
Intel® 64 and IA-32 Architectures
Optimization Reference Manual 

Documentation Changes

Document Number: 355308-003US
January 2024



Document Number: 355308-003US 2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure. 

Your costs and results may vary. 

You may not use or facilitate the use of this document in connection with any infringement or other 
legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, 
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed 
herein.

All product plans and roadmaps are subject to change without notice. 

The products described may contain design defects or errors known as errata which may cause the 
product to deviate from published specifications. Current characterized errata are available on 
request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties 
of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty 
arising from course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development 
and not publicly available. These are not “commercial” names and not intended to function as 
trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted 
by this document, with the sole exception that a) you may publish an unmodified copy and b) code 
included in this document is licensed subject to the Zero-Clause BSD open source license (0BSD), 
https://opensource.org/licenses/0BSD. You may create software implementations based on this 
document and in compliance with the foregoing that are intended to execute on the Intel product(s) 
referenced in this document. No rights are granted to create modifications or derivatives of this 
document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation 
or its subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
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Preface

This document is an update to the optimization recommendations contained in the Intel® 64 and IA-32 
Architectures Optimization Reference Manual, also known as the Software Optimization Manual. This document 
is a compilation of device and documentation errata, specification clarifications and changes. It is intended for 
hardware system manufacturers and software developers of applications, operating systems, or tools.

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These 
will be incorporated in any new release of the specification.

Summary Tables of Changes
The following table indicates documentation changes which apply to the Intel® 64 and IA-32 Architecture 
software optimization topics covered by this reference manual. 

Documentation Changes
Changes to the Intel® 64 and IA-32 Architectures Optimization Reference Manual volumes follow, and are listed 
by chapter. Only chapters with changes are included in this document.

General Change 

All tables across both volumes of this manual have been modified to reflect best accessibility practices. The 
modifications include designing headings more easily read by screen readers, increased font size and clarity, 
and adding row shading to create visual contrast.

No. DOCUMENTATION CHANGES

1 Updates to Chapter 1

2 Updates to Chapter 20
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1. Updates to Chapter 1

Change bars and violet text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual: Introduction.

------------------------------------------------------------------------------------------
Changes to this chapter: 
• Section 1.2

— Corrected product name and added footnote linking to User Guide.
• Section 1.3 

— New section turning processor information into a table for increased ease of understanding.
• Section 1.4: 

— New section organizing and describing content of the manual.
• Section 1.5

— Corrected links for related content and further reading.
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INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 ABOUT THIS MANUAL
The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how to optimize 
software to take advantage of the performance characteristics of IA-32 and Intel 64 architecture 
processors. 

The target audience for this manual includes software programmers and compiler writers. This manual 
assumes that the reader is familiar with the basics of the IA-32 architecture and has access to the Intel® 
64 and IA-32 Architectures Software Developer’s Manual. A detailed understanding of Intel 64 and IA-32 
processors is often required. In many cases, knowledge of the underlying microarchitectures is required.

The design guidelines discussed in this manual for developing high-performance software generally apply 
to current and future IA-32 and Intel 64 processors. In most cases, coding rules apply to software 
running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64 architecture, and IA-32 
modes (IA-32 modes are supported in IA-32 and Intel 64 architectures). Coding rules specific to 64-bit 
modes are noted separately.

NOTE
A public repository is available with open source code samples from select chapters of 
this manual. These code samples are released under a 0-Clause BSD license. Intel 
provides additional code samples and updates to the repository as the samples are 
created and verified.
Public repository: https://github.com/intel/optimization-manual.
Link to license: https://github.com/intel/optimization-manual/blob/master/COPYING.

1.2 TUNING YOUR APPLICATION
Tuning an application for high performance on any Intel 64 or IA-32 processor requires understanding 
and basic skills in:

• Intel 64 and IA-32 architecture.

• C and Assembly language.

• Hot-spot regions in the application that impact performance.

• Optimization capabilities of the compiler.

• Techniques used to evaluate application performance.

The Intel® VTune™ Profiler can help you analyze and locate hot-spot regions in your applications. 

On many Intel processors, this tool can monitor an application through a selection of performance 
monitoring events and analyze the performance event data that is gathered during code execution.

This manual also describes data that can be gathered using the performance counters through the 
processor’s performance monitoring events.

https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual/blob/master/COPYING
https://github.com/intel/optimization-manual/blob/master/COPYING
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1.3 INTEL PROCESSORS SUPPORTING THE INTEL® 64 ARCHITECTURE
The following is a list of Intel processors, series, and product families that support the Intel 64 
Architecture1. The list is organized by microarchitecture.

Table 1-1.  Intel Processors Organized by Microarchitecture

Microarchitecture Processor(s), Series, Product(s)

Nehalem microarchitecture (45nm) •The Intel® Core™ i7 processor
•Intel® Xeon® processor 3400, 5500, 7500 series

Westmere microarchitecture (32nm)
•Intel® Xeon® processor 5600 series
•Intel® Xeon® processor E7
•Various Intel® Core™ i7, i5, i3 processors 

Sandy Bridge microarchitecture

•Intel® Xeon® processor E5 family
•Intel® Xeon® processor E3-1200 family
•Intel® Xeon® processor E7-8800/4800/2800 product families
•Intel® Core™ i7-3930K processor
•2nd generation Intel® Core™ i7-2xxx processor series
•Intel® Core™ i3-2xxx processor series

Ivy Bridge microarchitecture
•Intel® Xeon®processor E7-8800/4800/2800 v2 product families
•Intel® Xeon® processor E3-1200 v2 product family
•3rd generation Intel® Core™ processors 

Ivy Bridge-E microarchitecture
•Intel® Xeon® processor E5-4600/2600/1600 v2 product families
•Intel® Xeon® processor E5-2400/1400 v2 product families
•Intel® Core™ i7-49xx Processor Extreme Edition

Haswell microarchitecture •Intel® Xeon® processor E3-1200 v3 product family
•4th Generation Intel® Core™ processors

Haswell-E microarchitecture •Intel® Xeon® processor E5-2600/1600 v3 product families
•Intel® Core™ i7-59xx Processor Extreme Edition

Airmont microarchitecture Intel® Atom® processor Z8000 series

Silvermont microarchitecture •Intel® Atom® processor Z3400 series

Broadwell microarchitecture

•Intel® Core™ M processor family 
•5th generation Intel® Core™ processors 
• Intel® Xeon® processor D-1500 product family 
• Intel® Xeon® processor E5 v4 family 

Skylake microarchitecture
•Intel® Xeon® Scalable processor family
•Intel® Xeon® processor E3-1500m v5 product family
•6th generation Intel® Core™ processors

Kaby Lake microarchitecture 7th generation Intel® Core™ processors 

1. For more about this architecture, visit: https://www.intel.com/content/www/us/en/architecture-and-technol-
ogy/microarchitecture/intel-64-architecture-general.html

https://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/intel-64-architecture-general.html
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1.4 THE ORGANIZATION OF THIS MANUAL
This manual is divided into two volumes. The first considers the optimization of newer products and 
technologies. Volume Two considers older technology that may not be supported.

1.4.1 CHAPTER SUMMARIES 

1.4.1.1  Volume 1
• Chapter 1: Introduction: Defines the purpose and outlines the contents of this manual.

• Chapter 2: Intel® 64 and IA-32 Processor Architectures: Describes the microarchitecture of 
recent Intel 64 and IA-32 processor families, and other features relevant to software optimization.

Goldmont microarchitecture

•Intel Atom® processor C series
•Intel Atom® processor X series
•Intel® Pentium® processor J series
•Intel® Celeron® processor J series
•Intel® Celeron® processor N series

Knights Landing microarchitecture Intel® Xeon Phi™ Processor 3200, 5200, 7200 series

Goldmont Plus microarchitecture
•Intel® Pentium® Silver processor series
•Intel® Celeron® processor J series
•Intel® Celeron® processor N series

Coffee Lake microarchitecture
•Intel® Xeon® E processors
•8th generation Intel® Core™ processors
•9th generation Intel® Core™ processors

Knights Mill microarchitecture Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

Cascade Lake microarchitecture 2nd generation Intel® Xeon® Scalable processor family 

Ice Lake microarchitecture •Some of the 3rd generation Intel® Xeon® Scalable processor family 
•Some 10th generation Intel® Core™ processors

Comet Lake microarchitecture Some 10th generation Intel® Core™ processors

Tiger Lake microarchitecture Some 11th generation Intel® Core™ processors

Rocket Lake microarchitecture Some 11th generation Intel® Core™ processors

Cooper Lake microarchitecture Some of the 3rd generation Intel® Xeon® Scalable processor family

Alder Lake microarchitecture 12th generation Intel® Core™ processors

Raptor Lake microarchitecture •13th generation Intel® Core™ processors
•14th generation Intel® Core™ processors

Sapphire Rapids microarchitecture 4th generation Intel® Xeon® Scalable processor family

Emerald Rapids microarchitecture 5th generation Intel® Xeon® Scalable processor family

Table 1-1.   (Contd.)Intel Processors Organized by Microarchitecture

Microarchitecture Processor(s), Series, Product(s)
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• Chapter 3: General Optimization Guidelines: Describes general code development and 
optimization techniques that apply to all applications designed to take advantage of the common 
features of current Intel processors.

• Chapter 4: Intel Atom® Processor Architecture: Describes the microarchitecture of recent Intel 
Atom processor families, and other features relevant to software optimization.

• Chapter 5: Coding for SIMD Architectures: Describes techniques and concepts for using the 
SIMD integer and SIMD floating-point instructions provided by the MMX™ technology, Streaming 
SIMD Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

• Chapter 6: Optimizing for SIMD Integer Applications: Provides optimization suggestions and 
common building blocks for applications that use the 128-bit SIMD integer instructions.

• Chapter 7: Optimizing for SIMD Floating-point Applications: Provides optimization 
suggestions and common building blocks for applications that use the single-precision and double-
precision SIMD floating-point instructions.

• Chapter 8: INT8 Deep Learning Inference: Describes INT8 as a data type for Deep learning 
Inference on Intel technology. The document covers both AVX-512 implementations and 
implementations using the new Intel® DL Boost Instructions.

• Chapter 9: Optimizing Cache Usage: Describes how to use the PREFETCH instruction, cache 
control management instructions to optimize cache usage, and the deterministic cache parameters.

• Chapter 10: Introducing Sub-NUMA Clustering: Describes Sub-NUMA Clustering (SNC), a mode 
for improving average latency from last level cache (LLC) to local memory.

• Chapter 11: Multicore and Intel® Hyper-Threading Technology: Describes guidelines and 
techniques for optimizing multithreaded applications to achieve optimal performance scaling. Use 
these when targeting multicore processor, processors supporting Hyper-Threading Technology, or 
multiprocessor (MP) systems. 

• Chapter 12: Intel® Optane™ DC Persistent Memory: Provides optimization suggestions for 
applications that use Intel® Optane™ DC Persistent Memory.

• Chapter 13: 64-Bit Mode Coding Guidelines: This chapter describes a set of additional coding 
guidelines for application software written to run in 64-bit mode.

• Chapter 14: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing: 
Describes SIMD techniques of using SSE4.2 along with other instruction extensions to improve 
text/string processing and lexing/parsing applications.

• Chapter 15: Optimizations for Intel® AVX, FMA, and Intel® AVX2: Provides optimization 
suggestions and common building blocks for applications that use Intel® Advanced Vector 
Extensions, FMA, and Intel® Advanced Vector Extensions 2 (Intel® AVX2).

• Chapter 16: Intel Transactional Synchronization Extensions: Tuning recommendations to use 
lock elision techniques with Intel Transactional Synchronization Extensions to optimize multi-
threaded software with contended locks.

• Chapter 17: Power Optimization for Mobile Usages: This chapter provides background on power 
saving techniques in mobile processors and makes recommendations that developers can leverage to 
provide longer battery life.

• Chapter 18: Software Optimization for Intel® AVX-512 Instructions: Provides optimization 
suggestions and common building blocks for applications that use Intel® Advanced Vector Extensions 
512.

• Chapter 19: Intel® Advanced Vector Extensions 512-FP16 Instruction Set for Intel® Xeon® 
Processors: Describes the addition of the FP16 ISA for Intel AVX-512 to handle IEEE 754-2019 
compliant half-precision floating-point operations.

• Chapter 20: Intel® Advanced Matrix Extensions (Intel® AMX): Describes best practices to 
optimally code to the metal on Intel® Xeon® Processors based on Sapphire Rapids SP 
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microarchitecture. It extends the public documentation on Optimizing DL code with DL Boost 
instructions.

• Chapter 21: Cryptography & Finite Field Arithmetic Enhancements: Describes the new 
instruction extensions designated for acceleration of cryptography flows and finite field arithmetic.

• Chapter 22: Intel® QuickAssist Technology (Intel® QAT): Describes software development 
guidelines for the Intel® QuickAssist Technology (Intel® QAT) API. This API supports both the 
Cryptographic and Data Compression services.

• Appendix A: Application Performance Tools: Introduces tools for analyzing and enhancing 
application performance without having to write assembly code.

• Appendix B: Using Performance Monitoring Events: Provides information on the Top-Down 
Analysis Method and information on how to use performance events specific to the Intel Xeon 
processor 5500 series, processors based on Sandy Bridge microarchitecture, and Intel Core Solo and 
Intel Core Duo processors.

• Appendix C: Intel Architecture Optimization with Large Code Pages: Provides information on 
how the performance of runtimes can be improved by using large code pages.

1.4.1.2  Volume 2: Earlier Generations of Intel® 64 and IA-32 Processor Architectures
• Chapter 1: Haswell Microarchitecture: Describes the Haswell microarchitecture.

• Chapter 2: Sandy Bridge Microarchitecture: Describes the Sandy Bridge microarchitecture and 
associated considerations.

• Chapter 3: Intel® Core™ Microarchitecture and Enhanced Intel® Core™ Microarchitecture: 
Describes the Intel® Core™ and Enhanced Intel® Core ™microarchitectures and associated 
considerations.

• Chapter 4: Nehalem Microarchitecture: Describes the Sandy Bridge microarchitecture and 
associated considerations.

• Chapter 5: Knights Landing Microarchitecture Optimization: Describes the Sandy Bridge 
microarchitecture and associated considerations, including Multithreading and Intel® 
HyperThreading Technology (Intel® HT).

• Chapter 6: Earlier Generations of Intel Atom® Microarchitecture and Software 
Optimization: Describes the microarchitecture of earlier generations of processor families based on 
Intel Atom microarchitecture, and software optimization techniques targeting Intel Atom 
microarchitecture.



Document #: 248966-049US  1-6

INTRODUCTION

1.5 RELATED INFORMATION
For more information on the Intel® architecture, techniques, and the processor architecture terminology, 
the following are of particular interest:. Each item’s title is a link, followed by a description of the content.

Table 1-2.  Additional References in this Document

TItle Description

Intel® 64 and IA-32 Architectures Software Developer’s 
Manual

These manuals describe the architecture and 
programming environment of the Intel® 64 and IA-32 
architectures. This links directly to the PDF containing 
all 4 columns of the content.

Intel® 64 Architecture Processor Topology Enumeration
Covers the topology enumeration algorithm for 
single-socket to multiple-socket platforms using Intel® 
64 and IA-32 processors.

Intel® Artificial Intelligence (Intel® AI) Solutions landing 
page

The official source for development using Intel® AI 
solutions supporting Deep Learning (DL) and Machine 
Learning (ML). Includes a section with documentation.

Support for Intel® Processors
Landing page for support information for Intel® 
processors including featured content, downloads, 
specifications, warranty, and community posts.

Get Started with Intel® Fortran Compiler Classic and 
Intel® Fortran Compiler

A guide to the basics of using Intel® Fortran Compilers: 
ifort and ifx. Please note: IFORT will be discontinued in 
October 2024.

Intel® C++ Compiler Classic (ICC) Developer Guide and 
Reference

Contains information about the Intel® C++ Compiler 
Classic (icc for Linux* and icl for Windows*) compiler 
and runtime environment.

Intel® Data Streaming Accelerator User Guide

Intel® Developer Zone Landing Page The official source for developing on Intel® hardware 
and software. Includes documentation.

Intel® Developer Catalog Find software and tools to develop and deploy 
solutions optimized for Intel® architecture.

Intel® Development Topics & Technologies landing 
page

A landing page devoted to everything from storage to 
computer vision (CV).

Intel® Distribution of OpenVino™ Toolkit landing page
The official source for the Intel® distribution of 
OpenVINO™, an open source toolkit that simplifies 
deployment. Includes a section with documentation.

Intel® Hyper-Threading Technology 
(Intel® HT Technology)

An overview of Intel® HT Technology. This links directly 
to the PDF.

Intel® In-Memory Analytics Accelerator Architecture 
Specification

Describes the architecture of the Intel® In-Memory 
Analytics Accelerator (Intel® IAA). This links directly to 
the PDF.

Intel® Instruction Set Extensions Technology Support
A landing page dedicated to all content related to 
supporting the Intel® ISE technologies. Includes the 
Intel® SSE4 Programming Reference.

https://www.intel.com/content/www/us/en/content-details/775917/intel-64-architecture-processor-topology-enumeration-technical-paper.html
https://www.intel.com/content/www/us/en/artificial-intelligence/overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/overview.html?wapkw=Development%20Topics%20%26%20Technologies#gs.2orxhw
https://www.intel.com/content/www/us/en/docs/fortran-compiler/get-started-guide/2024-0/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/671200
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Intel® oneAPI Data Analytics Library Landing Page
The official source for development using Intel® one 
API Data Analytics Library (oneDAL). Includes a section 
with documentation.

Intel® oneAPI DPD++/C++ Compiler
Intel® oneAPI DPC++/C++ Compile, a standards-based, 
cross-architecture compiler and update to both ifort 
and ifx.

Intel® QuickAssist Technology (Intel® QAT)
The official source for the Intel® QuickAssist 
Technology (Intel® QAT). Includes a section with 
documentation.

Intel® VTune™ Profiler User Guide

 A comprehensive overview of the product 
functionality, tuning methodologies, workflows, and 
instructions to use the Intel® VTune™ Profiler 
performance analysis tool. This links directly to the 
PDF.

Intel® Xeon® Processors Technical Resources Page A landing page including technical resources for all 
Intel® Xeon® Scalable processors.

C2C - False Sharing Detection in Linux Perf An introduction to perf c2c in Linux.

Developing Multi-Threaded Applications: A Platform 
Consistent Approach 

The objective of the Multithreading Consistency Guide 
is to provide guidelines for developing efficient 
multithreaded applications across Intel-based 
symmetric multiprocessors (SMP) and/or systems with 
Intel® Hyper-Threading Technology (Intel® HT). (2005)

Table 1-2.  Additional References in this Document

TItle Description

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.2oubpj
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://www.intel.com/content/www/us/en/developer/topic-technology/open/quick-assist-technology/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.2otyli
https://cdrdv2.intel.com/v1/dl/getContent/671200
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2. Updates to Chapter 20

Change bars and violet text show changes to Chapter 20 of the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual: Intel® Advanced Matrix Extensions (Intel® AMX).

------------------------------------------------------------------------------------------
Changes to this chapter: 
• Overview 

— Included the Emerald Rapids microarchitecture to the introduction
— Table 20-1: Updated links and descriptions.

• Section 20.1: 
• Added new, Emerald Rapids microarchitecture specific CPUID optimization information and instruction.
• Section 20.5.3

— Tables 20-5-8: Changed from table into text examples.
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CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

This chapter aims to help low-level DL programmers optimally code to the metal on Intel® Xeon® 
Processors based on Sapphire Rapids SP and Emerald Rapids microarchitectures. It extends the public 
documentation on Optimizing DL code with DL Boost instructions in Section 20.8.

It explains how to detect processor support in Intel® Advanced Matrix Extensions (Intel® AMX) 
Architecture (Section 20.1). It provides an overview of Intel AMX architecture (Section 20.2) and 
presents Intel AMX instruction throughput and latency (Section 20.3). It also discusses software 
optimization opportunities for Intel AMX (Section 20.5 through Section 20.18), 
TILECONFIG/TILERELEASE and compiler ABI (Section 20.19), Intel AMX state management and system 
software aspects (Section 20.20), and the use of Intel AMX for higher precision GEMMs (Section 20.21).

Table 20-1.  Intel® AMX-Related Links

Description Description

Intel® AMX architecture definitions in the Intel® 64 and 
IA-32 Architecture Software Developer’s Manual

Describe the architecture and programming 
environment of the Intel® 64 and IA-32 architectures.

Buildable and executable templates of code examples 
for this chapter.

Contains the source code examples described in the 
“Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.”

Open VINO™ Documentation

Provides reference documents that guide you through 
the OpenVINO toolkit workflow, from preparing and 
optimizing models to deploying them in your own 
deep learning applications.

oneDNN Documentation oneAPI Deep Neural Network Library Developer Guide 
and Reference.

oneDNN GitHub oneAPI Deep Neural Network Library (oneDNN).

Intel® Optimization TensorFlow Installation Guide Technical documentation and guide to the 
optimization of Intel® Optimization for TensorFlow*.

PyTorch Documentation Library and resources related to PyTorch.

PyTorch GitHub 
Buildable and executables related to tensors and 
dynamic neural networks in Python with strong GPU 
acceleration.

Intel® Neural Compressor (INC) GitHub

Provides unified APIs for SOTA model compression 
techniques, such as low precision 
(INT8/INT4/FP4/NF4) quantization, sparsity, pruning, 
and knowledge distillation on mainstream AI 
frameworks such as TensorFlow, PyTorch, and ONNX 
Runtime.

Tips for measuring the performance of matrix multipli-
cation using Intel® MKL

Provides tips on how to measure the single-precision 
general matrix multiply (SGEMM) function 
performance on Intel® Xeon® processors.

GitHub Repository Code samples related to Intel® AMX.

https://github.com/intel/AMX-TMUL-Code-Samples
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual
https://docs.openvino.ai/2023.2/documentation.html
https://oneapi-src.github.io/oneDNN/
https://github.com/oneapi-src/oneDNN
https://pytorch.org/docs/stable/index.html
https://github.com/pytorch/pytorch
https://github.com/intel/neural-compressor
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
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20.1 DETECTING INTEL® AMX SUPPORT
Use the CPUID instruction described in Chapter 3.3 of the Intel® 64 and IA-32 Architecture Software 
Developer’s Manual to find out whether the processor you are executing on supports Intel AMX at the 
hardware level.

Specifically, when issuing the CPUID instruction with the EAX register set to 7 and the ECX register set to 
0, the instruction returns in the EDX register an indication of Intel AMX support of bits 22, 24, and 25. 

• They are all set to 0 if Intel AMX is not supported.

• They are all set to 1 if Intel AMX is supported.

The next step is to check whether the OS has enabled the Intel AMX state: 

1. Issue the CPUID instruction again to check whether the OS supports the XGETBV instruction, 

2. Use the instruction to check whether the OS has enabled the Intel AMX state save/restore.

When issuing the CPUID instruction with EAX register set to 1, the instruction returns an indication of 
XGETBV support in bit 26 of the ECX register. If bit 26 is set, when issuing the XGETBV instruction with 
ECX register set to 0, the instruction returns an indication of OS support in saving and restoring the Intel 
AMX state in bits 17 and 18 of the EAX register. Both bits should be set to use the Intel AMX instructions. 
For additional CPUID information about Intel AMX, see Chapter 3.3 of the Intel® 64 and IA-32 
Architecture Software Developer’s Manual 

Operating systems may require calling an OS API to allocate Intel AMX state. Visit LinuxAPI and Windows 
APIs for more detailed information. Please see Section 20.20 for more information about Intel AMX state 
management.

20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW
General Intel AMX microarchitecture overview is available in Chapter 18 of Volume 1 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual.

20.2.1 INTEL® AMX FREQUENCIES
See Section 2.5.3 for a discussion about the connection between max frequency, frequency license, and 
Instruction Set Architecture covering Intel AVX technologies up to Intel® AVX-512 Instruction Set. Intel 
AMX adds yet another license level whose max frequency is usually lower than that of the Intel AVX-512 
license.

When the Intel AMX unit utilization is lower than 15%, the processor may exceed the nominal max 
frequency associated with the Intel AMX license.

Using XSTATE features in user space applications Linus Torvalds’ GitHub discussion of XState.

GetThreadEnabledXStateFeatures function (winbase.h) Microsoft’s discussion of this function.

UpdateProcThreadAttribute function (processthread-
sapi.h) Microsoft’s discussion of this function.

Table 20-1.   (Contd.)Intel® AMX-Related Links

Description Description

https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.intel.com/sdm
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getthreadenabledxstatefeatures
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getthreadenabledxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
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20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY
Several Intel AMX instructions are available. Two instructions (TILELOAD*) load data from the memory 
hierarchy into the tile registers, and one instruction (TILESTORE) stores the contents of a tile register 
into the DCU (Data Cache Unit–first level cache). Other instructions (TDP*) execute the matrix 
multiplication, operating on two input tile registers and writing the result into a third tile register. 
Additionally, there are some less-frequently used instructions. The following table provides the 
instruction throughput and latency counted in cycles.

NOTE
Due to the high latency of the LDTILECFG instruction, we recommend issuing a single pair 
of LDTILECFG and TILERELEASE operations per Intel AMX-based DL layer implementation.

20.4 DATA STRUCTURE ALIGNMENT
GEMM and Convolution input/output data structures must be 64-byte aligned for optimal performance 
but should not be aligned to 128-byte, 256-byte, etc. For more details, see Tip 6 in Tips for Measuring the 
Performance of Matrix Multiplication Using Intel® MKL.

20.5 GEMMS / CONVOLUTIONS

20.5.1 NOTATION
The following notation is used for the matrices (A, B, C) and the dimensions (M, K, N) in matrix 
multiplication (GEMM).

Table 20-2.  Intel® AMX Instruction Throughput and Latency

Instruction Throughput Latency

LDTILECFG Not Relevant 204

STTILECFG Not Relevant 19

TILETRELEASE Not Relevant 13

TDP/* 16 52

TILELOADD 8 45

TILELOADDT1 33 48

TILESTORED 16 Not Relevant

TILEZERO 0 16

https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
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Figure 20-1.  Matrix Notation

20.5.2 TILES IN THE INTEL® AMX ARCHITECTURE
The Intel AMX instruction set operates on tiles: large two-dimensional registers with configurable 
dimensions. The configuration is dependent on the type of tile.

• A-tiles can have between 1-16 rows and 1-MAX_TILE_K columns.

• B-tiles can have between 1-MAX_TILE_K rows and 1–16 columns.

• C-tiles can have between 1-16 rows and 1–16 columns.

MAX_TILE_K=64/sizeof(type_t), and type_t is the the data type being operated on. Therefore, 
MAX_TILE_K=64 for (u)int8 data, and MAX_TILE_K=32 for bfloat16 data. The dimensions here are 
mathematical/logical. For more detail about mapping to tile register configuration parameters, see the 
Intel® Architecture Instruction Set Extensions Programming Reference.

The data type residing in the tiles also varies depending on the type of tile. A-tiles and B-tiles contain 
data of type_t, which can be (u)int8 or bfloat16.

C-tiles contain data of type res_type_t:

• int32 if type_t=(u)int8

• float if type_t=bfloat16

Thus, a maximum-sized tile multiplication operation for (u)int8 data type looks this way:
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Figure 20-2.  Intel® AMX Multiplication with Max-sized int8 Tiles

TILELOAD and TILESTORE Instructions

The tiles are loaded from memory with the TILELOAD instruction and stored to memory with a 
TILESTORE instruction. The TILELOAD/TILESTORE instructions receive the following parameters:

• The destination/source tile of the TILELOAD/TILESTORE.

• The source/destination location in memory for the TILELOAD/TILESTORE.

• The stride (bytes) in memory between subsequent rows of the tile.
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Lines 6—10 in Example 20-1 illustrate how a tile is loaded from memory. 

For the sake of readability, a tile template class abstraction is introduced. The number of rows in the tile 
and the number of column bytes per row parametrizes the abstraction.

20.5.3 B MATRIX LAYOUT
Like the Intel® DL Boost use case, the B matrix must undergo a re-layout before it can be used within the 
corresponding Intel AMX multiply instruction. The re-layout procedure is as follows:

Example 20-1.  Pseudo-Code for the TILEZERO, TILELOAD, and TILESTORE Instructions

template<size_t rows, size_t bytes_cols> class tile {

public:

  friend void TILEZERO(tile& t) {

    memset(t.v, 0, sizeof(v));

  }

  friend void TILELOAD(tile& t, void* src, size_t bytes_stride) {

    for (size_t row = 0; row < rows; ++row)

      for (size_t bcol = 0; bcol < bytes_cols; ++bcol)

        t.v[row][bcol] = static_cast<int8_t*>(src)[row*bytes_stride + bcol];

  }

friend void tilestore(tile& t, void* dst, size_t bytes_stride) {

    for (size_t row = 0; row < rows; ++row)

      for (size_t bcol = 0; bcol < bytes_cols; ++bcol)

        static_cast<int8_t*>(dst)[row*bytes_stride + bcol] = t.v[row][bcol];

  }

template <class TC, class TA, class TB> 

friend void tdp(TC &tC, TA &tA, TB &tB);

private:

  int8_t v[rows][bytes_cols];

};

// clang-format on

template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB)

}
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Example 20-2.  B Matrix Re-Layout Procedure

The following examples show the data re-layout process for a 64x16 int8 B matrix and a 32x16 bfloat16 
B matrix (corresponding to the maximum-sized B-tile).

Example 20-3.  Original Layout of 32x16 bfloat16 B-Matrix

Example 20-4.  Re-Layout of 32x16 bfloat16 B-Matrix

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N]; // Original B matrix
type_t B_mem[K/KPACK][N][KPACK]; // Re-laid B matrix

for (int k = 0; k < K; ++k)
  for (int n = 0; n < N; ++n)
    B_mem[k/KPACK][n][k%KPACK] = B_mem_orig[k][n];

Row0: {0, 1, 2, 3, … 14, 15}
Row1: {16, 17, 18, 19, … 30, 31}
Row2: {32, 33, 34, 35, … 46, 47}
Row3: {48, 49, 50, 51, … 62, 63}
Row4: {64, 65, 66, 67, … 68, 79}
Row5: {80, 81, 82, 83, … 94, 95}
Row6: {96, 97, 98, 99, … 110, 111}
Row7: {112, 113, 114, 115, … 128, 127}
Row8: {128, 129, 130, 131, … 142, 143}
Row9: {144, 145, 146, 147, … 158, 159}
...
Row30: {480, 481, 482, 483, … 494, 495}
Row31: {496, 497, 498, 499, … 510, 511}

Row0: {0, 16, 1, 17, 2, 18, … 14, 30, 15, 31}
Row1: {32, 48, 33, 49, 34, 50, … 46, 62, 47, 63}
Row2: {64, 80, 65, 81, 66, 82, … 78, 94, 79, 95}
Row3: {96, 112, 97, 113, 98, 114… 110, 126, 111, 127}
Row4: {128, 114, 129, 115,130, 116, … 142, 158, 143, 159}
Row5: {160, 176, 161, 177, 162, 178, … 174, 190, 175, 191}
Row6: {192, 208, 193, 209, 194, 210, … 206, 222, 207, 223}
Row7: {224, 240, 225, 245,226, 246, … 238, 254, 239, 255}
Row8: {256, 272, 257, 273, 258, 274, … 270, 286, 271, 287}
Row9: {288, 304, 289, 305, 290, 290, … 302, 318, 303, 319}
...
Row14: {448, 464, 449, 465, 450, 466,… 462, 478, 463, 479}
Row15: {480, 496, 481, 497, 482, 498,… 494, 510 495, 511}
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Example 20-5.  Original Layout of 64 x 16 unt8 B-Matrix

Example 20-6.  Re-Layout of 32x16 bfloat16 B-Matrix

20.5.4 STRAIGHTFORWARD GEMM IMPLEMENTATION
This is the GEMM reference code. Its performance is sub-optimal. See Section 20.5.5.3 for optimal GEMM 
code. Begin implementation by defining the following:

Example 20-7.  Common Defines

Row0: {0, 1, 2, 3, … 14, 15}
Row1: {16, 17, 18, 19, … 30, 31}
Row2: {32, 33, 34, 35, … 46, 47}
Row3: {48, 49, 50, 51, … 62, 63}
Row4: {64, 65, 66, 67, … 68, 79}
Row5: {80, 81, 82, 83, … 94, 95}
Row6: {96, 97, 98, 99, … 110, 111}
Row7: {112, 113, 114, 115, … 128, 127}
Row8: {128, 129, 130, 131, … 142, 143}
Row9: {144, 145, 146, 147, … 158, 159}
...
Row62: {992, 993, 994, 995, … 1006, 1007}
Row63: {1008, 1009, 1010, 1011,… 1022 1023}

Row0: {0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, … 15, 31, 47, 63}
Row1: {64, 80, 96, 112, 65, 81, 97, 113, … 79, 95, 111, 127}
Row2: {128, 144, 160, 176, 129, 145, … 143, 159, 175, 191}
Row3: {192, 208, 224, 240, 193, … 207, 223, 239, 255}
Row4: {256, 272, 288, 304, 257, … 271, 287, 303, 319}
Row5: {320, 336, 352, 368, 321, … 335, 351, 367, 383}
Row6: {384, 400, 416, 432,385, … 399, 415, 431, 447}
Row7: {448, 464, 480, 496, 449, … 463, 479, 495, 511}
Row8: {512, 528, 544, 560,513 … 527, 543, 559, 575}
Row9: {576, 592, 608, 624, 577… 591, 607, 623, 639}
...
Row14: {896 912, 928, 944, 897,… 911, 927, 943, 959}
Row15: {960, 976, 992, 1008, 961, … 975, 991, 1007, 1023}

/* 1 of 2 */

1 #define M ... // Number of rows in the A or C matrices

2 #define K ... // Number of columns in the A or rows in the B matrices

3 #define N ... // Number of columns in the B or C matrices

4 #define M_ACC ... // Number of C accumulators spanning the M dimension

5 #define N_ACC ... // Number of C accumulators spanning the N dimension

6 #define TILE_M ... // Number of rows in an A or C tile

7 #define TILE_K ... // Number of columns in an A tile or rows in a B tile

8 #define TILE_N ... // Number of columns in a B or C tile
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Data type_t is the type being operated upon, i.e., signed/unsigned int8 or bfloat16. For the description of 
KPACK, see Section 20.5.5. The tile template class and the three functions that operate on it are the 
same as the ones introduced in Example 20-7. TILEZERO (t) resets the contents of tile t to 0, 
TILELOAD(t, src, stride) and loads tile t with the contents of data at src with a stride of stride between 
consecutive rows. TILESTORE (t, dst, stride) stores the contents of tile t to dst with a stride of stride 
between consecutive rows. TDP(tC,tA,tB) also performs a matrix multiplication equivalent of 
tC=tC+tA×tB. In reality, tiles are defined by known compile-time integers, and the actual code operating 
on tiles looks slightly different. Please visit the GitHub Repository for proper usage.

The following is a simple implementation of the GEMM of the matrices stored in A_mem and B_mem. 

/* 2 of 2 */

9

10 typedef ... type_t; // The type of data being operated on

11 typedef ... res_type_t; // The data type of the result

12

13 #define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

14

15 type_t A_mem[M][K]; // A matrix

16 type_t B_mem[K/KPACK][N][KPACK]; // B matrix

17 res_type_t C_mem[M][N]; // C matrix

18

19 template<size_t rows, size_t bytes_cols> class tile;

20 template<class T> void TILEZERO (T& t);

21 template<class T> void TILELOAD (T& t, void* src, size_t stride);

22 template<class T> void TILESTORE(T& t, void* dst, size_t stride);

23 template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB) {

24        int32_t v;

25        for (size_t m = 0; m < TILE_M; m++) {

26            for (size_t k = 0; k < TILE_K / KPACK; k++) {

27                for (size_t n = 0; n < TILE_N; n++) {

28                    memcpy(&v, &tC.v[m][n * 4], sizeof(v));

29                    v += tA.v[m][k * 4] * tB.v[k][n * 4];

30                    v += tA.v[m][k * 4 + 1] * tB.v[k][n * 4 + 1];

31                    v += tA.v[m][k * 4 + 2] * tB.v[k][n * 4 + 2];

32                    v += tA.v[m][k * 4 + 3] * tB.v[k][n * 4 + 3];

33                    memcpy(&tC.v[m][n * 4], &v, sizeof(v));

34                }

35            }

36        }

37   } 

https://github.com/intel/optimization-manual
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Example 20-8.  Reference GEMM Implementation

This implementation is the reference point in the following discussions.

20.5.5 OPTIMIZATIONS

20.5.5.1  Minimizing Tile Loads
Redundant tile loads may severely impact performance due to the sizable amount of data loaded into the 
tiles, unnecessary cache evictions, etc. To minimize tile loads, it is essential to utilize the data as 
completely as possible once loaded into the tile.

for (int n = 0; n < N; n += N_ACC*TILE_N) {

  for (int m = 0; m < M; m += M_ACC*TILE_M) {

    tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];

    for (int n_acc = 0; n_acc < N_ACC; ++n_acc)

      for (int m_acc = 0; m_acc < M_ACC; ++m_acc)

        TILEZERO(tC[m_acc][n_acc]);

    for (int k = 0; k < K; k += TILE_K) {

      for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

        tile<TILE_K/KPACK, TILE_N*KPACK> tB;

        TILELOAD(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);

        for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

          tile<TILE_M, TILE_K*sizeof(type_t)> tA;

          TILELOAD(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));

          tdp(tC[m_acc][n_acc], tA, tB);

        }

      }

    }

    for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

      for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

        int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;

        tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));

      }

    }

  }

}
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Location of the K Loop: Outside of the M_ACC and N_ACC Loops

The three loops in lines 8–18 of Example 20-8 could also have been written this way:

Example 20-9.  K-Dimension Loop as Innermost Loop–A, a Highly Inefficient Approach

While both approaches yield correct results, there are K/TILE_K×N_ACC B tile loads are in the reference 
implementation. Additionally, K/TILE_K×N_ACC×M_ACC B tile loads in the implementation presented in 
this section. The number of A tile loads is identical.

This approach is also characterized by excessive pressure on the memory and an increased number of 
tile loads.

Suppose the B_mem data resides in main memory. 

• In the reference implementation, a new chunk of TILE_K×TILE_N B data is read every M_ACC 
iteration of the inner loop. 

• The inner loop then reuses the read data. 

In the current implementation:

• When n_acc == m_acc == 0, a new chunk of TILE_K×TILE_N B data is read every iteration of the 
inner loop. 

• Then the same data is read (presumably from caches) on subsequent iterations of n_acc, m_acc. 

• This burst access pattern of reads from main memory results in increased data latency and decreased 
performance.

Hence, keeping the K-dimension loop outside the M_ACC and N_ACC loops is recommended.

Pre-Loading Innermost Loop Tiles

Consider the following replacement code for the code in lines 8–18 of Example 20-10:

for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

  tile<TILE_K/KPACK, TILE_N*KPACK> tB;

  for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

    tile<TILE_M, TILE_K*sizeof(type_t)> tA;

    for (int k = 0; k < K; k += TILE_K) {

      TILELOAD(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);

      TILELOAD(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));

      tdp(tC[m_acc][n_acc], tA, tB);

    }

  }

}
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Example 20-10.  Innermost Loop Tile Pre-Loading

• The A-tile has been extended to an array of A-tiles (line 2) and pre-read the A tiles for the current K 
loop iteration (lines 3–4). 

• A pre-read A-tile is used in the tile multiplication (line 9). 

• There were K/TILE_K×N_ACC×M_ACC A-tile reads in the reference implementation, while there are 
only K/TILE_K×M_ACC A-tile reads in the current implementation.

Hence, preallocation and pre-reading the tiles of the innermost loop (tA[M_ACC] in this case) is 
recommended. 

The maximum number of tiles used at any given time in this scenario is N_ACC×M_ACC+M_ACC+1 
instead of N_ACC×M_ACC+2 in the reference implementation. Since this optimization requires the 
preallocation of additional M_ACC-1 tiles and tiles are a scarce resource, if N_ACC<M_ACC, switching the 
order of the N_ACC and M_ACC loops might be beneficial. This way, it is possible to allocate N_ACC-
1<M_ACC-1 additional tiles:

Example 20-11.  Switched Order of M_ACC and N_ACC Loops

1 for (int k = 0; k < K; k += TILE_K) {

2 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];

3 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)

4 TILELOAD(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));

5 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

6 tile<TILE_K/KPACK, TILE_N*KPACK> tB;

7 TILELOAD(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);

8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

9 tdp(tC[m_acc][n_acc], tA[m_acc], tB);

10 }

11 }

12 }

for (int k = 0; k < K; k += TILE_K) {

  tile<TILE_K/KPACK, TILE_N*KPACK> tB[N_ACC];

  for (int n_acc = 0; n_acc < N_ACC; ++n_acc)

    TILELOAD(tB[n_acc], B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);

  for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

    tile<TILE_M, TILE_K*sizeof(type_t)> tA;

    TILELOAD(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));

    for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

      tdp(tC[m_acc][n_acc], tA, tB[n_acc]);

    }

  }

} 
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2D Accumulator Array vs. 1D Accumulator Array

Consider Example 20-10 with the following scenarios:

• N_ACC=2,M_ACC=2

• N_ACC=4,M_ACC=1

As stated before, the number of A tile loads in lines 3–11 is M_ACC, and the number of B tile loads is 
N_ACC. Thus, the total number of tile loads (M_ACC+N_ACC) is 4 in the first scenario vs. 5 in the second 
one (an increase of 25%), even though both scenarios perform the same amount of work.

Hence, using 2D accumulator arrays is recommended. Selecting dimensions close to square is strongly 
recommended (since x=y minimizes f(x,y)=x+y under the constraint x×y=const).

20.5.5.2  Software Pipelining of Tile Loads and Stores
It is a best practice to interleave instructions using different resources so they may be executed in 
parallel, preventing a bottleneck involving a specific resource. Therefore, preventing sequential 
TILELOADs and TILESTOREs (see lines 19–23 of Example 20-8 and lines 3–4 of Example 20-10) is 
recommended. Instead, interleave them with the tdp instructions (see Example 20-12).

20.5.5.3  Optimized GEMM Implementation
Below is the original code from Example 20-8, augmented with the insights from Example 20-10, with tile 
loads and stores interleaved with tdps:

Example 20-12.  Optimized GEMM Implementation

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {

2   for (int m = 0; m < M; m += M_ACC*TILE_M) {

3     tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];

4     tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];

5     tile<TILE_K/KPACK, TILE_N*KPACK> tB;

6 

7     for (int n_acc = 0; n_acc < N_ACC; ++n_acc)

8       for (int m_acc = 0; m_acc < M_ACC; ++m_acc)

9         TILEZERO(tC[m_acc][n_acc]);

10

11    for (int k = 0; k < K; k += TILE_K) {

12      for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

13        TILELOAD(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);

14        for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

15          if (n_acc == 0)

16            TILELOAD(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));

17          tdp(tC[m_acc][n_acc], tA[m_acc], tB);

18          if (k == K - TILE_K) {

19            int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;

20            tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));

21          }
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While placing the tile loads and stores under conditions inside the main loop (lines 13, 16, 20), conditions 
can be eliminated by sufficiently unrolling the loops.

The rest of this section presents a specific example of GEMM implemented in low-level Intel AMX 
instructions. This is to show a full performance potential from using Intel AMX extensions.

Example 20-13.  Dimension of Matrices, Data Types, and Tile Sizes

The following code is an example of the algorithm outlined in Example 20-12.

Example 20-14.  Optimized GEMM Assembly Language Implementation

/* 2 of 2 */

22        }

23      }

24    }

25  }

26} 

#define M 32

#define K 128

#define N 32

#define M_ACC 2

#define N_ACC 2

#define TILE_M 16

#define TILE_K 64

#define TILE_N 64

typedef int8_t type_t

typedef int32_t res_type_t

/*1 of 2*/

1 typedef struct {

2 uint8_t palette_id; 

3 uint8_t startRow;

4 uint8_t reserved[14]; 

5 uint16_t cols[16]; 

6 uint8_t rows[16];

7 } __attribute__ ((__packed__)) TILECONFIG_t;

8

9 static const TILECONFIG_t tc = {

10 1, // palette_id

11 0, // startRow

12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // reserved - must be

13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // calls for 7 tiles used
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Lines 1—12 in Example 20-14 define the tile configuration for this example and contain information about 
tile sizes. Tile configuration should be loaded before executing Intel AMX instructions (line 16). Tile sizes 
are defined by the configuration at load time and can’t be changed dynamically (unless TILERELEASE is 
called). The ‘palette_id’ field in the configuration specifies the number of logical tiles available; palette_id 
== 1 means 8 logical tiles are available, named tmm0 through tmm7 are available. This example uses 
seven logical tiles (tmm4, tmm5 for A, tmm6 for B, tmm0-tmm3 for C).

/*2 of 2*/

14 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // rows for 7 tiles used

15 };

16

17

18 _asm {

19 ldtilecfg tc # Load tile config

20 mov r8, A_mem # Initialize register for A

21 mov r9, B_mem # Initialize register for B

22 mov r10, C_mem # Initialize register for C

23

24 mov r11, 128 #  Initialize register for strides

25 TILELOADD tmm6, [r9 + r11*1] #  Load B for n_acc = 0, k_acc = 0

26 TILELOADD tmm4, [r8 + r11*1]            #  Load A for m_acc = 0, k_acc = 0

27 TILEZERO tmm0                           #  Zero accumulator tile

28 tdpbssd tmm0, tmm4, tmm6 #  Multiply-add tmm0 += tmm4 * tmm6

29 TILELOADD tmm5, [r8 + r11*1 + 2048] #  Load A for m_acc = 1, k_acc = 0

30 TILEZERO tmm1                           #  Zero accumulator tile

31 tdpbssd tmm1, tmm5, tmm6 #  Multiply-add tmm1 += tmm5 * tmm6

32 TILELOADD tmm6, [r9 + r11*1 + 64 ] #  Load B for n_acc = 1, k_acc = 0

33 TILEZERO tmm2                           #  Zero accumulator tile

34 tdpbssd tmm2, tmm4, tmm6                #  Multiply-add tmm2 += tmm4 * tmm6

35 TILEZERO tmm3                           #  Zero accumulator tile

36 tdpbssd tmm3, tmm5, tmm6                #  Multiply-add tmm3 += tmm5 * tmm6

37 TILELOADD tmm6, [r9 + r11*1 + 2048] #  Load B for n_acc = 0, k_acc = 1

38 TILELOADD tmm4, [r8 + r11*1 + 64]       #  Load A for m_acc = 0, k_acc = 1

39 tdpbssd tmm0, tmm4, tmm6 #  Multiply-add tmm0 += tmm4 * tmm6

40 TILESTORED [r10 + r11*1], tmm0 #  Store C for m_acc = 0, n_acc = 0

41 TILELOADD tmm5, [r8 + r11*1 + 2112]     #  Load A for m_acc = 1, k_acc = 1

42 tdpbssd tmm1, tmm5, tmm6                #  Multiply-add tmm1 += tmm5 * tmm6

43 TILESTORED [r10 + r11*1 + 2048], tmm1   #  Store C for m_acc = 1, n_acc = 0

44 TILELOADD tmm6, [r9 + r11*1 + 2112]    #  Load B for n_acc = 1, k_acc = 1

45 tdpbssd tmm2, tmm4, tmm6                #  Multiply-add tmm2 += tmm4 * tmm6

46 TILESTORED [r10 + r11*1 + 64], tmm2     #  Store C for m_acc = 0, n_acc = 1

47 tdpbssd tmm3, tmm5, tmm6                #  Multiply-add tmm3 += tmm5 * tmm6

48 TILESTORED [r10 + r11*1 + 2112], tmm3   #  Store C for m_acc = 1, n_acc = 1

49 }
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According to the dimensions specified, the K-loop consists of two iterations (cf. code listing 8.1, line 11) 
according to the dimensions specified in the example. Lines 23-34 implement the first iteration, and lines 
35-46 the second iteration. Note the interleaving of the tdp and TILESTORE instructions to hide the high 
cost of TILESTORE operation.

Variable Input Dimensions

The code in Example 20-12 and 20-14 process an entire matrix of inputs of size MxK. Sometimes, only 
part of the input is significant, so it is beneficial to adapt the first significant m rows of the input, where 
m < M.  For example, taking the GEMM dimensions described above with the choice of a 1D accumulator 
array of N_ACC=2,M_ACC=1, when accepting data as input with at most sixteen significant rows, we can 
degenerate the m loop (line 2 in Example 20-12) essentially reducing the computation by half.

Notably, in variable M dimension use cases there is an advantage to 1D accumulators. Up to N_ACC=6, 
M_ACC=1 dimensions are possible if N is 96 or larger, one tile for A, one for B, and six for the 
accumulator. 

20.5.5.4  Direct Convolution with Intel® AMX
Direct convolution is performed directly on the input data; no data replication is required. However, there 
are some layout considerations.

Activations Layout

Similar to the Intel DL Boost use case, the activations are laid out in a layout obtained from the original 
layout by the following procedure:

Example 20-15.  Activations Layout Procedure

This procedure on the left side of the diagram below shows the conversion of a 3-dimensional tensor into 
a 2-dimensional matrix:

#define K C  // K-dimension of the A matrix = channels

#define M H*W // M-dimension of the A matrix = spatial

type_t A_mem_orig[C][H][W]; // Original activations tensor

type_t A_mem[H][W][K]; // Re-laid A matrix7

for (int c = 0; c < C; ++c)

for (int h = 0; h < H; ++h)

for (int w = 0; w < W; ++w)

A_mem[h][w][c] = A_mem_orig[c][h][w];
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Figure 20-3.  Activations layout

The procedure shown on the right is identical for the outputs (for example, the activations of the next 
layer in the topology).

Weights Layout

Similar to the Intel DL Boost use case, the weights are re-laid by the following procedure:

Example 20-16.  Weights Re-Layout Procedure

#define KH ...                           // Vertical dimension of the weights

#define KW ... // Horizontal dimension of the weights

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N][KH][KW]; // Original weights

type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // Re-laid B matrices

for (int kh = 0; kh < KH; ++kh)

  for (int kw = 0; kw < KW; ++kw)

    for (int k = 0; k < K; ++k)

      for (int n = 0; n < N; ++n)

        B_mem[kh][kw][k/KPACK][n][k%KPACK] = B_mem_orig[k][n][kh][kw];
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The procedure transforms the original 4-dimensional tensor into a series of 2-dimensional matrices (a 
single matrix is highlighted in orange in Example 20-16) as illustrated in the following diagram for 
KH=KW=3, resulting in a series of nine B-matrices:

Figure 20-4.  Weights Re-Layout

20.5.5.5  Convolution - Matrix-like Multiplications and Summations Equivalence
Figure 20-5 illustrates the equivalence between convolution and summation of a series of matrix-like 
multiplications between subsets of the 2-dimensional A-matrix representing the 3-dimensional 
activations tensor. The 2-dimensional B-matrices correspond to the various spatial elements of the 
weights filter.

Figure 20-5.  Convolution-Matrix Multiplication and Summation Equivalence
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The A-matrix subset participating in the matrix-like multiplication depends on the spatial weight element 
in question (i.e., the kh,kw coordinates, or the index in the range 0–8 in the previous example). For each 
weight element, the A-matrix’s participating rows will interact with the weight element when the filter is 
slid over the activations. For example, when sliding the filter over the activations in the previous 
example, weight element 0 will only interact with activation elements 0, 1, 2, 5, 6, 7, 10, 11, and 12. For 
example, it will not interact with activation element four because when the filter is applied in such a 
manner (i.e., weight element 0 interacts with activation element 4), weight elements 2, 5, and 8 leave 
the activation frame entirely. The A-matrix subsets for several weight elements are illustrated in the 
following figure.

Figure 20-6.  Matrix-Like Multiplications Part of a Convolution
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20.5.5.6  Optimized Convolution Implementation
Replace the common defines in Example 20-7 with the following:

Example 20-17.  Common Defines for Convolution

Replace the implementation in Example 20-12 with the following:

#define H ... // The height of the activation frame

#define W ... // The width of the activation frame

#define MA (H*W) // The M dimension (rows) of the A matrix

#define K ... // Number of activation channels

#define N ... // Number of output channels

#define KH ...           // The height of the weights kernel

#define KW ...          // The width of the weights kernel

#define SH ...           // The vertical stride of the convolution

#define SW ...           // The horizontal stride of the convolution

#define M_ACC ...        // Number of C accumulators spanning the M dimension

#define N_ACC ...        // Number of C accumulators spanning the N dimension

#define TILE_M ...       // Number of rows in an A or C tile

#define TILE_K ...       // Number of columns in an A tile or rows in a B tile

#define TILE_N ...       // Number of columns in a B or C tile

#define HC ((H-KH)/SH+1) // The height of the output frame

#define WC ((W-KW)/SW+1) // The width of the output frame

#define MC (HC*WC) // The M dimension (rows) of the C matrix

typedef ... type_t;      // The type of the data being operated on

typedef... res_type_t;  // The data type of the result

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t A_mem[H][W][K];                  // A matrix (equivalent to A_mem[H*W][K])

type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // B matrices

res_type_t C_mem[MC][N];                 // C matrix

template<size_t rows, size_t cols> class tile;

template<class T> void TILEZERO (T& t);

template<class T> void TILELOAD (T& t, void* src, size_t stride);

template<class T> void TILESTORE (T& t, void* dst, size_t stride);

template<class TC, class TA, class TB> void tdp(TC& tC, TA& tA, TB& tB);

int mc_to_ha(int mc) {return mc / HC * SH;} // C matrix M -> A tensor h coord

int mc_to_wa(int mc) {return mc % HC * SW;} // C matrix M -> A tensor w coord
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Example 20-18.  Optimized Direct Convolution Implementation

The divergences highlighted in yellow in Example 20-12 include:

• The loop over the M-dimension (line 2) references the M-dimension of the C-matrix (since the M-
dimensions of A and C no longer have to be the same). To get the corresponding A-matrix m index 
from a C-matrix m index, one must employ the conversion functions mc_to_ha() and mc_to_wa() 
(line 20).

• There are additional loops over the weights kernel dimensions KH and KW (lines 12–13), which define 
the B-matrix to be used (line 16), enter into the condition for accumulator tile storing (line 24) and 
computation of A-matrix coordinates (line 20).

• The stride of the A tile load must account for the convolutional horizontal stride (line 21).

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {

2   for (int m = 0; m < MC; m += M_ACC*TILE_M) {

3     tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];

4     tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];

5     tile<TILE_K/KPACK, TILE_N*KPACK> tB;

6 

7     for (int n_acc = 0; n_acc < N_ACC; ++n_acc)

8       for (int m_acc = 0; m_acc < M_ACC; ++m_acc)

9         TILEZERO(tC[m_acc][n_acc]);

10

11    for (int k = 0; k < K; k += TILE_K) {

12      for (int kh = 0; kh < KH; ++kh) {

13        for (int kw = 0; kw < KW; ++kw) {

14          for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

15            int nc = n + n_acc*TILE_N;

16            TILELOAD(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);

17            for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

18              int mc = m + m_acc*TILE_M;

19              if (n_acc == 0) {

20                int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;

21                TILELOAD(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));

22              }

23              tdp(tC[m_acc][n_acc], tA[m_acc], tB);

24              if (k + kh + kw == K - TILE_K + KH + KW - 2)

25                tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));

26            }

27          }

28        }

29      }

30    }

31  }

32 }
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Note that care should be taken to define TILE_M*M_ACC so that it cleanly divides WC (the width of the 
output frame), i.e., WC%(TILE_M*M_ACC)==0. Otherwise, some tiles will end up loading data that 
should not be multiplied by the corresponding weight element (see Figure 20-6). Possible mitigations of 
this issue:

• An M_ACC loop with a dynamic upper limit depending on the current position in A.

• Use different sized A tiles (and correspondingly C tiles) depending on the current position in A (if 
there are enough free tiles, performing TILECONFIG during the convolution is highly discouraged).

• Define TILE_M without consideration for WC and remove/disregard the “junk” data from the results at 
the post-processing stage (code not shown). Care should be taken in this case concerning the 
advancement of the m index (line 2) since the current assumption is that every row of every tile is 
valid (corresponds to a row in the C matrix). This is no longer true if “junk” data is loaded: a C-tile will 
have less than TILE_M rows of C.

Location of the KH,KW Loops

As shown in Example 20-9, putting the loop over the K dimension inside an inner M_ACC or N_ACC loop 
would be injudicious. 

The same considerations hold in the case of the kh,kw loops. While there is no functional obstacle 
precluding the positioning of the kh,kw loops further up (before lines 12-13), it is recommended to keep 
them under the K loop and above the M_ACC, N_ACC loops because, during the traversal of kh,kw with 
the same k value, the TILELOAD of A-data (line 21) will have much overlap with A-data loaded for 
previous values of kh,kw (with the same k value). This data will likely reside in the lowest-level cache. 
Moving the kh,kw loops upward will reduce that likelihood.

20.6 CACHE BLOCKING

Data movement costs vary greatly depending on where the data lies in the cache hierarchy. When the 
matrices involved in a GEMM or convolution are larger than the available cache, computations must 
proceed in such a manner as to optimize data reuse from the cache. A simple cache-blocking scheme is 
implemented to simultaneously process partial blocks of the A, B, and C matrices.

20.6.1 OPTIMIZED CONVOLUTION IMPLEMENTATION WITH CACHE BLOCKING
The following example focuses on implementing cache blocking for the optimized convolution 
implementation described in the Optimized Convolution Implementation <XREF> section. However, note 
that similar changes can also be made to the optimized GEMM implementation. Alternatively, the GEMM 
implementation can be derived as a special case of convolution with KH=KW=1 and SH=SW=1.

In addition to the common defines in Example 20-17, add the following:

Example 20-19.  Additional Defines for Convolution with Cache Blocking

Replace the implementation in Example 20-18 with the following:

#define MC_CACHE ... // Extent of cache block along the M dimension of the C matrix

#define K_CACHE ... // Extent of cache block along the K dimension

#define N_CACHE ... // Extent of cache block along the N dimension

typedef ... acc_type_t; // The accumulation data type (either int32 or float)

acc_type_t aC_mem[M_ACC][N_ACC][TILE_M][TILE_N]; // Accumulator buffers of C
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Example 20-20.  Optimized Convolution Implementation with Cache Blocking

/* 1 of 2 */

1 for (int nb = 0; nb < N; nb += N_CACHE) {

2   for (int mb = 0; mb < MC; mb += MC_CACHE) {

3     for (int kb = 0; kb < K; kb += K_CACHE) {

4       for (int n = nb; n < nb + N_CACHE; n += N_ACC*TILE_N) {

5         for (int m = mb; m < mb + MC_CACHE; m += M_ACC*TILE_M) {

6           tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];

7           tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];

8           tile<TILE_K/KPACK, TILE_N*KPACK> tB;

9 

10          for (int n_acc = 0; n_acc < N_ACC; ++n_acc)

11            for (int m_acc = 0; m_acc < M_ACC; ++m_acc)

12              if (kb == 0)

13                TILEZERO(tC[m_acc][n_acc]);

14              else {

15                int m_aC = (m - mb) / TILE_M + m_acc;

16                int n_aC = (n - nb) / TILE_N + n_acc;

17                TILELOAD(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],

18                       TILE_N*sizeof(acc_type_t));

19              }

20

21          for (int k = kb; k < kb + K_CACHE; k += TILE_K) {

22            for (int kh = 0; kh < KH; ++kh) {

23              for (int kw = 0; kw < KW; ++kw) {

24                for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {

25                  int nc = n + n_acc*TILE_N;

26                  TILELOAD(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);

27                  for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {

28                    int mc = m + m_acc*TILE_M;

29                    if (n_acc == 0) {

30                      int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;

31                      TILELOAD(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));

32                    }

33                    tdp(tC[m_acc][n_acc], tA[m_acc], tB);

34                    if (k + kh + kw == K - TILE_K + KH + KW - 2)

35                      tilestore(tC[m_acc][n_acc], &C_mem[mc][nc],

36                                N*sizeof(res_type_t));

37                    else if (k + kh + kw == kb + K_CACHE - TILE_K + KH + KW - 2) {

38                      int m_aC = (m - mb) / TILE_M + m_acc;

39                      int n_aC = (n - nb) / TILE_N + n_acc;

40                      tilestore(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
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The loops over the N, MC, and K dimensions are replaced by loops over cache blocks of N, MC, and K.

Additional loops over the entire N, MC, and K dimensions are added at the outermost level. These loops 
have a step size equal to N, MC, and K cache blocks.

In the case of cache-blocking along the K dimension, additional calls to TILELOAD and TILESTORE are 
required to load and store intermediate accumulation results. Note that this adds additional memory 
traffic, especially for int8 output data types (as Accumulation data type is either int32_t or float). For this 
reason, it is generally not advisable to block along the K dimension.

For simplicity, assume the following relationships:

• N is an integer multiple of N_CACHE: an integer multiple of N_ACC*TILE_N.

• MC is an integer multiple of MC_CACHE: an integer multiple of M_ACC*TILE_M. As before, the 
condition WC%(TILE_M*M_ACC)==0 still holds.

• K is an integer multiple of K_CACHE: an integer multiple of TILE_K.

Define the following set of operations as the compute kernel of the optimized convolution implementation. 
First, initialize the accumulation tiles to zero (line 13) for a M_ACC*TILE_M x N_ACC*TILE_N chunk of 
the C-matrix. Next, for each of the KH*KW B-matrices, the matrix multiplication of the corresponding 
M_ACC*TILE_M x K chunk of the A-matrix by a K x N_ACC*TILE_N chunk of the B-matrix is performed, 
each time accumulating to the same set of accumulation tiles (lines 18–30). Finally, the results are stored 
in the C-matrix (line 32).

Continue with the computation of a full cache block of C-matrix, ignoring any blocking along the K 
dimension. First, the kernel is performed for the first chunks of the A, B, and C cache blocks. Next, the 
chunks of A and C advance along the M dimension, and the kernel is repeated with the same chunk set of 
the B-matrices. The above step is repeated until the last chunks of A and C in the current cache block 
have been accessed. Next, the chunks of B and C are advanced along the N-dimension by 
N_ACC*TILE_N, and the chunk of A returns to the beginning of its cache block.

Observe the following from the above description of the computation of a full cache block of the C-
matrix:

• For each kernel iteration, it is better if the current chunk of matrix A (roughly 
KH*M_ACC*TILE_M*K*sizeof(type_t)) fits into the DCU. This allows for maximal data reuse between 
the partially overlapping regions of A that need to be accessed by the different B matrices.

• Advancing from one chunk of matrix A to the next, it is better if the current chunk set of the B 
matrices (in total, KH*KW*K*N_ACC*TILE_N*sizeof(type_t)) fits into the DCU.

/* 2 of 2 */

41                                TILE_N*sizeof(acc_type_t));

42                    }

43                  }

44                }

45              }

46            }

47          }

48        }

49      }

50    }

51  }

52 }
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• Advancing from one chunk set of the B matrices to the next, it is better if the current cache block of 
matrix A fits into the MLC.

• Advancing from one cache block of matrix A to the next, it is better if the current cache block of the 
B matrices (in total, KH*KW*K*N_CACHE*sizeof(type_t)) fits into the MLC.

From these observations, a general cache-blocking strategy is choosing MC_CACHE and N_CACHE to be as 
large as possible while keeping the A, B, and C cache blocks in the MLC.

Intel® AMX-Specific Considerations

A specific feature of Intel AMX-accelerated kernels to keep in mind when applying the previous cache-
blocking recommendations is any post-processing of results from the Intel AMX unit (e.g., adding bias, 
dequantizing, converting between data types) must occur by way of vector registers. Thus, a buffer is 
needed to store results from the accumulation tiles and load them into vector registers for 
post-processing. Note that if acc_type_t is the same as res_type_t, the C-matrix itself can store 
intermediate results. However, the buffer is small (at most 4KB for the accumulation strategies described 
in “2D Accumulator Array vs. 1D Accumulator Array”) and easily fits into the DCU. While it should still be 
considered when determining the optimal cache block partitioning, it is unlikely to influence kernel 
performance strongly.

20.7 MINI-BATCHING IN LARGE BATCH INFERENCE 
Layers have different sizes and shapes, which require different cache and memory-blocking strategies. 
There are layers with a small spatial dimension (M) and relatively larger shared dimension (K) and SIMD 
dimension (N). In such layers, the weights are significantly larger than the inputs. Therefore, most load 
operations are weights matrix loads whose cost is high when the weights reside in memory or last level 
cache.

Running a large batch allows employing an optimization that amortizes the cost of loading the weight 
matrix. The idea is to use the same weights for multiple inputs, e.g., execute the same layer with multiple 
images. This optimization is highly applicable in CNNs where the inputs of the first layers are large while 
the weights are relatively small but end with small input images and large weight matrices. Optimal 
execution of the topology starts in the instance or image affinity, where a single input goes through one 
layer after another before the next input is retrieved. At some point, the topology execution switches to 
layer affinity, where the same layer processes several inputs (mini-batch) before continuing to the next 
layer.

For example, in ResNet-50, the conv-1 to conv-4 layers have relatively large IFMs and smaller weight 
matrices. However, many weight matrices are larger than MLC size (mid-level cache) in the conv-5 
layers. The switchover point from image affinity to layer affinity on a 4th Generation Intel® Xeon® 
Processor microarchitecture is the first layer of conv-5.

The diagram below illustrates six layers with four instances per thread (mini-batch of four). Boxes with 
identical colors identify the same layers in each column. Arrows flowing downward through each column’s 
layers represent the data flow of a particular instance. Translucent red arrows identify the execution 
order of layers with corresponding instances. The first four layers of the diagram have instance (aka 
image) affinity, and the last two have layer affinity.
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Figure 20-7.  Batching Execution Using Six Layers with Four Instances Per Thread

On Resnet-50, this optimization can yield a 17% performance gain.

20.8 NON-TEMPORAL TILE LOADS
When a regular tile load is issued, the data for the tile are placed in L2, L1, and then in the tile register 
(DRAM/L3->L2->L1->tile register), as with any other register load. This has the well-known benefit of 
reduced data read latency due to data proximity when recently accessed data are reaccessed after a 
short time. However, indiscriminate application of this approach might sometimes prove detrimental.

Consider the code in Example 20-8, referring to the unoptimized, unblocked implementation for 
simplicity. The five loops in the code listing alongside the total input (A) matrix data and weights (B) 
matrix data accessed at each loop level are shown in Table 20-3. The original row in the code listing is 
provided for convenience:

Table 20-3.  Five Loops in Example 20-8

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N] M×K K×N

2 m [0:M:M_ACC×TILE_M] M×K
K×N_ACC×TILE_N

8 k [0:K:TILE_K] MC_CACHE×K

9 n acc [0:N_ACC:1]
M_ACC×TILE_M×TILE_K TILE_K×N_ACC×TILE_N

12 m ac [0:M_ACC:1]
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20.8.1 PRIORITY INVERSION SCENARIOS WITH TEMPORAL LOADS
For the following discussion, assume:

• The data type is int8 (i.e., each element in the table above takes 1 byte).

• TILE_M=16, TILE_K=64, TILE_N=16 (i.e., all tiles are of size 1kB).

• L1 cache size is 32kB.

• M_AC=N_ACC=2.

Scenario One:

Consider the following scenario, including M=256, K=1024, and N=256. 

Table 20-4 illustrates accessed data sizes:

At the k loop level, the combined sizes of A and B accessed data will overflow the L1 cache by a factor of 
two. Proceeding to the m-level, since m is progressing, new A-data are constantly read (a total of 256kB-
32kB=224kB new A data), while the same 32kB of B data are being accessed repeatedly. Thus, a priority 
inversion occurs: new A-data placed in the L1 cache repeatedly are accessed only once. They evict the 
32kB of B data that are accessed eight times. Placement of A data in the L1 cache is not beneficial: the 
next time the same data are accessed will be in the n loop after 256kB (x8 L1 cache size) of A data has 
been read. Additionally, it is detrimental because it causes repeated eviction of 32kB of B data that could 
have been read from the L1 cache eight times.

Scenario Two:

Consider the following scenario, including M=32, K=1024, and N=256. Here, the M-dimension is covered 
in the m_acc loop, and the loop over m is redundant. The priority inversion is: as n advances, new B-data 
(accessed only once) repeatedly evict 32kB of A-data that could have been read (8 times) from the L1 
cache had it not been pushed out by B-data.

Here, the M-dimension is covered in the m_acc loop, and the loop over m is redundant. The priority 
inversion is: as n advances, new B-data (accessed only once) repeatedly evict 32kB of A-data that 
could have been read (8 times) from the L1 cache had it not been pushed out by B-data.

Table 20-4.  Accessed Data Sizes: Scenario One

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]
256kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K] 32kB

9 n acc [0:N_ACC:1]
32kB 2kB

12 m ac [0:M_ACC:1]

Table 20-5.  Accessed Data Sizes: Scenario Two

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]

32kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K]
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These two basic scenarios can be readily extended to the blocked code in Example 20-20.

NOTE
Due to the nature of convolution, the loops over kh, kw reuse most of the A-data.

The innermost loops m_acc, n_acc, kh,kw will access at most M_ACC kB of A data and KH×KW×N_ACC 
kB of B-data, which, in some cases (e.g., KH=KW=3, N_ACC=4) might already overflow the L1 cache 
size. Thus, several opportunities for priority inversions exist in this more complex loop structure, 
depending on the parameters in the table above:

• B-data evicting reusable A-data at the kh,kw loops level.

• A-data evicting reusable B-data at the m loop level.

• B-data evicting reusable A-data at the n loop level.

• A-data evicting reusable B-data at the mb loop level.

• B-data evicting reusable A-data at the nb loop level.

Solution to Priority Inversions: Non-Temporal Loads

Intel AMX architecture introduces a way to load tile registers bypassing the L1 cache via non-temporal 
tile loads (TILELOADDT1). This allows the user to deal with priority inversions such as those described 
above by loading the large, non-reusable data chunk with non-temporal loads. Thus, the larger chunk is 
prevented from evicting the smaller, frequently used data chunk. In Table 20-4, the A-tiles are loaded 
with non-temporal loads while loading B-tiles with temporal loads. This ensures that the B-tile loads at 
the m loop level will come from the L1 cache. In Table 20-5, the B-tiles are loaded with non-temporal 
loads while loading A-tiles with temporal loads, thus ensuring that the A-tile loads at the n loop level will 
come from the SL1 cache.

9 n acc [0:N_ACC:1]
2kB 2kB

12 m ac [0:M_ACC:1]

Table 20-6.  Accessed Data Sizes Extended to Blocked Code

Row Var Variable Range A Data Size B Data Size

1 nb [0:N:N_CACHE] M×K

2 mb [0:MC:MC_CACHE] M×K

3 kb [0:K:K_CACHE] MC_CACHE×K

4 n [nb:nb+N_CACHE:N_ACC×TILE_N]

MC_CACHE×K_CACHE K_CACHE×KH×KW×N_ACC×TILE_N5 m [mb:mb+MC_CACHE:M_ACC×TILE_M]

18 k [kb:kb+K_CACHE:TILE_K]

19 kh [0:KH:1] /*/*
TILE_K×KH×KW×N_ACC×TILE_N

20 kw [0:KW:1]

M_ACC×TILE_M×TILE_K21 n acc [0:N_ACC:1]
TILE_K×N_ACC×TILE_N

24 m ac [0:M_ACC:1]

Table 20-5.  Accessed Data Sizes: Scenario Two

Row Var Variable Range A Data Size B Data Size
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20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA 
REUSE

A convolution with a small-sized input frame can make the Intel AMX computation inefficient.

Consider the following example: a 7x7 input frame, with padding of 1 (size including padding is 9x9), 
convolved with a 3x3 filter to produce a 7x7 output frame.

Figure 20-8 shows the pieces participating in the convolution (in yellow) interacting with the khaki=0,0 
weight element.

Figure 20-8.  A Convolution Example

Thus, the yellow parts of the input frame are the only ones that should be loaded into A-tiles when 
processing weight element kh,kw=0,0. The white parts of the input frame should be ignored. This 
requires the number of tile rows to be set at seven, utilizing less than half of the A-tile, reducing B 
(weights) data reuse by a factor of two. Each A-tile is now half the size, and seven tiles are required to 
cover the spatial dimension. Because there are not seven tiles, B-tiles must be loaded twice as many 
times, potentially leading to significant performance degradation, depending on the size of the weights. 
This is usually inversely proportional to the spatial size of the input frame).

Figure 20-9 shows three A-tiles with sixteen rows and one tile with seven rows to cover the entire spatial 
dimension of the convolution.

Figure 20-9.  A Convolution Example with Large Tiles. 

Each tile is highlighted differently. The green, blue, and orange tiles now load those two “extra” pieces 
previously ignored. Those pieces will waste compute resources and take up two rows in the accumulator 
tiles. The user may ignore those rows in subsequent computations (e.g., int8-quantization, RELU, etc.), 
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complicating the implementation. The potential benefit of increased B-data reuse could be dramatic, 
however.

20.10 HANDLING INCONVENIENTLY-SIZED ACTIVATIONS
Occasionally, the spatial dimensions of an activation might be ill-suited for efficient tiling with tiles. 
Consider a GEMM with activations’ M=100. This poses a challenge: while the M dimension can be neatly 
tiled by ten tiles, each with ten rows, this approach is inefficient since a larger M dimension of 112 
requires only seven tiles with sixteen rows. This means that the data reuse for M=100 is 30% worse than 
for M=112.

The following solutions will be useful:

1. Define two types of A- and C-tiles – tiles with 16 rows and one tile with four. Use tiles of the first type 
for M=0..9 and the second type tile for M=96..99.

2. Allocate extra space in A and C buffers, as if M=112, and use tiles with 16 rows exclusively. The extra 
space need not be zeroed out or otherwise prepared in any way. In this case, the last (seventh) tile 
will load four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111). At the output, 
tile C will have four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111) which the 
user can then ignore.

The first solution does not require tampering with the A and C buffers and computes 100 tile rows, 
producing a clean result. Still, it requires additional A- and C-tiles unused throughout the computation 
except at the end. Since only eight tiles are available, this requirement can be costly and might reduce 
the data reuse (e.g., to use a 2D accumulator array, you would need three x2 C-tiles, two A-tiles, and two 
B-tiles, equaling ten tiles). The second solution avoids this requirement by complicating buffer handling 
and paying with additional loads, compute, and storing (it loads, computes, and stores 112 tile rows).

20.11 POST-CONVOLUTION OPTIMIZATIONS
Most Intel AMX-friendly applications are from the Deep Learning domain, where the data flows through 
multiple layers. It is often necessary to process the convolution output before passing it as an input to the 
next layer (processing operations depend on a specific application). 

This stage is called post-convolution.

20.11.1 POST-CONVOLUTION FUSION
As with Intel AVX-512 code, a critical optimization is the “fusion” of post-convolutional operations to the 
convolutional data they operate upon. Fusion reduces the memory hierarchy thrashing. Additionally, 
fusing the quantization step gains x2 (for bfloat16 data type) or x4 (for int8 data type) compute 
bandwidth and reduces memory bandwidth by x2 or x4, respectively.

Consider the code in Example 20-12. Lines 7-24 contain the entire GEMM operation for any M, N 
coordinates in the output. Thus, the optimal location to post-process the data computed in lines 7-24 is 
right before line 24 while it is still in the low-level cache.

In Example 20-21, the blue code illustrates a fully unrolled example from lines 7 through 24, for int8 
GEMM with K=192, N_ACC=M_ACC=2, TILE_M=2, TILE_K=64, TILE_N=16. The convolution code is 
fused with the post-convolution code (blue) that quantizes the output and ReLU. To keep the 
post-convolution code in the example short, an unrealistically low value of TILE_M=2 was chosen.

In that example, an additional buffer, temporary_C, contains the convolutional results of M_ACCxN_ACC 
tiles. The results are stored at the end of the convolutional part and loaded during the post-convolutional 
part. A temporary buffer is required because the size of the post-processed data is four times smaller. 
Hence, the convolutional output cannot be written directly to the output buffer.
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The GPRs r8, r9, r10, r11, and r14 point to the current location in the A, B, C, temporary_C, and q_bias 
(which holds the quantization factors and biases) buffers, respectively.

The macros A_OFFSET(m,k), B_OFFSET(k,n), C_OFFSET(m,n), C_TMP_OFFSET(m,n), Q_OFFSET(n), 
and BIAS_OFFSET(n) receive as arguments m,k,n tile indices and return the offset of the data from 
r8,r9,r10, r11, and r14, respectively.

Example 20-21.  Convolution Code Fused with Post-Convolution Code

/*1 of 3*/

1 #define TILE_N_B           (N)

2 #define A_OFFSET(m,k)     ((m)*K*TILE_M + (k)*TILE_K)

3 #define B_OFFSET(k,n)      ((k)*N*TILE_N*4 + (n)*TILE_N*4)

4 #define C_OFFSET(m,n)      ((m)*N*TILE_M + (n)*TILE_N)

5 #define C_TMP_OFFSET(m,n)((m)*N*TILE_M*4 + (n)*TILE_N*4)

6 #define Q_OFFSET(n)        ((n)*TILE_N*4)

7 #define BIAS_OFFSET(n)     ((n)*TILE_N*4 + N*4)

8 

9 static const TILECONFIG_t tc = {

10     1, // Palette ID

11     0, // Start row

12         0,  0,  0,  0,  0,  0,  0,  0, 0, 0, 0, 0, 0, 0, // Reserved – must be 0

13     64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0,     // Cols for 7 tiles used       

14     2, 2, 2, 2, 2, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0           // Rows for tiles used: 2 for A, C, 

15                                                      // 16 for B 

16  };

17

18 ldtilecfg tc      // Load tile config

19 mov r12, 192 // A stride

20 mov   r13, 128       // B, C_TMP stride

21 TILELOADD tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]

22 TILELOADD       tmm4, [r8 + r12*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]

23 TILEZERO tmm0                                         // Zero acc [m,n] = [0,0]

24 tdpbusd         tmm0, tmm4, tmm5

25 TILELOADD tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]

26 TILEZERO tmm2 // Zero acc [m,n] = [0,1]

27 tdpbusd tmm2, tmm4, tmm6

28 TILELOADD  tmm4, [r8 + r12*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]

29 TILEZERO tmm1                                        // Zero acc [m,n] = [1,0]

30 tdpbusd    tmm1, tmm4, tmm5

31 TILEZERO tmm3  // Zero acc [m,n] = [1,1]

32 tdpbusd tmm3, tmm4, tmm6

33 TILELOADD tmm5, [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]

34 TILELOADD tmm4, [r8 + r12*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]

35 tdpbusd tmm0, tmm4, tmm5
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/*2 of 3*/

36 TILELOADD tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]

37 tdpbusd tmm2, tmm4, tmm6

38 TILELOADD tmm4, [r8 + r12*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]

39 tdpbusd tmm1, tmm4, tmm5

40 tdpbusd tmm3, tmm4, tmm6

41 TILELOADD tmm5, [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]

42 TILELOADD tmm4, [r8 + r12*1 + A_OFFSET(0,2)]            // Load A [m,k] = [0,2]

43 tdpbusd tmm0, tmm4, tmm5

44 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]

45 TILELOADD tmm6, [r9 + r13*1 + B_OFFSET(2,1)]              // Load B [k,n] = [2,1]

46 tdpbusd tmm2, tmm4, tmm6

47 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2         // Store C tmp [m,n] = [0,1]

48 TILELOADD tmm4, [r8 + r12*1 + A_OFFSET(1,2)]             // Load A [m,k] = [1,2]

49 tdpbusd tmm1, tmm4, tmm5

50 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1        // Store C tmp [m,n] = [1,0]

51 tdpbusd tmm3, tmm4, tmm6

52 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]

53

54 vcvtdq2ps zmm0 , [r11 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float

55 vmovups zmm1 , [r14 + Q_OFFSET(0)] // q-factors for N=0

56 vmovups zmm2 , [r14 + BIAS_OFFSET(0)]  // biases    for N=0

57 vfmadd213ps zmm0 , zmm1 , zmm2  // zmm0  = zmm0  * q + b

58 vcvtps2dq       zmm0 , zmm0 // float -> int32

59 vpxord         zmm3 , zmm3 , zmm3 // Prepare zero ZMM

60 vpmaxsd         zmm0 , zmm0 , zmm3 // RELU (int32)

61 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0        // uint32 -> uint8

62 vcvtdq2ps zmm4 , [r11 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float

63 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4  = zmm4  * q + b

64 vcvtps2dq zmm4 , zmm4 // float -> int32

65 vpmaxsd zmm4 , zmm4 , zmm3                              // RELU (int32)

66 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4        // uint32 -> uint8

67 vcvtdq2ps zmm5 , [r11 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float

68 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5  = zmm5  * q + b

69 vcvtps2dq zmm5 , zmm5 // float -> int32

70 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)

71 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5        // uint32 -> uint8

72 vcvtdq2ps zmm6 , [r11 + C_TMP_OFFSET(1,0) + 4*TILE_N_B]   // int32 -> float

73 vfmadd213ps zmm6 , zmm1 , zmm2                              // zmm6  = zmm6  * q + b

74 vcvtps2dq zmm6 , zmm6                                     // float -> int32

75 vpmaxsd zmm6 , zmm6 , zmm3                              // RELU (int32)

76 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6        // uint32 -> uint8

77 vcvtdq2ps zmm7 , [r11 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
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20.11.2 INTEL® AMX AND INTEL® AVX-512 INTERLEAVING (SW PIPELINING)
A modern CPU has multiple functional units that can execute different instructions simultaneously. For 
example, a load instruction and an arithmetic instruction can execute in parallel. A commonly used 
approach for maximizing the utilization of various resources in parallel is the out-of-order execution, 
where the CPU might alter the order of the instructions to achieve higher resource utilization.

Intel AMX compute instructions are prime candidates for optimization because they utilize resources very 
lightly (1/2 of the available ALU ports, 1/TILE_M of the time).

Theoretically, the blue post-convolutional code of one iteration could execute in parallel to the Bold code 
in lines 3 through 25 (before the first TILESTORE) of the next iteration, where iteration is the execution 
of the code in Example 20-21. Unfortunately, this cannot be done automatically and efficiently by the 
CPU. Since the convolution (Bold) and post-convolution (blue) parts of the code tend to be sizable, the 
CPU can only overlap small portions efficiently before running out of resources in the out-of-order 
machine. Thus, a manual (SW) solution is required.

To reiterate: the blue code before the first TILESTORE can be run in parallel with the green code of the 
next iteration. This would overwrite temporary_C memory, which the post-convolution code reads from. 
To remove this dependency and maximize parallel execution, use double-buffering on temporary_C. 
Temporary_C would thus contain two buffers, interchanged every iteration.

In Example 20-32, the content deviates from the previous example by interleaving the current iteration’s 
convolutional code with the previous iteration’s post-convolutional code. Temporary_C is 
double-buffered, with r11 pointing to the buffer of the current iteration and r12 pointing to the previous 
iteration’s buffer. They are exchanged at the end of the iteration.

/*3 of 3*/

77 vcvtdq2ps zmm7 , [r11 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float

78 vmovups zmm8 , [r14 + Q_OFFSET(1)]                      // q-factors for N=1

79 vmovups   zmm9 , [r14 + BIAS_OFFSET(1)]                   // biases    for N=1

80 vfmadd213ps zmm7 , zmm8 , zmm9                              // zmm 7  = zmm7  * q + b

81 vcvtps2dq zmm7 , zmm7                                     // float -> int32

82 vpmaxsd zmm7 , zmm7 , zmm3                              // RELU (int32)

83 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8

84 vcvtdq2ps zmm10, [r11 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float

85 vfmadd213ps zmm10, zmm8 , zmm9 // zmm10 = zmm10 * q + b

86 vcvtps2dq zmm10, zmm10 // float -> int32

87 vpmaxsd zmm10, zmm10, zmm3                              // RELU (int32)

88 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10       // uint32 -> uint8

89 vcvtdq2ps zmm11, [r11 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float

90 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b

91 vcvtps2dq zmm11, zmm11 // float -> int32

92 vpmaxsd zmm11, zmm11, zmm3                              // RELU (int32)

93 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11       // uint32 -> uint8

94 vcvtdq2ps zmm12, [r11 + C_TMP_OFFSET(1,1) + 4*TILE_N_B]   // int32 -> float

95 vfmadd213ps zmm12, zmm8 , zmm9                              // zmm12 = zmm12 * q + b

96 vcvtps2dq zmm12, zmm12                                    // float -> int32

97 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)

98 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8
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Example 20-22.  An Example of a Short GEMM Fused and Pipelined with Quantization and ReLU

/*1 of 2*/

1 ldtilecfg       tc                                              // Load tile config

2  mov             r15, 192                                        // A stride

3  mov             r13, 128 // B, C_TMP stride

4  TILELOADD       tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]

5  TILELOADD       tmm4, [r8 + r15*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]

6  TILEZERO      tmm0 // Zero acc [m,n] = [0,0]

7  vcvtdq2ps zmm0, [r12 + C_TMP_OFFSET(0,0) + 0*TILE_N_B]   // int32 -> float

8  vmovups         zmm1, [r14 + Q_OFFSET(0)] // q-factors for N=0

9  vmovups         zmm2, [r14 + BIAS_OFFSET(0)] // biases    for N=0

10  vfmadd213ps zmm0, zmm1, zmm2 // zmm0 = zmm0 * q + b

11  vcvtps2dq zmm0, zmm0 // float -> int32

12  vpxord          zmm3, zmm3, zmm3                              // Prepare zero ZMM

13  vpmaxsd         zmm0, zmm0, zmm3                              // RELU (int32)

14  tdpbusd         tmm0, tmm4, tmm5

15 TILELOADD tmm6, [r9 + r13*1 + B_OFFSET(0,1)]               // Load B [k,n] = [0,1]

16 TILEZERO tmm2 // Zero acc [m,n] = [0,1]

17 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8

18 vcvtdq2ps zmm4 , [r12 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float

19 vfmadd213ps  zmm4 , zmm1 , zmm2                              // zmm4  = zmm4  * q + b

20 tdpbusd tmm2, tmm4, tmm6

21 TILELOADD   tmm4, [r8 + r15*1 + A_OFFSET(1,0)]              // Load A [m,k] = [1,0]

22 TILEZERO        tmm1                                            // Zero acc [m,n] = [1,0]

23 vcvtps2dq       zmm4 , zmm4                                   // float -> int32

24 vpmaxsd         zmm4 , zmm4 , zmm3                              // RELU (int32)

25 vpmovusdb       [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4        // uint32 -> uint8

26 tdpbusd         tmm1, tmm4, tmm5

27 TILEZERO        tmm3                                            // Zero acc [m,n] = [1,1]

28 vcvtdq2ps       zmm5 , [r12 + C_TMP_OFFSET(1,0) + 0*TILE_N_B]   // int32 -> float

29 vfmadd213ps     zmm5 , zmm1 , zmm2 // zmm5  = zmm5  * q + b

30 vcvtps2dq       zmm5 , zmm5                                     // float -> int32

31 vpmaxsd         zmm5 , zmm5 , zmm3                              // RELU (int32)

32 tdpbusd         tmm3, tmm4, tmm6

33 TILELOADD       tmm5 , [r9 + r13*1 + B_OFFSET(1,0)]              // Load B [k,n] = [1,0]

34 TILELOADD       tmm4 , [r8 + r15*1 + A_OFFSET(0,1)]              // Load A [m,k] = [0,1]

35 vpmovusdb       [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5        // uint32 -> uint8

36 vcvtdq2ps       zmm6 , [r12 + C_TMP_OFFSET(1,0) + 4*TILE_N_B]   // int32 -> float

37 vfmadd213ps     zmm6 , zmm1 , zmm2                              // zmm6  = zmm6  * q + b

38 tdpbusd         tmm0, tmm4, tmm5

39 TILELOADD       tmm6, [r9 + r13*1 + B_OFFSET(1,1)]              // Load B [k,n] = [1,1]

40 vcvtps2dq       zmm6 , zmm6                                     // float -> int32
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/*2 of 2*/

41 vpmaxsd         zmm6 , zmm6 , zmm3                              // RELU (int32)

42 vpmovusdb       [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6        // uint32 -> uint8

43 tdpbusd         tmm2 , tmm4, tmm6

44 TILELOADD       tmm4 , [r8 + r15*1 + A_OFFSET(1,1)]              // Load A [m,k] = [1,1]

45 vcvtdq2ps       zmm7 , [r12 + C_TMP_OFFSET(0,1) + 0*TILE_N_B]   // int32 -> float

46 vmovups         zmm8 , [r14 + Q_OFFSET(1)]                     // q-factors for N=1

47 vmovups         zmm9 , [r14 + BIAS_OFFSET(1)]                   // biases    for N=1

48 vfmadd213ps     zmm7 , zmm8 , zmm9                              // zmm7  = zmm7  * q + b

49 vcvtps2dq       zmm7 , zmm7                                     // float -> int32

50 vpmaxsd         zmm7 , zmm7 , zmm3                              // RELU (int32)

51 tdpbusd         tmm1 , tmm4, tmm5

52 vpmovusdb       [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7        // uint32 -> uint8

53 vcvtdq2ps       zmm10 , [r12 + C_TMP_OFFSET(0,1) + 4*TILE_N_B]   // int32 -> float

54 vfmadd213ps     zmm10 , zmm8 , zmm9                              // zmm10 = zmm10 * q + b

55 tdpbusd         tmm3 , tmm4, tmm6

56 TILELOADD       tmm5 , [r9 + r13*1 + B_OFFSET(2,0)]              // Load B [k,n] = [2,0]

57 TILELOADD       tmm4 , [r8 + r15*1 + A_OFFSET(0,2)]              // Load A [m,k] = [0,2]

58 vcvtps2dq       zmm10 , zmm10                                    // float -> int32

59 vpmaxsd         zmm10 , zmm10, zmm3                              // RELU (int32)

60 vpmovusdb       [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8

61 tdpbusd         tmm0, tmm4, tmm5

62 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]

63 TILELOADD       tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]

64 vcvtdq2ps       zmm11, [r12 + C_TMP_OFFSET(1,1) + 0*TILE_N_B]   // int32 -> float

65 vfmadd213ps     zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b

66 vcvtps2dq zmm11, zmm11                                    // float -> int32

67 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)

68 tdpbusd tmm2, tmm4, tmm6

69 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]

70 TILELOADD tmm4, [r8 + r15*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]

71 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8

72 vcvtdq2ps zmm12, [r12 + C_TMP_OFFSET(1,1) + 4*TILE_N_B]   // int32 -> float

73 vfmadd213ps     zmm12, zmm8 , zmm9                              // zmm12 = zmm12 * q + b

74 tdpbusd tmm1, tmm4, tmm5

75 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]

76 vcvtps2dq zmm12, zmm12 // float -> int32

77 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)

78 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8

79 tdpbusd tmm3, tmm4, tmm6

80 TILESTORED [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3         // Store C tmp [m,n] = [1,1]

81

82 xchg r11, r12 // Swap buffers for current/next iter
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Except for a larger TILE_M (N_ACC=M_ACC=2, TILE_M=16, TILE_K=64, TILE_N=16) on a [256x192] x 
[192x256] GEMM, application of this algorithm with the parameters laid out in section Section 20.8.1 
yielded an 18.5% improvement in running time vs. the non-interleaved code described in Section 
20.11.1.

20.11.3 AVOIDING THE H/W OVERHEAD OF FREQUENT OPEN/CLOSE OPERATIONS IN 
PORT FIVE

When the processor executes Intel AMX compute instructions (TDP*), it usually closes port five (one of 
the two Intel AVX-512 FMA ports) to conserve power. When the processor senses no more Intel AMX 
compute instructions in the pipeline, it opens port five. This open/close operation stalls the pipeline for 
a few cycles. Up to 20% performance degradation may be observed when the Intel AVX-512 instruction 
block contains 100 to 300 Intel AVX-512 instructions. 
We recommend adding one or two TILEZERO instructions in the middle of the green block, as illustrated 
in Figure 20-10, roughly one hundred Intel AVX-512 instructions apart. Such an addition ensures that 
port five remains closed during blocks of up to three hundred Intel AVX-512 instructions. For longer 
blocks, it is preferable not to insert TILEZERO since longer blocks execute faster on two open FMA ports. 
The processor does not open port five for blocks shorter than one hundred Intel AVX-512 instructions, so 
no special handling is necessary.

NOTE

The TILEZERO instruction is considered an Intel AMX compute instruction for that matter.

Figure 20-10.  Using TILEZERO to Solve Performance Degradation

20.11.4 POST-CONVOLUTION MULTIPLE OFM ACCUMULATION AND EFFICIENT 
DOWN-CONVERSION

An important question arises concerning fused post-convolution optimization. What is the optimal block 
of accumulators processed in a single post-convolution iteration? As a post-processing unit, it is 
convenient to consider the M_ACC * N_ACC block of tiles accumulated in loops starting at lines 7-8 and 
10-11 in Example 20-18 and Example 20-20, respectively. For simplicity, consider only multiples of these 
accumulation blocks. There is a trade-off between using smaller and larger post-convolution blocks:

Using small post-convolution blocks may have a negative impact by interrupting the convolution flow too 
often. Conversely, using big post-convolution blocks may also negatively impact by evicting part of the 
accumulated tiles out of DCU.

The optimal size, therefore, depends very much on the DL network topology and convolution-blocking 
parameters. Performance studies show that the number of iterations of M_ACC * N_ACC blocks before 
proceeding to post-convolution iteration may vary from 1 to 7.

AMX TDP* 
Instruction 

Block

AVX-512 FMA 
Instruction Block

AMX TDP* 
Instruction 

Block
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As AMX instructions generate a higher precision output (32-bit integers or 32-bit floats) from lower 
precision inputs (8-bit integers or 16-bit bfloats, respectively), there is a need to convert 32-bit outputs 
to 8- or 16-bit inputs to be fed to the next DL network layer.

Suppose a single high-precision cache line (512-bit) is processed for conversion at a time. In that case, 
there will be two or four rounds of processing until a single low-precision cache line is generated for 8- or 
16-bit inputs. Potential problems include:

• the number of loads and stores of the same cache line increases 4X or 2X, respectively.

• the next round of processing of the same cache line may occur after this cache line is evicted from 
DCU.

One of the optimizations mitigating these performance issues is to collect enough high-precision outputs 
to convert the full low-precision cache line in a single round.

The following drawing shows the conversion flow of 32-bit integers to 8-bit integers. Each colored block 
at the top represents a single full TILE output. The horizontal dimension is OFMs the vertical dimension 
is spatial).

Figure 20-11.  A Conversion Flow of 32-bit Integers to 8-bit Integers

To generate full 512-bit cache lines of 8-bit inputs (bottom), a multiple of 64 OFMs should be collected 
before conversion. Accordingly, to generate full cache lines with 16-bit inputs, a multiple of 32 OFMs 
should be collected. This often produces better performance results, though it may be viewed as a 
restriction to convolution-blocking parameters (in particular, N_ACC).

Example 20-23 shows the conversion code for two blocks of sixteen cache lines of 32-bit floats converted 
to a single block of sixteen cache lines of 16-bit bfloats. TMUL outputs are assumed to be placed into a 
scratchpad spad, and the conversion result is placed in the next_inputs buffer.
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Example 20-23.  Two Blocks of 16 Cache Lines of 32-bit Floats Converted to One Block of 16 Cache Lines of 16-bit 
BFloat

Example 20-24.  Using Unsigned Saturation

20.12 INPUT AND OUTPUT BUFFERS REUSE (DOUBLE BUFFERING)
Due to the significant computational speedup achieved by the Intel AMX instructions, the performance 
bottleneck of Intel AMX-enabled applications is usually memory access. The most straightforward way to 
improve memory utilization is to reduce an application’s memory footprint. An application with a smaller 
memory footprint will keep more of its essential data in the caches while reducing the number of costly 
cache evictions. This usually improves performance.

In Deep Learning (DL), a simple, efficient way to reduce the memory footprint is to reuse the input and 
output buffers of various layers in the topology.

Figure 20-12 illustrates where the previous layer feeds the next layer (left).

float* spad;

bfloat_16* next_inputs;

inline unsigned inputs_spatial_dim( void ) {

    return /* number of pixels in map */

}

for (int i = 0; i < 16; i++) 

{

__m512 f32_0 = _mm512_load_ps(spad);

      __m512 f32_1 = _mm512_load_ps(spad + 16*16);

__m512 bf16 = _mm512_castsi512_ps(_mm512_cvtne2ps_pbh(f32_1, f32_0));

_mm512_store_ps(next_inputs, bf16);

       spad += 16; /* Next TILE row */

       next_inputs += 32 * inputs_spatial_dim();

}

const int32_t db_sel[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };

inline __m512i Pack_DwordsToBytes(__m512i dwords[4])

{

    const __m512i sel_reg  = _mm512_load_si512(db_sel);

    const __m512i words_0  = _mm512_packs_epi32(dwords[0], dwords[1]);

    const __m512i words_1  = _mm512_packs_epi32(dwords[2], dwords[3]);

    __m512i bytes         = _mm512_packus_epi16(words_0, words_1);

    bytes                  = _mm512_permutexvar_epi32(sel_reg, bytes);

    return bytes;

}
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Figure 20-12.  Trivial Deep Learning Topology with Naive Buffer Allocation

A straightforward buffer allocation scheme is illustrated in Figure 20-12, in which the output of layer N is 
placed into a dedicated memory buffer, which is then consumed as input by layer N+1. In this scheme, 
such topology with L-layers would require L+1 memory buffers, of which only the last is valuable 
(containing the final results). The rest of the L memory buffers are single-use and disposable, 
significantly increasing the application’s memory footprint. 

The allocation scheme in Figure 20-13 offers an improved scheme whereby the entire topology only 
requires two reusable memory buffers.

Figure 20-13.  Minimal Memory Footprint Buffer Allocation Scheme for Trivial Deep Learning Topology

A more complex topology would require more reusable buffers, but this number is significantly smaller 
than the naïve approach. ResNet-50, for example, requires only three reusable buffers (instead of 55). 
Inception-ResNet-V2 requires only five reusable buffers (instead of over 250). This optimization resulted 
in a 25% improved performance on the int8 end-to-end large batch throughput run of Resnet50 v1.5.
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20.13 SOFTWARE PREFETCHES
The CPU employs sophisticated HW prefetchers that predict future access and provide relevant data. This 
works best when most memory accesses are sequential. For more details on processor hardware 
prefetchers, see Section 20.13.1.2.

20.13.1 SOFTWARE PREFETCH FOR CONVOLUTION AND GEMM LAYERS
Since the Conv/GEMM kernel is centered around loops over the M, K, and N dimensions of the involved 
matrices, the access will often be sequential. However, memory blocking, also recommended in this 
guide, causes the CPU to re-use the same block in the A or B matrices (or both) multiple times during the 
kernel execution. This means that sometimes the HW prefetcher cannot predict the subsequent access 
correctly. This opens the opportunity for an SW prefetch algorithm tightly integrated into the Conv/GEMM 
kernel and can bring in cache lines from future blocks based on the blocking strategy. 

While the SW prefetch instruction enables selecting the target cache hierarchy level for the prefetch, this 
document assumes that the prefetch will go to the MLC. The DCU is too small to prevent the prefetched 
lines from being evicted before they can be used, and prefetching to LLC may not yield significant 
improvement.

20.13.1.1  The Prefetch Strategy
The prefetch strategy is highly dependent on the Conv/GEMM kernel method of operation. Assuming the 
“loops and blocking” design discussed earlier, the kernel operation can probably be split into multiple 
phases where each phase manages a different part of the matrices (corner, middle, etc.). The developer 
is encouraged to reduce the program’s size by reusing sections for repeatable matrix patterns to avoid 
overflowing the instruction cache. This can be done by having each section work on relative addresses. 
The SW prefetch instruction can be integrated into these sections and work on relative addresses. This 
means that while one section of the code loads addresses for its use, it also prefetches memory for a 
future section. The future section can be determined by looking at the future indices of any of the M/K/N 
loop levels.

20.13.1.2  Prefetch Distance
One of the most important decisions when using SW prefetching is the distance between the current and 
prefetched addresses. Supposing some blocking strategy is employed, it is more complex than adding an 
offset to the current address. The prefetched address must be set based on the target block of the 
matrix. If the target block is too close, the prefetched memory might still be in transit when the memory 
is required, and the CPU will stall, waiting for it to arrive. The data might be evicted if prefetched memory 
is too distant before it is used. The developer must tune the distance based on the layer/blocking 
parameters. 

As an example heuristic:

• One or two loads for each TMUL operation.

• Where one matrix is already in a register.

• When two registers must be loaded.

• The recommended range between the prefetch time and the consumption time is between 100 and 
500 TMUL operations.

• 100 TMUL operations should take about 1600 cycles.

• The maximum number of bytes loaded between prefetch and consumption is 1MB (500 TMUL ops /* 
2 loads per ops /* 1K per tile).
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• The optimum is probably closer to 100 TMUL ops. At any rate, the developer must check the current 
CPU architecture and make sure that the MLC will not overflow.

20.13.1.3  To Prefetch A or Prefetch B?
Whether to prefetch A, B, or both depends on the order of layer execution. 

In general, the following approaches are available:

• Image affinity.

• Execute the next layer of the same image.

• Complete a single image end-to-end before continuing to the next image in the same mini-batch.

Layer affinity:

• Execute the same layer of the following image.

• Complete a layer for all images in the mini-batch before continuing to the next layer.

The activations (the result of the previous layer) in the CPU caches are seen when image affinity is used. 
The weights in the caches are found when layer affinity is used. Generally, image affinity is recommended 
when sizeof(A)>sizeof(B) and layer affinity otherwise. To maximize performance, the developer should 
tune the switch point between the two methods. The choice between these two methods is also affected 
by the target matrix for prefetching. 

Suppose the developer is confident that one of the matrices will already be present in the cache when the 
Conv/GEMM kernel begins execution. In that case, the potential benefit of SW prefetching decreases the 
potential benefit of SW prefetching decreases dramatically. 

The size of the A-matrix, B-matrix, and cache.

The developer should sum up the memory requirements of the Conv/GEMM kernel for the current layer 
and compare it to the size of the cache (MLC). Combined with the previous step, it can indicate whether 
SW prefetching can yield any performance benefit. When large matrices are involved, there is a greater 
chance for improvement when prefetching the A- and the B-matrices.

20.13.1.4  To Prefetch or Not to Prefetch C? 
It is not the C-matrix we might want to prefetch but rather the final output matrix of the layer after its 
post-convolution or post-GEMM phase, including quantization to a lower precision data type. Generally, 
prefetch those cache lines ahead of time since, with double buffering, these might have been read by 
previous layers, possibly executed in other cores. 

Use the PREFETCHW instruction to read those cache lines into the DCU just in time for the store 
operations to find them in the DCU ready to be written, avoiding Read For Ownership latency that 
otherwise delays store completion. The exact timing of issuing the PREFETCHW instruction depends on 
multiple factors and requires careful tuning to get it right.

20.13.2 SOFTWARE PREFETCH FOR EMBEDDING LAYER
When the memory access pattern is semi-random, it is often impossible for the HW prefetcher to predict 
since it is based on application logic. In this case, the application may benefit from “proactive” 
prefetching using the SW prefetch instructions of addresses the application knows it will access soon. 

An excellent example is Deep Learning, wherein the recommendation systems often use the embedding 
layer. The core loop of the embedding algorithm loads indices from an index buffer, and for each index, it 
loads the corresponding row from the embedding table for further processing. While the index buffer may 
contain duplicate indices that benefit from CPU caching, the pattern is often considered random or 
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semi-random. This can make the HW prefetcher less efficient. Since the entire content of the index buffer 
is already known, rows soon to be encountered can be prefetched to the DCU.

Example 20-25.  Prefetching Rows to the DCU

20.14 HARDWARE PREFETCHER TUNING
L2P AMP prefetcher was introduced in the 5th Generation Intel® Xeon® Scalable processor based on the 
Emerald Rapids microarchitecture.

L2P auto-tunes the settings of the Adaptive Multipath Probability (AMP) prefetcher. In this case, the AMP 
prefetcher uses a machine learning algorithm to predict the best L2 prefetcher configuration for the 
currently running workload. This feature has been shown to improve the performance of various 
general-purpose workloads. However, on a few Intel AMX-based Deep Learning (DL workloads, up to 
~7% performance degradation was observed with the feature enabled.

For best DL workload performance, we recommend disabling the feature on 5th Generation Intel Xeon 
Scalable processors via Unified Extensible Firmware Interface UEFI/BIOS knob as follows:

1. Boot the machine into UEFI/BIOS.

2. Set knobs: Socket Configuration > Processor Configuration > AMP Prefetch: Disable

3. Save and reboot the machine.

20.15 STORE TO LOAD FORWARDING
Before it gets written to the DCU (first-level cache), store instructions copy data from general purpose, 
vector, or tile registers into store buffers. Besides TILELOAD, all load instructions can load the data they 
seek from the store buffers and memory hierarchy.

The TILELOAD instruction can’t load data from store buffers. It can only detect that the data is there and 
must wait until it is written to the memory hierarchy. Once written, TILELOAD can read it from the 
memory hierarchy. This incurs a significant slowdown.

1 void prefetched_embedding(uint32_t *a, float *e, float *c, size_t num_indices,

2   float scale, float bias, size_t lookahead)

3 {

4 __m512 s = _mm512_set1_ps(scale);

5 __m512 b = _mm512_set1_ps(bias);

6

7 for (size_t i = 0; i < num_indices; i++) {

8 _mm_prefetch(

9 (char const *)&e[a[i + lookahead] * FLOATS_PER_CACHE_LINE],

10 _MM_HINT_T0);

11 __m512 ereg =

12     _mm512_load_ps(&e[((size_t)a[i]) * FLOATS_PER_CACHE_LINE]);

13 __m512 creg = _mm512_fmadd_ps(ereg, s, b);

14 _mm512_store_ps(&c[i * FLOATS_PER_CACHE_LINE], creg);

15 }

16 }
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TILESTORE forwarding to non-TILELOAD instructions via store buffers is supported under one restriction: 
they must both be of cache line size (64 bytes).

Forwarding is generally not advised because this mechanism has outliers. To avoid store-to-load 
forwarding, ensure enough distance between those two operations in the order of 10s of cycles in time. 

20.16 MATRIX TRANSPOSE
This section describes the best-known SW implementations for several matrix transformations of BF16 
data.

In this context, flat format means:

• Normal (i.e., non-VNNI).

• Unblocked rows (rows of matrices occupy a consecutive region in memory). 

The first condition is essential. The second could be relaxed by changing the code in Example 20-26 
accordingly. VNNI format implies only the second condition (non-blocking of rows). Notably, the MxN 
matrix in flat format will be represented by a (M/2)x(N/*2) matrix in VNNI format.

20.16.1 FLAT-TO-FLAT TRANSPOSE OF BF16 DATA
The primitive block transposed in this algorithm is 32x8 (i.e., 32 rows, eight BF16 numbers each), which 
is transformed into an 8x32 block (i.e., eight rows of 32 BF16 numbers each).

The implementation uses sixteen ZMM registers and three mask registers.

Input parameters: MxN, sizes of the rectangular block to be transposed. Assuming M is a multiple of 32, 
and N is a multiple of eight, we may also assume in Example 20-26:

• I_STRIDE is the row size of the input matrix in bytes.

• O_STRIDE is the row size of the output buffer in bytes.

• r8 contains starting address of the input matrix.

• r9 contains starting address of the output buffer.

Example 20-26.  BF16 Matrix Transpose (32x8 to 8x32)

/*1 of 3 */

1 mov r10, 0xf0

2 kmovd k1,  r10d

3 mov r10, 0xf00

4 kmovd k2, r10d

5 mov r10, 0xf000

6 kmovd k3, r10d

7 mov rax, N / 8

L.N:

8 mov rdx, M / 32

L.M:

9 vbroadcasti32x4 zmm0, xmmword ptr [r8]

10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*8]

11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*16]
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/*2 of3 */

12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*24]

13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]

14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*9]

15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*17]

16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*25]

17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]

18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*10]

19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*18]

20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*26]

21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]

22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*11]

23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+I_STRIDE*19]

24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+I_STRIDE*27]

25 vbroadcasti32x4 zmm4, xmmword ptr [r8+I_STRIDE*4]

26 vbroadcasti32x4 zmm4{k1}, xmmword ptr [r8+I_STRIDE*12]

27 vbroadcasti32x4 zmm4{k2}, xmmword ptr [r8+I_STRIDE*20]

28 vbroadcasti32x4 zmm4{k3}, xmmword ptr [r8+I_STRIDE*28]

29 vbroadcasti32x4 zmm5, xmmword ptr [r8+I_STRIDE*5]

30 vbroadcasti32x4 zmm5{k1}, xmmword ptr [r8+I_STRIDE*13]

31 vbroadcasti32x4 zmm5{k2}, xmmword ptr [r8+I_STRIDE*21]

32 vbroadcasti32x4 zmm5{k3}, xmmword ptr [r8+I_STRIDE*29]

33 vbroadcasti32x4 zmm6, xmmword ptr [r8+I_STRIDE*6]

34 vbroadcasti32x4 zmm6{k1}, xmmword ptr [r8+I_STRIDE*14]

35 vbroadcasti32x4 zmm6{k2}, xmmword ptr [r8+I_STRIDE*22]

36 vbroadcasti32x4 zmm6{k3}, xmmword ptr [r8+I_STRIDE*30]

37 vbroadcasti32x4 zmm7, xmmword ptr [r8+I_STRIDE*7]

38 vbroadcasti32x4 zmm7{k1}, xmmword ptr [r8+I_STRIDE*15]

39 vbroadcasti32x4 zmm7{k2}, xmmword ptr [r8+I_STRIDE*23]

40 vbroadcasti32x4 zmm7{k3}, xmmword ptr [r8+I_STRIDE*31]

41 vpunpcklwd zmm8, zmm0, zmm1

42 vpunpckhwd zmm9, zmm0, zmm1

43 vpunpcklwd zmm10, zmm2, zmm3

44 vpunpckhwd zmm11, zmm2, zmm3

45 vpunpcklwd zmm12, zmm4, zmm5

46 vpunpckhwd zmm13, zmm4, zmm5

47 vpunpcklwd zmm14, zmm6, zmm7

48 vpunpckhwd zmm15, zmm6, zmm7

49 vpunpckldq zmm0, zmm8, zmm10

50 vpunpckhdq zmm1, zmm8, zmm10

51 vpunpckldq zmm2, zmm9, zmm11

52 vpunpckhdq zmm3, zmm9, zmm11

53 vpunpckldq zmm4, zmm12, zmm14
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Implementation discussion:

• Lines 1-6 set mask registers k1, k2, k3.

• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.

• Lines 9-72 implement the transpose of a primitive block 32x8. It uses 16 ZMM registers (zmm0-
zmm15)

/*3 of 3 */

54 vpunpckhdq zmm5, zmm12, zmm14

55 vpunpckldq zmm6, zmm13, zmm15

56 vpunpckhdq zmm7, zmm13, zmm15

57 vpunpcklqdq zmm8, zmm0, zmm4

58 vpunpckhqdq zmm9, zmm0, zmm4

59 vpunpcklqdq zmm10, zmm1, zmm5

60 vpunpckhqdq zmm11, zmm1, zmm5

61 vpunpcklqdq zmm12, zmm2, zmm6

62 vpunpckhqdq zmm13, zmm2, zmm6

63 vpunpcklqdq zmm14, zmm3, zmm7

64 vpunpckhqdq zmm15, zmm3, zmm7

65 vmovdqu16 zmmword ptr [r9], zmm8

66 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm9

67 vmovdqu16 zmmword ptr [r9+O_STRIDE*2], zmm10

68 vmovdqu16 zmmword ptr [r9+O_STRIDE*3], zmm11

69 vmovdqu16 zmmword ptr [r9+O_STRIDE*4], zmm12

70 vmovdqu16 zmmword ptr [r9+O_STRIDE*5], zmm13

71 vmovdqu16 zmmword ptr [r9+O_STRIDE*6], zmm14

72 vmovdqu16 zmmword ptr [r9+O_STRIDE*7], zmm15

73 add r9, 0x40

74 add r8, I_STRIDE*32

75 dec rdx

76 jnz L.M

77 add r9, (O_STRIDE*8 — (M/32) * 0X40)

78 sub r8, (I_STRIDE*M-0x10)

79 dec rax

80 jnz L.N
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• Lines 9-40 implement loading 32 quarter-cache lines into 8 ZMM registers, according to the following 
picture (numbers are in bytes):

Table 20-7.  Loading 32 Quarter-Cache Lines into 8 ZMM Registers
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• Lines 41-64 are transpose flow proper. It creates a transposed block 8x32 in registers zmm8-zmm15.

• Lines 65-72 store transposed block 8x32 to the output buffer.

20.16.2 VNNI-TO-VNNI TRANSPOSE
The primitive block transposed in this algorithm is 8x8 (i.e., eight rows, eight BF16 numbers each), which 
is transformed into a 2x32 block (i.e., two rows of 32 BF16 numbers each).

The implementation uses five ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed (in VNNI format); it is assumed that M, N are 
multiples of eight.

• I_STRIDE is the row size of the input matrix in bytes.

• O_STRIDE is the row size of the output buffer in bytes.

• r8 contains the starting address to the input matrix.

• r9 contains the starting address to the output buffer.

• zmm31 is preloading with four copies of the following constant: unsigned int shuflle_cntrl[4] = 
{0x05040100, 0x07060302, 0x0d0c0908, 0x0f0e0b0a};
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Table 20-7.   (Contd.)Loading 32 Quarter-Cache Lines into 8 ZMM Registers
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Example 20-27.  BF16 VNNI-to-VNNI Transpose (8x8 to 2x32)

BF16 VNNI-to-VNNI Transpose Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.

• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.

• Lines 9–22 implement the transpose of a primitive block 32x8. It uses five ZMM registers (zmm0-
zmm3, zmm31).

• Lines 9–16 implement loading eight quarter-cache lines into two ZMM registers, according to 
Table 20-8 (numbers are in bytes).

1 mov r10, 0xf0

2 kmovd k1, r10d

3  mov r10, 0xf00

4  kmovd k2, r10d

5  mov r10, 0xf000

6  kmovd k3, r10d

7  mov rax, N / 8

L.N:

8  mov rdx, M / 8

L.M:

9  vbroadcasti32x4 zmm0, xmmword ptr [r8]

10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*2]

11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*4]

12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*6]

13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]

14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*3]

15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*5]

16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*7]

17 vpshufb zmm2, zmm0, zmm31

18 vpshufb zmm3, zmm1, zmm31

19 vpunpcklqdq zmm0, zmm2, zmm3

20 vpunpckhqdq zmm1, zmm2, zmm3

21 vmovdqu16 zmmword ptr [r9], zmm0

22 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm1

23 add r9, 0x40

24 add r8, I_STRIDE*8

25 dec rdx

26 jnz L.M

27 add r9, (O_STRIDE*2 - (M/8) * 0x40)

28 sub r8, (I_STRIDE*M-0x10)

29 dec rax

30 jnz L.N



Document #: 248966-049US  20-49

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• Lines 17–20 implement simultaneous transpose of four 2x2 blocks of QWORDs (i.e., 2x8 blocks of 
BF16). It creates a transposed block 2x32 in registers zmm2-zmm3.

• Lines 21–22 store transposed block 2x32 to the output buffer.

20.16.3 FLAT-TO-VNNI TRANSPOSE
The algorithm below is based on: Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat 
transpose of DWORDs. This is illustrated below (the header numbers are bytes):

Figure 20-14.  Flat-to-VNNI Transpose of WORDs Equivalence to Flat-to-Flat Transpose of DWORDs

Table 20-8.  Loading Eight Quarter-Cache Lines into Two ZMM Registers
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The primitive block transposed in this algorithm is 16x8 (i.e., 16 rows, 8 BF16 numbers each), which is 
transformed into a 4x32 block (i.e., four rows of 32 BF16 numbers each).

The implementation uses eight ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 16, N multiple 
of eight.

• I_STRIDE is the row size of the input matrix in bytes.

• O_STRIDE is the row size of the output buffer in bytes.

• r8 contains the starting address for the input matrix.

• r9 contains the starting address for the output buffer.

Example 20-28.  BF16 Flat-to-VNNI Transpose (16x8 to 4x32)

 /*1 of 2*/

1 mov r10, 0xf0

 2 kmovd k1, r10d

 3 mov r10, 0xf00

 4 kmovd k2, r10d

 5 mov r10, 0xf000

 6 kmovd k3, r10d

 7 mov rax, N / 8

L.N:

 8 mov rdx, M / 16

L.M:

9 vbroadcasti32x4 zmm0, xmmword ptr [r8]

10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*4]

11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*8]

12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*12]

13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]

14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*5]

15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*9]

16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*13]

17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]

18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*6]

19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*10]

20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*14]

21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]

22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*7]

23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+ I_STRIDE*11]

24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+ I_STRIDE*15]

25 vpunpckldq zmm4, zmm0, zmm1

26 vpunpckhdq zmm5, zmm0, zmm1

27 vpunpckldq zmm6, zmm2, zmm
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Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.

• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.

• Lines 9–36 implement the transpose of a primitive block 16x8. It uses eight ZMM registers (zmm0–
zmm7).

• Lines 9–24 implement loading 16 quarter-cache lines into four ZMM registers zmm0-zmm3, 
according to Table 20-9 (numbers are in bytes):

/*2 of 2 */

28 vpunpckhdq zmm7, zmm2, zmm3

29 vpunpcklqdq zmm0, zmm4, zmm6

30 vpunpckhqdq zmm1, zmm4, zmm6

31 vpunpcklqdq zmm2, zmm5, zmm7

32 vpunpckhqdq zmm3, zmm5, zmm7

33 vmovups zmmword ptr [r9], zmm0

34 vmovups zmmword ptr [r9+O_STRIDE], zmm1

35 vmovups zmmword ptr [r9+O_STRIDE*2], zmm2

36 vmovups zmmword ptr [r9+O_STRIDE*3], zmm3

37 add r9, 0x40

38 add r8, I_STRIDE*16

39 dec rdx

40 jnz L.M

41 add r9, (O_STRIDE*4 - (M/16)*0x40)

42 sub r8, (I_STRIDE*M-0x10)

43 dec rax

44 jnz L.N
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Table 20-9.  BF16 Flat-to-VNNI Transpose

• Lines 25–32 are the transpose flow proper. It creates a transposed block 4x32 in registers zmm0–
zmm3.

• Lines 33–36 store transposed block 4x32 to the output buffer.

20.16.4 FLAT-TO-VNNI RE-LAYOUT
The primitive block being re-layout in this algorithm is 2x32 (i.e., 2 rows, 32 BF16 numbers each), which 
is transformed into a 1x64 block (i.e., 1 rows of 64 BF16 numbers each).

The implementation uses 5 ZMM registers and no mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 2, N multiple 
of 32.

• I_STRIDE is the row size of the input matrix in bytes.

• O_STRIDE is the row size of the output buffer in bytes.

• r8 contains the starting address to the input matrix.

• r9 contains the starting address to the output buffer.
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• zmm30, zmm31 are preloaded with the following constants, respectively:

— const short perm_cntl_1[32] = {0x00, 0x20, 0x01, 0x21, 0x02, 0x22, 0x03, 0x23, 0x04, 0x24, 
0x05, 0x25, 0x06, 0x26, 0x07, 0x27, 0x08, 0x28, 0x09, 0x29, 0x0a, 0x2a, 0x0b, 0x2b, 0x0c, 
0x2c, 0x0d, 0x2d, 0x0e, 0x2e, 0x0f, 0x2f};

— const short perm_cntl_2[32] = {0x30, 0x10, 0x31, 0x11, 0x32, 0x12, 0x33, 0x13, 0x34, 0x14, 
0x35, 0x15, 0x36, 0x16, 0x37, 0x17, 0x38, 0x18, 0x39, 0x19, 0x3a, 0x1a, 0x3b, 0x1b, 0x3c, 
0x1c, 0x3d, 0x1d, 0x3e, 0x1e, 0x3f, 0x1f};

Example 20-29.  BF16 Flat-to-VNNI Re-Layout

BF16 Flat-to-VNNI Re-Layout Implementation Discussion

• Lines 1 and 2 put trip counts for primitive blocks in N- and M-dimensions, respectively.

• Lines 3 and 4 implement loading two full cache lines into two ZMM registers, zmm0-zmm1, from 
consecutive rows of the input matrix.

• Lines 5—7 implement the re-layout of a primitive block 2x32. It uses five ZMM registers (zmm0–
zmm2, zmm30-zmm31).

• Lines 8 and 9 implement storing two full cache lines in two ZMM registers, zmm1-zmm2, into 
consecutive columns of the output matrix.

1 mov rdx, M / 2

L.M:

 2 mov rax, N / 32

L.N:

 3 vmovups zmm0, zmmword ptr [r8]

 4 vmovups zmm1, zmmword ptr [r8+I_STRIDE]

 5 vmovups zmm2, zmm0

 6 vpermt2w zmm2, zmm30, zmm1

 7 vpermt2w zmm1, zmm31, zmm0

 8 vmovups zmmword ptr [r9], zmm2

 9 vmovups zmmword ptr [r9+0x40], zmm1

10 add r9, 0x80

11 add r8, 0x40

12 dec rax

13 jnz L.N

14 add r9, (O_STRIDE - (N/32)*0x80)

15 add r8, (I_STRIDE*2 – (N/32)*0x40)

16 dec rdx

17 jnz L.M



Document #: 248966-049US  20-54

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.17 MULTI-THREADING CONSIDERATIONS

20.17.1 THREAD AFFINITY
As with Intel AVX-512 code, it is advised to fully define thread affinity and object affinity to process a 
single object in the same physical core, thus keeping the activations in core caches (unless larger than 
the size of the caches). This advice is imperative with Intel AMX code since those applications are more 
sensitive to memory-related issues.

20.17.2 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)
Running more than one Intel AMX thread on the same physical core may result in overall performance 
loss due to the two threads competing for the same hardware resources. Scheduling a non-Intel AMX 
thread next to an Intel AMX thread on the same core may decrease the thread performance more than 
one expects due to normal competition for resources. 

For optimum performance, please choose one of the following options in priority order:

1. Schedule one Intel AMX thread per physical core on one of its logical processors, while leaving the 
other logical processors idle.

2. Affintize a software thread that executes an endless TPAUSE CO.2 loop next to the Intel AMX thread.

a. This prevents other threads from being scheduled on that logical processor. 
1) All hardware resources within the physical core are therefore allocated to the Intel AMX 

thread. 

2) This endless loop thread must terminate when the Intel AMX thread is about to terminate. 

3. Code pause loops of thread pool threads waiting for the next task to be assigned to them with 
UMWAIT or TPAUSE C0.2 rather than with PAUSE, TPAUSE C0.1, or a non-pausing spin.

20.17.3 WORK PARTITIONING BETWEEN CORES
Deep Learning (DL) applications must often adhere to latency requirements that cannot be fulfilled within 
a single core. In these cases, a single object’s processing must be partitioned between multiple cores. 

Additionally, one layer’s output is often the next layer’s input. Due to the nature of the computations in 
DL applications, partitioning over different dimensions (N, M, K) will have different implications for the 
data locality in the core’s caches. Minimize importing data from a different core’s caches if possible, as 
this can hamper performance.

20.17.3.1  Partitioning Over M
Partitioning a DL layer over the M dimension has the advantage of nearly complete data locality. The 
layer’s output is also partitioned by M between the cores and is, therefore, already in the cache of the 
corresponding core at the beginning of the next layer. Figure 20-15 shows this schematically.



Document #: 248966-049US  20-55

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-15.  GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the M-Dimension

Here, the data read and written by each of the three cores is bound by a black rectangle.
It should be noted that in the case of convolutions, limited overlap in the M-dimension of the activations 
occurs between neighboring cores. Due to the convolutions, a finite-sized filter is slid over the 
activations. Thus, the M-dimension overlaps (KH-1)/*W (refer to Example 20-17) between the two 
neighboring cores.

• Advantages: When multiple layers in a chain are partitioned by the M-dimension between the same 
number of cores, each core has its data in its local cache.

• Disadvantages: All the cores read the B-matrix (or weights in convolutions) entirely, which might 
pose a bandwidth problem if the B-matrix is large.

20.17.3.2  Partitioning Over N
Partitioning a DL layer over the N-dimension reduces the read bandwidth in GEMMs with large B-matrices 
or large weights in convolutions. Each core reads a portion of the B-matrix in Figure 20-16.

Figure 20-16.  GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the N-Dimension

Unfortunately, the layer’s output is also partitioned by the N-dimension between the cores, which is 
incompatible with the M and N partitioning of the subsequent layer. For visualization, compare the right 
side of Figure 20-16 to the left side of Figures 20-15 and 20-16. In this scenario, a core in the subsequent 
layer is guaranteed to have most of its data from outside its local caches. This is not the case in 
K-dimension partitioning (see Section 20.17.3.3), but it also comes at a price.
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• Advantages: It may reduce read bandwidth significantly in case of large B / large weights.

• Disadvantages: If the next layer is partitioned by M or N, most of the activations in the next layer 
will not reside in the local caches of the corresponding cores. 

20.17.3.3  Partitioning Over K
Partitioning a DL layer over the K-dimension reduces the read bandwidth in GEMMs with large 
K-dimensions by reducing the amount of data being read from the A- and B-matrices (activations and 
weights in convolutions). Each core reads a portion of the matrices in this scenario, as illustrated in 
Figure 20-17.

Figure 20-17.  GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the K-Dimension

Suppose a layer is partitioned by the N-dimension, and the K-dimension partitions the subsequent layer. 
In that case, the activation data will reside in the local caches of the cores in the layer partitioned by the 
K-dimension. For visualization, compare the right side of Figure 20-16 with the left side of Figure 20-17. 
Unfortunately, this comes at a price: each core prepares partial results of the entire C-matrix. 

To obtain final results, either a mutex (or several mutexes) is required to guard the write operations into 
the C-matrix, or a reduction operation is needed at the end of the layer. The mutex solution is not advised 
because threads will be blocked for a significant time. A reduction runs the risk of being costly since it 
entails the following:

• A synchronization barrier is required before the reduction.

• Reading a potentially large amount of data during the reduction:

— There are T copies of the C-matrix, where T is the number of threads (the example has three).

— The size of the matrices before the reduction is x2 (in case of a bfloat16 datatype) or x4 (in case 
of int8 datatype) times larger than the output C-matrix.

— During the reduction, most of the cores’ data will come outside their local cache hierarchy.
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20.17.3.4  Memory Bandwidth Implications of Work Partitioning Over Multiple Dimensions
OpenMP offers a convenient interface for nested loop parallelization. For example, one could partition the 
N, M, and K dimensions can be partitioned automatically between threads using Example 20-30.

Example 20-30.  GEMM Parallelized with omp Parallel for Collapse

The collapse clause specifies how many loops within a nested loop should be collapsed into a single 
iteration space and divided between the threads. The order of the iterations in the collapsed iteration 
space is the same as though they were executed sequentially.

OpenMP automatically uses schedule(static,1) if there is no specified schedule, resulting in the sequential 
assignment of loop iterations to threads.

If we assume N=4*N_ACC*TILE_N and M=4*M_ACC*TILE_M wherein the K-dimension is deliberately 
excluded from consideration due to its problematic nature, there would be 4*4=16 iterations in the two 
nested loops. Now assume the division of iterations between three threads. Table 20-10 shows that the 
code in Example 20-30 would partition the iterations between threads.

Every cell of the form n’,m’ contains the n’=n/N_ACC*TILE_N and m’=m/M_ACC*TILE_M indices from 
the loops in Example 20-23.

It is clear from Table 20-10 that each of the three threads executes at least one iteration with n’=0,1,2,3 
and at least one iteration with m’=0,1,2,3. This means that every thread reads all of both A and B.

By rearranging the work between threads in the following partitioning, the size of the B read is reduced 
by each thread by 50%, which might be significant in workloads where B is large. Similarly, the size of A 
can be reduced by 50% by swapping m’ and n’ indices for workloads with a large A.

#pragma omp parallel for collapse(2)

for (int n = 0; n < N; n += N_ACC*TILE_N) {

for (int m = 0; m < M; m += M_ACC*TILE_M) {

    ...

  }

}

Table 20-10.  A Simple Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.3 1.2 2.1 3.0 3.3 100% 100% 38%

Thread 1: 0.1 1.0 1.3 2.2 3.1 100% 100% 100%

Thread 2: 0.2 1.1 2.0 2.3 3.2 100% 100% 100%

Table 20-11.  An Optimized Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.1 0.2 0.3 3.0 3.1 100% 50% 38%

Thread 1: 1.0 1.1 1.2 1.3 3.2 3.3 100% 50% 38%
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20.17.4 RECOMMENDATION SYSTEM EXAMPLE

Many recommendation systems are built from a few GEMM layers that follow each other, an Embedding 
layer, and a layer connecting them. They are generally split into four distinct tasks:
1. Bottom GEMMs (MLPs).

2. Embedding.

3. Bottom MLP + Embedding Concat, GEMM, and Reshape.

4. Top GEMMs (MLPs).

The first two are independent so that they can execute in parallel. Their output feeds into the third task, 
whose output, in turn, feeds into the fourth task.

A few notes:

• Recommendation systems usually use a large batch to rank a reasonably large set of options.

• The GEMM layers are usually compute- or cache-bandwidth limited, whereas the Embedding layer is 
memory-bandwidth limited.

• Recommendation systems are real-time and thus limited to a specific latency.

When the latency requirement is a few milliseconds, the recommendation system topology has to be 
multi-threaded across several cores. The previous section discussed GEMM partitioning across multiple 
cores. This section deals with work partition between the four different tasks.

Figure 20-18 proposes a method of splitting the three tasks across machine cores. The block sizes in the 
chart are for illustration purposes only and do not represent any specific recommendation system.

Those three tasks can be split into two due to Bottom MLPs and Embedding independence.

• Those two tasks feed the other tasks: 

— Bottom MLP + Embedding Concat

• GEMM, 

• Reshape

• Top MLPs. 

• The latter tasks are merged into a single task. 

— Choosing the number of cores for each task is a trial-and-error exercise. 

• It may involve a phase for analyzing time required to execute each task across different 
cores.

Because of a dependency between the bottom MLPs, embedding tasks, and the third task, a barrier 
exists between them, implying a potential wait time immediately following the faster layers. 

Thread 2: 2.0 2.1 2.2 2.3 100% 25% 25%

Table 20-11.  An Optimized Partition of Work Between Three Threads

A B C
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Figure 20-18.  A Recommendation System Multi-Threading Model

20.18 SPARSITY OPTIMIZATIONS FOR INTEL® AMX
This section describes how Intel AMX can be further optimized for operations on sparse matrices. An 
example use case can be the inference of sparse neural networks, where the sparse weights are known 
to initially reside in DRAM due to the “online” usage model or large model capacity. In those cases, the 
primary performance bottleneck would be bringing the weights from DRAM. A helpful optimization 
technique for this case is to get the weights from DRAM in a compressed format, decompress them into 
the local caches using Intel AVX-512, and perform Intel AMX computations on the decompressed data.

The compressed matrix format can consist of the following components:

• compressed[]: an array of non-zero matrix entries.

• mask[]: a bit-per-element array for the full matrix. 0 signifies the corresponding element is 0. 1 
signifies a non-zero value in the compressed[] array mentioned above.

The compressed format can be computed off-line. The sparsity bitmask mask[] can be generated using 
the Intel AVX-512 VPTESTMB instruction on the sparse data. The compressed[] array can be generated 
using the Intel AVX-512 VPCOMPRESS instruction on the sparse data using the sparsity bitmask.

The code in Example 20-31 uses Intel AVX-512 to generate num rows of decompressed data, assuming 
8-bit elements and 64 elements per tile row.
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Example 20-31.  Byte Decompression Code with Intel® AVX-512 Intrinsics

The matrix multiplication code will load the decompressed matrix to tiles from decompressed[], an 
array containing the decompressed matrix data. 

The decompression code uses the Intel AVX-512 date expand operation as shown in Figure 20-19.

Figure 20-19.  Data Expand Operation

// uint8_t* compressed_ptr is a pointer to compressed data array

// __mmask64* compression_masks_ptr is a pointer to bitmask array

// uint8_t* decompressed_ptr is a pointer to decompressed data array

for (int i=0; i < num ; i++) {

  __m512i compressed = _mm512_loadu_epi32(compressed_ptr);

  __mmask64 mask = _load_mask64(compression_masks_ptr);

  __m512i decompressed_vec = _mm512_maskz_expand_epi8(mask, compressed);

  _mm512_store_epi32(decompressed_ptr, decompressed_vec);

  decompressed_ptr += 64; // 64 bytes per decompressed row

  compressed_ptr += _mm_countbits_64(mask); // advance compressed pointer by number of non-zero elements

  compression_masks_ptr ++; //64 bitmask bits per decompressed row

}
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Decompression code for 16-byte elements can be designed in the same way.

For the best performance, apply the following optimizations: 

• Interleaving: Fine-grained interleaving of decompression code and matrix multiplication to overlap 
Intel AVX-512 decompression with Intel AMX computation.

• Decompress Early: Before immediate Intel AMX use, prepare the decompressed buffer to avoid 
store forwarding issues.

• Buffer Reuse: Decompressing the full sparse matrix could overflow the CPU caches. For best cache 
reuse, it is recommended to have a decompressed buffer that can hold two decompressed panels of 
the sparse matrix. While the matrix is multiplying with one panel, decompress the next panel for the 
subsequent iteration. In the subsequent iteration, decompress the next panel into the first half of the 
decompressed buffer that is no longer used, and so on.    

• Decompress Once: Coordinate the matrix multiplication blocking and loop structure with the 
decompression scheme to minimize the number of times the same portion of the sparse matrix is 
decompressed. For example, if the B-matrix is sparse, traversing the entire vertical M-dimension will 
compress every vertical panel of the B-matrix only once. 

20.19 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI
For a function to use tile registers, it needs to configure them. For the LDTILECFG instruction definition, 
see Section 20.2. LDTILECFG creates an Intel AMX state which is kept valid until the TILERELEASE 
instruction is issued. TILERELEASE resets the Intel AMX state back to INIT. When the Intel AMX state is 
valid, and the OS issues the MWAIT instruction trying to move the physical processor, it executes on to 
Core C6 State. The 4th Generation Intel® Xeon® Scalable processor based on the Sapphire Rapids 
microarchitecture will not enter Core C6 even if the sibling logical processor is idle. This is because it 
lacks the dedicated backing store to keep the Intel AMX state until waking up. The Core C-State is 
demoted to C1 instead.

This is not an issue in Linux and Windows, where only the idle process issues the MWAIT instruction. The 
Idle Process in both operating systems does not use the Intel AMX ISA, so its Intel AMX tile state is 
always invalid (INIT). If still valid, the Intel AMX tile state will have previously been saved in an 
OS-defined area in memory while context-switching between a thread that uses Intel AMX and the Idle 
Process thread.

20.19.1 ABI
The tile data registers (tmm0 – tmm7) are volatile. Their contents are passed back and forth between 
functions through memory. No tile register is saved and restored by the callee. Tile configuration is also 
volatile. The compiler saves and restores tile configuration and tile register contents if the register(s) 
need to live across the function call. The compiler eliminates the save instruction because its content 
remains the same on the stack. It reuses the configured content saved on the stack before the call. All 
functions must configure the tile registers themselves; however, tile registers may not be configured 
across functions.

Please download the System V Application Binary Interface: Intel386 Architecture Processor 
Supplement, Version1.0.

https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf
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20.19.2 INTRINSICS

Example 20-32.  Identification of Tile Shape Using Parameter m, n, k

The parameter m, n, k identifies the shape of the tile.

20.19.3 USER INTERFACE

Example 20-33.  Intel® AMX Intrinsics Header File

typedef int _tile1024i __attribute__((__vector_size__(1024), __aligned__(64)));

_tile1024i _tile_loadd_internal(unsigned short m, unsigned short n, const void*base, __SIZE_TYPE__ stride);

_tile1024i _tile_loaddt1_internal(unsigned short m, uunsigned short n, const void*base, __SIZE_TYPE__ stride);

_tile1024i _tile_dpbssd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, 
_tile1024i src2);

_tile1024i _tile_dpbsud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, 
_tile1024i src2);

_tile1024i _tile_dpbusd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, 
_tile1024i src2);

_tile1024i _tile_dpbuud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, 
_tile1024i src2);

_tile1024i _tile_dpbf16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i src1, 
_tile1024i src2);

void_tile_stored_internal(unsigned short m, unsigned short n, void*base, __SIZE_TYPE__ stride, _tile1024i tile);

/* 1 of 4*/

typedef struct __tile1024i_str {

  const unsigned short row;

const unsigned short col;

  _tile1024i tile;

} __tile1024i;

/// Load tile rows from memory specified by "base" address and "stride" into destination tile "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.

///

/// \param dst

///    A destination tile. Max size is 1024 Bytes.

/// \param base

///    A pointer to base address.

/// \param stride

///    The stride between the rows' data to be loaded in memory.
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/* 2 of 4*/

void __tile_loadd(__tile1024i *dst, const void *base, __SIZE_TYPE__ stride);

/// Load tile rows from memory specified by "base" address and "stride" into destination tile "dst". 

///This intrinsic provides a hint to the implementation that the data will likely not be reused in the near future and 

///the data caching can be optimized accordingly.

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.

///

/// \param dst

///    A destination tile. Max size is 1024 Bytes.

/// \param base

///    A pointer to base address.

/// \param stride

///    The stride between the rows' data to be loaded in memory.

void __tile_stream_loadd(__tile1024i* dst, const void* base, __SIZE_TYPE__ stride);

/// Compute dot-product of bytes in tiles with a source/destination accumulator.

/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with corresponding signed 8-bit integers in src1, 

/// producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst",

/// and store the 32-bit result back to tile "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.

///

/// \param dst

///    The destination tile. Max size is 1024 Bytes.

/// \param src0

///    The 1st source tile. Max size is 1024 Bytes.

/// \param src1

///    The 2nd source tile. Max size is 1024 Bytes.

void __tile_dpbssd(__tile1024i *dst, __tile1024i src1, __tile1024i src2);

/// Compute dot-product of bytes in tiles with a source/destination accumulator.

/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with corresponding unsigned 8-bit integers in src1, 

/// producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer

/// in "dst", and store the 32-bit result back to tile "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.

///

/// \param dst

///    The destination tile. Max size is 1024 Bytes.
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/* 3 of 4*/

/// \param src0

void __tile_dpbf16ps(__tile1024i* dst, __tile1024i src0, __tile1024i src1);

/// Store the tile specified by "src" to memory specified by "base" address and "stride".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.

///

/// \param dst

///    A destination tile. Max size is 1024 Bytes.

/// \param base

///    A pointer to base address.

/// \param stride

///    The stride between the rows' data to be stored in memory.

void __tile_stored(void *base, __SIZE_TYPE__ stride, __tile1024i src);

///    The 1st source tile. Max size is 1024 Bytes.

/// \param src1

///    The 2nd source tile. Max size is 1024 Bytes.

void __tile_dpbsud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);

/// Compute dot-product of bytes in tiles with a source/destination accumulator.

/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with corresponding signed 8-bit integers in src1, 

/// producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst",

/// and store the 32-bit result back to tile "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.

///

/// \param dst

///    The destination tile. Max size is 1024 Bytes.

/// \param src0

///    The 1st source tile. Max size is 1024 Bytes.

/// \param src1

///    The 2nd source tile. Max size is 1024 Bytes.

void __tile_dpbuud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);

/// Zero the tile specified by "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.

///

/// \param dst
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20.19.4 INTEL® AMX INTRINSICS EXAMPLE
In Example 20-34, function foo is called in line 18, and the tile variable ‘a’ written in line 17 needs to live 
up to line 21 across the function call. The compiler needs to save the tile data register allocated to ‘a’ 
before calling foo, then restore the tile configure register and tile data registers after calling foo. Lines 39, 
42, and 46 in Example 20-35 are the save/restore code. Since the configure register doesn’t change, the 
configure register in the stack does not require saving.

/* 4 of 4*/

///    The destination tile to be zero. Max size is 1024 Bytes.

void __tile_zero(__tile1024i* dst);

/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and src1, accumulating the intermediate single-

/// precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to tile "dst".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.

////// \param dst

///    The destination tile. Max size is 1024 Bytes.

/// \param src0

///    The 1st source tile. Max size is 1024 Bytes.

/// \param src1

///    The 2nd source tile. Max size is 1024 Bytes.

void __tile_dpbf16ps(__tile1024i* dst, __tile1024i src0, __tile1024i src1);

/// Store the tile specified by "src" to memory specified by "base" address and "stride".

///

/// \headerfile <immintrin.h>

///

/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.

///

/// \param dst

///    A destination tile. Max size is 1024 Bytes.

/// \param base

///    A pointer to base address.

/// \param stride

///    The stride between the rows' data to be stored in memory.

void __tile_stored(void *base, __SIZE_TYPE__ stride, __tile1024i src);
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Example 20-34.  Intel® AMX Intrinsics Usage

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables.

Notice the ldtilecfg instruction at the beginning of the function (line 34 in Example 20-35), which sets the 
Intel AMX registers configuration within the CPU and the TILERELEASE instruction towards the end of the 
function. This placement ensures that the Intel AMX state is initialized, thus avoiding the expensive Intel 
AMX state save/restore in case of a software thread context-switch outside the Intel AMX function.

 1 #include <immintrin.h>

  2

  3 char buf[1024];

  4 #define STRIDE 32

  5

  6 int count = 0;

  7 __attribute__((noinline))

  8 void foo() {

  9   count++;

 10 }

 11

 12 void test_api(int cond, unsigned short row, unsigned short col) {

 13   __tile1024i a = {row, col};

 14   __tile1024i b = {row, col};

 15   __tile1024i c = {row, col};

 16

 17   __tile_loadd(&a, buf, STRIDE);

 18   foo();

 19   __tile_loadd(&b, buf, STRIDE);

 20   __tile_loadd(&c, buf, STRIDE);

 21   __tile_dpbssd(&c, a, b);

 22   __tile_stored(buf, STRIDE, c);

 23 }
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Example 20-35.  Compiler-Generated Assembly-Level Code from Example 20-30

 16 test_api:                               # @test_api

 17 # %bb.0: # %entry

 18         pushq   %rbp

 19         pushq   %r15

 20         pushq   %r14

 21         pushq   %rbx

 22         subq    $1096, %rsp                     # imm = 0x448

 23         movl    %edx, %ebx

 24         movl    %esi, %ebp

 25         vpxord  %zmm0, %zmm0, %zmm0

 26         vmovdqu64       %zmm0, (%rsp)

 27         movb    $1, (%rsp)

 28         movw    %bx, 20(%rsp)

 29         movb    %bpl, 50(%rsp)

 30         movw    %bx, 18(%rsp)

 31         movb    %bpl, 49(%rsp)

 32         movw    %bx, 16(%rsp)

 33         movb    %bpl, 48(%rsp)

 34         ldtilecfg       (%rsp)

 35         movl    $buf, %r14d

 36         movl    $32, %r15d

 37         TILELOADD       (%r14,%r15), %tmm0

 38         movabsq $64, %rax

 39         TILESTORED      %tmm0, 64(%rsp,%rax)    # 1024-byte Folded Spill

 40         vzeroupper

 41         callq   foo

 42         ldtilecfg       (%rsp)

 43         TILELOADD       (%r14,%r15), %tmm0

 44         TILELOADD       (%r14,%r15), %tmm1

 45         movabsq $64, %rax

 46         TILELOADD       64(%rsp,%rax), %tmm2    # 1024-byte Folded Reload

 47         tdpbssd %tmm0, %tmm2, %tmm1

 48         TILESTORED      %tmm1, (%r14,%r15)

 49         addq    $1096, %rsp                     # imm = 0x448

 50         popq    %rbx

 51         popq    %r14

 52         popq    %r15

 53         popq    %rbp

 54         TILERELEASE

 55         retq
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20.19.5 COMPILATION OPTION
The save/restore is sometimes unnecessary, e.g., when foo does not clobber any tile register. To avoid 
unnecessary save/restore, compile with -mllvm -enable-ipra, which does an IPO analysis to get the 
information on what physical registers are clobbered during the function call. Example 20-36 shows no 
tile register save/restore across calling foo.

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables -mllvm -
enable-ipra

Example 20-36.  Compiler-Generated Assembly-Level Code Where Tile Register Save/Restore is Optimized Away

 15         .type   test_api,@function

 16 test_api:                               # @test_api

 17 # %bb.0:                                # %entry

 18         subq    $72, %rsp

 19         vpxord  %zmm0, %zmm0, %zmm0

 20         vmovdqu64       %zmm0, 8(%rsp)

 21         movb    $1, 8(%rsp)

 22         movw    %dx, 28(%rsp)

 23         movb    %sil, 58(%rsp)

 24         movw    %dx, 26(%rsp)

 25         movb    %sil, 57(%rsp)

 26         movw    %dx, 24(%rsp)

 27         movb    %sil, 56(%rsp)

 28         ldtilecfg       8(%rsp)

 29         movl    $buf, %eax

 30         movl    $32, %ecx

 31         TILELOADD       (%rax,%rcx), %tmm0

 32         callq   foo

 33         TILELOADD       (%rax,%rcx), %tmm1

 34         TILELOADD       (%rax,%rcx), %tmm2

 35         tdpbssd %tmm1, %tmm0, %tmm2

 36         TILESTORED      %tmm2, (%rax,%rcx)

 37         addq    $72, %rsp

 38         TILERELEASE

 39         vzeroupper

 40         retq

 41 .Lfunc_end1:

 42         .size   test_api, .Lfunc_end1-test_api
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20.20 INTEL® AMX STATE MANAGEMENT
Intel AMX is XSAVE supported, meaning that it defines processor registers that can be saved and 
restored using instructions of the XSAVE feature set. Intel AMX is also XSAVE enabled, meaning that 
system software must enable it before it can be used.

The XSAVE feature set operates on state components, each a discrete set of processor registers (or parts 
of registers). Intel AMX is associated with two state components, XTILECFG and XTILEDATA. The XSAVE 
feature set organizes state components using state-component bitmaps. A state-component bitmap 
comprises 64 bits; each bit in such a bitmap corresponds to a single state component. Intel AMX defines 
bits 18:17 for its state components (collectively, these are called AMX state):

• State component 17 is used for the 64-byte TILECFG register (XTILECFG state).

• State component 18 is used for the 8192 bytes of tile data (XTILEDATA state).

These are both user-state components, meaning the entire XSAVE feature set can manage them. In 
addition, it implies that setting bits 18:17 of extended control register XCR0 by system software enables 
Intel AMX. If those bits are zero, an Intel AMX instruction execution results in an invalid opcode exception 
(#UD).

About the XSAVE feature set’s INIT optimization, the Intel AMX state is in its initial configuration if the 
TILECFG register is zero and all tile data are zero.

Enumeration and feature-enabling documentation can be found in Section 20.2.

An execution of XRSTOR or XRSTORS initializes the TILECFG register (resulting in TILES_CONFIGURED = 
0) in response to an attempt to load it with an illegal value. Moreover, an execution of XRSTOR or 
XRSTORS that is not directed to load XTILEDATA leaves it unmodified, even if the execution is loading 
XTILECFG.

It is highly recommended that developers execute TILERELEASE to initialize the tiles at the end of the 
Intel AMX instructions code region. More on this is in Section 20.19.

If the system software does not initialize the Intel AMX state first (by executing TILERELEASE, for 
example), it may disable Intel AMX by clearing XCR0[18:17], by clearing CR4.OSXSAVE, or by setting 
IA32_XFD[18]. 

20.20.1 EXTENDED FEATURE DISABLE (XFD)
The XTILEDATA state component size is 8 KBytes, and an operating system may, by default, prefer not to 
allocate memory for the XTILEDATA state for every user thread. An operating system that enables Intel 
AMX might select a fault when user threads use the feature. That way, it can allocate a large enough state 
save area only for the user threads using the feature. An operating system may offer an API for the user 
threads to declare their intention to use Intel AMX and allow the OS to preallocate the state and avoid an 
exception when Intel AMX is used for the first time. 

See Linux API and Windows API for more details.

Extended feature disable (XFD) is added to the XSAVE feature set to support such usage. See the Intel® 
AMX Architecture Definition for XFD documentation.

20.20.2 ALTERNATE SIGNAL HANDLER STACK IN LINUX OPERATING SYSTEM
When programs use an alternate signal handler stack, the stack size should be adjusted to accommodate 
the additional Intel AMX state. See Using XSTATE Features in User-Space Applications for more details.

https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://learn.microsoft.com/en-us/windows/win32/api/winbase/ 
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.kernel.org/doc/html/latest/x86/xstate.html 
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20.21 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS
Intel AMX/TMUL has instructions that enable matrix-matrix operations such as multiplication on small 
precision elements. This section considers how to use the low-precision Intel AMX instructions to 
approximate the answers to matrix-matrix multiplication of higher-precision terms. Even if low-precision 
inputs are Bfloat16 or Integer8, one can still combine the transforms to approximate matrix-matrix 
multiplication in higher precisions. 

Pay attention to the exponent range and mantissa bits when approximating higher precisions. There are 
IEEE-754 double precision numbers (FP64) that aren’t representable as single precision (FP32) or lower 
precisions. These are typically range-based issues in the exponent bits. FP64 has more exponent bits 
than FP32. However, scaling factors can overcome most range-based problems. If A is a matrix of FP64 
values, then A (as a sum of Bfloat16 matrices) cannot generally be represented. Scaling factors can, 
however, be used to get around most issues. The A-matrix as s1*A1 + s2*A2 + … + sn*An can be written 
where each matrix A_i is lower precision, and each si is a constant scaling factor. 

For Bfloat16 decomposition of FP32, consider the following:

• Let A be a matrix of FP32 values.

• Let A1 = bfloat16(A), a matrix containing RNE-rounded Bfloat16 conversions of A.

• Let A2 = bfloat16(A – fp32(A1)).

• Let A3 = bfloat16(A – fp32(A1) – fp32(A2)).

• Now A is approximately A1 + A2 + A3.

Once one has written two matrices as a sum of lower precision matrices, one can run AMX/TMUL on the 
product to approximate the higher precision. But to do this effectively, one needs to have higher precision 
accumulation. There are tricks in the literature for doing higher precision all in a lower precision, such as 
works on so-called double-double arithmetic. Still, these tend to vary too much from standard 
matrix-matrix multiplication to be helpful with TMUL. In the case of Bfloat16, having 32-bit accumulation 
in the product allows one to use Bfloat16 to approximate FP32 accuracy. 

Therefore, if A = s1*A1 + s2*A2 + s3*A3, and B = t1*B1 + t2*B2 + t3*B3, then A*B can be computed 
using AMX/TMUL on the projects Ai*Bj for 1<=i,j<=3, assuming scaling is done carefully to avoid 
denormals. Assuming FP32 accumulation, the FP32 approximation of A*B can be made by writing out 
these lower precision multiplies. Scaling factors can be chosen to avoid denormals at times, but they can 
also be picked in a way that simplifies further steps in the algorithm. In some cases, scaling factors can 
be chosen to be a power of two, for instance, without significantly reducing the accuracy of the resulting 
matrix-matrix multiply.

The number of matrices for A or B are picked depending on the mantissa range to cover. If trying to 
emulate FP32 which has 24 bits of mantissa (including the implicit mantissa bit), it is possible with three 
Bfloat16 matrices (because each of the triples has 8 bits of mantissa, including the implicit bit.). Here, 
the range is less important because Bfloat16 and FP32 have the same exponent range. Use three 
Bfloat16 matrices to approximate FP32 precision by BF16x3. Range issues may still come up for BF16x3 
cases where A has values close to the maximum or minimum exponent for FP32, but that too can be 
circumvented by scaling constants. Scaling factors of 2^24 or 2^(-24) suffice to push it far enough away 
from the boundary to make the computation feasible again. This is dependent upon the closest end of the 
spectrum.

A few terms from an expansion can also be dropped. For instance, in the BF16x3 case, where there are 
three As and three Bs, nine products may result. That is:

A*B = (A1+A2+A3)*(B1+B2+B3) = (A1*B1) + (A1*B2 + A2*B1) + (A1*B3 + A2*B2 + A3*B1) + 
(A2*B3 + A3*B2) +(A3*B3). 

The parentheses in the last equation are intentionally derived so that all entries in the same “bin” are put 
together, and there are nine entries of the form Ai*Bj. This example has five bins, each with its own set 
of parentheses. In the Bfloat16 case, |Ai| <= |A_i-1}| / 256. This shows the last two bins (with 
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A2*B3,A3*B2,A3*B3) are too small to contribute significantly to the answer, which is why if there are Y 
terms on each side of A*B, only (Y+1)*Y/2 multiplies are required, not Y*Y multiplies. In this case, 
dropping the last three (also the difference between Y*Y – (Y+1)*Y/2 when Y=3.) from the nine 
multiplies. The last three multiplies in the last two bins have terms less than 2^(-24) as big as the first 
term. So, A*B can be approximated (ignoring the scaling terms for now) as the sum of the first three 
most significant bins: A1*B1 + (A1*B2+A2*B1)+(A1*B3+A2*B2*A3*B1). In this case, adding from the 
least significant bin to the most significant bin (A1*B1) is recommended. 

Whenever A and B are each expanded out to Y-terms, computing only Y*(Y+1)/2 products works under 
the condition that each term has the same number of mantissa bits. If some terms have a different 
number of bits, then this guideline no longer applies. But for BF16x3, each term covers eight mantissa 
bits and Y=3, so six products are needed.

Regarding accuracy, the worst-case relative error for BF16x3 may be worse than FP32. However, BF16x3 
tends to cover a larger mantissa range due to implicit bits, which can be more accurate in many cases. 
Nevertheless, accuracy is not offered by matrix-matrix multiplication. Even FP64 or FP128 can be bad for 
component-wise relative errors. Take A = [1, -1] and B = [1; 1]. A*B is zero. Let eps be a small 
perturbation to A and/or B. The solution may now be arbitrarily bad in terms of relative error. In general, 
assume that the same mantissa range and exponent range is covered as a given higher-precision floating 
point format, and the accumulation is at least as good as the higher-precision format. With such an 
assumption, the answer will be approximately the same as the higher-precision floating point format. It 
may or may not be identical. Performing the same operation in the higher precision format but changing 
the order of the computations could yield slightly different results. In terms of matrix-matrix 
multiplication, it could yield vast differences in relative error.

Things get slightly more complicated if low precision is used to approximate matrix-matrix at FP64 
accuracy or FP128 precision. Here the scalars aren’t just for avoiding denormals but are necessary to do 
the initial matrix conversion. Nevertheless, converting to an integer is recommended in this case because 
the FP32-rounded errors in each of the seven or fewer bins may introduce too many errors. An integer is 
easier to get right because there are no floating-point errors in each bin. 

Conversion to Integer functions in the same way as all of the previous Bfloat16 examples. The 
quantization literature explains how to map floating point numbers into integers. The only difference is 
that these integers are further broken down into 8-bit pieces for the use of Intel AMX. Constant factors 
are still needed, but in this case they are primarily defined in the conversion itself. 

One difficulty with quantization to integers is the notion of a shared exponent. All the numbers quantized 
together with shared exponents must share the same range. The assumption is that all of A shares a joint 
exponent range. Since this will also be true for B, each row of A and column of B can be quantized 
separately.

Assuming that there is Integer32 accumulation with the Integer8 multiplies, a matrix may be broken 
down into far more bits than required. This may significantly reduce the inaccuracy impact of picking a 
shared exponent. Because Integer32 arithmetic will be precise, modulo overflow/underflow concerns, 
then one can break up A or B into a huge number of 8-bit integer matrices, then do all the matrix-matrix 
work with Intel AMX, and then convert back all the results to even get accuracies up to quad-precision.

Considering an extreme case of trying to get over 100-bits of accuracy in a matrix-matrix multiply. 

All A-values can be quantified into 128-bit integers. The same holds true with B. Once broken down into 
8-bit quantities, this will have a significant expansion like: A = s1*A1 + s2*A2 + … + s14*A14 for when 
attempting 112-bits of mantissa. The same can be done with B = t1*B1 + t2*B2 + … + t14*B14. A*B is 
potentially 14*14=196 products, but only 105 products are needed because the last few products may 
have scaling factors less than 2^(-112) times the most important terms. Each product term should be 
added separately and computing into C from the least significant bits forward.
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C15 = (s1*t14)*A1*B14 + (s2*t13)*A2*B13 + … + (s14*t1)*A14*B1

C14 = (s1*t13)*A1*B13 + (s2*t12)*A2*B12 + … + (s13*t1)*A13*B1

C13 = (s1*t12)*A1*B12 + (s2*t11)*A2*B11 + … + (s12*t1)*A12*B1

… 

C02 = (s1*t1)*A1*B1

Sometimes choosing scalers is possible such that all the products in a given row can be computed with 
the same scratch array. The converted sum of C02 gives the final product through C15, where terms like 
C15 should be computed first.

Writing matrix-matrix multiplies in terms of an expansion like (A1+A2+A3)*(B1+B2+B3) is referred to 
as “cascading GEMM.” Performance will vary depending on the TMUL/Intel AMX specification, and may 
vary from generation to generation. Note that some computations may become bandwidth-bound. Since 
there is no quad floating-point precision in hardware for Intel Architecture, the above algorithm may be 
competitive performance-wise with other approaches like doing software double-double optimizations or 
software-based quad precision.
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