it may be adsable to not operate

on them. Precluding denormal operands from computations can be accomplished by an excep-
tion handler that responds to unmasked denormal-operand exceptions.

7.8.4. Numeric Overflow Exception (#0O)

The FPU reports a floating-point numeric overflow exception (#0) whenever the rounded result
of an arithmetic instruction exceeds the largest allowable finite value that will fit into the real
format of the destination operand. For example, if the destination format is extended-real (80
bits), overflow occurs when theunded reult falls outside the unbiased range-tf0 (1216384

to 1.00126384(exclusive). Numeric overflow can occur on arithmefierations where the result

is stored in an FPU data register. It can also occur on store-real operations (with the FST and
FSTP instructions), where a within-range value in a data register is stored in memory in a single-
or double-real format. The overflow threshold range for the single-real formhatd§12128 to
1.002128 the range for the double-real format-ik.0 021924t0 1.00121024

The numeric overflow exception cannot occur when overflow occurs when storing values in an
integer or BCD integer format. Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the FPU status word, and the mask
bit (OM) is bit 3 of the FPU control word.

7-47

FLOATING-POINT UNIT Intel®

When a numeric-overflow exception occurs and the exception is masked, the FPU sets the OE
flag and returns one of the values shown in Table 7-22 on page 7-48. The value returned depends
on the current rounding mode of the FPU (see “Rounding Control Field” on page 7-16).

Table 7-22. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result
To nearest + +00
— —00
Toward —co + Largest finite positive number
— —00
Toward +oo + +oo

- Largest finite negative number

Toward zero + Largest finite positive number

- Largest finite negative number

The action that the FPU takes when numeric overflow occurs and the numeric-overflow excep-
tion is not masked, depends on whether the instructisumpigosed to store the result in memory
or on the register stack.

If the destination is a memory location, the OE flag is set and a software exception handler is
invoked (see “Software Exception Handling” on page 7-41). The top-of-stack pointer (TOP) and
source operands remain unchanged.

If the destination is the register stack, the exponent of the rounsldtlisedivided by 2#>76and

stored with the significand in the destination operand. Condition code bit C1 in the FPU status
word (called in this suation the“round-up bit") is set if the significand wasunded upward

and cleared if the result is rounded toward 0. After the resuibieds the OE flag is set and a
software exception handleriisvoked.

The scaling bias value 24,576 is equal fd232. Biasing the exponent by 24,5@6rmally trans-

lates the number as nearly as possible to the middle of the extended-real exponent range so that,
if desired, it can be used in subsequent scaled operations with less risk of causing further
exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result is too large
to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the
result has been biased, a properly sigrned stored in the destination operand.

7.8.5. Numeric Underflow Exception (#U)

The FPU reports a floating-point numeric underflow exception (#U) whenever the rounded
result of an arithmetic instruction is tiny; that is, less than the smallest possilrialized, finite

value that will fit into the real format of the destination operand. For example, if the destination
format is extended-real (80 bits), underflow occurs when the rounded result falls in the unbiased

7-48

Intel® FLOATING-POINT UNIT

range of-1.0 0271638219 1.0[012716382(exclusive). Like numeric overflow, numeric underflow

can occur on arithmetic operations where the result is stored in an FPU data register. It can also
occur on store-real operations (with the FST and FSTP instructions), where a within-range value
in a data register is stored in memory in a single- or double-real format. The underflow threshold
range for the single-real format#4.002126to 1.00027126, the rangdor thedouble-real format

is =1.0 02102219 1.000271922 (The numeric underflow egption cannot occur when storing
values in an integer or BCD integer format.)

The flag (UE) for the numeric-underflow exation is bit 4 of the FPU statusrd, and the mask
bit (UM) is bit 4 of the FPU control word.

When a numeric-underflow exception occurs and the exception is masked, the FPU denormal-
izes the result (see “Normalized and Denormalized Finite Numbers” on page 7-5). If the denor-
malized result is exact, FPU stores the result in the destination operand, without setting the UE
flag. If the denormal result is inexact, the FPU sets the UE flag, then goes on to handle the
inexact-result exception condition (see “Inexact-Result (Precision) Exception (#P)” on page
7-49). It is important to note that if numeric-underflow is masked, a numeric-underflow excep-
tion is signaled only if the denormalized result is inexact. If the denormalized result is exact, no
flags are set and no exceptions are signaled.

The action that the FPU takes when numeric underflow occurs and the numeric-underflow
exception is not masked, depends on whether the instruction is supposed to store the result in
memory or on the register stack.

If the destination is a memory location, the UE flag is set and a software exception handler is
invoked (see “Software Exception Handling” on page 7-41). The top-of-stack pointer (TOP) and
source operands remain unchanged.

If the destination is the register stack, the exponent of the rounded result is multiplied by
224576 and stored with the significand in the destination operand. Condition code bit C1 in the
FPU the status register (acting here as aridsup bit") is set if the gnificand wasounded
upward and cleared if the resulr@inded toward QAfter the result is stored, the UE flag is set
and a software exception handlemigoked.

The scaling bias value B¥6 is the same asused for the overflow exception and has the same
effect, which is to translates the result as nearly as possible to the middle of the extended-real
exponent range.

When using the FSCALE instruction, massive underflow can occur, where the result is too tiny
to be represented, even with a bias-adjustgabnent. Here, if overflow occuegain, after the
result has been biased, a properly signed 0 is stored in the destination operand.

7.8.6. Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary form. This exception occurs frequently and indicates that
some (normally acceptable) accuracy has been lost. The exceptigopirted for applications

that need to perform exact arithmetitly. Because the rounded result is generally satisfactory

7-49

FLOATING-POINT UNIT Intel®

for most applications, this exception is commonly masked. Note that the transceimdémnied
tions [FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1] by nature
produce inexact results.

The inexact-result exception flag (PE) is bit 4 of the FPU status word, and the mask bit (PM) is
bit 4 of the FPU control word.

If the inexact-result exception is masked when an inexact-result condition occurs and a humeric
overflow or underflow condition has not occurred, the FPU sets the PE flag and stores the
rounded result in the destination operand. The current rounding mode determineshite: me
used to round the result (see “Rounding Control Field” on page 7-16). T@rew®t-up) bit in

the FPU status word indicates whether the inexact resulrauasled up (C1 is set) or “not
rounded up” (C1 is cleared). In the “moundedup” case (C1 is cleared), the least-significant

bits of the inexact result are truncated so that the result fits in the destination format.

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the FPU performs the same operation described in the
previous paragraph and, in addition, invokes a software exception handler (see “Software
Exception Handling” on page 7-41).

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

® |f an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and the PE flag are set and the result is stored as describe for the overflow or underflow
exceptons (see “Numeric Overflow Exception (#O)” on page 7-47 or “Htn
Underflow Exception (#U)” on page 7-48). If the inexact-result exception is unmasked, the
FPU also invokes the software exception handler.

® |f an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as
describe for the overflow or underflow exceptions, and the software exception handler is
invoked.

® |f an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a memory location, the inexact-result condition is ignored.

7.8.7. Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruc-
tion generates two or more exception conditions, the exception precedence sometimes results in
the higher-priority exception being handled and the lower-priority exceptions being ignored. For
example, dividing an SNaN by zero can potentially signal an invalid-arithmetic-operand excep-
tion (due to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are
masked, the FPU handles the higher-priority exception only (the invalid-arithmetic-operand
exception), returning a real indefinite to the destination. Alternately, a denormal-operand or
inexact-result exception can accompany a numeric underflow or overflow exception, with both
exceptions being handled.

7-50

Intel® FLOATING-POINT UNIT

The precedence for floating-point exceptions is as follows:
1. Invalid-operation exceptiosubdivided agollows:

a. Stack underflow.

b. Stack overflow.

c. Operand of unsupported format.

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has
precedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

Any other invalid-operation egption not mentioned above or a divide-by-zero exception.

Denormal-operand exception. If masked, then instruction execution continues, and a
lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions in conjunction with the inexact-result
exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-
point operation begins, whereas overflow, underflow, and precision errors are not detected until
a true result has been computed. Whemneaoperationexception is detected, the FPU register
stack and memory have not yet been updated, and appear as if the offending instructions has not
been executed. Wherpast-operatiorexception is detected, the register stack anchamg may

be updated with a result (depending on the nature dadrtioe).

7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATION

Because the integer unit and FPU are separate execution units, it is possible for the processor to
execute floating-point, integer, and system instructions concurrently. No special programming
techniques are required to gain the advantages of concurrent execution. (Floating-point instruc-
tions are placed in the instruction stream along with the integer and system instructions.)
However, concurrent execution can capsgblems for floating-point exception handlers.

The root of this problem concerns the way the FPU signals the existence of unmasked floating-
point exceptions. (Special exception synchronization is not required for masked floating-point
exceptions, because the FPU always returns a masked result to the destination operand.)

When a floating-point exception is unmasked and the exception condition occurs, the FPU stops
further execution of the floating-poirtstruction and signals the exception event. On the next
occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction
stream, the processor checks the ES flag in the FPU statasfor pending floating-point
exceptions. It floatig-point exceptions are pending, the FPU makes an implicit call (traps) to
the floatng-point software exception handl&he exception handler can then execute recovery
procedures for selected or all floating-point exceptions.

7-51

FLOATING-POINT UNIT Intel®

Synchronization problems occur in the time frame between when the exception is signaled and
when it is actually handled. Because of concurrent execution, integer or system instructions can
be executed during this time frame. It is thus possible for the source or destination operands for
a floating-point instruction that faulted to be overwritten in memory, making it impossible for
the exception handler to analyze or recovery from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction
or a WAIT/FWAIT instruction) can be placed immediately after any fih@apointinstruction

that might present a situation where state information pertaining to a floating-point exception
might be lost ocorrupted. Floating-poirihstructions that store data in memory are prime candi-
dates for synchronization. For example, the following three lines of codehepetential for
exception synchronization problems:

FILD COUNT ; Floating-point instruction
INC COUNT ; Integer instruction
FSQRT ; Subsequent floating-point instruction

In this example, the INC instruction modifies the result of a floating-point instruction (FILD).
If an exception is signaled during the execution of the FILD instruction, the result stored in the
COUNT memory location might be overwritten before the exception handler is called.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD
instruction, synchronizes the exception handling and eliminates the possibility of the exception
being handled incorrectly.

FILD COUNT ; Floating-point instruction

FSQRT ; Subsequent floating-point instruction synchronizes
; any exceptions generated by the FILD instruction.

INC COUNT ; Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruc-
tion are stored in the FPU data registers and will remain thedisturbed, untithe next
floating-point or WAIT/FWAIT instruction is executed. To absolutely insure that any exceptions
emanating from the FSQRT instruction are handled (for example, prior to a procedure call), a
WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending
unmasked exceptions (see “FPU Control Instructions” on page 7-38). They include the FNINIT,
FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an FNINIT,
FNSTENV, FNSAVE, or FNCLEX insuction is executed, all pending exceptions are essen-
tially lost (either the FPU status register is cleared or all exceptions are masked). The FNSTSW
and FNSTCW instructions do not check for pending interrupts, but they do not modify the FPU
status and control registers. A subsequent “waiting” floating-point instruction can then handle
any pending exceptions.

7-52

CHAPTER 8
INPUT/OUTPUT

In addition to transferring data to and from external memory, the Pentium Pro processor can also
transfer data to and from input/output ports (/O ports). I/O ports are created in system hardware
by circuity that decodes the control, data, and address pins on the processor. These I/O ports are
then configured to communicate with peripheral devices. An I/O port can be an input port, an
output port, or a bidirectional port. Some 1/O ports are used for transmitting data, such as to and
from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports
are used to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:
® |/O port addressing.

® |/Oinstructions.

® The I/O protection mechanism.

8.1. 1/O PORT ADDRESSING

The processor allows I/O ports to be accessed in either of two ways:
® Through a separate I/O address space.
® Through memory-mapped I/O.

Accessing I/O ports throughe 1/0 address space is handled tigtoa set of I/O instructions

and a special I/O protection mechanism. Accessing I/O ports through memory-mapped 1/O is
handled with the processors general-purpose move and string instructions, with protection
provided through segmentation or paging. /O ports can be mapped so that they appear in the
I/O address space or the physical-memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I1/O ports are guaranteed to be
completed before the next instruction in the instruction stream is executed. Thus, I/O writes to
control system hardware cause the hardware to be set to its new state before any other instruc-
tions are executed. See “Ordering 1/0” on page 8-6 for more information on serializing of I/O
operations.

8.2. 1/0 PORT HARDWARE

From a hardware point of view, I/O is handled through the processor’s addessAl special
memory-l/O transaction on the system bus indicates whether the address lines are being driven
with a memory address or an I/O address. When the separate 1/0O address space is selected, it is
the responsibility of the hardware to decode the memory-1/O bus transaction to select I/O ports
rather than memory.

Data is transmitted between the processor and an I/O device through the data lines.

8-1

INPUT/OUTPUT Intel®

8.3. 1/0 ADDRESS SPACE

The processor’s 1/0 address space is separate and distinct from the physical-memory address
space. The 1/O address space consists®(62K) individually addressable 8-bit I/O ports,
numbered 0 through FFFFH. I/O port addresses OF8H through OFFH are reserved. Do not assign
I/O ports to these addresses.

Any two consecutive 8-bit ports can be treated &6-ait port, and any fouronsecutive ports

can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 32 bits to or from a device
in the I/O address space. Lik®rds in memory, 8-bit ports should be aligned to even addresses

(0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports
should be aligned to addresses that are multiples of four (0, 4, 8, ...). The preappsots data
transfers to unaligned ports, but there is a performance penalty because one or more extra bus
cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed
to remain the same in future Intel Architecture processors. If hardware or software requires that
I/O ports be written to in a particular order, that order must be specified explicitly. For example,

to load a word-length 1/O port at address 2H and then another word port at 4H, two word-length
writes must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space.
Accessing I/O ports through the 1/0O address space is thus a possible source of parity errors.

8.3.1. Memory-Mapped I/O

I/O devices that pond like memory components can be aseéghrough the processor’s
physical-memory addrespace (see Figure 8-1 on page 8-3). When using memory-mapped 1/O,
any of the processor’s instructions that reference memory can be used to access an I/O port
located at a physical-memory address. For example, the MOV instruction can transfer data
between any register and a mmary-mapped I/O port. The AND, OR, and TE®iBtructions

may be used to manipulate bits in the control and status registers of a memory-mapped periph-
eral devices.

If caching is enabled in real-address mode, caching of I/O accesses can be prevented by using
MTRRs to map the I/O address space as uncacheable (UC). See Chaptembty Cache

Control, in thePentium Pro Family Developer's Manual, Volum&B8a complete discussion of

the MTRRs.

8.4. 1/O INSTRUCTIONS

The processor’s I/O instructions provide access to I/O portaghrthe /O address space.
(These instructions cannot be used to access memory-mapped I/O ports). There evape/0 g
of I/O instructions:

® Those which transfer a single item (byaerd, or doubleword) between an I/O port and a
general-purpose gister.

8-2

Intel ® INPUT/OUTPUT

® Those which transfer strings of items (strings of bytes, words, or deotuls) between an
I/O port and memory.

Physical Memory

FFFF FFFFH

EPROM

1/0 Port
1/0 Port
1/0 Port

RAM

0

Figure 8-1. Memory-Mapped /O

The register I/O instructions IN (input from 1/O port) and OUT (output to 1/O port) move data
between I/O ports and the EAX register (32-bit 1/0), the AX register (16-bit 1/0), or the AL
(8-bit 1/0O) register. The address of the I/O port can be given with an immediate value or a value
in the DX register.

The string I/O instructions INS (input string from 1/O port) and OUTS (output string to 1/O port)
move data between an I/O port and a memory location. The address of the 1/0O port being
accesses is given in the DX register; the source or destination memory address is given in the
DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions
perform string (or block) input or output operations. The repeat prefix REP modifies the INS
and OUTS instructions to transfer blocks of data between an 1/O port andrgnélere, the ESI

or EDI register is incremented or decremented (according to the setting of the DF flag in the
EFLAGS register) after each byte, word, or doubleword is transferred between the selected 1/0
port and memory.

See the individual references for the IN, INS, OUT, and OUTS instructions in Chapter 11,
Instruction Set Referenctr more information on these instructions.

8-3

INPUT/OUTPUT Intel®

8.5. PROTECTED-MODE I/O

When the processor is running in protected mode, the following protection mechanisms regulate
access to I/O ports:

® When accessing I/O ports through the I/O address space, two protection devices control
access:

— The I/O privilege level (IOPL) field in the EFLAGS register.
— The I/O permission bit map of a task state segment (TSS).

® When accessing memory-mapped /O portse normal segmentation and paging
protection and the memory type range registers (MTRRS) also affect access to I/O ports.
See Chapter ®Rrotection and Chapter 1Memory Cache Contrpln Pentium Pro Family
Developer’s Manual, Volumef8r a complete discussion of memory protection.

The following sections describe the protection mechanisms available when accessing I/O ports
in the 1/0 address space with the I/O instructions.

8.5.1. /O Privilege Level

In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access
to the I/O address space by restricting use of selected instructions. This protection mechanism
permits the operating system or executive to set the privilege level needed to perform I/O. In a
typical protection ring model, access to the 1/0 address space is restricted to privilege levels 0
and 1. Here, kernel and the device drivers are allowedrforpel/O, while less privileged

device drivers and application programs are denied access to the 1/0O address space. Application
programs must then make calls to the operating system to perform 1/O.

The following instructions can be executed only if the current privilege level (CPL) of the
program or task currently executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI
(clear interrupt-enable flag), and STI (set interrupt-enable flag). These instructions are called
I/O sensitiveinstructions, because they are sensitive to the IOPL fieig.attempt by a less
privileged program or task to use an 1/O sensitive instruction results in a general-protection
exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register,
each task can have a different IOPL.

The 1/0 permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensi-
tive instructions, allowing access to some 1/O ports by less privilegeptgms or tasks (see
“I/O Permission Bit Map” on page 8-5).

A program or task can change its IOPL only witke POPF and IRET instructions; however,

such changes are privileged. No procedure may change the current IOPL unless it is running at
privilege level 0. An attempt by a less privileged procedure to change the IOPL does not result
in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and
STl instructions); however, the POPF instruction in this case is also I/O sensitive. A procedure
may use the POPF instruction to change the setting of the IF flag only if the CPL imaless t

8-4

Intel ® INPUT/OUTPUT

equal to the current IOPL. An attempt by a less privileged procedure to change the IF flag does
not result in an exception; the IF flag simply remainshamged.

8.5.2. 1/0O Permission Bit Map

The 1/O permission bit map is a device for permitting limited access to 1/0O ports by less privi-
leged programs or tasks and for tasks operating in virtual-8086 mode. The I/O permission bit
map is located in the TSS (see Figure 8-2 on page 8-5) for the currently runningotasicam.

The address of the first byte of the 1/O permission bit map is given in the I/O map base address
field of the TSS. The size of the 1/O permission bit map and its location in the TSS are variable.

Task State Segment (TSS)
31 2423 0

Last byte of bit
mapmustbe» 11111111
followed by a byte
with all bits set

1/0 Permission Bit Map

<— I/O Map Base 64H

1/0 base map must _»
not exceed DFFFH. < <

Figure 8-2. 1/0 Permission Bit Map

Because each task has its own TSS, each task has its own I/O permissam Bitoess to indi-
vidual I/0 ports can thus be granted to individual tasks.

If in protected mode the CPL is less than or qual to the current IOPL, the processor allows all
I/O operations to proceed. If the CPL is greater than the IOPL or if the processor is operating in
virtual-8086 mode, the processor checks the I/O permission bit map to determine if access to a
particular I/O port is allowed. Each bit in the map coroesis to an 1/O port byte address. For
example, the control bit for I/O port address 29H in the I/O address space is found at bit position
1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the 1/O port being addressed. For a doubleword access, for example, the processors
tests the four bits corresponding to the four adjacent Bebitaddresses. If any tested bit is set,

a general-protection exception (#GP) is signaled. If all tested bits are clear, the I/O operation is
allows to proceed.

Because /O port addresses are not necessarily aligned to waldwaidword boundaries, the
processor read two bytes from the 1/O permission bit map for every access to an I/O port. To
prevent exceptions from being generated when the ports with the highest addresses are accessed,

8-5

INPUT/OUTPUT Intel®

an extra byte needs to included in the TSS immediately after the table. This byte must have all
of its bits set, and it must be within the segment limit.

It is not necessary for the 1/O permission bit map to represent all the I/O addresses. I/O addresses
not spanned by the map are treated as if they had set bits in the map. For example, if the TSS
segment limit is 10 bytes past the bit-map base address, the map has 11 bytes and the first 80 I/O
ports are mapped. Higher addresses in the 1/0 address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O
permission map, and all I/O instructions generate exceptions when the CPL is greater than the
current IOPL. The I/O bit map base address must be less than or equal to DFFFH.

8.5.3. Caching and Paging

In protected mode, the paging mechanism can be used to control caching of data buffers used
for /0O and memory-mapped I/O addresses. If caching is enabled, either the MTRRs or the
paging mechanism (the PCD bit in the page table entry) must be used to prevent caching of data
buffers or memory-mapped I/O addresses.

The segmentation or paging mechanism can also be used to manage the data space accessed by
the 1/0 mechanism. The operating system or executive can use the AVL (available) fields in
segment descriptors or page table entries to mark pages containing data buffers as unrelocatable
and unswappable.

8.6. ORDERING I/O

When controlling I/O devices it is often important that memory and I/O operations be carried
out in precisely the ord@rogrammed. Foexample, a program may write a command to an I/O
port, then read the status of the I/O device from another 1/O port. It is important that the status
returned be the status of the devédter it receives the command, nmfore

When using memory-mapped /O, caution should be taken to avoid situations in which the
programmed order is not preserved by the processor. To optimize performance, the processor
allows memory reads to be reordered ahead of buffered writes in most situations. Internally,
processor reads (cache hits) can be reordered around buffered writes. Memory reordering does
not occur externally at the pins, reads (cache misses) and writes appear in-order. Using memory-
mapped /O, therefore, creates the possibility that an 1/0 read might be performed before the
memory write of a previous instruction. The recommended method of enforcing program
ordering of 1/0 accesses with the Pentium Pro processor, is to use the MTRRs to make the
memory mapped I/O address space uncacheable. This operation insures that reads and writes of
I/O devices are carried out program order. Seel@apter 11Memory Cache Contrpin the

Pentium Pro Family Developers Manual, Volumé8more information on using MTRRs.

8-6

Intel ® INPUT/OUTPUT

Another method of enforcing program order is to insert ortheo§erializing instructions, such
as the CPUID instruction, between operations. See Chaptkrifiple Processor Management
in thePentium Pro Family Developer'sahual, \WWlume 3for more information on serialization

of instructions.
When the I/O address space is used instead of memory-mapped /O, the situation is different in
two respects:
®* |/O writes are never buffered. Therefore, strict ordering of I/O operations is enforced by
the processor.
® The processor synchronizes I/O instruction execution with extdsl activity (see
Table 8-1 on page 8-7).

Table 8-1. I/O Instruction Serialization

Processor Delays Execution of ... Until Completion of

Instruction Being Current))

Executed Instruction? Next Instruction? Rending Stores? Current Store?
IN Yes Yes
INS Yes Yes
REP INS Yes Yes
ouT Yes Yes Yes
OUTS Yes Yes Yes
REP OUTS Yes Yes Yes

CHAPTER 9
PROCESSOR IDENTIFICATION AND
FEATURE DETERMINATION

When writing software intended to run on several different processors in the Intel Architecture
family, it is generally necessary to identify the type of processor present in a system and the
processor features that are available to an application. This chapter ddsawhiesdentify the
processor that is executing the code and determine the features the processor supports. It also
shows how to determine if an FPU or NPX is present. See Chapténtd0Architecture
Compatibility, for a complete list of the features that are available for the differentAirtiei-

tecture processors.

9.1. PROCESSOR IDENTIFICATION

The CPUID instruction returns the processor type for the processor that executes the instruction.
It also indicates the features that are present in the ggocencluding the existence of an
on-chip FPU. The following information can be obtained with this instruction:

® The highest operand value the instructicspands to (2 for the Pentium Pro processor).
® The processor’s family identification (ID) number, model ID, and stepping ID.
® The presence of an on-chip FPU.
® Support for or the presence of the following architectural extensions and enhancements:
— Virtual-8086 mode enhancements.
— Debugging extensions.
— Page-size extensions.
— Read time stamp counter (RDTSC) instruction.

— Read model specific registers (RDMSR) and write model specific registers (WRMSR)
instructions.

— Physical address extension.

— Machine check exceptions.

— Compare and exchange 8 bytes instruction (CMPXCHG8B).
— On-chip, advanced programmable mtgt contoller (APIC).
— Memory-type range registers (MTRRS).

— Page global flag.

9-1

PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION Intel®

— Machine check architecture.
— Conditional move instruction (CMQX£).
® Cache information.

To use this instruction, a source operand value of 0, 1 or 2 is placed in the EAX register.
Processor identification and featurddrmaton is then returned in the EAX, EBX, ECX, and
EDX registers. See “CPUID—CPU Identification” on page 11-73 for more detailed information
about the instruction.

9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE
PROCESSORS

The CPUID instruction is only available in the Pentium Pro and Pentium processors. For the
Intel486 and earlier Intel Architecture processors, several other architectural features can be
exploited to identify the processor.

The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register (see
Figure 3-7 on page 3-9) is different for Intel’'s 32-bit processors than for the Intel 8086 and Intel
286 processors. By examining the settings of these bits (with the PUSHF/PUSHFD and
POP/POPFD instructions), an application program can determine whis¢hprocessor is an
8086, Intel286, or one of the Intel 32-bit processors:

® 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
® Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.

® 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14
have the last value loaded into them. In protected mode, bit 15 is always clear, bit 14 has
the last value loaded into it, and the IOPL bits depends on the current privilege level
(CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit processors:

® Bit 18 (AC) — Implemented only on the Pentium Pro, Pentium, and Intel486 processors.
The inability to set or clear this bit distinguishes an Intel386 processor from the other Intel
32-bit processors.

®* Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The
ability to set and clear this bit indicates that the processor is either a Pentium Pro or a
Pentium processor.

To determine whether an FPU or NPX is present in a system, applications can write to the
FPU/NPX status and control registers using the FNINIT instruction and then verify the correct
values are read back using the FNSTENYV instruction.

9-2

Intel® PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

After determining that an FPU or NPX is present, its type can then be determined. In most cases,
the processor type will determine the type of FPU or NPX; however, an Intel386 processor is
compatible with either an Intel287 or Intel387 math coprocessor. The method the coprocessor
uses to represent indicates which coprocessor is present. The Intel287 math coprocessor uses
the same bit representatidor +co and —c; whereas, the Intel387 math coprocessor uses
different representations foretand—co.

See “Intel Application Note 485 — Intel Processor Identification With the CPUID Instruction”
for more information on identifying Intel Architecture processors. This application note also
provides example source code for using the CPUID instruction and the other processor identifi-
cation techniques.

9-3

CHAPTER 10
INTEL ARCHITECTURE COMPATIBILITY

The Pentium Pro processor is fully binary compatible with all Intel Architecture processors,
including the Pentium, Intel486 DX and SX, Intel386 DX and SX, Intel 286, ar@D8&/8088
processors. Compatibility means that, within certain limited constrgirdgrams that execute

on previous generations of Intel Architecture processors will produce identical results when
executed on the Pentium Pro processor. The compatibility constraints and any implementation
differences between the Intel Architecture processors are described in this chapter and in
Chapter 15|ntel Architecture Compatibilityin thePentium Pro Family Developer’s Manual,
Volume 3 The compatibility issues described in this chapter deal with new instructions, the basic
execution environment, and the floating-point unit (FPU) and math coprocessors. Compatibility
issues regarding the system architecture of the processors are cover&ititna Pro Family
Developer’s Manual, Volume 3

The Pentium Pro processor also includes extensions to the registers, instruction set, and control
functions found in earlieintel Architecture processors. Those extensions have been defined
with consideration for compatibility with previous and future processors. This chapter also
summarizes the compatibility considerations for those extensions.

10.1. RESERVED BITS

Throughouthis manual, certain bits are marked as reserved in many register and memory layout
descriptions. When bits are marked as undefined or reserved, it is eseert@mhpatibility

with future processors that software treat these bits as having a future, timdunglwvn effect.
Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of registers or
memory locations that contain such bits. Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing themmimryner to a
register.

®* Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Avoid any software dependence upon the state ofserved Pentium Pro processor bits.
Depending on the values of reserved bits will make software dependent upon the unspecified
manner in which the Pentium Pro processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

Software written for an Pentium, Intel486, or Intel386 processor that handles reserved bits
correctly will port to the Pentium Pro processor without generating protection exceptions.

10-1

INTEL ARCHITECTURE COMPATIBILITY Intel®

10.2. ENABLING NEW FUNCTIONS AND MODES

Most of the new control functions defined for the Pentium Pro processor are enabled by new
mode flags in the control registers (primarily register CR4). This register is undefined for Intel
Architecture processors earlier than the Pentium gemre Attempting to access this register

with an Intel486 or earlier Intel Architecture processor results in an invalid-opcode exception
(#UD). Consequently, programs that execute correctly on the Intel486 or earlier Intel Architec-
ture processor cannot erroneously enable these functions. Attempting set a reserved bit in
register CR4 to a value other than its original value results in a general-protection exception
(#GP). Soprograms that execute on the Pentium Pro processor cannot errorexaisé/func-

tions that may be implemented in future processors.

The Pentium Pro processor does not check for attempts to set reserved bits in model-specific
registers. It is the obligation of the software writer to enforce this discipline. These reserved bits
may be used in future Intel processors.

10.3. DETECTING THE PRESENCE OF NEW FEATURES
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in either of two
ways:

® Test for the presence of the feature or extension — Software cdortds¢ presence of
new flags in the EFLAGS register and control registers. If these flags amveetse
(meaning not present in the processor executing the test), an exception is generated.
Likewise, software can attempt to execute a new instruction, which results in an invalid-
opcode exception (#UD) being generated if it is not supported.

® Execute the CPUID instruction — The CPUID instruction (added to the Intel Architecture
in the Pentium processor) indicates the presence of new features directly.

See Chapter ®Rrocessor Identification and Feature Determinatitor detailed informabn on
detecting new processor features and extensions.

10.4. NEW INSTRUCTIONS

This section identifies the introduction of new instructions for the 32-bit Intel Architecture
processors.

10-2

Intel® INTEL ARCHITECTURE COMPATIBILITY

10.4.1. New Pentium Pro Processor Instructions

The following instructions are new in the Pentium Pro processor:

® CMOVcc (conditional move) instruction, see “CMOVcc—Conditional Move” on page
11-60.

® FCMOVcc (floating-point conditional movejnstructions, see “FCMOVcc—Floating-
Point Conditional Move” on page 11-106.

® FCOMI (floating-point compare and set EFLAGS) instructions, see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111.

®* RDPMC (read performance monitoring counters) instruction, see “RDPMC—Read
Performance-Monitoring Counters” on page 11-330. This instruction was available in the
Pentium processor, but was undocumented.

® UD2 (undefined) instruction, see “UD2—Undefined Instruction” on page 11-380.

10.4.2. New Pentium Processor Instructions

The following instructions are new in the Pentium processor:

® CMPXCHGS8B (compare and exchange 8 bytes) instruction.
® CPUID (CPU identification) instruction.

® RDTSC (read time-stamp counter) instruction.

®* RDMSR (read model-specific register) instruction.

* WRMSR (write model-specific register) instruction.

® RSM (resume from SSM) instruction.

The form of the MOV instruction used to access the test registers has been removed on the
Pentium and future Intel Architecture processors.

10.4.3. New Intel486 Processor Instructions

The following instructions are new in the Intel486 processor:
® BSWAP (byte swap) instruction.

® XADD (exchange and add) instruction.

® CMPXCHG (compare and exchange) instruction.

®* INVD (invalidate cache) instruction.

®* WBINVD (write-back and invalidate cache) instruction.

® INVLPG (invalidate TBL entry) instruction.

10-3

INTEL ARCHITECTURE COMPATIBILITY Intel®

10.4.4. New Intel386 Processor Instructions

The following instructions are new in the Intel386 processor:

® |SS, LFS, and LGS (load SS, FS, and GS registers)
® | ong-displacement conditional jumps.

® Single-bit instructions.

® Bit scan instructions.

® Double-shift instructions.

® Byte set on condition instruction.

® Move with sign/zero extension.

® Generalized multiply instruction.

® MOV to and from control registers.

® MOV to and from test registers (now obsolete).

® MOV to and from debug registers.

10.5. OBSOLETE INSTRUCTIONS

The MOV to and from test registers instructions were removed the Pentium and future Intel
Architecture processors. Execution of these instructions generates an invalid-opcode exception
(#UD).

10.6. UNDEFINED OPCODES

All new instructions defined for Intel Architecture processors use binary encodings that were
reserved on earlier-generation processors. Attempting to execute a reserved opcode always
results in an invalid-opcode (#UD) exception being generated. Consequently, programs that
execute correctly on earlier-generation processors cannot erroneously execute these instructions
and thereby produce unexpected results when executed on later Intel Architecture processors.

10.7. NEW FLAGS IN THE EFLAGS REGISTER

Figure 3-7 on page 3-9 shows the configuration of flags in the EFLAGS register for the Pentium
Pro processor. No new flags have been added to this register in the Pentium Pro processor. The
flags added to this register in the Pentium and Intel486 processors are described iovtiregfoll
sections.

10-4

Intel® INTEL ARCHITECTURE COMPATIBILITY

10.7.1. New Pentium Processor Flags
The following flags were added to the EFLAGS register in the Pentiumgsoce

® VIF (virtual interrupt flag), bit 19.
® VIP (virtual interrupt pending), bit 20.
* |ID (identification flag), bit 21.

10.7.2. New Intel486 Processor Flags
The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel
Architecture Processors

The following bits in the EFLAGS register that can be used to differentiate betwe2:tite
Intel Architecture processors:

® Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the Pentium Pro,
Pentium, and Intel486 processors. Since it is not implemented on the Intel386 processor, it
will always be clear.

® Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction.
The ability to set and clear this bit indicates that the processor is a Pentium Pro or Pentium
processor. The CPUID instruction can then be used to dietemrhich procssor.

® Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not
support virtual mode extensions, which includes all 32-bit processors prior to the Pentium
processor.

See Chapter Rrocessor Identificatiorand Feature Determinatigrfor more information on
identifying processors.

10.8. STACK OPERATIONS

This section identifies the differences in stack implementation between the various Intel Archi-
tecture processors.

10.8.1. PUSH SP

The Pentium Pro, Pentium, Intel486, Intel386, and 1288 processors push a different value
on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit processors push the
value of the SP register before it is decremented as partdisheoperation; the 8086 processor

10-5

INTEL ARCHITECTURE COMPATIBILITY Intel®

pushes the value of the SP register after it is decremented. If the value pushed is important,
replace PUSH SP instructions with the following three instructions:

PUSH BP
MOV BP, SP
XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the Pentium Pro, Pentium,
Intel486, Intel386, and Intel 286 processors.

10.8.2. EFLAGS Pushed On The Stack

The setting of the stored values of bits 12 through 15 (which includes the IOPL fighdbaxid

flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and by exceptions is
different with the 32-bit Intel Architecture processors than with the 8086 and Intel 286 proces-
sors. The differences are as follows:

® 8086 processor—hbits 12 through 15 are always set.
® Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.

® 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12
through 14 have the last value loaded into them.

10.9. FPU

This section addresses the issues that must be faced when porting floating-point software
designed to run on eatrlier Intel Architecture processors and math coprocessors to a Pentium Pro
processor with integrated FPU. To software, the Pentium Pro processor looks very much like a
Pentium processor. Floating-point software which runs on the Pentium or Intel486 DX
processor, or on an Intel486 SX processor/Intel487 SX math coprocessor system or an Intel386
processor/Intel387 math coprocessor system, will run with at most minor modifications on the
Pentium Pro processor. To port code directly from an Intel 286 processor/Intel287 math copro-
cessor system or an Intel 8086 processor/8087 math coprocessor system to the Pentium Pro
processor, certain additional issues must be addressed.

In the following sections, the term “32-bit Intel Architecture FPUs” refers to the Pentium Pro,
Pentium, and Intel486 DX processors, and to the Intel487 SX and Intel387 math coprocessors;
the term “16-bit Intel Architecture math coprocessors” refers to the Intel287 and 8087 math
COprocessors.

10.9.1. Control Register CRO Flags

The ET, NE, and MP flags in control register CRO control the interface between the integer unit
of an Intel Architecture processor and either its internal FPU or an external math coprocessor.
The effect of these flags in the various Intel Architecture processors are described in the
following paragraphs.

10-6

Intel® INTEL ARCHITECTURE COMPATIBILITY

The ET (extension type) flag (bit 4 of the CRO register) is used in the Intel386 processor to indi-
cate whether the math coprocessor in the system is an Intel287 math coprocessor (flag is clear)
or an Intel387 DX math coprocessor (flag is set). This bit is hardwired to 1 in the Pentium Pro,
Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CRO register) is used in the Pentium Pro,
Pentium, and Intel486 processors to determine whether unmasked floating-point exceptions are
reported internally through interrupt vector 16 (flag is set) or externally through an external
interrupt (flag is clear). On a hardware reset, the NE flag is initialized to 0, so software using the
automatic internalreor-reportng mechanism must set this flag to 1. This flag is nonexistent on
the Intel386 procssor.

As on the Intel 286 and Intel386 processors, the MP (martianocessor) flag (bit 1 of register

CRO) determines whether the WAIT/FWAIT instructions or waiting-type floating-point instruc-
tions trap when the context of the FPU is different from that of the currently-executing task. If
the MP and TS flag are set, then a WAIT/FWAIT instruction and waiting instructions will cause

a device-not-available exception (interrupt vector 7). The MP flag is used on the Intel 286 and
Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other
than a math coprocessor. The device reports its statugyththe BUSY# pin. Since the Pentium

Pro, Pentium, and Intel486 processors do not have such a pin, the MP flag has no relevant use
and should be set to 1 for normal operation.

10.9.2. FPU Status Word

This section identifies differences to the FPU status wordhdifferent Intel Architecture
processors and math coprocessors, the reason for the differences, and their impact on software.

10.9.2.1. CONDITION CODE FLAGS (CO THROUGH C3)

The following nformafon pertains to differences in the use of the condition code flags (CO
through C3) located in bits 8, 9, 10, and 14 of the FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit Intel Architecture FPU,
the condition code flags are set to 0. The same operations on a 16-bit Intel Architecture math
coprocessor leave thesadk intact (they contain their prior value). This difference in operation
has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the Pentium Pro and Pentium processors
(see “Transcendental Instruction Accuracy” on page 7-37) may differ from thd8atEIX
processor and Intel487 SX math coprocessor by 2 to 3 units in the last place (ulps). As a result,
the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREML instruction, the CO, C1, and C3 flags are set to 0 on the
32-bit Intel Architecture FPUs. After the same operation on a 16-bit Intel Architecture math
coprocessor, these flags are left intact.

10-7

INTEL ARCHITECTURE COMPATIBILITY Intel®

On the 32-bit Intel Architecture FPUSs, the C2 flag serves as an incomplete flag for the FTAN

instruction. On the 16-bit Intel Architecture math coprocessors, the C2 flag is undefined for the

FPTAN instruction. This difference has no impact on software, because Intel287 or 8087

programs do not check C2 after an FPTAN instruction. The use of this flag on later processors
allows fast checking of operand range.

10.9.2.2. STACK FAULT FLAG

When unmasked stack overflow or underflow occurs on a 32-bit Intel Architecture FPU, the IE
flag (bit 0) and the SF flag (bit 6) of the FPU status word are set to indicate a stack fault and
condition code flag C1 is set or cleared to indicate overflow or underflow, respectively. When
unmasked stack overflow or underflow occurs on a 16-bit Intel Architecture math coprocessor,
only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-
bit Intel Architecture FPU has no impact on software. Existing exception handlers need not
change, but may be upgraded to take advantage of the additional information.

10.9.3. FPU Control Word

Only affine closure is supported forfinity control on a 32-bit Intel Architecture FPU. The
infinity control flag (bit 12 of the FPU contrevord) remans programmable on these proces-
sors, but has no effect. This change was made to conform to IEEE Standard 754. On a 16-bit
Intel Architecture math coprocessor, both affine and projective closures are supported, as deter-
mined by the setting of bit 12. After a hardware reset, the default value of bit 12 is projective.
Software that requires projective infinity arithmetic may give different results.

10.9.4. FPU Tag Word

When loading the tag word of a 32-bit Intel Architecture FPU, using an FLDENV or FRSTOR
instruction, the processor examines the incoming tag and classifies the location only as empty
or non-empty. Thus, tag values of 00, 01, andtEinterpreted by the processor to indicate a
non-empty location. The tag value of 11 is interpreted by the processor to indicate an empty
location. Subsequent operations on a non-empty register always examine the value in the
register, not the value in its tag. The FSTENV and FSAVE instructions examine the non-empty
registers and put the correct values in the tags before storing tivertag

The corresponding tag forls-bit Intel Architecure math coprocessor is checked before each
register access to determine the class of operand in the register; the tag is updatedrafter e
change to a register so that the tag always reflects the most recent status of the register. Software
can load a tag with a value that disagrees with the contents of a register (for example, the register
contains a valid value, but the tag says special). Here, the 16-bit Intel Architecture math copro-
cessors honor the tag and do not examine the register.

Software written to run on a 16-bit Intel Architecture math coprocessor may not operate
correctly on a 16-bit InteArchitecture FPU, if it uses FLDENV or FRSTOR to change tags to
values (other than to empty) that are different from actual register contents.

10-8

Intel® INTEL ARCHITECTURE COMPATIBILITY

The encoding in the tag word for ti82-bit Intel Architecture FPUs founsupported data
formats (including pseudo-zero and unnormal) is special (10B), to comply with the IEEE
Standard 754 standard. The encodinghia 16-bit Intel Architecture math coprocessors for
pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats
is special (10B). Code that recognizes the pseudo-zero or unnormal format as valid must there-
fore be changed if it is ported to a 32-bit Intel Architecture FPU.

10.9.5. Data Types

This section discusses the differences of data types for the various Intel Architecture FPUs and
math coprocessors.

10.9.5.1. NANS

The 32-bit Intel Architecture FPUs distinguish between signaling NaNs (SNaNs) and quiet
NaNs (QNaNs). These FPUs only generate QNaNs and normally do not generate an exception
upon encountering a @W. An invalid-operation exceptid#l) is generated only upon encoun-
tering a SNaN, except for the FCOM, FIST, and FBSTP instructions, which also generates an
invalid-operation exceptions for a QNaNs. This behavior matches the IEEE Standard 754.

The 16-bit Intel Architecture math coprocessors only generate one kind of NaN (the equivalent
of a QNaN), but the raise an invalid-operation exception upon encountering any kind of NaN.

When porting software written to run on a 16-bit Intel Architecture math coprocessgR oita

Intel Architecture FPU, uninitialized memory locations that contain QNaNs should be changed
to SNaNs to cause the FPU or math coprocessor to fault when uninitialinedrynlecations

are referenced.

10.9.5.2. PSEUDO-ZERO, PSEUDO-NAN, PSEUDO-INFINITY, AND
UNNORMAL FORMATS

The 32-bit Intel Architecture FPUs neither generate nor support the pseudo-zero, pseudo-NaN,
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arithmetic opera-
tion, they raise an invalid-operation exception. T&ebit Intel Architecture math coprocessors
define and support special handling for these formats. Support for these formdtepyeesl to
conform withthe IEEE Standard 754.

This changehould not impact software ported from 16-bit Intel Architecture math coprocessors
to 32-bit Intel Architecture FPUs. The 32-bit Intel Architecture FPUs do not generate these
formats, and therefore will not encounter them unless software explicitly loads them in the data
registers. The only affect may be in how software handles the tags in the tag word (see “FPU
Tag Word” on page 10-8).

10-9

INTEL ARCHITECTURE COMPATIBILITY Intel®

10.9.6. Floating-Point Exceptions

This section identifies the implementation differences in exception handling for floating-point
instructions in the various Intel Architecture FPUs and math coprocessors.

10.9.6.1. DENORMAL OPERAND EXCEPTION (#D)

When the denormal operand exception is masked, the 32-bit Intel Architecture FPUs automati-
cally normalize denormalized numbers when possible; whereas, the 16-bit Intel Architecture
math coprocessors return a denormal result. A program written to rubGehitlntel Architec-

ture math coprocessor that uses the denormal exception solely to normalize denormalized
operands is redundant when run on the 32-bit Intel Architecture FPUs. If such a program is run
on 32-bit Intel Architecture FPUs, performance can be improved dskimg the denormal
exception. Floating-point programs run faster when the FPU performs normalization of denor-
malized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT
instruction on thd 6-bitIntel Architecture math coprocessors. This exception is raised for these
instructions on the 32-bit Intel Architecture FPUs. The exception handlers ported to these latter
processors need to be changed only if the handlers gives special treatment to different opcodes.

10.9.6.2. NUMERIC OVERFLOW EXCEPTION (#0O)

On the 32-bit Intel Architecture FPUs, when the numeric overflow exception is masked and the
rounding mode is set to chop (toward 0), the result is the largest positive or smallest negative
number. Thel6-bit Intel Archite¢ure math coprocessors do not signal the overflow exception
when the masked response is@pthat is, they signal overflow only when the rounding control

is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative
Under the most common rounding modes, this difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit Intel ArchirecFPUproduces, under
overflow conditions, a result that is different in the least significant bit of the significand,
compared to the result on a 16-bit Intel Architecture math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit
Intel Architecture FPUs. When the result is stored in the stack, the significand is rounded
according to the precision control (PC) field of the FPU control word or according to the opcode.
On the 16-bit Intel Architecture math coprocessors, the precision exception is not flagged and
the significand is not rounded. The impact on existing software is that if the result is stored on
the stack, a program running on a 32Hbiel Architecture FPU produces a different resulitler
overflow conditions than on a 16-bit Intel Architecture math coprocessor. The difference is
apparent only to the exception handler. This difference is for IEEE Standard 754 compatibility.

10-10

Intel® INTEL ARCHITECTURE COMPATIBILITY

10.9.6.3. NUMERIC UNDERFLOW EXCEPTION (#U)

When the underflow exception is masked on the 32-bit Intel Architecture FPUs, the underflow
exception is signaled when both the result is tiny and denormalization results in a loss of accu-
racy. When the underflow exception is unmasked and the instruction is suppotme ties

result on the stack, the significand is rounded to the appropriate precision (according to the PC
flag in the FPU control word, for those instructions controlled by PC, otherwise to extended
precision), after adjusting the exponent.

When the underflow exception is masked onli&ebit Intel Archite¢ure math coprocessors and
rounding is toward 0, the underflow exception flag is raised on a tiny result, regardless of loss
of accuracy. When the underflow exception is not masked and the destination is the stack, the
significand is not rounded, but instead is left as is.

When the underflow exception is masked, this difference has no impact on existing software.
The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A programming on a 32-bit Intel Architégre

FPU produces a different result during underflow conditions than on a 16-bit Intel Architecture
math coprocessor if the result is stored on the stack. The difference is only in the least significant
bit of the significand and is apparent only to the exception handler.

10.9.6.4. EXCEPTION PRECEDENCE

There is no difference in the precedence of the denormal-operand exception on the 32-bit Intel
Architecture FPUs, whether it be masked or not. When the denormal-operand exception is not
masked on the 16-bit Intel Architecture math coprocessors, it takes precedence over all
other exceptions. This difference causes no impact on existing software, but some unneeded
normalization of denormalized operands is prevented on the Intel486 processor and Intel387
math coprocessor.

10.9.6.5. CS AND EIP FOR FPU EXCEPTIONS

On the Intel 32-bit Intel Architecture FPUs, the values from the CS and EIP registers saved for
floating-point exceptins point to any prefixethat come before the floating-point instruction.

On the 8087 math coprocessor, the saved CS and IP registers points to the floating-point
instruction.

10.9.6.6. FPU ERROR SIGNALS

The floating-point error signals to the Pentium Pro, Pentium, and Intel486 processors do not
pass through an interrupt coolter; an INT# signal from an Intel387, Intel287 or 8087 math
coprocessors does. If an 8086 processor uses another exceptiba 8387 interrupt, both
exception vectors should call the floggipoint-errorexception handler. Some instructions in a
floating-point-error exception handler may need to be deleted if thaheiggerrupt controller.

The Pentium Pro, Pentium, and Intel486 processors have signals that, with the addition of
external logic, support reporting for emulation of the interrupt mechanism used in many
personal computers.

10-11

INTEL ARCHITECTURE COMPATIBILITY Intel®

On the Pentium Pro, Pentium, and Intel486 processors, an undefin@wyfjpaint opcode will

cause an invadi-opcodeexception (#UD, interrupt vector 6). Undefined fiogtpoint opcodes,

like legal floatirg-point opcodes, cause a device not available exception (#NM, interrupt vector
7) when either the TS or EM flag in control register CRO is set. The Pentium Pro, Pentium, and
Intel486 processors do not check for flagtipoint errorconditions on encountering an unde-
fined floating-point opcode.

10.9.6.7. ASSERTION OF THE FERR# PIN

When using this external inteipt mehanism, the FERR# pin must be connected to an input to

an external interrupt controller. An external interrupt is then generated when the FERR# output
drives the input to the interrupt controller. For the Pentium Pro and Intel386 processors, an
unmasked floating-point exception always causes the FERR# pin to be asperetbmple-

tion of the instruction that caused the exception; for the Pentium and Intel486 processors, an
unmasked floating-point exception always causes the FERR# pin to be asserted prior to
executing the next waiting floating-point instruction. See “Software Exception Handling” on
page 7-41 for more information on the use of the FERR# pin.

10.9.6.8. INVALID OPERATION EXCEPTION ON DENORMALS

An invalid-operation exception is not generated on the 32-bit Intel Architecture FPUs upon
encountering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon
conversion to BCD or to integer. The operation proceeds by first normalizing the value. On the
16-bit Intel Architecture math coprocessors, upoeoeintering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software
running on the 32-bit Intel Architecture FPUs continues to execute in cases where the 16-bit
Intel Architecture math coprocessors trap. The reason for this change was to eliminate an excep-
tion from being raised.

10.9.6.9. ALIGNMENT CHECK EXCEPTIONS (#AC)

If alignment checking is enabled, a misaligned data operand on the Pentium Pro, Pentium, and
Intel486 processors causes an alignment check exception (#AC) vpinegram or procedure

is running at privilege-level 3except for the stack portion of the FSAVE/FNSAVE and
FRSTOR instructions.

10.9.6.10. SEGMENT NOT PRESENT EXCEPTION DURING FLDENV

On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of
an FLDENYV instruction, it can happen that part of the environment is loaded and part not. In
such cases, the FPU contvebrd is left with a value of 007FH. The Pentium Pro and Pentium
processors ensures the internal state is correct at all times by attempting to read the first and last
bytes of the environment before updating the internal state.

10-12

Intel® INTEL ARCHITECTURE COMPATIBILITY

10.9.6.11. DEVICE NOT AVAILABLE EXCEPTION (#NM)

The device-not-available exception (#NM, interrupt 7) will occur in the Pentium Pro, Pentium,
and Intel486 processors when they encounter a floating-point instruction while either the TS or
EM flag in control register CRO is set. If the TS and MP flags are set, then a WAIT/FWAIT
instruction will also cause a device-not-available exception. An exception hahdigid be
included in Pentium Pro, Pentium, or Intel486 processor code to handle these situations.

10.9.6.12. COPROCESSOR SEGMENT OVERRUN EXCEPTION

The coprocessor segment overrun exception (interrupt 9) does not occur in the Pentium Pro,
Pentium, and Intel486 processors. In situations where the Intel387 math coprocessor would
cause an interrupt 9, the Pentium Pro, Pentium, and Intel486 processors simply abort the instruc-
tion. To avoid undetected segment overruns, it is recommended that the floating-point save area
be placed in the same page as the TSS. This placement will prevent the FPU environment from
being lost is a page fault occurs during thecexien of an FIDENV or FRSTOR instruction

while the operating system is performing a task switch.

10.9.6.13. GENERAL PROTECTION EXCEPTION (#GP)

A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-
point operand falls outside a segment’s size. An exception handler should be included to report
these programming errors.

10.9.6.14. FLOATING-POINT ERROR EXCEPTION (#MF)

In real mode and protected mode (not ulthg virtual8086 mode), interrupt vector 16 must
point to the floating-point exaption handler. In virtus8086mode, the virtuaB086 monitor can

be programmed to aommodate a different location of the interrupt vector for floating-point
exceptions.

10.9.7. Changes to Floating-Point Instructions

This section identifies the differences in floating-point instructions for the various Intel FPU and
math coprocessor architectures, the reason for the differences, and their impact on software.

10.9.7.1. NEW FLOATING-POINT INSTRUCTIONS IN THE INTEL PENTIUM
PRO PROCESSOR

The following floathg-pointinstructions are new in the Pentium Pro processor:

® FCMOVcc (floating-point conditional movejnstructions, see “FCMOVcc—Floating-
Point Conditional Move” on page 11-106.

® FCOMI (floating-point compare and set EFLAGS) instructions, see “FCOMI/FCOMIP/
FUCOMI/FUCOMIP—Compare Real and Set EFLAGS” on page 11-111.

10-13

INTEL ARCHITECTURE COMPATIBILITY Intel®

10.9.7.2. FDIV, FPREM, AND FSQRT INSTRUCTIONS

The 32-bit Intel Architecture FPUs support operations on denormalized operands and, when
detected, an underflow exception can occur, for compatibility with the IEEE Standard 754. The
16-bit Intel Architecture math coprocessors do not operate on denormalized operands or return
underflow results. Instead, they generate an invalid-operation exception when they detect an
underflow condition. An existing underflow exception handler will require change only if it
gives different treatment to different opcodes. Also, it is possible that fewer invalid-operation
exceptions will occur.

10.9.7.3. FSCALE INSTRUCTION

With the 32-bit Intel Architecture FPUs, the range of the scaling operand is not restricted. If (O
<| ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the rounded result
is not exact or if there was a loss of accuracy (masked underflow), the precision exception is
signaled. With the 16-bit Intel Architecture math coprocessors, the range of the scaling operand
is restricted. If (0 <|ST(1)|<1), the result is undefined and no exception is signaled. The
impact of this difference on exiting software is that different results are delivered on the 32-bit
and 16-bit FPUs and math coprocessors when (0 <| ST(1) | < 1).

10.9.7.4. FPREM1 INSTRUCTION

The 32-bit Intel Architecture FPUs compute a partial remainder according to the IEEE Standard
754 standard. This instruction does not exist orLthbit Intel Architecture math coprocessors.
The availability of the FPREMZ1 instruction has is no impact on existing software.

10.9.7.5. FPREM INSTRUCTION

On the 32-bit Intel Architecture FPUs, the condition code flags CO, C3, C1 in thevstatls
correctly reflect the three low-order bits of the quotient following execution of the FPREM
instruction. On the 16-bit Intel Architecture math coprocessors, the quotient bits are incorrect
when performing a reduction of (64 M) when (N> 1) and M is 1 or 2. This difference does

not affect existing software; software that works arotivedbugshould not be affected.

10.9.7.6. FUCOM, FUCOMP, AND FUCOMPP INSTRUCTIONS

When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit Intel Archi-
tecture FPUs perform unordered compare according to IEEE Standard 754 standard. These
instructions do not exist on the 16-bit Intel Architecture math coprocessors. The availability of
these new instructions has no impact on existing software.

10.9.7.7. FPTAN INSTRUCTION

On the 32-bit Intel Architdare FPUs, the range of the operand for the FPTAN instruction is
much less restricted (| ST(0) | ®2han on earlier math coprocessors. The instruction reduces
the operand internally using an intermédt constant that is more accurate. The range of the

10-14

Intel® INTEL ARCHITECTURE COMPATIBILITY

operand is restricted to (| ST(0) &) on the 16-bit Intel Architecture math coprocessors; the
operand must be reduced to this range using FPREM. This change has no impact on existing
software.

10.9.7.8. STACK OVERFLOW

On the 32-bit Intel Architecture FPUs, if a stack overflow occurs when the invalid-operation
exception is masked, both the ST(0) and ST(1) registers will contain QNaNs. On the 16-bit Intel
Architecture math coprocessors, the original operand remains unchanged following a stack
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.

10.9.7.9. FSIN, FCOS, AND FSINCOS INSTRUCTIONS

On the 32-bit Intel Architecture FPUs, these instructions perform three common trigonometric
functions. These instructions do not exist on the 16-bit Intel Architecture math coprocessors.
The availability of these instructions has no impact on existing software, but using them
provides a performance upgrade.

10.9.7.10. FPATAN INSTRUCTION

On the 32-bit Intel Architecture FPUs, the range of operfordee FPATAN instruction is unre-
stricted. On the 8-bit Intel Architecture math coprocessors, the absolute value of the operand
in register ST(0) must be smaller than the absolute value of the operand in register ST(1). This
difference has impact on existing software.

10.9.7.11. F2XM1 INSTRUCTION

The 32-bit Intel Architecture FPUsupport a wider range of operands (-1 < ST (0) < +1) for
the F2XM1 instruction. Theupported operand range for the 16-bit Ifethitecture math
coprocessors is @ ST(0)< 0.5). This difference has no impact on existing software.

10.9.7.12. FLD INSTRUCTION

On the 32-bit Intel Architecture FPUs, when using the FLD instruction to load an extended-real
value, a denormal-operand exception is not generated because the instruction is not arithmetic.
The 16-bit Intel Architecture math coprocessors do report a denormal-operand exception in this
situation. This difference does not affect existing software.

On the 32-bitntel Architecture FPUs, loading a denormal value that is in single- or double-real
format causes the value to be converted to extended-real format. Loading a denormal value on
the 16-bit Intel Architecture math coprocessors causes the value to be converteartoraral.

If the next instruction is FXTRACT or FXAM, the 32-bit Intel Architecture FPUs will give a
different result than the 16-bit Intel Architecture math coprocessors. This change was made for
IEEE Standard 754 compatibility.

10-15

INTEL ARCHITECTURE COMPATIBILITY Intel®

On the 32-bit Intel Architecture FPUs, loading an SNaN that is in single- or double-real format
causes the FPU to generate an invalid-operation exception. The 16-bit Intel Architecture math
coprocessors do not raise an exception when loading a signaling NaN. The invalid-operation
exception handler fdt6-bit math coprocssor software needs to be updated to handle this condi-
tion when porting software to 32-bit FPUs. This change was made for IEEE Standard 754
compatibility.

10.9.7.13. FXTRACT INSTRUCTION

On the 32-bit Intel Architecture FPUs, if the operand is 0 for the FXTRACT instruction, the
divide-by-zero exeption is reported ande-is delivered to register ST(1). If the operandads +

no exception is reported. If the operand is 0 on the 16-bit Intel Architecture math coprocessors,
0 is delivered to register ST(1) and no exception is reported. If the operandtizetinvalid-
operation exception is reported. These differences have no impact on existing software. Soft-
ware usually bypasses 0 awd This change is due to the IEEB4 recommendation to fully
support the “logb’function.

10.9.7.14. LOAD CONSTANT INSTRUCTIONS

On 32-bit Intel Architecture FPUs, rounding control is in effect for the load constant instruc-
tions. Rounding ontrol is not in effect for the 16-bit Intel Architecture math coprocessors.
Results for the FLDPI, FLDLN2, FLDLG2, and FLDLZ2E instructions are the same as for the
16-bit Intel Architecture math coprocessors whennding comntol is set to round to nearest or
round to +o. They are the same for the FLDL2T instruction when rounding control is set to
round to nearest, round tee--or round to zero. Results are different from the 16-bit Intel Archi-
tecture math coprocessors in the least significant bit of the mantissa if rounding control is set to
round to -0 or round to O for the FLDPI, FLDLN2, B2L. G2, and FLDL2E instructions; they

are different for the FLDL2T instruction if round teo+s specified. These changes were imple-
mented for compatibility with IEEE 754 recommendations.

10.9.7.15. FSETPM INSTRUCTION

With the 32-bit Intel Architecture FPUs, the FSETPM instruction is treated as FNOP (no oper-
ation). This instruction informs the Intel287 matprocessor that the processor is in protected
mode. This change has no impact on existing software. The 32-bit Intel Architecture FPUs
handle all addressing and exception-pointer information, whether in protected mode or not.

10.9.7.16. FXAM INSTRUCTION

With the 32-bit Intel Architecture FPUs, the FPU acounters an empty register when
executing the FXAM instruction, it not generate combinations of CO through C3 equal to 1101
or 1111. The 16-bit InteArchitecture math coprocessors may generate these combinations,
among others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

10-16

Intel® INTEL ARCHITECTURE COMPATIBILITY

10.9.7.17. FSAVE AND FSTENV INSTRUCTIONS

With the 32-bit Intel Architeatre FPUs, the address of a memory operand pointer stored by
FSAVE or FSTENYV is undefined if the previous floating-point instruction did not refer to
memory

10.9.8. Transcendental Instructions

The floating-point results of the Pentium Pro and Pentium processors for transcendental instruc-
tions in the core range may differ from the Intel486 processors by about 2 or 3 ulps (see “Tran-
scendental Instruction Accuracy” on page 7-37). Condition code flag C1 of the status word may
differ as a result. The exact threshold for underflow and overflow will vary by a few ulps. The
Pentium Pro and Pentium processor’s results will have a worst case error of less than 1 ulp when
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcen-
dental instructions are guaranteed to be monotonic, with respect to the input operands,
throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the-tguflag (C1) on the
32-bit Intel Architecture FPUs. Theund-up flag is undaed for these instructions on the
16-bit Intel Architecture math coprocessors. This difference has no impact on existing software.

10.9.9. Obsolete Instructions

The 8087 math coprocessor instructions FENI and FDISI and the Intel287 math coprocessor
instruction FSETPM are treated as integer NOP instructions in the 32-bit Intel Architecture
FPUs. If these opcodes are detected in the instruction stream, no specific operation is performed
and no internal states are affected.

10.9.10. WAIT/FWAIT Prefix Differences

On the Intel486 proasor, when a WAIT/FWAIT instruction precedes a flogtpoint instruc-

tion (one which itself automatically synchronizes with the previous floating-point instruction),
the WAIT/FWAIT instruction is treated asre-op. Pending floating-point exceptions from a
previous floating-point instruction are processed not on the WAIT/FWAIT instruction but on the
floating-point instruction following the WAIT/FWAIT instruction. In such a case, the report of

a floating-point exception may appear one instruction later on the Intel486 processor than on a
Pentium Pro or Pentium FPU, or on Intel387 math coprocessor.

10.9.11. Operands Split Across Segments and/or Pages

On the Pentium Pro, Pentium, and Intel486 FPUs, when the first half of an operand to be written
is inside a page or segment and the second half is outside, a memory fault can cause the first half
to be stored but not the second half. In this situation, the Intel387 math coprocessor stores
nothing.

10-17

INTEL ARCHITECTURE COMPATIBILITY Intel®

10.9.12. FPU Instruction Synchronization

On the 32-bit Intel Architecture FPUSs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point instruction has
completed before completing the next floating-point instruction. No explicit WAIT/FWAIT
instructions are required to assure this synchronization. Fob8¥erBath coprocessors, explicit
waits are required before each floating-point instruction to ensure synchronization. Although
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit Intel Architec-
ture processors without reassembly, these WAIT instructions are unnecessatry.

Since the 32-bit Intel Architecture FPU's do not require WAIT/FWAIT instructions before each
floating-point instruction32-bit Intel Archite¢ure assemblers do not automatically generate
these WAIT instructions. The ASM86 assembler, however, automatically precedes every
floating-point instruction with a WAIT instruction. Although fldag-point routines generated

using the ASM86 assembler will generally execute correctly on the 32-bit Intel Architecture
FPU's, reassembly using a 32-bit Intel Architecture assembler may result in a more compact
code image and faster execution. The control instructions for the 32-bit Intel Architecture FPU's
can be coded using either a wait or non-wait form of the mnemonic. The wait forms of these
instructions cause a 32-bit Intel Architecture assembler to precede thegipatntinstruction

with a WAIT instruction, in the identical manner as does ASM86.

10-18

CHAPTER 11
INSTRUCTION SET REFERENCE

This chapter describes the complete Pentium Pro processor instruction set, including the integer,
floating-point, and system instructions. The instruction descriptions are arranged in alphabetical

order. For each instruction, the forms are given for each operand combination, including the

opcode, operands required, and a description. Also given for each instruction are a description
of the instruction and its operands, an operational description, a description of the effect of the

instructions on flags in the EFLAGS register, and a summary of the exceptions that can be

generated.

The following sections describe the instruction format for all Intel Architecture processors and
a description of the information contained in the various sections of the instruction descriptions.

11.1. INSTRUCTION FORMAT

All instruction encodings are subsets of the general instruction format shown in Figure 11-1 on
page 11-1. Instructions consist of optional instruction prefixes (in any order), one or two primary
opcode bytes, an addrasgiform specifier (if required) consisting of the ModR/M byte and the
SIB (Scale-Index-Base) byte, a displa@e (if required), and an immediate data field (if
required).

InPsrtélﬁitégn Opcode ModR/M sIB Displacement Immediate
Up to four 1 or 2 byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1-byte each ofl,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none
7 65 32 0 7 65 32 0
Mod Oﬁgg(lje R/IM Scale | Index Base
Figure 11-1. Instruction Format
11.1.1. Instruction Prefixes

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes:
® Lock and repeat prefixes.

— FOH—LOCK prefix.

— F2H—REPNE/REPNZ prefix (used only with string instructions).

11-1

INSTRUCTION SET REFERENCE Intel®

— F3H—REP prefix (used only with string instructions).
— F3H—REPE/REPZ prefix (used only with string instructions).
® Segment override.
— 2EH—CS segment override prefix.
— 36H—SS segment override prefix.
— 3EH—DS segment override prefix.
— 26H—ES segment override prefix.
— 64H—FS segment override prefix.
— 65H—GS segment override prefix.
® Operand-size override, 66H
® Address-size override, 67H

For each instruction, one prefix may be used from each of these groups and be placed in any
order. The effect of redundant prefixes (more than one prefix from a group) is undefined and
may vary from processor to processor.

11.1.2. Opcode

The primary opcode is either 1 or 2 bytes. An additional 3-bit opcode field is sometimdsenc

in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These
fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on
the class of operation.

11.1.3. ModR/M and SIB Bytes

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

®* Themodfield combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

®* Thereg/opcoddield specifies either a register number or three more bits of opcode infor-
mation. Thepurpose of theeg/opcode field is specified in the first byte of the primary
opcode.

®* Ther/m field can specify a register as an operand or can be combined with the mod field to
encode an addressing mode.

11-2

Intel® INSTRUCTION SET REFERENCE

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index fori®2-btf
addressing require the SIB byte. The SIB byte includes the following fields:

® Thescalefield specifies the scale factor.
® Theindexfield specifies the register number of the index register.
® Thebasefield specifies the register number of the base register.

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Table 11-1 through Table 11-Bhe 16-bit addressing formspecified by the ModR/M byte are

in Table 11-1. The 32-bit addressing forms specified by the ModR/M byte are in Table 11-2.
Table 11-3 shows the 32-bit addressing forms specified by the SIB byte.

11.1.4. Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following either the ModR/M or
SIB byte. If a displacement is required, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.

11-3

INSTRUCTION SET REFERENCE Intel®

Table 11-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP?! Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective

Address Mod R/M ModR/M Values in Hexadecimal
[BX+SI] 00 000 00 08 10 18 20 28 30 38
[BX+DI] 001 01 09 11 19 21 29 31 39
[BP+SI] 010 02 0A 12 1A 22 2A 32 3A
[BP+DI] 011 03 0B 13 1B 23 2B 33 3B
[SI1] 100 04 oC 14 1C 24 2C 34 3C
[D1] 101 05 oD 15 1D 25 2D 35 3D
disp162 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX+SI]+disp8® 01 000 40 48 50 58 60 68 70 78
[BX+Dl]+disp8 001 41 49 51 59 61 69 71 79
[BP+SI]+disp8 010 42 4A 52 5A 62 6A 72 7A
[BP+DI]+disp8 o011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 TE
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F
[BX+Sl]+disp16 10 000 80 88 90 98 A0 A8 BO B8
[BX+DlI]+disp16 001 81 89 91 99 Al A9 Bl B9
[BP+SlI]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BP+DlI]+disp16 011 83 8B 93 9B A3 AB B3 BB
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 11 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 11 000 Cco C8 DO D8 EO E8 FO F8
ECX/CX/CL 001 C1l c9 D1 D9 EQ E9 F1 F9
EDX/DX/DL 010 Cc2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 Cc4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 Cc7 CF D7 DF E7 EF F7 FF
Notes

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The “disp16” nomenclature denotes a 16-bit displacement following the ModR/M byte, to be added to the
index.

3. The “disp8” nomenclature denotes an 8-bit displacement following the ModR/M byte, to be sign-extended
and added to the index.

11-4

Intel® INSTRUCTION SET REFERENCE

Table 11-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective

Address Mod R/M ModR/M Values in Hexadecimal
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--][--]1 100 04 ocC 14 1C 24 2C 34 3C
disp32? 101 05 oD 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX]? 01 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX]; 011 43 4B 53 5B 63 6B 73 7B
disp8[--][--] 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F
disp32[EAX] 10 000 80 88 90 98 A0 A8 BO B8
disp32[ECX] 001 81 89 91 99 Al A9 Bl B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 100 84 8C 94 9C Ad AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAX/AXIAL 11 000 (o] c8 DO D8 EO ES8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 c2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 Cc7 CF D7 DF E7 EF F7 FF
Notes

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement following the SIB byte, to be added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement following the SIB byte, to be sign-extended and
added to the index.

11-5

INSTRUCTION SET REFERENCE Intel®

Table 11-3. 32-Bit Addressing Forms with the SIB Byte

EAX ECX EDX EBX ESP [*] ESI EDI

r32 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111
Base =

Scaled Index SS Index SIB Values in Hexadecimal
[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B oC oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[ECX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 89 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 11 000 Cco C1l Cc2 C3 C4 C5 C6 Cc7
[ECX*8] 001 C8 c9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
[EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF
Notes

1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the
following addressing modes:

disp32[index] (MOD=00).

disp8[EBP][index] (MOD=01).
disp32[EBP][index] (MOD=10).

11-6

Intel® INSTRUCTION SET REFERENCE

11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.

11.2.1. Instruction Format

The following is an example of the format used for each processor instruction description in this
chapter:

CMC—Complement Carry Flag

Opcode Instruction Description
F5 CMC Complement carry flag

11.2.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear
in memory. Definitions of entries other than hexadecimal bytes are as follows:

* /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. Tag field contains the digit that provides an
extension to the instruction's opcode.

®* /r—Indicates that the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

® chb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a newfaathe code segment
register.

® b, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doubtds aregiven with the éw-order
byte first.

® +rb, +rw, +rd— A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The register codes are given in Table
11-4 on page 11-8.

® +i—A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

11-7

INSTRUCTION SET REFERENCE Intel®

Table 11-4. Register Encodings Associates With
the +rb, +rw, and +rd Nomenclature

rb rw rd
AL = 0 AX = 0 EAX = 0
CL = 1 CX = 1 ECX = 1
DL = 2 DX = 2 EDX = 2
BL = 3 BX = 3 EBX = 3
rb rw rd
AH = 4 SP = 4 ESP = 4
CH = 5 BP = 5 EBP = 5
DH = 6 Sl = 6 ESI = 6
BH = 7 DI = 7 EDI = 7

11.2.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The ftdwing is a list of the symbols used to represent operands in the
instruction statements:

11-8

rel8—A relative address in the range from 128 bytes betteeeend of the instruction to
127 bytes after the end of the instruction.

rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

ptrl6:16 and ptrl6:32—A far pointer, typically in a code segment different from that of
the instruction. The notatiat6:16indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset witi@rdestination segment.

The ptrl6:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used with the 32-bit attribute.

r8—One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.
r16—One of the wordegisters AX, CX, DX, BX, SP, BP, SI, or DI.
r32—One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

imm8—An immediate byte value. The imm8 symbol is a signed number between —-128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

imm16—An immediate word value used forstructions whose operand-size attribute is
16 bits. This is a number between —32,768 and +32,767 inclusive.

Intel® INSTRUCTION SET REFERENCE

® imm32—An immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
—2,147,483,648 inclusive.

®* r/m8—A byte operand that is either the contents of a byte register (AL, BL, CL, DL, AH,
BH, CH, and DH), or a byte from meory.

®* r/m16—A word register or memory operand used for instructions whose operand-size
attribute is 16 bits. Thevord registers are: AX, BX, CX, DX, SP, BP, Sl, and DI. The
contents of memory are found tte address provided by the effective address compu-
tation.

® r/m32—A doublewordregister or memory operand used for instructions whoseange
size attribute is 32 bits. The doublewaedjisters are: EAX, EBX, ECX, EDX, ESP, EBP,
ESI, and EDI. The contents of memory &and at the address praéd by the effective
address computation.

® m—A 16- or 32-bit memory operand.

®* m8—A memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

®* ml6—A memory word addressed by DS:[E]SI or ES:[E]DI (used only by string
instructions).

®* m32—A memory doubleword addressed by [E3SI or ES:[E]DI (used only by string
instructions).

® m64—A memory quadword (used only by the CMPXCHGS8B instruction).

®* m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

®* ml6&32, m16&16, m32&32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used byOHi&lB
instruction to provide an operandrdaining an upper and lowbpunds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

®* moffs8, moffsl6, moffs32-A simple memory variable (memory offset) of type BYTE,
WORD, or DWORD used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the
instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

® Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

® m32real, m64real, m80reaA single-, double-, and extended-real (respectively)
floating-point operand in memory.

11-9

INSTRUCTION SET REFERENCE Intel®

® ml6int, m32int, m64int—A word-, short-, and long-integer (respectively) floating-point
operand in memory.

® ST or ST(0)—The top element of the FPU register stack.
® ST(i))—The i" element from the top of the FPU register stack.(through 7)

11.2.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following Description and Operation sections contain more details
of the instruction's operation.

11.2.1.4. DESCRIPTION

The “Description” section describes tharpose of thenistructions and the required operands.
It also discusses the effect of the instruction on flags.

11.2.2. Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

® Comments are enclosed within the symbol pairs “(*" and “*)".

® Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and Fl for an if
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

® Aregister name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register Sl relative
to Sl's default segment (DS) or overridden segment.

® Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] inditizésthe
contents of the source operand is a segment-relative offset.

® A - B;indicates that the value of B is assigned to A.

®* The symbols =£ , =, and< are relational operators used to compare two values, meaning
equal, not equal, greater or equal, less or equal, respectively. A relational expsashkion
as A =B is TRUE if the value of A is equal to B; otherwise it is FALSE.

The following identifiers are used in the algorithmic descriptions:

® OperandSize and AddressSize-The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The Addiee identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the

11-10

Intel® INSTRUCTION SET REFERENCE

following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize ~ 16;
ELSE
IF instruction = CMPSD
THEN OperandSize ~ 32;
Fl;
Fl;

See “Operand-Size and Address-Size Attributes” on page 3-13 for general guidelines on
how these attributes are determined.

StackAddrSize—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for Stack” on
page 4-3).

SRC—Represents the source operand.

DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

ZeroExtend(value}—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
—10 converts the byte from F6H to a doubleword valueDODO0F6H. Ifthe value passed

to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

SignExtend(value}—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value —-10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

Push(value}—Pushes a value onto the procedure stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the Operation section in
“PUSH—Push Word or Doubleword Onto the Stack” on page 11-317 for more information
on the push operation.

Pop() removes the value from the top of the procedure stack and returns it. The statement
EAX ~ Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return
either a word or @oubleworddepending on the operand-size attribute. See the Operation
section in “POP—Pop a Value from the Stack” on page 11-308 for mimreniation on the

pop operation.

PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

Switch-Tasks—Performs a standard task switch.

11-11

INSTRUCTION SET REFERENCE Intel®

* Bit(BitBase, BitOffsety—Returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bitge numbered fromolv-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit[EAX, 21] is illustrated in Figure 11-2 on page 11-12.

31 21 0

¢— BitOffset = 21 Q

Figure 11-2. Bit Offset for BIT[EAX,21]

If BitBase is a memory address, BitOffset can range from —2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 11-3 on page 11-12.

7 5 07 07 0
BitBase + 1 BitBase BitBase - 1
LBitOffset =+13
7 07 07 5 0

BitBase BitBase — 1 BitBase — 2
BitOffset = —llJ

Figure 11-3. Memory Bit Indexing

11.2.3. Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is set to 0; when it is set, it is set to 1. The arithmetic and
logical instructions usually assign values to the status flags in a uniform manner (saediRppe

A, EFLAGS Cross-ReferenceNon-conventional assignments are described in the Operation
section. The values of flags listedwaslefinedmay be changed by the instruction in an indeter-
minate manner. Flags that are not listed are unchanged by the instruction.

11-12

INSTRUCTION SET REFERENCE

intel.

11.2.4. FPU Flags Affected

The floathg-point ingructions have an “FPU Flags Affected” section that describes how each
instruction can affect thimur condition code flags of the FPU status word.

11.2.5. Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reafsorihe exceptions. Each exception is given

a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 11-5 on page 11-13 associates @&aoHetter mnemonic with the corresponding
interrupt vector number and exception name. See Chaptaefupt and Exception Handling

in thePentium Pro Family Developer's Manual, VolumiBa detailed description of the excep-

tions.

Table 11-5. Exception Mnemonics, Names, and Vector Numbers

Vector
No. Mnemonic Name Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Exception Any code or data reference.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode UD?2 instruction or reserved opcode.
7 #NM Device Not Available Floating-point or WAIT/FWAIT
instruction.
8 #DF Double Fault Any instruction.
10 #TS Invalid TSS Task switch.
11 #NP Segment Not Present Loading segment registers or accessing
system segments.
12 #SS Stack Fault Stack operations.
13 #GP General Protection Any memory reference.
14 #PF Page Fault Any memory reference.
16 #MF Floating-Point Error Floating-point or WAIT/FWAIT
instruction.
17 #AC Alignment Check Any data reference in memory.
18 #MC Machine Check Model dependent.

Application programmers should consult the doeutation provided with their operating

systems to determine the actions taken when exceptions occur.

11-13

INSTRUCTION SET REFERENCE Intel®

11.2.6. Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode.

11.2.7. Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode.

11.2.8. Floating-Point Exceptions

The “Floating-Point Exceptions” section lists additional exceptions that can occur when a
floating-point instruction is executed in any mode. All of these exception conditions result in a
floating-point error exception (#MF, vector 16) being generatalleT11-6 on page 11-14 asso-
ciates each one- or two-letter mnemonic with the corresponding exception name. Sérg+loat
Point Exception Conditions” on page 7-44 for a detailed description of these exceptions.

Table 11-6. Floating-Point Exception Mnemonics and Names

Vector
No. Mnemonic Name Source
16 Floating-point invalid operation:
#IS - Stack overflow or underflow - FPU stack overflow or underflow
#A - Invalid arithmetic operation - Invalid FPU arithmetic operation
16 #Z Floating-point divide-by-zero FPU divide-by-zero
16 #D Floating-point denormalized Attempting to operate on a denormal
operation number
16 #0 Floating-point numeric overflow FPU numeric overflow
16 #U Floating-point numeric underflow FPU numeric underflow
16 #P Floating-point inexact result Inexact result (precision)
(precision)

11.3. INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of each of the Pentium Pro
processor instructions.

11-14

Intel® INSTRUCTION SET REFERENCE

AAA—ASCII Adjust After Addition

Opcode Instruction Description
37 AAA ASCII adjust AL after addition
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. A/ instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD resullt.

If the additionproduces a decimal carry, the AElister is incremented by 1, and the CF and
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH
register is unchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN
AL — (AL + 6);
AH ~ AH +1;
AF ~ 1;
CF ~ 1;
ELSE
AF « O;
CF ~ 0;
FI;
AL —~ AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

11-15

INSTRUCTION SET REFERENCE Intel®

AAD—ASCII Adjust AX Before Division

Opcode Instruction Description
D5 O0A AAD ASCII adjust AX before division
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield

a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AL register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to O0H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit number in registers AH and AL.

Operation

tempAL — AL;

tempAH — AH:;

AL — (tempAL + (tempAH O0imm8)) AND FFH;
AH - 0

The immediate valueirim8 is taken from the second byte of the instruction, whinder
normal assembly is OAH (10 decimal). However, this immediate value can be changed to
produce a different result.

Flags Affected
The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

11-16

Intel® INSTRUCTION SET REFERENCE

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Description
D4 O0A AAM ASCII adjust AX after multiply
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
BCD values. The AX register is the implied source and destination operand for this instruction.
The AAM instruction is only useful when it follows an MUL instruction that multiplies (binary
multiplication) two unpacked BCD values and storemed result in the AX register. The AAM
instruction then adjusts the contents of the AX register to contain the correct 2-digit unpacked
BCD result.

Operation

tempAL — AL;
AH — tempAL / immS8;
AL — tempAL MOD imm8,

The immediate valueifim8 is taken from the second byte of the instruction, which under
normal assembly is OAH (10 decimal). However, this immediate value can be changed to
produce a different result.

Flags Affected
The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

11-17

INSTRUCTION SET REFERENCE Intel®

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Description
3F AAS ASCII adjust AL after subtraction
Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte resultin the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked
BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation

IF ((AL AND FH) >9) OR (AF = 1)
THEN
AL — AL -6;
AH — AH-1;
AF ~ 1;
CF « 1;
ELSE
CF < 0;
AF ~ O;
FI;
AL — AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a deciroablv; otherwise, they are cleared to 0.
The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

11-18

Intel® INSTRUCTION SET REFERENCE

ADC—Add with Carry

Opcode Instruction Description
14 ib ADC AL,imm8 Add with carry imm8to AL
15 iw ADC AX,imm16 Add with carry imm16 to AX
15 id ADC EAX,imm32 Add with carry imm32 to EAX
80/2 ib ADC r/m8,imm8 Add with carry imm8to r/m8
81 /2 iw ADC r/m16,imm16 Add with carry imm16 to /m16
81/2 id ADC r/m32,imm32 Add with CF imm32to /m32
83/2ib ADC r/m16,imm8 Add with CF sign-extended imm8to r/m16
83/2ib ADC r/m32,imm8 Add with CF sign-extended imm8 into /m32
10/r ADC r/m8,r8 Add with carry byte register to /m8
1 /r ADC r/m16,r16 Add with carry r16to /m16
11 /r ADC r/m32,r32 Add with CF r32to r/m32
12 /r ADC r8,r/m8 Add with carry r/m8to byte register
13/r ADC r16,/m16 Add with carry /ml16+to r16
13 /r ADC r32,/m32 Add with CF /m32to r32
Description

Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a registemorya me
location. The state of the CF flag represents a carry from a previous addition. When an imme-
diate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the redattboth data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte orwardi additon in which
an ADD instruction is followed by an ADC instruction.

Operation

DEST ~ DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

11-19

INSTRUCTION SET REFERENCE Intel®

ADC—Add with Carry (continued)

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-20

Intel® INSTRUCTION SET REFERENCE

ADD—Add
Opcode Instruction Description
04 ib ADD AL,imm8 Add imm8to AL
05 iw ADD AX,imm16 Add imm16 to AX
05 id ADD EAX,imm32 Add imm32 to EAX
80 /0 ib ADD r/m8,imm8 Add imm8to r/m8
81 /0 iw ADD r/m16,imm16 Add imm16to r/m16
81 /0 id ADD r/m32,imm32 Add imm32 to /m32
83/0 ib ADD r/m16,imm8 Add sign-extended imm8to r/m16
83/0 ib ADD r/m32,imm8 Add sign-extended imm8to r/m32
00 /r ADD r/m8,r8 Add r8to r/m8
0l/r ADD r/m16,r16 Add ri6to r/mi6
0l/r ADD r/m32,r32 Add r32 to r/m32
02 /r ADD r8,r/m8 Add r/m8to r8
03/r ADD r16,/m16 Add r/m16to ri6
03/r ADD r32,/m32 Add r/m32to r32
Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a registemuorg me
location; the source operand can be an immediate, a register, or a memory location. When an
immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the redattboth data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation

DEST ~ DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

11-21

INSTRUCTION SET REFERENCE Intel®

ADD—Add (continued)

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-22

Intel® INSTRUCTION SET REFERENCE

AND—Logical AND

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83/4ib AND r/m16,imm8 r/m16 AND imm8

83/4ib AND r/m32,imm8 r/m32 AND imm8

20 /r AND r/m8,r8 r/m8 AND r8

21/r AND r/m16,r16 r/m16 AND r16

21/r AND r/m32,r32 r/m32 AND r32

22 Ir AND r8,r/m8 r8 AND r/m8

231Ir AND r16,/m16 r16 AND r/m16

231Ir AND r32,/m32 r32 AND r/m32
Description

Performs a bitwise AND operation ¢ime destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.

Operation

DEST ~ DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-23

INSTRUCTION SET REFERENCE Intel®

AND—Logical AND (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-24

Intel® INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Description
63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16
Description

Compares the RPL fields of two segment selectors. The first operand (the destinatioppe
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand

is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand caorde a
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the pavdegé |

the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the appligatignram’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the applicatiorprogram.) Execution of the ARPL imaction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program. (The segment selector for the application
program’s code segamt can be read from the procedure stack following a procedure call.)

See “Checking Caller Access Privileges” in Chaptd?rdtection of thePentium Pro Family
Developer’s Manual, Volumef8r more information about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF « 1;

DEST(RPL) — SRC(RPL);
ELSE

ZF ~ 0;
FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to O.

11-25

INSTRUCTION SET REFERENCE Intel®

ARPL—Adjust RPL Field of Segment Selector (continued)

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual 8086 mode.

11-26

Intel® INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds

Opcode Instruction Description
62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by
m16&16
62 /Ir BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by
m16&16
Description

Determines if the first operand (array index) is within the bounds of an array specified the
second operand (bounds operand). The array index is a signed integer located in a register. The
bounds operand is a memory location that points to a pair of signed doubleword-integers (when
the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size
attribute is 16). The first doubleword (aord) is the lower bound of the array and the second
doubleword (or word) is the upper bound of the array. The array index must be greater than or
equal to the lower bound and less than or equal to the bppad plus the operand sizebiytes.

If the index is not withilounds, a BOUNDange exceeded exception (#BR) is signaled. (When

a this exception is generated, the saved return instruction pointer points tdOth[CB
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation

IF (Arraylndex < LowerBound OR Arraylndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN
#BR,
FI;

Flags Affected

None.

Protected Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

11-27

INSTRUCTION SET REFERENCE Intel®

BOUND—Check Array Index Against Bounds (continued)

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions
#BR If the bounds test fails.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#BR If the bounds test fails.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-28

Intel® INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward

Opcode Instruction Description

OF BC BSF r16,r/m16 Bit scan forward on r/m16

OF BC BSF r32,r/m32 Bit scan forward on r/m32
Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the costemt® operand

are 0, the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF ~ 1;
DEST is undefined;
ELSE
ZF ~ 0;
temp ~ O;
WHILE Bit(SRC, temp) =0
DO
temp — temp + 1;
DEST -~ temp;
OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-29

INSTRUCTION SET REFERENCE Intel®

BSF—BIt Scan Forward (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-30

intel.

BSR—Bit Scan Reverse

INSTRUCTION SET REFERENCE

Opcode Instruction Description

OF BD BSR r16,r/m16 Bit scan reverse on r/m16

OF BD BSR r32,r/m32 Bit scan reverse on r/m32
Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the costemt® operand

are 0, the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF ~ 1,
DEST is undefined;
ELSE
ZF ~ 0;

temp — OperandSize — 1;

WHILE Bit(SRC, temp) =0
DO
temp — temp - 1;
DEST ~ temp;
OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-31

INSTRUCTION SET REFERENCE Intel®

BSR—BIt Scan Reverse (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-32

Intel® INSTRUCTION SET REFERENCE

BSWAP—Byte Swap

Opcode Instruction Description
OF C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
Description

Reverses the byte order of a 32-bit (destination) register: bite@in7 are swapped with bits
24 through 31, and bits 8 through 15 are swapped with biterb6gh23. This instruction is
provided for converting little-endian values to big-endian format and vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

Operation

TEMP — DEST

DEST(7..0) —« TEMP(31..24)

DEST(15..8) — TEMP(23..16)
DEST(23..16) — TEMP(15..8)
DEST(31..24) — TEMP(7..0)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel Architecture processors earlier than the
Intel486 processor family. For compatibility with this instruction, include functionally-equiva-
lent code for execution on Intel processors earlier than the Intel486 processor family.

11-33

INSTRUCTION SET REFERENCE Intel®

BT—ABit Test
Opcode Instruction Description
OF A3 BT r/m16,r16 Store selected bit in CF flag
OF A3 BT r/m32,r32 Store selected bit in CF flag
OF BA/4 ib BT r/m16,imm8 Store selected bit in CF flag
OF BA/4 ib BT r/m32,imm8 Store selected bit in CF flag
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand) and stores the value of the bit in
the CF flag. The bit base operand can be a register or a memory location; the bit oftsed ope

can be a register or an immediate value. If the bit base operand specifies a register, the instruc-
tion takes the modulo 16 or 32 (depending on the register size) of the bit offset opeoaridgall

any bit position to be selected in a 16- or 32-bit register, respectively (see Figure 11-2 on page
11-12). If the bit base operand specifies a memory location, it represents the address of the byte
in memory that contains the bit base (bit 0 of the specified byte) of the bit string (see Figure 11-3
on page 11-12). The offset operand then selects a bit position within the-2ihige2®! - 1 for

a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 8@-bit operands) athe immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The procesgnomilihe

high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using byfdHewing relationship:

Effective Address + (4 O(BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 O(BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particulahituld avoideferences to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation

CF — Bit(BitBase, BitOffset)

11-34

Intel® INSTRUCTION SET REFERENCE

BT—ABit Test (continued)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-35

INSTRUCTION SET REFERENCE Intel®

BTC—Bit Test and Complement

Opcode Instruction Description

OF BB BTC r/m16,r16 Store selected bit in CF flag and complement

OF BB BTC r/m32,r32 Store selected bit in CF flag and complement

OF BA/7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

OF BA/7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit O of the
specified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects
a bit position within the range2® to 2! - 1 for a register offset and 0 to 31 for an immediate
offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of themmey operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)

Bit(BitBase, BitOffset) — NOT Bit(BitBase, BitOffset);
Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If thedestination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

11-36

Intel® INSTRUCTION SET REFERENCE

BTC—BIt Test and Complement (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-37

INSTRUCTION SET REFERENCE Intel®

BTR—BIt Test and Reset

Opcode Instruction Description

OF B3 BTR r/m16,r16 Store selected bit in CF flag and clear

OF B3 BTR r/m32,r32 Store selected bit in CF flag and clear

OF BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

OF BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit O of the
specified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects
a bit position within the range2® to 2! - 1 for a register offset and 0 to 31 for an immediate
offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of themmey operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) — 0;
Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions
#GP(0) If thedestination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

11-38

Intel® INSTRUCTION SET REFERENCE

BTR—BIt Test and Reset (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-39

INSTRUCTION SET REFERENCE Intel®

BTS—Bit Test and Set

Opcode Instruction Description

OF AB BTS r/m16,r16 Store selected bit in CF flag and set

OF AB BTS r/m32,r32 Store selected bit in CF flag and set

OF BA/5ib BTS r/m16,imm8 Store selected bit in CF flag and set

OF BA/5ib BTS r/m32,imm8 Store selected bit in CF flag and set
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value. If the bit base
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register,
respectively (see Figure 11-2 on page 11-12). If the bit base operand specifies a memory loca-
tion, it represents the address of the byte in memory that contains the bit base (bit O of the spec-
ified byte) of the bit string (see Figure 11-3 on page 11-12). The offset operand then selects a bit
position within the range2®' to 28! - 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of themmey operand. See “BT—Bit Test” on
page 11-34 for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ~ 1;
Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions
#GP(0) If thedestination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-40

Intel® INSTRUCTION SET REFERENCE

BTS—Bit Test and Set (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-41

INSTRUCTION SET REFERENCE Intel®

CALL—cCall Procedure

Opcode Instruction Description
E8 cw CALL rel16 Call near, displacement relative to next instruction
E8 cd CALL rel32 Call near, displacement relative to next instruction
FF /2 CALL r/m16 Call near, /m16 indirect
FF /2 CALL r/m32 Call near, /m32 indirect
9A cd CALL ptr16:16 Call far, to full pointer given
9A cp CALL ptr16:32 Call far, to full pointer given
FF /3 CALL mié6:16 Call far, address at /m16
FF /3 CALL mi16:32 Call far, address at /m32
Description

Saves procedure linking information on the procedure stack and jumps to the procedure (called
procedure) specified with the destination (target) operand. The target operand specifies the
address of the first instruction in the called procedure. This operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

® Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

® Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

® Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

® Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See “Calling Procedures Using CALL and RET” on page 4-4 for detailed
information on neatr, far, and inter-privilege-level calls; see Chapter 6 Retitéum Pro Family
Developer’s Minual, Wlume 3for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which contains
the address of the instruction following the CALL instruction) onto the procedure stack (for use
later as a return-instruction pointer. The processor then jumps to the address specified with the
target operand for the called procedure. The target operand specifies either an absolute address
in the code segment (that is an offset from the base of the code segment) or a relative offset (a
signed offset relative to the current value of the instruction pointer in the EIP register, which
points to the instruction following the call). An absolute address is specified directly in a register

or indirectly in a memory location/(16 or r/m32 target-operand form). (When accessing an
absolute address indirectly using the stack pointer (ESP) as a base register, the base value used
is the value of the ESP before the instruction executes.) A relative ofldéiqrrel32) is gener-

ally specified as a label in assembly code, but at the machine code level, it is encoded as a signed,
16- or 32-bit immediate value, which is added toitisruction pointer.

11-42

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

When executing a near call, the operand-size attribute determines the size of the target operand
(16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly into the EIP
register. When a relative offset is specified, it is added to the value of the EIP register. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0s, resulting
in a maximum instruction pointer size of 16 bits. The CS register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and EIP regis-
ters onto the procedure stack for use as a return-instruction pointer. The processor then performs
a far jump to the code segment and address specified with the target dpethedalled proce-

dure. Here the target operand specifies an absolute far address either directly with a pointer

(ptrl6:16 or ptrl6:32 or indirectly with a memory locatiorm(16:16 or m16:32. With the

pointer method, the segment and address of the called procedure is encoded in the instruction
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With

the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit

operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the

CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from the first
64 Kbytes of the 32-bit code segment, because the operand-size attribute of the instruction is set
to 16, allowing only a 16-bit return address offset to be saved. Also, the call should be made
using a 16-bit call gate so that 16-bit values will be pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to access a code
segment at a different privilege level or to switch tasks. Here, the processor uses the segment

selector part of the far address to access the segment descriptor for the segment being jumped
to. Depending on the value of the type and access rigfotgriaion in the segment selector, the

CALL instructon can perform:

® A far call to the same privilege level (described in the previous paragraph).
® An far call to a different privilege level.
® A task switch.

When executing an inter-privilege-level far call, the code segment for the procedure being called
is accessed through a call gate. The segment selector specified by the target operand identifies
the call gate. In executing a call through a call gate where a change of privilege level occurs, the
processor switches to the stack for the privilege level of the called procedure, pushes the current
values of the CS and EIP registers and the SS and ESP values for the old stack onto the new
stack, then performs a far jump to the new code segment. The new code segment is specified in
the call gate descriptor; the new stack segment is specified in the TSS for the currently running
task. The jump to the new code segment occurs after the stack switch. On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, a set
of parameters from the calling procedures stack, and the segment selector and instruction pointer
for the calling procedure’s code segment. (A value in the call gate descriptor determines how
many parameters to copy to the new stack.)

11-43

INSTRUCTION SET REFERENCE Intel®

CALL—Call Procedure (continued)

Finally, the processor jumps to the address of the procedure being called within the new code

segment. The procedure address is the offset specified by the target operand. Here again, the
target operand can specify the far address of the call gate and procedure either directly with a

pointer ptr16:16 or ptr16:32) or indirectly with a memory locatiom(16:160r m16:32.

Executing a task switch with the CALL instruction, is similar to executing a call through a call
gate. Here the target operand specifies the segment selector of the task gate for the task being
switched to and the address of the procedure being called in the task. The task gate in turn points
to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The CALL instruction can also specify the segment selector of the TSS directly. See
Chapter 6,Task Managementn Pentium Pro Family Developer's Manual, Volumehg for

detailed information on the mechanics of a task switch.

Operation

IF near call
THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP — EIP + DEST; (* DEST is rel32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP — (EIP + DEST) AND 0000FFFFH; (* DEST is rel16*)
FI;
FI;
ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP — DEST; (* DEST is r/m32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP — DEST AND O000FFFFH; (* DEST is r/m16*)
FI;
FI:
FI;

11-44

Intel® INSTRUCTION SET REFERENCE

CALL—cCall Procedure (continued)

IF far call AND (PE = 0 OR (PE =1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); Fl;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ~ DESTI[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP — DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ~ DESTI[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP — DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP — EIP AND 0000FFFFH; (* clear upper 16 bits *)
Fl;
Fl;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN
IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); Fl;
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

11-45

INSTRUCTION SET REFERENCE Intel®

CALL—Call Procedure (continued)

FI;
END;

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);

CS — DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) — CPL

EIP — DEST(offset);

ELSE (* OperandSize = 16 *)

IF stack not large enough for a 4-byte return address THEN #SS(0); FI;

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

Push(IP);

CS — DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)

CS(RPL) —~ CPL

EIP — DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(new code segment selector); Fl;
IF segment not present THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address THEN #SS(0); Fl;
tempEIP — DEST(offset)
IF OperandSize=16

Fl;

THEN

tempEIP — tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

FI;
END;

11-46

THEN

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);

CS « DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) —~ CPL;

EIP — tempEIP;

ELSE (* OperandSize = 16 *)

Push(CS);

Push(IP);

CS « DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) —~ CPL;

EIP — tempEIP;

Intel® INSTRUCTION SET REFERENCE

CALL—cCall Procedure (continued)

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); Fl;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL
THEN #GP(code segment selector); Fl;
IF code segment not present THEN #NP(new code segment selector); Fl;
IF code segment is non-conforming AND DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — new code segment (DPL 08) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); FI;
newSS ~ TSSstackAddress + 4;
newESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress — new code segment (DPL [14) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); FI;
newESP ~ TSSstackAddress;
newSS ~ TSSstackAddress + 2;
Fl;
IF stack segment selector is null THEN #TS(stack segment selector); Fl;
IF stack segment selector index is not within its descriptor table limits
THEN #TS(SS selector); Fl
Read code segment descriptor;
IF stack segment selector's RPL # DPL of code segment
OR stack segment DPL # DPL of code segment
OR stack segment is not a writable data segment
THEN #TS(SS selector); Fl
IF stack segment not present THEN #SS(SS selector); Fl;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;

11-47

INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

SS < newsSsS;

(* segment descriptor information also loaded *)

ESP — newESP;

CS:EIP — CallGate(CS:InstructionPointer);

(* segment descriptor information also loaded *)

Push(oldSS:oldESP); (* from calling procedure *)

temp — parameter count from call gate, masked to 5 bits;

Push(parameters from calling procedure’s stack, temp)

Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)

IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); Fl;

IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS < newsSsS;
(* segment descriptor information also loaded *)
ESP — newESP;
CS:IP ~ CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp — parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)
Fl;
CPL ~ CodeSegment(DPL)
CS(RPL) ~ CPL
END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FlI;

CS:EIP ~ CallGate(CS:EIP) (* segment descriptor information also loaded *)

Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes
THEN #SS(0); FI;

IF IP not within code segment limit THEN #GP(0); FI;
CS:IP ~ CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

Fl;

CS(RPL) ~ CPL

END;

11-48

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

TASK-GATE:
IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);
Fl;
IF task gate not present
THEN #NP(task gate selector);
Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector);
Fl;
IF TSS is not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit
THEN #GP(0);
FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

11-49

INSTRUCTION SET REFERENCE Intel®

CALL—Call Procedure (continued)

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)

11-50

If target offset in destination operand is beyond the new code segment
limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

If code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segmt selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gatebesyond the desiptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

If pushing the return addes parameters, or stack segment poioteo
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (continued)

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table

limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment

checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

11-51

INSTRUCTION SET REFERENCE Intel®

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Opcode Instruction Description

98 cBwW AX < sign-extend of AL

98 CWDE EAX sign-extend of AX
Description

Double the size of the source operand by means of signséote(see Figure 6-5 on page 6-18).
The CBW (convert byte to word) instruction copies the sign (bit 7) in the source operand into
every bit in the AH register. The CWDE (converdrd to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instructiomdednte

for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ~ SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)
EAX « SignExtend(AX);
FI;
Flags Affected

None.

Exceptions (All Operating Modes)

None.

11-52

Intel® INSTRUCTION SET REFERENCE

CDQ—Convert Double to Quad
See entry for CWD/CDQ — Convert Word to Double/Conitble to Quad.

11-53

INSTRUCTION SET REFERENCE Ir]

CLC—Clear Carry Flag

Opcode Instruction Description
F8 CLC Clear CF flag
Description

Clears the CF flag in the EFLAGS register.

Operation

CF ~ 0;

Flags Affected
The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

11-54

Intel® INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Opcode Instruction Description
FC CLD Clear DF flag
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation
DF « 0O;

Flags Affected
The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

11-55

INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag

intgl.

Opcode Instruction Description
FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared
Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag
causes the processor to ignore maskable extermatupts. The IF flag and the CLI and STI

instruction have no affect on the generation of exceptions and NMI interrupts.

The following decision table indicates the action of the CLI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running

program or procedure (top of the table).

PE = 0 1 1 1 1
VM = X 0 0
CPL X < |OPL > |OPL X
I0PL X X =3 X <3
IF -0 Y Y N
#GP(0) N N Y
Notes
X Don't care

N Action in column 1 not taken
Y Action in column 1 taken

Operation

IF PE = 0 (* Executing in real-address mode *)
THEN
IF —~ 0;
ELSE
IFVM =0 (* Executing in protected mode *)
THEN
IF CPL<IOPL
THEN
IF —~ 0;
ELSE
#GP(0);
FI;
FI;

11-56

Intel® INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag (continued)
ELSE (* Executing in Virtual-8086 mode *)

IFIOPL =3
THEN
IF -0
ELSE
#GP(0);
FI;

FI;
FI;
Flags Affected
The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not affected.

The other flags in the EFLAGS register are unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

11-57

INSTRUCTION SET REFERENCE Intel®

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Description
OF 06 CLTS Clears TS flag in CRO
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in
Chapter 2, “Control Registers” , of tlRentium Pro Family Developer's Manual, Volumé&B8

more information about this flag.

Operation

CRO(TS) - 0;

Flags Affected
The TS flag in CRO register is cleared.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) If the CPL is greater than 0.

11-58

Intel® INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

Opcode Instruction Description
F5 CMC Complement CF flag
Description

Complements the CF flag in the EFLAGS register.

Operation

CF — NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)

None.

11-59

INSTRUCTION SET REFERENCE

CMOV cc—Conditional Move

Opcode Instruction

OF 47 cw/cd CMOVA r16, r/m16
OF 47 cw/cd CMOVA r32, r/m32
OF 43 cw/cd CMOVAE r16, r/m16
OF 43 cw/cd CMOVAE r32, r/m32
OF 42 cw/cd CMOVB r16, /m16
OF 42 cw/cd CMOVB r32, /m32
OF 46 cw/cd CMOVBE r16, r/m16
OF 46 cw/cd CMOVBE r32, /m32
OF 42 cw/cd CMOVC r16, /m16
OF 42 cw/cd CMOVC r32, /m32
OF 44 cw/cd CMOVE r16, /m16
OF 44 cw/cd CMOVE r32, /m32
OF 4F cw/cd CMOVG r16, r/mi6
OF 4F cw/cd CMOVG r32, r/m32
OF 4D cw/cd CMOVGE r16, /m16
OF 4D cw/cd CMOVGE r32, /m32
OF 4C cw/cd CMOVL r16, /m16
OF 4C cw/cd CMOVL r32, /m32
OF 4E cw/cd CMOVLE r16, /m16
OF 4E cw/cd CMOVLE r32, /m32
OF 46 cw/cd CMOVNA r16, /m16
OF 46 cw/cd CMOVNA r32, /m32
OF 42 cw/cd CMOVNAE r16, r/m16
OF 42 cw/cd CMOVNAE r32, /m32
OF 43 cw/cd CMOVNB r16, r/m16
OF 43 cw/cd CMOVNB r32, /m32
OF 47 cw/cd CMOVNBE r16, r/m16
OF 47 cw/cd CMOVNBE r32, /m32
OF 43 cw/cd CMOVNC r16, /m16
OF 43 cw/cd CMOVNC r32, /m32
OF 45 cw/cd CMOVNE r16, r/m16
OF 45 cw/cd CMOVNE r32, /m32
OF 4E cw/cd CMOVNG r16, r/mi16
OF 4E cw/cd CMOVNG r32, r/m32
OF 4C cw/cd CMOVNGE r16, /m16
OF 4C cw/cd CMOVNGE r32, /m32
OF 4D cw/cd CMOVNL r16, r/m16
OF 4D cw/cd CMOVNL r32, r/m32
OF 4F cw/cd CMOVNLE r16, /m16
OF 4F cw/cd CMOVNLE r32, /m32

Description
Move if above (CF=0 and ZF=0)
Move if above (CF=0 and ZF=0)
Move if above or equal (CF=0)
Move if above or equal (CF=0)
Move if below (CF=1)
Move if below (CF=1)
Move if below or equal (CF=1 or ZF=1)
Move if below or equal (CF=1 or ZF=1)
Move if carry (CF=1)
Move if carry (CF=1)
Move if equal (ZF=1)
Move if equal (ZF=1)
Move if greater (ZF=0 and SF=0F)
Move if greater (ZF=0 and SF=0F)
Move if greater or equal (SF=OF)
Move if greater or equal (SF=OF)
Move if less (SF<>OF)
Move if less (SF<>OF)
Move if less or equal (ZF=1 or SF<>OF)
Move if less or equal (ZF=1 or SF<>OF)
Move if not above (CF=1 or ZF=1)
Move if not above (CF=1 or ZF=1)
Move if not above or equal (CF=1)
Move if not above or equal (CF=1)
Move if not below (CF=0)
Move if not below (CF=0)
Move if not below or equal (CF=0 and ZF=0)
Move if not below or equal (CF=0 and ZF=0)
Move if not carry (CF=0)
Move if not carry (CF=0)
Move if not equal (ZF=0)
Move if not equal (ZF=0)
Move if not greater (ZF=1 or SF<>OF)
Move if not greater (ZF=1 or SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not less (SF=OF)
Move if not less (SF=OF)
Move if not less or equal (ZF=0 and SF=0F)
Move if not less or equal (ZF=0 and SF=0F)

11-60

intel.

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (continued)

Opcode Instruction Description

OF 41 cw/cd CMOVNO r16, r/m16 Move if not overflow (OF=0)

OF 41 cw/cd CMOVNO r32, r/m32 Move if not overflow (OF=0)

OF 4B cw/cd CMOVNP r16, /m16 Move if not parity (PF=0)

OF 4B cw/cd CMOVNP r32, /m32 Move if not parity (PF=0)

OF 49 cw/cd CMOVNS r16, /m16 Move if not sign (SF=0)

OF 49 cw/cd CMOVNS r32, /m32 Move if not sign (SF=0)

OF 45 cw/cd CMOVNZ r16, /m16 Move if not zero (ZF=0)

OF 45 cw/cd CMOVNZ r32, /m32 Move if not zero (ZF=0)

OF 40 cw/cd CMOVO ri16, /m16 Move if overflow (OF=0)

OF 40 cw/cd CMOVO r32, /m32 Move if overflow (OF=0)

OF 4A cw/cd CMOVP ri16, r/m16 Move if parity (PF=1)

OF 4A cw/cd CMOVP r32, /m32 Move if parity (PF=1)

OF 4A cw/cd CMOVPE r16, /m16 Move if parity even (PF=1)

OF 4A cw/cd CMOVPE r32, /m32 Move if parity even (PF=1)

OF 4B cw/cd CMOVPO ri16, r/m16 Move if parity odd (PF=0)

OF 4B cw/cd CMOVPO r32, r/m32 Move if parity odd (PF=0)

OF 48 cw/cd CMOVS ri16, r/m16 Move if sign (SF=1)

OF 48 cw/cd CMOVS r32, r/m32 Move if sign (SF=1)

OF 44 cw/cd CMOVZ r16, /m16 Move if zero (ZF=1)

OF 44 cw/cd CMOVZ r32, /m32 Move if zero (ZF=1)
Description

The CMO\c instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operatioa flags are in a specified
state (or condition). A condition coded] is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CM®@¥/jnstruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMQ¥ mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For exartieCMOVA (conditional move if

above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode OF 47H.

11-61

INSTRUCTION SET REFERENCE Intel®

CMOVcc—Conditional Move (continued)

The CMO\kcinstructions are new for the Pentium Pro processor family; however, they may not
be supported by all the processors in the family. Softvean determine if the CM@¥instruc-

tions are supported by checking the processor’s feature information with the CPUID instruction
(see “CPUID—CPU Identification” on page 11-73).

Operation

temp — DEST
IF condition TRUE
THEN
DEST ~ SRC
ELSE
DEST ~ temp
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

11-62

Intel® INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (continued)

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-63

INSTRUCTION SET REFERENCE Intel®

CMP—Compare Two Operands

Opcode Instruction Description

3Cib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare immZ16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imma8 with /m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with /m16

81/7id CMP 1r/m32,imm32 Compare imm32 with /m32

83/7ib CMP r/m16,imm8 Compare imm8 with /m16

83/7ib CMP r/m32,imm8 Compare imm8 with /m32

38/r CMP 1/m8,r8 Compare r8 with /m8

39 /r CMP 1r/m16,r16 Compare r16 with /m16

39 /r CMP 1/m32,r32 Compare r32 with /m32

3AIr CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32
Description

Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jurag,(@ondition
move (CMO\ec), or SETEc instruction. The condition codes used by the LMOVcc, and
SETccinstructions are based on the results of a CMP instruction. AppenBK&B\AGS Condi-
tion Codesshows the relationship of the status flags and the condition codes.

Operation
temp — SRC1 - SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

11-64

Intel® INSTRUCTION SET REFERENCE

CMP—Compare Two Operands (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-65

INSTRUCTION SET REFERENCE Intel®

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Opcode Instruction Description

A6 CMPS DS:(E)SlI, ES:(E)DI Compares byte at address DS:(E)SI with byte at
address ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:Sl, ES:DI Compares byte at address DS:Sl| with byte at address
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at
address ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:Sl with byte at address
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

Description

Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the
EFLAGS register according to the results. The first source operand specifies the memory loca-
tion at the address DS:ESI and the second source operand specifies the memory location at
address ES:EDI. (When the operand-size attribute is 16, the S| and DI register are used as the
source-index and destination-index registers, respectively.) The DS segment may bidewerri

with a segment override prefix, but the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and double-
word versions of the CMPiistructions. They are simpler to use, prtdvide naype or segment
checking. (For the CMPS instruction, “DS:ESI” and “ES:EDI” must be explicitly specified in
the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.)
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations,
or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, howeverjrtsrge-

tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” on pagd-B33 for a dscription of the REP prefix.

11-66

Intel® INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String
Operands (continued)

Operation

temp - SRC1 - SRC2;
SetStatusFlags(temp);
IF (byte comparison)
THEN IFDF =0
THEN (E)DI — 1;
ELSE (E)DI — —1;
FI;
ELSE IF (word comparison)
THEN IFDF =0

THEN DI « 2;
ELSE DI « -2;
Fl,
ELSE (* doubleword comparison *)
THEN IF DF =0
THEN EDI ~ 4;
ELSE EDI ~ —4;
Fl;
FI;
FI;
Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-67

INSTRUCTION SET REFERENCE Intel®

CMPS/CMPSB/CMPSW/CMPSD—Compare String
Operands (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-68

Intel® INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange

Opcode Instruction Description

OF BO/r CMPXCHG r/m8,r8 Compare AL with /m8. If equal, ZF is set and r8is loaded
into r/m8. Else, clear ZF and load r/m8into AL.

OF Bl/r CMPXCHG r/m16,r16 Compare AX with /m16. If equal, ZF is setand r16 is
loaded into r/m16. Else, clear ZF and load r/m16 into AL

OF B1/r CMPXCHG r/m32,r32 Compare EAX with /m32. If equal, ZF is set and r32is
loaded into r/m32. Else, clear ZF and load r/m32 into AL

Description

Compares the value in the AL, AX, or EAX register (depending on the size of thedpeith

the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST
THEN
ZF ~ 1
DEST ~ SRC
ELSE
ZF -~ 0
accumulator — DEST
FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

11-69

INSTRUCTION SET REFERENCE Intel®

CMPXCHG—Compare and Exchange (continued)

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

This instruction is nasupported on Intel prossors earlier than the Intel486 processors.

11-70

Intel® INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes

Opcode Instruction Description
OF C7 /1 m64 CMPXCHG8B mé64 Compare EDX:EAX with mé64. If equal, set ZF and load
ECX:EBX into mé64. Else, clear ZF and load mé64 into
EDX:EAX.
Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Operation

IF (EDX:EAX = DEST)
ZF 1
DEST . ECX:EBX
ELSE
ZF <0
EDX:EAX — DEST

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination operand is not a memory location.
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-71

INSTRUCTION SET REFERENCE Intel®

CMPXCHG8B—Compare and Exchange 8 Bytes (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility

This instruction is nosupported on Intel prossors earlier than the Pentium processors.

11-72

Intel® INSTRUCTION SET REFERENCE

CPUID—CPU Identification

Opcode Instruction Description
OF A2 CPUID EAX — Processor identification information
Description

Provides processor identification information in registers EAX, EBX, ECX, and EDX. This
information identifies Intel as the vendor, gives the family, model, and stepping of processor,
feature information, and cach&drmaion. An input value loaded into the EAX register deter-
mines what information is returned, as shown in Table 11-7.

Table 11-7. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

0 EAX Maximum CPUID Input Value (2 for the Pentium Pro Processor)
EBX "Genu"
ECX "inel"
EDX "ntel"

1 EAX Version Information (Type, Family, Model, and Stepping ID)
EBX Reserved
ECX Reserved
EDX Feature Information

2 EAX Cache Information
EBX Cache Information
ECX Cache Information
EDX Cache Information

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed betbee next instruction is fetched and
executed (see “Serializing Instructions” in ChapteMultiple Processor Managemertf the
Pentium Pro Family Developer's Manual, Volume 3

When the input value in register EAX is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register. For the Pentium Pro processor, the highest recog-
nized value is 2. A vendor identificatistring is returned in the EBX, EDX, and ECX registers.

For Intel processors, the vendor identification string is “Genuinelntel” as follows:

EBX ~ 756e6547h (* "Genu", with G in the low nibble of BL *)

EDX ~ 49656e69h (* "inel", with i in the low nibble of DL *)

ECX ~ 6c65746eh (* "ntel", with n in the low nibble of CL *)

When the input value is 1, the processor returns version information in the EAX register and
feature information in the EDX register (see Figure 11-4 on page 11-74).

11-73

INSTRUCTION SET REFERENCE Intel®

CPUID—CPU Identification (continued)

31 14131211 87 43 0

Stepping

EAX Family | Model D

Processor Type ‘
Family (0110B for the Pentium Pro Processor Family)

Model (Beginning with 0001B)

31 16 1514 1312 1110 9 8 7 6 54 3 2 1 0

EDX

CMOV—Cond. Move/Cmp. Inst.g

MCA—Machine Check Arch.
PGE—PTE Global Bit
MTRR—Mem. Type Range Req.
APIC—APIC on Chip
CXS—CMPXCHGSB Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR—RDMSR and WRMSR Support
TSC—Time Stamp Counter
PSE—Page Size Extensions
DE—Debugging Extensions
VME—Virtual 8086 Mode Enhancement
FPU—FPU on Chip

|:| Reserved

Figure 11-4. Version and Feature Information in Registers EAX and EDX

The version information consists of an Intel Architecture family identifier, a model identifier, a
stepping ID, and a processor type. The model, family, and processor type for the first processor
in the Intel Pentium Pro family is as follows:

®* Model—0001B
® Family—0110B
® Processor Type—00B

See “Intel Application Note 485 — Intel Processor Identification With the CPUID Instruction”
and the Intel Pentium Pro Processor Specification Upddte more information on identifying

earlier Intel Architecture processors. The available processor types are given in Table 11-8 on
page 11-75. Intel releases information on stepping IDs as needed.

11-74

Intel® INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Table 11-8. Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDriveO Processor 01B
Dual processor* 10B
Intel reserved. 11B

Note
* Not applicable to Intel386 and Intel486 processors.

Table 11-9 on page 11-75 shows the encoding of the feature flags in the EDX register. A feature
flag set to 1 indicates the corresponding feature is supported. Software should identify Intel as
the vendor to properly interpret the feature flags.

Table 11-9. Feature Flags Returned in EDX Register

Bit Feature Description

0 FPU—Floating Point Unit | Processor contains an FPU and executes the Intel387
on Chip instruction set.

1 VME—Virtual 8086 Mode | Processor supports the following virtual 8086 mode
Enhancements enhancements:

* CR4.VME bit enables virtual 8086 mode extensions.

« CR4.PVI bit enables protected-mode virtual interrupts.

« Expansion of the TSS with the software indirection bitmap.
« EFLAGS.VIF bit enables the virtual interrupt flag.

« EFLAGS.VIP bit enables the virtual interrupt pending flag.

2 DE—Debugging Processor supports I/O breakpoints, including the CR4.DE bit
Extensions for enabling debug extensions and optional trapping of access
to the DR4 and DRS5 registers.
3 PSE—Page Size Processor supports 4-Mbyte pages, including the CR4.PSE bit
Extensions for enabling page size extensions, the modified bit in page

directory entries (PDESs), page directory entries, and page table
entries (PTEs).

4 TSC—Time Stamp Processor supports the RDTSC (read time stamp counter)
Counter instruction, including the CR4.TSD bit that, along with the CPL,
controls whether the time stamp counter can be read.
5 MSR—Model Specific Processor supports the RDMSR (read model-specific register)
Registers and WRMSR (write model-specific register) instructions.
6 PAE—Physical Address Processor supports physical addresses greater than 32 bits,
Extension the extended page-table-entry format, an extra level in the

page translation tables, and 2-MByte pages. The CR4.PAE bit
enables this feature. The number of address bits is
implementation specific. The Pentium Pro processor supports
36 bits of addressing when the PAE bit is set.

11-75

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Table 11-9. Feature Flags Returned in EDX Register (continued)

Bit Feature Description

7 MCE—Machine Check Processor supports the CR4.MCE bit, enabling machine check
Exception exceptions. However, this feature does not define the model-

specific implementations of machine-check error logging, reporting,
or processor shutdowns. Machine-check exception handlers might
have to check the processor version to do model-specific
processing of the exception or check for the presence of the
standard machine-check feature.

8 CX8—CMPXCHG8B Processor supports the CMPXCHG8B (compare and exchange 8
Instruction bytes) instruction.

9 APIC Processor contains an on-chip Advanced Programmable Interrupt

Controller (APIC) and it has been enabled and is available for use.
10,11 | Reserved

12 MTRR—Memory Type Processor supports machine-specific memory-type range registers

Range Registers (MTRRs). The MTRRs contains bit fields that indicate the
processor’s MTRR capabilities, including which memory types the
processor supports, the number of variable MTRRs the processor
supports, and whether the processor supports fixed MTRRs.

13 PGE—PTE Global Flag Processor supports the CR4.PGE flag enabling the global bit in
both PTDEs and PTEs. These bits are used to indicate translation
lookaside buffer (TLB) entries that are common to different tasks
and need not be flushed when control register CR3 is written.

14 MCA—Machine Check Processor supports the MCG_CAP (machine check global

Architecture capability) MSR. The MCG_CAP register indicates how many
banks of error reporting MSRs the processor supports.

15 CMOV—Conditional Processor supports the CMOVcc instruction and, if the FPU feature
Move and Compare flag (bit 0) is also set, supports the FCMOVcc and FCOMI
Instructions instructions.

16-31 | Reserved

When the input value is 2, the processor retunfisrinaion about the processor’s internal
caches and TBLs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers

is as follows:

® The least-significant byte in register EAX (register AL) indicatesntimaber of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The Pentium Pro family of processors will return a 1.

®* The most significant bit (bit 31) of each register indicates whether the register contains

valid information (cleared to 0) or is reserved (set to 1).

® |If a register contains valid information, the information is contained in 1 byte descriptors.

Table 11-10 on page 11-77 shows the encoding of these descriptors.

11-76

Intel® INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Table 11-10. Encoding of Cache and TBL Descriptors.

Descriptor Cache or TBL Description

Value

00H Null descriptor

01H Instruction TBL: 4K-Byte Pages, 4-way set associative, 64 entries
02H Instruction TBL: 4M-Byte Pages, 4-way set associative, 4 entries
03H Data TBL: 4K-Byte Pages, 4-way set associative, 64 entries

04H Data TBL: 4M-Byte Pages, 4-way set associative, 8 entries

06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size
OAH Data cache: 8K Bytes, 2-way set associative, 32 byte line size
41H Unified cache: 128K Bytes, 4-way set associative, 32 byte line size
42H Unified cache: 256K Bytes, 4-way set associative, 32 byte line size
43H Unified cache: 512K Bytes, 4-way set associative, 32 byte line size

The first member of the Pentium Pro processor family will return the following information
about caches and TBLs when the CPUID instruction is executed with an input value of 2:

EAX 0302 01 01H
EBX OH
ECX OH
EDX 06 04 OA 42H

These values are interpreted as follows:

® The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TBLs.

® The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

® Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— O01H—A 64-entryinstruction TBL (4-way set associative) for mapping 4-KByte
pages.

— 02H—A 4-entryinstruction TBL (4-way set associative) for mapping 4-MByte pages.
— O03H—A 64-entry data TBL (4-way set associative) for mapping 4-KByte pages.

® The descriptors in registers EBX and ECX are valid, but contain null descriptors.

11-77

INSTRUCTION SET REFERENCE Intel®

CPUID—CPU Identification (continued)

® Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

42H—A 256-KByte unified cache (the L2 cache), 4-way set associative, with a
32-byte cache line size.

OAH—AnN 8-KByte data cache (the L1 data cache), 2-way set associative, with a
32-byte cache line size.

04H—An 8-entry data TBL (4-way set associative) for mapping 4M-byte pages.

06H—AnN 8-KByte instruction cache (the L1 instruction cache), 4-way set associative,
with a 32-byte cahe line size.

Operation

CASE (EAX) OF
EAX = 0:

EAX highest input value understood by CPUID; (* 2 for Pentium Pro processor *)
EBX ~ Vendor identification string;
EDX — Vendor identification string;
ECX — Vendor identification string;

BREAK;
EAX =1:

EAX[3:0] — Stepping ID;

EAX[7:4] —« Model;

EAX[11:8] — Family;

EAX[13:12] — Processor type;

EAX[31:12] — Reserved;

EBX ~ Reserved;

ECX ~ Reserved;

EDX ~ Feature flags; (* See Figure 11-4 *)

BREAK;
EAX = 2:

EAX ~ Cache information;
EBX ~ Cache information;
ECX ~ Cache information;
EDX ~ Cache information;

BREAK;

DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX « reserved, undefined;
EBX « reserved, undefined;
ECX « reserved, undefined;
EDX « reserved, undefined;
BREAK;
ESAC;

11-78

Intel® INSTRUCTION SET REFERENCE

CPUID—CPU Identification (continued)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
Architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register
can be used to determine if this instruction is supported. If a procedure is able to set or clear this
flag, the CPUID is supported by the processor running the procedure.

11-79

INSTRUCTION SET REFERENCE Intel®

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Opcode Instruction Description

99 CwD DX:AX ~ sign-extend of AX

99 CDQ EDX:EAX sign-extend of EAX
Description

Doubles the size ahe operand in register AX or EAX (depending on the operand size) by
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively.
The CWD instruction copies the sign (bit 15) of the value in the Ayi6ter into every bit posi-

tion in the DX register (see Figure 6-5 on page 6-18). The CDQ instruction copies the sign (bit
31) of the value in the EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend frardebefore a word
division, and the CDQ instruction can be usegrmduce a quadword dividend from a double-
word before doubleword division.

The CWD and CDQ mnemonics reference the sapoede. The CWD instruction istended

for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemongmasyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX « SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)
EDX ~ SignExtend(EAX);
FI;
Flags Affected

None.

Exceptions (All Operating Modes)

None.

11-80

Intel® INSTRUCTION SET REFERENCE

CWDE—Convert Word to Doubleword
See entry for CBW/CWDE—Convert Byte to Word/Convert Wor@®twbleword.

11-81

INSTRUCTION SET REFERENCE Intel®

DAA—Decimal Adjust AL after Addition

Opcode Instruction Description
27 DAA Decimal adjust AL after addition
Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

Operation
IF (((AL AND OFH) > 9) or AF = 1)
THEN
AL — AL + 6;
CF —~ CF OR CarryFromLastAddition; (* CF OR carry from AL —« AL +6 *)
AF < 1;
ELSE
AF < O;
FI;
IF ((AL AND FOH) > 90H) or CF = 1)
THEN
AL — AL + 60H;
CF « 1;
ELSE
CF - 0;
FI;
Example
ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=110000
After: AL=AEH BL=35H EFLAGS(0SZAPC)=X00111
Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see “Operation” above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

11-82

Intel® INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction

Opcode Instruction Description
2F DAS Decimal adjust AL after subtraction
Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only

useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed

BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

Operation
IF (AL AND OFH) >9 OR AF =1
THEN
AL —~ AL - 6;
CF — CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL — AL -6 *)
AF ~ 1;
ELSE AF — O;
FI;
IF ((AL > 9FH) or CF = 1)
THEN
AL —~ AL - 60H;
CF ~ 1;
ELSE CF ~ 0;
FI;
Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111
DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see “Operation” above). The SF, ZF, and PF flags are set according to the
result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

11-83

INSTRUCTION SET REFERENCE Intel®

DEC—Decrement by 1

Opcode Instruction Description

FE /1 DEC r/m8 Decrement /m8 by 1

FF /1 DEC r/m16 Decrement /m16by 1

FF /1 DEC r/m32 Decrement /m32by 1

48+rw DEC r16 Decrement ri6 by 1

48+rd DEC r32 Decrement r32by 1
Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source operand can
be a register or a memory location. This instruction allows a loop counter to be updated without
disturbing the CF flag. (Use a SUB instruction with an immediate operand of 1 to perform a
decrement operation that does updates the CF flag.)

Operation

DEST ~ DEST -1,

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If thedestination is located in a honwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-84

Intel® INSTRUCTION SET REFERENCE

DEC—Decrement by 1 (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-85

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL — Quotient,
AH — Remainder

F7 /6 DIV /m16 Unsigned divide DX:AX by r/m16; AX — Quotient,
DX — Remainder

F7 /6 DIV /m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX — Quotient, EDX — Remainder

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the sourcarope
(divisor) and stores the salt in the AX, DX:AX, or EDX:EAX registers. The source oged
can be a general-purpose register or a memory location. The action of this instruction depends

on the operand size, as shown in the following table:

Maximum
Operand Size Dividend Divisor Quotient Remainder Quotient
Word/byte AX r/m8 AL AH 255
Doubleword/word DX:AX r/'m16 AX DX 65,535
Quadword/doubleword EDX:EAX r/m32 EAX EDX 2%2 -1

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than

with the CF flag.

Operation

IFSRC=0
THEN #DE; (* divide error *)
FI;
IF OpernadSize = 8 (* word/byte operation *)
THEN
temp — AX/SRC;
IF temp > FFH
THEN #DE; (* divide error *) ;
ELSE
AL — temp;
AH —~ AX MOD SRC;
FI;
ELSE
IF OpernadSize = 16 (* doubleword/word operation *)
THEN
temp « DX:AX/ SRC;

11-86

Intel® INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (continued)

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE
AX — temp;
DX ~ DX:AX MOD SRC;
Fl;
ELSE (* quadword/doubleword operation *)
temp — EDX:EAX / SRC;
IF temp > FFFFFFFFH
THEN #DE; (* divide error *) ;
ELSE
EAX ~ temp;
EDX ~ EDX:EAX MOD SRC,;
Fl;
Fl;
Fl;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0
If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions
#DE If the source operand (divisor) is O.
If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

11-87

INSTRUCTION SET REFERENCE Intel®

DIV—Unsigned Divide (continued)

Virtual 8086 Mode Exceptions
#DE If the source operand (divisor) is O.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-88

Intel® INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 w01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iwib ENTER imm16,imm8 Create a nested stack frame for a procedure
Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the

procedure. The nesting level determines the number of stack frame pointare thapied into

the “display area” of the new stack frame from the preceding frame. Both of these operands are

immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are providedupport block structured
languages. They do not provide a jump or call to another procedure; they merely set up a new
stack frame for an already called procedure. An ENSRuction is commonly followed by a
CALL, JMP, or &cinstruction to transfer program control to the procedure being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of 1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with

access points to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” on page 4-15 for more information about the actions of the ENTER instruction.

Operation

NestingLevel — NestingLevel MOD 32
IF StackSize = 32
THEN
Push(EBP) ;
FrameTemp — ESP;
ELSE (* StackSize = 16*)
Push(BP);
FrameTemp — SP;
FI;
IF NestingLevel =0
THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 0)
FORi « 1 TO (NestingLevel — 1)

11-89

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters

DO
IF OperandSize = 32
THEN
IF StackSize = 32
EBP — EBP -4,
Push([EBP]); (* doubleword push *)
ELSE (* StackSize = 16%)
BP - BP -4;
Push([BP]); (* doubleword push *)
FI;
ELSE (* OperandSize = 16 *)
IF StackSize = 32
THEN
EBP ~ EBP - 2;
Push([EBPY]); (* word push *)
ELSE (* StackSize = 16*)
BP - BP -2;
Push([BP]); (* word push *)
Fl;
FI;
OD;
IF OperandSize = 32
THEN

Push(FrameTemp); (* doubleword push *)
ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)
FI;
GOTO CONTINUE;
FI;
CONTINUE:
IF StackSize = 32
THEN
EBP — FrameTemp
ESP ~ EBP - Size;
ELSE (* StackSize = 16*)
BP —~ FrameTemp
SP —~ BP - Size;
FI;
END;

Flags Affected

None.

11-90

intgl.

(continued)

Intel® INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.
#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

11-91

INSTRUCTION SET REFERENCE Intel®

F2XM1—Compute 2 *-1

Opcode Instruction Description
D9 FO F2XM1 Replace ST(0) with (257 — 1)
Description

Calculates thexponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range —1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

ST(0) SRC ST(0) DEST
-1.0to -0 -0.51t0 -0
-0 -0
+0 +0
+0to +1.0 +0101.0

Values other than 2 can be exponentiated using the following formula:

XV = 2 Dlog,x)

Operation

ST(0) — (257 - 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

11-92

Intel® INSTRUCTION SET REFERENCE

F2XM1—Compute 2 *-1 (continued)

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-93

INSTRUCTION SET REFERENCE Intel®

FABS—Absolute Value

Opcode Instruction Description
D9 E1 FABS Replace ST with its absolute value.
Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

ST(0) SRC ST(0) DEST

—00 +00

-F +F

-0 +0

+0 +0

+F +F

+00 +00
NaN NaN

Note

F Means finite-real number
Operation

ST(0) ~ IST(0)|

FPU Flags Affected

C1 Set to O if stack underflow occurred; otherwise, cleared to O.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-94

Intel® INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD mé64real Add mé64real to ST(0) and store result in ST(0)

D8 CO+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC CO+i FADD ST(i), ST(0) Add ST (i) to ST(0) and store result in ST(j)

DE CO+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store resultin ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32intto ST(0) and store result in ST(0)

DE /0 FIADD m1i6int Add m16intto ST(0) and store result in ST(0)

Description

Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location.Source operands in memory can beingke-real, double-realyord-integer, or short-

integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register T¢lthe S
register. The one-operand version adds the contents of a memory location (either a real or an
integer value) to the contents of the ST(0) register. The two-operand version, adds the contents
of the ST(0O) register to the ST egister or vice versa. The value in ST(0) can be doubled by
coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation opping the FPU register stack

after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (idvperand version of the floating-point add
instructions always results in the register stack bgingped. Insome assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to extended-real format before
performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands withpositesigns is 0, the result is +0, except for tbend
toward-c mode, in which case the result-8. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the resulbfghe expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

11-95

INSTRUCTION SET REFERENCE Intel®

FADD/FADDP/FIADD—Add (continued)

DEST
—o0 -F -0 +0 +F +00 NaN
—0 -0 -00 -00 -00 -00 * NaN
-For-l -00 -F SRC SRC +F or 0 +00 NaN
SRC -0 -00 DEST -0 +0 DEST +00 NaN
+0 -00 DEST +0 +0 DEST +00 NaN
+For +| -00 +F or £0 SRC SRC +F +00 NaN
+00 * +00 +00 +00 +00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation

IF instruction is FIADD
THEN
DEST ~ DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST ~ DEST + SRC;

FI;
IF instruction = FADDP
THEN
PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

11-96

Intel® INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (continued)

#D Result is a denormal value.

#U Result is too small for destination format.

#0 Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If acliignment checking is enabled and an unaligned memory reference is
made.

11-97

INSTRUCTION SET REFERENCE Intel®

FBLD—Load Binary Coded Decimal

Opcode Instruction Description
DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.
Description

Converts the BCD source operand into extended-real format and pushes the value onto the FPU
stack. The source operand is loaded withrounding errors. Theign of the source operand is
preserved, including that eD.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attepting to load an invalid encodimoduces an
undefined result.

Operation

TOP - TOP - 1;

ST(0) — ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
Co,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

11-98

Intel® INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal (continued)
#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-99

INSTRUCTION SET REFERENCE Intel®

FBSTP—Store BCD Integer and Pop

Opcode Instruction Description
DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).
Description

Converts the value in the ST(0) register tal&ndigit pa&ked BCD integer, stores the result in

the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, accordingdonding mode specified by the RC field of the

FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of spaceniomye

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

ST(0) DEST

—o *
-F<-1 -D
-1<-F<-0 b
-0 -0
+0 +0
+0<+F < +1 *x
+F > +1 +D
+oo *
NaN *
Notes

F Means finite-real number

D Means packed-BCD number

* Indicates floating-point invalid-operation (#1A) exception
** +0 or £1, depending on the rounding mode

If the source value is too large for the destination format and the invalid-opezatieption is

not masked, an invalid-operation exception is generated and no value is stored in the destination
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored
in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet NaNs do
not normally cause this exception to be generated.

11-100

Intel® INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (continued)

Operation

DEST — BCD(ST(0)):

PopRegisterStack;

FPU Flags Affected

C1 Set to O if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated: 0 =
not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

#IA Source operand is empty; contains a Nad, or unsupported format; or
contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to
a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

11-101

INSTRUCTION SET REFERENCE Intel®

FBSTP—Store BCD Integer and Pop (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-102

Intel® INSTRUCTION SET REFERENCE

FCHS—Change Sign

Opcode Instruction Description
D9 EO FCHS Complements sign of ST(0)
Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice-versa. The following table shows the results obtained when creating
the absolute value of various classes of numbers.

ST(0) SRC ST(0) DEST

—00 +00

-F +F

-0 +0

+0 -0

+F -F

+o00 —00
NaN NaN

Notes

F Means finite-real number

Operation
SignBit(ST(0)) — NOT (SignBit(ST(0)))

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to O.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

11-103

INSTRUCTION SET REFERENCE

FCHS—Change Sign (continued)

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-104

Intel® INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmaskedéhfigaodint exceptions
before clearing the exception flags; the FNCLEX instruction does not.

Operation

FPUStatusWord[0..7] ~ O;

FPUStatusWord[15] — O;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The CO,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-105

INSTRUCTION SET REFERENCE Intel®

FCMOV cc—Floating-Point Conditional Move

Opcode Instruction Description
DA CO+i FCMOVB ST(0), ST(j) Move if below (CF=1)
DA C8+i FCMOVE ST(0), ST(j) Move if equal (ZF=1)
DA DO+i FCMOVBE ST(0), ST(/) Move if below or equal (CF=1 or ZF=1)
DA D8+i FCMOVU ST(0), ST(j) Move if unordered (PF=1)
DB CO+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)
DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)
DB DO+i FCMOVNBE ST(0), ST(J) Move if not below or equal (CF=0 and ZF=0)
DB D8+i FCMOVNU ST(0), ST() Move if not unordered (PF=0)
Description

Tests the status flags in the EFLAGS register and movesotiree operan(second operand)

to the destination operand (first operand) if the given test condition is true. The conditions for
each mnemonic are given in the Description column above and in Table 6-4 on page 6-30. The
source operand is always in the BTégister and the destination operand is alway®5

The FCMO\\tc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor in the Pentium Pro processor family may not support the FE&1@8tructions.
Software can check if the FCMQ@Y instructions are supported by checking the processor’s
feature information with the CPUID instruction (see “CPUID—CPU Identification” on page
11-73). If both the CMOV and FPU feature bits are set, the FChtONSstructions are
supported.

Operation

IF condition TRUE
ST(0) — ST()
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

Integer Flags Affected

None.

11-106

Intel® INSTRUCTION SET REFERENCE

FCMOV cc—Floating-Point Conditional Move (continued)

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-107

INSTRUCTION SET REFERENCE Intel®

FCOM/FCOMP/FCOMPP—Compare Real

Opcode Instruction Description

D8 /2 FCOM m32Zreal Compare ST(0) with m32real.

DC /2 FCOM mé64real Compare ST(0) with m64real.

D8 DO+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC/3 FCOMP mé64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.
Description

Compares the contents of register ST(0) and source value and sets condition code flags CO, C2,
and C3in the FPU status word according to the results (see the table belogguideeoperand

can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that —-0.0 = +0.0.

Condition C3 Cc2 co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0
Unordered* 1 1 1

Note
* Flags not set if unmasked invalid-arithmetic-operand (#1A)
exception is generated.

This instruction checks the class of thembers being compared (see “FXAM—Examine” on
page 11-192). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#1A) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPRP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

11-108

Intel® INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (continued)

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#lA) when either or both of the operands is a NaN value or is in an
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, CO — 000;
ST < SRC: C3, C2,C0 ~ 001,
ST = SRC: C3, C2,C0 ~ 100;
ESAC;
IF ST(0) or SRC = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
C3,C2,C0 ~ 111,
Fl,
FI;
IF instruction = FCOMP
THEN
PopRegisterStack;
Fl;
IF instruction = FCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to O.

Co0,C2,C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.
Register is marked empty.

#D One or both operands are denormal values.

11-109

INSTRUCTION SET REFERENCE Intel®

FCOM/FCOMP/FCOMPP—Compare Real (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-110

Intel® INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS

Opcode Instruction Description

DB FO+i FCOMI ST, ST(j) Compare ST(0) with ST(/) and set status flags accordingly

DF FO+i FCOMIP ST, ST(j) Compare ST(0) with ST(J), set status flags accordingly, and
pop register stack

DB E8+i FUCOMI ST, ST() Compare ST(0) with ST(/), check for ordered values, and
set status flags accordingly

DF E8+i FUCOMIP ST, ST(j) Compare ST(0) with ST(i), check for ordered values, set
status flags accordingly, and pop register stack

Description

Compares the contents of register ST(0) and)@ih{ sets the status flags ZF, PF, and CF in the
EFLAGS register according to the results (see the table below). The sign of zero is ignored for
comparisons, so that —0.0 = +0.0.

Comparison Results ZF PF CF
STO > ST(j) 0 0 0
STO < ST(j) 0 0 1
STO = ST()) 1 0 0
Unordered* 1 1 1
Note

* Flags not set if unmasked invalid-arithmetic-operand (#1A)
exception is generated.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The FCOMI/FCOMIP
instructions set the status flags ‘“tanordered” and generate an invalid-arithmetic-operand
exception (#1A) when either or both of the operands is a NaN value (SNaN or QNaN) or is in an
unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs. See “FXAM—Examine” on page 11-192 for additional information on unordered
comparisons.

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic-
operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

11-111

INSTRUCTION SET REFERENCE Intel®

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(j): ZF, PF, CF ~ 000;
ST(0) < ST(j): ZF, PF, CF — 001;
ST(0)=ST(): ZF, PF, CF — 100;
ESAC;
IF instruction is FCOMI or FCOMIP
THEN
IF ST(0) or ST(i) = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF ~ 111,
FI;
FI;
FI;
IF instruction is FUCOMI or FUCOMIP
THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN
ZF, PF, CF ~ 111;
ELSE (* ST(0) or ST(/) is SNaN or unsupported format *)
#IA,
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF ~ 111,
FI;
FI;
FI;
IF instruction is FCOMIP or FUCOMIP
THEN
PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to O if stack underflow occurred; otherwise, cleared to O.
C0,C2,C3 Not affected.

11-112

Intel® INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (continued)

Floating-Point Exceptions
#1S Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or
haveunsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a QNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-113

INSTRUCTION SET REFERENCE Intel®

FCOS—Cosine

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine
Description

Calculates the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the-2thtge+22. The following

table shows the results obtained when taking the cosine of various classes of numbers, assuming
that neither overflow nor underflow occurs.

ST(0) SRC ST(0) DEST

—o *

-F -1to+1
-0 +1

+0 +1

+F -1to+1
+oo *
NaN NaN

Notes

F Means finite-real number
* Indicates floating-point invalid-
arithmetic-operand (#1A) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the ra@éf&o +22 can be reduced to the range of the
instruction by subtracting an appropriate integer multiplerod2by using the FPREM instruc-

tion with a divisor of 2L See “Pi” on page 7-36 for a discussion of the proplelev@ use fort

in performing such reductions.

Operation

IF |ST(0)| < 288

THEN
C2 - 0;
ST(0) — cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 ~ 1;

FI;

11-114

Intel® INSTRUCTION SET REFERENCE

FCOS—Cosine (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the ratjéto +23 otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN valoe,or unsupported format.
#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-115

INSTRUCTION SET REFERENCE Intel®

FDECSTP—Decrement Stack-Top Pointer

Opcode Instruction Description
D9 F6 FDECSTP Decrement TOP field in FPU status word.
Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer).
The contents of the FPU data registers and tag register are not affected.

Operation

IFTOP=0

THEN TOP ~ 7,

ELSE TOP ~ TOP - 1;
FI;
FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The CO, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-116

Intel® INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide

Opcode Instruction Description

D8 /6 FDIV m32Zreal Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV mé64real Divide ST(0) by mé64real and store result in ST(0)

D8 FO+i FDIV ST(0), ST(i) Divide ST(0) by ST(j) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(j) by ST(0) and store result in ST(/)

DE F8+i FDIVP ST(i), ST(0) Divide ST(j) by ST(0), store resultin ST(i), and pop the
register stack

DE F9 FDIVP Divide ST(1) by ST(0), store resultin ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by mé64int and store result in ST(0)

Description

Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a real or an integer valueYwokeperand
version, divides the contents of the ST(0) register by the contents of thae&jigter or vice

versa.

The FDIVP instructions perform the additional operatiopagping theé=PU register stack after
storing the result. To pop thegister stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of thedpaint divide
instructions always results in the register stack bgngped. Insome assemblers, the
mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format before
performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, am of the appropriate sign is stored in the destinatiomaoyk

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

11-117

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (continued)

DEST
—o0 -F -0 +0 +F +o0 NaN
-0 * +0 +0 -0 -0 * NaN
-F +00 +F +0 -0 -F - NaN
-l +o0 +F +0 -0 -F —o NaN
SRC -0 +00 *x * * *x - NaN
+0 — * * * * +oo NaN
+l —o0 -F -0 +0 +F +00 NaN
+F —o0 -F -0 +0 +F +00 NaN
+00 * -0 -0 +0 +0 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.
** Indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC=0
THEN
#Z
ELSE
IF instruction is FIDIV
THEN
DEST — DEST / ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST —~ DEST/ SRC;

FI;
FI;
IF instruction = FDIVP
THEN
PopRegisterStack
Fl;

11-118

Intel® INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

+00 [+00; +0 /0

#D Result is a denormal value.

#7 DEST /+0, where DEST is not equal 8.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

11-119

INSTRUCTION SET REFERENCE Intel®

FDIV/FDIVP/FIDIV—Divide (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-120

Intel® INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR mé64real Divide mé64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC FO+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE FO+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(j), store resultin ST(i), and pop the
register stack

DE F1 FDIVRP Divide ST(0) by ST(1), store resultin ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide mé64int by ST(0) and store result in ST(0)

Description

Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand

(dividend) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided tsupport more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of a memory loca-
tion (either a real or an integer value) by the contents of the ST(0) registdwd-operand
version, divides the contents of the §Tégister by the contents of the ST(0) register or vice
versa.

The FDIVRP instructions perform the additional operationagpng the FPU register stack

after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operantverkthe floating-point

divide instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format before
performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, am of the appropriate sign is stored in the destinatiomaopk

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

11-121

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

DEST
—00 -F -0 +0 +F +00 NaN
Y * +o0 +00 . —00 * NaN
SRC -F +0 +F w o F -0 NaN
-l +0 +F *x b F -0 NaN
-0 +0 +0 * * -0 -0 NaN
+0 -0 -0 * * +0 +0 NaN
+l -0 F o *x +F +00 NaN
+F -0 F o *x +F +00 NaN
+00 * —00 —00 +00 +00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation
IF DEST =0
THEN
#Z
ELSE
IF instruction is FIDIVR
THEN
DEST ~ ConvertExtendedReal(SRC) / DEST;
ELSE (* source operand is real number *)
DEST —~ SRC/DEST;
FI;
FI;
IF instruction = FDIVRP
THEN

PopRegisterStack
Fl;

11-122

Intel® INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

+00 [+00; +0 /0

#D Result is a denormal value.

#7 SRC /40, where SRC is not equal 0.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

11-123

INSTRUCTION SET REFERENCE Intel®

FDIVR/FDIVRP/FIDIVR—Reverse Divide (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-124

Intel® INSTRUCTION SET REFERENCE

FFREE—Free Floating-Point Register

Opcode Instruction Description
DD CO+i FFREE ST()) Sets tag for ST(i) to empty
Description

Sets the tag in the FPU tag register associated with regist@nt&€Mmpty (11B). The contents
of ST() and the FPU stack-top pointer (TOP) are not affected.

Operation
TAG() ~ 11B;

FPU Flags Affected
CO0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-125

INSTRUCTION SET REFERENCE Intel®

FICOM/FICOMP—Compare Integer

Opcode Instruction Description

DE /2 FICOM m1é6int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16intand pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register
Description

Compares the value in ST(0) with an integer source operand and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below). The integer
value is converted to extended-real format before the comparison is made.

Condition C3 Cc2 Co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0
Unordered 1 1 1

These instructions perform an “unordered comparison.Uidordeed comparison also checks
the class of theumbers being compared (see “FXAM—Examine” on page 11-192). If either
operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that —0.0 = +0.0.

The FICOMP instructionpop the rgister stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, CO — 000;
ST(0) < SRC: C3, C2, CO — 001;
ST(0) = SRC: C3, C2, CO ~ 100;

Unordered: C3,C2,C0 ~ 111;
ESAC;
IF instruction = FICOMP

THEN

PopRegisterStack;
FI;

FPU Flags Affected

C1 Set to O if stack underflow occurred; otherwise, set to O.

Co, C2,C3 See table on previous page.

11-126

Intel® INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.
#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If acliignment checking is enabled and an unaligned memory reference is
made.

11-127

INSTRUCTION SET REFERENCE Intel®

FILD—Load Integer

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD mé64int Push mé64int onto the FPU register stack.
Description

Converts the signed-integer source operand into extended-real format and pushes trewalue
the FPU register stack. The source operand can be a word, short, or long integer value. It is
loaded without rounding errors. The sign of the source operand is preserved.

Operation

TOP — TOP - 1;

ST(0) — ExtendedReal(SRC);
FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-128

Intel® INSTRUCTION SET REFERENCE

FILD—Load Integer (continued)
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-129

INSTRUCTION SET REFERENCE Intel®

FINCSTP—Increment Stack-Top Pointer

Opcode Instruction Description
D9 F7 FINCSTP Increment the TOP field in the FPU status register
Description

Adds one to the TOP field of the FPU status word (incremthetsop-of-stack pointer). The
contents of the FPU data registers and tag register are not affected. This operation is not equiv-
alent to popping the stack, because the tag for the previous top-of-stack register igkadt ma
empty.

Operation

IF TOP =7
THEN TOP ~ 0;
ELSE TOP ~ TOP + 1,
FI;
FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The CO, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-130

Intel® INSTRUCTION SET REFERENCE

FINIT/ENINIT—Initialize Floating-Point Unit

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked
floating-point exceptions.

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037Fblnd to neeest, all exceptions maske@4-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers
in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruc-
tion and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmaskeish@qadint exceptions
before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord ~ 037FH;
FPUStatusWord — 0;
FPUTagWord — FFFFH;
FPUDataPointer — O;
FPUlnstructionPointer — O;
FPULastInstructionOpcode O;
FPU Flags Affected

CO0, C1, C2, C3 cleared to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-131

INSTRUCTION SET REFERENCE Intel®

FIST/FISTP—Store Integer

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP mé64int Store ST(0) in m64int and pop register stack
Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word- or short-integer format. The
destination operand specifies the address where the first byte of the destination value is to be
stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the

register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long-

integer format.

The following table shows the results obtained when storing various classes of nhumbers in
integer format.

ST(0) DEST

—oo *
-F<-1 -l
-1<-F<-0 b
-0 0
+0 0
+0<+F < +1 *x
+F > +1 +
+oo *
NaN *
Notes:

F Means finite-real number

I Means integer

* Indicates floating-point invalid-operation
(#lA) exception

** 40 or +1, depending on the rounding
mode

If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

11-132

Intel® INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (continued)

If the value being stored is too larfpr the destination format, is an, is a NaN, or is in an
unsupported format and if the invalid-arithmetic-operand exception (#lA) is unmasked, an
invalid-operation exception is generated and no value is stored in the destination operand. If the
invalid-operation exception is masked, the integer indefinite value is stored in the destination
operand.

Operation

DEST «~ Integer(ST(0));
IF instruction = FISTP
THEN
PopRegisterStack;
Fl;
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 = not pundup; 1 = roundup.

Cleared to 0 otherwise.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format
Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.
#PF(fault-code) If a page fault occurs.

11-133

INSTRUCTION SET REFERENCE Intel®

FIST/FISTP—Store Integer (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-134

Intel® INSTRUCTION SET REFERENCE

FLD—Load Real

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD mé64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 CO+i FLD ST(i) Push ST(i) onto the FPU register stack.
Description

Pushes the source operand onto the FPU register stack. If the source operand is in single- or
double-real format, it is automatically converted to the extended-real format before being
pushed on the stack.

The FLD instruction can also push the value in a selected FPU regist8i [Bif@ the stack.
Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(J)
THEN
temp —~ ST())
TOP ~ TOP - 1;
IF SRC is memory-operand
THEN
ST(0) — ExtendedReal(SRC);
ELSE (* SRCis ST()) *)
ST(0) — temp;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to O.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value. Does not occur if the source operand

is in extended-real format.

11-135

INSTRUCTION SET REFERENCE Intel®

FLD—Load Real (continued)

Protected Mode Exceptions
#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-136

Intel® INSTRUCTION SET REFERENCE

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push logs10 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push monto the FPU register stack.

D9 EC FLDLG2 Push log2 onto the FPU register stack.

D9 ED FLDLN2 Push logg2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.
Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU register
stack. The constants that can be loaded with these instructions include +1.0, 000 |doge,

1, log, 2, and log2. For each constant, an inter68kbit constant is rounded (ggecified by the

RC field in the FPU control word) to external-real format. The inexact-result exception (#P) is
not generated as a result of the rounding.

See “Pi” on page 11-36 for a description of theonstant.

Operation

TOP — TOP - 1;
ST(0) — CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

11-137

INSTRUCTION SET REFERENCE Intel®

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (continued)

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel287 math coprocessors.

11-138

Intel® INSTRUCTION SET REFERENCE

FLDCW—Load Control Word

Opcode Instruction Description
D9 /5 FLDCW m2byte Load FPU control word from m2byte.
Description

Loads thel6-bit source operand into the FROntrol word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU staud prior to loading a new FPU control

word and the new contralord unmasks one or more of those exceptions, a floating-point
exception will be generateghan execution of the next floating-poinstruction (except for the
no-wait floating-point instructions, see “Software Exception Handling” on page 11-41). To
avoid raising exceptions when changing FPU operating modes, clear any pending exceptions
(using the FCLEX or FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord — SRC;

FPU Flags Affected
CO0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next waitingnfigasvintinstruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-139

INSTRUCTION SET REFERENCE Intel®

FLDCW—Load Control Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-140

Intel® INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment

Opcode Instruction Description
D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.
Description

Loads the complete FPU operating environment from memory into the FPU registers. The
source operand specifies the first byte of the operating-environment datanoryrihis data
is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in
memory of the loaded environment, depending on the operating mode of the processor
(protected or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086
mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as tspa@adiag
FSTENV/ENSTENYV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generateghan execution of the next floating-poinstruction (except for the
no-wait floating-point instructions, see “Software Exception Handling” on page 11-41). To
avoid generating exceptions when loading a new environment, clear all the exception flags in
the FPU status word that is being loaded.

Operation

FPUControlWord —~ SRC(FPUControlWord);

FPUStatusWord — SRC(FPUStatusWord);

FPUTagWord — SRC(FPUTagWord);

FPUDataPointer — SRC(FPUDataPointer);
FPUInstructionPointer — SRC(FPUInstructionPointer);
FPULastInstructionOpcode — SRC(FPULastInstructionOpcode);

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exption is loaded in the status word, it is generaigan
execution of the next waiting floating-point instruction.

11-141

INSTRUCTION SET REFERENCE Intel®

FLDENV—Load FPU Environment (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-142

Intel® INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC/1 FMUL mé64real Multiply ST(0) by mé64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(/) by ST(0) and store result in ST(j)

DE C8+i FMULP ST(i), ST(0) Multiply ST(/) by ST(0), store resultin ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)

Description

Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be a register or
a memory locationSource operands in memory can be in gfglal, double-realyord-integer,

or shortinteger formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version multiplies the contents wfoayme
location (either a real or an integer value) by the contents of the ST(0) registevottygerand
version, multiplies the contents of the ST(0) register by the contents of the&jigter or vice
versa.

The FMULP instructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point multiply instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format before
performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 o¢. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of nhumbers,
assuming that neither overflow nor underflow occurs.

11-143

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (continued)

DEST
—o0 -F -0 +0 +F +oo NaN
—00 +00 +00 * * —00 —00 NaN
-F +oo +F +0 -0 -F —00 NaN
=l +00 +F +0 -0 -F —00 NaN
SRC -0 * +0 +0 -0 -0 * NaN
+0 * -0 -0 +0 +0 * NaN
+l -0 -F -0 +0 +F +oo NaN
+F —o0 -F -0 +0 +F +oo NaN
+00 —00 —00 * * +00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number

I Means Integer

* Indicates invalid-arithmetic-operand (#1A) exception.

Operation

IF instruction is FIMUL
THEN
DEST ~ DEST OConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST ~ DEST USRC;

FI;
IF instruction = FMULP
THEN
PopRegisterStack
FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexaetsult exception (#P) fault is

generated: 0 = not roundup; 1 =uraup.
Co0, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

11-144

Intel® INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (continued)

#IA Operand is an SNaN value or unsupported format.

One operand is0 and the other isco.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-145

INSTRUCTION SET REFERENCE Intel®

FNOP—No Operation

Opcode Instruction Description
D9 DO FNOP No operation is performed.
Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does
not affect the FPU or machine context, except the EIP register.

FPU Flags Affected
CO0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EMor TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-146

Intel® INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the
register stack

Description

Computes the arctangent of theurce operand in register ST(1) divided by the source operand
in register ST(0), stores the resultin ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than

The following table shows the results obtained when computing the arctangent of various
classes of numbers, assuming that underflow does not occur.

ST(0)
—00 -F -0 +0 +F +00 NaN
—00 -314 -T2 -2 -T2 -T2 -1/4 NaN
ST(1) -F -1 —Ttto -T2 -T2 -T2 -T2 to -0 -0 NaN
-0 -Tt -T -T -0 -0 -0 NaN
+0 +1 +T +T +0 +0 +0 NaN
+F +TT +Tt0 +702 +102 +1072 +172 to +0 +0 NaN
+00 +3174 +102 +102 +172 +172 +174 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Note
F Means finite-real number

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1) « arctan(ST(1) / ST(0));

PopRegisterStack;

FPU Flags Affected

C1 Set to O if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

11-147

INSTRUCTION SET REFERENCE Intel®

FPATAN—Partial Arctangent (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Intel Architecture Compatibility Information

The source operands for this instruction are restricted for th878fath coprocessor to the
following range:

0<|ST(1)|< |ST(0)|< +eo

11-148

Intel® INSTRUCTION SET REFERENCE

FPREM—Partial Remainder

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing
ST(0) by ST(1)

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the dividend) by
the value in the ST(1) register (the divisormodulug, and stores the result in ST(0). The
remainder represents the following value:

Remainder = ST(0y (N OST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of [ST(0) /

ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend. The
magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

ST(1)

—00 -F -0 +0 +F +00 NaN

—o * * * * * * NaN

ST(0) -F ST(0) | -For-0 o o -For-0 | ST(0) NaN
-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) | +For+0 o o +For+0 | ST(0) NaN

oo * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number

* Indicates floating-point invalid-arithmetic-operand (#1A) exception.
** |ndicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modultiseis
result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

11-149

INSTRUCTION SET REFERENCE Intel®

FPREM—Partial Remainder (continued)

The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remaindeutyiidgteraive subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of thetios. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called theartial remainder The exponent of the partial remainder will be less than

the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.

When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and CO flags of the FPU status word. This information is important in argument

reduction for the tangent function (using a modulus/df, because it locates the original angle

in the correct one of eight sectors of the unit circle.

Operation

D « exponent(ST(0)) — exponent(ST(1));
IFD<64
THEN
Q < Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ~ ST(0) - (ST(1) DQ);
C2 - 0;
CO0, C3, C1 — LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2 - 1;
N — an implementation-dependent number between 32 and 63;
QQ - Integer(TruncateTowardZero((ST(0) / ST(1)) / 2P ~Ny);
ST(0) « ST(0) — (ST(1) DQQ T2 ~-Ny;
Fl;

FPU Flags Affected

Co Set to bit 2 (Q2) of the quotient.

C1 Set to O if stack underflow occurred; otherwise, set to least significant bit
of quotient (QO).

Cc2 Set to O if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

11-150

Intel® INSTRUCTION SET REFERENCE

FPREM—Partial Remainder (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividerdés unsup-
ported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-151

INSTRUCTION SET REFERENCE Intel®

FPREM1—Partial Remainder

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on
dividing ST(0) by ST(1)

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the divi-
dend) by the value in the ST(1) register (the divisanodulu3, and stores the result in ST(0).
The remainder represents the following value:

Remainder = ST(0y (N OST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of [ST(0) /
ST(1)] toward the nearest integer value. The sign of the remainder is the same as the sign of the
dividend. The magnitude of the remainder is less than half the magnitude of the modulus, unless
a partial remainder was computed (as described below).

This instructionproduces an exact result; the precidjimexact) exception does not occur and
the rounding control has nofe€t. The following table shows the results obtaineuken
computing the remainder of various classeswafbers, assuming that underflow does not
occur.

ST(1)

—00 -F -0 +0 +F +00 NaN

— * * * * * * NaN

ST(0) -F ST() | -For-0 o o -For-0 | ST(0) NaN
-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) | +For+0 o o +For+0 | ST(0) NaN

+oo * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number

* Indicates floating-point invalid-arithmetic-operand (#1A) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modyltiseis
result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This instruction
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(0)
divided by ST(1) to an integer (see the “Operation” below).

11-152

Intel® INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative subtrac-
tion, but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruc-
tion. If the instruction succeeds in producing a remainder that is less than one half the modulus,
the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is
set, and the resultin ST(0) is called gaetial remainder The exponent of the partial remainder

will be less than the exponent of the original dividend by at least 32. Software can re-execute
the instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note
that while executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREML instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and CO flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulug/4j, because it locates the original angle

in the correct one of eight sectors of the unit circle.

Operation

D — exponent(ST(0)) — exponent(ST(1));
IFD <64
THEN
Q < Integer(RoundTowardNearestinteger(ST(0) / ST(1)));
ST(0) ~ ST(0) - (ST(1) 0Q);
C2 - 0;
CO0, C3, C1 — LeastSignificantBits(Q); (* Q2, Q1, QO *)
ELSE
C2 ~ 1;
N < an implementation-dependent number between 32 and 63;
QQ « Integer(TruncateTowardZero((ST(0) / ST(1)) / 2®~Ny);
ST(0) « ST(0) — (ST(1) IQQ T2-Ny;
FI;

FPU Flags Affected

Co Set to bit 2 (Q2) of the quotient.

C1 Set to O if stack underflow occurred; otherwise, set to least significant bit
of quotient(QO).

Cc2 Set to O if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

11-153

INSTRUCTION SET REFERENCE Intel®

FPREM1—Partial Remainder (continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is
or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EMor TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-154

Intel® INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1
onto the FPU stack.

Description

Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must
be less than 2 The following table shows the unmasked results obtained when computing the
partial tangent of various classes of numbers, assuming that underflow does not occur.

ST(0) SRC ST(0) DEST
% *
-F -Fto +F
-0 -0
+0 +0
+F -Fto +F
+oo *
NaN NaN
Notes

F Means finite-real number
* Indicates floating-point invalid-
arithmetic-operand (#1A) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the ra@éfdo +22 can be reduced to the range of the
instruction by subtracting an appropriate integer multiplemodr2by using the FPREM instruc-

tion with a divisor of 2. See “Pi” on page 11-36 for a discussion of the proper value to use for
mtin perforning such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

11-155

INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent (continued)

Operation

IF ST(0) < 2%
THEN
C2 - 0
ST(0) — tan(ST(0));
TOP ~ TOP -1,
ST(0) ~ 1.0;
ELSE (*source operand is out-of-range *)
C2 ~ 1;
FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the rar§éto +23 otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN valag,or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EMor TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-156

Intel® INSTRUCTION SET REFERENCE

FRNDINT—Round to Integer

Opcode Instruction Description
D9 FC FRNDINT Round ST(0) to an integer.
Description

Rounds the source value tine ST(0) register to the nearest integral value, depending on the
currentrounding mode (setting of the RC field of the FB&htrol word), and stores the result
in ST(0).

If the source value i®, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation

ST(0) « RoundTolntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-157

INSTRUCTION SET REFERENCE Intel®

FRSTOR—Restore FPU State

Opcode Instruction Description
DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.
Description

Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by
a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU comtootl, status word, tag word,
instruction pointer, data pointer, and last opcode. Figurestiir@8gh 7-14 show the layout in
memory of the stored environment, depending on the operating mode of the pr(uetsored

or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating environ-
ment, clear all the exception flags in the FPU status word that is being loaded.

Operation

FPUControlWord —~ SRC(FPUControlWord);
FPUStatusWord — SRC(FPUStatusWord);
FPUTagWord — SRC(FPUTagWord);
FPUDataPointer — SRC(FPUDataPointer);
FPUlnstructionPointer — SRC(FPUInstructionPointer);
FPULastInstructionOpcode — SRC(FPULastInstructionOpcode);
ST(0) — SRC(ST(0));

ST(1) — SRC(ST(1));

ST(2) — SRC(ST(2));

ST(3) — SRC(ST(3));

ST(4) — SRC(ST(4));

ST(5) — SRC(ST(5));

ST(6) — SRC(ST(6));

ST(7) — SRC(ST(7));

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

11-158

Intel® INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State (continued)

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-159

INSTRUCTION SET REFERENCE Intel®

FSAVE/FNSAVE—Store FPU State

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for
pending unmasked floating-point exceptions. Then re-initialize
the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU.

Description

Stores the current FPU state (operating environment and register stack) at the specified destina-
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles
pending unmasked floating-point exceptions before storing the FPU state; the FINISHRUE-

tion does not.

The FPU operating environment consists of the FPU comtootl, status word, tag word,
instruction pointer, data pointer, and last opcode. Figurestiir@8gh 7-14 show the layout in
memory of the stored environment, depending on the operating mode of the pr(uetsored

or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes
immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” on page
11-131).

The FSAVE/FNSAVE inguctions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) — FPUControlWord;
DEST(FPUStatusWord) — FPUStatusWord;
DEST(FPUTagWord) — FPUTagWord;
DEST(FPUDataPointer) — FPUDataPointer;
DEST(FPUlnstructionPointer) — FPUInstructionPointer;
DEST(FPULastInstructionOpcode) — FPULastInstructionOpcode;
DEST(ST(0)) — ST(0);

DEST(ST(1)) « ST(1);

DEST(ST(2)) — ST(2);

DEST(ST(3)) —~ ST(3);

11-160

Intel® INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (continued)
DEST(ST(4)) — ST(4);
DEST(ST(5)) — ST(5);
DEST(ST(6)) — ST(6);
DEST(ST(7)) — ST(7);

(* Initialize FPU *)
FPUControlWord —~ 037FH;
FPUStatusWord — O;
FPUTagWord — FFFFH;
FPUDataPointer — O;
FPUInstructionPointer — 0;
FPULastInstructionOpcode « O;

FPU Flags Affected
The CO, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

11-161

INSTRUCTION SET REFERENCE Intel®

FSAVE/FNSAVE—Store FPU State (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc-
tion should be executed before attempting to read from the memory stoagd with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

11-162

Intel® INSTRUCTION SET REFERENCE

FSCALE—Scale

Opcode Instruction Description
D9 FD FSCALE Scale ST(0) by ST(1).
Description

Multiplies the destination operand by 2 to the power of the source operand and stores the result
in the destination operand. This instruction provides rapid multiplication or division by integral
powers of 2. The destination operand is a real value that is located in register ST(0). The source
operand is the nearest integer value that is smaller than the value in the ST(1) register (that is,
the value in register ST(1) is truncate toward O to its nearest integer value to form the source
operand). The actual scaling operation is performed by adding the source operand (integer
value) to the exponent of the value in register ST(0). foHewing table shows the results
obtained when scaling various classes of humbers, assuming that neither overflow nor under-
flow occurs.

ST(1)
-N 0 +N
-0 -0 -0 -0
ST(0) -F -F -F -F
-0 -0 -0 -0
+0 +0 +0 +0
+F +F +F +F
+00 +00 +00 +00
NaN NaN NaN NaN

Notes

F Means finite-real number

N Means integer.
In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

11-163

INSTRUCTION SET REFERENCE Intel®

FSCALE—Scale (continued)

In this example, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signifi-
cand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT
operation was performed. The FSTP ST(1) instruction returns the recreated value to the FPU
register where it originally resided.

Operation
ST(0) ~ ST(0) 025

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-164

Intel® INSTRUCTION SET REFERENCE

FSIN—Sine

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.
Description

Calculates the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the +afigm +23 The
following table shows the results obtained when taking the sine of various classes of numbers,
assuming that underflow does not occur.

SRC (ST(0)) DEST (ST(0))

% *

-F -1to+1
-0 -0

+0 +0

+F -1to+1
+oo *
NaN NaN

Notes:

F Means finite-real number
* Indicates floating-point invalid-
arithmetic-operand (#1A) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the ra@éfdo +22 can be reduced to the range of the
instruction by subtracting an appropriate integer multiplemodr2by using the FPREM instruc-

tion with a divisor of 2. See “Pi” on page 11-36 for a discussion of the proper value to use for
mtin perforning such reductions.

Operation

IF ST(0) < 2%

THEN
C2 - 0;
ST(0) « sin(ST(0));

ELSE (* source operand out of range *)
C2 ~ 1;

FI:

11-165

INSTRUCTION SET REFERENCE Intel®

FSIN—Sine (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the rar§éto +23 otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN valag,or unsupported format.
#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-166

INSTRUCTION SET REFERENCE

intel.

FSINCOS—Sine and Cosine

Opcode Instruction Description
D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with
the sine, and push the cosine onto the register stack.
Description

Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster
than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the+2fige +23. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

SRC DEST

ST(0)) ST(0) Cosine ST(1) Sine
—00 * *
-F -1to+1 -1to +1
-0 +1 -0
+0 +1 +0
+F -1to+1 -1to +1
+00 * *
NaN NaN NaN

Notes

F Means finite-real number

* Indicates floating-point invalid-arithmetic-operand
(#1A) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the ra@éfdo +22 can be reduced to the range of the
instruction by subtracting an appropriate integer multiplemodr2by using the FPREM instruc-

tion with a divisor of 2. See “Pi” on page 11-36 for a discussion of the proper value to use for
mtin perforning such reductions.

Operation

IF ST(0) < 2%

THEN
C2 - 0;
TEMP ~ cosine(ST(0));
ST(0) — sine(ST(0));

11-167

INSTRUCTION SET REFERENCE Intel®

FSINCOS—Sine and Cosine (continued)

TOP ~ TOP -1,
ST(0) — TEMP;

ELSE (* source operand out of range *)
C2 ~ 1;

FI:

FPU Flags Affected

C1 Set to O if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the rar§éto +23 otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN valaeg,or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-168

Intel® INSTRUCTION SET REFERENCE

FSQRT—Square Root

Opcode Instruction Description
D9 FA FSQRT Calculates square root of ST(0) and stores the result in
ST(0)
Description

Calculates the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

SRC (ST(0)) DEST (ST(0))
% *
-F *
-0 -0
+0 +0
+F +F
+o00 +o00
NaN NaN
Notes

F Means finite-real number
* Indicates floating-point invalid-arithmetic-
operand (#1A) exception.

Operation

ST(0) « SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated:
0 = not pundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except®pr

11-169

INSTRUCTION SET REFERENCE Intel®

FSQRT—Square Root (continued)

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-170

Intel® INSTRUCTION SET REFERENCE

FST/FSTP—Store Real

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST mé64real Copy ST(0) to m64real

DD DO+i FST ST(j) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP mé64real Copy ST(0) to mé64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(j) Copy ST(0) to ST(i) and pop register stack
Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU registers stack. When storing the value in
memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also stores valuesig me

in extended-real format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single- or double-real, the significand of the value being stored is
rounded to the width of the destination (accordingptinding modespecified by the RC field

of the FPU control word), and the exponent is converted to the width and bias of the destination
format. If the value being stored is too lafge the destination format, a numeric overflow
exception (#0) is generated and, if the exception is unmasked, no value is stored in the destina-
tion operand. If the value being stored is a denormal value, the denormal ex¢gplignot
generated. This condition is simply signaled as a humeric underflow exceptiooofdifion.

If the value being stored is 0ot or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a Ogo, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

Operation

DEST ST(0);
IF instruction = FSTP
THEN
PopRegisterStack;
FI;

11-171

INSTRUCTION SET REFERENCE Intel®

FST/FSTP—Store Real (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if tHating-point inexact exceptidiP)
is generated: 0 = not roundup; 1 =mdup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#U Result is too small for the destination format.

#0 Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

11-172

Intel® INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-173

INSTRUCTION SET REFERENCE Intel®

FSTCW/ENSTCW—Store Control Word

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for
pending unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for
pending unmasked floating-point exceptions.

Description

Stores the current value of the FPU control word at the specified destinatiomiorynd he
FSTCW instruction checks for and handles pending unmasked floating-poépttiers before
storing the controlvord; theFNSTCW instruction does not.

Operation

DEST ~ FPUControlWord;

FPU Flags Affected
The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-174

Intel® INSTRUCTION SET REFERENCE

FSTCW/FNSTCW—Store Control Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-175

INSTRUCTION SET REFERENCE Intel®

FSTENV/EFNSTENV—Store FPU Environment

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

Description

Saves the current FPU operating environment at the memory location specified with the desti-
nation operand, and then masks all floating-point exceptions. The FPU operating environment
consists of the FPU contralord, status wial, tag word, instruction pointer, data pointer, and

last opcode. Figures 7-13 through 7-14 shbevlayout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the size of the current
address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENYV instruction does not.The saved image
reflects the state of the FPU after all flogtipoint instructions preceding the
FSTENV/FENSTENYV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the procedure stack.
Masking all exceptions after saving the environment prevents floating-point exceptions from
interrupting the exception handler.

Operation

DEST(FPUControlWord) — FPUControlWord,;
DEST(FPUStatusWord) — FPUStatusWord;
DEST(FPUTagWord) — FPUTagWord;

DEST(FPUDataPointer) — FPUDataPointer;
DEST(FPUlnstructionPointer) — FPUInstructionPointer;
DEST(FPULastInstructionOpcode) — FPULastInstructionOpcode;
FPU Flags Affected

The CO, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

11-176

Intel® INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment (continued)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-177

INSTRUCTION SET REFERENCE Intel®

FSTSW/FNSTSW—Store Status Word

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for
pending unmasked floating-point exceptions.

9B DF EO FSTSW AX Store FPU status word in AX register after checking for
pending unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for
pending unmasked floating-point exceptions.

DF EO FNSTSW AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

Description

Stores the current value of the FPU status word in the destination location. The destination
operand can be eitherwd-byte memory loc&n or the AX register. The FSTSW instruction
checks for and handles pending unmasked floating-point exceptions before storing the status
word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used pairty in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. (See
“Branching and Conditional Moves on FPU Condition Codes” on page 11-13.) This instruction
can also be used to invokaception handlers (by examining the exception flags) in environ-
ments that do not use interrupts. When the FNSTSW AX instruction is executed, the AX register
is updated before the processor executes any further instructions. The status stored in the AX
register is thus guaranteed to be from the completion of the prior FPU instruction.

Operation

DEST FPUStatusWord;

FPU Flags Affected
The CO, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

11-178

Intel® INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-179

INSTRUCTION SET REFERENCE Intel®

FSUB/FSUBP/FISUB—Subtract

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store resultin ST(0)

DC /4 FSUB mé64real Subtract mé64real from ST(0) and store resultin ST(0)

D8 EO+i FSUB ST(0), ST(J) Subtract ST(j) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(j), ST(0) Subtract ST(0) from ST(i) and store result in ST(J)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(J), store result in ST(i), and pop
register stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Description

Subtracts the source operand from the destination operand and stores the difference in the desti-
nation location. The destination operand is always an FPU data register; the source operand can
be a register or a memory location. Source operands in memory can be in single-real, double-
real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of ther&Jiébgr from the

ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
a memory location (either a real or an integer value) from the contents of the ST(0) register and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(0) register
from the ST{) register or vice versa.

The FSUBP instructions perform the additional operatiopagping theFPU register stack
following the subtraction. To pop thegister stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.ridieperandversion of the floating-
point subtract instructions always results in the register stack pepued. Irsome assemblers,
the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occers, the SRC value is
subtracted from the DEST value (DESTSRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward—co mode, in which case the resulti8. This instruction also guarantees that—+g0)
= +0, and that0 - (+0) =-0. When the source operand is an integer 0, it is treated as a +0.

When one operand #s, the result ise of the expected sign. If both operandsaref the same
sign, an invalid-operation exception is generated.

11-180

Intel® INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (continued)

SRC
—00 -For -l -0 +0 +F or +l +00 NaN
—00 * —00 —00 —00 —00 —00 NaN
-F +00 +F or 0 DEST DEST -F —00 NaN
DEST -0 +00 -SRC +0 -0 -SRC —00 NaN
+0 +00 -SRC +0 +0 -SRC —00 NaN
+F +00 +F DEST DEST +F or 0 —00 NaN
+00 +00 +00 +00 +00 +00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#1A) exception.

Operation

IF instruction is FISUB
THEN
DEST ~ DEST - ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST — DEST - SRC;

FI;
IF instruction = FSUBP
THEN
PopRegisterStack
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result excep(igp) fault is
generated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.

#D Source operand is a denormal value.

11-181

INSTRUCTION SET REFERENCE Intel®

FSUB/FSUBP/FISUB—Subtract (continued)

#U Result is too small for destination format.
#0 Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-182

Intel® INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Opcode Instruction Description

D8 /5 FSUBR m32Zreal Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR mé64real Subtract ST(0) from mé64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC EO+i FSUBR ST(i), ST(0) Subtract ST(j) from ST(0) and store result in ST(j)

DE EO+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(/), and pop
register stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

Description

Subtracts the destination operand from the source operand and stores the difference in the desti-
nation location. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory cansirgle-real, double-real,
word-integer, or shoiinteger formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of a memory location (either a real or an integer value) and
stores the result in ST(0). Thed-operandsersion, subtracts the contents of theipidgister

from the ST(0O) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point reverse subtract instructions always results in the register stack being popped. In some
assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SROEST = result).

When the difference between two operands of like sign is 0, the result is +0, exceptdanthe
toward-» mode, in which case the result#8. This instruction also guarantees that—+3-0)
= +0, and that0 - (+0) =-0. When the source operand is an integer 0, it is treated as a +0.

When one operand ts, the result iso of the expected sign. If both operandsaref the same
sign, an invalid-operation exception is generated.

11-183

INSTRUCTION SET REFERENCE Intel®

FSUBR/FSUBRP/FISUBR—Reverse Subtract (continued)

SRC
—o0 -F -0 +0 +F +o0 NaN
—00 * +o00 +o00 +o00 +o00 +o00 NaN
DEST -For-l —00 +F or 0 -DEST -DEST +F +00 NaN
-0 —00 SRC +0 +0 SRC +co NaN
+0 —00 SRC -0 +0 SRC +c0 NaN
+F or +l —00 -F -DEST -DEST +F or 0 +00 NaN
+00 —00 —00 —co —co —00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number

I Means integer

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation

IF instruction is FISUBR
THEN
DEST ~ ConvertExtendedReal(SRC) - DEST;
ELSE (* source operand is real number *)
DEST ~ SRC - DEST;

FI;
IF instruction = FSUBRP
THEN
PopRegisterStack
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexaetsult exception (#P) fault is
generated: 0 = not roundup; 1 =uraup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.

#D Source operand is a denormal value.

11-184

Intel® INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (continued)

#U Result is too small for destination format.
#0 Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If acliignment checking is enabled and an unaligned memory reference is
made.

11-185

INSTRUCTION SET REFERENCE Intel®

FTST—TEST

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.
Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags CO, C2, and
C3in the FPU status word according to the results (see table below).

Condition C3 Cc2 (60]
ST(0) > 0.0 0 0 0
ST(0) < 0.0) 0 0 1
ST(0) = 0.0 1 0 0
Unordered 1 1 1

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” on patf@?]. If the value

in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unor-
dered.”)

The sign of zero is ignored, so that —0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO ~ 111;

ST(0) > 0.0: C3, C2, CO ~ 000;

ST(0) < 0.0: C3,C2,C0O ~ 001;

ST(0) =0.0: C3,C2, CO ~ 100;
ESAC;

FPU Flags Affected
C1 Set to O if stack underflow occurred; otherwise, cleared to O.
C0,C2,C3 See above table.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.
#D One or both operands are denormal values.

11-186

intel.
FTST—TEST (continued)

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CRO is set.

INSTRUCTION SET REFERENCE

11-187

INSTRUCTION SET REFERENCE Intel®

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Opcode Instruction Description

DD EO+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice
Description

Performs an unordered comparison of the contents of register ST(0) and ST (i) and sets condition
code flags CO, C2, and C3 in the FPU status word according to the results (see the table below).

If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of
zero is ignored, so that —0.0 = +0.0.

Comparison Results C3 Cc2 (0]
STO > ST(i) 0 0 0
STO < ST(i) 0 0 1
STO = ST(i) 1 0 0
Unordered 1 1 1
Note

* Flags not set if unmasked invalid-arithmetic-operand (#1A)
exception is generated.

An unordeed comparison checks the class of thembers being compared (see
“FXAM—Examine” on page 1-192). The FUCOM instructiorgerform the same operation as

the FCOM instructions. The only difference is that the FUCOM instruction raises the invalid-
arithmetic-operand exception (#1A) only when either or both operands is an SNaN or is in an
unsupported format; QNaNswase the condition code flags to be set to unordered, but do not
cause an exception to be generated. The FCOM instruction raises an invalid-operation exception
when either or both of the operands is a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand excep-
tion being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and the
FUCOMPRP instructions pops the register stack twice following the comparison operation. To

pop the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

11-188

Intel® INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(continued)

Operation
CASE (relation of operands) OF
ST > SRC: C3, C2, CO ~ 000;
ST < SRC: C3, C2,CO -~ 001;
ST = SRC: C3, C2, CO ~ 100;
ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN

C3,C2,C0 ~ 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

#lA,
IF FPUControlWord.IM = 1
THEN
C3,C2,C0 ~ 111,
Fl;
Fl;
IF instruction = FUCOMP
THEN
PopRegisterStack;
FI;
IF instruction = FUCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Co0,C2,C3 See table on previous page.

Floating-Point Exceptions

#1S Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats.
Detection of a QNaN value in and of itself does not raise an invalid-

operand exception.

#D One or both operands are denormal values.

11-189

INSTRUCTION SET REFERENCE Intel®

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(continued)

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-190

Intel® INSTRUCTION SET REFERENCE

FWAIT—Wait
See entry for WAIT.

11-191

INSTRUCTION SET REFERENCE

FXAM—Examine

Opcode Instruction Description
D9 E5 FXAM

Classify value or number in ST(0)

Description

Examines the contents of the ST(0) register and sets the condition code flags CO, C2, and C3 in
the FPU status word to indicate the class of value or number ingiséere(see the table below).

Class C3

Cc2

Co

Unsupported

NaN

Normal finite number

Infinity

Zero

Empty

P|lRPr|P|O|l|O|]O|O

Denormal number

R|O|O|R, |, |]O|O

O|Rr|O|Rr|O|FRL,|O

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty

or full.

Operation

C1 - sign bit of ST; (* O for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, CO — 000;

NaN: C3, C2,C0 ~ 001;

Normal: C3,C2, CO ~ 010;

Infinity: C3,C2,C0O ~ 011;

Zero: C3, C2,CO ~ 100;

Empty: C3,C2,C0O ~ 101;

Denormal: C3,C2, CO ~ 110;
ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).
Cco,C2,C3 See table above.

Floating-Point Exceptions

None.

11-192

intel.
FXAM—Examine (continued)

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CRO is set.

INSTRUCTION SET REFERENCE

11-193

INSTRUCTION SET REFERENCE Intel®

FXCH—Exchange Register Contents

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(/)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)
Description

Exchanges the contents of registers ST(0) and)SIf(no source operand is specified, the
contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:

FXCH ST(3);

FSQRT;

FXCH ST(3);

Operation

IF number-of-operands is 1
THEN
temp ~ ST(0);
ST(0) — SRC;
SRC - temp;
ELSE
temp ~ ST(0);
ST(0) « ST(1);
ST(1) ~ temp;

FPU Flags Affected
C1 Set to O if stack underflow occurred; otherwise, cleared to O.
C0,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

11-194

intel.
FXCH—Exchange Register Contents

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

INSTRUCTION SET REFERENCE

(continued)

11-195

INSTRUCTION SET REFERENCE Intel®

FXTRACT—Extract Exponent and Significand

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand,
store exponent in ST(0), and push the significand onto the
register stack.

Description

Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation,
the new top-of-stack register ST(0) contains the value of the original significand expressed as a
real number. The sign and significand of this valuetiagesame as thodeund in the source
operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1)
register contains the value of the original igel’s true (unbiased) exponent expressed as a real
number. (The operation performed by thistruction is a superset of the IEEE-recomihed

logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for convemimmbers in extended-real
format to decimal representations (e.qg., for printing or dysptg.

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value ofee is stored in register ST(1) and O with the sign of the source operand is
stored in register ST(0).

Operation

TEMP Significand(ST(0));

ST(0) — Exponent(ST(0));

TOP -~ TOP -1;

ST(0) — TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
Stack overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#7 ST(0) operand i%0.

11-196

Intel® INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand (continued)

#D Source operand is a denormal value.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-197

INSTRUCTION SET REFERENCE Intel®

FYL2X—Compute y x log ,X

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) Ulog,ST(0)) and pop the
register stack

Description

Calculates (ST(1)log, (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

ST(0)
—o0 -F +0 +0 +F +oo NaN
—00 * * +00 +00 +00 —00 NaN
ST(1) -F * * ** ** +F —o0 NaN
-0 * * * * +0 * NaN
+0 * * * * +0 * NaN
+F * * ** ** +F +oo NaN
+00 * * —00 —00 —00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes

F Means finite-real number

* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) cor@jrike instruction returns
oo with a sign that is the opposite of the sign of the source operand in r&Jigigr

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):

logpx = (log,b)~* Olog,x

Operation

ST(1) — ST(1) Ulog,ST(0);
PopRegisterStack;

11-198

Intel® INSTRUCTION SET REFERENCE

FYL2X—Compute y X log,x (continued)

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value-(ot

#7 Source operand in register ST(0x&

#D Source operand is a denormal value.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-199

INSTRUCTION SET REFERENCE Intel®

FYL2XP1—Compute y [log,(x +1)

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) Olog,(ST(0) + 1.0) and pop the
register stack

Description

Calculates the log epsilon T8L) Olog,(ST(0) + 1.0)), stores the result in register ST(1), and
pops the FPU register stack. The source operand in ST(0) must be in the range:

—(1-J2/2) Yto(1-J2/ 2

The source operand in ST(1) can range fremio +co. If either of the source operands is outside
its acceptable range, the result is undefined and no exception is generated.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

ST(0)
-0 | -(1-(J2/2)t0o-0 | -0 +0 | +0to+(1 - (42/2)) | +w NaN
—oo * +oo * * o o NaN
ST() | -F * +F +0 | -0 -F —e NaN
-0 * +0 +0 | -0 -0 * NaN
+0 * -0 -0 | +0 +0 * NaN
+F * -F -0 | +0 +F +0 | NaN
+00 * —00 * * +00 +00 NaN
NaN NaN NaN NaN | NaN NaN NaN NaN

Notes:
F Means finite-real number
* Indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. When the epsilon valggi¢ small, more significant digits can be retained by
using the FYL2XP1 instruction than by usiregt1) as an argument to the FYL2X instruction.

The g+1) expression is commonfpund in compound interest and annuityccgétions. The

result can be simply converted into a value in another logarithm base by including a scale factor
in the ST(1) source operand. Tldlowing equation is used to calculate the scale factor for a
particular logarithm base, where n is the logarithm base desired for the result ¥t 2¥F
instruction:

scale factor = log2

11-200

Intel® INSTRUCTION SET REFERENCE

FYL2XP1—Compute y [log ,(x +1) (continued)

Operation

ST(1) « ST(1) Olog,(ST(0) + 1.0);

PopRegisterStack;

FPU Flags Affected

C1 Set to O if stack underflow occurred.

Indicates rounding direction if the inexact-resulteption (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#0O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

11-201

INSTRUCTION SET REFERENCE Intel®

HLT—Halt
Opcode Instruction Description
F4 HLT Halt
Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt,
NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual 8086 mode, the privilege level of a program or procedure must to 0 to execute the HLT
instruction.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) If the current privilege level is not 0.

11-202

Intel® INSTRUCTION SET REFERENCE

IDIV—Signed Divide

Opcode Instruction Description

F6 /7 IDIV /m8 Signed divide AX (where AH must contain sign-
extension of AL) by r/m byte. (Results: AL=Quotient,
AH=Remainder)

F7 17 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-
extension of AX) by r/m word. (Results: AX=Quotient,
DX=Remainder)

F7 17 IDIV /m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and stores the
result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a general-purpose
register or a memory location. The action of this instruction depends on the operand size, as
shown in the following table:

Quotient
Operand Size Dividend Divisor Quotient Remainder Range
Word/byte AX r/m8 AL AH -128 to +127
Doubleword/word DX:AX r/m16 AX DX -32,768 to
+32,767
Quadword/doubleword EDX:EAX r/m32 EAX EDX -2%to
2%2-1

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is always the
same as the sign of the dividend. The absolute value of the remainder is always less than the
absolute value of the divisor. Overflow is indicated with the #DE (divide error) exception rather
than with the OF flag.

Operation
IFSRC =0
THEN #DE; (* divide error *)
FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp — AX/ SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)
THEN #DE; (* divide error *) ;
ELSE
AL — temp;
AH ~ AX SignedModulus SRC;

11-203

INSTRUCTION SET REFERENCE Intel®

IDIV—Signed Divide (continued)

FI;
ELSE
IF OpernadSize = 16 (* doubleword/word operation *)
THEN
temp — DX:AX/ SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)
THEN #DE; (* divide error *) ;
ELSE
AX ~ temp;
DX ~ DX:AX SignedModulus SRC;
FI;
ELSE (* quadword/doubleword operation *)
temp « EDX:EAX/ SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)
THEN #DE; (* divide error *) ;
ELSE
EAX < temp;
EDX ~ EDXE:AX SignedModulus SRC;
Fl;
Fl;
FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-204

Intel® INSTRUCTION SET REFERENCE

IDIV—Signed Divide (continued)

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed resulfguotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed resulfguotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-205

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Opcode Instruction Description

F6 /5 IMUL /m8 AX < AL Or/m byte

F7 /5 IMUL r/m16 DX:AX ~ AX Or/m word

F715 IMUL /m32 EDX:EAX —~ EAX Or/m doubleword

OF AF /r IMUL r16,r/m16 word register — word register 0Jr/m word

OF AF /r IMUL r32,r/m32 doubleword register — doubleword register [1r/m
doubleword

6B /rib IMUL r16,r/m16,imm8 word register — r/m16 Osign-extended immediate byte

6B /rib IMUL r32,r/m32,imm8 doubleword register — r/m32 Osign-extended immediate
byte

6B /rib IMUL r16,imm8 word register — word register Jsign-extended immediate
byte

6B /rib IMUL r32,imm8 doubleword register — doubleword register [Isign-
extended immediate byte

69 /riw IMUL r16,r/ word register — r/m16 Oimmediate word

m16,imml6
69 /rid IMUL r32,r/ doubleword register — r/m32 Oimmediate doubleword
m32,imm32
69 /riw IMUL r16,imm16 word register — r/m16 Oimmediate word
69 /rid IMUL r32,imm32 doubleword register —~ r/m32 Oimmediate doubleword
Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a genemlrposeregister or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in thendgigin operand location.

Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). Theoduct is thentsred in the destination operand (a
general-purpose gister).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

11-206

Intel® INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (continued)

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product isestacéd in

the destination. With thenvb- and three- operand forms, however, result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operandgasslor unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)
THEN
AX —~ AL OSRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;
FI;
ELSE IF OperandSize = 16
THEN
DX:AX « AX OSRC (* signed multiplication *)
IF (DX = 0000H) OR (DX = FFFFH))
THEN CF = 0; OF = 0;
ELSECF=1;0F =1,
Fl;
ELSE (* OperandSize = 32 *)
EDX:EAX —~ EAX [OSRC (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))
THEN CF = 0; OF = 0;
ELSECF=1;0F =1,

FI;
FI;
ELSE IF (NumberOfOperands = 2)
THEN

temp — DEST OSRC (* signed multiplication; temp is double DEST size*)
DEST ~ DEST OSRC (* signed multiplication *)
IF temp # DEST
THEN CF =1; OF = 1;
ELSE CF = 0; OF =0;
FI;

ELSE (* NumberOfOperands = 3 *)
DEST « SRC1 OSRC2 (* signed multiplication *)

11-207

INSTRUCTION SET REFERENCE Intel®

IMUL—Signed Multiply (continued)

temp — SRC1OSRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp # DEST
THEN CF =1, OF = 1;
ELSE CF=0; OF = 0;
FI;
FI;
FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If acljignment checking is enabled and an unaligned memory reference is
made.

11-208

Intel® INSTRUCTION SET REFERENCE

IN—Input from Port

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 1/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 1/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 1/O port address into EAX

EC IN AL,DX Input byte from 1/O port in DX into AL

ED IN AX,DX Input word from 1/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX
Description

Copies the value from the 1/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can be register AL, AX, or EAX, depending on the size of the
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand
allows 1/O port addresses from 0 to 65,535 to be aedessing a byte immediate allows /O

port addresses 0 to 255 to be accessed.

When accessing an 8-bit /0 port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/0 ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing 1/0O ports located in the processor’s /O address
space. See Chapter Bput/Output for more information on accessing 1/0 portstlie /O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > |OPL *)
IF (Any 1/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);
FI;
ELSE (* Real-address mode or protected mode with CPL < IOPL *)
(* or virtual-8086 mode with all 1/0 permission bits for I/O port cleared *)
DEST ~ SRC; (* Reads from I/O port *)
FI;

Flags Affected

None.

11-209

INSTRUCTION SET REFERENCE Intel®

IN—Input from Port (continued)

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

11-210

Intel® INSTRUCTION SET REFERENCE

INC—Increment by 1

Opcode Instruction Description

FE /O INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

Adds 1 to the operand, while preserving the state of the CF flagsdiliee operand can be a
register or a memory location. This instruction allows a loop counter to be updated without
disturbing the CF flag. (Use a ADD instruction with an immediate operand of 1 to perform a
increment operation that does updates the CF flag.)

Operation

DEST ~ DEST -1,

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-211

INSTRUCTION SET REFERENCE Intel®

INC—Increment by 1 (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-212

Intel® INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI

6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI
Description

Copies the data from the /O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand must be the DX register, allowing /O
port addresses from 0 to 65,535 to be accessed. When accessing an §dit, lfe opcode
determines the port size; when accessing a 16- and 32-bit I/0O port, the operand-size attribute
determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the operand-size
attribute is 16, the DI register is used as the destination-index register.) The ES segment cannot
be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics agnonyms of the byteword, and doubleword
versions of the INS instructions. (For the INS instruction, “ES:EDI” must be explicitly specified
in the instruction.)

After the byte, word, or doubleord is transfer from the I/O port to the memory location, the
EDI register is incremented or decremented automatically according to the setting of the DF flag
in the EFLAGS register. (If the DF flag is 0, the EDI register is incremented; if the DF flag is 1,
the EDI register is decremented.) The EDI register is incremented or decremented byté
operations, by 2 for word operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD itrsictions can be preceded by the REP prefix for block input
of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat
Following String Operation” on page 11-333 for a description of the REP prefix.

This instruction is only useful for accessing 1/0O ports located in the processor’s /O address
space. See Chapter Bput/Output for more information on accessing 1/0O portstlie /O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > |OPL *)
IF (Any 1/0O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);
FI;
ELSE (* I/O operation is allowed *)
DEST ~ SRC; (* Reads from I/O port *)

11-213

INSTRUCTION SET REFERENCE Intel®

INS/INSB/INSW/INSD—Input from Port to String (continued)

IF (byte transfer)
THEN IFDF =0
THEN (E)DI < 1;
ELSE (E)DI « —1;
FI;
ELSE IF (word transfer)
THEN IFDF =0
THEN DI ~ 2;
ELSE DI ~ -2;
FI;
ELSE (* doubleword transfer *)
THEN IFDF =0
THEN EDI ~ 4;
ELSE EDI ~ —4;
Fl;
Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments is

given.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-214

Intel® INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (continued)

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the 1/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-215

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure

Opcode Instruction Description

CC INT3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector numbered by immediate byte

CE INTO Interrupt 4—if overflow flag is 1
Description

The INTh instruction generates a call to the interrupt or exception handler specified with the
destination operand (see “Interrupts and Exceptions” on page 11-9). The destination operand
specifies an interrupt vector from 0 to 255, encoded as an 8-bit unsigned intermediate value. The
first 32 interrupt vectors are reserved by Intel for system use. Some of these interrupts are used
for internally generated exceptions.

The INTnh instruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the EFLAGS register and
calls the overflow interrupt handler if the OF flag is set to 1.

The INT3 instruction is a special mnemonic for calling the debug exception handler. The action
of the INT3 instruction (opcode CC) is slightly different from the operation of the INT 3 instruc-
tion (opcode CCO03), as follows:

® Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

® The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at
any IOPL level.

The action of the INT instruction (including the INTO and INT3 instructions) is similar to that

of a far call made with the CALL instruction. The primary difference is that with then INT
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, whigls the EFLAGS
information and return address from the stack.

The interupt vedor specifies an interrupt descriptor in the interrupt descriptor table (IDT); that

is, it provides index into the IDT.he selected interrupt descriptor in turn contains a pointer to

an interrupt or exception handler procedure. In protected mode, the IDT contains an array of 8-
byte descriptors, each of which points to an interrupt gate, trap gate, or task gate. In real-address
mode, the IDT is an array of 4-byte far point€sbyte code segment selector and a 2-byte
instruction pointer), each of which point directly to procedure in the selected segment.

11-216

Intel® INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction &&®gpt

PE 0 1 1 1 1 1 1 1

VM - - - - - 0 1 1

IOPL - |- - - - - <3 =3

DPL/CPL - DPL< |- DPL> DPL= DPL< - -
RELATIONSHIP CPL CPL CPLorC | CPL &
NC

INTERRUPT TYPE - S/W - - - - - -

GATE TYPE - - Task | Trap or Trap or Trap or Trap or Trap or
Interrupt | Interrupt | Interrupt | Interrupt | Interrupt

REAL-ADDRESS- Y
MODE

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

INTER-PRIVILEGE- Y
LEVEL-INTERRUPT

INTRA-PRIVILEGE- Y
LEVEL-INTERRUPT

INTERRUPT-FROM- Y
VIRTUAL-8086-
MODE

TASK-GATE Y
#GP Y Y Y

Notes

- Don't Care

Y Yes, Action Taken
Blank Action Not Taken

When the processor is executing in virtual-8086 mode, the |IORirndietes the action of the

INTn instruction. If the IOPL is less than 3, the processor generates a general protection excep-
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level
0. The interrupt gate's DPL must be set to three and the target CPL of the interrupt handler proce-
dure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0.

11-217

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

Operation

The following operational description applies not only to therfid INTO instructions, but
also to external interrupts and exceptions.

IF PE=0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1%)
IF (VM=1 AND IOPL < 3 AND INTn)
THEN
#GP(0);
ELSE (* protected mode or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
Fl;
Fl;

REAL-ADDRESS-MODE:

IF (DEST 0O4) + 3) is not within IDT limit THEN #GP; FI;

IF stack not large enough for a 6-byte return information THEN #SS; FI;

Push (EFLAGS[15:0]);

IF < O; (* Clear interrupt flag *)

TF —~ O; (* Clear trap flag *)

AC < 0; (*Clear AC flag*)

Push(CS);

Push(IP);

(* No error codes are pushed *)

CS — IDT(Descriptor (vector [04), selector));

EIP — IDT(Descriptor (vector (04), offset)); (* 16 bit offset AND 0000FFFFH *)
END;

PROTECTED-MODE:
IF ((DEST 0O8) + 7) is not within IDT limits
OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST [O8) + 2 + EXT);
(* EXT is bit O in error code *)

Fl;
IF software interrupt (* generated by INTn, INT3, or INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector number (08) + 2);
(* PE=1, DPL<CPL, software interrupt *)
Fl;
Fl;

IF gate not present THEN #NP((vector number 08) + 2 + EXT); Fl;
IF task gate (* specified in the selected interrupt table descriptor *)

11-218

Intel® INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)
Fl;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
FI;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of two bytes
THEN #SS(0);
Fl;
Push(error code);
Fl;
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;
TRAP-OR-INTERRUPT-GATE
Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null
THEN #GP(OH + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits
THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);
FI;
IF trap or interrupt gate segment is not present,
THEN #NP(selector + EXT);
Fl;

11-219

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

IF code segment is non-conforming AND DPL < CPL
THEN IF VM=0
THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)
ELSE (* VM=1 %)
IF code segment DPL # 0 THEN #GP(new code segment selector); Fl;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *)
Fl;
ELSE (* PE=1, interrupt or trap gate, DPL = CPL *)
IF VM=1 THEN #GP(new code segment selector); Fl;
IF code segment is conforming OR code segment DPL = CPL
THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)
Fl;
Fl;
END;

INTER-PREVILEGE-LEVEL-INTERRUPT

(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — new code segment (DPL [18) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS ~ TSSstackAddress + 4;
NewESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress — new code segment (DPL [14) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
NewESP ~ TSSstackAddress;
NewSS ~ TSSstackAddress + 2;
FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL # DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;

11-220

Intel® INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

Read segment descriptor for stack segment in GDT or LDT,;
IF stack segment DPL # DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate
THEN
IF new stack does not have room for 24 bytes (error code pushed)
OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);
FI;
ELSE (* 16-bit gate *)
IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
Fl;

IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ~ TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate
THEN
CS:EIP — Gate(CS:EIP); (* segment descriptor information also loaded *)
ELSE (* 16-bit gate *)
CS:IP — Gate(CS:IP); (* segment descriptor information also loaded *)
Fl;
IF 32-bit gate
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)
ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)
FI;
CPL ~ CodeSegmentDescriptor(DPL);
CS(RPL) —~ CPL;
IF interrupt gate
THEN IF < O (* interrupt flag to O (disabled) *); FI;
TF < O;
VM < 0;
RF ~ 0;
NT ~ O;

11-221

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — new code segment (DPL 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); FI;
NewSS ~ TSSstackAddress + 4;
NewESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress — new code segment (DPL 04) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); FI;
NewESP ~ TSSstackAddress;
NewSS ~ TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL # DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL # DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

Fl;
IF stack segment not present THEN #SS(SS selector+EXT); Fl;
IF 32-bit gate
THEN
IF new stack does not have room for 40 bytes (error code pushed)
OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
ELSE (* 16-bit gate *)
IF new stack does not have room for 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
FI;

IF instruction pointer is not within code segment limits THEN #GP(0); FI;
tempEFLAGS —~ EFLAGS;

VM < 0;

TF < 0;

RF « 0;

IF service through interrupt gate THEN IF — O; FI;

11-222

Intel® INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

TempSS -~ SS;
TempESP — ESP;
SS:ESP ~ TSS(SS0:ESPO0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ~ 0; (*segment registers nullified, invalid in protected mode *)
FS ~ 0;
DS - 0;
ES - 0;
CS —~ Gate(CS);
IF OperandSize=32

THEN

EIP — Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP — Gate(instruction pointer) AND 0000FFFFH;
Fl;
(* Starts execution of new routine in Protected Mode *)
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate
THEN
IF current stack does not have room for 16 bytes (error code pushed)
OR 12 bytes (no error code pushed); THEN #SS(0);
FI;
ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)
OR 6 bytes (no error code pushed); THEN #SS(0);
FI;
IF instruction pointer not within code segment limit THEN #GP(0); FlI;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP « Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

11-223

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure (continued)
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ~ Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
FI;
CS(RPL) — CPL;
IF interrupt gate
THEN
IF « O; FI;
TF < 0;
NT ~ O;
VM ~ 0O;
RF — 0;
Fl;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction is
executed (see “Operation” section.)

Protected Mode Exceptions

#GP(0) Ifthe instruction pointer in the IDT or in the émtupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INThstruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushinghe return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

11-224

Intel® INSTRUCTION SET REFERENCE

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment
selector in the TSS is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the interrupt vector is outside the IDT limits.
#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment when a stack switch occurs.

Virtual 8086 Mode Exceptions

#GP(0) (For INh instruction) If the IOPL is less than 3 and the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, tap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

11-225

INSTRUCTION SET REFERENCE Intel®

INTn/INTO/INT3—Call to Interrupt Procedure (continued)

#SS(selector)

#NP(selector)
#TS(selector)

#PF(fault-code)
#BP
#OF

11-226

If the interrupt vector is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INThstruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.

If code segment, interrupt-, trap-, or task gate, or TSS is not present.

If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

If a page fault occurs.
If the INT3 instruction is executed.
If the INTO instruction is executed and the OF flag is set.

Intel® INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches

Opcode Instruction Description
OF 08 INVD Flush internal caches; initiate flushing of external caches.
Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back
to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is sp@msibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also implementation-dependent; its function may be implemented differently on future Intel
Architecture processors.

Use this instruction with care. Data cached internally and not written back to main memory will

be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), softwarieould use the WBINVD inteuction.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

11-227

INSTRUCTION SET REFERENCE Intel®

INVD—Invalidate Internal Caches (continued)
Intel Architecture Compatibility

This instruction is nosupported on Intel Architecture processors earlier than the Intel486
processor.

11-228

Intel® INSTRUCTION SET REFERENCE

INVLPG—Invalidate TLB Entry

Opcode Instruction Description
OF 01/7 INVLPG m Invalidate TLB Entry for page that contains m
Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand is a memory address. The processor determines the page that
contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also implementation-dependent; its function may be implemented differently on future Intel
Architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” on page
11-285 for further information on operations that flush the TLB.

Operation

Flush(RelevantTLBEntries);

Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the vigid@6 mode.

Intel Architecture Compatibility

This instruction is nosupported orintel Architecture processors earlier than the Intel486
processor.

11-229

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)
Description

Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt or, a software-generated interrupt, or
returns from a nested task. IRET and IRETD are mnemonics for the same opcode. The IRETD
mnemonic (interrupt return double) is intendeduse when returning from an interrupt when
using the 32-bit operand size; however, most assemblers use the IRET mnemonic interchange-
ably for both operand sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performewiregfoll
types of interrupt returns:

¢ Return from virtual-8086 mode.

® Return to virtual-8086 mode.

® Intra-privilege level return.

® Inter-privilege level return.

® Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped frahe stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution
of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execu-
tion. If the return is to virtual-8086 modthe processor alspopsthe data segment registers

from the stack.

If the NT flag is set, the IRET instruction performs a return from a nested task (switaimes
the called task back to the calling task) or reverses the operation of an interrupt or exception that
caused a task switch. The updated state of the task executing the IRET instruction is saved in its
TSS. If the task is reentered later, the code that follows the IRET instruction is executed.

11-230

intel.

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

Operation

IFPE=0
THEN
GOTO REAL-ADDRESS-MODE;;
ELSE
GOTO PROTECTED-MODE;

Fl;

REAL-ADDRESS-MODE;
IF OperandSize = 32

Fl;
END;

THEN

IF top 12 bytes of stack not within stack limits THEN #SS; FI;

IF instruction pointer not within code segment limits THEN #GP(0); Fl;

EIP — Pop();

CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)

tempEFLAGS ~ Pop();

EFLAGS — (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits THEN #SS; Fl;

IF instruction pointer not within code segment limits THEN #GP(0); Fl;
EIP — Pop();

EIP — EIP AND 0000FFFFH;

CS « Pop(); (* 16-bit pop *)

EFLAGS[15:0] — Pop();

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)
Fl;
IFNT=1
THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)
Fl;

IF OperandSize=32

THEN

IF top 12 bytes of stack not within stack limits
THEN #SS(0)

FI;

tempEIP ~ Pop();

tempCS « Pop();

tempEFLAGS ~ Pop();

11-231

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (continued)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

Fl;

THEN #SS(0);

tempEIP — Pop();

tempCS — Pop();

tempEFLAGS ~ Pop();

tempEIP ~ tempEIP AND FFFFH;
tempEFLAGS ~ tempEFLAGS AND FFFFH;

Fl;

IF tempEFLAGS(VM) = 1 AND CPL=0

THEN

GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE

GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

Fl;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)
IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;

IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP — Pop();

CS ~ Pop(); (* 32-bit pop, high-order 16-bits discarded *)

EFLAGS « Pop();

(*VYM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)

FI;
ELSE

IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;

IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();

EIP — EIP AND 0000FFFFH;

CS « Pop(); (* 16-bit pop *)

EFLAGS[15:0] « Pop(); (* IOPL in EFLAGS is not modified by pop *)

#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

FI;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)
IF top 24 bytes of stack are not within stack segment limits

11-232

Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

THEN #SS(0);
Fl;
IF instruction pointer not within code segment limits
THEN #GP(0);
FI;
CS ~ tempCS;
EIP — tempEIP;
EFLAGS ~ tempEFLAGS
TempESP — Pop();
TempSS ~ Pop();
ES ~ Pop(); (* pop 2 words; throw away high-order word *)
DS « Pop(); (* pop 2 words; throw away high-order word *)
FS — Pop(); (* pop 2 words; throw away high-order word *)
GS ~ Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP —~ TempSS:TempESP;
(* Resume execution in Virtual 8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=1, NT=1*)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #GP(TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit
THEN #GP(0);
FI;
END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit
THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL THEN #GP(selector); Fl;
IF return code segment descriptor is conforming

11-233

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (continued)

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL,;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL
Fl;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP — tempEIP;
CS — tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) — tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) — tempEFLAGS;

Fl;
IF CPL < 10PL
THEN
EFLAGS(IF) — tempEFLAGS;
Fl;
IFCPL=0
THEN
EFLAGS(IOPL) ~ tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) — tempEFLAGS;
Fl;
Fl;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32
THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); FI;
ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;
Fl;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(SSselector); Fl;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
IF stack segment selector RPL # RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;

11-234

Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (continued)

OR stack segment DPL # RPL of the return code segment selector
THEN #GP(SS selector);

FI;

IF stack segment is not present THEN #NP(SS selector); Fl;
IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP — tempEIP;
CS ~ tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) — tempEFLAGS;
IF OperandSize=32

THEN

EFLAGS(RF, AC, ID) — tempEFLAGS;

Fl,
IF CPO < IOPL
THEN
EFLAGS(IF) — tempEFLAGS;
Fl;
IFCPL=0
THEN
EFLAGS(IOPL) ~ tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) ~ tempEFLAGS;
FI;
FI;

CPL ~ RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)
DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)
SegmentSelector — 0; (* null segment selector *)
FI;
OD;
END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is null.
If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

11-235

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (continued)

#SS(0)
#NP(selector)
#PF(fault-code)
#AC(0)

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of thenre
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.
If the top bytes ofatk are not within stack limits.

If the return code or stack segment is not present.

If a page fault occurs.

If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real Address Mode Exceptions

#GP
#SS

If the return instruction pointer is not within the return code segment limit.

If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0)
#PF(fault-code)

#SS(0)
#AC(0)

11-236

Ifthe return instruction pointer is not within the return code segment limit.
IF IOPL not equal to 3

If a page fault occurs.

If the top bytes ofatk are not within stack limits.

If an unaligned memory reference occurs and alignment checking is
enabled.

intel.

Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE

Opcode

77 cb

73 ch

72 cb

76 cb

72 cb

E3 cb

E3 cb

74 cb

7F cb

7D cb
7Ccb

TE cb

76 cb

72 cb

73 ch

77 cb

73 ch

75 cb

TE cb
7Ccb

7D cb

7F cb

71 chb

7B cb

79 cb

75 cb

70 cb

7A cb

7A cb

7B cb

78 cb

74 cb

OF 87 cw/cd
OF 83 cw/cd
OF 82 cw/cd
OF 86 cw/cd
OF 82 cw/cd
OF 84 cw/cd
OF 84 cw/cd
OF 8F cw/cd

Instruction
JA rel8
JAE rel8
JB rel8
JBE rel8
JC rel8
JCXZ rel8
JECXZ rel8
JE rel8

JG rel8
JGE rel8
JL rel8

JLE rel8
JINA rel8
JINAE rel8
JNB rel8
JNBE rel8
JINC rel8
JINE rel8
JING rel8
JINGE rel8
JNL rel8
JINLE rel8
JNO rel8
JINP rel8
JINS rel8
JINZ rel8
JO rel8

JP rel8
JPE rel8
JPO rel8
JS rel8

JZ rel8

JA rel16/32
JAE rel16/32
JB rel16/32
JBE rel16/32
JC rel16/32
JE rel16/32
JZ rel16/32
JG rel16/32

Description
Jump short if above (CF=0 and ZF=0)
Jump short if above or equal (CF=0)
Jump short if below (CF=1)
Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)
Jump short if CX register is 0
Jump short if ECX register is 0
Jump short if equal (ZF=1)
Jump short if greater (ZF=0 and SF=0OF)
Jump short if greater or equal (SF=0OF)
Jump short if less (SF<>O0F)
Jump short if less or equal (ZF=1 or SF<>OF)
Jump short if not above (CF=1 or ZF=1)
Jump short if not above or equal (CF=1)
Jump short if not below (CF=0)
Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)
Jump short if not equal (ZF=0)
Jump short if not greater (ZF=1 or SF<>0F)
Jump short if not greater or equal (SF<>OF)
Jump short if not less (SF=0OF)
Jump short if not less or equal (ZF=0 and SF=0F)
Jump short if not overflow (OF=0)
Jump short if not parity (PF=0)
Jump short if not sign (SF=0)
Jump short if not zero (ZF=0)
Jump short if overflow (OF=1)
Jump short if parity (PF=1)
Jump short if parity even (PF=1)
Jump short if parity odd (PF=0)
Jump short if sign (SF=1)
Jump short if zero (ZF = 1)
Jump near if above (CF=0 and ZF=0)
Jump near if above or equal (CF=0)
Jump near if below (CF=1)
Jump near if below or equal (CF=1 or ZF=1)
Jump near if carry (CF=1)
Jump near if equal (ZF=1)
Jump near if 0 (ZF=1)
Jump near if greater (ZF=0 and SF=0F)

11-237

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met

(continued)

Opcode Instruction Description
OF 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)
OF 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)
OF 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)
OF 86 cw/cd JINA rel16/32 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JINAE rel16/32 Jump near if not above or equal (CF=1)
OF 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)
OF 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd JINC rel16/32 Jump near if not carry (CF=0)
OF 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)
OF 8E cw/cd JING rel16/32 Jump near if not greater (ZF=1 or SF<>0F)
OF 8C cw/cd JINGE rel16/32 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JINL rel16/32 Jump near if not less (SF=0OF)
OF 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=0F)
OF 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)
OF 8B cw/cd JINP rel16/32 Jump near if not parity (PF=0)
OF 89 cw/cd JINS rel16/32 Jump near if not sign (SF=0)
OF 85 cw/cd JINZ rel16/32 Jump near if not zero (ZF=0)
OF 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)
OF 8A cw/cd JP rel16/32 Jump near if parity (PF=1)
OF 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)
OF 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)
OF 88 cw/cd JS rel16/32 Jump near if sign (SF=1)
OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)
Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified sf@ndition), performs a jump to the targastruc-

tion specified by the destination operand. A condition codeig associated with each instruc-

tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following ¢béndtruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative ofisd8,(rel16, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of —128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to Os, resulting in a maximum instruction pointer size
of 16 bits.

The conditions for eacted mnemonic are given in the “Description” column of the above table.
The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

11-238

Intel® INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (continued)

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The &cinstruction does natupport far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for thecd instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
ilegal:

JZ FARLABEL,;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the otteridstructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. These instructions are useful at the beginning of a conditional loop that terminates with a
conditional loop instruction (such as LOOPNE). They prevent entering the loop when the ECX
or CX register is equal to 0, which would cause the loop to exeétioe 84K times, respec-

tively, instead of zero times.

All conditional jumps are convertetd code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation

IF condition
THEN
EIP — EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP — EIP AND OOOOFFFFH,;
FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

11-239

INSTRUCTION SET REFERENCE Intel®

Jcc—Jump if Condition Is Met (continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If the ofiset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

11-240

Intel® INSTRUCTION SET REFERENCE

JMP—Jump
Opcode Instruction Description
EB cb JMP rel8 Jump near, relative address
E9 cw JMP rell6 Jump near, relative address
E9 cd JMP rel32 Jump near, relative address
FF /4 JMP r/m16 Jump near, indirect address
FF /4 JMP r/m32 Jump near, indirect address
EA cd JMP ptr16:16 Jump far, absolute address
EA cp JMP ptr16:32 Jump far, absolute address
FF /5 JMP m16:16 Jump far, indirect address
FF /5 JMP m16:32 Jump far, indirect address

Description

Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

® Near jump—A jump to arinstruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment call.

® Far jump—A jump to an instruction located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

® Task switch—A jump to an instruction located in a different task. (This is a form of a far
jump.)

A task switch can only be executed in protected mode (see Chapter ®anthen Pro Family

Developer’s Manual, Volumef8r information on task switching with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current code
segment) that is specified with the target operand. The target operand specifies either an absolute
address (that is an offset from the base of the code segment) or a relative offset (a signed offset
relative to the current value of the instruction pointer in the EIP register). An absolute address
is specified directly in a register or indirectly in a memory locatiémX6 or r/m32 operand

form). A relative offsetrel8, rel16, orrel32) is generally specified as a label in assembly code,

but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which
is added to the value in the EIP register (that is, to the instruction following the JMP instruction).
The operand-size attribute determines the size of the target operand (16 or 32 bits) for absolute
addresses. Absolute addresses are loaded directly into the EIP register. When a relative offset is
specified, it is added to the value of the EIP register. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction pointer size
of 16 bits. The CS register is not changed on near jumps.

11-241

INSTRUCTION SET REFERENCE Intel®

JMP—Jump (continued)

When executing a far jump, the processor jumps to the code segment and address specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer ptr16:16orptr16:32) or indirectly with a memory locatiom(16:160rm16:32. With

the pointer method, the segment and address of the called procedure is encoded in the instruction
using a 4-byte (16-bit operand size) or 6-byte (32-bit operandfaizajdress immediate. With

the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to Os.

When the processor is operating in protected mode, a far jump can also be used to access a code
segment through a call gate or to switch tasks. Hieegqrocessor uses the segment selector part

of the far address to access the segment géscfor the segment being jumped to. Depending

on the value of the type and access rights information in the segment selector, the JMP instructon
can perform:

® Afar jump to a conforming or non-conforming code segment (same mechanism as the far
jump described in the previous paragraph, except that the processor checks the access
rights of the code segment being jumped to).

® An far jump through a call gate.
* Atask switch.
The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate and instruction either directly with a pointer
(ptrl6:16 or ptr16:32) or indirectly with a memory locatiom(16:160r m16:32.

Executing a task switch with the JMP instruction, is similar to executing atiuropgh a call

gate. Here the target operand specifies the segment selector of the task gate for the task being
switched to. (The offset part of the target operand is ignored). The task gate in turn points to the
TSS for the task, which contains the segment selectors for the task’s code, data, and stack
segments and the instruction pointer to the target instruction. One form of the JMP instruction
allows the jump to be made directly to a TSS, without gtingugh a task gate. See Chapter 13

in Pentium Pro Family Developer’s Manual, Volumetl® for detailed information on the
mechanics of a task switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump address
or cacheability.

11-242

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (continued)

Operation

IF near jump
THEN IF near relative jump
THEN
tempEIP — EIP + DEST,; (* EIP is instruction following JMP instruction*)
ELSE (* near absolute jump *)
tempEIP ~ DEST;
Fl;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP — tempEIP;
ELSE (* OperandSize=16 *)
EIP — tempEIP AND O000FFFFH;
Fl;
FI:

IF far jump AND (PE = 0 OR (PE =1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN
tempEIP — DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS — DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN
EIP — tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP — tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
Fl;
Fl;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
OR segment selector in target operand null
THEN #GP(0);
FI;
IF segment selector index not within descriptor table limits
THEN #GP(new selector);
Fl;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;

11-243

INSTRUCTION SET REFERENCE Intel®

JMP—Jump (continued)

Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);
Fl;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP — DEST(offset);
IF OperandSize=16
THEN tempEIP ~ tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS — DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ~ CPL
EIP ~ tempEIP;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(code segment selector); Fl;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP — DEST(offset);
IF OperandSize=16
THEN tempEIP ~ tempEIP AND 0000FFFFH,;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FlI;
CS « DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) —~ CPL
EIP — tempEIP;
END;

CALL-GATE:
IF call gate DPL < CPL
OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

11-244

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (continued)

THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL # CPL
THEN #GP(code segment selector); Fl;
IF code segment is not present THEN #NP(code-segment selector); Fl;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP — DEST(offset);
IF GateSize=16
THEN tempEIP ~ tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS — DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ~ CPL
EIP — tempEIP;
END;

TASK-GATE:
IF task gate DPL < CPL
OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); Fl;
IF task gate not present THEN #NP(gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL
OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;
END;

11-245

INSTRUCTION SET REFERENCE Intel®

JMP—Jump (continued)

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#NP (selector)

#PF(fault-code)

11-246

If offset in target operand, call gate, or TSS is beyond the code segment
limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL foe segment’s segment selector
is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.
If a memory operand effective address is outhel&S segment limit.
If the code segment being accessed is not present.
If call gate, task gate, or TSS not present.
If a page fault occurs.

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made. (Only occurs when fetching target frormmoey.)

11-247

INSTRUCTION SET REFERENCE Intel®

LAHF—Load Status Flags into AH Register

Opcode Instruction Description
oF LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)
Description

Moves the low byte of the EFLAGS register (whickludes status flags SF, ZF, AF, PF, and
CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH
register as shown in the “Operation” below.

Operation

AH — EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected
None (that is, the state of the flags in the EFLAGS register are not affected).

Exceptions (All Operating Modes)

None.

11-248

Intel® INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte

Opcode Instruction Description

OF 02 /r LAR r16,r/m16 r16 — r/m16 masked by FFOOH

OF 02 /r LAR r32,r/m32 r32 — r/m32masked by 00FxFFOOH
Description

Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS
register. The source operand (which can be a register or a memorprpaaintains the
segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can preform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor comprise the type
and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in tbadse
doubleword (bytes 4 through 7) tlie segment desgtior. The doubleword is masked by
OOFXFFOOH before it is loaded into the destination operand. When the operand size is 16 bits,
the access rights comprise the type and DPL fields. Here, the two lower-order bytes of the
doubleword are masked by FFOOH before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rigisdestination
register:

® Checks that the segment selector is not null.

® Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

® Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valifor (can be accessed with) the LAR instruction. The valid system
segment and gate descriptor types are given in the following table.

* If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are
less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

11-249

INSTRUCTION SET REFERENCE Intel®

LAR—Load Access Rights Byte (continued)

Type Name Valid
0 Reserved No
1 Available 16-bit TSS Yes
2 LDT Yes
3 Busy 16-bit TSS Yes
4 16-bit call gate Yes
5 16-bit/32-bit task gate Yes
6 16-bit trap gate No
7 16-bit interrupt gate No
8 Reserved No
9 Available 32-bit TSS Yes
A Reserved No
B Busy 32-bit TSS Yes
C 32-hit call gate Yes
D Reserved No
E 32-hit trap gate No
F 32-bit interrupt gate No

Operation

IF SRC(Offset) > descriptor table limit THEN ZF — 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) # conforming code segment
AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction
THEN
ZF - 0
ELSE
IF OperandSize = 32
THEN
DEST « [SRC] AND 00FXFFOOH;
ELSE (*OperandSize = 16*)
DEST « [SRC] AND FFOOH;
Fl;
Fl;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

11-250

Intel® INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real Address Mode Exceptions

#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual 8086 mode.

11-251

INSTRUCTION SET REFERENCE Intel®

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Opcode Instruction Description

C5/r LDS r16,m16:16 Load DS:r16 with far pointer from memory
C5Ir LDS r32,m16:32 Load DS:r32 with far pointer from memory
OF B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory
OF B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory
Calr LES r16,m16:16 Load ES:r16 with far pointer from memory
Calr LES r32,m16:32 Load ES:r32 with far pointer from memory
OF B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory
OF B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory
OF B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory
OF B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

Description

Load a far pointer (segment selector and offset) from the second ofsoance operand) into

a segment register and the first operand (destination operand). The source operand specifies a
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand
specify a segment register/general-purpose register pair. The 16-bit segment selector from the
source operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand.

If one of these instructions is executed in protected mode, additional information from the
segment descriptor pointed to by the segment selector in the source operand is loaded in the
hidden part of the selected segment register.

Also in protected mode, a null selector (val0880 through 0003) can bedded into DS, ES,

FS, or GS registers without causing a protection excepthmy subsequenteference to a
segment whose corresponding segment register is loaded with a null selector, causes a general-
protection exception (#GP) and no memory reference to the segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded
THEN IF SegementSelector = null
THEN #GP(0);
FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL # CPL
OR Access rights indicate nonwritable data segment
OR DPL # CPL
THEN #GP(selector);
FI;
ELSE IF Segment marked not present

11-252

Intel® INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer (continued)

THEN #SS(selector);
Fl;
SS ~ SegmentSelector(SRC);
SS ~ SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);
FI;
ELSE IF Segment marked not present
THEN #NP(selector);
Fl;
SegmentRegister — SegmentSelector(SRC) AND RPL;
SegmentRegister — SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister — NullSelector;
SegmentRegister(DescriptorValidBit) — 0; (*hidden flag; not accessible by software*)

Fl;

FI;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS « SegmentSelector(SRC);

FI;
DEST - Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions

#UD
#GP(0)

#GP(selector)

If source operand is not a memory location.
If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
segment selector RPL is not equal to CPL, the segmentdewaritable
data segment, or DPL is not equal to CPL.

11-253

INSTRUCTION SET REFERENCE Intel®

LDS/LES/LFS/LGS/LSS—Load Far Pointer (continued)

#SS(0)
#SS(selector)
#NP(selector)

#PF(fault-code)
#AC(0)

If the DS, ES, FS, or GS register is being loaded witbranull segment
selector and any of the following is true: the segment selector index is not
within descriptor table limits, the segment is neither a data nor a readable
code segment, or the segment is a data or nonconforming-code segment
and both RPL and CPL are greater than DPL.

If a memory operand effective address is outhEl&S segment limit.
If the SS register is being loaded and the segment is marked not present.

If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD
#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

11-254

If source operand is not a memory location.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outhEl&S segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Intel® INSTRUCTION SET REFERENCE

LEA—Load Effective Address

Opcode Instruction Description

8D /r LEA r16,m Store effective address for min register r16

8D /r LEA r32,m Store effective address for m in register r32
Description

Computes the effective address of the second operand (the source operand) and stores it in the
first operand (destination operand). The source operand is a memory address (offset part) spec-
ified with one of the processors addressing modes; the destination operand is a general-purpose
register. The address-size and operand-size attributes affect the action performed by this instruc-
tion, as shown in the following table. The operand-size attribute of the instruction is determined
by the chosen register; the address-size attribute is determined by the attribute of the code
segment.

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-hit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-hit register destination.

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN
DEST ~ EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32
THEN
temp ~ EffectiveAddress(SRC); (* 32-bit address *)
DEST ~ templ[0..15]; (* 16-bit address *)
ELSE IF OperandSize = 32 AND AddressSize = 16
THEN
temp ~ EffectiveAddress(SRC); (* 16-bit address *)
DEST ~ ZeroExtend(temp); (* 32-bit address *)

11-255

INSTRUCTION SET REFERENCE

LEA—Load Effective Address (continued)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN
DEST ~ EffectiveAddress(SRC); (* 32-bit address *)
FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

11-256

Intel® INSTRUCTION SET REFERENCE

LEAVE—High Level Procedure Exit

Opcode Instruction Description

Cc9 LEAVE Set SP to BP, then pop BP

Cc9 LEAVE Set ESP to EBP, then pop EBP
Description

Executes a return from a proceduregooup of nested procedures esistieéd by an earlier
ENTER instruction. The instruction copies the frame pointer (in the EBP register) into the stack
pointer register (ESP), releasing the stack space used by a procedure for its local variables. The
old frame pointer (the frame pointer for the calling procedure that issued the ENTER instruc-
tion) is then popped from the stack into the EBP register, restoring the calling procedure’s frame.

A RET instruction is commonly executed following a LEAVE instruction to return program
control to the calling procedure and remove any arguments pushed onto the stack by the proce-
dure being returned from.

See “Procedure Calls for Block-Structured Languages” on page 11-15 for detailed information
on the use of the ENTER and LEAVE instructions.

Operation

IF StackAddressSize = 32
THEN
ESP ~ EBP;
ELSE (* StackAddressSize = 16%)
SP ~ BP;
FI;
IF OperandSize = 32
THEN
EBP ~ Pop();
ELSE (* OperandSize = 16*)
BP ~ Pop();
FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of the
current stack segment.

11-257

INSTRUCTION SET REFERENCE Intel®

LEAVE—High Level Procedure Exit (continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective address
space from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective address
space from 0 to OFFFFH.

11-258

Intel® INSTRUCTION SET REFERENCE

LES—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.

11-259

INSTRUCTION SET REFERENCE

LFS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.

11-260

Intel® INSTRUCTION SET REFERENCE

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Opcode Instruction Description

OF 01 /2 LGDT m16&32 Load minto GDTR

OF 01/3 LIDT m16&32 Load minto IDTR
Description

Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt decriptor table register (IDTR). Theource operand is a pointer to 6 bytes of data in
memory that contains the base address (a linear address) and the limit (size of table in bytes) of
the global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size
attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base
addresqupper 4 bytes of the data operand) @ded into the register. If the operand-size
attribute is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth
byte) are loaded. Here, the high-order byte of the operand is not used and the high-order byte of
the base address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used
in application programs. They are the only instructions that directly load a linear address (that
is, not a segment-relative address) and a limit in protected mode. They are commonly executed
in real-address mode to allow processor initialization prior to switching to protected mode.

See “SGDT/SIDT—Store Global/Interrupt Descriptor TablgiRer” on page 1-356 for infor-
mation on storing the contents of the GDTR and IDTR.

Operation
IF instruction is LIDT
THEN
IF OperandSize = 16
THEN
IDTR(Limit) — SRC[0:15];
IDTR(Base) — SRC[16:47] AND 00FFFFFFH;
ELSE (* 32-bit Operand Size *)
IDTR(Limit) — SRC[0:15];
IDTR(Base) — SRC[16:47];
FI;

ELSE (* instruction is LGDT *)
IF OperandSize = 16
THEN
GDTR(Limit) — SRC[0:15];
GDTR(Base) — SRC[16:47] AND 00FFFFFFH;
ELSE (* 32-bit Operand Size *)
GDTR(Limit) — SRC[0:15];
GDTR(Base) ~ SRC[16:47];
Fl;
FI;

11-261

INSTRUCTION SET REFERENCE Intel®

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
(continued)

Flags Affected

None.

Protected Mode Exceptions
#UD If source operand is not a memory location.
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions
#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

11-262

Intel® INSTRUCTION SET REFERENCE

LGS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.

11-263

INSTRUCTION SET REFERENCE Intel®

LLDT—Load Local Descriptor Table Register

Opcode Instruction Description
OF 00/2 LLDT r/m16 Load segment selector r/m16 into LDTR
Description

Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a
segment selector that points to a local descriptor table (LDT). After the segment selector is
loaded in the LDTR, the processor uses to segment selector to locate the segment descriptor for
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS,
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment
(TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the
LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection excep-
tion (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation

IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); Fl;
Read segment descriptor;

IF SegmentDescriptor(Type) # LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) — SRC;

LDTR(SegmentDescriptor) — GDTSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

11-264

Intel® INSTRUCTION SET REFERENCE

LLDT—Load Local Descriptor Table Register (continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LLDT instruction is recognized in virtual 8086 mode.

11-265

INSTRUCTION SET REFERENCE Intel®

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt Descriptor
Table Register.

11-266

Intel® INSTRUCTION SET REFERENCE

LMSW—Load Machine Status Word

Opcode Instruction Description
OF 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CRO
Description

Loads the source operand into the machine status word, bits O through gi5tef l€R0. The
source operand can be a 16-bit general-purpose register anaryncation. Only thdéow-

order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded
into CRO. The PG, CD, NW, AM, WP, NE, and ET flags of CRO are not affected. Thendpe

size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to
switch to protected mode. The PE flag in the CRO register is a sticky bit. Once set to 1, the
LMSW instruction cannot be used clear this flag and force a switch back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used
in application programs. In protected or virtual 8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the InB86 processor; programs and proce-
dures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should use
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation
CRO[0:3] — SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-267

INSTRUCTION SET REFERENCE Intel®

LMSW—Load Machine Status Word (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual 8086 Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

11-268

Intel® INSTRUCTION SET REFERENCE

LOCK—Assert LOCK# Signal Prefix

Opcode Instruction Description
FO LOCK Asserts LOCK# signal for duration of the accompanying
instruction
Description

Causes the processor's LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCKH# signal insures that the processor has exclusive use of any shared memory while the
signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms of the
instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG,
DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined opcode
exception will be generated if the LOCK prefix is used with any other instruction. The XCHG
instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK
prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory fielthdvie
locking is observed for arbitrarily misaligned fields.

Operation

AssertLOCK#(DurationOfAccompaninglnstruction)

Flags Affected

None.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

11-269

INSTRUCTION SET REFERENCE Intel®

LOCK—Assert LOCK# Signal Prefix (continued)

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

11-270

Intel® INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String Operand

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DsS:Sl Load word at address DS:Sl into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:Sl into AX

AD LODSD Load doubleword at address DS:ESI into EAX
Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location at the address D@VE&h the
operand-size attribute is 16, the Sl register is used as the source-index register.) The DS segment
may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the \ytel, and double-
word versions of the LODS instructions. (For the LODS instruction, “DS:ESI” must be explic-
itly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL, AX, or
EAX register, the ESI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The ESI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword opera-
tions.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct, because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on page 11-333 for

a description of the REP prefix.

Operation

IF (byte load)
THEN
AL — SRC; (* byte load *)
THEN IFDF =0
THEN (E)SI < 1;
ELSE (E)SI « —1;
FI;
ELSE IF (word load)
THEN
AX < SRC; (* word load *)
THEN IFDF =0

11-271

INSTRUCTION SET REFERENCE Intel®

LODS/LODSB/LODSW/LODSD—Load String Operand (continued)

THEN SI ~ 2;
ELSE SI ~ -2;

FI;

ELSE (* doubleword transfer *)
EAX — SRC; (* doubleword load *)

THEN IFDF =0
THEN ESI — 4;
ELSE ESI ~ —4;

FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-272

Intel® INSTRUCTION SET REFERENCE

LOOP/LOOP cc—Loop According to ECX Counter

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count # 0

El cb LOOPE rel8 Decrement count; jump short if count # 0 and ZF=1

El cb LOOPZ rel8 Decrement count; jump short if count # 0 and ZF=1

EO cb LOOPNE rel8 Decrement count; jump short if count # 0 and ZF=0

EO cb LOOPNZ rel8 Decrement count; jump short if count # 0 and ZF=0
Description

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated andqgram execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, itis encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets @P8-to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOGdy also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code €c¢) is associated with each instruction to indicate the condition being tested for. Here, the
LOOFRccinstruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump address
or cacheability.

Operation

IF AddressSize = 32
THEN
Count is ECX;
ELSE (* AddressSize = 16 *)
Count is CX;
Fl;
Count — Count —1;

IF instruction in not LOOP

THEN
IF (instruction = LOOPE) OR (instruction = LOOPZ)

11-273

INSTRUCTION SET REFERENCE

LOOP/LOOP cc—Loop According to ECX Counter

THEN
IF (ZF =1) AND (Count # 0)
THEN BranchCond ~ 1;
ELSE BranchCond ~ O;

FI;
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN
IF (ZF =0') AND (Count # 0)
THEN BranchCond ~ 1;
ELSE BranchCond ~ O;
FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count #0)
THEN BranchCond ~ 1;
ELSE BranchCond ~ O;

Fl;
FI;
IF BranchCond = 1
THEN
EIP « EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP « EIP AND 0000FFFFH;
FI;
ELSE
Terminate loop and continue program execution at EIP;
FI;
Flags Affected
None.

Protected Mode Exceptions

intgl.

(continued)

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

11-274

Intel® INSTRUCTION SET REFERENCE

LSL—Load Segment Limit

Opcode Instruction Description

OF 03 /r LSL r16,r/m16 Load: r16 — segment limit, selector /m16

OF 03 /r LSL r32,r/m32 Load: r32 — segment limit, selector /m32)
Description

Loads the unscrambled segment limit from the segment descriptor specified witlcahd se
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains
the segment selectéor the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and imgh4 Kits of byte 6 of

the segment desgptor. If the descriptor has a byte granular segment limit (the granularity flag
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction
will translate the page granular limit (page limit) into a byte limit before loading it into the desti-
nation operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and
filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun-
cated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the desti-
nation register:

® Checks that the segment selector is not null.

® Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

® Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special
segment and gate descriptor types are given in the following table.

* If the segment is not a conforming code segmentintteuction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no value is loaded in the destination operand.

11-275

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (continued)

Type Name Valid
0 Reserved No
1 Available 16-bit TSS Yes
2 LDT Yes
3 Busy 16-bit TSS Yes
4 16-bit call gate No
5 16-bit/32-bit task gate No
6 16-bit trap gate No
7 16-bit interrupt gate No
8 Reserved No
9 Available 32-bit TSS Yes
A Reserved No
B Busy 32-bit TSS Yes
C 32-bit call gate No
D Reserved No
E 32-bit trap gate No
F 32-bit interrupt gate No

Operation

IF SRC(Offset) > descriptor table limit
THEN ZF ~ O; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) # conforming code segment
AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF <« 0
ELSE
temp — SegmentLimit([SRC]);
IF(G=1)
THEN
temp ~ ShiftLeft(12, temp) OR 00000FFFH;
FI;
IF OperandSize = 32
THEN
DEST ~ temp;

11-276

Intel® INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (continued)
ELSE (*OperandSize = 16*)
DEST — temp AND FFFFH;
Fl;
FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LSL instruction is not recognized in virtual 8086 mode.

11-277

INSTRUCTION SET REFERENCE

LSS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS.

11-278

Intel® INSTRUCTION SET REFERENCE

LTR—Load Task Register

Opcode Instruction Description
OF 00 /3 LTR r/m16 Load r/mi6into TR
Description

Loads the source operand i@ segment selector field of the task register. The source operand

(a general-purpose register or a memory location) contains a segment selector that points to a
task state segment (TSS). After the segment selector is loaded in the task register, the processor
uses to segment selector to locate the segment descriptor for the TSS in the global descriptor
table (GDT). It then loads the segment limit and base address for the TSS from the segment

descriptor into the task register. The task pointed to by the task register is marked busy, but a

switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is
commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation
IF SRC(Offset) > descriptor table limit OR IF SRC(type) # global
THEN #GP(segment selector);
FI;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); Fl;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) « 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) — SRC;
TaskRegister(SegmentDescriptor) — TSSSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

11-279

INSTRUCTION SET REFERENCE Intel®

LTR—Load Task Register (continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.
#SS(0) If a memory operand effective address is outhEl&S segment limit.
#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LTR instruction is not recognized in virt@4l86 mode.

11-280

intel.

INSTRUCTION SET REFERENCE

MOV—Move
Opcode Instruction Description
88 /r MOV r/m8,r8 Move r8to r/m8
89 /r MOV r/m16,r16 Move r16to r/ml16
89 /r MOV r/m32,r32 Move r32to /m32
8A Ir MOV r8,r/m8 Move r/m8to r8
8B /r MOV r16,r/m16 Move r/ml16+to r16
8B /r MOV r32,r/m32 Move r/m32to r32
8CIr MOV r/m16,Sreg** Move segment register to /m16
8E /r MOV Sreg,r/m16 Move r/m16 to segment register
A0 MOV AL, moffs8* Move byte at (seg:offset) to AL
Al MOV AX,moffs16* Move word at (seg:offset) to AX
Al MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX
A2 MOV moffs8*,AL Move AL to (seg:offset)
A3 MOV moffs16*,AX Move AX to (seg:offset)
A3 MOV moffs32* EAX Move EAX to (seg:offset)
BO+ rb MOV r8,imm8 Move imm8to r8
B8+ rw MOV r16,imm16 Move imm16to r16
B8+ rd MOV r32,imm32 Move imm32to r32
c6/0 MOV r/m8,imm8 Move imm8to r/m8
C71/0 MOV r/m16,imm16 Move imm16to r/m16
C71/0 MOV r/m32,imm32 Move imm32to r/m32
Notes

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** |n 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value
66H preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, geparpbse rgister, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the RET instruction.

11-281

INSTRUCTION SET REFERENCE Intel®

MOV—Move (continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (value8@-0003) can be loadedtd the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segnregister is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESBfack-pointer valugbefore an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit-gansoae

register, the Pentium Pro processor does not require the use of a 16-bit operand size prefix;

however, some assemblers do require this prefix. The processor assumes that the 16 least-signif-
icant bits of the general-purpose register are the destination or source operand. When moving a
value from a segment selector to a 32-bit register, the processor fills thegtworélerbytes of

the register with zeros.

Operation

DEST ~ SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN
IF segment selector is null
THEN #GP(0);
FI;
IF segment selector index is outside descriptor table limits
OR segment selector's RPL # CPL

OR segment is not a writable data segment
OR DPL # CPL

THEN #GP(selector);
FI;
IF segment not marked present
THEN #SS(selector);
ELSE
SS ~ segment selector;

11-282

intel.

INSTRUCTION SET REFERENCE

MOV—Move (continued)

SS ~ segment descriptor;

Fl;
FI;

IF DS, ES, FS or GS is loaded with non-null selector;

THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL >DPL))

THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE

SegmentRegister — segment selector;
SegmentRegister — segment descriptor;

Fl;
FI;

IF DS, ES, FS or GS is loaded with a null selector;

THEN

SegmentRegister — segment selector;
SegmentRegister — segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

If attempt is made to load SS register with null segment selector.
If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor's DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

11-283

INSTRUCTION SET REFERENCE Intel®

MOV—Move (continued)

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.
#UD If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

#UD If attempt is made to load the CS register.

11-284

Intel® INSTRUCTION SET REFERENCE

MOV—Move to/from Control Registers

Opcode Instruction Description

OF 22 /r MOV CRO,r32 Move r32to CRO
OF 22 /r MOV CR2,r32 Move r32to CR2
OF 22 /r MOV CR3,r32 Move r32to CR3
OF 22 /r MOV CR4,r32 Move r32to CR4
OF 20 /r MOV r32,CRO Move CRO to r32
OF 20 /r MOV r32,CR2 Move CR2 to r32
OF 20 /r MOV r32,CR3 Move CR3 to r32
OF 20 /r MOV r32,CR4 Move CR4 to r32

Description

Moves the contents of a control register (CR0O, CR2, CR3, or CR4) to a general-purpose register
or vice versa. The operand size for these instructions is always 32 bits, regardless of the operand-
size attribute. (See “Control Registers” in ChapteSystem Architecture Overviewf the

Pentium Pro Family Developer's Manual, VoluméoB a detailed description of the flags and

fields in the control registers.)

When loading a control register, a program should not attempt to change any of the reserved bits;
that is, always set reserved bits to the value previously read.

At the opcode level, theeg field within the ModR/M byte specifies which of the control regis-
ters is loaded or read. The 2 bits in thedfield are always 11B. Thgm field specifies the
general-purpose register loaded or read.

These instructions have the following side effects:

®* When writing to control register CR3, all non-global TLB entries are flushed (see “Trans-
lation Lookaside Buffers (TLBs)”) in Chapter Brotected-Mode Memory Management
of thePentium Pro Family Developers Manual, Volume 3

®* When modifying any of the paging flags in the control registers (PE and PG in register
CRO and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including
global entries. This operation is implementation specific for the Pentium Pro processor.
Software should not depend on this functionality in future Intel Architecture processors.

* If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to
enable the physical address extension mode), the pointers (PDPTRS) in the page-directory
pointers table will be loaded into the processor (into internal, non-architectural registers).

* |If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 wiill
cause the PDPTRs to be reloaded into the processor.

* If the PAE flag is set to 1 and control register CRO is written to set the PG flag, the
PDPTRs are reloaded into the processor.

11-285

INSTRUCTION SET REFERENCE Intel®

MOV—Move to/from Control Registers (continued)

Operation

DEST ~ SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory pointers
table (used in the extended physical addressing mode) when the PAE flag
in control register CR4 and the PG flag in control register CRO are setto 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These ineuctions cannot be executed in virtual 8086 mode.

11-286

Intel® INSTRUCTION SET REFERENCE

MOV—Move to/from Debug Registers

Opcode Instruction Description

OF 21/r MOV r32, DR0O-DR3 Move debug registers to r32
OF 21/r MOV r32, DR4-DR5 Move debug registers to r32
OF 21/r MOV r32, DR6-DR7 Move debug registers to r32
OF 23 /r MOV DRO-DR3, r32 Move r32 to debug registers
OF 23 /r MOV DR4-DR5, r32 Move r32 to debug registers
OF 23 /r MOV DR6-DR7,r32 Move r32 to debug registers

Description

Moves the contents of two or more debug registers (DRO through DR3, DR4 and DR5, or DR6
and DRY7) to a general-purpose register or vice versa. The operand size for these instructions is
always 32 bits, regardless of the operand-size attribute. (See Chafebligging and Perfor-

mance Monitoring of the Pentium Pro Family Developers Manual, VoluméoB a detailed
description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions opeetiagn
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode,
references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE set in CR4 is set,
attempts to reference DR4 and DRS5 result in an undefined opcode (#UD) exception.

At the opcode level, theg field within the ModR/M byte specifies which of the debug registers
is loaded or read. The two bits in thedfield are always 11. Thém field specifies the general-
purpose register loaded or read.

Operation
IF (DE = 1) and (SRC or DEST = DR4 or DR5))
THEN
#UD;
ELSE
DEST ~ SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

11-287

INSTRUCTION SET REFERENCE Intel®

MOV—Move to/from Debug Registers (continued)

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Virtual 8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read whentual \8086 mode.

11-288

Intel® INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Opcode Instruction Description

Ad MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS ES:DI,DS:SI Move word at address DS:Sl to address ES:DI

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address
ES:EDI

Ad MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:Sl to address ES:DI

A5 MOVSD Move doubleword at address DS:ESI to address
ES:EDI

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). The source operand specifies the
memory location at the address DS:ESI and the destination operand specifies the memory loca-
tion at address ES:EDI. (When the operand-size attribute is 16, the Sl and DI register are used
as the source-index and destination-index registers, respectively.) The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and double-
word versions of the MOVS instructions. They are simpler to use, but provide no type or
segment checking. (For the MOVS instruction, “DS:ESI” and “ES:EDI” must be explicitly
specified in the instruction.)

After the transfer, the ESI and EDI registers are incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.)
The registers are incremented or decremented by 1 for byte operations, p&foperabns,

or by 4 for doubleword operations.

The MOVS, MOVSB, MDVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on page
11-333) for block moves of ECX bytes, words, or dowalels.

Operation

DEST ~SRC;
IF (byte move)
THEN IFDF =0
THEN (E)DI — 1;
ELSE (E)DI — —1;
FI;
ELSE IF (word move)
THEN IFDF =0
THEN DI « 2;

11-289

INSTRUCTION SET REFERENCE Intel®

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(continued)

ELSE DI ~ -2;
FI;
ELSE (* doubleword move*)
THEN IFDF =0
THEN EDI — 4;
ELSE EDI ~ —4;

FI;
FI;
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If thedestination is located in a honwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhEl&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-290

Intel® INSTRUCTION SET REFERENCE

MOVSX—Move with Sign-Extension

Opcode Instruction Description

OF BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

OF BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

OF BF /Ir MOVSX r32,r/m16 Move word to doubleword, sign-extension
Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5 on page 6-18). The
size of the converted value depends on the operand-size attribute.

Operation
DEST ~ SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

11-291

INSTRUCTION SET REFERENCE Intel®

MOVZX—Move with Zero-Extend

Opcode Instruction Description

OF B6 /r MOVZX r16,/m8 Move byte to word with zero-extension

OF B6 /r MOVZX r32,/m8 Move byte to doubleword, zero-extension

OF B7 Ir MOVZX r32,r/m16 Move word to doubleword, zero-extension
Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5 on page 6-18). The
size of the converted value depends on the operand-size attribute.

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value
depends on the operand-size attribute.

Operation

DEST ~ ZeroExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-292

Intel® INSTRUCTION SET REFERENCE

MOVZX—Move with Zero-Extend (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-293

INSTRUCTION SET REFERENCE Intel®

MUL—Unsigned Multiplication of AL, AX, or EAX

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX — AL Or/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX «~ AX 0r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX — EAX Or/m32)
Description

Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode andanel ope

size as shown in the following table.

Operand Size Source 1 Source 2 Destination
Byte AL r/m8 AX
Word AX r/m16 DX:AX
Doubleword EAX r/m32 EDX:EAX

The AH, DX, or EDX registers (depending on the operand size) contain the high-order bits of
the product. If the contents ofie of these registers are 0, the CF and OF flags are cleared; other-
wise, the flags are set.

Operation

IF byte operation
THEN
AX « AL OSRC
ELSE (* word or doubleword operation *)
IF OperandSize = 16
THEN
DX:AX — AXOSRC
ELSE (* OperandSize = 32 *)
EDX:EAX — EAX OSRC
FI;
FI;

Flags Affected

The OF and CF flags are cleared to O if the upper half of the result is O; otherwise, they are set
to 1. The SF, ZF, AF, and PF flags are undefined.

11-294

Intel® INSTRUCTION SET REFERENCE

MUL—Unsigned Multiplication of AL, AX, or EAX (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-295

INSTRUCTION SET REFERENCE Intel®

NEG—Two's Complement Negation

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate /m8

F7/3 NEG r/m16 Two's complement negate /m16

F7/3 NEG r/m32 Two's complement negate /m32
Description

Replaces the value of operand (the destination operand) with its two's complement. The desti-
nation operand is located in a general-purpose register or a memory location.

Operation

IF DEST=0
THENCF - 0
ELSE CF —~ 1,

FI;

DEST — — (DEST)

Flags Affected

The CF flag cleared to O if the source operand is O; otherwise it is set to 1. The OF, SF, ZF, AF,
and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If thedestination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outhel&S segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

11-296

Intel® INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation (continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

11-297

INSTRUCTION SET REFERENCE Intel®

NOP—No Operation

Opcode Instruction Description
90 NOP No operation
Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG EAX, EAX instruction.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

11-298

Intel® INSTRUCTION SET REFERENCE

NOT—One's Complement Negation

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of /m8

F712 NOT r/m16 Reverse each bit of /m16

F712 NOT r/m32 Reverse each bit of /m32
Description

Performs a bitwise NOT operation (1's complement) on the destination operand and stores the
result in the destination operand location. The destination operand can be a register or a memory
location.

Operation

DEST ~ NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

11-299

INSTRUCTION SET REFERENCE Intel®

NOT—One's Complement Negation (continued)

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

11-300

Intel® INSTRUCTION SET REFERENCE

OR—1Logical Inclusive OR

Opcode Instruction Description

0oC ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAXOR imm32

80/1ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81/1id OR r/m32,imm32 r/m32 OR imm32

83/1ib OR r/m16,imm8 r/m16 OR imm8

83/1ib OR r/m32,imm8 r/m32 OR imm8

08 /r OR r/m8,r8 r/m80OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

OA Ir OR r8,r/m8 r8 OR r/m8

OB /r OR r16,/m16 r16 OR r/mi16

OB /r OR r32,/m32 r32 OR r/m32
Description

Performs a bitwise OR operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.

Operation

DEST ~ DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

11-301

INSTRUCTION SET REFERENCE Intel®

OR—Logical Inclusive OR (continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outhel&S segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If aéignment checking is enabled and an unaligned memory reference is
made.

11-302

Intel® INSTRUCTION SET REFERENCE

OUT—Output to Port

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte AL to imm8 1/O port address

E7 ib OUT imm8, AX Output word AX to imm8 1/0O port address

E7 ib OUT imm8, EAX Output doubleword EAX to imm8 1/O port address

EE OUT DX, AL Output byte AL to I/O port address in DX

EF OUT DX, AX Output word AX to I/O port address in DX

EF OUT DX, EAX Output doubleword EAX to I/O port address in DX
Description

Copies the value from the second operand (source operand) to the 1/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows 1/O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows /O ports
from O to 65,535 to be accessed.

When accessing an 8-bit /0 port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/0 ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing 1/0O ports located in the processor’s /O address
space. See Chapter Bput/Output for more information on accessing 1/0 portstlie 1/O
address space.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > |OPL *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);
FI;
ELSE (* Real-address mode or protected mode with CPL < IOP