
Document Number: 355308-001

Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Documentation Changes

May 2023

2 Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/
licenses/0BSD. You may create software implementations based on this document and in compliance with the
foregoing that are intended to execute on the Intel product(s) referenced in this document. No rights are granted
to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 5

Nomenclature. 5

Summary Tables of Changes . 5

Documentation Changes. 5

Revision History

4 Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes

Revision History

Revision Description Date

-001 Initial release May 2023

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 5

Preface

This document is an update to the optimization recommendations contained in the Intel® 64 and IA-32
Architectures Optimization Reference Manual, also known as the Software Optimization Manual. This document
is a compilation of device and documentation errata, specification clarifications and changes. It is intended for
hardware system manufacturers and software developers of applications, operating systems, or tools.

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Summary Tables of Changes
The following table indicates documentation changes which apply to the Intel® 64 and IA-32 Architecture
software optimization topics covered by this reference manual.

Documentation Changes
Changes to the Intel® 64 and IA-32 Architectures Optimization Reference Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

No. DOCUMENTATION CHANGES

1 Updates to Chapter 1

2 Updates to Chapter 2

3 Updates to Chapter 3

4 Updates to Chapter 7

5 Updates to Chapter 10

6 Updates to Chapter 11

7 Updates to Chapter 15

8 Updates to Chapter 18

9 Updates to Chapter 20

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 6

1. Updates to Chapter 1

Change bars and violet text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Introduction.

--
Changes to this chapter:
• Section 1.2:

— References to Intel® Xeon® Scalable Processor Family were updated.
— 13th generation Intel® Core™ processor section was added.
— Updated trademarking as necessary.

CHAPTER 1
INTRODUCTION

The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how to optimize soft-
ware to take advantage of the performance characteristics of IA-32 and Intel 64 architecture processors.

The target audience for this manual includes software programmers and compiler writers. This manual
assumes that the reader is familiar with the basics of the IA-32 architecture and has access to the Intel®
64 and IA-32 Architectures Software Developer’s Manual. A detailed understanding of Intel 64 and IA-32
processors is often required. In many cases, knowledge of the underlying microarchitectures is required.

The design guidelines discussed in this manual for developing high-performance software generally
apply to current and future IA-32 and Intel 64 processors. In most cases, coding rules apply to software
running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64 architecture, and IA-32
modes (IA-32 modes are supported in IA-32 and Intel 64 architectures). Coding rules specific to 64-bit
modes are noted separately.

NOTE
A public repository is available with open source code samples from select chapters of
this manual. These code samples are released under a 0-Clause BSD license. Intel
provides additional code samples and updates to the repository as the samples are
created and verified.
Public repository: https://github.com/intel/optimization-manual.
Link to license: https://github.com/intel/optimization-manual/blob/master/COPYING.

1.1 TUNING YOUR APPLICATION
Tuning an application for high performance on any Intel 64 or IA-32 processor requires understanding
and basic skills in:
• Intel 64 and IA-32 architecture.
• C and Assembly language.
• Hot-spot regions in the application that impact performance.
• Optimization capabilities of the compiler.
• Techniques used to evaluate application performance.

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot regions in your
applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel® Core™ Duo, Intel® Core™ Solo,
Pentium® 4, Intel® Xeon®, and Intel® Pentium® M processors, this tool can monitor an application
through a selection of performance monitoring events and analyze the performance event data that is
gathered during code execution.

This manual also describes data that can be gathered using the performance counters through the
processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL
The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm
Nehalem microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchi-
tecture. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3
processors are based on the Westmere microarchitecture. These processors support Intel 64 architec-
ture.

https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual/blob/master/COPYING
https://github.com/intel/optimization-manual/blob/master/COPYING

INTRODUCTION

1-2

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor
E7-8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy
Bridge microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200
v2 product family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchi-
tecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-
2400/1400 v2 product families, and Intel® Core™ i7-49xx Processor Extreme Edition are based on the
Ivy Bridge-E microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are
based on the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor
Extreme Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the
Silvermont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor
D-1500 product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microar-
chitecture and support Intel 64 architecture.

The Intel® Xeon® Scalable processor family, Intel® Xeon® processor E3-1500m v5 product family, and
6th generation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64
architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support
Intel 64 architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor
J series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on
the Goldmont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitec-
ture and supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel®
Celeron® processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon®
E processors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture
and supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Scalable processor family is based on the Cascade Lake product and
supports Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some
are based on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and
some are based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some processors in the 3rd generation Intel® Xeon® Scalable processor family are based on the Cooper
Lake product, and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

The 12th generation Intel® Core™ processors are based on the Alder Lake performance hybrid architec-
ture and support Intel 64 architecture.

The 13th generation Intel® Core™ processors are based on the Raptor Lake performance hybrid
architecture and support Intel 64 architecture.

1-3

INTRODUCTION

The 4th generation Intel® Xeon® Scalable processor family is based on the Sapphire Rapids microarchi-
tecture and supports Intel 64 architecture.

The chapters in this manual are summarized as follows:
• Chapter 1: Introduction — Defines the purpose and outlines the contents of this manual.
• Chapter 2: Intel® 64 and IA-32 Processor Architectures — Describes the microarchitecture of

recent Intel 64 and IA-32 processor families, and other features relevant to software optimization.
• Chapter 3: General Optimization Guidelines — Describes general code development and optimi-

zation techniques that apply to all applications designed to take advantage of the common features
of current Intel processors.

• Chapter 4: Intel Atom® Processor Architecture — Describes the microarchitecture of recent
Intel Atom processor families, and other features relevant to software optimization.

• Chapter 5: Coding for SIMD Architectures — Describes techniques and concepts for using the
SIMD integer and SIMD floating-point instructions provided by the MMX™ technology, Streaming
SIMD Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

• Chapter 6: Optimizing for SIMD Integer Applications — Provides optimization suggestions and
common building blocks for applications that use the 128-bit SIMD integer instructions.

• Chapter 7: Optimizing for SIMD Floating-point Applications — Provides optimization
suggestions and common building blocks for applications that use the single-precision and double-
precision SIMD floating-point instructions.

• Chapter 8: INT8 Deep Learning Inference — Describes INT8 as a data type for Deep learning
Inference on Intel technology. The document covers both AVX-512 implementations and implemen-
tations using the new Intel® DL Boost Instructions.

• Chapter 9: Optimizing Cache Usage — Describes how to use the PREFETCH instruction, cache
control management instructions to optimize cache usage, and the deterministic cache parameters.

• Chapter 10: Introducing Sub-NUMA Clustering — Describes Sub-NUMA Clustering (SNC), a
mode for improving average latency from last level cache (LLC) to local memory.

• Chapter 11: Multicore and Hyper-Threading Technology — Describes guidelines and
techniques for optimizing multithreaded applications to achieve optimal performance scaling. Use
these when targeting multicore processor, processors supporting Hyper-Threading Technology, or
multiprocessor (MP) systems.

• Chapter 12: Intel® Optane™ DC Persistent Memory — Provides optimization suggestions for
applications that use Intel® Optane™ DC Persistent Memory.

• Chapter 13: 64-Bit Mode Coding Guidelines — This chapter describes a set of additional coding
guidelines for application software written to run in 64-bit mode.

• Chapter 14: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing—
Describes SIMD techniques of using SSE4.2 along with other instruction extensions to improve
text/string processing and lexing/parsing applications.

• Chapter 15: Optimizations for Intel® AVX, FMA, and Intel® AVX2— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector
Extensions, FMA, and Intel® Advanced Vector Extensions 2 (Intel® AVX2).

• Chapter 16: Intel Transactional Synchronization Extensions — Tuning recommendations to
use lock elision techniques with Intel Transactional Synchronization Extensions to optimize multi-
threaded software with contended locks.

• Chapter 17: Power Optimization for Mobile Usages — This chapter provides background on
power saving techniques in mobile processors and makes recommendations that developers can
leverage to provide longer battery life.

• Chapter 18: Software Optimization for Intel® AVX-512 Instructions— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector Extensions
512.

INTRODUCTION

1-4

• Chapter 19: Intel® Advanced Vector Extensions 512-FP16 Instruction Set for Intel® Xeon®
Processors — Describes the addition of the FP16 ISA for Intel AVX-512 to handle IEEE 754-2019
compliant half-precision floating-point operations.

• Chapter 20: Intel® Advanced Matrix Extensions (Intel® AMX) — Describes best practices to
optimally code to the metal on Intel® Xeon® Processors based on Sapphire Rapids SP microarchi-
tecture. It extends the public documentation on Optimizing DL code with DL Boost instructions.

• Chapter 21: Cryptography & Finite Field Arithmetic Enhancements — Describes the new
instruction extensions designated for acceleration of cryptography flows and finite field arithmetic.

• Chapter 22: Intel® QuickAssist Technology — Describes software development guidelines for
the Intel® QuickAssist Technology (Intel® QAT) API. This API supports both the Cryptographic and
Data Compression services.

• Chapter 23: Knights Landing Microarchitecture and Software Optimization — Describes the
microarchitecture of processor families based on the Knights Landing microarchitecture, and
software optimization techniques targeting Intel processors based on the Knights Landing microar-
chitecture.

• Appendix A: Application Performance Tools — Introduces tools for analyzing and enhancing
application performance without having to write assembly code.

• Appendix B: Using Performance Monitoring Events — Provides information on the Top-Down
Analysis Method and information on how to use performance events specific to the Intel Xeon
processor 5500 series, processors based on Sandy Bridge microarchitecture, and Intel Core Solo and
Intel Core Duo processors.

• Appendix C: Intel Architecture Optimization with Large Code Pages — Provides information
on how the performance of runtimes can be improved by using large code pages.

• Appendix D: IA-32 Instruction Latency and Throughput — Provides latency and throughput
data for the IA-32 instructions. Instruction timing data specific to recent processor families are
provided.

• Appendix E: Earlier Generations of Intel® 64 and IA-32 Processor Architectures —
Describes the microarchitecture of earlier generations of Intel 64 and IA-32 processor families, and
other features relevant to software optimization.

• Appendix F: Earlier Generations of Intel Atom® Microarchitecture and Software Optimi-
zation — Describes the microarchitecture of earlier generations of processor families based on Intel
Atom microarchitecture, and software optimization techniques targeting Intel Atom microarchi-
tecture.

1.3 RELATED INFORMATION
For more information on the Intel® architecture, techniques, and the processor architecture terminology,
the following are of particular interest:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual.
• Developing Multi-threaded Applications: A Platform Consistent Approach.
• Get Started with Intel® Fortran Compiler Classic and Intel® Fortran Compiler.
• Intel® C++ Compiler Classic Developer Guide and Reference.
• Intel® Developer Catalog.
• Intel® oneAPI Data Analytics Library.

More relevant links include:
• AI & Machine Learning: Development tools and resources.
• Development Topics & Technologies.
• Intel® 64 Architecture Processor Topology Enumeration.
• Intel® Distribution of OpenVino™ Toolkit.

https://software.intel.com/en-us/c-compilers/ipsxe-support
https://software.intel.com/en-us/fortran-compilers-support/
https://www.intel.com/content/dam/develop/external/us/en/documents/kuo-cputopology-rc1-rh1-final-256920.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-introduction-basics-paper.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal-download.html
https://www.intel.com/content/www/us/en/developer/topic-technology/overview.html#gs.x8ec4y
https://www.intel.com/content/www/us/en/products/details/processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/get-help-and-support.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.x8bmjg
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/introduction.html
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-introduction-basics-paper.html
https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf
https://www.intel.com/content/www/us/en/docs/fortran-compiler/get-started-guide/2022-2/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal-download.html
https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/overview.html#gs.x8gi1p
https://www.intel.com/content/dam/develop/external/us/en/documents/kuo-cputopology-rc1-rh1-final-256920.pdf
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-introduction-basics-paper.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-introduction-basics-paper.html
https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf
https://www.intel.com/content/www/us/en/docs/fortran-compiler/get-started-guide/2022-2/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-introduction-basics-paper.html

1-5

INTRODUCTION

• Intel Processor support and information.
• Intel® Hyper-Threading Technology (Intel® HT Technology).
• Intel® Instruction Set Extensions Technology Support.
• Intel® Many Integrated Core Architecture.
• Intel® QuickAssist Technology (Intel® QAT).
• Intel® SSE4 Programming Reference.
• Intel® VTune™ Profiler User Guide.

https://software.intel.com/en-us/articles/multi-core-introduction
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.com/content/dam/develop/external/us/en/documents/d9156103-705230.pdf
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/introduction.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/dam/develop/external/us/en/documents/d9156103-138479.pdf
https://www.intel.com/content/www/us/en/developer/topic-technology/open/quick-assist-technology/overview.html
https://www.intel.com/content/www/us/en/support/products/873/processors.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/quick-assist-technology/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/introduction.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/quick-assist-technology/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-1/overview.html

INTRODUCTION

1-6

Intel® 64 and IA-32 Architectures Optimization Reference Manual 13

2. Updates to Chapter 2
Change bars and violet text show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Intel® 64 and IA-32 Processor Architectures.

--
Changes to this chapter:
• Corrected branding and style across chapter.
• Section 2.1:

— Updated title of section from Sapphire Rapids Architecture to Sapphire Rapids Microarchitecture.
— Refined technology features associated with the Sapphire Rapids microarchitecture.
— 2.1.1: Changed: Its I/O to the I/O....

• Section 2.3:
— Updated to include new performance recommendations.
— Updated Figure 2-1 and 2-3 to include *H in Port 1
— Update Tables 2-1 and 2-2 to include additional footnote regarding *H performance improvements.

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel® 64 and IA-32 processors1. These features are:
• Microarchitectures that enable executing instructions with high throughput at high clock speeds, a

high-speed cache hierarchy, and high-speed system bus.
• Intel® Hyper-Threading Technology2 (Intel® HT Technology) support.
• Intel 64 architecture on Intel 64 processors.
• Single Instruction Multiple Data (SIMD) instruction extensions: MMX™ technology, Streaming SIMD

Extensions (Intel® SSE), Streaming SIMD Extensions 2 (Intel® SSE2), Streaming SIMD Extensions 3
(Intel® SSE3), Supplemental Streaming SIMD Extensions 3 (SSSE3), Intel® SSE4.1, and Intel®

SSE4.2.
• Intel® Advanced Vector Extensions (Intel® AVX).
• Half-precision floating-point conversion and RDRAND.
• Fused Multiply Add Extensions.
• Intel® Advanced Vector Extensions 2 (Intel® AVX2).
• ADX and RDSEED.
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512).
• Intel® Thread Director.

2.1 SAPPHIRE RAPIDS MICROARCHITECTURE
Intel processors based on Sapphire Rapids microarchitecture use Golden Cove cores and support the
following additional features:
• Intel® Advanced Matrix Extensions (Intel® AMX) (Chapter 20).
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) (Chapter 19).
• Intel® Data Streaming Accelerator (Intel® DSA)3.
• Intel® In-Memory Analytics Accelerator (Intel® IAA)4.
• Intel® Quick Assist Technology (Intel® QAT)(Chapter 22)

2.1.1 4th Generation Intel® Xeon® Scalable Family of Processors
Intel's fourth generation Xeon® Scalable Family of Processors changes from a single-die monolithic
design to multi-die Tiles.

The server products are scalable from dual-socket to eight-socket configurations (Section 3.11).

The I/O is increased with PCI Express 5.0, DDR5 memory, and Compute Express Link 1.1.

1. For previous generations of Intel 64 and IA-32 processors, see Appendix E, “Earlier Generations of Intel® 64 and IA-32
Processor Architectures.” Intel Atom® processors are covered in Chapter 4, “Intel Atom® Processor Architectures.”

2. Intel HT Technology requires a computer system with an Intel processor supporting hyper-threading and an Intel HT
Technology-enabled chipset, BIOS, and operating system. Performance varies depending on the hardware and software
used.

3. Please see the intel® DSA Specification and Intel® DSA User Guide.

4. Please see the Intel® IAA Specification.

https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/759709

2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Packaging includes a multi-die chip with up to 4 tiles. Each tile is a 400mm2 SoC, providing both compute
cores and I/O.

Each tile contains 15 Golden Cove cores (see Section 2.3). Its memory controller provides two channels
of DDR5 with a maximum of eight channels across 4 tiles, and 28 PCIe 5.0 lanes for a maximum of 112
across 4 tiles.

2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE
The Alder Lake performance hybrid architecture combines two Intel architectures, bringing together the
Golden Cove performant cores and the Gracemont efficient Atom cores onto a single SoC. For details on
the Golden Cove microarchitecture, see Section 2.3, “Golden Cove Microarchitecture.” For details on the
Gracemont microarchitecture, see Section 4.1, “Gracemont Microarchitecture.”

2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid
Architecture

12th Generation Intel® Core™ processors supporting performance hybrid architecture consist of up to
eight Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a
3MB Last Level Cache (LLC) per IDI module, where a module is one P-core or four E-cores. It has
symmetrical ISA and comes in variety of configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and
multithreaded efficiency. P-cores on these processors can also have Intel Hyper-Threading Technology
enabled. All cores can be active simultaneously when the operating system (OS) decides to schedule on
all processors.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a performance
hybrid architecture. In 12th Generation Intel Core processors supporting performance hybrid architec-
ture, ISA is converged to a common baseline between the P-cores and E-cores. In order to maintain
symmetric ISA, the E-cores do not support the following features: Intel AVX-512, Intel AVX-512 FP-16,
and Intel® TSX. The E-cores do support Intel AVX2 and Intel AVX-VNNI.

2.2.2 Hybrid Scheduling

2.2.2.1 Intel® Thread Director
Intel® Thread Director continually monitors software in real-time giving hints to the operating system's
scheduler allowing it to make more intelligent and data-driven decisions on thread scheduling. With Intel
Thread Director, hardware provides runtime feedback to the OS per thread based on various IPC perfor-
mance characteristics, in the form of:
• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on

power/thermal limits.
• Idling hints when power and thermal are constrained.

Intel Thread Director is first introduced in desktop and mobile variants of the 12th generation Intel Core
processor based on Alder Lake performance hybrid architecture.

A processor containing both P-cores and E-cores with different performance characteristics creates a
challenge for the operating system’s scheduler. Additionally, different software threads see different
performance ratios between the P-cores and E-cores. For example, the performance ratio between the
P-cores and E-cores for highly vectorized floating-point code is higher than the performance ratio for
scalar integer code. So, when the operating system needs to make an optimal scheduling decision it
needs to be aware of the characteristics of the software threads that are candidates for scheduling. If not
enough P-cores are available and there is a mix of software threads with different characteristics, the

2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

operating system should schedule those threads that benefit most from the P-cores onto those cores and
schedule the others on the E-cores.

Intel Thread Director provides the necessary hint to the operating system about the characteristics of the
software thread executing on each of the logical processors. The hint is dynamic and reflects the recent
characteristics of the thread, i.e., it may change over time based on the dynamic instruction mix of the
thread. The processor also considers microarchitecture factors to define the dynamic software thread
characteristics.

Thread specific hardware support is enumerated via the CPUID instruction and enabled by the operating
system via writing to configuration MSRs. The Intel Thread Director implementation on processors based
on Alder Lake performance hybrid architecture defines four thread classes:

0. Non-vectorized integer or floating-point code.

1. Integer or floating-point vectorized code, excluding Intel® Deep Learning Boost (Intel® DL Boost)
code.

2. Intel DL Boost code.

3. Pause (spin-wait) dominated code.

The dynamic code does not have to be 100% of the class definition. It should be large enough to be
considered belonging to that class. Also, dynamic microarchitectural metrics such as consumed memory
bandwidth or cache bandwidth may move software threads between classes. Example pseudo-code
sequences for the Intel Thread Director classes available on processors based on Alder Lake performance
hybrid architecture are provided in the examples 2-1 through 2-4.

Intel Thread Director also provides a table in system memory, only accessible to the operating system,
that defines the P-core vs. E-core performance ratio per class. This allows the operating system to pick
and choose the right software thread for the right logical processor.

In addition to the performance ratio between P-cores and E-cores, Intel Thread Director provides the
energy efficiency ratio between those cores. The operating system can then use this information when it
prefers energy savings over maximum performance. For example, a background task such as indexing
can be scheduled on the most energy efficient core since its performance is less critical.

Example 2-1. Class 0 Pseudo-code Snippet

while (1)
{

asm(“xor rax, rax;”
“add rax, 5;”
“inc rax;”

);
}

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Example 2-2. Class 1 Pseudo-code Snippet

while (1)
{

asm(“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”

“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”

);
}

2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

2.2.2.2 Scheduling with Intel® Hyper-Threading Technology-Enabled on Processors
Supporting x86 Hybrid Architecture

E-cores are designed to provide better performance than a logical P-core with both hardware sibling
hyper-threads busy.

Example 2-3. Class 2 Pseudo-code Snippet

while (1)
{

__asm(
vpdpbusd ymm2, ymm0, ymm1
vpdpbusd ymm3, ymm0, ymm1
vpdpbusd ymm4, ymm0, ymm1
vpdpbusd ymm5, ymm0, ymm1
vpdpbusd ymm6, ymm0, ymm1
vpdpbusd ymm7, ymm0, ymm1
vpdpbusd ymm8, ymm0, ymm1
vpdpbusd ymm9, ymm0, ymm1
vpdpbusd ymm10, ymm0, ymm1
vpdpbusd ymm11, ymm0, ymm1
vpdpbusd ymm12, ymm0, ymm1
vpdpbusd ymm13, ymm0, ymm1

);
}

Example 2-4. Class 3 Pseudo-code Snippet

while (1)
{

asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)

);
}

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://cdrdv2.intel.com/v1/dl/getContent/671200

2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.2.3 Scheduling with a Multi-E-Core Module
E-cores within an idle module help provide better performance than E-cores in a busy module.

2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture
In most scenarios, background threads can leverage scalability and multithread efficiency of E-cores.

2.2.3 Recommendations for Application Developers
The following are recommendations when using processors supporting performance hybrid architecture:
• Stay up to date on updates on operating systems and optimized libraries.
• Software needs to avoid setting hard affinities on either threads or processes in order to allow the

operating system to provide the optimal core selection for Intel Hybrid.
• Software should replace active spin-waits with lightweight waits ideally using the new

UMWAIT/TPAUSE and older PAUSE instructions which will allow for better hints to the scheduler on
time spinning.

• Software can utilize the Windows Power Throttling information using process information and thread
information APIs, to give hints to the scheduler on the Quality of Service (QoS) required for a
particular thread or process to improve both performance and energy efficiency.

• Leverage Windows frameworks and media APIs for multimedia application development. Windows
Media Foundation framework is optimized for hybrid architecture and enables media applications to
run efficiently while preventing glitches.

• The Windows IrqPolicyMachineDefault policy enables Windows to optimally target interrupts to the
right core, and more so on hybrid architecture.

For additional recommendations and information on performance hybrid architecture, refer to the white
papers on the Performance Hybrid Architecture page.

2.3 GOLDEN COVE MICROARCHITECTURE
The Golden Cove microarchitecture is the successor of Ice Lake microarchitecture. The Golden Cove
microarchitecture introduces the following enhancements:
• Wider machine: 56 wide allocation, 1012 execution ports, and 48 wide retirement.
• Significant increases in the size of key structures enable deeper OOO execution and expose more

instruction level parallelism.
• Greater capabilities per execution port, e.g., 5th integer ALU execution ports with expanded

capability and a new fast floating-point adder.
• Intel® Advanced Matrix Extensions (Intel® AMX)1: Built-in integrated Tiled Matrix Multiplication /

Machine Learning Accelerator.
• Improved branch prediction.
• Improvements for large code footprint workloads, e.g., larger branch prediction structures, enhanced

code prefetcher, and larger instruction TLB.
• Wider fetch: legacy decode pipeline fetch bandwidth increase to 32B/cycles, 46 decoders,

increased micro-op cache size, and increased micro-op cache bandwidth.
• Maximum load bandwidth increased from 2 loads/cycle to 3 loads/cycle.
• Larger 4K Pages DTLB, increase in the number of outstanding Page Miss handlers.
• Increased number of outstanding misses (16 FB, 3248 Deeper MLC miss queues).

1. Intel AMX are not available on client parts.

https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html

2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Enhanced data prefetchers for increased memory parallelism.
• Mid-level cache size increased to 2MB on server parts; remains 1.25MB on client parts.

2.3.1 Golden Cove Microarchitecture Overview
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-1.

The Golden Cove front end is depicted in Figure 2-2. The front end is built to feed the wider and deeper
out-of-order core:
• Legacy decode pipeline fetch bandwidth increased from 16 to 32 bytes/cycle.
• The number of decoders increased from four to six, allowing decode of up to 6 instructions per cycle.
• The micro-op cache size increased, and its bandwidth increased to deliver up to 8 micro-ops per

cycle.
• Improved branch prediction.

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture

ITLB + 32KB Instruction Cache BPU

op Cache

Scheduler / Reservation Station

P2
AGU

ITLB + 32KB Instruction Cache BPU

DecodeMSROM

op Queue

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler / Reservation Station

P3
AGU

P11
AGU

P4
STD

P9
STD

P7
AGU

P8
AGU

P0 P1 P5 P6 P10

ALU ALU ALU ALU ALU

LEA LEA LEA LEA LEA

Shift MUL MULHi Shift

JMP1 IDIV JMP2

*H

INT

FMA FMA FMA512

ALU ALU ALU

Shift Shift AMX

fpDiv Shuffle Shuffle

FastADD

VEC

FastADD

48KB DOU

1.25MB Client / 2MB Server MLC

SOC

LD DTLB STA DTLB

Load Buffer Store Buffer

3x256
2x512

3x256
2x512

2x256
1x512

2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Improvements for large code footprint workloads:
• Double the size of the instruction TLB: 128256 entries for 4K pages, 1632 entries for 2M/4M

pages.
• Bigger branch prediction structures.
• Enhanced code prefetcher.
• Improved LSD coverage.
• The IDQ can hold 144 uops per logical processor in single thread mode, or 72 uops per thread when

SMT is active.

Additional improvements include:
• Significant increase in size of key buffer structures to enable deeper OOO execution and expose more

instruction level parallelism.
• Wider machine:

— Wider allocation (56 uops per cycle) and retirement (48 uops per cycle) width.

— Increase in number of execution ports (1012).

— Greater capabilities per execution port.

Table 2-1 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Figure 2-2. Processor Front End of the Golden Cove Microarchitecture

ITLB + 32KB Instruction Cache BPU

Decode µop CacheMSROM

µop Queue

4 uops 8 uops

64 bytes32 bytes

6 uops

6 uops

2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-2 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the Intel® SSE, Intel AVX, and general-purpose instruction sets are
related to the number of units for the respective operations, and the varieties of instructions that execute
using a particular unit.

Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture

Port 0 Port 11 Port 2 Port 3 Port 4 Port 52 Port 6 Ports 7, 8 Port 9 Port 10 Port 11

INT ALU

LEA

INT Shift

Jump1

INT
ALU3

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Data

INT ALU

LEA

Load

FMA

Vec ALU

Vec
Shift

FP Div

FMA*

Fast
Adder*

Vec
ALU*

Vec
Shift*

Shuffle*

FMA**

Fast
Adder

Vec ALU

Shuffle

NOTES:
1. “*” in this table indicates that these features are not available for 512-bit vectors.
2. “**” in this table indicates that these features are not available for 512-bit vectors in Client parts.
3. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of Unit Instructions

ALU 52 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*,
(v)movup*

SHFT 23 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU

2x256-bit

1x512-bit
(v)add, (v)cmp. (v)max, (v)min, (v)sub, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2sl, (v)cvtss2sl

3x256-bit

2x512-bit
(v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft
2x256-bit

1x512-bit
(v)psllv*, (v)psrlv*, vector shift count in imm8

VEC Add (in
VEC FMA)

2x256-bit

1x512-bit
(v)add*, (v)cmp*, (v)max*, (v)min*, (v)sub*, (v)padds*, (v)paddus*, (v)psign, (v)pabs,
(v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-3 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of
abbreviation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to a 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.

VEC Fast
Add

2x256-bit

1x512-bit
(v)add*, (v)addsub*, (v)sub*

Shuffle 2x256-bit

1x512-bit

(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*, vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw (new cross lane shuffle on
both ports)

Vec
Mul/FMA

2x256-bit

(1 or
2)x512-bit

(v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.
2. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.
3. ibid.

Table 2-3. Bypass Delay Between Producer and Consumer Micro-Ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 MUL/0,1/4
Fast

Adder/1,5/3
SIMD/5/1,3

SHUF/
1,5/1,

3
V2I/0/3

SIMD/0,1/1 0 1 1 1 0 0 0

FMA/0,1/4 1 0 1 0 0 0 0

MUL/0,1/4 1 0 1 0 0 0 0

Fast Adder/0,1/3 1 0 1 -1 0 0 0

SIMD/5/1,3 0 1 1 1 0 0 0

SHUF/1,5/1,3 0 0 1 0 0 0 0

V2I/0/3 0 0 1 0 0 0 0

I2V/5/1 0 1 1 0 0 0 0

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1 (Contd.)

Execution
Unit

of Unit Instructions

2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• “I2V/5/1” applies to a 1-cycle integer-to-vector uop dispatched to port 5.
• “Fast Adder/1,5/3” applies to either a 3-cycle 256-bit uop dispatched to either port 1 or port 5, or a

512-bit uop dispatched to port 5. This operation supports two cycles back-to-back between a pair of
Fast Adder operations.

A new Fast Adder1 unit is added as 512-bit on port 5 in VEC stack, and as 256-bit on ports 1 and 5. The
Fast Adder performs floating-point ADD/SUB operations in 3 cycles.

Back-to-back ADD/SUB operations that are both executed on the Fast Adder unit perform the operations
in two cycles.
• In 128/256-bit, back-to-back ADD/SUB operations executed on the Fast Adder unit perform the

operations in two cycles.
• In 512-bit, back-to-back ADD/SUB operations are executed in two cycles if both operations use the

Fast Adder unit on port 5.

The following instructions are executed by the Fast Adder unit:
• (V)ADDSUBSS/SD/PS/PD
• (V)ADDSS/SD/PS/PD
• (V)SUBSS/SD/PS/PD

2.3.1.1 Cache Subsystem and Memory Subsystem
The cache subsystem and memory subsystem changes in the Golden Cove microarchitecture are:
• Maximum load bandwidth increased from 2 to 3 loads per cycle. Bandwidth of Intel AVX-512 loads,

Intel AMX loads, and MMX/x87 loads remain at a maximum of 2 loads per cycle.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Number of entries for 4K pages in the load DTLB increased from 64 to 96.
• Page Miss handler can handle up to four D-side page walks in parallel instead of two.
• Increased number of outstanding DCU and MLC misses.
• Enhanced data prefetchers for increased memory parallelism.
• Partial store forwarding allowing forwarding data from store to load also when only part of the load

was covered by the store (in case the load's offset matches the store's offset).

2.3.1.2 Avoiding Destination False Dependency
Some SIMD instructions incur false dependency on the destination operand. The following instructions
are affected:
• VFMULCSH, VFMULCPH
• VFCMULCSH, VFCMULCPH
• VPERMD, VPERMQ, VPERMPS, VPERMPD
• VRANGE[SS,PS,SD,PD]
• VGETMANTSH, VGETMANTSS, VGETMANTSD
• VGETMANTPS, VGETMANTPD (memory versions only)
• VPMULLQ

1. The Fast Adder unit is not available on 512-bit vectors in Client parts.

2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Recommendation: Use dependency breaking zero idioms on the destination register before the
affected instructions to avoid potential slowdown from the false dependency.

2.4 ICE LAKE CLIENT MICROARCHITECTURE
The Ice Lake client microarchitecture introduces the following new features that allow optimizations of
applications for performance and power consumption:
• Targeted vector acceleration.
• Crypto acceleration.
• Intel® Software Guard Extensions (Intel® SGX) enhancements.
• Cache line writeback instruction (CLWB).

2.4.1 Ice Lake Client Microarchitecture Overview
The Ice Lake client microarchitecture builds on the successes of the Skylake client microarchitecture.
The basic pipeline functionality of the Ice Lake Client microarchitecture is depicted in Figure 2-3.

Example 2-5. Breaking False Dependency through Zero Idiom

Code with False Dependency Impact Mitigation: Break False Dependency with Zero Idiom

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vfmulcph zmm3, zmm2, zmm1 ;False dependency on
zmm3.

Will not execute out-of-order
until vaddps writes zmm3.

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vpxord zmm3, zmm3, zmm3 ;Dependency-breaking

zero idiom.
vfmulcph zmm3, zmm2, zmm1 ;Execute out-of-order

without waiting for
vaddps result.

Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture1

op Cache

Scheduler / Reservation Station

P4 + P9
Store Data

32KB
Instruction Cache

BPU

Legacy Decode
Pipeline MSROM

op Queue

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler / Reservation Station

P2
Load Port 0

ALU
LEA
Shift
JMP1

FMA
SLU
Shift
fpDIV

INT

Port 1

ALU
LEA
MUL
IDIV
*H

FMA*
ALU*
Shift*

Shuffle*

VEC

48KB L1 Data Cache

SOC

P8
STA

P7
STA

P3
Load

512KB L2 Data Cache

Port 5

ALU
LEA

MULHi
*H

ALU

Shuffle

Port 6

ULA
LEA
Shift
JMP2

2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Ice Lake client microarchitecture introduces the following new features:
• Significant increase in size of key structures enable deeper OOO execution.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Intel AVX-512 (new for client processors): 512-bit vector operations, 512-bit loads and stores to

memory, and 32 new 512-bit registers.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA), reduced latency Integer Divider.
• 2×BW for AES-NI peak throughput for existing binaries (microarchitectural).
• Rep move string acceleration.
• 50% increase in size of the L1 data cache.
• Reduced effective load latency.
• 2×L1 store bandwidth: 1 2 stores per cycle.
• Enhanced data prefetchers for increased memory parallelism.
• Larger 2nd level TLB.
• Larger uop cache.
• Improved branch predictor.
• Large page ITLB size in single thread mode doubled.
• Larger L2 cache.

The Ice Lake client microarchitecture supports flexible integration of multiple processor cores with a
shared uncore sub-system consisting of a number of components including a ring interconnect to
multiple slices of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

2.4.1.1 The Front End
The front end changes in Ice Lake Client microarchitecture include:
• Improved branch predictor.
• Large page ITLB in single thread mode increased from 8 to 16 entries.
• Larger uop cache.
• The IDQ can hold 70 uops per logical processor vs. 64 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2×70 vs. 2×64 per
core). If only one logical processor is active in the core, the IDQ can hold 70 uops vs. 64 uops.

• The LSD in the IDQ can detect loops of up to 70 uops per logical processor irrespective single thread
or multi thread operation.

NOTES:
1. “*” in the figure above indicates these features are not available for 512-bit vectors.
2. “INT” represents GPR scalar instructions.
3. “VEC” represents floating-point and integer vector instructions.
4. “MULHi” produces the upper 64 bits of the result of an iMul operation that multiplies two 64-bit registers and places the

result into two 64-bits registers.
5. The “Shuffle” on port 1 is new, and supports only in-lane shuffles that operate within the same 128-bit sub-vector.
6. The “IDIV” unit on port 1 is new, and performs integer divide operations at a reduced latency.
7. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.1.2 The Out of Order and Execution Engines
The Out of Order and execution engines changes in Ice Lake Client microarchitecture include:
• A significant increase in size of reorder buffer, load buffer, store buffer, and reservation stations

enable deeper OOO execution and higher cache bandwidth.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA).
• Reduced latency Integer Divider.
• A new iDIV unit was added that significantly reduces the latency and improves the of throughput of

integer divide operations.

Table 2-4 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Table 2-5 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the SSE, Intel AVX, and general-purpose instruction sets are related to
the number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture

Port 0 Port 11

NOTES:
1. “*” in this table indicates these features are not available for 512-bit vectors.

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9

INT ALU

LEA

INT Shift

Jump1

INT ALU

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Address

Store
Data

FMA

Vec ALU

Vec Shift

FP Div

FMA*

Vec ALU*

Vec
Shift*

Vec
Shuffle*

Vec ALU

Vec
Shuffle

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,

(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-6 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.
• “I2V/5/1” applies to a 1-cycle integer-to-vector uop to port 5.

Shuffle 2 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,

vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,
3

V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 0 0 1 0 0 0 NA

I2V/5/1 0 1 1 0 0 0 NA

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit

Instructions

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.1.3 Cache and Memory Subsystem
The cache hierarchy changes in Ice Lake Client microarchitecture include:
• 50% increase in size of the L1 data cache.
• 2×L1 store bandwidth: 3 4 AGUs, 1 2 store data.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Higher cache bandwidth compared to previous generations.
• Larger 2nd level TLB: 1.5K entries 2K entries.
• Enhanced data prefetchers for increased memory parallelism.
• L2 cache size increased from 256KB to 512KB.
• L2 cache associativity increased from 4 ways to 8 ways.
• Significant reduction in effective load latency.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, shared L2 TLB
for 4K and 4MB pages and a dedicated L2 TLB for 1GB pages.

Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture

Level
Capacity /

Associativity
Line Size
(bytes)

Latency1
(cycles)

NOTES:
1. Software-visible latency/bandwidth will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cycles)

Sustained Bandwidth
(bytes/cycles)

Update
Policy

First Level
(DCU)

48KB/8 64 5 2×64B loads + 1x64B
or 2x32B stores

Same as peak Writeback

Second
Level (MLC)

512KB/8 64 13 64 48 Writeback

Third Level
(LLC)

Up to 2MB per
core/up to 16 ways

64 xx2

2. This number depends on core count.

32 21 Writeback

Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture

Level Page Size Entries ST
Per-thread Entries
MT Latency Associativity

Instruction 4KB 128 64 8

Instruction 2MB/4MB 16 8 8

First Level Data (loads) 4KB 64 64 competitively
shared

4

First Level Data (loads) 2MB/4MB 32 32 competitively
shared

4

First Level Data (loads) 1GB 8 8 competitively shared 8

First Level Data (stores) Shared for all page
sizes

16 16 competitively
shared

16

Second Level Shared for all page
sizes

20481

NOTES:
1. 4K pages can use all 2048 entries. 2/4MB pages can use 1024 entries (in 8 ways), sharing them with 4K pages. 1GB

pages can use the other 1024 entries (in 8 ways), also sharing them with 4K pages.

2048 competitively
shared

16

2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Paired Stores
Ice Lake Client microarchitecture includes two store pipelines in the core, with the following features:
• Two dedicated AGU for LDs on ports 2 and 3.
• Two dedicated AGU for STAs on ports 7 and 8.
• Two fully featured STA pipelines.
• Two 256-bit wide STD pipelines (AVX-512 store data takes two cycles to write).
• Second senior store pipeline to the DCU via store merging.

Ice Lake Client microarchitecture can write two senior stores to the cache in a single cycle if these two
stores can be paired together. That is:
• The stores must be to the same cache line.
• Both stores are of the same memory type, WB or USWC.
• None of the stores cross cache line or page boundary.

In order to maximize performance from the second store port try to:
• Align store operations whenever possible.
• Place consecutive stores in the same cache line (not necessarily as adjacent instructions).

As seen in Example 2-6, it is important to take into consideration all stores, explicit or not.

Example 2-6. Considering Stores

Stores are Paired Across Loop Iterations Stores Not Paired Due to Stack Update in Between

Loop:
compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop can be paired all together because
they usually would be same line

Loop:
call function to compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop cannot be paired anymore because
of the call store to stack
; the call is disturbing pairing

2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In some cases it is possible to rearrange the code to achieve store pairing. Example 2-7 provides details.

2.4.1.4 New Instructions
New instructions and architectural changes in Ice Lake Client microarchitecture are listed below. Actual
support may be product dependent.
• Crypto acceleration

— SHA NI for acceleration of SHA1 and SHA256 hash algorithms.

— Big-Number Arithmetic (IFMA): VPMADD52 - two new instructions for big number multiplication
for acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance.

— Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error
correction algorithms, and bit matrix multiplications.

— Vector AES and Vector Carry-less Multiply (PCLMULQDQ) instructions to accelerate AES and
AES-GCM.

• Security Technologies

— Intel® SGX enhancements to improve usability and applicability: EDMM, multi-package server
support, support for VMM memory oversubscription, performance, larger secure memory.

• Sub Page protection for better performance of security VMMs.
• Targeted Acceleration

— Vector Bit Manipulation Instructions: VBMI1 (permutes, shifts) and VBMI2 (Expand, Compress,
Shifts)- used for columnar database access, dictionary based decompression, discrete mathe-
matics, and data-mining routines (bit permutation and bit-matrix-multiplication).

— VNNI with support for integer 8 and 16 bits data types- CNN/ML/DL acceleration.

— Bit Algebra (POPCNT, Bit Shuffle).

— Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while
retaining clean copy in cache.

• Platform analysis features for more efficient performance software tuning and debug.

— AnyThread removal.

Example 2-7. Rearranging Code to Achieve Store Pairing

Stores to Different Cache Lines - Not Paired Unrolling May Solve the Problem

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute ymm2 …
vmovaps [y], ymm2
add x, 32
add y, 32
jmp Loop ; this loop cannot pair any store because

of alternating store to different cache
lines [x] and [y]

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute new ymm1 …
vmovaps [x+32], ymm1
... compute ymm2 …
vmovaps [y], ymm2
... compute new ymm2 …
vmovaps [y+32], ymm2
add x, 64
add y, 64
jmp Loop ; the loop was unrolled 2 times and stores

re-arranged to make sure two stores to
the same cache line are placed one after
another. Now stores to addresses [x] and
[x+32] are to the same cache line and
could be paired together and executed in
same cycle

2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— 2x general counters (up to 8 per-thread).

— Fixed Counter 3 for issue slots.

— New performance metrics for built-in support for Level 1 Top-Down method (% of Issue slots that
are front-end bound, back-end bound, bad speculation, retiring) while leaving the 8 general
purpose counters free for software use.

2.4.1.5 Ice Lake Client Microarchitecture Power Management
Processors based on Ice Lake Client microarchitecture are the first client processors whose cores may
execute at a different frequency from one another. The frequency is selected based on the specific
instruction mix; the type, width and number of vector instructions of the program that executes on each
core, the ratio between active time and idle time of each core, and other considerations such as how
many cores share similar characteristics.

Most of the power management features of Skylake Server Microarchitecture (see Section 2.5) is appli-
cable to Ice Lake Client microarchitecture as well. The main differences are the following:
• The typical P0n max frequency difference between Intel® Advanced Vector Extensions (Intel®

AVX-512) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) on Ice Lake Client microarchi-
tecture is much lower than on Skylake Server microarchitecture. Therefore, the negative impact on
overall application performance is much smaller.

• All processors based on Ice Lake Client microarchitecture contain a single 512-bit FMA unit, whereas
some of the processors based on Skylake Server microarchitecture contain two such units. Both
processors contain two 256-bit FMA units. The power consumed by Ice Lake Client FMA units is the
same, whereas on Skylake Server the 512-bit units consume twice as much.

Compute heavy workloads, especially those that span multiple Ice Lake client cores, execute at a lower
frequency than P0n, both under Intel AVX-512 and under Intel AVX2 instruction sets, due to power
limitations. In this scenario, Intel AVX-512 architecture, which requires less dynamic instructions to
complete the same task than Intel AVX2 architecture, consumes less power and thus may achieve higher
frequency. The net result may be higher performance due to the shorter path length and a bit higher
frequency.

There are still some cases where coding to the Intel AVX-512 instruction set yields lower performance
than when coding to the Intel AVX2 instruction set. Sometimes it is due to microarchitecture artifacts of
longer vectors, in other cases the natural vectors are just not long enough. Most compilers are still
maturing their Intel AVX-512 support, and it may take them a few more years to generate optimal code.

The general recommendation in the Skylake Server Power Management section (see Section 2.5.3) still
holds. Developers should code to the Intel AVX-512 instruction set and compare the performance to their
Intel AVX2 workload on Ice Lake Client microarchitecture, before making the decision to proceed with a
complete port.

2.5 SKYLAKE SERVER MICROARCHITECTURE
The Intel® Xeon® Processor Scalable Family is based on the Skylake Server microarchitecture. Proces-
sors based on the Skylake microarchitecture can be identified using CPUID’s DisplayFamily_DisplayModel
signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features1 that allow you to optimize
your application for performance and power consumption.
• A new core based on the Skylake Server microarchitecture with process improvements based on the

Kaby Lake microarchitecture.
• Intel AVX-512 support.
• More cores per socket (max 28 vs. max 22).

1. Some features may not be available on all products.

https://cdrdv2.intel.com/v1/dl/getContent/671098

2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.
• Bigger L2 cache, smaller non inclusive L3 cache.
• Intel® Optane™ support.
• Intel® Omni-Path Architecture (Intel® OPA).
• Sub-NUMA Clustering (SNC) support.

The green stars in Figure 2-4 represent new features in Skylake Server microarchitecture compared to
Skylake microarchitecture for client; a 1MB L2 cache and an additional Intel AVX-512 FMA unit on port 5
which is available on some parts.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port 0 will
execute on both port 0 and port 1; however, other operations such as lea can still execute on port 1 in
parallel. See the red block in Figure 2-8 for the fusion of ports 0 and 1.
Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its
front end loop stream detector (LSD) disabled.

Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.1 Skylake Server Microarchitecture Cache
The Intel Xeon Processor Scalable Family based on Skylake Server microarchitecture has significant
changes in core and uncore architecture to improve performance and scalability of several components
compared with the previous generation of the Intel Xeon processor family based on Broadwell microar-
chitecture.

2.5.1.1 Larger Mid-Level Cache
Skylake Server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum
load-to-use latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in
previous Intel Xeon processor family implementations. The line size of the mid-level cache is 64B and it
is 16-way associative. The mid-level cache is private to each core.

Software that has been optimized to place data in mid-level cache may have to be revised to take advan-
tage of the larger mid-level cache available in Skylake Server microarchitecture.

2.5.1.2 Non-Inclusive Last Level Cache
The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the
banks of last level cache has shrunk to 1.375 MB per bank. Because of the non-inclusive nature of the last
level cache, blocks that are present in the mid-level cache of one of the cores may not have a copy resi-
dent in a bank of last level cache. Based on the access pattern, size of the code and data accessed, and
sharing behavior between cores for a cache block, the last level cache may appear as a victim cache of
the mid-level cache and the aggregate cache capacity per core may appear to be a combination of the
private mid-level cache per core and a portion of the last level cache.

2.5.1.3 Skylake Server Microarchitecture Cache Recommendations
A high-level comparison between Skylake Server microarchitecture cache and the previous generation
Broadwell microarchitecture cache is available in the table below.

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Cache level Category Broadwell
Microarchitecture

Skylake Server
Microarchitecture

L1 Data Cache
Unit (DCU)

Size [KB] 32 32

Latency [cycles] 4-6 4-6

Max bandwidth [bytes/cycles] 96 192

Sustained bandwidth [bytes/cycles] 93 133

Associativity [ways] 8 8

L2 Mid-level Cache
(MLC)

Size [KB] 256 1024 (1MB)

Latency [cycles] 12 14

Max bandwidth [bytes/cycles] 32 64

Sustained bandwidth [bytes/cycles] 25 52

Associativity [ways] 8 16

2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The figure below shows how Skylake Server microarchitecture shifts the memory balance from
shared-distributed with high latency, to private-local with low latency.

The potential performance benefit from the cache changes is high, but software will need to adapt its
memory tiling strategy to be optimal for the new cache sizes.
Recommendation: Rebalance application shared and private data sizes to match the smaller,
non-inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one
application to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared
to the previous generation Broadwell microarchitecture enables some applications to block to L2 instead
of L1 and thereby improves performance.

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the
application’s bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last
level cache can now be added together. Programs that determine cache capacity per core at run time
should now use a combination of mid-level cache size and last level cache size per core to estimate the
effective cache size per core. Using just the last level cache size per core may result in non-optimal use
of available on-chip cache; see Section 2.5.2 for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as
L2 and L3 cache sizes and not only L3 cache size.

L3 Last-level
Cache (LLC)

Size [MB] Up to 2.5 per core up to 1.3751 per core

Latency [cycles] 50-60 50-70

Max bandwidth [bytes/cycles] 16 32

Sustained bandwidth [bytes/cycles] 14 15

NOTES:
1. Some Skylake Server parts have some cores disabled and hence have more than 1.375 MB per core of L3 cache.

Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture
Because of the change in the size of each bank of last level cache on Skylake Server microarchitecture, if
an application, library, or driver only considers the last level cache to determine the size of on-chip
cache-per-core, it may see a reduction with Skylake Server microarchitecture and may use non-temporal
store with smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory,
this may result in an increase in the number of subsequent cache misses and memory bandwidth
demands on Skylake Server microarchitecture, compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake
Server microarchitecture, the resources within each core remain busy for a longer duration compared to
similar accesses on the previous Intel Xeon processor family. As a result, if a series of such instructions
are executed, there is a potential that the processor may run out of resources and stall, thus limiting the
memory write bandwidth from each core.

The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write
bandwidth per core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake Server microarchitecture, include
mid-level cache capacity per core in addition to the last level cache per core for applications, libraries, or
drivers that determine the on-chip cache available with each core. Doing so optimizes the available
on-chip cache capacity on Skylake Server microarchitecture as intended, with its non-inclusive last level
cache implementation.

2.5.3 Skylake Server Power Management
This section describes the interaction of Skylake Server's Power Management and its Vector ISA.

Skylake Server microarchitecture dynamically selects the frequency at which each of its cores executes.
The selected frequency depends on the instruction mix; the type, width, and number of vector instruc-
tions that execute over a given period of time. The processor also takes into account the number of cores
that share similar characteristics.

Intel® Xeon® processors based on Broadwell microarchitecture work similarly, but to a lesser extent
since they only support 256-bit vector instructions. Skylake Server microarchitecture supports Intel®
AVX-512 instructions, which can potentially draw more current and more power than Intel® AVX2
instructions.

The processor dynamically adjusts its maximum frequency to higher or lower levels as necessary, there-
fore a program might be limited to different maximum frequencies during its execution.

Table 2-10 includes information about the maximum Intel® Turbo Boost technology core frequency for
each type of instruction executed. The maximum frequency (P0n) is an array of frequencies which
depend on the number of cores within the category. The more cores belonging to a category at any given
time, the lower the maximum frequency.

For per SKU max frequency details (reference figure 1-15), refer to the Intel® Xeon® Processor Scalable
Family Technical Resources page.

Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels

Level Category Frequency Level Max Frequency (P0n) Instruction Types

0 Intel® AVX2 light
instructions

Highest Max Scalar, AVX128, SSE, Intel® AVX2 w/o FP
or INT MUL/FMA

1 Intel® AVX2 heavy
instructions +
Intel® AVX-512
light instructions

Medium Max Intel® AVX2 Intel® AVX2 FP + INT MUL/FMA, Intel®
AVX-512 without FP or INT MUL/FMA

2 Intel® AVX-512
heavy instructions

Lowest Max Intel® AVX-512 Intel® AVX-512 FP + INT MUL/FMA

https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html

2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Figure 2-6 is an example for core frequency range in a given system where each core frequency is deter-
mined independently based on the demand of the workload.

The following performance monitoring events can be used to determine how many cycles were spent in
each of the three frequency levels.
• CORE_POWER.LVL0_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n.
• CORE_POWER.LVL1_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX2.
• CORE_POWER.LVL2_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX-512.

When the core requests a higher license level than its current one, it takes the PCU up to 500
micro-seconds to grant the new license. Until then the core operates at a lower peak capability. During
this time period the PCU evaluates how many cores are executing at the new license level and adjusts
their frequency as necessary, potentially lowering the frequency. Cores that execute at other license
levels are not affected.

A timer of approximately 2ms is applied before going back to a higher frequency level. Any condition that
would have requested a new license resets the timer.

NOTES
A license transition request may occur when executing instructions on a mis-speculated
path.

A large enough mix of Intel AVX-512 light instructions and Intel AVX2 heavy instructions
drives the core to request License 2, despite the fact that they usually map to License 1.
The same is true for Intel AVX2 light instructions and Intel SSE heavy instructions that
may drive the core to License 1 rather than License 0. For example, The Intel® Xeon®
Platinum 8180 processor moves from license 1 to license 2 when executing a mix of 110
Intel AVX-512 light instructions and 20 256-bit heavy instructions over a window of 65
cycles.

Figure 2-6. Mixed Workloads

SOM00060

Cores using Intel®AVX-512

Cores using Intel® AVX2

Cores not using Intel®AVX

AVX512

AVX2

Non-AVX

P0n

P0n-AVX2

P0n-AVX-512

P1

P1-AVX2

P1-AVX-512

Mixed Workloads

Cores

F
re
q
u
en

cy

A
V
X
2

A
V
X
5
12

N
o
n
-A
V
X

A
V
X
2

N
o
n
-A
V
X

...

2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Some workloads do not cause the processor to reach its maximum frequency as these workloads are
bound by other factors. For example, the LINPACK benchmark is power limited and does not reach the
processor's maximum frequency. The following graph shows how frequency degrades as vector width
grows, but, despite the frequency drop, performance improves. The data for this graph was collected on
an Intel Xeon Platinum 8180 processor.

Workloads that execute Intel AVX-512 instructions as a large proportion of their whole instruction count
can gain performance compared to Intel AVX2 instructions, even though they may operate at a lower
frequency. For example, maximum frequency bound Deep Learning workloads that target Intel AVX-512
heavy instructions at a very high percentage can gain 1.3x-1.5x performance improvement vs. the same
workload built to target Intel AVX2 (both operating on Skylake Server microarchitecture).

It is not always easy to predict whether a program's performance will improve from building it to target
Intel AVX-512 instructions. Programs that enjoy high performance gains from the use of xmm or ymm
registers may expect performance improvement by moving to the use of zmm registers. However, some
programs that use zmm registers may not gain as much, or may even lose performance. It is recom-
mended to try multiple build options and measure the performance of the program.

Recommendation: To identify the optimal compiler options to use, build the application with each of the
following set of options and choose the set that provides the best performance.
• -xCORE-AVX2 -mtune=skylake-avx512 (Linux* and macOS*)

/QxCORE-AVX2 /tune=skylake-avx512 (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=low (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:low (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=high (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:high (Windows*)

See Section 18.26, “CLDEMOTE” for more information about these options.

Figure 2-7. LINPACK Performance

SOM00061

3500

3000

2500

2000

1500

1000

500

0

3.5

3.0

2.5

2.0

1.5

1.0
760

1178

2034

3259

669 768 791 767

2.1

SSE4.2 AVX AVX2 AVX512

C
or

e
F

re
qu

e
nc

y

G
F

LO
P

s,
 S

ys
te

m
 P

o
w

er

2.5

2.8

3.1

GFLOPs Power (W) Frequency (GHz)

LINPACK Performance

2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The GCC Compiler has the option -mprefer-vector-width=none|128|256|512 to control vector width
preference. While -march=skylake-avx512 is designed to provide the best performance for the Skylake
Server microarchitecture some programs can benefit from different vector width preferences. To identify
the optimal compiler options to use, build the application with each of the following set of options and
choose the set that provides the best performance. -mprefer-vector-width=256 is the default for
skylake-avx512.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512

• -march=skylake-avx512 -mprefer-vector-width=512

Clang/LLVM is currently implementing the option -mprefer-vector-width=none|128|256|512, similar
to GCC. To identify the optimal compiler options to use, build the application with each of the following
set of options and choose the set that provides the best performance.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512 (plus -mprefer-vector-width=256, if available)

• -march=skylake-avx512 (plus -mprefer-vector-width=512, if available)

2.6 SKYLAKE CLIENT MICROARCHITECTURE
The Skylake Client microarchitecture builds on the successes of the Haswell and Broadwell microarchitec-
tures. The basic pipeline functionality of the Skylake Client microarchitecture is depicted in Figure 2-8.

The Skylake Client microarchitecture offers the following enhancements:

Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture

32K L1 Instruction
Cache

MSROM Decoded Icache
(DSB)

Legacy Decode
Pipeline

Instruction Decode Queue (IDQ,, or micro‐op queue)

Allocate/Rename/Retire/MoveElimination/ZeroIdiom

32K L1 Data Cache

256K L2 Cache
(Unified)

Int ALU,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Divide,
Branch2

Port 2
LD/STA

Scheduler

BPU

Port 0

Int ALU,
Fast LEA,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Int MUL,
Slow LEA

Int ALU,
Fast LEA,
Vec SHUF,
Vec ALU,
CVT

Int ALU,
Int Shft,
Branch1,

Port 3
LD/STA

Port 4
STD

Port 7
STA

Port 1 Port 5 Port 6

5 uops/cycle4 uops/cycle
6 uops/cycle

2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore
sub-system consisting of a number of components including a ring interconnect to multiple slices of L3
(an off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A
four-core configuration can be supported similar to the arrangement shown in Appendix E, “Earlier
Generations of Intel® 64 and IA-32 Processor Architectures,” Figure E-2.

2.6.1 The Front End
The front end in the Skylake Client microarchitecture provides the following improvements over previous
generation microarchitectures:
• Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous gener-

ations.
• The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.
• The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2x64 vs. 2x28 per core).
If only one logical processor is active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST
operation).

• The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT
operation.

• Improved Branch Predictor.

2.6.2 The Out-of-Order Execution Engine
The Out of Order and execution engine changes in Skylake Client microarchitecture include:
• Larger buffers enable deeper OOO execution compared to previous generations.
• Improved throughput and latency for divide/sqrt and approximate reciprocals.
• Identical latency and throughput for all operations running on FMA units.
• Longer pause latency enables better power efficiency and better SMT performance resource utili-

zation.

2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-11 summarizes the OOO engine’s capability to dispatch different types of operations to various
ports.

Table 2-12 lists execution units and common representative instructions that rely on these units.
Throughput improvements across the SSE, AVX and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,

Vec ALU

ALU,

Fast LEA,

Vec ALU

LD

STA

STD ALU,

Fast LEA,

Vec ALU,

ALU,

Shft,

STA

Vec Shft,

Vec Add,

Vec Shft,

Vec Add,

Vec Shuffle, Branch1

Vec Mul,

FMA,

Vec Mul,

FMA

DIV, Slow Int

Branch2 Slow LEA

Table 2-12. Skylake Client Microarchitecture Execution Units and Representative Instructions1

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*,

(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A significant portion of the Intel SSE, Intel AVX and general-purpose instructions also have latency
improvements. Appendix C lists the specific details. Software-visible latency exposure of an instruction
sometimes may include additional contributions that depend on the relationship between micro-ops flows
of the producer instruction and the micro-op flows of the ensuing consumer instruction. For example, a
two-uop instruction like VPMULLD may experience two cumulative bypass delays of 1 cycle each from
each of the two micro-ops of VPMULLD.

Table 2-13 describes the bypass delay in cycles between a producer uop and the consumer uop. The
left-most column lists a variety of situations characteristic of the producer micro-op. The top row lists a
variety of situations characteristic of the consumer micro-op.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “VIMUL/0,1/4” applies to 4-cycle vector integer multiply uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.6.3 Cache and Memory Subsystem
The cache hierarchy of the Skylake Client microarchitecture has the following enhancements:
• Higher Cache bandwidth compared to previous generations.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier

generations.
• Page split load penalty down from 100 cycles in previous generation to 5 cycles.
• L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.
• Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed

data using SFENCE.
• Reduced performance penalty for a software prefetch that specifies a NULL pointer.
• L2 associativity changed from 8 ways to 4 ways.

Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,3 V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 NA NA NA NA NA NA NA

I2V/5/1 0 0 1 0 0 0 NA

2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2. The partition column of Table 2-15 indicates the resource sharing policy when Hyper-Threading
Technology is active.

2.6.4 Pause Latency in Skylake Client Microarchitecture
The PAUSE instruction is typically used with software threads executing on two logical processors located
in the same processor core, waiting for a lock to be released. Such short wait loops tend to last between
tens and a few hundreds of cycles, so performance-wise it is better to wait while occupying the CPU than
yielding to the OS. When the wait loop is expected to last for thousands of cycles or more, it is preferable
to yield to the operating system by calling an OS synchronization API function, such as WaitForSingleO-
bject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:
• Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin

loop) with competitively shared hardware resources. The competitively-shared microarchitectural
resources that the sibling logical processor can utilize in the Skylake Client microarchitecture are
listed below.

— Front end slots in the Decode ICache, LSD and IDQ.

— Execution slots in the RS.
• Save power consumed by the processor core compared with executing equivalent spin loop

instruction sequence in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.

Table 2-14. Cache Parameters of the Skylake Client Microarchitecture

Level
Capacity /
Associativity

Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cyc)

Sustained Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 96 (2x32B Load +
1*32B Store)

~81 Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/4 64 12 cycle 64 ~29 Writeback

Third Level
(Shared L3)

Up to 2MB
per core/Up
to 16 ways

64 44 32 ~18 Writeback

Table 2-15. TLB Parameters of the Skylake Client Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 8 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1536 12 fixed

Second Level 1GB 16 4 fixed

2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas
in Skylake Client microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural
resources to the logical processor ready to make forward progress) has a small positive performance
impact of 1-2% on highly threaded applications. It is expected to have negligible impact on less threaded
applications if forward progress is not blocked executing a fixed number of looped PAUSE instructions.
There's also a small power benefit in 2-core and 4-core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will
suffer some performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake Client microarchitecture the RDTSC instruction counts at the machine's guar-
anteed P1 frequency independently of the current processor clock (see the INVARIANT TSC property),
and therefore, when running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but
the number of instructions that could have been executed will change.

Use Poll Delay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified
in the “clocks” variable.

For contended spinlocks of the form shown in the baseline example below, we recommend an exponen-
tial back off when the lock is found to be busy, as shown in the improved example, to avoid significant
performance degradation that can be caused by conflicts between threads in the machine. This is more
important as we increase the number of threads in the machine and make changes to the architecture
that might aggravate these conflict conditions. In multi-socket Intel server processors with shared
memory, conflicts across threads take much longer to resolve as the number of threads contending for
the same lock increases. The exponential back off is designed to avoid these conflicts between the
threads thus avoiding the potential performance degradation. Note that in the example below, the

Example 2-8. Dynamic Pause Loop Example
#include <x86intrin.h>
#include <stdint.h>

/* A useful predicate for dealing with timestamps that may wrap.
 Is a before b? Since the timestamps may wrap, this is asking whether it's
 shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
 Times where going clockwise is less distance than going anti-clockwise
 are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
 then a > b (true) does not mean a reached b; whereas signed(a) = -2,
 signed(b) = 0 captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)
{
 return ((int64_t)b - (int64_t)a) > 0;
}

void pollDelay(uint32_t clocks)
{
 uint64_t endTime = _rdtsc()+ clocks;

 for (; before(_rdtsc(), endTime);)
 _mm_pause();
}

2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which
is subject to tuning.

2.7 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT TECHNOLOGY)
Intel® Hyper-Threading Technology (Intel® HT Technology) enables software to take advantage of
task-level, or thread-level parallelism by providing multiple logical processors within a physical processor
package, or within each processor core in a physical processor package. In its first implementation in the
Intel Xeon processor, Hyper-Threading Technology makes a single physical processor (or a processor
core) appear as two or more logical processors. Intel Xeon Phi processors based on the Knights Landing
microarchitecture support 4 logical processors in each processor core; see Chapter 23 for detailed infor-
mation of Intel HT Technology that is implemented in the Knights Landing microarchitecture.

Most Intel Architecture processor families support Hyper-Threading Technology with two logical proces-
sors in each processor core, or in a physical processor in early implementations. The rest of this section
describes features of the early implementation of Hyper-Threading Technology. Most of the descriptions
also apply to later Hyper-Threading Technology implementations supporting two logical processors. The
microarchitecture sections in this chapter provide additional details to individual microarchitecture and
enhancements to Hyper-Threading Technology.

The two logical processors each have a complete set of architectural registers while sharing one single
physical processor's resources. By maintaining the architecture state of two processors, an Intel HT

Example 2-9. Contended Locks with Increasing Back-off Example
/*******************/
/*Baseline Version */
/*******************/

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 __asm__ ("pause");
 }
}

/*******************/
/*Improved Version */
/*******************/

int mask = 1;
int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 for (int i=mask; i; --i){
 __asm__ ("pause");
 }

 mask = mask < max ? mask<<1 : max;
 }
}

2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Technology capable processor looks like two processors to software, including operating system and
application code.

By sharing resources needed for peak demands between two logical processors, Intel HT Technology is
well suited for multiprocessor systems to provide an additional performance boost in throughput when
compared to traditional MP systems.

Figure 2-9 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting
Intel HT Technology. Each logical processor can execute a software thread, allowing a maximum of two
software threads to execute simultaneously on one physical processor. The two software threads execute
simultaneously, meaning that in the same clock cycle an “add” operation from logical processor 0 and
another “add” operation and load from logical processor 1 can be executed simultaneously by the execu-
tion engine.

In the first implementation of Intel HT Technology, the physical execution resources are shared and the
architecture state is duplicated for each logical processor. This minimizes the die area cost of imple-
menting Intel HT Technology while still achieving performance gains for multithreaded applications or
multitasking workloads.

The performance potential due to HT Technology is due to:
• The fact that operating systems and user programs can schedule processes or threads to execute

simultaneously on the logical processors in each physical processor.
• The ability to use on-chip execution resources at a higher level than when only a single thread is

consuming the execution resources; higher level of resource utilization can lead to higher system
throughput.

2.7.1 Processor Resources and HT Technology
The majority of microarchitecture resources in a physical processor are shared between the logical
processors. Only a few small data structures were replicated for each logical processor. This section
describes how resources are shared, partitioned or replicated.

Figure 2-9. Hyper-Threading Technology on an SMP

OM15152

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface

2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.1.1 Replicated Resources
The architectural state is replicated for each logical processor. The architecture state consists of registers
that are used by the operating system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose registers, the control registers, machine
state registers, debug registers, and others. There are a few exceptions, most notably the memory type
range registers (MTRRs) and the performance monitoring resources. For a complete list of the architec-
ture state and exceptions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C, & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultane-
ously track execution and state changes of the two logical processors. The return stack predictor is repli-
cated to improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers) were replicated to
reduce complexity.

2.7.1.2 Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the entries. These are
referred to as partitioned resources. Reasons for this partitioning include:
• Operational fairness.
• Permitting the ability to allow operations from one logical processor to bypass operations of the other

logical processor that may have stalled.

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical
processor from making forward progress for some number of cycles. The partitioning prevents the stalled
logical processor from blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers
include µop queues after the execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain
memory ordering for each logical processor and detect memory ordering violations.

2.7.1.3 Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource,
including caches and all the execution units. Some shared resources which are linearly addressed, like
the DTLB, include a logical processor ID bit to distinguish whether the entry belongs to one logical
processor or the other.

2.7.2 Microarchitecture Pipeline and Intel® HT Technology
This section describes the Intel HT Technology microarchitecture and how instructions from the two
logical processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not
necessarily in program order in the execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the two logical processors. All selec-
tion points alternate between the two logical processors unless one logical processor cannot make use of
a pipeline stage. In this case, the other logical processor has full use of every cycle of the pipeline stage.
Reasons why a logical processor may not use a pipeline stage include cache misses, branch mispredic-
tions, and instruction dependencies.

2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.3 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to execute. Once the µops
are placed in the queues waiting for execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also oblivious to which instructions
belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execu-
tion stage from the retirement stage. The re-order buffer is partitioned such that each uses half the
entries.

2.7.4 Retirement
The retirement logic tracks when instructions from the two logical processors are ready to be retired. It
retires the instruction in program order for each logical processor by alternating between the two logical
processors. If one logical processor is not ready to retire any instructions, then all retirement bandwidth
is dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one data cache.
Selection logic alternates between the two logical processors to commit store data to the cache.

2.8 SIMD TECHNOLOGY
SIMD computations (see Figure 2-10) were introduced to the architecture with MMX technology. MMX
technology allows SIMD computations to be performed on packed byte, word, and doubleword integers.
The integers are contained in a set of eight 64-bit registers called MMX registers (see Figure 2-11).

The Pentium III processor extended the SIMD computation model with the introduction of the Streaming
SIMD Extensions (SSE). SSE allows SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be in memory or in a set of eight
128-bit XMM registers (see Figure 2-11). SSE also extended SIMD computational capability by adding
additional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and
X4, and Y1, Y2, Y3, and Y4) are operated on in parallel, with the same operation being performed on each
corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of
the four parallel computations are sorted as a set of four packed data elements.

Figure 2-10. Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148

2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Pentium 4 processor further extended the SIMD computation model with the introduction of
Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor
5100 series introduced Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD
computations to process packed double-precision floating-point data elements and 128-bit packed inte-
gers. There are 144 instructions in SSE2 that operate on two packed double-precision floating-point data
elements or on 16 packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application perfor-
mance in specific areas. These include video processing, complex arithmetics, and thread synchroniza-
tion. SSE3 complements SSE and SSE2 with instructions that process SIMD data asymmetrically,
facilitate horizontal computation, and help avoid loading cache line splits. See Figure 2-11.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and
signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in
media processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32 architecture, with the
following enhancements:
• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.
• Instructions that reference 32-bit general purpose registers can access 16 general purpose registers

in 64-bit mode.

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applica-
tions and applications that have the following characteristics:
• Inherently parallel.
• Recurring memory access patterns.
• Localized recurring operations performed on the data.
• Data-independent control flow.

Figure 2-11. SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149

2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic.
They are accessible from all IA-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run
correctly, without modification on Intel microprocessors that incorporate these technologies. Existing
software will also run correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can
improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1:
• Chapter 9, “Programming with Intel® MMX™ Technology.”
• Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE).”
• Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”
• Chapter 12, “Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI.”
• Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2.”
• Chapter 15, “Programming with Intel® AVX-512.”
• Chapter 16, “Programming with Intel® Transactional Synchronization Extensions.”

2.9.1 MMX™ Technology
MMX Technology introduced:
• 64-bit MMX registers.
• Support for SIMD operations on packed byte, word, and doubleword integers.

Recommendation: Integer SIMD code written using MMX instructions should consider more efficient
implementations using SSE/Intel AVX instructions.

2.9.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:
• 128-bit XMM registers.
• 128-bit data type with four packed single-precision floating-point operands.
• Data prefetch instructions.
• Non-temporal store instructions and other cacheability and memory ordering instructions.
• Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and
decoding.

2.9.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:
• 128-bit data type with two packed double-precision floating-point operands.
• 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword

integers.
• Support for SIMD arithmetic on 64-bit integer operands.

2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Instructions for converting between new and existing data types.
• Extended support for data shuffling.
• Extended support for cacheability and memory ordering operations.

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

2.9.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:
• SIMD floating-point instructions for asymmetric and horizontal computation.
• A special-purpose 128-bit load instruction to avoid cache line splits.
• An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).
• Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight
types of computations on packed integers. These include:
• 12 instructions that perform horizontal addition or subtraction operations.
• 6 instructions that evaluate the absolute values.
• 2 instructions that perform multiply and add operations and speed up the evaluation of dot products.
• 2 instructions that accelerate packed-integer multiply operations and produce integer values with

scaling.
• 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control

operand.
• 6 instructions that negate packed integers in the destination operand if the signs of the corre-

sponding element in the source operand is less than zero.
• 2 instructions that align data from the composite of two operands.

2.9.6 SSE4.1
SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation. These
include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction provides a streaming hint for WC loads.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception

override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations of word integers.
• One instruction improves masked comparisons.

2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

2.9.7 SSE4.2
SSE4.2 introduces 7 new instructions. These include:
• A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.
• Four string/text processing instructions providing a rich set of primitives, these primitives can

accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.
• A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.
• A general-purpose instruction for calculating bit count population of integer numbers.

2.9.8 AESNI and PCLMULQDQ
AESNI introduces 7 new instructions, six of them are primitives for accelerating algorithms based on AES
encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations
via several primitives. The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respec-
tive cipher key sizes correspond to 10, 12, and 14 rounds of iteration.

AES encryption involves processing 128-bit input data (plain text) through a finite number of iterative
operation, referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the “equivalent inverse cipher” instead of the “inverse
cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the
“round key”. Each round uses a different “round key”. The round keys are derived from the cipher key
using a “key schedule” algorithm. The “key schedule” algorithm is independent of the data processing of
encryption/decryption, and can be carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for
AES rounds on decryption using the equivalent inverse cipher, and two instructions to support the AES
key expansion procedure.

2.9.9 Intel® Advanced Vector Extensions (Intel® AVX)
Intel® Advanced Vector Extensions (Intel® AVX) offers comprehensive architectural enhancements over
previous generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural
enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit

Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve instruction programming

flexibility and efficient encoding of new instruction extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to

simplify compiler vectorization of high-level language expressions.

2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar
code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. Optimization techniques
for Intel AVX are discussed in Chapter 15, “Optimizations for Intel® AVX, Intel® AVX2, and Intel® FMA.”

2.9.10 Half-Precision Floating-Point Conversion (F16C)
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type
conversion to and from single-precision floating-point data types. These two instruction extends on the
same programming model as Intel AVX.

2.9.11 RDRAND
The RDRAND instruction retrieves a random number supplied by a cryptographically secure, determin-
istic random bit generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.9.12 Fused-Multiply-ADD (FMA) Extensions
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused
multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply
on fused multiply-add and multiply-subtract operations. FMA extensions provide 36 256-bit
floating-point instructions to perform computation on 256-bit vectors and additional 128-bit and scalar
FMA instructions.

2.9.13 Intel® AVX2
Intel AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit
numeric processing capabilities. AVX2 instructions follow the same programming model as AVX instruc-
tions.
In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements,
vector shift instructions with variable-shift count per data element, and instructions to fetch
non-contiguous data elements from memory.

2.9.14 General-Purpose Bit-Processing Instructions
The fourth generation Intel Core processor family introduces a collection of bit processing instructions
that operate on the general purpose registers. The majority of these instructions uses the VEX-prefix
encoding scheme to provide non-destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see
Section 5.1 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and chapters
3, 4 and 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C,
& 2D.

2.9.15 Intel® Transactional Synchronization Extensions
The fourth generation Intel Core processor family introduces Intel® Transactional Synchronization Exten-
sions (Intel® TSX), which aim to improve the performance of lock-protected critical sections of multi-
threaded applications while maintaining the lock-based programming model.

For background and details, see Chapter 16, “Programming with Intel® Transactional Synchronization
Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671110

2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Software tuning recommendations for using Intel TSX on lock-protected critical sections of multithreaded
applications are described in Chapter 16, “Intel® TSX Recommendations.”

2.9.16 RDSEED
The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced
deterministic random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP
800-90B and NIST SP 800-90C standards.

2.9.17 ADCX and ADOX Instructions
The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up
calculations that require large integer numerics.

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

3. Updates to Chapter 3
Change bars and violet text show changes to Chapter 3of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: General Optimization Guidelines.

--
Changes to this chapter:

• Updated capitalization of headings throughout chapter.
• Updated branding throughout chapter.
• Typo and punctuation corrections as necessary.
• Section 3.4.2.1:

— Changed Micro-fusion to Microfusion in heading to match Macrofusion.

• Section 3.5.2.3:
— Removed outdated technologies references, focusing on information starting from Skylake microarchi-

tecture.
— Provided latest information regarding *H micro-operations.
— Provided a new figure showing location of *H in Port one.

• Section 3.11:
— Updated various items for clarity.
— Section 3.11.2: Added corrected recipes.
— Table 3-8: Changed column orientation to be more legible.
— Table 3-11: Config section now includes workers field.

• Section 3.12: Updated for clarity.

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the performance of applications
running on Intel® processors. These techniques take advantage of microarchitectural features described
in Chapter 2, “Intel® 64 and IA-32 Processor Architectures.” Optimization guidelines focusing on Intel
multi-core processors, Hyper-Threading Technology, and 64-bit mode applications are discussed in
Chapter 11, “Multicore and Intel® Hyper-Threading Technology (intel® HT),” and Chapter 13, “64-bit
Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:
• Tools and techniques for code generation.
• Analysis of the performance characteristics of the workload and its interaction with microarchitec-

tural sub-systems.
• Tuning code to the target microarchitecture (or families of microarchitecture) to improve perfor-

mance.

Some hints on using tools are summarized first to simplify the first two tasks. The rest of the chapter will
focus on recommendations for code generation or code tuning to the target microarchitectures.

This chapter explains optimization techniques for the Intel® C++ Compiler, the Intel® Fortran Compiler,
and other compilers.

3.1 PERFORMANCE TOOLS
Intel offers several tools to help optimize application performance, including compilers, performance
analysis, and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers
Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS*, and embedded). The
Intel compilers optimize performance and give application developers access to advanced features,
including:
• Flexibility to target 32-bit or 64-bit Intel processors for optimization.
• Compatibility with many integrated development environments or third-party compilers.
• Automatic optimization features to take advantage of the target processor’s architecture.
• Automatic compiler optimization reduces the need to write different code for different processors.
• Common compiler features that are supported across Windows, Linux, and Mac OS include:

— General optimization settings.

— Cache-management features.

— Interprocedural optimization (IPO) methods.

— Profile-guided optimization (PGO) methods.

— Multithreading support.

— Floating-point arithmetic precision and consistency support.

— Compiler optimization and vectorization reports.

3-2

GENERAL OPTIMIZATION GUIDELINES

3.1.2 General Compiler Recommendations
Generally speaking, a compiler tuned for a target microarchitecture can be expected to match or outper-
form hand-coding. However, if performance problems are noted with the compiled code, some compilers
(like Intel C++ and Fortran compilers) allow the coder to insert intrinsics or inline assembly to exert
control over generated code. If inline assembly is used, the user must verify that the code generated is
high quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be made to the compiler
default if it benefits most programs. If the root cause of a performance problem is a poor choice on the
part of the compiler, using different switches or compiling the targeted module with a different compiler
may be the solution. See the “Quick Reference Guide to Optimization with Intel® C++ and Fortran
Compilers” for additional suggestions on compiler Optimization Options, including processor-specific
ones.

3.1.3 VTune™ Performance Analyzer
VTune uses performance monitoring hardware to collect statistics and coding information about your
application and its interaction with the microarchitecture. This allows software engineers to measure
performance characteristics of the workload for a given microarchitecture. VTune supports all current
and past Intel processor families.

The VTune Performance Analyzer provides two kinds of feedback:
• Indication of a performance improvement gained by using a specific coding recommendation or

microarchitectural feature.
• Information on whether a change in the program has improved or degraded performance with

respect to a particular metric.

The VTune Performance Analyzer also provides measures for a number of workload characteristics,
including:
• Retirement throughput of instruction execution as an indication of the degree of extractable

instruction-level parallelism in the workload.
• Data traffic locality as an indication of the stress point of the cache and memory hierarchy.
• Data traffic parallelism as an indication of the degree of effectiveness of amortization of data access

latency.

NOTE
Improving performance in one part of the machine does not necessarily bring significant
gains to overall performance. It is possible to degrade overall performance by improving
performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the VTune Perfor-
mance Analyzer events that provide measurable data on the performance gain achieved by following the
recommendations. For more on using the VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES
Many coding recommendations work well across current microarchitectures. However, there are situa-
tions where a recommendation may benefit one microarchitecture more than another.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
When optimum performance on all processor generations is desired, applications can take advantage of
the CPUID instruction to identify the processor generation and integrate processor-specific instructions

https://www.intel.com/content/dam/develop/external/us/en/documents/quick-reference-card-intel-compilers-v15-558870.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/quick-reference-card-intel-compilers-v15-558870.pdf

3-3

GENERAL OPTIMIZATION GUIDELINES

into the source code. The Intel C++ Compiler supports the integration of different versions of the code
for different target processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be generated under the
control of the programmer or by the compiler. Refer to the “Intel® C++ Compiler Classic Developer
Guide and Reference” cpu_dispatch and cpu_specific sections for more information on CPU dispatching
(a.k.a function multi-versioning).

For applications that target multiple generations of microarchitectures, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Optimizing applications
using techniques developed for the Intel Core microarchitecture combined with Nehalem microarchitec-
ture are likely to improve code efficiency and scalability when running on processors based on current
and future generations of Intel 64 and IA-32 processors.

3.2.2 Transparent Cache-Parameter Strategy
If the CPUID instruction supports function leaf 4, also known as deterministic cache parameter leaf, the
leaf reports cache parameters for each level of the cache hierarchy in a deterministic and
forward-compatible manner across Intel 64 and IA-32 processor families.

For coding techniques that rely on specific parameters of a cache level, using the deterministic cache
parameter allows software to implement techniques in a way that is forward-compatible with future
generations of Intel 64 and IA-32 processors, and cross-compatible with processors equipped with
different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support
Intel 64 and IA-32 processor families offer hardware multithreading support in two forms: multi-core
technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and future generations
of Intel 64 and IA-32 processors, software must embrace a threaded approach in application design. At
the same time, to address the widest range of installed machines, multithreaded software should be able
to run without failure on a single processor without hardware multithreading support and should achieve
performance on a single logical processor that is comparable to an unthreaded implementation (if such
comparison can be made). This generally requires architecting a multithreaded application to minimize
the overhead of thread synchronization. Additional guidelines on multithreading are discussed in Chapter
11, “Multicore and Intel® Hyper-Threading Technology (intel® HT).”

3.3 CODING RULES, SUGGESTIONS, AND TUNING HINTS
This section includes rules, suggestions, and hints. They are targeted for engineers who are:
• Modifying source code to enhance performance (user/source rules).
• Writing assemblers or compilers (assembly/compiler rules).
• Doing detailed performance tuning (tuning suggestions).

Coding recommendations are ranked in importance using two measures:
• Local impact (high, medium, or low) refers to a recommendation’s affect on the performance of a

given instance of code.
• Generality (high, medium, or low) measures how often such instances occur across all application

domains. Generality may also be thought of as “frequency.”

These recommendations are approximate. They can vary depending on coding style, application domain,
and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the relative level of
performance gain one can expect if a recommendation is implemented.

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html

3-4

GENERAL OPTIMIZATION GUIDELINES

Because it is not possible to predict the frequency of a particular code instance in applications, priority
hints cannot be directly correlated to application-level performance gain. In cases in which applica-
tion-level performance gain has been observed, we have provided a quantitative characterization of the
gain (for information only). In cases in which the impact has been deemed inapplicable, no priority is
assigned.

3.4 OPTIMIZING THE FRONT END
Optimizing the front end covers two aspects:
• Maintaining steady supply of micro-ops to the execution engine — Mispredicted branches can disrupt

streams of micro-ops, or cause the execution engine to waste execution resources on executing
streams of micro-ops in the non-architected code path. Much of the tuning in this respect focuses on
working with the Branch Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

• Supplying streams of micro-ops to utilize the execution bandwidth and retirement bandwidth as
much as possible — For Intel Core microarchitecture and Intel Core Duo processor family, this aspect
focuses maintaining high decode throughput. In Sandy Bridge microarchitecture, this aspect focuses
on keeping the hot code running from Decoded ICache. Techniques to maximize decode throughput
for Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode Optimization.”

3.4.1 Branch Prediction Optimization
Branch optimizations have a significant impact on performance. By understanding the flow of branches
and improving their predictability, you can increase the speed of code significantly.

Optimizations that help branch prediction are:
• Keep code and data on separate pages. This is very important; see Section 3.6, “Optimizing Memory

Accesses,” for more information.
• Eliminate branches whenever possible.
• Arrange code to be consistent with the static branch prediction algorithm.
• Use the PAUSE instruction in spin-wait loops.
• Inline functions and pair up calls and returns.
• Unroll as necessary so that repeatedly-executed loops have sixteen or fewer iterations (unless this

causes an excessive code size increase).
• Avoid putting multiple conditional branches in the same 8-byte aligned code block (i.e, have their last

bytes' addresses within the same 8-byte aligned code) if the lower 6 bits of their target IPs are the
same. This restriction has been removed in Ice Lake Client and later microarchitectures.

3.4.1.1 Eliminating Branches
Eliminating branches improves performance because:
• It reduces the possibility of mispredictions.
• It reduces the number of required branch target buffer (BTB) entries. Conditional branches that are

never taken do not consume BTB resources.

There are four principal ways of eliminating branches:
• Arrange code to make basic blocks contiguous.
• Unroll loops, as discussed in Section 3.4.1.6, “Loop Unrolling.”
• Use the CMOV instruction.
• Use the SETCC instruction.

3-5

GENERAL OPTIMIZATION GUIDELINES

The following rules apply to branch elimination:
Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches.
Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional branches
(because using these instructions will incur execution overhead due to the requirement for executing
both paths of a conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability of the out-of-order
engine. When tuning, note that all Intel 64 and IA-32 processors usually have very high branch
prediction rates. Consistently mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:

X = (A < B) CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set to CONST1; other-
wise it is set to CONST2. An assembly code sequence equivalent to the above C code can contain
branches that are not predictable if there are no correlation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredictable branches can be
removed with the use of the SETCC instruction. Example 3-2 shows optimized code that has no
branches.

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is greater than or equal
to B, EBX is set to one. Then EBX is decreased and AND’d with the difference of the constant values. This
sets EBX to either zero or the difference of the values. By adding CONST2 back to EBX, the correct value
is written to EBX. When CONST2 is equal to zero, the last instruction can be deleted.

Another way to remove branches is to use the CMOV and FCMOV instructions. Example 3-3 shows how to
change a TEST and branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and is representative
of an unpredictable branch.

Example 3-1. Assembly Code with an Unpredictable Branch

cmp a, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch

L30:
mov ebx, const2

L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cmp A, B
setge bl ; When ebx = 0 or 1

 ; OR the complement condition
sub ebx, 1 ; ebx=11...11 or 00...00
and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONST2; ebx=CONST1 or CONST2

3-6

GENERAL OPTIMIZATION GUIDELINES

An extension to this concept can be seen in the AVX-512 masked operations, as well as in some instruc-
tions such as VPCMP which can be used to eliminate data dependent branches; see Section 18.4.

3.4.1.2 Static Prediction
Branches that do not have a history in the BTB (see Section 3.4.1, “Branch Prediction Optimization”) are
predicted using a static prediction algorithm:
• Predict forward conditional branches to be NOT taken.
• Predict backward conditional branches to be taken.
• Predict indirect branches to be NOT taken.

The following rule applies to static prediction:
Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be the
likely target for a branch with a forward target, and make the fall-through code following a conditional
branch be the unlikely target for a branch with a backward target.

Example 3-4 illustrates the static branch prediction algorithm. The body of an IF-THEN conditional is
predicted.

Example 3-5 and Example 3-6 provide basic rules for a static prediction algorithm. In Example 3-5, the
backward branch (JC BEGIN) is not in the BTB the first time through; therefore, the BTB does not issue a

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne 1H
mov eax, ebx

1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag

test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move

; ebx to eax- the 1H: tag no longer needed

Example 3-4. Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

}

IF<condition> {...

}

//Backward conditional branches are taken
LOOP {...
<condition>

//Unconditional branches taken
JMP

3-7

GENERAL OPTIMIZATION GUIDELINES

prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not
occur.

The first branch instruction (JC BEGIN) in Example 3-6 is a conditional forward branch. It is not in the
BTB the first time through, but the static predictor will predict the branch to fall through. The static
prediction algorithm correctly predicts that the CALL CONVERT instruction will be taken, even before the
branch has any branch history in the BTB.

The Intel Core microarchitecture does not use the static prediction heuristic. However, to maintain
consistency across Intel 64 and IA-32 processors, software should maintain the static prediction heuristic
as the default.

3.4.1.3 Inlining, Calls, and Returns
The return address stack mechanism augments the static and dynamic predictors to optimize specifically
for calls and returns. It holds 16 entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns in rapid succession, perfor-
mance may degrade.

To enable the use of the return stack mechanism, calls and returns must be matched in pairs. If this is
done, the likelihood of exceeding the stack depth in a manner that will impact performance is very low.

The following rules apply to inlining, calls, and returns:
Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:
• Parameter passing overhead can be eliminated.
• In a compiler, inlining a function exposes more opportunity for optimization.
• If the inlined routine contains branches, the additional context of the caller may improve branch

prediction within the routine.
• A mispredicted branch can lead to performance penalties inside a small function that are larger than

those that would occur if that function is inlined.

Example 3-5. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 3-6. Static Not-Taken Prediction

mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin
mov eax, 0

Begin: call Convert

3-8

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.
Assembly/Compiler Coding Rule 6. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth.
Assembly/Compiler Coding Rule 7. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred.
Assembly/Compiler Coding Rule 8. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return overhead
as well as an entry in the return stack buffer.
Assembly/Compiler Coding Rule 9. (M impact, L generality) Do not put more than four branches
in a 16-byte chunk.
Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk.

3.4.1.4 Code Alignment
Careful arrangement of code can enhance cache and memory locality. Likely sequences of basic blocks
should be laid out contiguously in memory. This may involve removing unlikely code, such as code to
handle error conditions, from the sequence. See Section 3.7, “Prefetching,” on optimizing the instruction
prefetcher.
Assembly/Compiler Coding Rule 11. (M impact, H generality) When executing code from the
Decoded ICache, direct branches that are mostly taken should have all their instruction bytes in a 64B
cache line and nearer the end of that cache line. Their targets should be at or near the beginning of a
64B cache line.

When executing code from the legacy decode pipeline, direct branches that are mostly taken should have
all their instruction bytes in a 16B aligned chunk of memory and nearer the end of that 16B aligned
chunk. Their targets should be at or near the beginning of a 16B aligned chunk of memory.
Assembly/Compiler Coding Rule 12. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.

3.4.1.5 Branch Type Selection
The default predicted target for indirect branches and calls is the fall-through path. Fall-through predic-
tion is overridden if and when a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch prediction is avail-
able, due to poor code locality or pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely return to the instruction after the
associated return.

Placing data immediately following an indirect branch can cause a performance problem. If the data
consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can cause
resource conflicts and slow down branch recovery. Also, data immediately following indirect branches
may appear as branches to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.
Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2 instruction, which will stop the
processor from decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements, computed GOTOs or calls
through pointers) can jump to an arbitrary number of locations. If the code sequence is such that the

3-9

GENERAL OPTIMIZATION GUIDELINES

target destination of a branch goes to the same address most of the time, then the BTB will predict accu-
rately most of the time. Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional conditional branches.
Adding a conditional branch to a target is fruitful if:
• The branch direction is correlated with the branch history leading up to that branch; that is, not just

the last target, but how it got to this branch.
• The source/target pair is common enough to warrant using the extra branch prediction capacity. This

may increase the number of overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of mispredicting branches is very large.

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more
common taken targets and at least one of those targets is correlated with branch history leading up to
the branch, then convert the indirect branch to a tree where one or more indirect branches are
preceded by conditional branches to those targets. Apply this “peeling” procedure to the common
target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing the predictability of
branches (even at the expense of adding more branches). The added branches must be predictable for
this to be worthwhile. One reason for such predictability is a strong correlation with preceding branch
history. That is, the directions taken on preceding branches are a good indicator of the direction of the
branch under consideration.

Example 3-7 shows a simple example of the correlation between a target of a preceding conditional
branch and a target of an indirect branch.

Correlation can be difficult to determine analytically, for a compiler and for an assembly language
programmer. It may be fruitful to evaluate performance with and without peeling to get the best perfor-
mance from a coding effort.

An example of peeling out the most favored target of an indirect branch with correlated branch history is
shown in Example 3-8.

Example 3-7. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer 0 to RAND_MAX

if (! (n & 0x01)) { // n will be 0 half the times
n = 0; // updates branch history to predict taken

}
// indirect branches with multiple taken targets
// may have lower prediction rates

 switch (n) {
case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken
 case 1: handle_1(); break; // uncommon

case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

 }
}

3-10

GENERAL OPTIMIZATION GUIDELINES

3.4.1.6 Loop Unrolling
Benefits of unrolling loops are:
• Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to

manage induction variables.
• Unrolling allows one to aggressively schedule (or pipeline) the loop to hide latencies. This is useful if

you have enough free registers to keep variables live as you stretch out the dependence chain to
expose the critical path.

• Unrolling exposes the code to various other optimizations, such as removal of redundant loads,
common subexpression elimination, and so on.

The potential costs of unrolling loops are:
• Unrolling loops whose bodies contain branches increases demand on BTB capacity. If the number of

iterations of the unrolled loop is 16 or fewer, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.

Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
 int n = rand(); // Random integer 0 to RAND_MAX

if(! (n & 0x01)) THEN
 n = 0; // n will be 0 half the times

if (!n) THEN
handle_0(); // Peel out the most common target

// with correlated branch history

 {
 switch (n) {

case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon

default: handle_other(); // Make the favored target in
// the fall-through path

}
 }
}

3-11

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop.
Assembly/Compiler Coding Rule 15. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or fewer.
Do this unless it increases code size so that the working set no longer fits in the instruction cache. If the
loop body contains more than one conditional branch, then unroll so that the number of iterations is
16/(# conditional branches).

Example 3-9 shows how unrolling enables other optimizations.

In this example, the loop that executes 100 times assigns X to every even-numbered element and Y to
every odd-numbered element. By unrolling the loop you can make assignments more efficiently,
removing one branch in the loop body.

3.4.2 Fetch and Decode Optimization
Intel Core microarchitecture provides several mechanisms to increase front end throughput. Techniques
to take advantage of some of these features are discussed below.

3.4.2.1 Optimizing for Microfusion
An Instruction that operates on a register and a memory operand decodes into more micro-ops than its
corresponding register-register version. Replacing the equivalent work of the former instruction using
the register-register version usually require a sequence of two instructions. The latter sequence is likely
to result in reduced fetch bandwidth.
Assembly/Compiler Coding Rule 16. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion.

The following examples are some of the types of micro-fusions that can be handled by all decoders:
• All stores to memory, including store immediate. Stores execute internally as two separate

micro-ops: store-address and store-data.
• All “read-modify” (load+op) instructions between register and memory, for example:

ADDPS XMM9, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

• All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

• CMP and TEST with immediate operand and memory.

An Intel 64 instruction with RIP relative addressing is not micro-fused in the following cases:

Example 3-9. Loop Unrolling

Before unrolling:

do i = 1, 100
if (i mod 2 == 0) then a(i) = x

else a(i) = y
enddo

After unrolling

do i = 1, 100, 2
a(i) = y
a(i+1) = x

enddo

3-12

GENERAL OPTIMIZATION GUIDELINES

• When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

• When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

In these cases, Intel Core microarchitecture and Sandy Bridge microarchitecture provide a 2 micro-op
flow from decoder 0, resulting in a slight loss of decode bandwidth since 2 micro-op flow must be steered
to decoder 0 from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit from micro-fusion,
compiler may consider accessing global data with other means of memory addressing.

3.4.2.2 Optimizing for Macrofusion
Macrofusion merges two instructions to a single micro-op. Intel Core microarchitecture performs this
hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This instruction can be
REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The second instruction (adjacent in the
instruction stream) should be a conditional branch.

Since these pairs are common ingredient in basic iterative programming sequences, macrofusion
improves performance even on un-recompiled binaries. All of the decoders can decode one macro-fused
pair per cycle, with up to three other instructions, resulting in a peak decode bandwidth of 5 instructions
per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces latency, which in this
case shows up as a cycle removed from branch mispredict penalty. Software also gain all other fusion
benefits: increased rename and retire bandwidth, more storage for instructions in-flight, and power
savings from representing more work in fewer bits.

The following list details when you can use macrofusion:
• CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps.
• CMP can be fused with only the following conditional jumps in Intel Core microarchitecture. These

conditional jumps check carry flag (CF) or zero flag (ZF). jump. The list of macrofusion-capable
conditional jumps are:

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label). Macrofusion
is not supported in 64-bit mode for Intel Core microarchitecture.
• Nehalem microarchitecture supports the following enhancements in macrofusion:

— CMP can be fused with the following conditional jumps (that was not supported in Intel Core
microarchitecture):

• JL or JNGE

• JGE or JNL

3-13

GENERAL OPTIMIZATION GUIDELINES

• JLE or JNG

• JG or JNLE

— Macrofusion is supported in 64-bit mode.
• Enhanced macrofusion support in Sandy Bridge microarchitecture is summarized in Table 3-1 with

additional information in Section E.2.2.1 and Example 3-14:

• Enhanced macrofusion support in Haswell microarchitecture is summarized in Table 3-2. Macrofusion
is supported CMP/TEST/OP with reg-imm, reg-mem, and reg-reg addressing but not mem-imm
addressing.

Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture
Instructions TEST AND CMP ADD SUB INC DEC

JO/JNO Y Y N N N N N

JC/JB/JAE/JNB Y Y Y Y Y N N

JE/JZ/JNE/JNZ Y Y Y Y Y Y Y

JNA/JBE/JA/JNBE Y Y Y Y Y N N

JS/JNS/JP/JPE/JNP/JPO Y Y N N N N N

JL/JNGE/JGE/JNL/JLE/JNG/JG/JNLE Y Y Y Y Y Y Y

Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
Opcode JCC ADD / SUB / CMP INC / DEC TEST / AND

70 0F 80 Jo N N Y

71 0F 81 Jno N N Y

72 0F 82 Jc / Jb Y N Y

73 0F 83 Jae / Jnb Y N Y

74 0F 84 Je / Jz Y Y Y

75 0F 85 Jne / Jnz Y Y Y

76 0F 86 Jna / Jbe Y N Y

77 0F 87 Ja / Jnbe Y N Y

78 0F 88 Js N N Y

79 0F 89 Jns N N Y

7A 0F 8A Jp / Jpe N N Y

7B 0F 8B Jnp / Jpo N N Y

7C 0F 8C Jl / Jnge Y Y Y

7D 0F 8D Jge / Jnl Y Y Y

7E 0F 8E Jle / Jng Y Y Y

7F 0F 8F Jg / Jnle Y Y Y

3-14

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 17. (M impact, ML generality) Employ macrofusion where
possible using instruction pairs that support macrofusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is
non-negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible.
However, do not add other instructions to avoid using the MEM-IMM flavor.

Example 3-10. Macrofusion, Unsigned Iteration Count
Without Macrofusion With Macrofusion

C code for (int1 i = 0; i < 1000; i++)
a++;

NOTES:
1. Signed iteration count inhibits macrofusion.

for (unsigned int2 i = 0; i < 1000; i++)
a++;

2. Unsigned iteration count is compatible with macrofusion.

Disassembly for (int i = 0; i < 1000; i++)
mov dword ptr [i], 0
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

for (unsigned int i = 0; i < 1000; i++)
xor eax, eax
mov dword ptr [i], eax
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

First:
cmp dword ptr [i], 3E8H3

jge End
a++;

mov eax, dword ptr [a]
addqq eax,1
mov dword ptr [a], eax
jmp Loop
End:

3. CMP MEM-IMM, JGE inhibit macrofusion.

First:
cmp eax, 3E8H 4

jae End
a++;

mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
jmp Loop
End:

4. CMP REG-IMM, JAE permits macrofusion.

Example 3-11. Macrofusion, If Statement
Without Macrofusion With Macrofusion

C code int1 a = 7;
if (a < 77)

a++;
else

a--;

unsigned int2 a = 7;
if (a < 77)

a++;
else

a--;

Disassembly int a = 7;
mov dword ptr [a], 7
if (a < 77)
cmp dword ptr [a], 4DH 3

jge Dec

unsigned int a = 7;
mov dword ptr [a], 7
if (a < 77)
mov eax, dword ptr [a]
cmp eax, 4DH
jae Dec

3-15

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 18. (M impact, ML generality) Software can enable macro
fusion when it can be logically determined that a variable is non-negative at the time of comparison;
use TEST appropriately to enable macrofusion when comparing a variable with 0.

For either signed or unsigned variable ‘a’; “CMP a,0” and “TEST a,a” produce the same result as far as the
flags are concerned. Since TEST can be macro-fused more often, software can use “TEST a,a” to replace
“CMP a,0” for the purpose of enabling macrofusion.

Sandy Bridge microarchitecture enables more arithmetic and logic instructions to macro-fuse with condi-
tional branches. In loops where the ALU ports are already congested, performing one of these
macrofusions can relieve the pressure, as the macro-fused instruction consumes only port 5, instead of
an ALU port plus port 5.

In Example 3-14, the “add/cmp/jnz” loop contains two ALU instructions that can be dispatched via either
port 0, 1, 5. So there is higher probability of port 5 might bind to either ALU instruction causing JNZ to

a++;
mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
mov eax, dword ptr [a]
sub eax, 1
mov dword ptr [a], eax
End::

a++;
add eax,1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
sub eax, 1
mov dword ptr [a], eax
End::

NOTES:
1. Signed iteration count inhibits macrofusion.
2. Unsigned iteration count is compatible with macrofusion.
3. CMP MEM-IMM, JGE inhibit macrofusion.

Example 3-12. Macrofusion, Signed Variable
Without Macrofusion With Macrofusion

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jge OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jae OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

Example 3-13. Macrofusion, Signed Comparison
C Code Without Macrofusion With Macrofusion

if (a == 0) cmp a, 0
jne lbl
...
lbl:

test a, a
jne lbl
...
lbl:

if (a >= 0) cmp a, 0
jl lbl;
...
lbl:

test a, a
jl lbl
...
lbl:

Example 3-11. Macrofusion, If Statement (Contd.)
Without Macrofusion With Macrofusion

3-16

GENERAL OPTIMIZATION GUIDELINES

wait a cycle. The “sub/jnz” loop, the likelihood of ADD/SUB/JNZ can be dispatched in the same cycle is
increased because only SUB is free to bind with either port 0, 1, 5.

3.4.2.3 Length-Changing Prefixes (LCP)
The length of an instruction can be up to 15 bytes in length. Some prefixes can dynamically change the
length of an instruction that the decoder must recognize. Typically, the pre-decode unit will estimate the
length of an instruction in the byte stream assuming the absence of LCP. When the predecoder encoun-
ters an LCP in the fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the usual 1 cycle. Normal
queuing throughout of the machine pipeline generally cannot hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
• Operand size prefix (0x66).
• Address size prefix (0x67).

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel Core microarchitec-
ture, and in Intel Core Duo and Intel Core Solo processors. Instructions that contain imm16 as part of
their fixed encoding but do not require LCP to change the immediate size are not subject to LCP stalls.
The REX prefix (4xh) in 64-bit mode can change the size of two classes of instruction, but does not cause
an LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degradation. When decoding
is not a bottleneck, as in floating-point heavy code, isolated LCP stalls usually do not cause performance
degradation.
Assembly/Compiler Coding Rule 19. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can cause the LCP stall
to trigger twice. The following alignment situations can cause LCP stalls to trigger twice:
• An instruction is encoded with a MODR/M and SIB byte, and the fetch line boundary crossing is

between the MODR/M and the SIB bytes.
• An instruction starts at offset 13 of a fetch line references a memory location using register and

immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A double LCP stall causes
a decode penalty of 11 cycles.

Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture
Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff
xor rcx, rcx
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
add rcx, 1
cmp rcx, LEN
jnz loop

lea rdx, buff - 4
xor rcx, LEN
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
sub rcx, 1
jnz loop

3-17

GENERAL OPTIMIZATION GUIDELINES

The following examples cause LCP stall once, regardless of their fetch-line location of the first byte of the
instruction:

ADD DX, 01234H
ADD word ptr [EDX], 01234H
ADD word ptr 012345678H[EDX], 01234H
ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a fetch line:
ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB byte encoding or
addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions that do not have
any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7 opcodes, and (b) are
located at offset 14 of a fetch line. These instructions are: not, neg, div, idiv, mul, and imul. False LCP
experiences delay because the instruction length decoder can not determine the length of the instruction
before the next fetch line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:
• Upcast all short operations from the F7 group of instructions to long, using the full 32 bit version.
• Ensure that the F7 opcode never starts at offset 14 of a fetch line.
Assembly/Compiler Coding Rule 20. (M impact, ML generality) Ensure instructions using 0xF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate on
16-bit data, upcast short data to 32 bits.

3.4.2.4 Optimizing the Loop Stream Detector (LSD)
The LSD detects loops that have many iterations and fit into the µop-queue. The µop-queue streams the
loop until a branch miss-prediction inevitably ends it.

LSD improves fetch bandwidth. In single thread mode, it saves power by allowing the front-end to sleep.
In multi-thread mode, front-resource can better serve the other thread.

Loops qualify for LSD replay if all the following conditions are met:
• Loop body size up to 60 µops, with up to 15 taken branches, and up to 15 64-byte fetch lines.
• No CALL or RET.
• No mismatched stack operations (e.g., more PUSH than POP).
• More than ~20 iterations.

Many calculation-intensive loops, searches, and software string moves match these characteristics.
These loops exceed the BPU prediction capacity and always terminate in a branch misprediction.

Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions
A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay

neg word ptr a movsx eax, word ptr a
neg eax
mov word ptr a, AX

3-18

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Break up a loop body with a
long sequence of instructions into loops of shorter instruction blocks of no more than the size of the
LSD.

Allocation bandwidth in Ice Lake Client microarchitecture increased from 4 µops per cycle to 5 µops per
cycle.

Assume a loop that qualifies for LSD has 23 µops in the loop body. The hardware unrolls the loop such
that it still fits into the µop-queue, in this case twice. The loop in the µop-queue thus takes 46 µops.

The loop is sent to allocation 5 µops per cycle. After 45 out of the 46 µops are sent, in the next cycle only
a single µop is sent, which means that in that cycle, 4 of the allocation slots are wasted. This pattern
repeats itself, until the loop is exited by a misprediction. Hardware loop unrolling minimizes the number
of wasted slots during LSD.

3.4.2.5 Optimization for Decoded ICache
The decoded ICache is a new feature in Sandy Bridge microarchitecture. Running the code from the
Decoded ICache has two advantages:
• Higher bandwidth of micro-ops feeding the out-of-order engine.
• The front end does not need to decode the code that is in the Decoded ICache; this saves power.

There is overhead in switching between the Decoded ICache and the legacy decode pipeline. If your code
switches frequently between the front end and the Decoded ICache, the penalty may be higher than
running only from the legacy pipeline.

To ensure “hot” code is feeding from the decoded ICache:
• Make sure each hot code block is less than about 750 instructions. Specifically, do not unroll to more

than 750 instructions in a loop. This should enable Decoded ICache residency even when
hyper-threading is enabled.

• For applications with very large blocks of calculations inside a loop, consider loop-fission: split the
loop into multiple loops that fit in the Decoded ICache, rather than a single loop that overflows.

• If an application can be sure to run with only one thread per core, it can increase hot code block size
to about 1500 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned memory chunk. There-
fore, code with a high concentration of instructions that are encoded in a small number of bytes, yet have
many micro-ops, may overflow the 18 micro-op limitation and not enter the Decoded ICache.
Read-modify-write (RMW) instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand, and use the source
memory operand as the destination. The same functionality can be achieved by two or three instructions:
the first reads the memory source operand, the second performs the operation with the second register
source operand, and the last writes the result back to memory. These instructions usually result in the
same number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler optimizes aggressively
for code size.

 Here are some possible solutions to fit the hot code in the Decoded ICache:
• Replace RMW instructions with two or three instructions that have the same functionality. For

example, “adc [rdi], rcx“ is only three bytes long; the equivalent sequence “adc rax, [rdi]“ + “mov
[rdi], rax“ has a footprint of six bytes.

• Align the code so that the dense part is broken down among two different 32-byte chunks. This
solution is useful when using a tool that aligns code automatically, and is indifferent to code changes.

• Spread the code by adding multiple byte NOPs in the loop. Note that this solution adds micro-ops for
execution.

3-19

GENERAL OPTIMIZATION GUIDELINES

Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-op occupying a
Decoded ICache Way. Therefore, only three unconditional branches per a 32 byte aligned chunk can
enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below are examples for
these constructs, and methods for writing them so that they fit in the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables. Each unconditional
branch consumes five bytes; therefore up to seven of them can be associated with a 32-byte chunk. Thus
jump tables may not fit in the Decoded ICache if the unconditional branches are too dense in each
32Byte-aligned chunk. This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch table. This may
increases code size and should be used cautiously. However, these NOPs are not executed and therefore
have no penalty in later pipe stages.

Switch-Case constructs represents a similar situation. Each evaluation of a case condition results in an
unconditional branch. The same solution of using multi-byte NOP can apply for every three consecutive
unconditional branches that fits inside an aligned 32-byte chunk.

Two Branches in a Decoded ICache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32 byte aligned chunk,
or their ordering with other instructions may prohibit all the micro-ops of the instructions in the chunk
from entering the Decoded ICache. This does not happen often. When it does happen, you can space the
code with NOP instructions where appropriate. Make sure that these NOP instructions are not part of hot
code.
Assembly/Compiler Coding Rule 22. (M impact, M generality) Avoid putting explicit references to
ESP in a sequence of stack operations (POP, PUSH, CALL, RET).

3.4.2.6 Other Decoding Guidelines
Assembly/Compiler Coding Rule 23. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length.
Assembly/Compiler Coding Rule 24. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement.

Long instructions (more than seven bytes) may limit the number of decoded instructions per cycle. Each
prefix adds one byte to the length of instruction, possibly limiting the decoder’s throughput. In addition,
multiple prefixes can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or displacement cannot be
avoided, schedule them behind instructions that stall the pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE
The superscalar, out-of-order execution core(s) in recent generations of microarchitectures contain
multiple execution hardware resources that can execute multiple micro-ops in parallel. These resources
generally ensure that micro-ops execute efficiently and proceed with fixed latencies. General guidelines
to make use of the available parallelism are:
• Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front end throughput.

These rules include favoring single micro-op instructions and taking advantage of micro-fusion, Stack
pointer tracker and macrofusion.

• Maximize rename bandwidth. Guidelines are discussed in this section and include properly dealing
with partial registers, ROB read ports and instructions which causes side-effects on flags.

• Scheduling recommendations on sequences of instructions so that multiple dependency chains are
alive in the reservation station (RS) simultaneously, thus ensuring that your code utilizes maximum
parallelism.

3-20

GENERAL OPTIMIZATION GUIDELINES

• Avoid hazards, minimize delays that may occur in the execution core, allowing the dispatched
micro-ops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection
Some execution units are not pipelined, this means that micro-ops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number of micro-ops associ-
ated with each instruction, favoring in the order of: single micro-op instructions, simple instruction with
less than 4 micro-ops, and last instruction requiring microsequencer ROM (micro-ops which are executed
out of the microsequencer involve extra overhead).
Assembly/Compiler Coding Rule 25. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user intervention usually is not
necessary.
Assembly/Compiler Coding Rule 26. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes.
Assembly/Compiler Coding Rule 27. (M impact, L generality) Do not use many segment
registers.
Assembly/Compiler Coding Rule 28. (M impact, M generality) Avoid using complex instructions
(for example, enter, leave, or loop) that have more than four µops and require multiple cycles to
decode. Use sequences of simple instructions instead.
Assembly/Compiler Coding Rule 29. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies to processors
based on Intel Core microarchitecture. However, with macrofusion and micro-fusion capabilities in the
front end, attempts to schedule instruction sequences using the 4-1-1-1 template will likely provide
diminishing returns.

Instead, software should follow these additional decoder guidelines:
• If you need to use multiple micro-op, non-microsequenced instructions, try to separate by a few

single micro-op instructions. The following instructions are examples of multiple micro-op instruction
not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions

• If a series of multiple micro-op instructions cannot be separated, try breaking the series into a
different equivalent instruction sequence. For example, a series of read-modify-write instructions
may go faster if sequenced as a series of read-modify + store instructions. This strategy could
improve performance even if the new code sequence is larger than the original one.

3.5.1.1 Integer Divide
Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on the operand size,
divide instructions use DX:AX or EDX:EAX for the dividend. The CWD or CDQ instructions sign-extend AX
or EAX into DX or EDX, respectively. These instructions have denser encoding than a shift and move
would be, but they generate the same number of micro-ops. If AX or EAX is known to be positive, replace
these instructions with:

xor dx, dx

or
xor edx, edx

3-21

GENERAL OPTIMIZATION GUIDELINES

Modern compilers typically can transform high-level language expression involving integer division where
the divisor is a known integer constant at compile time into a faster sequence using IMUL instruction
instead. Thus programmers should minimize integer division expression with divisor whose value can not
be known at compile time.

Alternately, if certain known divisor value are favored over other unknown ranges, software may consider
isolating the few favored, known divisor value into constant-divisor expressions.

Section 13.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3.5.1.2 Using LEA
In Sandy Bridge microarchitecture, there are two significant changes to the performance characteristics
of LEA instruction:
• LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput over prior genera-

tions. However this apply only to LEA instructions with one or two source operands.

• For LEA instructions with three source operands and some specific situations, instruction latency has
increased to 3 cycles, and must dispatch via port 1:

— LEA that has all three source operands: base, index, and offset.

— LEA that uses base and index registers where the base is EBP, RBP, or R13.

— LEA that uses RIP relative addressing mode.

— LEA that uses 16-bit addressing mode.

Example 3-16. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

loop:
lea ecx, [ecx + ecx] // ecx = ecx*2
lea eax, [eax + eax *4] // eax = eax*5
and ecx, 0xff

 and eax, 0xff
dec edx
jg loop

3-22

GENERAL OPTIMIZATION GUIDELINES

.

The LEA instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace constant multiply
instructions. The LEA instruction can also be used as a multiple operand addition instruction, for
example:

LEA ECX, [EAX + EBX*4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands of arithmetic
instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the sequence of µops is
shorter if adds are used instead of a shift, and the LEA instruction may be replaced with an appropriate
sequence of µops. This, however, increases the total number of µops, leading to a trade-off.
Assembly/Compiler Coding Rule 30. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better.

3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture
The throughput of ADC and SBB in Sandy Bridge microarchitecture is 1 cycle, compared to 1.5-2 cycles
in the prior generation. These two instructions are useful in numeric handling of integer data types that
are wider than the maximum width of native hardware.

Example 3-17. Alternative to Three-Operand LEA
 3 operand LEA is slower Two-operand LEA alternative Alternative 2

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
mov edx, K;
cmp ecx, 2;
jb finished;
mov eax, 2
dec ecx;

loop1:
 mov edi, esi;
 lea esi, [K+esi+edx];
 and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [K+edx];
lea esi, [esi+edx];
and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [esi+edx];
 and esi, 0xFF;
 lea edx, [edi +K];
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

3-23

GENERAL OPTIMIZATION GUIDELINES

3.5.1.4 Bitwise Rotation
Bitwise rotation can choose between rotate with count specified in the CL register, an immediate constant
and by 1 bit. Generally, The rotate by immediate and rotate by register instructions are slower than
rotate by 1 bit. The rotate by 1 instruction has the same latency as a shift.

Example 3-18. Examples of 512-bit Additions

//Add 64-bit to 512 Number
lea rsi, gLongCounter
lea rdi, gStepValue
mov rax, [rdi]
xor rcx, rcx

oop_start:
mov r10, [rsi+rcx]
add r10, rax
mov [rsi+rcx], r10

mov r10, [rsi+rcx+8]
adc r10, 0
mov [rsi+rcx+8], r10

// 512-bit Addition
loop1:

mov rax, [StepValue]
add rax, [LongCounter]
mov LongCounter, rax
mov rax, [StepValue+8]
adc rax, [LongCounter+8]
mov LongCounter+8, rax
mov rax, [StepValue+16]
adc rax, [LongCounter+16]

l mov r10, [rsi+rcx+16]
adc r10, 0
mov [rsi+rcx+16], r10
mov r10, [rsi+rcx+24]
adc r10, 0
mov [rsi+rcx+24], r10

mov r10, [rsi+rcx+32]
adc r10, 0
mov [rsi+rcx+32], r10

mov r10, [rsi+rcx+40]
adc r10, 0
mov [rsi+rcx+40], r10

mov LongCounter+16, rax
mov rax, [StepValue+24]
adc rax, [LongCounter+24]

mov LongCounter+24, rax
mov rax, [StepValue+32]
adc rax, [LongCounter+32]

mov LongCounter+32, rax
mov rax, [StepValue+40]
adc rax, [LongCounter+40]

mov LongCounter+40, rax
mov rax, [StepValue+48]
adc rax, [LongCounter+48]

 mov r10, [rsi+rcx+48]
 adc r10, 0
 mov [rsi+rcx+48], r10

 mov r10, [rsi+rcx+56]
 adc r10, 0
 mov [rsi+rcx+56], r10
 add rcx, 64
 cmp rcx, SIZE
 jnz loop_start

mov LongCounter+48, rax
mov rax, [StepValue+56]
adc rax, [LongCounter+56]

mov LongCounter+56, rax
dec rcx
jnz loop1

3-24

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 31. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.

In Sandy Bridge microarchitecture, ROL/ROR by immediate has 1-cycle throughput, SHLD/SHRD using
the same register as source and destination by an immediate constant has 1-cycle latency with 0.5 cycle
throughput. The “ROL/ROR reg, imm8” instruction has two micro-ops with the latency of 1-cycle for the
rotate register result and 2-cycles for the flags, if used.

In Ivy Bridge microarchitecture, The “ROL/ROR reg, imm8” instruction with immediate greater than 1, is
one micro-op with one-cycle latency when the overflow flag result is used. When the immediate is one,
dependency on the overflow flag result of ROL/ROR by a subsequent instruction will see the ROL/ROR
instruction with two-cycle latency.

3.5.1.5 Variable Bit Count Rotation and Shift
In Sandy Bridge microarchitecture, The “ROL/ROR/SHL/SHR reg, cl” instruction has three micro-ops.
When the flag result is not needed, one of these micro-ops may be discarded, providing better perfor-
mance in many common usages. When these instructions update partial flag results that are subse-
quently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Ivy Bridge microarchitecture, executing the full three micro-ops
flow to use the updated partial flag result has additional delay. Consider the looped sequence below:
loop:

shl eax, cl
add ebx, eax
dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow
jnz loop

The DEC instruction does not modify the carry flag. Consequently, the SHL EAX, CL instruction needs to
execute the three micro-ops flow in subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two micro-ops flow.

3.5.1.6 Address Calculations
For computing addresses, use the addressing modes rather than general-purpose computations. Inter-
nally, memory reference instructions can have four operands:
• Relocatable load-time constant.
• Immediate constant.
• Base register.
• Scaled index register.

Note that the latency and throughput of LEA with more than two operands are slower in Sandy Bridge
microarchitecture (see Section 3.5.1.2, “Using LEA”). Addressing modes that uses both base and index
registers will consume more read port resource in the execution engine and may experience more stalls
due to availability of read port resources. Software should take care by selecting the speedy version of
address calculation.

In the segmented model, a segment register may constitute an additional operand in the linear address
calculation. In many cases, several integer instructions can be eliminated by fully using the operands of
memory references.

3-25

GENERAL OPTIMIZATION GUIDELINES

3.5.1.7 Clearing Registers and Dependency Breaking Idioms
Code sequences that modifies partial register can experience some delay in its dependency chain, but
can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can help clear execution
dependency when software uses these instruction to clear register content to zero. The instructions
include:

XOR REG, REG
SUB REG, REG
XORPS/PD XMMREG, XMMREG
PXOR XMMREG, XMMREG
SUBPS/PD XMMREG, XMMREG
PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Sandy Bridge microarchitecture, the instruction listed above plus equivalent AVX
counter parts are also zero idioms that can be used to break dependency chains. Furthermore, they do
not consume an issue port or an execution unit. So using zero idioms are preferable than moving 0’s into
the register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG
VXORPS/PD YMMREG, YMMREG
VPXOR XMMREG, XMMREG
VSUBPS/PD XMMREG, XMMREG
VSUBPS/PD YMMREG, YMMREG
VPSUBB/W/D/Q XMMREG, XMMREG

Microarchitectures that support Intel AVX-512 have the equivalent of zero idioms for the 512-bit regis-
ters using the unmasked versions of the instructions:

VXORPS/PD ZMMREG, ZMMREG
VPXOR ZMMREG, ZMMREG
VSUBPS/PD ZMMREG, ZMMREG
VPSUBB/W/D/Q ZMMREG, ZMMREG

The XOR and SUB instructions can be used to clear execution dependencies on the zero evaluation of the
destination register.
Assembly/Compiler Coding Rule 32. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-19 of using pxor to break dependency idiom on a XMM register when performing negation on
the elements of an array.

int a[4096], b[4096], c[4096];
For (int i = 0; i < 4096; i++)

C[i] = - (a[i] + b[i]);

3-26

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 33. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.

Sometimes sign-extended semantics can be maintained by zero-extending operands. For example, the C
code in the following statements does not need sign extension, nor does it need prefixes for operand size
overrides:

static short INT a, b;
IF (a == b) {
 . . .
}

Code for comparing these 16-bit operands might be:
MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the compare is for
greater than, less than, greater than or equal, and so on, or if the values in eax or ebx are to be used in
another operation where sign extension is required.
Assembly/Compiler Coding Rule 34. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can only be repre-
sented as 32 bits are not adjacent.
Assembly/Compiler Coding Rule 35. (ML impact, L generality) Avoid placing instructions that
use 32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule µops that have no immediate immediately before or after µops with 32-bit immediates.

3.5.1.8 Compares
Use TEST when comparing a value in a register with zero. TEST essentially ANDs operands together
without writing to a destination register. TEST is preferred over AND because AND produces an extra
result register. TEST is better than CMP ..., 0 because the instruction size is smaller.

Example 3-19. Clearing Register to Break Dependency While Negating Array Elements
Negation (-x = (x XOR (-1)) - (-1) without breaking
dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
movdqa xmm7, allone
lp:

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
lp:

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm0, xmm7
psubd xmm0, xmm7
movdqa [edi + edx], xmm0
add edx, 16
cmp edx, 4096
jl lp

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm7, xmm7
psubd xmm7, xmm0
movdqa [edi + edx], xmm7
add edx,16
cmp edx, 4096
jl lp

3-27

GENERAL OPTIMIZATION GUIDELINES

Use TEST when comparing the result of a logical AND with an immediate constant for equality or
inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2. For example, the C
code:

IF ((AVAR % 16) == 0) { }

can be implemented using:

TEST EAX, 0x0F
JNZ AfterIf

Using the TEST instruction between the instruction that may modify part of the flag register and the
instruction that uses the flag register can also help prevent partial flag register stall.
Assembly/Compiler Coding Rule 36. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves µops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero and
saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load the
memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch. Because most Intel
architecture instructions set the condition codes as part of their execution, the compare instruction may
be eliminated. Thus the operation can be tested directly by a JCC instruction. The notable exceptions are
MOV and LEA. In these cases, use TEST.
Assembly/Compiler Coding Rule 37. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare. Be
certain that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs
Code generators generate a no-operation (NOP) to align instructions. Examples of NOPs of different
lengths in 32-bit mode are shown in Table 3-3.

These are all true NOPs, having no effect on the state of the machine except to advance the EIP. Because
NOPs require hardware resources to decode and execute, use the fewest number to achieve the desired
padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still consumes a µop and
its accompanying resources, the dependence upon the old value of EAX is removed. This µop can be
executed at the earliest possible opportunity, reducing the number of outstanding instructions, and is the
lowest cost NOP.

Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction
Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H

3-28

GENERAL OPTIMIZATION GUIDELINES

The other NOPs have no special hardware support. Their input and output registers are interpreted by the
hardware. Therefore, a code generator should arrange to use the register containing the oldest value as
input, so that the NOP will dispatch and release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:
• Select the smallest number of NOPs and pseudo-NOPs to provide the desired padding.
• Select NOPs that are least likely to execute on slower execution unit clusters.
• Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types
Previous microarchitectures (before Intel Core microarchitecture) do not have explicit restrictions on
mixing integer and floating-point (FP) operations on XMM registers. For Intel Core microarchitecture,
mixing integer and floating-point operations on the content of an XMM register can degrade perfor-
mance. Software should avoid mixed-use of integer/FP operation on XMM registers. Specifically:
• Use SIMD integer operations to feed SIMD integer operations. Use PXOR for idiom.
• Use SIMD floating-point operations to feed SIMD floating-point operations. Use XORPS for idiom.
• When floating-point operations are bitwise equivalent, use PS data type instead of PD data type.

MOVAPS and MOVAPD do the same thing, but MOVAPS takes one less byte to encode the instruction.

3.5.1.11 Spill Scheduling
The spill scheduling algorithm used by a code generator will be impacted by the memory subsystem. A
spill scheduling algorithm is an algorithm that selects what values to spill to memory when there are too
many live values to fit in registers. Consider the code in Example 3-20, where it is necessary to spill
either A, B, or C.

For modern microarchitectures, using dependence depth information in spill scheduling is even more
important than in previous processors. The loop-carried dependence in A makes it especially important
that A not be spilled. Not only would a store/load be placed in the dependence chain, but there would also
be a data-not-ready stall of the load, costing further cycles.
Assembly/Compiler Coding Rule 38. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop invariants in memory
than in registers, since loop invariants never have a load blocked by store data that is not ready.

3.5.1.12 Zero-Latency MOV Instructions
In processors based on Ivy Bridge microarchitecture, a subset of register-to-register move operations
are executed in the front end (similar to zero-idioms, see Section 3.5.1.7). This conserves sched-
uling/execution resources in the out-of-order engine. Most forms of register-to-register MOV instructions

Example 3-20. Spill Scheduling Code

LOOP
C := ...
B := ...
A := A + ...

3-29

GENERAL OPTIMIZATION GUIDELINES

can benefit from zero-latency MOV. Example 3-21 list the details of those forms that qualify and a small
set that do not.

Example 3-22 shows how to process 8-bit integers using MOVZX to take advantage of zero-latency MOV
enhancement. Consider

X = (X * 3^N) MOD 256;

Y = (Y * 3^N) MOD 256;

When “MOD 256” is implemented using the “AND 0xff” technique, its latency is exposed in the
result-dependency chain. Using a form of MOVZX on a truncated byte input, it can take advantage of
zero-latency MOV enhancement and gain about 45% in speed.

The effectiveness of coding a dense sequence of instructions to rely on a zero-latency MOV instruction
must also consider internal resource constraints in the microarchitecture.

Example 3-21. Zero-Latency MOV Instructions
MOV instructions latency that can be eliminated MOV instructions latency that cannot be eliminated

MOV reg32, reg32
MOV reg64, reg64
MOVUPD/MOVAPD xmm, xmm
MOVUPD/MOVAPD ymm, ymm
MOVUPS?MOVAPS xmm, xmm
MOVUPS/MOVAPS ymm, ymm
MOVDQA/MOVDQU xmm, xmm
MOVDQA/MOVDQU ymm, ymm
MOVDQA/MOVDQU zmm, zmm
MOVZX reg32, reg8 (if not AH/BH/CH/DH)
MOVZX reg64, reg8 (if not AH/BH/CH/DH)

MOV reg8, reg8
MOV reg16, reg16
MOVZX reg32, reg8 (if AH/BH/CH/DH)
MOVZX reg64, reg8 (if AH/BH/CH/DH)
MOVSX

Example 3-22. Byte-Granular Data Computation Technique
Use AND Reg32, 0xff Use MOVZX

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl

lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff
sub rsi, 2
jg loop

lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

3-30

GENERAL OPTIMIZATION GUIDELINES

In Example 3-23, RBX/RCX and RDX/RAX are pairs of registers that are shared and continuously over-
written. In the right-hand sequence, registers are overwritten with new results immediately, consuming
less internal resources provided by the underlying microarchitecture. As a result, it is about 8% faster
than the left-hand sequence where internal resources could only support 50% of the attempt to take
advantage of zero-latency MOV instructions.

3.5.2 Avoiding Stalls in Execution Core
Although the design of the execution core is optimized to make common cases executes quickly. A
micro-op may encounter various hazards, delays, or stalls while making forward progress from the front
end to the ROB and RS. The significant cases are:
• ROB Read Port Stalls.
• Partial Register Reference Stalls.
• Partial Updates to XMM Register Stalls.
• Partial Flag Register Reference Stalls.

3.5.2.1 Writeback Bus Conflicts
The writeback bus inside the execution engine is a common resource needed to facilitate out-of-order
execution of micro-ops in flight. When the writeback bus is needed at the same time by two micro-ops
executing in the same stack of execution units (see Table E-11 in Appendix E, “Earlier Generations of
Intel® 64 and IA-32 Processor Architectures”), the younger micro-op will have to wait for the writeback
bus to be available. This situation typically will be more likely for short-latency instructions experience a
delay when it might have been otherwise ready for dispatching into the execution engine.

Consider a repeating sequence of independent floating-point ADDs with a single-cycle MOV bound to the
same dispatch port. When the MOV finds the dispatch port available, the writeback bus can be occupied
by the ADD. This delays the MOV operation.

If this problem is detected, you can sometimes change the instruction selection to use a different
dispatch port and reduce the writeback contention.

Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions
Needing more internal resource for zero-latency
MOVs

Needing less internal resource for zero-latency MOVs

mov rsi, N
mov rax, X
mov rcx, Y

mov rsi, N
mov rax, X
mov rcx, Y

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

3-31

GENERAL OPTIMIZATION GUIDELINES

3.5.2.2 Bypass Between Execution Domains
Floating-point (FP) loads have an extra cycle of latency. Moves between FP and SIMD stacks have
another additional cycle of latency.

Example:
ADDPS XMM0, XMM1
PAND XMM0, XMM3
ADDPS XMM2, XMM0

The overall latency for the above calculation is 9 cycles:
• 3 cycles for each ADDPS instruction.
• 1 cycle for the PAND instruction.
• 1 cycle to bypass between the ADDPS floating-point domain to the PAND integer domain.
• 1 cycle to move the data from the PAND integer to the second floating-point ADDPS domain.

To avoid this penalty, organize code to minimize domain changes. Sometimes bypasses cannot be
avoided.

Account for bypass cycles when counting the overall latency of your code. If your calculation is
latency-bound, you can execute more instructions in parallel or break dependency chains to reduce total
latency.

Code that has many bypass domains and is completely latency-bound may run slower on the Intel Core
microarchitecture than it did on previous microarchitectures.

3.5.2.3 Partial Register Stalls
Beginning with the Skylake microarchitecture, Partial Register Stalls are no longer treated using
micro-operation (UOP) insertions. The hardware takes care of merging the partial register (for instance
any of AL, AH or AX is merged into the RAX destination register). This eliminates the special allocation
window used to insert merge micro-operation.
From Skylake to Ice Lake microarchitectures, operations that access *H registers (i.e., AH, BH, CH, DH)
are executed exclusively on ports 1 and 5.

The *H micro-ops are executed with one cycle latency; however, one cycle of *additional* delay is
required for ensuing UOPs because they depend on the results of the *H operation. This additional delay
is required due to potential data swapping. A swap might happen, for example, with the instruction "Add
AH, BL", or "ADD AL, BH." The pipeline functionality is illustrated in Figure 2-3.

Beginning with the Golden Cove Microarchitecture, the *H operations are limited to Port 1 (port1) with
three cycles of latency. This penalty on *H operations helped performance improvement and timing
requirements of the Golden Cove microarchitecture.

For more information about Golden Cove microarchitecture, see Section 2.3.1, “Golden Cove Microarchi-
tecture Overview”. Figure 2-1 shows the flow.

A closer look at the INT execution ports in Figure 3-1 shows the *H operation limited to Port 1:

3-32

GENERAL OPTIMIZATION GUIDELINES

Figure 3-1. INT Execution Ports Within the Processor Core Pipeline

3.5.2.4 Partial XMM Register Stalls
Partial register stalls can also apply to XMM registers. The following SSE and SSE2 instructions update
only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of the register and the
modified part of the register. This dependency chain can cause performance loss.
Example 3-24 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
• Avoid using instructions which update only part of the XMM register.
• If a 64-bit load is needed, use the MOVSD or MOVQ instruction.
• If 2 64-bit loads are required to the same register from non continuous locations, use

MOVSD/MOVHPD instead of MOVLPD/MOVHPD.
• When copying the XMM register, use the following instructions for full register copy, even if you only

want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

Example 3-24. Avoiding Partial Register Stalls in SIMD Code
Using movlpd for memory transactions and movsd
between register copies Causing Partial Register Stall

Using movsd for memory and movapd between
register copies Avoid Delay

mov edx, x
mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

mov edx, x
mov ecx, count
movsd xmm3,_1_
movsd xmm2, _1pt5_
align 16

P0 P1 P5 P6 P10

ALU ALU ALU ALU ALU

LEA LEA LEA LEA LEA

Shift MUL MULHi Shift

JMP1 IDIV JMP2

*H

INT

3-33

GENERAL OPTIMIZATION GUIDELINES

3.5.2.5 Partial Flag Register Stalls
A “partial flag register stall” occurs when an instruction modifies a part of the flag register and the
following instruction is dependent on the outcome of the flags. This happens most often with shift
instructions (SAR, SAL, SHR, SHL). The flags are not modified in the case of a zero shift count, but the
shift count is usually known only at execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include CMPXCHG8B, various rotate
instructions, STC, and STD. An example of assembly with a partial flag register stall and alternative code
without the stall is shown in Example 3-25.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled by special hardware
such that it does not experience partial flag stall.

In Sandy Bridge microarchitecture, the cost of partial flag access is replaced by the insertion of a
micro-op instead of a stall. However, it is still recommended to use less of instructions that write only to
some of the flags (such as INC, DEC, SET CL) before instructions that can write flags conditionally (such
as SHIFT CL).

Example 3-26 compares two techniques to implement the addition of very large integers (e.g., 1024
bits). The alternative sequence on the right side of Example 3-26 will be faster than the left side on
Sandy Bridge microarchitecture, but it will experience partial flag stalls on prior microarchitectures.

lp:
movlpd xmm0, [edx]
addsd xmm0, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

lp:
movsd xmm0, [edx]
addsd xmm0, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

Example 3-25. Avoiding Partial Flag Register Stalls
Partial Flag Register Stall Avoiding Partial Flag Register Stall

xor eax, eax
mov ecx, a
sar ecx, 2
setz al ;SAR can update carry causing a stall

or eax, eax
mov ecx, a
sar ecx, 2
test ecx, ecx ; test always updates all flags
setz al ;No partial reg or flag stall,

Example 3-26. Partial Flag Register Accesses in Sandy Bridge Microarchitecture
Save partial flag register to avoid stall Simplified code sequence

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16 ; 16*64 =1024 bit

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16

Example 3-24. Avoiding Partial Register Stalls in SIMD Code (Contd.)
Using movlpd for memory transactions and movsd
between register copies Causing Partial Register Stall

Using movsd for memory and movapd between
register copies Avoid Delay

3-34

GENERAL OPTIMIZATION GUIDELINES

3.5.2.6 Floating-Point/SIMD Operands
Moves that write a portion of a register can introduce unwanted dependences. The MOVSD REG, REG
instruction writes only the bottom 64 bits of a register, not all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those bits are not longer wanted). The
dependence inhibits register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has a longer latency,
the ops for MOVAPD use a different execution port and this port is more likely to be free. The change can
impact performance. There may be exceptional cases where the latency matters more than the depen-
dence or the execution port.
Assembly/Compiler Coding Rule 39. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG2 instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

3.5.3 Vectorization
This section provides a brief summary of optimization issues related to vectorization. There is more detail
in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform the same operation on
multiple data elements at the same time. Successive processor generations have provided vector
support through the MMX technology, Intel Streaming SIMD Extensions (Intel SSE), Intel Streaming
SIMD Extensions 2 (Intel SSE2), Intel Streaming SIMD Extensions 3 (Intel SSE3) and Intel Supplemental
Streaming SIMD Extensions 3 (Intel SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a
single instruction stream capable of operating on multiple data elements in parallel. The number of
elements which can be operated on in parallel range from four single-precision floating-point data
elements in Intel SSE and two double-precision floating-point data elements in Intel SSE2 to sixteen byte
operations in a 128-bit register in Intel SSE2. Thus, vector length ranges from 2 to 16, depending on the
instruction extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:
• The compiler may be able to generate SIMD code without intervention from the user.
• The can user insert pragmas to help the compiler realize that it can vectorize the code.
• The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global variables. These
issues may be less troublesome if all modules are compiled simultaneously, and whole-program optimi-
zation is used.

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
setc al ;save carry for next iteration
movzx rax, al
add rsi, 8
add rdi, 8
dec rcx
jnz lp_64bit

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
lea rsi, [rsi+8]
lea rdi, [rdi+8]
dec rcx
jnz lp_64bit

Example 3-26. Partial Flag Register Accesses in Sandy Bridge Microarchitecture
Save partial flag register to avoid stall Simplified code sequence

3-35

GENERAL OPTIMIZATION GUIDELINES

User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible.
User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit operands. Not all
SIMD operations are supported for 32 bits, meaning that some source code will not be able to be vector-
ized at all unless smaller operands are used.
User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches
inside loops and consider using SSE instructions to eliminate branches.
User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple.

3.5.4 Optimization of Partially Vectorizable Code
Frequently, a program contains a mixture of vectorizable code and some routines that are non-vectoriz-
able. A common situation of partially vectorizable code involves a loop structure which include mixtures
of vectorized code and unvectorizable code. This situation is depicted in Figure 3-2.

It generally consists of five stages within the loop:
• Prolog.
• Unpacking vectorized data structure into individual elements.
• Calling a unvectorizable routine to process each element serially.
• Packing individual result into vectorized data structure.
• Epilogue.

This section discusses techniques that can reduce the cost and bottleneck associated with the
packing/unpacking stages in these partially vectorize code.

Example 3-27 shows a reference code template that is representative of partially vectorizable coding
situations that also experience performance issues. The unvectorizable portion of code is represented
generically by a sequence of calling a serial function named “foo” multiple times. This generic example is

Figure 3-2. Generic Program Flow of Partially Vectorized Code

Serial Routine

Packed SIMD Instruction

 Unpacking

 Packing

 Unvectorizable Code

Packed SIMD Instruction

3-36

GENERAL OPTIMIZATION GUIDELINES

referred to as “shuffle with store forwarding”, because the problem generally involves an unpacking stage
that shuffles data elements between register and memory, followed by a packing stage that can experi-
ence store forwarding issue.

There are more than one useful techniques that can reduce the store-forwarding bottleneck between the
serialized portion and the packing stage. The following sub-sections presents alternate techniques to
deal with the packing, unpacking, and parameter passing to serialized function calls.

Example 3-27. Reference Code Template for Partially Vectorizable Program

// Prolog ///////////////////////////////
push ebp
mov ebp, esp

// Unpacking ////////////////////////////
sub ebp, 32
and ebp, 0xfffffff0
movaps [ebp], xmm0

// Serial operations on components ///////
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax
call foo
mov [ebp+16+4], eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
mov [ebp+16+4+4], eax

mov eax, [ebp+12]
mov [ebp], eax
call foo
mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
mov [ebp+16+12+4], eax

// Packing ///////////////////////////////
movaps xmm0, [ebp+16+4]

// Epilog ////////////////////////////////
pop ebp
ret

3-37

GENERAL OPTIMIZATION GUIDELINES

3.5.4.1 Alternate Packing Techniques
The packing method implemented in the reference code of Example 3-27 will experience delay as it
assembles 4 doubleword result from memory into an XMM register due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble contents in XMM
registers are shown in Example 3-28. All three techniques avoid store-forwarding delay by satisfying the
restrictions on data sizes between a preceding store and subsequent load operations.

3.5.4.2 Simplifying Result Passing
In Example 3-27, individual results were passed to the packing stage by storing to contiguous memory
locations. Instead of using memory spills to pass four results, result passing may be accomplished by
using either one or more registers. Using registers to simplify result passing and reduce memory spills
can improve performance by varying degrees depending on the register pressure at runtime.

Example 3-29 shows the coding sequence that uses four extra XMM registers to reduce all memory spills
of passing results back to the parent routine. However, software must observe the following conditions
when using this technique:
• There is no register shortage.
• If the loop does not have many stores or loads but has many computations, this technique does not

help performance. This technique adds work to the computational units, while the store and loads
ports are idle.

Example 3-28. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty
Packing Method 1 Packing Method 2 Packing Method 3

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
punpckldq xmm0, xmm1
punpckldq xmm2, xmm3
punpckldq xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
psllq xmm3, 32
orps xmm2, xmm3
psllq xmm1, 32
orps xmm0, xmm1movlhps xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
movlhps xmm1,xmm3
psllq xmm1, 32
movlhps xmm0, xmm2
orps xmm0, xmm1

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo
movd xmm0, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
movd xmm1, eax

3-38

GENERAL OPTIMIZATION GUIDELINES

3.5.4.3 Stack Optimization
In Example 3-27, an input parameter was copied in turn onto the stack and passed to the unvectorizable
routine for processing. The parameter passing from consecutive memory locations can be simplified by a
technique shown in Example 3-30.

Stack Optimization can only be used when:
• The serial operations are function calls. The function “foo” is declared as: INT FOO(INT A). The

parameter is passed on the stack.
• The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to FOO one by one from
last to first.

3.5.4.4 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-27 include:
• Applying one of more of the following combinations:

— Choose an alternate packing technique.

— Consider a technique to simply result-passing.

— Consider the stack optimization technique to simplify parameter passing.
• Minimizing the average number of cycles to execute one iteration of the loop.
• Minimizing the per-iteration cost of the unpacking and packing operations.

mov eax, [ebp+12]
mov [ebp], eax
call foo
movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
movd xmm3, eax

Example 3-30. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing (Contd.)

3-39

GENERAL OPTIMIZATION GUIDELINES

The speed improvement by using the techniques discussed in this section will vary, depending on the
choice of combinations implemented and characteristics of the non-vectorizable routine. For example, if
the routine “foo” is short (representative of tight, short loops), the per-iteration cost of
unpacking/packing tend to be smaller than situations where the non-vectorizable code contain longer
operation or many dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only partially exposed and
appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a methodical manner
over a selected number of test cases, where each case may implement some combination of the tech-
niques discussed in this section. The per-iteration cost can be estimated by:
• Evaluating the average cycles to execute one iteration of the test case.
• Evaluating the average cycles to execute one iteration of a base line loop sequence of

non-vectorizable code.

Example 3-31 shows the base line code sequence that can be used to estimate the average cost of a loop
that executes non-vectorizable routines.

The average per-iteration cost of packing/unpacking can be derived from measuring the execution times
of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative of tight, short
loops), the per-iteration cost of packing/unpacking may range from slightly more than 7 cycles (the
shuffle with store forwarding case, Example 3-27) to ~0.9 cycles (accomplished by several test cases).
Across 27 test cases (consisting of one of the alternate packing methods, no result-simplification/simpli-
fication of either 1 or 4 results, no stack optimization or with stack optimization), the average per-itera-
tion cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-28) tend to be more robust than packing
method 1; the optimal choice of simplifying 1 or 4 results will be affected by register pressure of the
runtime and other relevant microarchitectural conditions.

Note that the numeric discussion of per-iteration cost of packing/packing is illustrative only. It will vary
with test cases using a different base line code sequence and will generally increase if the non-vectoriz-

Example 3-31. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4
pop ebp
ret

3-40

GENERAL OPTIMIZATION GUIDELINES

able routine requires longer time to execute because the number of loop iterations that can reside in
flight in the execution core decreases.

3.6 OPTIMIZING MEMORY ACCESSES
This section discusses guidelines for optimizing code and data memory accesses. The most important
recommendations are:
• Execute load and store operations within available execution bandwidth.
• Enable forward progress of speculative execution.
• Enable store forwarding to proceed.
• Align data, paying attention to data layout and stack alignment.
• Place code and data on separate pages.
• Enhance data locality.
• Use prefetching and cacheability control instructions.
• Enhance code locality and align branch targets.
• Take advantage of write combining.

3.6.1 Load and Store Execution Bandwidth
Typically, loads and stores are the most frequent operations in a workload, up to 40% of the instructions
in a workload carrying load or store intent are not uncommon. Each generation of microarchitecture
provides multiple buffers to support executing load and store operations while there are instructions in
flight. These buffers were comprised of 128-bit wide entries for the Sandy Bridge and Ivy Bridge microar-
chitectures. The size was increased to 256-bit in Haswell, Broadwell and Skylake Client microarchitec-
tures; and to 512-bit in Skylake Server, Cascade Lake, Cascade Lake Advanced Performance, and Ice
Lake Client microarchitectures. To maximize performance, it is best to use the largest width available in
the platform.

3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture
While prior microarchitecture has one load port (port 2), Sandy Bridge microarchitecture can load from
port 2 and port 3. Thus two load operations can be performed every cycle and doubling the load
throughput of the code. This improves code that reads a lot of data and does not need to write out results
to memory very often (Port 3 also handles store-address operation). To exploit this bandwidth, the data
has to stay in the L1 data cache or it should be accessed sequentially, enabling the hardware prefetchers
to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:

int buff[BUFF_SIZE];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){

 sum+=buff[i];

}

Alternative 1 is the assembly code generated by the Intel compiler for this C code, using the optimization
flag for Nehalem microarchitecture. The compiler vectorizes execution using Intel SSE instructions. In
this code, each ADD operation uses the result of the previous ADD operation. This limits the throughput
to one load and ADD operation per cycle. Alternative 2 is optimized for Sandy Bridge microarchitecture
by enabling it to use the additional load bandwidth. The code removes the dependency among ADD oper-

3-41

GENERAL OPTIMIZATION GUIDELINES

ations, by using two registers to sum the array values. Two load and two ADD operations can be executed
every cycle.

3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture
Load latency from L1D cache may vary (see Table E-15 in Appendix E). The best case if 4 cycles, which
apply to load operations to general purpose registers using one of the following:
• One register.
• A base register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-33.

Example 3-32. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture

Register dependency inhibits PADD execution Reduce register dependency allow two load port to supply
PADD execution

xor eax, eax
pxor xmm0, xmm0
lea rsi, buff

xor eax, eax
pxor xmm0, xmm0
pxor xmm1, xmm1
lea rsi, buff

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm0, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm0, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm0, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm0, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm1, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm1, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm1, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm1, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
paddd xmm0, xmm1
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

3-42

GENERAL OPTIMIZATION GUIDELINES

The left side implements pointer chasing via traversing an index. Compiler then generates the code
shown below addressing memory using base+index with an offset. The right side shows compiler gener-
ated code from pointer de-referencing code and uses only a base register.

The code on the right side is faster than the left side across Sandy Bridge microarchitecture and prior
microarchitecture. However the code that traverses index will be slower on Sandy Bridge microarchitec-
ture relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict
In Sandy Bridge microarchitecture, the internal organization of the L1D cache may manifest a situation
when two load micro-ops whose addresses have a bank conflict. When a bank conflict is present between
two load operations, the more recent one will be delayed until the conflict is resolved. A bank conflict
happens when two simultaneous load operations have the same bit 2-5 of their linear address but they
are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some bank conflicts do not
cause any performance degradation since they are hidden by other performance limiters. Eliminating
such bank conflicts does not improve performance.

The following example demonstrates bank conflict and how to modify the code and avoid them. It uses
two source arrays with a size that is a multiple of cache line size. When loading an element from A and
the counterpart element from B the elements have the same offset in their cache lines and therefore a
bank conflict may happen.

The L1D Cache bank conflict issue does not apply to Haswell microarchitecture.

Example 3-33. Index versus Pointers in Pointer-Chasing Code
Traversing through indexes Traversing through pointers

// C code example
index = buffer.m_buff[index].next_index;
// ASM example
loop:

shl rbx, 6
 mov rbx, 0x20(rbx+rcx)

dec rax
 cmp rax, -1
jne loop

// C code example
node = node->pNext;

// ASM example
loop:

mov rdx, [rdx]
 dec rax

cmp rax, -1
 jne loop

3-43

GENERAL OPTIMIZATION GUIDELINES

.

3.6.2 Minimize Register Spills
When a piece of code has more live variables than the processor can keep in general purpose registers,
a common method is to hold some of the variables in memory. This method is called register spill. The
effect of L1D cache latency can negatively affect the performance of this code. The effect can be more
pronounced if the address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely to improve perfor-
mance also on previous processor generations. The following example shows how to spill a register to an
XMM register rather than to memory.

Example 3-34. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4){

C[i]=A[i]+B[i]; the loads from A[i] and B[i] collide
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];

}

// Code with Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

// Code without Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi
inc ecx
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

inc ecx
mov [r13+rsi*4], edi
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

3-44

GENERAL OPTIMIZATION GUIDELINES

3.6.3 Enhance Speculative Execution and Memory Disambiguation
Prior to Intel Core microarchitecture, when code contains both stores and loads, the loads cannot be
issued before the address of the older stores is known. This rule ensures correct handling of load depen-
dencies on preceding stores.
The Intel Core microarchitecture contains a mechanism that allows some loads to be executed specula-
tively in the presence of older unknown stores. The processor later checks if the load address overlapped
with an older store whose address was unknown at the time the load executed. If the addresses do
overlap, then the processor re-executes the load and all succeeding instructions.

Example 3-36 illustrates a situation that the compiler cannot be sure that “Ptr->Array” does not change
during the loop. Therefore, the compiler cannot keep “Ptr->Array” in a register as an invariant and must
read it again in every iteration. Although this situation can be fixed in software by a rewriting the code to
require the address of the pointer is invariant, memory disambiguation improves performance without
rewriting the code.

Example 3-35. Using XMM Register in Lieu of Memory for Register Spills
Register spills into memory Register spills into XMM

loop:
mov rdx, [rsp+0x18]
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

 movq xmm4, [rsp+0x18]
mov rcx, 0x10
movq xmm5, rcx

loop:
movq rdx, xmm4
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

padd xmm4, xmm5
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

3-45

GENERAL OPTIMIZATION GUIDELINES

It is possible to disable speculative store bypass with the IA32_SPEC_CTRL.SSBD MSR.

Additional information on this topic can be found on the Software Security Guidance page.

3.6.4 Store Forwarding
The processor’s memory system only sends stores to memory (including cache) after store retirement.
However, store data can be forwarded from a store to a subsequent load from the same address to give
a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are violated, store
forwarding cannot occur and the load must get its data from the cache (so the store must write its data
back to the cache first). This incurs a penalty that is largely related to pipeline depth of the underlying
micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data. This restriction is
likely to have high impact on overall application performance. Typically, a performance penalty due to
violating this restriction can be prevented. The store-to-load forwarding restrictions vary from one
microarchitecture to another. Several examples of coding pitfalls that cause store-forwarding stalls and
solutions to these pitfalls are discussed in detail in Section 3.6.4.1, “Store-to-Load-Forwarding Restric-
tion on Size and Alignment.” The second requirement is the availability of data, discussed in Section
3.6.4.2, “Store-Forwarding Restriction on Data Availability.” A good practice is to eliminate redundant
load operations.

It may be possible to keep a temporary scalar variable in a register and never write it to memory. Gener-
ally, such a variable must not be accessible using indirect pointers. Moving a variable to a register elimi-
nates all loads and stores of that variable and eliminates potential problems associated with store
forwarding. However, it also increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine is based on data
dependence, load instructions play a significant role in the engine’s ability to execute at a high rate. Elim-
inating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when it is used again, the
register that was stored can be copied or used directly. If register pressure is too high, or an unseen func-
tion is called before the store and the second load, it may not be possible to eliminate the second load.
Assembly/Compiler Coding Rule 40. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by a
reload. While this sequence is optimized in hardware by providing the value to the load directly from

Example 3-36. Loads Blocked by Stores of Unknown Address
C code Assembly sequence

struct AA {
AA ** array;
};
void nullify_array (AA *Ptr, DWORD Index, AA *ThisPtr)
{
while (Ptr->Array[--Index] != ThisPtr)

{
Ptr->Array[Index] = NULL ;
} ;

} ;

nullify_loop:
mov dword ptr [eax], 0
mov edx, dword ptr [edi]
sub ecx, 4
cmp dword ptr [ecx+edx], esi
lea eax, [ecx+edx]
jne nullify_loop

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html

3-46

GENERAL OPTIMIZATION GUIDELINES

the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation.

Parameter passing conventions may limit the choice of which parameters are passed in registers which
are passed on the stack. However, these limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
Data size and alignment restrictions for store-forwarding apply to processors based on Intel Core
microarchitecture, Intel Core 2 Duo, Intel Core Solo and Pentium M processors. The performance penalty
for violating store-forwarding restrictions is less for shorter-pipelined machines.

Store-forwarding restrictions vary with each microarchitecture. The following rules help satisfy size and
alignment restrictions for store forwarding:
Assembly/Compiler Coding Rule 41. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.
Assembly/Compiler Coding Rule 42. (H impact, M generality) The data of a load which is
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the store buffer before
proceeding, but other, unrelated loads need not wait.
Assembly/Compiler Coding Rule 43. (H impact, ML generality) If it is necessary to extract a
non-aligned portion of stored data, read out the smallest aligned portion that completely contains the
data and shift/mask the data as necessary. This is better than incurring the penalties of a failed
store-forward.
Assembly/Compiler Coding Rule 44. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.

Example 3-37 depicts several store-forwarding situations in which small loads follow large stores. The
first three load operations illustrate the situations described in Rule 44. However, the last load operation
gets data from store-forwarding without problem.

Example 3-38 illustrates a store-forwarding situation in which a large load follows several small stores.
The data needed by the load operation cannot be forwarded because all of the data that needs to be
forwarded is not contained in the store buffer. Avoid large loads after small stores to the same area of
memory.

Example 3-37. Situations Showing Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; Not blocked - same alignment
mov BL, [EBP + 1] ; Blocked
mov CL, [EBP + 2] ; Blocked
mov DL, [EBP + 3] ; Blocked
mov AL, [EBP] ; Not blocked - same alignment

; n.b. passes older blocked loads

Example 3-38. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; Blocked

; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

3-47

GENERAL OPTIMIZATION GUIDELINES

Example 3-39 illustrates a stalled store-forwarding situation that may appear in compiler generated
code. Sometimes a compiler generates code similar to that shown in Example 3-39 to handle a spilled
byte to the stack and convert the byte to an integer value.

Example 3-40 offers two alternatives to avoid the non-forwarding situation shown in Example 3-39.

When moving data that is smaller than 64 bits between memory locations, 64-bit or 128-bit SIMD
register moves are more efficient (if aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating-point instructions should not be
used for this purpose, as data may be inadvertently modified.

As an additional example, consider the cases in Example 3-41.

In the first case (A), there is a large load after a series of small stores to the same area of memory
(beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data it requires. This stall
can also occur with other data types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (B), there is a series of small loads after a large store to the same area of memory
(beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example, when doublewords or words
are stored and then words or bytes are read from the same area of memory). This can be avoided by
moving the store as far from the loads as possible.

Example 3-39. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h] ; Stall
and eax, 0xff ; Converting back to byte value

Example 3-40. Two Ways to Avoid Non-forwarding Situation in Example 3-39

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions

; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

Example 3-41. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM"
mov mem + 4, ebx ; Store dword to address “MEM + 4"
fld mem ; Load qword at address “MEM", stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM"
mov bx, mem+2 ; Load word at address “MEM + 2", stalls
mov cx, mem+4 ; Load word at address “MEM + 4", stalls

3-48

GENERAL OPTIMIZATION GUIDELINES

Store forwarding restrictions for processors based on Intel Core microarchitecture is listed in Table 3-4.

3.6.4.2 Store-Forwarding Restriction on Data Availability
The value to be stored must be available before the load operation can be completed. If this restriction is
violated, the execution of the load will be delayed until the data is available. This delay causes some
execution resources to be used unnecessarily, and that can lead to sizable but non-deterministic delays.
However, the overall impact of this problem is much smaller than that from violating size and alignment
requirements.

In modern microarchitectures, hardware predicts when loads are dependent on and get their data
forwarded from preceding stores. These predictions can significantly improve performance. However, if a
load is scheduled too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may need to be sepa-
rated from the load:
• Spills, save and restore registers in a stack frame.
• Parameter passing.
• Global and volatile variables.

Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture

Store Alignment
Width of

Store (bits)
Load Alignment (byte) Width of Load (bits)

Store Forwarding
Restriction

To Natural size 16 word aligned 8, 16 not stalled

To Natural size 16 not word aligned 8 stalled

To Natural size 32 dword aligned 8, 32 not stalled

To Natural size 32 not dword aligned 8 stalled

To Natural size 32 word aligned 16 not stalled

To Natural size 32 not word aligned 16 stalled

To Natural size 64 qword aligned 8, 16, 64 not stalled

To Natural size 64 not qword aligned 8, 16 stalled

To Natural size 64 dword aligned 32 not stalled

To Natural size 64 not dword aligned 32 stalled

To Natural size 128 dqword aligned 8, 16, 128 not stalled

To Natural size 128 not dqword aligned 8, 16 stalled

To Natural size 128 dword aligned 32 not stalled

To Natural size 128 not dword aligned 32 stalled

To Natural size 128 qword aligned 64 not stalled

To Natural size 128 not qword aligned 64 stalled

Unaligned, start byte 1 32 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 32 not byte 0 of store 8, 16 stalled

Unaligned, start byte 1 64 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 64 not byte 0 of store 8, 16, 32 stalled

Unaligned, start byte 1 64 byte 0 of store 64 stalled

Unaligned, start byte 7 32 byte 0 of store 8 not stalled

Unaligned, start byte 7 32 not byte 0 of store 8 not stalled

Unaligned, start byte 7 32 don’t care 16, 32 stalled

Unaligned, start byte 7 64 don’t care 16, 32, 64 stalled

3-49

GENERAL OPTIMIZATION GUIDELINES

• Type conversion between integer and floating-point.
• When compilers do not analyze code that is inlined, forcing variables that are involved in the interface

with inlined code to be in memory, creating more memory variables and preventing the elimination of
redundant loads.

Assembly/Compiler Coding Rule 45. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid
store-forwarding data for variables with many and/or long dependence chains, and especially avoid
including a store forward on a loop-carried dependence chain.

Example 3-42 shows an example of a loop-carried dependence chain.

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads.

3.6.5 Data Layout Optimizations
User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reorganize structures and
arrays to minimize the amount of memory wasted by padding. However, compilers might not have this
freedom. The C programming language, for example, specifies the order in which structure elements are
allocated in memory. For more information, see Section 5.4, “Stack and Data Alignment.”

Example 3-43 shows how a data structure could be rearranged to reduce its size.

Cache line size of 64 bytes can impact streaming applications (for example, multimedia). These refer-
ence and use data only once before discarding it. Data accesses which sparsely utilize the data within a

Example 3-42. Loop-Carried Dependence Chain

for (i = 0; i < MAX; i++) {
a[i] = b[i] * foo;
foo = a[i] / 3;

} // foo is a loop-carried dependence.

Example 3-43. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int c;
char d;
int e;

};

struct packed { /* Fits in 16 bytes */
int a;
int c;
int e;
char b;
char d;

}

3-50

GENERAL OPTIMIZATION GUIDELINES

cache line can result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown in Example 3-44.

The efficiency of such optimizations depends on usage patterns. If the elements of the structure are all
accessed together but the access pattern of the array is random, then ARRAY_OF_STRUCT avoids unnec-
essary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality (for example, if the array index is being swept
through) then processors with hardware prefetchers will prefetch data from STRUCT_OF_ARRAY, even if
the elements of the structure are accessed together.

When the elements of the structure are not accessed with equal frequency, such as when element A is
accessed ten times more often than the other entries, then STRUCT_OF_ARRAY not only saves memory,
but it also prevents fetching unnecessary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the programmer and the
compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more independent memory stream
references. This can require the use of more prefetches and additional address generation calculations.
It can also have an impact on DRAM page access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY
blends the two approaches. In this case, only 2 separate address streams are generated and referenced:
1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for HYBRID_STRUCT_OF_ARRAY_BD. The second alter-
ative also prevents fetching unnecessary data — assuming that (1) the variables A, C and E are always
used together, and (2) the variables B and D are always used together, but not at the same time as A, C
and E.

The hybrid approach ensures:
• Simpler/fewer address generations than STRUCT_OF_ARRAY.
• Fewer streams, which reduces DRAM page misses.
• Fewer prefetches due to fewer streams.
• Efficient cache line packing of data elements that are used concurrently.
Assembly/Compiler Coding Rule 47. (H impact, M generality) Try to arrange data structures
such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can prefetch data that
will be needed by the application, reducing the effective memory latency. If the data is accessed in a

Example 3-44. Decomposing an Array

struct { /* 1600 bytes */
int a, c, e;
char b, d;

} array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a, c, e;

} hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;

} hybrid_struct_of_array_bd[100];

3-51

GENERAL OPTIMIZATION GUIDELINES

non-sequential manner, the automatic hardware prefetcher cannot prefetch the data. The prefetcher can
recognize up to eight concurrent streams. See Chapter 9, “Optimizing Cache Usage,” for more informa-
tion on the hardware prefetcher.
User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes).

3.6.6 Stack Alignment
Performance penalty of unaligned access to the stack happens when a memory reference splits a cache
line. This means that one out of eight spatially consecutive unaligned quadword accesses is always
penalized, similarly for one out of 4 consecutive, non-aligned double-quadword accesses, etc.

Aligning the stack may be beneficial any time there are data objects that exceed the default stack align-
ment of the system. For example, on 32/64bit Linux, and 64bit Windows, the default stack alignment is
16 bytes, while 32bit Windows is 4 bytes.
Assembly/Compiler Coding Rule 48. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.

Aligning the stack typically requires the use of an additional register to track across a padded area of
unknown amount. There is a trade-off between causing unaligned memory references that spanned
across a cache line and causing extra general purpose register spills.

The assembly level technique to implement dynamic stack alignment may depend on compilers, and
specific OS environment. The reader may wish to study the assembly output from a compiler of interest.

If for some reason it is not possible to align the stack for 64-bits, the routine should access the parameter
and save it into a register or known aligned storage, thus incurring the penalty only once.

3.6.7 Capacity Limits and Aliasing in Caches
There are cases in which addresses with a given stride will compete for some resource in the memory
hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with each way consisting of
multiple sets of cache lines (or sectors in some cases). Multiple memory references that compete for the
same set of each way in a cache can cause a capacity issue. There are aliasing conditions that apply to

Example 3-45. Examples of Dynamical Stack Alignment

// 32-bit environment
push ebp ; save ebp
mov ebp, esp ; ebp now points to incoming parameters
andl esp, $-<N> ;align esp to N byte boundary
sub esp, $<stack_size>; reserve space for new stack frame
. ; parameters must be referenced off of ebp
mov esp, ebp ; restore esp
pop ebp ; restore ebp

// 64-bit environment
sub esp, $<stack_size +N>
mov r13, $<offset_of_aligned_section_in_stack>
andl r13, $-<N> ; r13 point to aligned section in stack
. ;use r13 as base for aligned data

3-52

GENERAL OPTIMIZATION GUIDELINES

specific microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least significant 6 bits
are not considered in alias comparisons.

3.6.8 Mixing Code and Data
The aggressive prefetching and pre-decoding of instructions by Intel processors have two related effects:
• Self-modifying code works correctly, according to the Intel architecture processor requirements, but

incurs a significant performance penalty. Avoid self-modifying code if possible.
• Placing writable data in the code segment might be impossible to distinguish from self-modifying

code. Writable data in the code segment might suffer the same performance penalty as
self-modifying code.

Assembly/Compiler Coding Rule 49. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.
Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving the
data elsewhere, or inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances.
Assembly/Compiler Coding Rule 50. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it all at
once and make sure the code that performs the modifications and the code being modified are on
separate 4-KByte pages or on separate aligned 1-KByte subpages.

3.6.8.1 Self-Modifying Code
Self-modifying code (SMC) that ran correctly on Pentium III processors and prior implementations will run
correctly on subsequent implementations. SMC and cross-modifying code (when multiple processors in a
multiprocessor system are writing to a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or
fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page
containing directly or speculatively executed code with another processor as a data page can trigger an
SMC condition that causes the entire pipeline of the machine and the trace cache to be cleared. This is
due to the self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data page before that page
is accessed as code. Dynamically-modified code (for example, from target fix-ups) is likely to suffer from
the SMC condition and should be avoided where possible. Avoid the condition by introducing indirect
branches and using data tables on data pages (not code pages) using register-indirect calls.

3-53

GENERAL OPTIMIZATION GUIDELINES

3.6.8.2 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. Example 3-46a
shows one technique to put the value of IP into the ECX register by issuing a CALL without a matching
RET. Example 3-46b shows an alternative technique to put the value of IP into the ECX register using a
matched pair of CALL/RET.

3.6.9 Write Combining
Write combining (WC) improves performance in two ways:
• On a write miss to the first-level cache, it allows multiple stores to the same cache line to occur before

that cache line is read for ownership (RFO) from further out in the cache/memory hierarchy. Then the
rest of line is read, and the bytes that have not been written are combined with the unmodified bytes
in the returned line.

• Write combining allows multiple writes to be assembled and written further out in the cache hierarchy
as a unit. This saves port and bus traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

Processors based on Intel Core microarchitecture have eight write-combining buffers in each core. Begin-
ning with Nehalem microarchitecture, there are 10 buffers available for write-combining. Beginning with
Ice Lake Client microarchitecture, there are 12 buffers available for write-combining.
Assembly/Compiler Coding Rule 51. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particularly important for
writes to uncached memory: writes to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since they are not cached) as several
partial writes. Avoiding partial writes can have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory. Separating writes to uncached memory
and writes to writeback memory into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write transactions has been found to have
performance impact on the order of 20% for some applications. Because the cache lines are 64 bytes, a
write to the bus for 63 bytes will result in partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the number of writes that
are allowed in an inner loop will help take full advantage of write-combining store buffers. For
write-combining buffer recommendations for Hyper-Threading Technology, see Chapter 11, “Multicore
and Intel® Hyper-Threading Technology (intel® HT).”

Example 3-46. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

3-54

GENERAL OPTIMIZATION GUIDELINES

Store ordering and visibility are also important issues for write combining. When a write to a
write-combining buffer for a previously-unwritten cache line occurs, there will be a read-for-ownership
(RFO). If a subsequent write happens to another write-combining buffer, a separate RFO may be caused
for that cache line. Subsequent writes to the first cache line and write-combining buffer will be delayed
until the second RFO has been serviced to guarantee properly ordered visibility of the writes. If the
memory type for the writes is write-combining, there will be no RFO since the line is not cached, and
there is no such delay. For details on write-combining, see Chapter 9, “Optimizing Cache Usage.”

3.6.10 Locality Enhancement
Locality enhancement can reduce data traffic originating from an outer-level sub-system in the
cache/memory hierarchy. This is to address the fact that the access-cost in terms of cycle-count from an
outer level will be more expensive than from an inner level. Typically, the cycle-cost of accessing a given
cache level (or memory system) varies across different microarchitectures, processor implementations,
and platform components. It may be sufficient to recognize the relative data access cost trend by locality
rather than to follow a large table of numeric values of cycle-costs, listed per locality, per processor/plat-
form implementations, etc. The general trend is typically that access cost from an outer sub-system may
be approximately 3-10X more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic locality. Section A,
“Application Performance Tools,” describes some techniques that can be used to determine the dominant
data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of cache references,
processors typically spend a sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a key optimization. This can take
several forms:
• Blocking to iterate over a portion of an array that will fit in the cache (with the purpose that

subsequent references to the data-block [or tile] will be cache hit references).
• Loop interchange to avoid crossing cache lines or page boundaries.
• Loop skewing to make accesses contiguous.

Locality enhancement to the last level cache can be accomplished with sequencing the data access
pattern to take advantage of hardware prefetching. This can also take several forms:
• Transformation of a sparsely populated multi-dimensional array into a one-dimension array such that

memory references occur in a sequential, small-stride pattern that is friendly to the hardware
prefetch (see Section E.2.5.4, “Data Prefetching” in Appendix E).

• Optimal tile size and shape selection can further improve temporal data locality by increasing hit
rates into the last level cache and reduce memory traffic resulting from the actions of hardware
prefetching (see Section 9.5.11, “Hardware Prefetching and Cache Blocking Techniques”).

It is important to avoid operations that work against locality-enhancing techniques. Using the lock prefix
heavily can incur large delays when accessing memory, regardless of whether the data is in the cache or
in system memory.
User/Source Coding Rule 8. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops.

3-55

GENERAL OPTIMIZATION GUIDELINES

Optimizing for one-half of the first-level cache will bring the greatest performance benefit in terms of
cycle-cost per data access. If one-half of the first-level cache is too small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire first-level cache) will
likely not bring a substantial improvement over optimizing for the second-level cache.

3.6.11 Non-Temporal Store Bus Traffic
Peak system bus bandwidth is shared by several types of bus activities, including reads (from memory),
reads for ownership (of a cache line), and writes. The data transfer rate for bus write transactions is
higher if 64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus bandwidth with
read-for-ownership (RFO) traffic. Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at once (rather than evicting
several chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is twice that of bus
writes to WB memory, transferring several chunks wastes bus request bandwidth and delivers signifi-
cantly lower data bandwidth. This difference is depicted in Examples 3-47 and 3-48.

Example 3-47. Using Non-Temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256
lea ecx, p64byte_Aligned
mov edx, ARRAY_LEN
xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0
movntps XMMWORD ptr [ecx + eax+48], xmm0
; 64 bytes is written in one bus transaction
add eax, STRIDESIZE
cmp eax, edx
jl slloop

Example 3-48. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256
Lea ecx, p64byte_Aligned
Mov edx, ARRAY_LEN
Xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0

; Storing 48 bytes results in several bus partial transactions
add eax, STRIDESIZE
cmp eax, edx
jl slloop

3-56

GENERAL OPTIMIZATION GUIDELINES

3.7 PREFETCHING
Recent Intel processor families employ several prefetching mechanisms to accelerate the movement of
data or code and improve performance:
• Hardware instruction prefetcher.
• Software prefetch for data.
• Hardware prefetch for cache lines of data or instructions.

3.7.1 Hardware Instruction Fetching and Software Prefetching
Software prefetching requires a programmer to use PREFETCH hint instructions and anticipate some suit-
able timing and location of cache misses.

Software PREFETCH operations work the same way as do load from memory operations, with the
following exceptions:
• Software PREFETCH instructions retire after virtual to physical address translation is completed.
• If an exception, such as page fault, is required to prefetch the data, then the software prefetch

instruction retires without prefetching data.
• Avoid specifying a NULL address for software prefetches.

3.7.2 Hardware Prefetching for First-Level Data Cache
The hardware prefetching mechanism for L1 in Intel Core microarchitecture is discussed in Section
E.3.4.2 in Appendix E.

Example 3-49 depicts a technique to trigger hardware prefetch. The code demonstrates traversing a
linked list and performing some computational work on 2 members of each element that reside in 2
different cache lines. Each element is of size 192 bytes. The total size of all elements is larger than can
be fitted in the L2 cache.

Example 3-49. Using DCU Hardware Prefetch
Original code Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov ecx, 60

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

3-57

GENERAL OPTIMIZATION GUIDELINES

The additional instructions to load data from one member in the modified sequence can trigger the DCU
hardware prefetch mechanisms to prefetch data in the next cache line, enabling the work on the second
member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:
• If data is not in the second-level cache, the first-level data cache prefetcher enables early trigger of

the second-level cache prefetcher.
• If data is in the second-level cache and not in the first-level data cache, then the first-level data cache

prefetcher triggers earlier data bring-up of sequential cache line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of triggering unneces-
sary DCU hardware prefetches. If a large data structure with many members spanning many cache lines
is accessed in ways that only a few of its members are actually referenced, but there are multiple pair
accesses to the same cache line. The DCU hardware prefetcher can trigger fetching of cache lines that
are not needed. In Example 3-50, references to the “Pts” array and “AltPts” will trigger DCU prefetch to
fetch additional cache lines that won’t be needed. If significant negative performance impact is detected
due to DCU hardware prefetch on a portion of the code, software can try to reduce the size of that
contemporaneous working set to be less than half of the L2 cache.

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

Example 3-50. Avoid Causing DCU Hardware Prefetch to Fetch Unneeded Lines

while (CurrBond != NULL)
{
MyATOM *a1 = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= a1->LastStep &&
 a2->CurrStep <= a2->LastStep
)

{
a1->CurrStep++ ;
a2->CurrStep++ ;

double ux = a1->Pts[0].x - a2->Pts[0].x ;
double uy = a1->Pts[0].y - a2->Pts[0].y ;
double uz = a1->Pts[0].z - a2->Pts[0].z ;
a1->AuxPts[0].x += ux ;
a1->AuxPts[0].y += uy ;
a1->AuxPts[0].z += uz ;

Example 3-49. Using DCU Hardware Prefetch (Contd.)
Original code Modified sequence benefit from prefetch

3-58

GENERAL OPTIMIZATION GUIDELINES

To fully benefit from these prefetchers, organize and access the data using one of the following methods:

Method 1:
• Organize the data so consecutive accesses can usually be found in the same 4-KByte page.
• Access the data in constant strides forward or backward IP Prefetcher.

Method 2:
• Organize the data in consecutive lines.
• Access the data in increasing addresses, in sequential cache lines.

Example 3-51 demonstrates accesses to sequential cache lines that can benefit from the first-level cache
prefetcher.

By elevating the load operations from memory to the beginning of each iteration, it is likely that a signif-
icant part of the latency of the pair cache line transfer from memory to the second-level cache will be in
parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific address. If the code
size of a loop is bigger than 256 bytes, two loads may appear similar in the lowest 8 bits and the IP
prefetcher will be restricted. Therefore, if you have a loop bigger than 256 bytes, make sure that no two
loads have the same lowest 8 bits in order to use the IP prefetcher.

3.7.3 Hardware Prefetching for Second-Level Cache
The Intel Core microarchitecture contains two second-level cache prefetchers:
• Streamer — Loads data or instructions from memory to the second-level cache. To use the streamer,

organize the data or instructions in blocks of 128 bytes, aligned on 128 bytes. The first access to one
of the two cache lines in this block while it is in memory triggers the streamer to prefetch the pair
line. To software, the L2 streamer’s functionality is similar to the adjacent cache line prefetch
mechanism found in processors based on Intel NetBurst microarchitecture.

• Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by writeback memory type.
They prefetch only inside page boundary (4 KBytes). Both L2 prefetchers can be triggered by
software prefetch instructions and by prefetch request from DCU prefetchers. DPL can also be
triggered by read for ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

a2->AuxPts[0].x += ux ;
a2->AuxPts[0].y += uy ;
a2->AuxPts[0].z += uz ;
} ;

CurrBond = CurrBond->Next ;
} ;

Example 3-51. Technique for Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j = 0; j < num; j += 16)
{
a = p1[j];
b = p1[j+1];
// Use these two values
}

Example 3-50. Avoid Causing DCU Hardware Prefetch to Fetch Unneeded Lines (Contd.)

3-59

GENERAL OPTIMIZATION GUIDELINES

Software can gain from organizing data both according to the instruction pointer and according to line
strides. For example, for matrix calculations, columns can be prefetched by IP-based prefetches, and
rows can be prefetched by DPL and the L2 streamer.

3.7.4 Cacheability Instructions
SSE2 provides additional cacheability instructions that extend those provided in SSE. The new cache-
ability instructions include:
• New streaming store instructions.
• New cache line flush instruction.
• New memory fencing instructions.

For more information, see Chapter 9, “Optimizing Cache Usage.”

3.7.5 REP Prefix and Data Movement
The REP prefix is commonly used with string move instructions for memory related library functions such
as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS). These STRING/MOV instructions with the
REP prefixes are implemented in MS-ROM and have several implementation variants with different
performance levels.

The specific variant of the implementation is chosen at execution time based on data layout, alignment
and the counter (ECX) value. For example, MOVSB/STOSB with the REP prefix should be used with
counter value less than or equal to three for best performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data movement, larger data
granularities are preferable. This means better efficiency can be achieved by decomposing an arbitrary
counter value into a number of doublewords plus single byte moves with a count value less than or equal
to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a time, the following
paragraphs discuss general guidelines for designing and implementing high-performance library func-
tions such as MEMCPY(), MEMSET(), and MEMMOVE(). Four factors are to be considered:
• Throughput per iteration — If two pieces of code have approximately identical path lengths,

efficiency favors choosing the instruction that moves larger pieces of data per iteration. Also, smaller
code size per iteration will in general reduce overhead and improve throughput. Sometimes, this may
involve a comparison of the relative overhead of an iterative loop structure versus using REP prefix
for iteration.

• Address alignment — Data movement instructions with highest throughput usually have alignment
restrictions, or they operate more efficiently if the destination address is aligned to its natural data
size. Specifically, 16-byte moves need to ensure the destination address is aligned to 16-byte
boundaries, and 8-bytes moves perform better if the destination address is aligned to 8-byte
boundaries. Frequently, moving at doubleword granularity performs better with addresses that are
8-byte aligned.

• REP string move vs. SIMD move — Implementing general-purpose memory functions using SIMD
extensions usually requires adding some prolog code to ensure the availability of SIMD instructions,
preamble code to facilitate aligned data movement requirements at runtime. Throughput comparison
must also take into consideration the overhead of the prolog when considering a REP string imple-
mentation versus a SIMD approach.

• Cache eviction — If the amount of data to be processed by a memory routine approaches half the
size of the last level on-die cache, temporal locality of the cache may suffer. Using streaming store
instructions (for example: MOVNTQ, MOVNTDQ) can minimize the effect of flushing the cache. The
threshold to start using a streaming store depends on the size of the last level cache. Determine the
size using the deterministic cache parameter leaf of CPUID.
Techniques for using streaming stores for implementing a MEMSET()-type library must also consider
that the application can benefit from this technique only if it has no immediate need to reference

3-60

GENERAL OPTIMIZATION GUIDELINES

the target addresses. This assumption is easily upheld when testing a streaming-store implemen-
tation on a micro-benchmark configuration, but violated in a full-scale application situation.

When applying general heuristics to the design of general-purpose, high-performance library routines,
the following guidelines can are useful when optimizing an arbitrary counter value N and address align-
ment. Different techniques may be necessary for optimal performance, depending on the magnitude of
N:
• When N is less than some small count (where the small count threshold will vary between microarchi-

tectures -- empirically, 8 may be a good value when optimizing for Intel NetBurst microarchitecture),
each case can be coded directly without the overhead of a looping structure. For example, 11 bytes
can be processed using two MOVSD instructions explicitly and a MOVSB with REP counter equaling 3.

• When N is not small but still less than some threshold value (which may vary for different
micro-architectures, but can be determined empirically), an SIMD implementation using run-time
CPUID and alignment prolog will likely deliver less throughput due to the overhead of the prolog. A
REP string implementation should favor using a REP string of doublewords. To improve address
alignment, a small piece of prolog code using MOVSB/STOSB with a count less than 4 can be used to
peel off the non-aligned data moves before starting to use MOVSD/STOSD.

• When N is less than half the size of last level cache, throughput consideration may favor either:

— An approach using a REP string with the largest data granularity because a REP string has little
overhead for loop iteration, and the branch misprediction overhead in the prolog/epilogue code to
handle address alignment is amortized over many iterations.

— An iterative approach using the instruction with largest data granularity, where the overhead for
SIMD feature detection, iteration overhead, and prolog/epilogue for alignment control can be
minimized. The trade-off between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value with the destination
address aligned to doubleword boundary in 32-bit mode is shown in Example 3-52.

• When N is larger than half the size of the last level cache, using 16-byte granularity streaming stores
with prolog/epilog for address alignment will likely be more efficient, if the destination addresses will
not be referenced immediately afterwards.

Example 3-52. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD
void memset(void *dst,int c,size_t size)
{
char *d = (char *)dst;
size_t i;
for (i=0;i<size;i++)

*d++ = (char)c;
}

push edi
movzx eax, byte ptr [esp+12]
mov ecx, eax
shl ecx, 8
or ecx, eax
mov ecx, eax
shl ecx, 16
or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shr ecx, 2 ; do dword
cmp ecx, 127
jle _main
test edi, 4
jz _main
stosd ;peel off one dword
dec ecx

3-61

GENERAL OPTIMIZATION GUIDELINES

Memory routines in the runtime library generated by Intel compilers are optimized across a wide range
of address alignments, counter values, and microarchitectures. In most cases, applications should take
advantage of the default memory routines provided by Intel compilers.

In some situations, the byte count of the data is known by the context (as opposed to being known by a
parameter passed from a call), and one can take a simpler approach than those required for a
general-purpose library routine. For example, if the byte count is also small, using REP MOVSB/STOSB
with a count less than four can ensure good address alignment and loop-unrolling to finish the remaining
data; using MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the situations described
above. However, using a REP prefix with string scan instructions (SCASB, SCASW, SCASD, SCASQ) or
compare instructions (CMPSB, CMPSW, SMPSD, SMPSQ) is not recommended for high performance.
Consider using SIMD instructions instead.

3.7.6 Enhanced REP MOVSB and STOSB Operation
Beginning with processors based on Ivy Bridge microarchitecture, REP string operation using MOVSB and
STOSB can provide both flexible and high-performance REP string operations for software in common
situations like memory copy and set operations. Processors that provide enhanced MOVSB/STOSB oper-
ations are enumerated by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitecture, REP MOVSB performance of short
operations is enhanced. The enhancement applies to string lengths between 1 and 128 bytes long.
Support for fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID [EAX=7H,
ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change in the REP STOS performance.

3.7.6.2 Memcpy Considerations
The interface for the standard library function memcpy introduces several factors (e.g. length, alignment
of the source buffer and destination) that interact with microarchitecture to determine the performance
characteristics of the implementation of the library function. Two of the common approaches to imple-
ment memcpy are driven from small code size vs. maximum throughput. The former generally uses REP
MOVSD+B (see Section 3.7.5), while the latter uses SIMD instruction sets and has to deal with additional
data alignment restrictions.

For processors supporting enhanced REP MOVSB/STOSB, implementing memcpy with REP MOVSB will
provide even more compact benefits in code size and better throughput than using the combination of
REP MOVSD+B. For processors based on Ivy Bridge microarchitecture, implementing memcpy using
Enhanced REP MOVSB and STOSB might not reach the same level of throughput as using 256-bit or
128-bit AVX alternatives, depending on length and alignment factors.

_main: ; 8-byte aligned
rep stosd
mov ecx, [esp + 16]
and ecx, 3 ; do count <= 3
rep stosb ; optimal with <= 3
pop edi
ret

Example 3-52. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination (Contd.)
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD

3-62

GENERAL OPTIMIZATION GUIDELINES

Figure 3-3 depicts the relative performance of memcpy implementation on a third-generation Intel Core
processor using Enhanced REP MOVSB and STOSB versus REP MOVSD+B, for alignment conditions when
both the source and destination addresses are aligned to a 16-Byte boundary and the source region does
not overlap with the destination region. Using Enhanced REP MOVSB and STOSB always delivers better
performance than using REP MOVSD+B. If the length is a multiple of 64, it can produce even higher
performance. For example, copying 65-128 bytes takes 40 cycles, while copying 128 bytes needs only 35
cycles.

If an application wishes to bypass standard memcpy library implementation with its own custom imple-
mentation and have freedom to manage the buffer length allocation for both source and destination, it
may be worthwhile to manipulate the lengths of its memory copy operation to be multiples of 64 to take
advantage the code size and performance benefit of Enhanced REP MOVSB and STOSB.

The performance characteristic of implementing a general-purpose memcpy library function using a
SIMD register is significantly more colorful than an equivalent implementation using a general-purpose
register, depending on length, instruction set selection between SSE2, 128-bit AVX, 256-bit AVX, relative
alignment of source/destination, and memory address alignment granularities/boundaries, etc.

Hence comparing performance characteristics between a memcpy using Enhanced REP MOVSB and
STOSB versus a SIMD implementation is highly dependent on the particular SIMD implementation. The
remainder of this section discusses the relative performance of memcpy using Enhanced REP MOVSB and
STOSB versus unpublished, optimized 128-bit AVX implementation of memcpy to illustrate the hardware
capability of Ivy Bridge microarchitecture.

Figure 3-3. Memcpy Performance Comparison for Lengths up to 2KB

Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX
Range of Lengths (bytes) <128 128 to 2048 2048 to 4096

Memcpy_ERMSB/Memcpy_AVX128 0x7X 1X 1.02X

0

20

40

60

80

100

120

140

160

0 32 64 96 12
8
16
0

19
2
22
4
25
6
28
8
32
0
35
2

38
4
41
6
44
8
48
0
51
2

54
4
57
6
60
8
64
0
67
2
70
4

73
6
76
8
80
0
83
2
86
4

89
6
92
8
96
0
99
2

10
24

REP MOVSB
REP MOVSD+B

length in bytes

cy
cl
es

3-63

GENERAL OPTIMIZATION GUIDELINES

Table 3-5 shows the relative performance of the Memcpy function implemented using enhanced REP
MOVSB versus 128-bit AVX for several ranges of memcpy lengths, when both the source and destination
addresses are 16-byte aligned and the source region and destination region do not overlap. For memcpy
length less than 128 bytes, using Enhanced REP MOVSB and STOSB is slower than what’s possible using
128-bit AVX, due to internal start-up overhead in the REP string.

For situations with address misalignment, memcpy performance will generally be reduced relative to the
16-byte alignment scenario (see Table 3-6).

Memcpy() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit
SIMD integer data-path in Haswell microarchitecture. See Section 15.16.3.

3.7.6.3 Memmove Considerations
When there is an overlap between the source and destination regions, software may need to use
memmove instead of memcpy to ensure correctness. It is possible to use REP MOVSB in conjunction with
the direction flag (DF) in a memmove() implementation to handle situations where the latter part of the
source region overlaps with the beginning of the destination region. However, setting the DF to force REP
MOVSB to copy bytes from high towards low addresses will experience significant performance degrada-
tion.

When using Enhanced REP MOVSB and STOSB to implement memmove function, one can detect the
above situation and handle first the rear chunks in the source region that will be written to as part of the
destination region, using REP MOVSB with the DF=0, to the non-overlapping region of the destination.
After the overlapping chunks in the rear section are copied, the rest of the source region can be
processed normally, also with DF=0.

3.7.6.4 Memset Considerations
The consideration of code size and throughput also applies for memset() implementations. For proces-
sors supporting Enhanced REP MOVSB and STOSB, using REP STOSB will again deliver more compact
code size and significantly better performance than the combination of STOSD+B technique described in
Section 3.7.5.

When the destination buffer is 16-byte aligned, memset() using Enhanced REP MOVSB and STOSB can
perform better than SIMD approaches. When the destination buffer is misaligned, memset() perfor-
mance using Enhanced REP MOVSB and STOSB can degrade about 20% relative to aligned case, for
processors based on Ivy Bridge microarchitecture. In contrast, SIMD implementation of memset() will
experience smaller degradation when the destination is misaligned.

Memset() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit data
path in Haswell microarchitecture. see Section 15.16.3.3.

3.8 REP STRING OPERATIONS
Several REP string performance enhancements are available beginning with processors based on Golden
Cove microarchitecture.

Table 3-6. Effect of Address Misalignment on Memcpy() Performance
Address Misalignment Performance Impact

Source Buffer The impact on Enhanced REP MOVSB and STOSB implementation versus
128-bit AVX is similar.

Destination Buffer The impact on Enhanced REP MOVSB and STOSB implementation can be 25%
degradation, while 128-bit AVX implementation of memcpy may degrade only
5%, relative to 16-byte aligned scenario.

3-64

GENERAL OPTIMIZATION GUIDELINES

3.8.1 Fast Zero Length REP MOVSB
REP MOVSB performance of zero length operations is enhanced. The latency of a zero length REP MOVSB
is now the same as the latency of lengths 1 to 128 bytes. When both Fast Short REP MOVSB and Fast Zero
Length REP MOVSB features are enabled, REP MOVSB performance is flat 9 cycles per operation, for all
strings 0-128 byte long whose source and destination operands reside in the processor first level cache.

Support for fast zero-length REP MOVSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_ZERO_LENGTH_REP_MOVSB[bit 10] = 1.

3.8.2 Fast Short REP STOSB
REP STOSB performance of short operations is enhanced. The enhancement applies to string lengths
between 0 and 128 bytes long. When Fast Short REP STOSB feature is enabled, REP STOSB performance
is flat 12 cycles per operation, for all strings 0-128 byte long whose destination operand resides in the
processor first level cache.

Support for fast-short REP STOSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_STOSB[bit 11] = 1.

3.8.3 Fast Short REP CMPSB and SCASB
REP CMPSB and SCASB performance is enhanced. The enhancement applies to string lengths between 1
and 128 bytes long. When the Fast Short REP CMPSB and SCASB feature is enabled, REP CMPSB and REP
SCASB performance is flat 15 cycles per operation, for all strings 1-128 byte long whose two source oper-
ands reside in the processor first level cache.

Support for fast short REP CMPSB and SCASB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_CMPSB_SCASB[bit 12] = 1.

3.9 FLOATING-POINT CONSIDERATIONS
When programming floating-point applications, it is best to start with a high-level programming language
such as C, C++, or Fortran. Many compilers perform floating-point scheduling and optimization when it
is possible. However in order to produce optimal code, the compiler may need some assistance.

3.9.1 Guidelines for Optimizing Floating-Point Code
User/Source Coding Rule 9. (M impact, M generality) Enable the compiler’s use of Intel SSE, Intel
SSE2, Intel AVX, Intel AVX2, and possibly more advanced SIMD instruction sets (Intel AVX-512) with
appropriate switches. Favor scalar SIMD code generation to replace x87 code generation.

Follow this procedure to investigate the performance of your floating-point application:
• Understand how the compiler handles floating-point code.
• Look at the assembly dump and see what transforms are already performed on the program.
• Study the loop nests in the application that dominate the execution time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
• Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, or instruction

latency. Focus on optimizing the problem area. For example, adding PREFETCH instructions will not
help if the bus is already saturated. If trace cache bandwidth is the problem, added prefetch µops
may degrade performance.

3-65

GENERAL OPTIMIZATION GUIDELINES

Also, in general, follow the general coding recommendations discussed in this chapter, including:
• Blocking the cache.
• Using prefetch.
• Enabling vectorization.
• Unrolling loops.

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

When converting floating-point values to 16-bit, 32-bit, or 64-bit integers using truncation, the instruc-
tions CVTTSS2SI and CVTTSD2SI are recommended over instructions that access x87 FPU stack. This
avoids changing the rounding mode.

User/Source Coding Rule 11. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there is
no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with
these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the Intel SSE and the Intel SSE2 instructions.

3.9.2 Floating-Point Modes and Exceptions
When working with floating-point numbers, high-speed microprocessors frequently must deal with situ-
ations that need special handling in hardware or code.

3.9.2.1 Floating-Point Exceptions
The most frequent cause of performance degradation is the use of masked floating-point exception
conditions such as:
• Arithmetic overflow.
• Arithmetic underflow.
• Denormalized operand.

Refer to Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for defi-
nitions of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:
• Directly when are used as operands.
• Indirectly when are produced as a result of an underflow situation.

If a floating-point application never underflows, the denormals can only come from floating-point
constants.
User/Source Coding Rule 12. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87 instructions or Intel
SSE/Intel SSE2/Intel SSE3 instructions. Processors based on Intel NetBurst microarchitecture handle
these exceptions more efficiently when executing Intel SSE/Intel SSE2/Intel SSE3 instructions and when
speed is more important than complying with the IEEE standard. The following paragraphs give recom-
mendations on how to optimize your code to reduce performance degradations related to floating-point
exceptions.

3-66

GENERAL OPTIMIZATION GUIDELINES

3.9.2.2 Dealing with Floating-Point Exceptions in x87 FPU Code
Every special situation listed in Section 3.9.2.1, “Floating-Point Exceptions,” is costly in terms of perfor-
mance. For that reason, x87 FPU code should be written to avoid these situations.

There are basically three ways to reduce the impact of overflow/underflow situations with x87 FPU code:
• Choose floating-point data types that are large enough to accommodate results without generating

arithmetic overflow and underflow exceptions.
• Scale the range of operands/results to reduce as much as possible the number of arithmetic

overflow/underflow situations.
• Keep intermediate results on the x87 FPU register stack until the final results have been computed

and stored in memory. Overflow or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored in double extended-precision
format and overflow/underflow conditions are detected accordingly).

• Denormalized floating-point constants (which are read-only, and hence never change) should be
avoided and replaced, if possible, with zeros of the same sign.

3.9.2.3 Floating-Point Exceptions in SSE/SSE2/SSE3 Code
Most special situations that involve masked floating-point exceptions are handled efficiently in hardware.
When a masked overflow exception occurs while executing Intel SSE/Intel SSE2/Intel SSE3/Intel
AVX/Intel AVX2/Intel AVX-512 code, processor hardware can handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually treated according to the IEEE 754
specification1, but this can incur significant performance delay. If a programmer is willing to trade pure
IEEE 754 compliance for speed, two non-IEEE 754 compliant modes are provided to speed situations
where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a zero with the correct
sign. Although this behavior is not compliant with IEEE 754, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since denormal results are not produced
when the FTZ mode is enabled, the only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when running a SIMD
floating-point application. When the DAZ mode is enabled, input denormals are treated as zeros with the
same sign. Enabling the DAZ mode is the way to deal with denormal floating-point constants when
performance is the objective.

If departing from the IEEE 754 specification is acceptable and performance is critical, run Intel SSE/Intel
SSE2/Intel SSE3/Intel AVX/Intel AVX2/Intel AVX-512 applications with FTZ and DAZ modes enabled.

NOTE
The DAZ mode is available with both the Intel SSE and Intel SSE2 extensions, although
the speed improvement expected from this mode is fully realized only in SSE code and
later.

3.9.3 Floating-Point Modes
For x87 code, using the FLDCW instruction to change floating modes can be an expensive operation in
many cases.

Recent processor generations provide hardware optimization for FLDCW that allows programmers to
alternate between two constant values efficiently. For the FLDCW optimization to be effective, the two
constant FCW values are only allowed to differ on the following 5 bits in the FCW:

1. “IEEE Standard for Floating-Point Arithmetic,” in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22
July 2019, doi: 10.1109/IEEESTD.2019.8766229.

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

3-67

GENERAL OPTIMIZATION GUIDELINES

FCW[8-9] ; Precision control
FCW[10-11] ; Rounding control
FCW[12] ; Infinity control

If programmers need to modify other bits (for example: mask bits) in the FCW, the FLDCW instruction is
still an expensive operation.

In situations where an application cycles between three (or more) constant values, FLDCW optimization
does not apply, and the performance degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage of the optimization of
the FLDCW instruction to alternate between only these two constant FCW values, and devise some
means to accomplish the task that requires the 3rd FCW value without actually changing the FCW to a
third constant value. An alternative solution is to structure the code so that, for periods of time, the appli-
cation alternates between only two constant FCW values. When the application later alternates between
a pair of different FCW values, the performance degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ mode values.
Consequently, the SIMD control word does not have the short latencies that the floating-point control
register does. A read of the MXCSR register has a fairly long latency, and a write to the register is a seri-
alizing instruction.

There is no separate control word for single and double precision; both use the same modes. Notably,
this applies to both FTZ and DAZ modes.
Assembly/Compiler Coding Rule 52. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination of
the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to delays
that are on the order of the pipeline depth.

3.9.3.1 Rounding Mode
Many libraries provide float-to-integer library routines that convert floating-point values to integer. Many
of these libraries conform to ANSI C coding standards which state that the rounding mode should be
truncation. With the Pentium 4 processor, one can use the CVTTSD2SI and CVTTSS2SI instructions to
convert operands with truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using Intel SSE and Intel SSE2
wherever possible when truncation is involved.

For x87 floating-point, the FIST instruction uses the rounding mode represented in the floating-point
control word (FCW). The rounding mode is generally “round to nearest”, so many compiler writers imple-
ment a change in the rounding mode in the processor in order to conform to the C and FORTRAN stan-
dards. This implementation requires changing the control word on the processor using the FLDCW
instruction. For a change in the rounding, precision, and infinity bits, use the FSTCW instruction to store
the floating-point control word. Then use the FLDCW instruction to change the rounding mode to trunca-
tion.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW instruction is usually
followed by a load operation. The load operation from memory should be a 16-bit operand to prevent
store-forwarding problem. If the load operation on the previously-stored FCW word involves either an
8-bit or a 32-bit operand, this will cause a store-forwarding problem due to mismatch of the size of the
data between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW are both 16-bit oper-
ations.

If there is more than one change to the rounding, precision, and infinity bits, and the rounding mode is
not important to the result, use the algorithm in Example 3-53 to avoid synchronization issues, the over-
head of the FLDCW instruction, and having to change the rounding mode. Note that the example suffers

3-68

GENERAL OPTIMIZATION GUIDELINES

from a store-forwarding problem which will lead to a performance penalty. However, its performance is
still better than changing the rounding, precision, and infinity bits among more than two values.

Assembly/Compiler Coding Rule 53. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity
bits.

3.9.3.2 Precision
If single precision is adequate, use it instead of double precision. This is true because:
• Single precision operations allow the use of longer SIMD vectors, since more single precision data

elements can fit in a register.
• If the precision control (PC) field in the x87 FPU control word is set to single precision, the

floating-point divider can complete a single-precision computation much faster than either a

Example 3-53. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fld st(0) ; Duplicate FPU stack top

fistp qword ptr[ecx]
fild qword ptr[ecx]
mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax
je integer_QnaN_or_zero

arg_is_not_integer_QnaN:
fsubp st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What’s sign of integer
jns positive ; Number is negative
fstp dword ptr[ecx] ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
xor ecx, 80000000h
add ecx,7fffffffh ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret

positive:

positive:
fstp dword ptr[ecx] ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test edx, 7fffffffh
jnz arg_is_not_integer_QnaN
add esp, 16
ret

3-69

GENERAL OPTIMIZATION GUIDELINES

double-precision computation or an extended double-precision computation. If the PC field is set to
double precision, this will enable those x87 FPU operations on double-precision data to complete
faster than extended double-precision computation. These characteristics affect computations
including floating-point divide and square root.

Assembly/Compiler Coding Rule 54. (H impact, L generality) Minimize the number of changes to
the precision mode.

3.9.4 x87 vs. Scalar SIMD Floating-Point Trade-Offs
There are a number of differences between x87 floating-point code and scalar floating-point code (using
Intel SSE and Intel SSE2). The following differences should drive decisions about which registers and
instructions to use:
• When an input operand for a SIMD floating-point instruction contains values that are less than the

representable range of the data type, a denormal exception occurs. This causes a significant
performance penalty. An SIMD floating-point operation has a flush-to-zero mode in which the results
will not underflow. Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications with low lighting
levels, using flush-to-zero mode can improve performance by as much as 50% for applications with
large numbers of underflows.

• Scalar floating-point SIMD instructions have lower latencies than equivalent x87 instructions. Scalar
SIMD floating-point multiply instruction may be pipelined, while x87 multiply instruction is not.

• Although x87 supports transcendental instructions, software library implementation of transcen-
dental function can be faster in many cases.

• x87 supports 80-bit precision, double extended floating-point. SSE support a maximum of 32-bit
precision. SSE2 supports a maximum of 64-bit precision.

• Scalar floating-point registers may be accessed directly, avoiding FXCH and top-of-stack restrictions.
• The cost of converting from floating-point to integer with truncation is significantly lower with Intel

SSE and Intel SSE2 in the processors based on Intel NetBurst microarchitecture than with either
changes to the rounding mode or the sequence prescribed in the Example 3-53.

Assembly/Compiler Coding Rule 55. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

3.9.4.1 Scalar Intel® SSE/Intel® SSE2
In code sequences that have conversions from floating-point to integer, divide single-precision instruc-
tions, or any precision change, x87 code generation from a compiler typically writes data to memory in
single-precision and reads it again in order to reduce precision. Using Intel SSE/Intel SSE2 scalar code
instead of x87 code can generate a large performance benefit using Intel NetBurst microarchitecture and
a modest benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate scalar floating-point code using XMM rather
than x87 code.

When working with Intel SSE/Intel SSE2 scalar code, pay attention to the need for clearing the content
of unused slots in an XMM register and the associated performance impact. For example, loading data
from memory with MOVSS or MOVSD causes an extra micro-op for zeroing the upper part of the XMM
register.

3.9.4.2 Transcendental Functions
If an application needs to emulate math functions in software for performance or other reasons (see
Section 3.9.1, “Guidelines for Optimizing Floating-Point Code”), it may be worthwhile to inline math

3-70

GENERAL OPTIMIZATION GUIDELINES

library calls because the CALL and the prologue/epilogue involved with such calls can significantly affect
the latency of operations.

3.10 MAXIMIZING PCIE PERFORMANCE
PCIe performance can be dramatically impacted by the size and alignment of upstream reads and writes
(read and write transactions issued from a PCIe agent to the host’s memory). As a general rule, the best
performance, in terms of both bandwidth and latency, is obtained by aligning the start addresses of
upstream reads and writes on 64-byte boundaries and ensuring that the request size is a multiple of
64-bytes, with modest further increases in bandwidth when larger multiples (128, 192, 256 bytes) are
employed. In particular, a partial write will cause a delay for the following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache line. This can result
in a conflict which in turn can cause serialization of accesses that would otherwise be pipelined, resulting
in higher latency and/or lower bandwidth. Patterns that violate this rule include sequential accesses
(reads or writes) that are not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request lengths that result
in overlap of the requests—can have the same effect. For example, a 96-byte read of address
0x00000200 followed by a 64-byte read of address 0x00000240 will cause a conflict—and a likely delay—
for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the performance of a series
of partial and full sequential writes. For example, a write of length 128-byte to address 0x00000070 will
perform similarly to 3 sequential writes of lengths 16, 64, and 48 to addresses 0x00000070,
0x00000080, and 0x00000100, respectively.

For PCIe cards implementing multi-function devices, such as dual or quad port network interface cards
(NICs) or dual-GPU graphics cards, it is important to note that non-optimal behavior by one of those
devices can impact the bandwidth and/or latency observed by the other devices on that card. With
respect to the behavior described in this section, all traffic on a given PCIe port is treated as if it origi-
nated from a single device and function.

For the best PCIe bandwidth:
1. Align start addresses of upstream reads and writes on 64-byte boundaries.
2. Use read and write requests that are a multiple of 64-bytes.
3. Eliminate or avoid sequential and random partial line upstream writes.
4. Eliminate or avoid conflicting upstream reads, including sequential partial line reads.

Techniques for avoiding performance pitfalls include cache line aligning all descriptors and data buffers,
padding descriptors that are written upstream to 64-byte alignment, buffering incoming data to achieve
larger upstream write payloads, allocating data structures intended for sequential reading by the PCIe
device in such a way as to enable use of (multiple of) 64-byte reads. The negative impact of unoptimized
reads and writes depends on the specific workload and the microarchitecture on which the product is
based.

3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and
MMIO Regions (P2P)

In order to maximize performance for PCIe devices in the processors listed in Table 3-7 the software
should determine whether the accesses are toward coherent (system) memory or toward MMIO regions
(P2P access to other devices). If the access is toward MMIO region, then software can command HW to
set the RO bit in the TLP header, as this would allow hardware to achieve maximum throughput for these
types of accesses. For accesses toward coherent memory, software can command HW to clear the RO bit

3-71

GENERAL OPTIMIZATION GUIDELINES

in the TLP header (no RO), as this would allow hardware to achieve maximum throughput for these types
of accesses.

3.11 SCALABILITY WITH CONTENDED LINE ACCESS IN 4TH GENERATION
INTEL® XEON® SCALABLE PROCESSORS

A two-socket system like that found in the Sapphire Rapids microarchitecture can have up to 224 (2
sockets x 56 cores/socket x 2 threads/core) hardware threads. Scalability and performance bottlenecks
may happen when all of these hardware threads compete for the same address.

3.11.1 Causes of Performance Bottlenecks

When multiple hardware threads go after the same address (for example, AA), this address is queued
in the Ingress Queue, with one entry for each hardware thread. Due to the resource limitation of the
Ingress Queue, the CPU core is throttled to slow the rate of requests when this queue overflows. This
usually occurs with contention for a lock.

3.11.2 Performance Bottleneck Detection
When multiple cores are contending on the same lock, several outstanding requests are mapped to that
same address. The Phys_addr_match event can count as such an event. This CHA event increments by
one every other cycle when there is more than one outstanding request to the same address.

Here are the PMU event id and Umask for the 2 CHA events that are very useful for detecting contention:

1. Phys_addr_match event: Event id: 0x19, Umask: 0x80

2. CHA_clockticks event: Event id: 0x01, Umask: 0x01

These events have to be measured on a per-CHA basis, and if the ratio of the counts between phys_ad-
dr_match to CHA_clockticks is more than 0.15 on any CHA that indicates > 30% of the CHA cycles (2x
the ratio as this event can count only once every two cycles) are spent with multiple requests outstanding
to the same address.

Here is the recipe to measure these events with Linux Perf:
$ sudo perf stat -a -e 'uncore_cha/event=0x19,umask=0x80/,uncore_cha/event=0x1,umask=0x1/' --per-socket
--no-merge -- sleep 30

Once confirmed that the ratio of phys_addr_match events to the CHA clockticks is more than 0.15, the
next step is figuring out where this may be happening in the code. Intel CPUs provide a PMU mechanism
wherein a load operation is randomly selected and tracked through completion, and the true latency is
recorded if it is over a given threshold. The threshold value is specified in cycles and must be in the power
of 2. In the following “perf mem record” command, define a command to sample all loads that take more
than 128 cycles to complete.

$ sudo perf mem record -a --ldlat 128 sleep 1

Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCIe Performance
Processor CPU RP Device IDs

Intel® Xeon processors based on Broadwell microarchitecture 6F01H-6F0EH

Intel® Xeon processors based on Haswell microarchitecture 2F01H-2F0EH

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools
https://v8.dev/blog/short-builtin-calls
https://v8.dev/blog/short-builtin-calls

3-72

GENERAL OPTIMIZATION GUIDELINES

Once the above data is collected, execute the following command to process the data collected:
$ sudo perf mem report

Information similar to the table below will be generated. Such information will include details on hot loads
along with data linear address and the actual latency that the load experienced. This can be used to iden-
tify the necessary fixes to the code.

3.11.3 Solutions for Performance Bottlenecks
The following is a list of suggested solutions:

1. Run multiple instances of the workload with a scale-out approach instead of a single instance
with scale-up so that the contention for per instance hot variables (including locks) is reduced.

2. Guard the cmpxchg by checking that the destination memory is expected with a load, test, and
branch beforehand.

Table 3-8. Samples: 365K of Events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,ldat=128/pp}’, Event Count (a--r0x):
67900852

O
ve

rh
ea

d

Sa
m

pl
es

Lo
ca

l W
ei

gh
t

M
em

or
y

A
cc

es
s

Sy
m

bo
l

Sh
ar

ed
 O

bj
ec

t

D
at

a
Sy

m
bo

l

D
at

a
O

bj
ec

t

Sn
oo

p

TL
B

 A
cc

es
s

Lo
ck

ed

B
lo

ck
ed

Lo
ca

l I
N

ST
R

 L
at

en
cy

0.22%
0.07%

1
1

38060

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 47251

0.18%
0.06%

1
1

31338

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 40411

0.17%
0.06%

1
1

29572

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 36652

3-73

GENERAL OPTIMIZATION GUIDELINES

3. Implement a backoff mechanism so that the cmpxchg is issued less. For example, in locks,
exponential backoff is a common and effective method to prevent all cores from being in
lockstep. In the case of contention for a lock, checking to see if it is accessible by a load before
trying to write to it through a cmpxchg will help.

The code in Example 3-54 provides an example:

Example 3-54. Locking Algorithm for the Sapphire Rapids Microarchitecture

Additionally, as the core counts continue to increase, exploring other algorithmic fixes that dissolve or
reduce contention on memory variables (including locks) is essential. For example, instead of frequently
updating a hot statistical variable from all threads, consider updating a copy of it per thread (without
contention) and later aggregate the updated per-thread copies on a less frequent basis or use some
existing atomic-free concurrency methods such as rseq1. As another example, restructure locking algo-
rithms to use hierarchical locking when excessive contention is detected on a global lock.

3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted
With SysBench/MariaDB 10.3.342, the workload’s throughput drops as the number of threads increases.
Another metric we can use is the CHA% Cycles Fast Asserted. It is a signal to slow down the cores when
the Ingress Queue fills up. This is another way to identify scalability issues. The graph below plots the
number of active client threads representing the work intensity on the horizontal axis. The percentage of
Fast Asserts is plotted on the vertical axis.

The baseline case (blue line) had a sharp throughput with increased thread count, as all cores reduced
their throughput as they suffered from the increasing percent of Fast Asserts. With the same work
distributed instances (red line), Fast asserts dropped. Similarly, with a software fix (gray line), again, the
Fast Asserts dropped even though only one instance was in execution.

lock_loop:

while (lock is not free) // just a load operation

execute pause;

// now the lock is free, so try to acquire it.

Exponential Backoff spin // so all the cores don’t come back at the same time

Execute cmpxchg on the lock

if the lock is not successfully acquired, goto lock_loop

1. https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2

2. The most current version is MariaDB 10.3.39

https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2
https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2
https://mariadb.com/kb/en/mariadb-10-3-39-release-notes/
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://mariadb.com/kb/en/mariadb-10334-release-notes/

3-74

GENERAL OPTIMIZATION GUIDELINES

Figure 3-4. MariaDB - CHA % Cycles Fast Asserted

3.11.5 Instruction Sequence Slowdowns
The Golden Cove CPU microarchitecture upon which the Sapphire Rapids microarchitecture is based has
increased the cost of mixing Legacy SSE and VEX without clearing the state of upper registers for power
efficiency reasons.

3.11.5.1 Causes of Instruction Sequence Slowdowns
The Golden Cove CPU microarchitecture eliminated some hardware speed paths for power efficiency and
replaced them with microcode. The instruction sequence in Table 3-9 mixes VEX and Legacy SSE. It has,
for example, higher core cycles than on the previous generation Sunny Cove CPU microarchitecture for
the Ice Lake version of the 3rd Generation of Intel® Xeon® Scalable processors. The higher core cycles
are due to the execution of additional micro-operations.

Table 3-9. Instruction Sequence Mixing VEX on the Sapphire Rapids and Ice Lake Server Microarchitectures

Intel Assembly Code Syntax
Ice lake Server Microarchitecture

(Sunny Cove Cores)
Sapphire Rapids Microarchitecture

(Golden Cove Cores)

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
PXOR XMM3, XMM3

Inst Retired Core Cycles Inst Retired Core Cycles

3.00 1 3.00 388.04

3-75

GENERAL OPTIMIZATION GUIDELINES

3.11.5.2 Detecting Instruction Sequence Slowdowns
The event ASSISTS.SSE_AVX_MIX can be used to determine if there are VEX to legacy SSE transitions.
The following Linux perf command-line can be used while the workload is running:

$ sudo perf stat -e 'assists.sse_avx_mix’1 <workload>

With the Intel® TMA (Topdown Methodology) (there is a metric called Mixing_Vectors which gives the
percentage of injected blend uops out of all the uops issued. Usually, a Mixing_Vectors metric over 5% is
worth investigating. You can find more details in Appendix B1 of the Optimizations Guide.

3.11.5.3 Fixing Instruction Sequence Slowdowns

The following is a list of suggested solutions:

1. When possible, use VEX-encoded instructions for all the SIMD instructions when possible.

2. Insert a VZEROUPPER to tell the hardware that the state of the higher registers is clean
between the VEX and the legacy SSE instructions. Often the best way to do this is to insert a
VZEROUPPER before returning from any function that uses VEX (that does not produce a VEX
register) and before any call to an unknown function.

VZEROUPPER was inserted in the code sequence below and there are no SSE_AVX_MIX assists. With
this change, the Core Cycles do not have a performance inversion relative to the previous generation.

3.11.6 Misprediction for Branches >2GB

The Golden Cove CPU is a wider machine and might exhibit a higher Top-down Microarchitecture Analy-
sis (TMA) Bad Speculation percentage. See B.1.1 for additional information about TMA. Some sources
of Bad Speculation are branch prediction misses. In this case, however, Bad Speculation is due to the
wider machine and less efficient branch prediction for certain indirect branches.

3.11.6.1 Causes of Branch Misprediction >2GB
For a near absolute indirect JMP/CALL branch instruction (opcodes FF /4 and FF /2), the branch distance
(ADDR_TARGET - ADDR_BRANCH) affects the performance of the branch predictor. The branch predictor
uses fewer resources to predict the branch if its distance can be specified with a 32-bit signed displace-
ment (JMP/CALL imm32). If the distance is larger (>2GB), the predictor uses more resources to predict
the branch and performance may suffer.

3.11.6.2 Detecting Branch Mispredictions >2GB
You can use the Last Branch Record (LBR) to identify jumps greater than 2GB. The collection of perfor-
mance analysis tools based on perf on Linux supports this. The following is an example output from the
tool. It shows that 21% of the call/jumps of >2GB offset are mispredicted. The histogram of one of the

1. Using upstream perf. If OS doesn’t have support for the event use
cpu/event=0xc1,umask=0x10,name=assists_sse_avx_mix/

Table 3-10. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids Microarchitecture

Intel Assembly Code Syntax
Ice lake Microarchitecture

(Sunny Cove Cores)

Sapphire Rapids
Microarchitecture

(Golden Cove Cores)

ASSISTS.SSE
_AVX_MIX

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
PXOR XMM3, XMM3

Inst Retired Core Cycles Inst Retired Core Cycles

4.00 2.00 4.00 1.00 0

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools

3-76

GENERAL OPTIMIZATION GUIDELINES

indirect branches at address 0x555555603664 shows that it is to one target and in a library. The profile
mask is to use LBR, and the duration is 10 seconds. It does a system-level profile.

Figure 3-5. Identifying >2GB Branches

3.11.6.3 Fixing Branch Mispredictions >2GB
Arrange the code so the jumps don’t span the >2GB range. This can be done through a variety of
approaches:
1. If possible, statically link all the libraries into the executable.

2. For .text to library code, use the Glibc environment variable LD_PREFER_MAP_32BIT_EXEC=1 to
restrict the addresses into the 4GB range.

3. For dynamically compiled code, keep it close to the .text address or copy the frequently called entries
into the dynamically compiled code address region. See the Google V8 Blog.

In a case study with WordPress/PHP running eight containers with and without the 2GB fix, the CPI and
performance scores improve by 6%.

% ./do.py profile --profile-mask=0x100 -s 10

count of indirect call/jump of >2GB offset: 93200

count of mispredicted indirect call/jump of >2GB offset: 19943

misprediction ratio for indirect branch at address 0x7ffff577eca4: 4.23%

misprediction ratio for indirect branch at address 0x5555556030c4: 32.23%

misprediction ratio for indirect branch at address 0x555555603664: 22.30%

misprediction ratio for indirect branch at address 0x555555603c24: 13.84%

…

indirect_0x555555603664 histogram:

0x7ffff7af2670: 50501 100.0%

Table 3-11. WordPress/PHP Case Study: With and Without a 2GB Fix for Branch Misprediction
 WP4.2 / PHP7.4.29

- NO FIX
 WP4.2 / PHP7.4.29 -

2G FIX in Glibc
 2G FIX/
NO FIX

Config

Workers 8c x 42 8c x 42 -

Cores Per socket 56 56 1.00

Sockets 2 2 1.00

Total Cores 112 112 1.00

Total Thread Count 224 224 1.00

Performance
Throughput 1.00 1.06 1.06

CPI 1.12 1.05 0.96

Path Length Instructions per Unit of Work 33,789,862.68 33,730,155.10 1.00

Cycles per
Transaction

Cycles per Unit of Work 37,803,310.48 35,359,628.33 0.94

https://v8.dev/blog/short-builtin-calls
https://v8.dev/
https://v8.dev/
https://v8.dev/blog

3-77

GENERAL OPTIMIZATION GUIDELINES

3.12 OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL® 4TH
GENERATION INTEL® XEON® SCALABLE PROCESSORS

The Sapphire Rapids microarchitecture introduced a new set of instructions designed to optimize
communication between SW running on IA cores and PCI devices on the platform.

3.12.1 Signaling Devices with Direct Move
Most software-to-device interaction follows a producer-to-consumer relationship where the software
creates work for the device and then signals it to inform the device that work is available. Descriptor rings
are the ubiquitous pattern here and once descriptors are added to the ring, the signal (or “doorbell”)
consists of an update to the tail pointer register on the device. This is a write to an MMIO-mapped BAR
register.

Such writes tend to be relatively expensive operations –the latency to complete the write to the device is
high relative to the CPU operating speed. Since writes are ordered by default, this creates a bubble
during which subsequent writes cannot be drained from store buffers. Signaling can therefore affect
performance via store backpressure.

As a result, some software libraries avoid frequent signaling by batching relatively large quantities of
work descriptors with each doorbell update. However, this is not always possible, and it introduces
latency.

The Sapphire Rapids microarchitecture introduces “Direct Store” instructions to optimize signaling; there
are two instructions in the family:
• MOVDIRI: 4/8B direct store.
• MOVDIR64B: 64B atomic direct copy.

Direct Stores are weakly ordered (like non-temporal or USWC-mapped memory writes) regardless of the
underlying memory type (which is usually UC for MMIO-mapped locations). Since they do not order
subsequent writes the performance issue described above does not occur.

Since they are intended for signaling, direct stores will never combine with other stores to the same
address as can happen with non-temporal or USWC writes. Each write is guaranteed to occur as issued.
In the case of MOVDIR64B, the full 64B will be delivered as a single write to the device. This is the only
ISA that carries an architectural guarantee of >8B atomicity.

These instructions benefit from the fact that signaling use cases typically do not care if subsequent writes
are observed before the doorbell itself because the ordering is relaxed. However, since typically the door-
bell must not be observable before earlier writes (such writes are creating the work descriptors), SW
should insert a store fence immediately before the direct store.

Having a fence before the direct store does not normally limit performance– except when many direct
stores are issued. If there is an SFENCE before each, the fence on direct store N+1 imposes an order on
direct store N, which can remove some of the benefits. The guideline is to avoid this where possible. One
technique that may work if multiple doorbells to different addresses are being issued (such as for a NIC
driver that is handling multiple descriptor rings), is to group the direct stores to different locations
together and insert a single SFENCE before the group.

It is also worth noting that the device write latency can vary widely with the address being written. This
is especially true on large CPUs implemented as multiple tiles. So if SW has the luxury of choosing
between multiple addresses, it is possible to envisage adaptive schemes that “match” an address to a SW
thread (especially if that thread is pinned to a single core) by selecting the best performing such address
during an initialization stage.

3-78

GENERAL OPTIMIZATION GUIDELINES

3.12.1.1 MOVDIR64B: Additional Considerations
As noted above MOVDIR64B is a copy operation; it moves data from one 64B-aligned address to another.
Typical usage is that the source address is a memory location, and the destination is MMIO mapped to a
device, whereupon it confers the benefits described above. However, since the source data is usually
written immediately before the MOVDIR64B, additional considerations include:
• It is unnecessary to fence to ensure the source data is written before the MOVDIR64B since the

source data is written to the same address that the MOVDIR64B reads. In some scenarios, no store
fence is needed in conjunction with MOVDIR64B. The correct operation of the system depends on
being observed before the MOVDIR64B if no other data is written to memory.

• It is critical to allow store forwarding of the source data for the best performance.
• The source data should be aligned to 64B and written at the same granularity that the MOVDIR64B

reads. For the Sapphire Rapids microarchitecture, this is 64B: the source data should, therefore, be
written using 64B Intel® AVX-512 Instructions for the best performance.

3.12.1.2 Streaming Data
MOVDIR64B can also be used to stream data to a device by copying a block of memory because it is
weakly ordered. This is similar behavior to mapping the destination memory locations as USWC, except:
• The destination address can remain mapped UC.
• The writes are guaranteed to arrive at the device as 64B writes, which is not guaranteed with any

other method.

3.13 SYNCHRONIZATION

3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE
New instructions for user-level monitor and MWAIT act like legacy monitor and MWAIT instructions with
additional functionality identified as the timeout and ring-3 (user space) application support. TPAUSE is
similar to legacy pause instruction but is designed to accept time interval and sleep state parameters.
User-level MWAIT and TPAUSE support the same C0.1 light sleep and C0.2 deeper sleep states. These
instructions are helpful in user space applications that support a busy poll, synchronization, or asynchro-
nous IO, such as waiting for an event. A minor code modification yields power benefits along with low
latency wake-up.

3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE Support
This section describes how to check whether a processor supports user-level monitor, user-level MWAIT,
or TPAUSE; if user-level monitor, user-level MWAIT, or TPAUSE instruction is supported, then CPUID.
(EAX=07H, ECX=0): ECX [bit 5] is enumerated as 1.

Example 3-55. Identification of WAITPKG with CPUID
…identify the existence of cpuid instruction

… ;

… ;

Identify signature is genuine Intel …;

mov eax, 7; Request for feature flags

mov ecx, 0; Request for feature flags

cpuid; 0FH, A2H CPUID instruction

test ecx, 00000020h;

Is waitpkg bit (bit 5) in feature flags equal to 1 jnz Found

3-79

GENERAL OPTIMIZATION GUIDELINES

3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations
User-level monitor initializes the monitor hardware in such a way that, after execution of the user-level
MWAIT, a store to a monitored address acts as a wakeup event. So, the User level monitor and the
user-level MWAIT work together to obtain a sleep state. TPAUSE is a single instruction request to enter
one of the same two sleep states for a defined time

There are possibilities of a “false wake-up” because of other events, notably interrupts or timeouts. The
application may re-execute user-level MWAIT/TPAUSE if it has been falsely woken. If the application
needs to determine the source of the predefined OS sleep wakeup, RFLAGS.CF is set Otherwise it is
assumed that the application can detect changes at the monitored address (MWAIT) or poll for activity
(TPAUSE).

3.13.1.3 Recommended Usage of Monitor, MWAIT, and TPAUSE Operations
A frequent paradigm in packet processing applications is to have dedicated HW threads polling a NIC
receive descriptor ring for ingress traffic. This kind of “busy polling” arrangement wastes energy when
the traffic rates are low. Changing the polling loop to perform user-level Monitor/MWAIT on the next
descriptor to be written can save substantial power in periods of low traffic. The same scheme could be
used with any “work distributor,” assigning work by writing to selected memory locations.

Accelerators frequently offload tasks from SW in an asynchronous manner. For example, the Intel® Data
Streaming Accelerator (Intel® DSA) performs copy operations and can return the status of the completed
operation by writing to memory. If an application uses the user-level monitor/MWAIT at a memory loca-
tion where the status field will be written, it can be woken when the task is complete. Instead of moni-
toring, the device may issue an interrupt that can act as a wake-up event.

Alternatively, applications may decide to choose TPAUSE as a wait event. This has the advantage of being
independent of the number of event sources.

In all cases, a small change in the user space application is needed to convert a busy poll application to
something more energy efficient with low latency wake-up.

Synchronous application: when two hardware threads from the same core use user-level monitor and
user-level MWAIT, it can progress effectively as some of the hardware resources are available to the
other thread when a hyperthread issues the user-level MWAITs.

To achieve the best performance using user-level monitor and user-level MWAIT:
• The entire contents of monitored locations must be verified after user-level MWAIT to avoid a false

wake-up.
• It is the developer’s responsibility to check the contents of monitored locations:

— Before issuing monitor.

— Before issuing user-level MWAIT.

— After user-level MWAIT. See Example 3-56.
• If an application expects a store to a monitored location, the timeout value should be as high as it is

supported.

3-80

GENERAL OPTIMIZATION GUIDELINES

Since user-level MWAIT and TPAUSE are a hint to a processor, a user should selectively identify locations
in the application.

Example 3-56. Code Snippet in an Asynchronous Example
void * m_address; // it is expected device will update m_address to 1

unsigned char ret;

while (1) {

if (*m_address != 0) // if device already finished operation, no need to user monitor/user mwait

break;

if (*m_address == 0) { // check monitored location before issuing umonitor instruction

_umonitor (m_address);

if (*m_address == 0) { // check monitored location before issuing umwait instruction

ret = _umwait(0, 0x186A0); // some high value in timeout

}

}

}

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

4. Updates to Chapter 7
Change bars and violet text show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Optimizing for SIMD Floating-point Applications.

--
Changes to this chapter:
• Example 7-5 was corrected.
• Example 7-6 was corrected.

CHAPTER 7
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

This chapter discusses rules for optimizing the single-instruction, multiple-data (SIMD) floating-point
instructions available in SSE, SSE2 SSE3, and SSE4.1. The chapter also provides examples illustrating
the optimization techniques for single-precision and double-precision SIMD floating-point applications.

7.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE
The rules and suggestions in this section help optimize floating-point code containing SIMD floating-point
instructions. Generally, it is essential to understand and balance port utilization to create efficient SIMD
floating-point code. Basic rules and suggestions include the following:
• Follow all guidelines in Chapter 3: "General Optimization Guidelines" and Chapter 5: "Coding for

SIMD Architectures".
• Mask exceptions to achieve higher performance. When exceptions are unmasked, software

performance is slower.
• Utilize the flush-to-zero and denormals-are-zero modes for higher performance to avoid the penalty

of dealing with denormals and underflows.
• Use the reciprocal instructions followed by iteration for increased accuracy. These instructions yield

reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.

— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root, which provide more accuracy, but slow
down performance.

7.2 PLANNING CONSIDERATIONS
Whether adapting an existing application or creating a new one, using SIMD floating-point instructions to
achieve optimum performance gain requires programmers to consider several issues. When choosing
candidates for optimization, look for code segments that are computationally intensive and floating-point
intensive. Also, consider efficient use of the cache architecture.

The sections that follow answer the questions that should be raised before implementation:
• Can data layout be arranged to increase parallelism or cache utilization?
• Which part of the code benefits from SIMD floating-point instructions?
• Is the current algorithm the most appropriate for SIMD floating-point instructions?
• Is the code floating-point intensive?
• Do single-precision floating-point or double-precision floating-point computations provide enough

range and precision?
• Does the result of computation affected by enabling flush-to-zero or denormals-to-zero modes?
• Is the data arranged for efficient utilization of the SIMD floating-point registers?
• Is this application targeted for processors without SIMD floating-point instructions?

See Section 5.2, “Considerations for Code Conversion to SIMD Programming.”

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-2

7.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT
Because the XMM registers used for SIMD floating-point computations are separate registers and are not
mapped to the existing x87 floating-point stack, SIMD floating-point code can be mixed with x87
floating-point or 64-bit SIMD integer code.

With Intel Core microarchitecture, 128-bit SIMD integer instructions provide substantially higher effi-
ciency than 64-bit SIMD integer instructions. Software should favor using SIMD floating-point and
integer SIMD instructions with XMM registers where possible.

7.4 SCALAR FLOATING-POINT CODE
SIMD floating-point instructions operate only on the lowest order element in the SIMD register. These
instructions are known as scalar instructions. They allow the XMM registers to be used for general-
purpose floating-point computations.

In terms of performance, scalar floating-point code can be equivalent to or exceed x87 floating-point
code and has the following advantages:
• SIMD floating-point code uses a flat register model, whereas x87 floating-point code uses a stack

model. Using scalar floating-point code eliminates the need to use FXCH instructions. These have
performance limits on the Intel Pentium 4 processor.

• Mixing with MMX technology code without penalty.
• Flush-to-zero mode.
• Shorter latencies than x87 floating-point.

When using scalar floating-point instructions, it is unnecessary to ensure that the data appears in vector
form. However, the optimizations for alignment, scheduling, instruction selection, and other optimiza-
tions covered in Chapter 3 and Chapter 5 should be observed.

7.5 DATA ALIGNMENT
SIMD floating-point data is 16-byte aligned. Referencing unaligned 128-bit SIMD floating-point data will
result in an exception unless MOVUPS or MOVUPD (move unaligned packed single or unaligned packed
double) is used. The unaligned instructions used on aligned or unaligned data will also suffer a perfor-
mance penalty relative to aligned accesses.

See also: Section 5.4, “Stack and Data Alignment.”

7.5.1 Data Arrangement
Because SSE and SSE2 incorporate SIMD architecture, arranging data to use the SIMD registers fully
produces optimum performance. This implies contiguous data for processing, which leads to fewer cache
misses. Correct data arrangement can quadruple data throughput using SSE, or double throughput when
using SSE2. Performance gains can occur because four data elements can be loaded with 128-bit load
instructions into XMM registers using SSE (MOVAPS). Similarly, two data elements can be loaded with
128-bit load instructions into XMM registers using SSE2 (MOVAPD).

Refer to Section 5.4, “Stack and Data Alignment,” for data arrangement recommendations. Duplicating
and padding techniques overcome misalignment problems that in some data structures and arrange-
ments. This increases the data space but avoids penalties for misaligned data access.

For some applications (3D geometry, for example), traditional data arrangement requires some changes
to use the SIMD registers and parallel techniques fully. Traditionally, the data layout has been an array of
structures (AoS). A new data layout has been proposed to fully use the SIMD registers in such applica-
tions: a structure of arrays (SoA) resulting in more optimized performance.

7-3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7.5.1.1 Vertical versus Horizontal Computation
Most floating-point arithmetic instructions in SSE/SSE2 provide a more significant performance gain on
vertical data processing for parallel data elements. This means that each element of the destination
results from an arithmetic operation performed from the source elements in the same vertical position
(Figure 7-1).

To supplement these homogeneous arithmetic operations on parallel data elements, SSE and SSE2
provide data movement instructions (e.g., SHUFPS, UNPCKLPS, UNPCKHPS, MOVLHPS, MOVHLPS, etc.)
that facilitate moving data elements horizontally.

The organization of structured data significantly impacts SIMD programming efficiency and performance.
This can be illustrated using two common type of data structure organizations:
• Array of Structure (AoS): This refers to arranging an array of data structures. Within the data

structure, each member is a scalar. This is shown in Figure 7-2. Typically, a repetitive computation
sequence is applied to each element of an array, i.e., a data structure. The computational sequence
for the scalar members of the structure is likely to be non-homogeneous within each iteration. AoS is
generally associated with a horizontal computation model.

• Structure of Array (SoA): Here, each member of the data structure is an array. Each element of the
array is a scalar. This is shown in Table 7-1. The repetitive computational sequence is applied to
scalar elements and homogeneous operation can be easily achieved across consecutive iterations
within the same structural member. Consequently, SoA is generally amenable to the vertical
computation model.

Figure 7-1. Homogeneous Operation on Parallel Data Elements

Figure 7-2. Horizontal Computation Model

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X 1OP Y1 X0 OP Y0

OPOPOPOP

X Y Z W

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-4

SIMD instructions with vertical computation on the SoA arrangement can achieve higher efficiency and
performance than AoS and horizontal computation. This can be seen with dot-product operation on
vectors. The dot product operation on the SoA arrangement is shown in Figure 7-3.

Example 7-1 shows how one result would be computed for seven instructions if the data were organized
as AoS and using SSE alone: four results would require 28 instructions.

Table 7-1. SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 Xn

Vy array Y1 Y2 Y3 Y4 Yn

Vz array Z1 Z2 Z3 Y4 Zn

Vw array W1 W2 W3 W4 Wn

Figure 7-3. Dot Product Operation

Example 7-1. Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x', y*y', z*z'
movaps ; reg->reg move, since next steps overwrite
shufps ; get b,a,d,c from a,b,c,d
addps ; get a+b,a+b,c+d,c+d
movaps ; reg->reg move
shufps ; get c+d,c+d,a+b,a+b from prior addps
addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

OM15168

X

+

X

+

X

+

X

=

X1 X2 X3 X4

Fx Fx Fx Fx

Y1 Y2 Y3 Y4

Fy Fy Fy Fy

Z1 Z2 Z3 Z4

Fz Fz Fz Fz

W 1 W 2 W 3 W 4

Fw Fw Fw Fw

R1 R2 R3 R4

7-5

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Now consider the case when the data is organized as SoA. Example 7-2 demonstrates how four results
are computed for five instructions.

For the most efficient use of the four component-wide registers, reorganizing the data into the SoA
format yields increased throughput and hence much better performance for the instructions used.

This simple example shows that vertical computation can yield 100% use of the available SIMD registers
to produce four results. Note that results may vary for other situations. Suppose the data structures are
represented in a format that is not “friendly” to vertical computation. In that case, it can be rearranged
“on the fly” to facilitate better utilization of the SIMD registers. This operation is referred to as a “swiz-
zling” operation. The reverse operation is referred to as “deswizzling.”

7.5.1.2 Data Swizzling
Swizzling data from SoA to AoS format can apply to multiple application domains, including 3D geometry,
video and imaging. Two different swizzling techniques can be adapted to handle floating-point and
integer data. Example 7-3 illustrates a swizzle function that uses SHUFPS, MOVLHPS, and MOVHLPS
instructions.

Example 7-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x' for all 4 x-components of 4 vertices
mulps ; y*y' for all 4 y-components of 4 vertices
mulps ; z*z' for all 4 z-components of 4 vertices
addps ; x*x' + y*y'
addps ; x*x'+y*y'+z*z'

Example 7-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS

typedef struct _VERTEX_AOS {
float x, y, z, color;

} Vertex_aos; // AoS structure declaration
typedef struct _VERTEX_SOA {

float x[4], float y[4], float z[4];
float color[4];

} Vertex_soa; // SoA structure declaration
void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov rbx, in // get structure addresses
mov rdx, out

movaps xmm1, [rbx] // w0 z0 y0 x0
movaps xmm2, [rbx + 16] // w1 z1 y1 x1
movaps xmm3, [rbx + 32] // w2 z2 y2 x2
movaps xmm4, [rbx + 48] // w3 z3 y2 x3
movaps xmm7, xmm4 // xmm7= w3 z3 y3 x3
movhlps xmm7, xmm3 // xmm7= w3 z3 w2 z2
movaps xmm6, xmm2 // xmm6= w1 z1 y1 x1
movlhps xmm3, xmm4 // xmm3= y3 x3 y1 x1
movhlps xmm2, xmm1 // xmm2= w1 z1 w0 z0
movlhps xmm1, xmm6 // xmm1= y1 x1 y0 x0

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-6

Example 7-4 shows a similar data-swizzling algorithm using SIMD instructions in the integer domain.

The technique in Example 7-3 (loading 16 bytes, using SHUFPS and copying halves of XMM registers) is
preferable over an alternate approach of loading halves of each vector using MOVLPS/MOVHPS on newer
microarchitectures. This is because loading 8 bytes using MOVLPS/MOVHPS can create code dependency
and reduce the throughput of the execution engine.

The performance considerations of Example 7-3, and Example 7-4 often depend on each microarchitec-
ture’s characteristics. For example, in Intel Core microarchitecture, executing a SHUFPS tend to be

movaps xmm6, xmm2 // xmm6= w1 z1 w0 z0
movaps xmm5, xmm1 // xmm5= y1 x1 y0 x0
shufps xmm2, xmm7, 0xDDh // xmm2= w3 w2 w1 w0 => W
shufps xmm1, xmm3, 0x88h // xmm1= x3 x2 x1 x0 => X
shufps xmm5, xmm3, 0xDDh // xmm5= y3 y2 y1 y0 => Y
shufps xmm6, xmm7, 0x88h // xmm6= z3 z2 z1 z0 => Z

movaps [rdx], xmm1 // store X
movaps [rdx+16], xmm5 // store Y
movaps [rdx+32], xmm6 // store Z
movaps [rdx+48], xmm2 // store W

}
}

Example 7-4. Swizzling Data Using UNPCKxxx Instructions

void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov rbx, in // get structure addresses
mov rdx, out

movdqa xmm1, [rbx + 0*16] //w0 z0 y0 x0
movdqa xmm2, [rbx + 1*16] //w1 z1 y1 x1
movdqa xmm3, [rbx + 2*16] //w2 z2 y2 x2
movdqa xmm4, [rbx + 3*16] //w3 z3 y3 x3
movdqa xmm5, xmm1
punpckldq xmm1, xmm2 // y1 y0 x1 x0
punpckhdq xmm5, xmm2 // w1 w0 z1 z0
movdqa xmm2, xmm3
punpckldq xmm3, xmm4 // y3 y2 x3 x2
punpckhdq xmm2, xmm4 // w3 w2 z3 z2
movdqa xmm4, xmm1
punpcklqdq xmm1, xmm3 // x3 x2 x1 x0
punpckhqdq xmm4, xmm3 // y3 y2 y1 y0
movdqa xmm3, xmm5
punpcklqdq xmm5, xmm2 // z3 z2 z1 z0
punpckhqdq xmm3, xmm2 // w3 w2 w1 w0

 movdqa [rdx+0*16], xmm1 //x3 x2 x1 x0
movdqa [rdx+1*16], xmm4 //y3 y2 y1 y0
movdqa [rdx+2*16], xmm5 //z3 z2 z1 z0
movdqa [rdx+3*16], xmm3 //w3 w2 w1 w0

}

Example 7-3. Swizzling Data (Contd.)Using SHUFPS, MOVLHPS, MOVHLPS (Contd.)

7-7

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

slower than a PUNPCKxxx instruction. In Enhanced Intel Core microarchitecture, SHUFPS and PUNP-
CKxxx instruction execute with one cycle throughput due to the 128-bit shuffle execution unit. The next
important consideration is that only one port can execute PUNPCKxxx rather than MOVLHPS/MOVHLPS
executing on multiple ports. The performance of both techniques improves on Intel Core microarchitec-
ture over previous microarchitectures due to 3 ports for executing SIMD instructions. Both techniques
further improve the Enhanced Intel Core microarchitecture due to the 128-bit shuffle unit.

7.5.1.3 Data Deswizzling
In the deswizzle operation, we want to arrange the SoA format back into AoS format so the XXXX, YYYY,
and ZZZZ are rearranged and stored in memory as XYZ. Example 7-5 illustrates one deswizzle function
for floating-point data.

Example 7-6 shows a similar deswizzle function using SIMD integer instructions. Both techniques
demonstrate loading 16 bytes and performing horizontal data movement in registers. This approach is
likely more efficient than alternative techniques of storing 8-byte halves of XMM registers using MOVLPS
and MOVHPS.

Example 7-5. Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)
{
 __asm {

mov rcx, in // load structure addresses
mov rdx, out
movaps xmm0, [rcx] //x3 x2 x1 x0
movaps xmm1, [rcx + 16] //y3 y2 y1 y0
movaps xmm2, [rcx + 32] //z3 z2 z1 z0
movaps xmm3, [rcx + 48] //w3 w2 w1 w0

movaps xmm5, xmm0
movaps xmm7, xmm2
unpcklps xmm0, xmm1 // y1 x1 y0 x0
unpcklps xmm2, xmm3 // w1 z1 w0 z0
movdqa xmm4, xmm0
movlhps xmm0, xmm2 // w0 z0 y0 x0
movhlps xmm2, xmm4 // w1 z1 y1 x1

unpckhps xmm5, xmm1 // y3 x3 y2 x2
unpckhps xmm7, xmm3 // w3 z3 w2 z2
movdqa xmm6, xmm5
movlhps xmm5, xmm7 // w2 z2 y2 x2
movhlps xmm7, xmm6 // w3 z3 y3 x3
movaps [rdx+0*16], xmm0 //w0 z0 y0 x0
movaps [rdx+1*16], xmm2 //w1 z1 y1 x1
movaps [rdx+2*16], xmm5 //w2 z2 y2 x2
movaps [rdx+3*16], xmm7 //w3 z3 y3 x3

 }
}

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-8

7.5.1.4 Horizontal ADD Using SSE
Although vertical computations generally use SIMD performance better than horizontal computations,
code must use a horizontal operation in some cases.

MOVLHPS/MOVHLPS and shuffle can be used to sum data horizontally. For example, starting with four
128-bit registers, to sum up each register horizontally while having the final results in one register, use
the MOVLHPS/MOVHLPS to align the upper and lower parts of each register. This allows you to use a
vertical add. With the resulting partial horizontal summation, full summation follows easily.

Figure 7-4 presents a horizontal add using MOVHLPS/MOVLHPS. Example 7-7 and Example 7-8 provide
the code for this operation.

Example 7-6. Deswizzling Data Using SIMD Integer Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)
{

//---deswizzling---rgb---
// assume: xmm0=rrrr, xmm1=gggg, xmm2=bbbb, xmm3=aaaa

mov rcx, in // load structure addresses
mov rdx, out

movdqa xmm0, [rcx] // load r4 r3 r2 r1 => xmm0
movdqa xmm1, [rcx+16] // load g4 g3 g2 g1 => xmm1

movdqa xmm2, [rcx+32] // load b4 b3 b2 b1 => xmm2
movdqa xmm3, [rcx+48] // load a4 a3 a2 a1 => xmm3

// Start deswizzling here
movdqa xmm5, xmm0
movdqa xmm7, xmm2
punpckldq xmm0, xmm1 //g2 r2 g1 r1
punpckldq xmm2, xmm3 //a2 b2 a1 b1
movdqa xmm4, xmm0
punpcklqdq xmm0, xmm2 // a1 b1 g1 r1 => v1
punpckhqdq xmm4, xmm2 // a2 b2 g2 r2 => v2
punpckhdq xmm5, xmm1 // g4 r4 g3 r3
punpckhdq xmm7, xmm3 // a4 b4 a3 b3
movdqa xmm6, xmm5
punpcklqdq xmm5, xmm7 // a3 b3 g3 r3 => v3
punpckhqdq xmm6, xmm7 // a4 b4 g4 r4 => v4

movdqa [rdx], xmm0 // v1

movdqa [rdx+16], xmm4 // v2
movdqa [rdx+32], xmm5 // v3
movdqa [rdx+48], xmm6 // v4

// DESWIZZLING ENDS HERE
 }
}

7-9

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Figure 7-4. Horizontal Add Using MOVHLPS/MOVLHPS

Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS

void horiz_add(Vertex_soa *in, float *out) {
 __asm {

mov rcx, in // load structure addresses
mov rdx, out
movaps xmm0, [rcx] // load A1 A2 A3 A4 => xmm0
movaps xmm1, [rcx+16] // load B1 B2 B3 B4 => xmm1
movaps xmm2, [rcx+32] // load C1 C2 C3 C4 => xmm2
movaps xmm3, [rcx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD
movaps xmm5, xmm0 // xmm5= A1,A2,A3,A4
movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2
movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4
addps xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps xmm4, xmm2
movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2
movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4
addps xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4
movaps xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4
shufps xmm3, xmm5, 0xDD //xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88 // xmm5= A2+A4,B2+B4,C2+C4,D2+D4
addps xmm6, xmm5 // xmm6= D,C,B,A

OM15169

A1+A2+A3+A4 B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4

A1+A3 B1+B3 C1+C3 D1+D3 A2+A4 B2+B4 C2+C4 D2+D4

A1+A3 A2+A4 B1+B3 B2+B4 C1+C3 C2+C4 D1+D3 D2+D4

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

A1 A2 B1 B2 A3 A4 B3 B4 C1 C2 D1 D2 C3 C4 D3 D4

ADDPS

SHUFPS SHUFPS

ADDPS ADDPS

MOVLHPS MOVLHPS

xmm0 xmm2

MOVHLPS MOVHLPS

xmm1 xmm3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-10

7.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
The CVTTPS2PI and CVTTSS2SI instructions implicitly encode the truncate/chop rounding mode in the
instruction. They take precedence over the rounding mode specified in the MXCSR register. This behavior
can eliminate the need to change the rounding mode from round-nearest, to truncate/chop, then return
to round-nearest to resume computation.

Avoid frequent changes to the MXCSR register since a penalty associated with writing this register. Typi-
cally, when using CVTTPS2P/CVTTSS2SI, rounding control in MXCSR can always be set to round-nearest.

7.5.3 Flush-to-Zero and Denormals-are-Zero Modes
The flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes are incompatible with IEEE Standard
7541. They are provided to improve performance for applications where underflow is common and gener-
ating a denormalized result is unnecessary.

 // END HORIZONTAL ADD
 movaps [rdx], xmm6
 }
}

Example 7-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS

void horiz_add_intrin(Vertex_soa *in, float *out)
{
 __m128 v, v2, v3, v4;
 __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6;

 // Temporary variables
tmm0 = _mm_load_ps(in->x); // tmm0 = A1 A2 A3 A4

tmm1 = _mm_load_ps(in->y); // tmm1 = B1 B2 B3 B4
tmm2 = _mm_load_ps(in->z); // tmm2 = C1 C2 C3 C4
tmm3 = _mm_load_ps(in->w); // tmm3 = D1 D2 D3 D4
tmm5 = tmm0; // tmm0 = A1 A2 A3 A4
tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2
tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4
tmm5 = _mm_add_ps(tmm5, tmm1); // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4
tmm4 = tmm2;

tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2
tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4
tmm3 = _mm_add_ps(tmm3, tmm2); // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = tmm3; // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD); // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3

tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88); // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4
tmm6 = _mm_add_ps(tmm6, tmm5); // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4

// C1+C2+C3+C4 D1+D2+D3+D4
 _mm_store_ps(out, tmm6);
}

1. "IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22
July 2019, doi: 10.1109/IEEESTD.2019.8766229. https://ieeexplore.ieee.org/document/8766229

Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS (Contd.)

7-11

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

See Section 3.9.2, “Floating-Point Modes and Exceptions.”

7.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES
Pentium M, Intel Core Solo, and Intel Core Duo processors have a different microarchitecture than the
Intel NetBurst microarchitecture. Intel Core microarchitecture offers significantly more efficient SIMD
floating-point capability than previous microarchitectures. In addition, instruction latency and
throughput of SSE3 instructions are improved considerably in Intel Core microarchitectures over
previous microarchitectures.

7.6.1 SIMD Floating-point Programming Using SSE3
SSE3 enhances SSE and SSE2 with nine instructions targeted for SIMD floating-point programming. In
contrast to many SSE/SSE2 instructions offering homogeneous arithmetic operations on parallel data
elements and favoring the vertical computation model, SSE3 offers instructions that perform asymmetric
arithmetic and arithmetic operations on horizontal data elements.

ADDSUBPS and ADDSUBPD are two instructions with asymmetric arithmetic processing capability (see
Figure 7-5). HADDPS, HADDPD, HSUBPS, and HSUBPD offer horizontal arithmetic processing capability
(see Figure 7-6). In addition: MOVSLDUP, MOVSHDUP, and MOVDDUP load data from memory (or XMM
register) and replicate data elements simultaneously.

Figure 7-5. Asymmetric Arithmetic Operation of the SSE3 Instruction

Figure 7-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD

X1 X0

 X1 + Y1 X0 -Y0

SUB

Y1 Y0

ADD

X1 X0

 Y0 + Y1 X0 + X1

ADD

Y1 Y0

ADD

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-12

7.6.1.1 SSE3 and Complex Arithmetics
The flexibility of SSE3 in dealing with AOS-type data structures can be demonstrated by the example of
multiplication and division of complex numbers. For example, a complex number can be stored in a struc-
ture consisting of its real and imaginary parts. This naturally leads to the use of an array of structure.
Example 7-9 demonstrates using SSE3 instructions to multiply single-precision complex numbers.
Example 7-10 shows using SSE3 instructions to divide complex numbers.

Example 7-9. Multiplication of Two Pairs of Single-Precision Complex Number

// Multiplication of (ak + i bk) * (ck + i dk)
// a + i b can be stored as a data structure
movsldup xmm0, Src1; load real parts into the destination,
 ; a1, a1, a0, a0

movaps xmm1, src2; load the 2nd pair of complex values,
 ; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0,
 ; a0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
 ; parts, c1, d1, c0, d0
movshdup xmm2, Src1; load the imaginary parts into the
 ; destination, b1, b1, b0, b0

mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0,
 ; b0d0
addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d0,
 ; a0c0-b0d0

Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers

// Division of (ak + i bk) / (ck + i dk)
movshdup xmm0, Src1; load imaginary parts into the

; destination, b1, b1, b0, b0
movaps xmm1, src2; load the 2nd pair of complex values,

; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, b1d1, b1c1, b0d0,

; b0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
; parts, c1, d1, c0, d0

movsldup xmm2, Src1; load the real parts into the
; destination, a1, a1, a0, a0

mulps xmm2, xmm1; temp results, a1c1, a1d1, a0c0, a0d0
addsubps xmm0, xmm2; a1c1+b1d1, b1c1-a1d1, a0c0+b0d0,

; b0c0-a0d0

mulps xmm1, xmm1; c1c1, d1d1, c0c0, d0d0
movps xmm2, xmm1;c1c1, d1d1, c0c0, d0d0
shufps xmm2, xmm2, b1; d1d1, c1c1, d0d0, c0c0
addps xmm2, xmm1; c1c1+d1d1, c1c1+d1d1, c0c0+d0d0,

; c0c0+d0d0

7-13

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

In both examples, the complex numbers are stored in arrays of structures. MOVSLDUP, MOVSHDUP, and
the asymmetric ADDSUBPS allow performing complex arithmetic on two pairs of single-precision
complex numbers simultaneously, without unnecessary swizzling between data elements.

Due to microarchitectural differences, software should implement the multiplication of complex double-
precision numbers using SSE3 instructions on processors based on Intel Core microarchitecture. In Intel
Core Duo and Intel Core Solo processors, software should use scalar SSE2 instructions to implement
double-precision complex multiplication. This is because the data path between SIMD execution units is
128 bits in the Intel Core microarchitecture and 64 in previous microarchitectures. Processors based on
the Enhanced Intel Core microarchitecture generally execute SSE3 instruction more efficiently than
previous microarchitectures. They also have a 128-bit shuffle unit that will benefit complex arithmetic
operations further than the Intel Core microarchitecture.

Example 7-11 shows two equivalent implementations of double-precision complex multiplication of two
pairs of complex numbers using vector SSE2 versus SSE3 instructions. Example 7-12 shows the equiva-
lent scalar SSE2 implementation.

divps xmm0, xmm2
shufps xmm0, xmm0, b1 ; (b1c1-a1d1)/(c1c1+d1d1),

; (a1c1+b1d1)/(c1c1+d1d1),
; (b0c0-a0d0)/(c0c0+d0d0),
; (a0c0+b0d0)/(c0c0+d0d0)

Example 7-11. Double-Precision Complex Multiplication of Two Pairs
SSE2 Vector Implementation SSE3 Vector Implementation
movapd xmm0, [rax] ;y x
movapd xmm1, [rax+16] ;w z
unpcklpd xmm1, xmm1 ;z z
movapd xmm2, [rax+16] ;w z
unpckhpd xmm2, xmm2 ;w w
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
xorpd xmm2, xmm7 ;-w*y +w*x
shufpd xmm2, xmm2,1 ;w*x -w*y
addpd xmm2, xmm1 ;z*y+w*x z*x-w*y
movapd [rcx], xmm2

movapd xmm0, [rax] ;y x
movapd xmm1, [rax+16] ;z z
movapd xmm2, xmm1
unpcklpd xmm1, xmm1
unpckhpd xmm2, xmm2
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
shufpd xmm2, xmm2, 1 ;w*x w*y
addsubpd xmm1, xmm2 ;w*x+z*y z*x-w*y
movapd [rcx], xmm1

Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2

movsd xmm0, [rax] ;x
movsd xmm5, [rax+8] ;y
movsd xmm1, [rax+16] ;z
movsd xmm2, [rax+24] ;w

movsd xmm3, xmm1 ;z
movsd xmm4, xmm2 ;w
mulsd xmm1, xmm0 ;z*x
mulsd xmm2, xmm0 ;w*x
mulsd xmm3, xmm5 ;z*y

Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers (Contd.)

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-14

7.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor
Most of the packed SIMD floating-point code will speed up on Intel Core Solo processors relative to
Pentium M processors. This is due to an improvement in decoding packed SIMD instructions.

The improved packed floating-point performance on the Intel Core Solo processor over the Pentium M
processor depends on several factors. Generally, decoder-bound code with a mixture of integer and
packed floating-point instructions can expect significant gain. Code that is limited by execution latency
and has a “cycles per instructions” ratio greater than one will not benefit from decoder improvement.

When targeting complex arithmetics on Intel Core Solo and Intel Core Duo processors, single-precision
SSE3 instructions can deliver higher performance than alternatives. On the other hand, tasks requiring
double-precision complex arithmetic may perform better using scalar SSE2 instructions on Intel Core
Solo and Intel Core Duo processors. This is because scalar SSE2 instructions can be dispatched through
two ports and executed using two separate floating-point units.

Packed horizontal SSE3 instructions (HADDPS and HSUBPS) can simplify the code sequence for some
tasks. However, these instructions consist of more than five micro-ops on Intel Core Solo and Intel Core
Duo processors. Care must be taken to ensure the latency and decoding penalty of the horizontal instruc-
tion does not offset any algorithmic benefits.

7.6.2 Dot Product and Horizontal SIMD Instructions
Sometimes the AOS-type of data organization is more natural in many algebraic formulae. One typical
example is the dot product operation. The dot product operation can be implemented using SSE/SSE2
instruction sets. SSE3 added a few horizontal add/subtract instructions for applications that rely on the
horizontal computation model. SSE4.1 provides additional enhancement with instructions capable of
directly evaluating dot product operations of vectors of 2, 3 or 4 components.

mulsd xmm4, xmm5 ;w*y
subsd xmm1, xmm4 ;z*x - w*y
addsd xmm3, xmm2 ;z*y + w*x
movsd [rcx], xmm1
movsd [rcx+8], xmm3

Example 7-13. Dot Product of Vector Length 4 Using SSE/SSE2
Using SSE/SSE2 to compute one dot product

movaps xmm0, [rax] // a4, a3, a2, a1
mulps xmm0, [rax+16] // a4*b4, a3*b3, a2*b2, a1*b1
movhlps xmm1, xmm0 // X, X, a4*b4, a3*b3, upper half not needed
addps xmm0, xmm1 // X, X, a2*b2+a4*b4, a1*b1+a3*b3,
pshufd xmm1, xmm0, 1 // X, X, X, a2*b2+a4*b4
addss xmm0, xmm1 // a1*b1+a3*b3+a2*b2+a4*b4
movss [rcx], xmm0

Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2 (Contd.)

7-15

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-13, Example 7-14, and Example 7-15 compare the basic code sequence to compute one dot-
product result for a pair of vectors.

The selection of an optimal sequence in conjunction with an application’s memory access patterns may
favor different approaches. For example, if each dot product result is immediately consumed by addi-
tional computational sequences, it may be more optimal to compare the relative speed of these different
approaches. If dot products can be computed for an array of vectors and kept in the cache for subsequent
computations, then more optimal choice may depend on the relative throughput of the sequence of
instructions.

In Intel Core microarchitecture, Example 7-14 has higher throughput than Example 7-13. Due to the
relatively longer latency of HADDPS, the speed of Example 7-14 is slightly slower than Example 7-13.

In Enhanced Intel Core microarchitecture, Example 7-15 is faster in both speed and throughput than
Example 7-13 and Example 7-14. Although the latency of DPPS is also relatively long, it is compensated
by the reduction of number of instructions in Example 7-15 to do the same amount of work.

Unrolling can further improve the throughput of each of three dot product implementations.
Example 7-16 shows two unrolled versions using the basic SSE2 and SSE3 sequences. The SSE4.1
version can also be unrolled and using INSERTPS to pack 4 dot-product results.

Example 7-14. Dot Product of Vector Length 4 Using SSE3
Using SSE3 to compute one dot product

movaps xmm0, [rax]
mulps xmm0, [rax+16] // a4*b4, a3*b3, a2*b2, a1*b1
haddps xmm0, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
movaps xmm1, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
psrlq xmm0, 32 // 0, a4*b4+a3*b3, 0, a4*b4+a3*b3
addss xmm0, xmm1 // -, -, -, a1*b1+a3*b3+a2*b2+a4*b4
movss [rax], xmm0

Example 7-15. Dot Product of Vector Length 4 Using SSE4.1
Using SSE4.1 to compute one dot product

movaps xmm0, [rax]
dpps xmm0, [rax+16], 0xf1 // 0, 0, 0, a1*b1+a3*b3+a2*b2+a4*b4
movss [rax], xmm0

Example 7-16. Unrolled Implementation of Four Dot Products
SSE2 Implementation SSE3 Implementation

movaps xmm0, [rax]
mulps xmm0, [rax+16] ;w0*w1 z0*z1 y0*y1 x0*x1
movaps xmm2, [rax+32]
mulps xmm2, [rax+16+32] ;w2*w3 z2*z3 y2*y3 x2*x3
movaps xmm3, [rax+64]
mulps xmm3, [rax+16+64] ;w4*w5 z4*z5 y4*y5 x4*x5
movaps xmm4, [rax+96]
mulps xmm4, [rax+16+96] ;w6*w7 z6*z7 y6*y7 x6*x7

movaps xmm0, [rax]
mulps xmm0, [rax+16]
movaps xmm1, [rax+32]
mulps xmm1, [rax+16+32]
movaps xmm2, [rax+64]
mulps xmm2, [rax+16+64]
movaps xmm3, [rax+96]
mulps xmm3, [rax+16+96]
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [rcx], xmm0

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-16

7.6.3 Vector Normalization
Normalizing vectors is a common operation in many floating-point applications. Example 7-17 shows an
example in C of normalizing an array of (x, y, z) vectors.

movaps xmm1, xmm0
unpcklps xmm0, xmm2 ; y2*y3 y0*y1 x2*x3 x0*x1
unpckhps xmm1, xmm2 ; w2*w3 w0*w1 z2*z3 z0*z1
movaps xmm5, xmm3
unpcklps xmm3, xmm4 ; y6*y7 y4*y5 x6*x7 x4*x5
unpckhps xmm5, xmm4 ; w6*w7 w4*w5 z6*z7 z4*z5

addps xmm0, xmm1
addps xmm5, xmm3
movaps xmm1, xmm5
movhlps xmm1, xmm0
movlhps xmm0, xmm5
addps xmm0, xmm1
movaps [rcx], xmm0

Example 7-17. Normalization of an Array of Vectors
for (i=0;i<CNT;i++)
{ float size = nodes[i].vec.dot();

if (size != 0.0)
{ size = 1.0f/sqrtf(size); }
else
{ size = 0.0; }
nodes[i].vec.x *= size;
nodes[i].vec.y *= size;
nodes[i].vec.z *= size;

}

Example 7-16. Unrolled Implementation of Four Dot Products (Contd.)
SSE2 Implementation SSE3 Implementation

7-17

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-18 shows an assembly sequence that normalizes the x, y, z components of a vector.

Example 7-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2

Vec3 *p = &nodes[i].vec;
__asm
{ mov rax, p

xorps xmm2, xmm2
movups xmm1, [rax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory (to restore the unnormalized value)
movaps xmm5, _mask // mask to select (x, y, z) values from an xmm register to normalize
andps xmm1, xmm5 // mask 1st 3 elements
movaps xmm6, xmm1 // save a copy of (x, y, z) to compute normalized vector later
mulps xmm1,xmm1 // 0, z*z, y*y, x*x
pshufd xmm3, xmm1, 0x1b // x*x, y*y, z*z, 0
addps xmm1, xmm3 // x*x, z*z+y*y, z*z+y*y, x*x
pshufd xmm3, xmm1, 0x41 // z*z+y*y, x*x, x*x, z*z+y*y
addps xmm1, xmm3 // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4 // preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:

mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
andnps xmm5, xmm7 // mask off the lower 3 elements to keep the un-normalized value
orps xmm3, xmm5 // order the un-normalized component after the normalized vector
movaps [rax], xmm3 // writes normalized x, y, z; followed by unmodified value

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-18

Example 7-19 shows an assembly sequence using SSE4.1 to normalizes the x, y, z components of a
vector.

In Example 7-18 and Example 7-19, the throughput of these instruction sequences are basically limited
by the long-latency instructions of DIVPS and SQRTPS. In Example 7-19, the use of DPPS replaces eight
SSE2 instructions to evaluate and broadcast the dot-product result to four elements of an XMM register.
This could result in improvement of the relative speed of Example 7-19 over Example 7-18.

7.6.4 Using Horizontal SIMD Instruction Sets and Data Layout
SSE and SSE2 provide packed add/subtract, multiply/divide instructions that are ideal for situations that
can take advantage of vertical computation model, such as SOA data layout. SSE3 and SSE4.1 added
horizontal SIMD instructions including horizontal add/subtract, dot-product operations. These more
recent SIMD extensions provide tools to solve problems involving data layouts or operations that do not
conform to the vertical SIMD computation model.

In this section, we consider a vector-matrix multiplication problem and discuss the relevant factors for
choosing various horizontal SIMD instructions.

Example 7-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1
Vec3 *p = &nodes[i].vec;
__asm
{ mov rax, p

xorps xmm2, xmm2
movups xmm1, [rax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory
dpps xmm1, xmm1, 0x7f // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4 // preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:
mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
blendps xmm3, xmm7, 0x8 // copy the un-normalized component next to the normalized vector
movaps [rax], xmm3

7-19

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-20 shows the vector-matrix data layout in AOS, where the input and out vectors are stored as
an array of structure.

Example 7-21 shows an example using HADDPS and MULPS to perform vector-matrix multiplication with
data layout in AOS. After three HADDPS completing the summations of each output vector component,
the output components are arranged in AOS.

Example 7-20. Data Organization in Memory for AOS Vector-Matrix Multiplication
Matrix M4x4 (pMat): M00 M01 M02 M03

M10 M11 M12 M13
M20 M21 M22 M23
M30 M31 M32 M33

4 input vertices V4x1 (pVert): V0x V0y V0z V0w
V1x V1y V1z V1w
V2x V2y V2z V2w
V3x V3y V3z V3w

Output vertices O4x1 (pOutVert): O0x O0y O0z O0w
O1x O1y O1z O1w
O2x O2y O2z O2w
O3x O3y O3z O3w

Example 7-21. AOS Vector-Matrix Multiplication with HADDPS

mov rax, pMat
mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax+16] // load row M1?
movaps xmm6,[rax+2*16] // load row M2?
movaps xmm7,[rax+3*16] // load row M3?

lloop:
movaps xmm4, [rbx + rdx] // load input vector
movaps xmm0, xmm4
mulps xmm0, [rax] // m03*vw, m02*vz, m01*vy, m00*vx,
movaps xmm1, xmm4
mulps xmm1, xmm5 // m13*vw, m12*vz, m11*vy, m10*vx,

movaps xmm2, xmm4
mulps xmm2, xmm6 // m23*vw, m22*vz, m21*vy, m20*vx
movaps xmm3, xmm4
mulps xmm3, xmm7 // m33*vw, m32*vz, m31*vy, m30*vx,
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [rcx + rdx], xmm0 // store a vector of length 4
add rdx, 16
cmp rdx, top
jb lloop

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-20

Example 7-22 shows an example using DPPS to perform vector-matrix multiplication in AOS.

Example 7-21 and Example 7-22 both work with AOS data layout using different horizontal processing
techniques provided by SSE3 and SSE4.1. The effectiveness of either techniques will vary, depending on
the degree of exposures of long-latency instruction in the inner loop, the overhead/efficiency of data
movement, and the latency of HADDPS vs. DPPS.

On processors that support both HADDPS and DPPS, the choice between either technique may depend on
application-specific considerations. If the output vectors are written back to memory directly in a batch
situation, Example 7-21 may be preferable over Example 7-22, because the latency of DPPS is long and
storing each output vector component individually is less than ideal for storing an array of vectors.

There may be partially-vectorizable situations that the individual output vector component is consumed
immediately by other non-vectorizable computations. Then, using DPPS producing individual component
may be more suitable than dispersing the packed output vector produced by three HADDPS as in
Example 7-21.

7.6.4.1 SOA and Vector Matrix Multiplication
If the native data layout of a problem conforms to SOA, then vector-matrix multiply can be coded using
MULPS, ADDPS without using the longer-latency horizontal arithmetic instructions, or packing scalar
components into packed format (Example 7-22). To achieve higher throughput with SOA data layout,
there are either prerequisite data preparation or swizzling/deswizzling on-the-fly that must be compre-
hended. For example, an SOA data layout for vector-matrix multiplication is shown in Example 7-23.

Example 7-22. AOS Vector-Matrix Multiplication with DPPS

mov rax, pMat
mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax+16] // load row M1?
movaps xmm6,[rax+2*16] // load row M2?
movaps xmm7,[rax+3*16] // load row M3?

lloop:
movaps xmm4, [rbx + rdx] // load input vector
movaps xmm0, xmm4
dpps xmm0, [rax], 0xf1 // calculate dot product of length 4, store to lowest dword
movaps xmm1, xmm4
dpps xmm1, xmm5, 0xf1
movaps xmm2, xmm4
dpps xmm2, xmm6, 0xf1
movaps xmm3, xmm4
dpps xmm3, xmm7, 0xf1
movss [rcx + rdx + 0*4], xmm0 // store one element of vector length 4
movss [rcx + rdx + 1*4], xmm1
movss [rcx + rdx + 2*4], xmm2
movss [rcx + rdx + 3*4], xmm3
add rdx, 16
cmp rdx, top
jb lloop

7-21

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Each matrix element is replicated four times to minimize data movement overhead for producing packed
results.

Example 7-23. Data Organization in Memory for SOA Vector-Matrix Multiplication
Matrix M16x4 (pMat):

M00 M00 M00 M00 M01 M01 M01 M01 M02 M02 M02 M02 M03 M03 M03 M03
M10 M10 M10 M10 M11 M11 M11 M11 M12 M12 M12 M12 M13 M13 M13 M13
M20 M20 M20 M20 M21 M21 M21 M21 M22 M22 M22 M22 M23 M23 M23 M23
M30 M30 M30 M30 M31 M31 M31 M31 M32 M32 M32 M32 M33 M33 M33 M33

4 input vertices V4x1 (pVert): V0x V1x V2x V3x
V0y V1y V2y V3y
V0z V1z V2z V3z
V0w V1w V2w V3w

Ouput vertices O4x1 (pOutVert): O0x O1x O2x O3x
O0y O1y O2y O3y
O0z O1z O2z O3z
O0w O1w O2w O3w

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-22

The corresponding vector-matrix multiply example in SOA (unrolled for four iteration of vectors) is shown
in Example 7-24.

Example 7-24. Vector-Matrix Multiplication with Native SOA Data Layout

mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax + 16] // load row M1?
movaps xmm6,[rax + 2*16] // load row M2?
movaps xmm7,[rax + 3*16] // load row M3?

lloop_vert:
mov rax, pMat
xor edi, edi
movaps xmm0, [rbx] // load V3x, V2x, V1x, V0x
movaps xmm1, [rbx] // load V3y, V2y, V1y, V0y
movaps xmm2, [rbx] // load V3z, V2z, V1z, V0z
movaps xmm3, [rbx] // load V3w, V2w, V1w, V0w

loop_mat:
movaps xmm4, [rax] // m00, m00, m00, m00,
mulps xmm4, xmm0 // m00*V3x, m00*V2x, m00*V1x, m00*V0x,
movaps xmm4, [rax + 16] // m01, m01, m01, m01,
mulps xmm5, xmm1 // m01*V3y, m01*V2y, m01*V1y, m01*V0y,
addps xmm4, xmm5
movaps xmm5, [rax + 32] // m02, m02, m02, m02,
mulps xmm5, xmm2 // m02*V3z, m02*V2z, m02*V1z, m02*V0z,
addps xmm4, xmm5
movaps xmm5, [rax+ 48] // m03, m03, m03, m03,
mulps xmm5, xmm3 // m03*V3w, m03*V2w, m03*V1w, m03*V0w,
addps xmm4, xmm5
movaps [rcx + rdx], xmm4
add rax, 64
add rdx, 16
add edi, 1
cmp edi, 4
jb lloop_mat
add rbx, 64
cmp rdx, top
jb lloop_vert

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

7. Updates to Chapter 10
Change bars and violet text show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Sub-NUMA Clustering.

--
Changes to this chapter:
• Section 10.3:

— Consolidated links and page titles where necessary.
— Removed dead link to Intel blog.

CHAPTER 10
SUB-NUMA CLUSTERING

Sub-NUMA Clustering (SNC) is a mode for improving average latency from last level cache (LLC) to local
memory. It replaces the Cluster-on-Die (COD) implementation which was used in the previous genera-
tion of the Intel® Xeon® processor E5 family.

10.1 SUB-NUMA CLUSTERING
SNC can improve the average LLC/memory latency by splitting the LLC into disjoint clusters based on
address range, with each cluster bound to a subset of memory controllers in the system.

Figure 10-1. Example of SNC Configuration

SUB-NUMA CLUSTERING

10-2

10.2 COMPARISON WITH CLUSTER-ON-DIE
SNC provides similar localization benefits to those of COD, but without some of COD’s disadvantages.
Unlike COD, SNC has the following properties.

• Only one Ultra Path Interconnect (UPI) caching agent is required.

• Memory access latency in remote clusters is smaller, as no UPI flow is needed.

• It uses LLC capacity more efficiently as there is no duplication of lines in the LLC.

A disadvantage of SNC is listed below.

• Remote cluster addresses are never cached in local cluster LLC, resulting in larger latency
compared to Cluster-on-Die (COD) in some cases.

10.3 SNC USAGE
This section describes the following modes and their BIOS names in brackets (the exact BIOS parameter
names may vary depending on the BIOS vendor and version).

• NUMA disabled (NUMA Optimized: Disabled)

• SNC off (Integrated Memory Controller (IMC) Interleaving: auto, NUMA Optimized: Enabled,
Sub_NUMA Cluster: Disabled)

• SNC on (IMC Interleaving: 1-way Interleave, NUMA Optimized: Enabled, Sub_NUMA Cluster:
Enabled)

The commands that follow were executed on a 2-socket Intel® Xeon® system, 28 cores per a socket,
Intel® Hyper-Threading Technology enabled.

10.3.1 How to Check NUMA Configuration
There are additional NUMA nodes in a system with SNC enabled; to get benefits from the SNC feature, a
developer should be aware of the NUMA configuration.

This chapter describes different ways to check NUMA system configuration.

libnuma

An application can check NUMA configuration with libnuma.

As an example this code uses the libnuma library to find the maximum number of NUMA nodes.

#include <stdio.h>
#include <stdlib.h>
#include <numa.h>

int main(int argc, char *argv[])
{
 int max_node;

/* Check the system for NUMA support */
 max_node = numa_max_node();
 printf("%d\n", max_node);

https://software.intel.com/en-us/articles/intelr-memory-latency-checker

10-3

SUB-NUMA CLUSTERING

 return 0;
}

numactl

In Linux* you can check the NUMA configuration with the numactl utility (the numactl-libs, and
numactl-devel packages might also be required).

$ numactl --hardware

NUMA disabled:

available: 1 nodes (0)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
node 0 size: 196045 MB
node 0 free: 190581 MB
node distances:
node 0
 0: 10

SNC off:

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83
node 0 size: 96973 MB
node 0 free: 94089 MB
node 1 cpus: 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111
node 1 size: 98304 MB
node 1 free: 95694 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-someintel-processors

SUB-NUMA CLUSTERING

10-4

SNC on:

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 7 8 9 14 15 16 17 21 22 23 56 57 58 59 63 64 65 70
71 72 73 77 78 79
node 0 size: 47821 MB
node 0 free: 45759 MB
node 1 cpus: 4 5 6 10 11 12 13 18 19 20 24 25 26 27 60 61 62 66 67 68 69
74 75 76 80 81 82 83
node 1 size: 49152 MB
node 1 free: 47097 MB
node 2 cpus: 28 29 30 31 35 36 37 42 43 44 45 49 50 51 84 85 86 87 91 92
93 98 99 100 101 105 106 107
node 2 size: 49152 MB
node 2 free: 47617 MB
node 3 cpus: 32 33 34 38 39 40 41 46 47 48 52 53 54 55 88 89 90 94 95 96
97 102 103 104 108 109 110 111
node 3 size: 49152 MB
node 3 free: 47231 MB
node distances:
node 0 1 2 3
 0: 10 11 21 21
 1: 11 10 21 21
 2: 21 21 10 11
 3: 21 21 11 10

hwloc

In Linux* you can also check the NUMA configuration with the lstopo utility (the hwloc package is
required). For example:

$ lstopo -p --of png --no-io --no-caches > numa_topology.png

10-5

SUB-NUMA CLUSTERING

Figure 10-2. NUMA Disabled

SUB-NUMA CLUSTERING

10-6

Figure 10-3. SNC Off

10-7

SUB-NUMA CLUSTERING

10.3.2 MPI Optimizations for SNC
Software needs to be NUMA optimized to benefit from SNC. Running one MPI rank per NUMA region
trivially ensures locality-of-access without requiring changes to the code to ensure that it behaves in a
NUMA friendly manner. This is a simple way to improve performance through the use of SNC.

The Intel® MPI Library includes some NUMA-related optimizations. The out-of-the-box behavior of the
Intel MPI Library should cover most cases, but there are some environment variables available to
control NUMA-related features that can improve performance in specific cases.

The relevant environment variables mainly relate to MPI process placement, that is, process
pinning/binding – such as the I_MPI_PIN_DOMAIN variable. For more information, see the Intel® MPI
Library Developer Reference. This environment variable defines a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules for how MPI processes are bound to these
domains: one MPI process per domain, as illustrated below.

Figure 10-4. SNC On

SUB-NUMA CLUSTERING

10-8

Each MPI process can create a number of child threads to run within the corresponding domain. The
process’ threads can freely migrate from one logical processor to another within the particular domain.

For example, I_MPI_PIN_DOMAIN=numa may be a reasonable option for hybrid MPI/OpenMP* appli-
cations with SNC mode enabled. In this case, each domain consists of logical processors that share a
particular NUMA node. The number of domains on a machine is equal to the number of NUMA nodes on
the machine.

Please see the Intel MPI Library documentation for detailed information.

10.3.3 SNC Performance Comparison
This section contains performance data collected with Intel® Memory Latency Checker (Intel® MLC) to
demonstrate the variations in performance (latency) between NUMA nodes in different modes.

An important factor in determining application performance is the time required for the application to
fetch data from the processor’s cache hierarchy and from the memory subsystem. Local memory and
cross-socket memory latencies vary significantly in a NUMA-enabled multi-socket system. Bandwidth
also plays an important role in determining performance. So measuring these latencies and bandwidths
is important when establishing a baseline for the system being tested, and performing performance anal-
ysis.

Intel MLC is a tool used to measure memory latencies and bandwidth, and how they change as the load
on the system increases. It also provides several options for more fine-grained investigation where band-
width and latencies from a specific set of cores to caches or memory can be measured as well.

For details, see Intel® Memory Latency Checker v.3.10 (Intel® MLC).

The following command was used to collect the performance data:

% mlc_avx512 --latency_matrix

This command measures idle memory latency from each socket in the system to every other socket and
reports the results in a matrix. The default invocation reports latencies to all of the NUMA nodes in the
system. NUMA-level reporting works only on Linux. On Windows, only socket level reporting is supported.

Figure 10-5. Domain Example with One MPI Process Per Domain

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html

10-9

SUB-NUMA CLUSTERING

NOTE
It is challenging to measure memory latencies on modern Intel processors accurately as
they have sophisticated HW prefetchers. Intel MLC automatically disables these
prefetchers while measuring the latencies and restores them to their previous state on
completion. The prefetcher control is exposed through an MSR and MSR access requires
root level permission. So, Intel MLC needs to be run as ‘root’ on Linux.

The software configuration used for these measurements is Intel MLC v3.3-Beta2, Red Hat* Linux* 7.2.

NUMA disabled:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Memory node

Socket 0 1

 0 126.5 129.4

 1 123.1 122.6

SNC off:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Numa node

Numa node 0 1

 0 81.9 153.1

 1 153.7 82.0

SNC on:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Numa node

Numa node 0 1 2 3

 0 81.6 89.4 140.4 153.6

 1 86.5 78.5 144.3 162.8

 2 142.3 153.0 81.6 89.3

 3 144.5 162.8 85.5 77.4

SUB-NUMA CLUSTERING

10-10

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

6. Updates to Chapter 11
Change bars and violet text show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Multicore and Hyper-Threading Technology.

--
Changes to this chapter:
• Section 11.4.1: Updated and consolidated outdated link within document title.
• Section 11.4.2: Removed dead link for: Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon

Processor.

CHAPTER 11
MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

This chapter describes software optimization techniques for multithreaded applications running in an
environment using either multiprocessor (MP) systems or processors with hardware-based multi-
threading support. Multiprocessor systems are systems with two or more sockets, each mated with a
physical processor package. Intel 64 and IA-32 processors that provide hardware multithreading support
include dual-core processors, quad-core processors and processors supporting HT Technology1.

Computational throughput in a multithreading environment can increase as more hardware resources
are added to take advantage of thread-level or task-level parallelism. Hardware resources can be added
in the form of more than one physical-processor, processor-core-per-package, and/or logical-processor-
per-core. Therefore, there are some aspects of multithreading optimization that apply across MP, multi-
core, and HT Technology. There are also some specific microarchitectural resources that may be imple-
mented differently in different hardware multithreading configurations (for example: execution
resources are not shared across different cores but shared by two logical processors in the same core if
HT Technology is enabled). This chapter covers guidelines that apply to these situations.

This chapter covers:
• Performance characteristics and usage models.
• Programming models for multithreaded applications.
• Software optimization techniques in five specific areas.

11.1 PERFORMANCE AND USAGE MODELS
The performance gains of using multiple processors, multicore processors or HT Technology are greatly
affected by the usage model and the amount of parallelism in the control flow of the workload. Two
common usage models are:
• Multithreaded applications.
• Multitasking using single-threaded applications.

11.1.1 Multithreading
When an application employs multithreading to exploit task-level parallelism in a workload, the control
flow of the multi-threaded software can be divided into two parts: parallel tasks and sequential tasks.

Amdahl’s law describes an application’s performance gain as it relates to the degree of parallelism in the
control flow. It is a useful guide for selecting the code modules, functions, or instruction sequences that
are most likely to realize the most gains from transforming sequential tasks and control flows into
parallel code to take advantage multithreading hardware support.

Figure 11-1 illustrates how performance gains can be realized for any workload according to Amdahl’s
law. The bar in Figure 11-1 represents an individual task unit or the collective workload of an entire
application.

1. The presence of hardware multithreading support in Intel 64 and IA-32 processors can be detected by checking the fea-
ture flag CPUID .01H:EDX[28]. A return value of in bit 28 indicates that at least one form of hardware multithreading is
present in the physical processor package. The number of logical processors present in each package can also be
obtained from CPUID. The application must check how many logical processors are enabled and made available to appli-
cation at runtime by making the appropriate operating system calls. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A for information.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-2

In general, the speed-up of running multiple threads on an MP systems with N physical processors, over
single-threaded execution, can be expressed as:

where P is the fraction of workload that can be parallelized, and O represents the overhead of multi-
threading and may vary between different operating systems. In this case, performance gain is the
inverse of the relative response.

When optimizing application performance in a multithreaded environment, control flow parallelism is
likely to have the largest impact on performance scaling with respect to the number of physical proces-
sors and to the number of logical processors per physical processor.

If the control flow of a multi-threaded application contains a workload in which only 50% can be executed
in parallel, the maximum performance gain using two physical processors is only 33%, compared to using
a single processor. Using four processors can deliver no more than a 60% speed-up over a single
processor. Thus, it is critical to maximize the portion of control flow that can take advantage of parallelism.
Improper implementation of thread synchronization can significantly increase the proportion of serial
control flow and further reduce the application’s performance scaling.

In addition to maximizing the parallelism of control flows, interaction between threads in the form of
thread synchronization and imbalance of task scheduling can also impact overall processor scaling
significantly.

Excessive cache misses are one cause of poor performance scaling. In a multithreaded execution envi-
ronment, they can occur from:
• Aliased stack accesses by different threads in the same process.
• Thread contentions resulting in cache line evictions.
• False-sharing of cache lines between different processors.

Techniques that address each of these situations (and many other areas) are described in sections in this
chapter.

11.1.2 Multitasking Environment
Hardware multithreading capabilities in Intel 64 and IA-32 processors can exploit task-level parallelism
when a workload consists of several single-threaded applications and these applications are scheduled to
run concurrently under an MP-aware operating system. In this environment, hardware multithreading
capabilities can deliver higher throughput for the workload, although the relative performance of a single

Figure 11-1. Amdahl’s Law and MP Speed-up

RelativeResponse Tsequential
Tparallel

--------------------------------= 1 P– P
N
---- O+ +

 =

1-P P

Tsequential

1-P
P/2

Tparallel

P/2

Single Thread

Multi-Thread on MP

O
verhead

11-3

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

task (in terms of time of completion relative to the same task when in a single-threaded environment)
will vary, depending on how much shared execution resources and memory are utilized.

For development purposes, several popular operating systems (for example Microsoft Windows* XP
Professional and Home, Linux* distributions using kernel 2.4.19 or later1) include OS kernel code that
can manage the task scheduling and the balancing of shared execution resources within each physical
processor to maximize the throughput.

Because applications run independently under a multitasking environment, thread synchronization
issues are less likely to limit the scaling of throughput. This is because the control flow of the workload is
likely to be 100% parallel2 (if no inter-processor communication is taking place and if there are no
system bus constraints).

With a multitasking workload, however, bus activities and cache access patterns are likely to affect the
scaling of the throughput. Running two copies of the same application or same suite of applications in a
lock-step can expose an artifact in performance measuring methodology. This is because an access
pattern to the first level data cache can lead to excessive cache misses and produce skewed performance
results. Fix this problem by:
• Including a per-instance offset at the start-up of an application.
• Introducing heterogeneity in the workload by using different datasets with each instance of the appli-

cation.
• Randomizing the sequence of start-up of applications when running multiple copies of the same suite.

When two applications are employed as part of a multitasking workload, there is little synchronization
overhead between these two processes. It is also important to ensure each application has minimal
synchronization overhead within itself.

An application that uses lengthy spin loops for intra-process synchronization is less likely to benefit from
HT Technology in a multitasking workload. This is because critical resources will be consumed by the long
spin loops.

11.2 PROGRAMMING MODELS AND MULTITHREADING
Parallelism is the most important concept in designing a multithreaded application and realizing optimal
performance scaling with multiple processors. An optimized multithreaded application is characterized by
large degrees of parallelism or minimal dependencies in the following areas:
• Workload.
• Thread interaction.
• Hardware utilization.

The key to maximizing workload parallelism is to identify multiple tasks that have minimal inter-depen-
dencies within an application and to create separate threads for parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying a multithreaded application on
a multiprocessing system. Managing the interaction between threads to minimize the cost of thread
synchronization is also critical to achieving optimal performance scaling with multiple processors.

Efficient use of hardware resources between concurrent threads requires optimization techniques in
specific areas to prevent contentions of hardware resources. Coding techniques for optimizing thread
synchronization and managing other hardware resources are discussed in subsequent sections.

Parallel programming models are discussed next.

1. This code is included in Red Hat* Linux Enterprise AS 2.1.

2. A software tool that attempts to measure the throughput of a multitasking workload is likely to introduce control flows
that are not parallel. Thread synchronization issues must be considered as an integral part of its performance measuring
methodology.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-4

11.2.1 Parallel Programming Models
Two common programming models for transforming independent task requirements into application
threads are:
• Domain decomposition.
• Functional decomposition.

11.2.1.1 Domain Decomposition
Usually large compute-intensive tasks use data sets that can be divided into a number of small subsets,
each having a large degree of computational independence. Examples include:
• Computation of a discrete cosine transformation (DCT) on two-dimensional data by dividing the two-

dimensional data into several subsets and creating threads to compute the transform on each subset.
• Matrix multiplication; here, threads can be created to handle the multiplication of half of matrix with

the multiplier matrix.

Domain Decomposition is a programming model based on creating identical or similar threads to process
smaller pieces of data independently. This model can take advantage of duplicated execution resources
present in a traditional multiprocessor system. It can also take advantage of shared execution resources
between two logical processors in HT Technology. This is because a data domain thread typically
consumes only a fraction of the available on-chip execution resources.

Section 11.3.4, “Key Practices of Execution Resource Optimization,” discusses additional guidelines that
can help data domain threads use shared execution resources cooperatively and avoid the pitfalls
creating contentions of hardware resources between two threads.

11.2.2 Functional Decomposition
Applications usually process a wide variety of tasks with diverse functions and many unrelated data sets.
For example, a video codec needs several different processing functions. These include DCT, motion esti-
mation and color conversion. Using a functional threading model, applications can program separate
threads to do motion estimation, color conversion, and other functional tasks.

Functional decomposition will achieve more flexible thread-level parallelism if it is less dependent on the
duplication of hardware resources. For example, a thread executing a sorting algorithm and a thread
executing a matrix multiplication routine are not likely to require the same execution unit at the same
time. A design recognizing this could advantage of traditional multiprocessor systems as well as multi-
processor systems using processors supporting HT Technology.

11.2.3 Specialized Programming Models
Intel Core Duo processor and processors based on Intel Core microarchitecture offer a second-level
cache shared by two processor cores in the same physical package. This provides opportunities for two
application threads to access some application data while minimizing the overhead of bus traffic.

Multi-threaded applications may need to employ specialized programming models to take advantage of
this type of hardware feature. One such scenario is referred to as producer-consumer. In this scenario,
one thread writes data into some destination (hopefully in the second-level cache) and another thread
executing on the other core in the same physical package subsequently reads data produced by the first
thread.

The basic approach for implementing a producer-consumer model is to create two threads; one thread is
the producer and the other is the consumer. Typically, the producer and consumer take turns to work on
a buffer and inform each other when they are ready to exchange buffers. In a producer-consumer model,
there is some thread synchronization overhead when buffers are exchanged between the producer and
consumer. To achieve optimal scaling with the number of cores, the synchronization overhead must be
kept low. This can be done by ensuring the producer and consumer threads have comparable time
constants for completing each incremental task prior to exchanging buffers.

11-5

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

Example 11-1 illustrates the coding structure of single-threaded execution of a sequence of task units,
where each task unit (either the producer or consumer) executes serially (shown in Figure 11-2). In the
equivalent scenario under multi-threaded execution, each producer-consumer pair is wrapped as a
thread function and two threads can be scheduled on available processor resources simultaneously.

11.2.3.1 Producer-Consumer Threading Models
Figure 11-3 illustrates the basic scheme of interaction between a pair of producer and consumer threads.
The horizontal direction represents time. Each block represents a task unit, processing the buffer
assigned to a thread.

The gap between each task represents synchronization overhead. The decimal number in the parenthesis
represents a buffer index. On an Intel Core Duo processor, the producer thread can store data in the
second-level cache to allow the consumer thread to continue work requiring minimal bus traffic.

The basic structure to implement the producer and consumer thread functions with synchronization to
communicate buffer index is shown in Example 11-2.

Example 11-1. Serial Execution of Producer and Consumer Work Items

for (i = 0; i < number_of_iterations; i++) {
producer (i, buff); // pass buffer index and buffer address
consumer (i, buff);

}(

Figure 11-2. Single-threaded Execution of Producer-consumer Threading Model

Figure 11-3. Execution of Producer-consumer Threading Model
on a Multicore Processor

P(1)P(1) C(1)C(1)P(1)
Main

Thread

Main
Thread P(2) P(1)P(2)P(1)

C(1)C(2)C(1) C(2)

P(1)

P: producer
C: consumer

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-6

It is possible to structure the producer-consumer model in an interlaced manner such that it can mini-
mize bus traffic and be effective on multicore processors without shared second-level cache.

In this interlaced variation of the producer-consumer model, each scheduling quanta of an application
thread comprises of a producer task and a consumer task. Two identical threads are created to execute
in parallel. During each scheduling quanta of a thread, the producer task starts first and the consumer
task follows after the completion of the producer task; both tasks work on the same buffer. As each task
completes, one thread signals to the other thread notifying its corresponding task to use its designated
buffer. Thus, the producer and consumer tasks execute in parallel in two threads. As long as the data
generated by the producer reside in either the first or second level cache of the same core, the consumer
can access them without incurring bus traffic. The scheduling of the interlaced producer-consumer model
is shown in Figure 11-4.

Example 11-2. Basic Structure of Implementing Producer Consumer Threads

(a) Basic structure of a producer thread function
void producer_thread()
{ int iter_num = workamount - 1; // make local copy

int mode1 = 1; // track usage of two buffers via 0 and 1
produce(buffs[0],count); // placeholder function
while (iter_num--) {

Signal(&signal1,1); // tell the other thread to commence
produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1 = 1 - mode1; // switch to the other buffer

}

}
b) Basic structure of a consumer thread
void consumer_thread()
{ int mode2 = 0; // first iteration start with buffer 0, than alternate

int iter_num = workamount - 1;
while (iter_num--) {

WaitForSignal(&signal1);
consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2 = 1 - mode2;

}
consume(buffs[mode2],count);

}

Figure 11-4. Interlaced Variation of the Producer Consumer Model

P(2)

P(1)

P(2)

P(1) C(1)

C(2)

C(1)

C(2)

P(1)Thread 0

Thread 1

11-7

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

Example 11-3 shows the basic structure of a thread function that can be used in this interlaced producer-
consumer model.

11.2.4 Tools for Creating Multithreaded Applications
Programming directly to a multithreading application programming interface (API) is not the only method
for creating multithreaded applications. New tools (such as the Intel compiler) have become available
with capabilities that make the challenge of creating multithreaded application easier.

Features available in the latest Intel compilers are:
• Generating multithreaded code using OpenMP* directives1.
• Generating multithreaded code automatically from unmodified high-level code2.

Example 11-3. Thread Function for an Interlaced Producer Consumer Model

// master thread starts first iteration, other thread must wait
// one iteration
void producer_consumer_thread(int master)
{
int mode = 1 - master; // track which thread and its designated

// buffer index
unsigned int iter_num = workamount >> 1;
unsigned int i=0;

iter_num += master & workamount & 1;

 if (master) // master thread starts the first iteration
 {

produce(buffs[mode],count);
Signal(sigp[1-mode1],1); // notify producer task in follower

// thread that it can proceed
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
 i = 1;
 }

for (; i < iter_num; i++)
{

 WaitForSignal(sigp[mode]);
produce(buffs[mode],count); // notify the producer task in

// other thread
Signal(sigp[1-mode],1);

 WaitForSignal(sigc[mode]);
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
}

}

1. Intel Compiler 5.0 and later supports OpenMP directives. Visit http://software.intel.com for details.

2. Intel Compiler 6.0 supports auto-parallelization.

http://software.intel.com
http://software.intel.com

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-8

11.2.4.1 Programming with OpenMP Directives
OpenMP provides a standardized, non-proprietary, portable set of Fortran and C++ compiler directives
supporting shared memory parallelism in applications. OpenMP supports directive-based processing.
This uses special preprocessors or modified compilers to interpret parallelism expressed in Fortran
comments or C/C++ pragmas. Benefits of directive-based processing include:
• The original source can be compiled unmodified.
• It is possible to make incremental code changes. This preserves algorithms in the original code and

enables rapid debugging.
• Incremental code changes help programmers maintain serial consistency. When the code is run on

one processor, it gives the same result as the unmodified source code.
• Offering directives to fine tune thread scheduling imbalance.
• Intel’s implementation of OpenMP runtime can add minimal threading overhead relative to hand-

coded multithreading.

11.2.4.2 Automatic Parallelization of Code
While OpenMP directives allow programmers to quickly transform serial applications into parallel applica-
tions, programmers must identify specific portions of the application code that contain parallelism and
add compiler directives. Intel Compiler 6.0 supports a new (-QPARALLEL) option, which can identify loop
structures that contain parallelism. During program compilation, the compiler automatically attempts to
decompose the parallelism into threads for parallel processing. No other intervention or programmer is
needed.

11.2.4.3 Supporting Development Tools
See Appendix A, “Application Performance Tools” for information on the various tools that Intel provides
for software development.

11.3 OPTIMIZATION GUIDELINES
This section summarizes optimization guidelines for tuning multithreaded applications. Five areas are
listed (in order of importance):
• Thread synchronization.
• Bus utilization.
• Memory optimization.
• Front end optimization.
• Execution resource optimization.

Practices associated with each area are listed in this section. Guidelines for each area are discussed in
greater depth in sections that follow.

Most of the coding recommendations improve performance scaling with processor cores; and scaling
due to HT Technology. Techniques that apply to only one environment are noted.

11.3.1 Key Practices of Thread Synchronization
Key practices for minimizing the cost of thread synchronization are summarized below:
• Insert the PAUSE instruction in fast spin loops and keep the number of loop repetitions to a minimum

to improve overall system performance.
• Replace a spin-lock that may be acquired by multiple threads with pipelined locks such that no more

than two threads have write accesses to one lock. If only one thread needs to write to a variable
shared by two threads, there is no need to acquire a lock.

11-9

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

• Use a thread-blocking API in a long idle loop to free up the processor.
• Prevent “false-sharing” of per-thread-data between two threads.
• Place each synchronization variable alone, separated by 128 bytes or in a separate cache line.

See Section 11.4, “Thread Synchronization,” for details.

11.3.2 Key Practices of System Bus Optimization
Managing bus traffic can significantly impact the overall performance of multithreaded software and MP
systems. Key practices of system bus optimization for achieving high data throughput and quick
response are:
• Improve data and code locality to conserve bus command bandwidth.
• Avoid excessive use of software prefetch instructions and allow the automatic hardware prefetcher to

work. Excessive use of software prefetches can significantly and unnecessarily increase bus
utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to improve effective cache miss
latencies.

• Use full write transactions to achieve higher data throughput.

See Section 11.5, “System Bus Optimization,” for details.

11.3.3 Key Practices of Memory Optimization
Key practices for optimizing memory operations are summarized below:
• Use cache blocking to improve locality of data access. Target one quarter to one half of cache size

when targeting processors supporting HT Technology.
• Minimize the sharing of data between threads that execute on different physical processors sharing a

common bus.
• Minimize data access patterns that are offset by multiples of 64-KBytes in each thread.
• Adjust the private stack of each thread in an application so the spacing between these stacks is not

offset by multiples of 64 KBytes or 1 MByte (prevents unnecessary cache line evictions) when
targeting processors supporting HT Technology.

• Add a per-instance stack offset when two instances of the same application are executing in lock
steps to avoid memory accesses that are offset by multiples of 64 KByte or 1 MByte when targeting
processors supporting HT Technology.

See Section 11.6, “Memory Optimization,” for details.

11.3.4 Key Practices of Execution Resource Optimization
Each physical processor has dedicated execution resources. Logical processors in physical processors
supporting HT Technology share specific on-chip execution resources. Key practices for execution
resource optimization include:
• Optimize each thread to achieve optimal frequency scaling first.
• Optimize multithreaded applications to achieve optimal scaling with respect to the number of physical

processors.
• Use on-chip execution resources cooperatively if two threads are sharing the execution resources in

the same physical processor package.
• For each processor supporting HT Technology, consider adding functionally uncorrelated threads to

increase the hardware resource utilization of each physical processor package.

See Section 11.8, “Affinities and Managing Shared Platform Resources,” for details.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-10

11.3.5 Generality and Performance Impact
The next five sections cover the optimization techniques in detail. Recommendations discussed in each
section are ranked by importance in terms of estimated local impact and generality.

Rankings are subjective and approximate. They can vary depending on coding style, application and
threading domain. The purpose of including high, medium and low impact ranking with each recommen-
dation is to provide a relative indicator as to the degree of performance gain that can be expected when
a recommendation is implemented.

It is not possible to predict the likelihood of a code instance across many applications, so an impact
ranking cannot be directly correlated to application-level performance gain. The ranking on generality is
also subjective and approximate.

Coding recommendations that do not impact all three scaling factors are typically categorized as medium
or lower.

11.4 THREAD SYNCHRONIZATION
Applications with multiple threads use synchronization techniques in order to ensure correct operation.
However, thread synchronization that are improperly implemented can significantly reduce performance.

The best practice to reduce the overhead of thread synchronization is to start by reducing the applica-
tion’s requirements for synchronization. Intel Thread Profiler can be used to profile the execution timeline
of each thread and detect situations where performance is impacted by frequent occurrences of synchro-
nization overhead.

Several coding techniques and operating system (OS) calls are frequently used for thread synchroniza-
tion. These include spin-wait loops, spin-locks, critical sections, to name a few. Choosing the optimal OS
call for the circumstance and implementing synchronization code with parallelism in mind are critical in
minimizing the cost of handling thread synchronization.

SSE3 provides two instructions (MONITOR/MWAIT) to help multithreaded software improve synchroniza-
tion between multiple agents. In the first implementation of MONITOR and MWAIT, these instructions are
available to operating system so that operating system can optimize thread synchronization in different
areas. For example, an operating system can use MONITOR and MWAIT in its system idle loop (known as
C0 loop) to reduce power consumption. An operating system can also use MONITOR and MWAIT to imple-
ment its C1 loop to improve the responsiveness of the C1 loop. See Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

11.4.1 Choice of Synchronization Primitives
Thread synchronization often involves modifying some shared data while protecting the operation using
synchronization primitives. There are many primitives to choose from. Guidelines that are useful when
selecting synchronization primitives are:
• Favor compiler intrinsics or an OS provided interlocked API for atomic updates of simple data

operation, such as increment and compare/exchange. This will be more efficient than other more
complicated synchronization primitives with higher overhead.
For more information on using different synchronization primitives, see the white paper, Developing
Multi-threaded Applications: A Platform Consistent Approach.

• When choosing between different primitives to implement a synchronization construct, using Intel
Thread Checker and Thread Profiler can be very useful in dealing with multithreading functional
correctness issue and performance impact under multi-threaded execution. Additional information on
the capabilities of Intel Thread Checker and Thread Profiler are described in Appendix A.

Table 11-1 is useful for comparing the properties of three categories of synchronization objects available
to multi-threaded applications.

https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/training/developing-multithreaded-applications.pdf

11-11

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11.4.2 Synchronization for Short Periods
The frequency and duration that a thread needs to synchronize with other threads depends application
characteristics. When a synchronization loop needs very fast response, applications may use a spin-wait
loop.

A spin-wait loop is typically used when one thread needs to wait a short amount of time for another
thread to reach a point of synchronization. A spin-wait loop consists of a loop that compares a synchro-
nization variable with some predefined value. See Example 11-4(a).

On a modern microprocessor with a superscalar speculative execution engine, a loop like this results in
the issue of multiple simultaneous read requests from the spinning thread. These requests usually
execute out-of-order with each read request being allocated a buffer resource. On detection of a write by
a worker thread to a load that is in progress, the processor must guarantee no violations of memory
order occur. The necessity of maintaining the order of outstanding memory operations inevitably costs
the processor a severe penalty that impacts all threads.

This penalty occurs on the Pentium M processor, the Intel Core Solo and Intel Core Duo processors.
However, the penalty on these processors is small compared with penalties suffered on the Pentium 4
and Intel Xeon processors. There the performance penalty for exiting the loop is about 25 times more
severe.

On a processor supporting HT Technology, spin-wait loops can consume a significant portion of the
execution bandwidth of the processor. One logical processor executing a spin-wait loop can severely
impact the performance of the other logical processor.

Table 11-1. Properties of Synchronization Objects

Characteristics
Operating System
Synchronization Objects

Light Weight User
Synchronization

Synchronization Object
based on MONITOR/MWAIT

Cycles to acquire and
release (if there is a
contention)

Thousands or Tens of thousands
cycles

Hundreds of cycles Hundreds of cycles

Power consumption
Saves power by halting the core or
logical processor if idle

Some power saving if using
PAUSE

Saves more power than
PAUSE

Scheduling and
context switching

Returns to the OS scheduler if
contention exists (can be tuned
with earlier spin loop count)

Does not return to OS
scheduler voluntarily

Does not return to OS
scheduler voluntarily

Ring level Ring 0 Ring 3 Ring 0

Miscellaneous
Some objects provide intra-process
synchronization and some are for
inter-process communication

Must lock accesses to
synchronization variable if
several threads may write
to it simultaneously.

Otherwise can write
without locks.

Same as light weight.

Can be used only on
systems supporting
MONITOR/MWAIT

Recommended use
conditions

• Number of active threads is
greater than number of cores

• Waiting thousands of cycles for a
signal

• Synchronization among processes

• Number of active threads
is less than or equal to
number of cores

• Infrequent contention
• Need inter process

synchronization

• Same as light weight
objects

• MONITOR/MWAIT available

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-12

User/Source Coding Rule 13. (M impact, H generality) Insert the PAUSE instruction in fast spin
loops and keep the number of loop repetitions to a minimum to improve overall system performance.

The penalty of exiting from a spin-wait loop can be avoided by inserting a PAUSE instruction in the loop.
In spite of the name, the PAUSE instruction improves performance by introducing a slight delay in the
loop and effectively causing the memory read requests to be issued at a rate that allows immediate
detection of any store to the synchronization variable. This prevents the occurrence of a long delay due
to memory order violation.

One example of inserting the PAUSE instruction in a simplified spin-wait loop is shown in
Example 11-4(b). The PAUSE instruction is compatible with all Intel 64 and IA-32 processors. On IA-32
processors prior to Intel NetBurst microarchitecture, the PAUSE instruction is essentially a NOP instruc-
tion. Additional examples of optimizing spin-wait loops using the PAUSE instruction are available in Appli-
cation note AP-949, Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor.

Inserting the PAUSE instruction has the added benefit of significantly reducing the power consumed
during the spin-wait because fewer system resources are used.

Example 11-4. Spin-wait Loop and PAUSE Instructions

(a) An un-optimized spin-wait loop experiences performance penalty when exiting the loop. It consumes execution
resources without contributing computational work.
do {

// This loop can run faster than the speed of memory access,
// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while(sync_var != constant_value);
(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents performance-penalty to the spinning thread and the
worker thread

do {
_asm pause

// Ensure this loop is de-pipelined, i.e. preventing more than one
// load request to sync_var to be outstanding,
// avoiding performance penalty when the worker thread updates
// sync_var and the spinning thread exiting the loop.

}
while(sync_var != constant_value);
(c) A spin-wait loop using a “test, test-and-set” technique to determine the availability of the synchronization variable.
This technique is recommended when writing spin-wait loops to run on Intel 64 and IA-32 architecture processors.

Spin_Lock:
CMP lockvar, 0 ; // Check if lock is free.
JE Get_lock

PAUSE; // Short delay.
JMP Spin_Lock;

Get_Lock:
MOV EAX, 1;
XCHG EAX, lockvar; // Try to get lock.
CMP EAX, 0; // Test if successful.
JNE Spin_Lock;

Critical_Section:
<critical section code>
MOV lockvar, 0; // Release lock.

https://www.intel.com/content/dam/develop/external/us/en/documents/17689-w-spinlock-142271.pdf

11-13

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11.4.3 Optimization with Spin-Locks
Spin-locks are typically used when several threads needs to modify a synchronization variable and the
synchronization variable must be protected by a lock to prevent unintentional overwrites. When the lock
is released, however, several threads may compete to acquire it at once. Such thread contention signifi-
cantly reduces performance scaling with respect to frequency, number of discrete processors, and HT
Technology.

To reduce the performance penalty, one approach is to reduce the likelihood of many threads competing
to acquire the same lock. Apply a software pipelining technique to handle data that must be shared
between multiple threads.

Instead of allowing multiple threads to compete for a given lock, no more than two threads should have
write access to a given lock. If an application must use spin-locks, include the PAUSE instruction in the
wait loop. Example 11-4(c) shows an example of the “test, test-and-set” technique for determining the
availability of the lock in a spin-wait loop.
User/Source Coding Rule 14. (M impact, L generality) Replace a spin lock that may be acquired
by multiple threads with pipelined locks such that no more than two threads have write accesses to one
lock. If only one thread needs to write to a variable shared by two threads, there is no need to use a
lock.

11.4.4 Synchronization for Longer Periods
When using a spin-wait loop not expected to be released quickly, an application should follow these
guidelines:
• Keep the duration of the spin-wait loop to a minimum number of repetitions.
• Applications should use an OS service to block the waiting thread; this can release the processor so

that other runnable threads can make use of the processor or available execution resources.

On processors supporting HT Technology, operating systems should use the HLT instruction if one logical
processor is active and the other is not. HLT will allow an idle logical processor to transition to a halted
state; this allows the active logical processor to use all the hardware resources in the physical package.
An operating system that does not use this technique must still execute instructions on the idle logical
processor that repeatedly check for work. This “idle loop” consumes execution resources that could
otherwise be used to make progress on the other active logical processor.

If an application thread must remain idle for a long time, the application should use a thread blocking API
or other method to release the idle processor. The techniques discussed here apply to traditional MP
system, but they have an even higher impact on processors that support HT Technology.

Typically, an operating system provides timing services, for example Sleep(dwMilliseconds)1; such vari-
ables can be used to prevent frequent checking of a synchronization variable.

Another technique to synchronize between worker threads and a control loop is to use a thread-blocking
API provided by the OS. Using a thread-blocking API allows the control thread to use less processor
cycles for spinning and waiting. This gives the OS more time quanta to schedule the worker threads on
available processors. Furthermore, using a thread-blocking API also benefits from the system idle loop
optimization that OS implements using the HLT instruction.
User/Source Coding Rule 15. (H impact, M generality) Use a thread-blocking API in a long idle
loop to free up the processor.

Using a spin-wait loop in a traditional MP system may be less of an issue when the number of runnable
threads is less than the number of processors in the system. If the number of threads in an application is
expected to be greater than the number of processors (either one processor or multiple processors), use
a thread-blocking API to free up processor resources. A multithreaded application adopting one control
thread to synchronize multiple worker threads may consider limiting worker threads to the number of
processors in a system and use thread-blocking APIs in the control thread.

1. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be released. Example 11-5(a)
shows an example of using Sleep(0), which does not always realize the processor to another thread.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-14

11.4.4.1 Avoid Coding Pitfalls in Thread Synchronization
Synchronization between multiple threads must be designed and implemented with care to achieve good
performance scaling with respect to the number of discrete processors and the number of logical
processor per physical processor. No single technique is a universal solution for every synchronization
situation.

The pseudo-code example in Example 11-5(a) illustrates a polling loop implementation of a control
thread. If there is only one runnable worker thread, an attempt to call a timing service API, such as
Sleep(0), may be ineffective in minimizing the cost of thread synchronization. Because the control thread
still behaves like a fast spinning loop, the only runnable worker thread must share execution resources
with the spin-wait loop if both are running on the same physical processor that supports HT Technology.
If there are more than one runnable worker threads, then calling a thread blocking API, such as Sleep(0),
could still release the processor running the spin-wait loop, allowing the processor to be used by another
worker thread instead of the spinning loop.

A control thread waiting for the completion of worker threads can usually implement thread synchroniza-
tion using a thread-blocking API or a timing service, if the worker threads require significant time to
complete. Example 11-5(b) shows an example that reduces the overhead of the control thread in its
thread synchronization.

In general, OS function calls should be used with care when synchronizing threads. When using OS-
supported thread synchronization objects (critical section, mutex, or semaphore), preference should be
given to the OS service that has the least synchronization overhead, such as a critical section.

11.4.5 Prevent Sharing of Modified Data and False-Sharing
Depending on the cache topology relative to processor/core topology and the specific underlying
microarchitecture, sharing of modified data can incur some degree of performance penalty when a soft-
ware thread running on one core tries to read or write data that is currently present in modified state in
the local cache of another core. This will cause eviction of the modified cache line back into memory and
reading it into the first-level cache of the other core. The latency of such cache line transfer is much
higher than using data in the immediate first level cache or second level cache.

Example 11-5. Coding Pitfall using Spin Wait Loop

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a performance penalty if the only
worker thread and the control thread runs on the same physical processor package.
// Only one worker thread is running,
// the control loop waits for the worker thread to complete.

ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(0) // Returns immediately back to spin loop.
 …
}
(b) A polling loop frees up the processor correctly.

// Let a worker thread run and wait for completion.
ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(FIVE_MILISEC)

// This processor is released for some duration, the processor
// can be used by other threads.
…
}

11-15

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

False sharing applies to data used by one thread that happens to reside on the same cache line as
different data used by another thread. These situations can also incur a performance delay depending on
the topology of the logical processors/cores in the platform.

False sharing can experience a performance penalty when the threads are running on logical processors
reside on different physical processors or processor cores. For processors that support HT Technology,
false-sharing incurs a performance penalty when two threads run on different cores, different physical
processors, or on two logical processors in the physical processor package. In the first two cases, the
performance penalty is due to cache evictions to maintain cache coherency. In the latter case, perfor-
mance penalty is due to memory order machine clear conditions.

A generic approach for multi-threaded software to prevent incurring false-sharing penalty is to allocate
separate critical data or locks with alignment granularity according to a “false-sharing threshold” size.
The following steps will allow software to determine the “false-sharing threshold” across Intel proces-
sors:

1. If the processor supports CLFLUSH instruction, i.e. CPUID.01H:EDX.CLFLUSH[bit 19] =1:

Use the CLFLUSH line size, i.e. the integer value of CPUID.01H:EBX[15:8], as the “false-sharing
threshold”.

2. If CLFLUSH line size is not available, use CPUID leaf 4 as described below:

Determine the “false-sharing threshold” by evaluating the largest system coherency line size among
valid cache types that are reported via the sub-leaves of CPUID leaf 4. For each sub-leaf n, its
associated system coherency line size is (CPUID.(EAX=4, ECX=n):EBX[11:0] + 1).

3. If neither CLFLUSH line size is available, nor CPUID leaf 4 is available, then software may choose the
“false-sharing threshold” from one of the following:

a. Query the descriptor tables of CPUID leaf 2 and choose from available descriptor entries.

b. A Family/Model-specific mechanism available in the platform or a Family/Model-specific known
value.

c. Default to a safe value 64 bytes.

User/Source Coding Rule 16. (H impact, M generality) Beware of false sharing within a cache line
or within a sector. Allocate critical data or locks separately using alignment granularity not smaller than
the “false-sharing threshold”.

When a common block of parameters is passed from a parent thread to several worker threads, it is
desirable for each work thread to create a private copy (each copy aligned to multiples of the “false-
sharing threshold”) of frequently accessed data in the parameter block.

11.4.6 Placement of Shared Synchronization Variable
On processors based on Intel NetBurst microarchitecture, bus reads typically fetch 128 bytes into a
cache, the optimal spacing to minimize eviction of cached data is 128 bytes. To prevent false-sharing,
synchronization variables and system objects (such as a critical section) should be allocated to reside
alone in a 128-byte region and aligned to a 128-byte boundary.

Example 11-6 shows a way to minimize the bus traffic required to maintain cache coherency in MP
systems. This technique is also applicable to MP systems using processors with or without HT Technology.

Example 11-6. Placement of Synchronization and Regular Variables

int regVar;
int padding[32];
int SynVar[32*NUM_SYNC_VARS];
int AnotherVar;

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-16

On Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on Intel Core microar-
chitecture; a synchronization variable should be placed alone and in separate cache line to avoid false-
sharing. Software must not allow a synchronization variable to span across page boundary.
User/Source Coding Rule 17. (M impact, ML generality) Place each synchronization variable
alone, separated by 128 bytes or in a separate cache line.
User/Source Coding Rule 18. (H impact, L generality) Do not place any spin lock variable to span
a cache line boundary.

At the code level, false sharing is a special concern in the following cases:
• Global data variables and static data variables that are placed in the same cache line and are written

by different threads.
• Objects allocated dynamically by different threads may share cache lines. Make sure that the

variables used locally by one thread are allocated in a manner to prevent sharing the cache line with
other threads.

Another technique to enforce alignment of synchronization variables and to avoid a cacheline being
shared is to use compiler directives when declaring data structures. See Example 11-7.

Other techniques that prevent false-sharing include:
• Organize variables of different types in data structures (because the layout that compilers give to

data variables might be different than their placement in the source code).
• When each thread needs to use its own copy of a set of variables, declare the variables with:

— Directive threadprivate, when using OpenMP.

— Modifier __declspec (thread), when using Microsoft compiler.
• In managed environments that provide automatic object allocation, the object allocators and

garbage collectors are responsible for layout of the objects in memory so that false sharing through
two objects does not happen.

• Provide classes such that only one thread writes to each object field and close object fields, in order
to avoid false sharing.

One should not equate the recommendations discussed in this section as favoring a sparsely populated
data layout. The data-layout recommendations should be adopted when necessary and avoid unneces-
sary bloat in the size of the work set.

11.5 SYSTEM BUS OPTIMIZATION
The system bus services requests from bus agents (e.g. logical processors) to fetch data or code from
the memory sub-system. The performance impact due data traffic fetched from memory depends on the
characteristics of the workload, and the degree of software optimization on memory access, locality
enhancements implemented in the software code. A number of techniques to characterize memory traffic
of a workload is discussed in Appendix A. Optimization guidelines on locality enhancement is also
discussed in Section 3.6.10, “Locality Enhancement,” and Section 9.5.11, “Hardware Prefetching and
Cache Blocking Techniques.”

The techniques described in Chapter 3 and Chapter 9 benefit application performance in a platform
where the bus system is servicing a single-threaded environment. In a multi-threaded environment, the
bus system typically services many more logical processors, each of which can issue bus requests inde-

Example 11-7. Declaring Synchronization Variables without Sharing a Cache Line

__declspec(align(64)) unsigned __int64 sum;
struct sync_struct {…};
__declspec(align(64)) struct sync_struct sync_var;

11-17

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

pendently. Thus, techniques on locality enhancements, conserving bus bandwidth, reducing large-stride-
cache-miss-delay can have strong impact on processor scaling performance.

11.5.1 Conserve Bus Bandwidth
In a multithreading environment, bus bandwidth may be shared by memory traffic originated from
multiple bus agents (These agents can be several logical processors and/or several processor cores).
Preserving the bus bandwidth can improve processor scaling performance. Also, effective bus bandwidth
typically will decrease if there are significant large-stride cache-misses. Reducing the amount of large-
stride cache misses (or reducing DTLB misses) will alleviate the problem of bandwidth reduction due to
large-stride cache misses.

One way for conserving available bus command bandwidth is to improve the locality of code and data.
Improving the locality of data reduces the number of cache line evictions and requests to fetch data. This
technique also reduces the number of instruction fetches from system memory.
User/Source Coding Rule 19. (M impact, H generality) Improve data and code locality to
conserve bus command bandwidth.

Using a compiler that supports profiler-guided optimization can improve code locality by keeping
frequently used code paths in the cache. This reduces instruction fetches. Loop blocking can also improve
the data locality. Other locality enhancement techniques can also be applied in a multithreading environ-
ment to conserve bus bandwidth (see Section 9.5, “Memory Optimization Using Prefetch”).

Because the system bus is shared between many bus agents (logical processors or processor cores),
software tuning should recognize symptoms of the bus approaching saturation. One useful technique is
to examine the queue depth of bus read traffic. When the bus queue depth is high, locality enhancement
to improve cache utilization will benefit performance more than other techniques, such as inserting more
software prefetches or masking memory latency with overlapping bus reads. An approximate working
guideline for software to operate below bus saturation is to check if bus read queue depth is significantly
below 5.

Some MP and workstation platforms may have a chipset that provides two system buses, with each bus
servicing one or more physical processors. The guidelines for conserving bus bandwidth described above
also applies to each bus domain.

11.5.2 Understand the Bus and Cache Interactions
Be careful when parallelizing code sections with data sets that results in the total working set exceeding
the second-level cache and /or consumed bandwidth exceeding the capacity of the bus. On an Intel Core
Duo processor, if only one thread is using the second-level cache and / or bus, then it is expected to get
the maximum benefit of the cache and bus systems because the other core does not interfere with the
progress of the first thread. However, if two threads use the second-level cache concurrently, there may
be performance degradation if one of the following conditions is true:
• Their combined working set is greater than the second-level cache size.
• Their combined bus usage is greater than the capacity of the bus.
• They both have extensive access to the same set in the second-level cache, and at least one of the

threads writes to this cache line.

To avoid these pitfalls, multithreading software should try to investigate parallelism schemes in which
only one of the threads access the second-level cache at a time, or where the second-level cache and the
bus usage does not exceed their limits.

11.5.3 Avoid Excessive Software Prefetches
Pentium 4 and Intel Xeon Processors have an automatic hardware prefetcher. It can bring data and
instructions into the unified second-level cache based on prior reference patterns. In most situations, the
hardware prefetcher is likely to reduce system memory latency without explicit intervention from soft-

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-18

ware prefetches. It is also preferable to adjust data access patterns in the code to take advantage of the
characteristics of the automatic hardware prefetcher to improve locality or mask memory latency.
Processors based on Intel Core microarchitecture also provides several advanced hardware prefetching
mechanisms. Data access patterns that can take advantage of earlier generations of hardware prefetch
mechanism generally can take advantage of more recent hardware prefetch implementations.

Using software prefetch instructions excessively or indiscriminately will inevitably cause performance
penalties. This is because excessively or indiscriminately using software prefetch instructions wastes the
command and data bandwidth of the system bus.

Using software prefetches delays the hardware prefetcher from starting to fetch data needed by the
processor core. It also consumes critical execution resources and can result in stalled execution. In some
cases, it may be fruitful to evaluate the reduction or removal of software prefetches to migrate towards
more effective use of hardware prefetch mechanisms. The guidelines for using software prefetch instruc-
tions are described in Chapter 3. The techniques for using automatic hardware prefetcher is discussed in
Chapter 9.
User/Source Coding Rule 20. (M impact, L generality) Avoid excessive use of software prefetch
instructions and allow automatic hardware prefetcher to work. Excessive use of software prefetches can
significantly and unnecessarily increase bus utilization if used inappropriately.

11.5.4 Improve Effective Latency of Cache Misses
System memory access latency due to cache misses is affected by bus traffic. This is because bus read
requests must be arbitrated along with other requests for bus transactions. Reducing the number of
outstanding bus transactions helps improve effective memory access latency.

One technique to improve effective latency of memory read transactions is to use multiple overlapping
bus reads to reduce the latency of sparse reads. In situations where there is little locality of data or when
memory reads need to be arbitrated with other bus transactions, the effective latency of scattered
memory reads can be improved by issuing multiple memory reads back-to-back to overlap multiple
outstanding memory read transactions. The average latency of back-to-back bus reads is likely to be
lower than the average latency of scattered reads interspersed with other bus transactions. This is
because only the first memory read needs to wait for the full delay of a cache miss.
User/Source Coding Rule 21. (M impact, M generality) Consider using overlapping multiple back-
to-back memory reads to improve effective cache miss latencies.

Another technique to reduce effective memory latency is possible if one can adjust the data access
pattern such that the access strides causing successive cache misses in the last-level cache is predomi-
nantly less than the trigger threshold distance of the automatic hardware prefetcher. See Section 9.5.3,
“Example of Effective Latency Reduction with Hardware Prefetch.”
User/Source Coding Rule 22. (M impact, M generality) Consider adjusting the sequencing of
memory references such that the distribution of distances of successive cache misses of the last level
cache peaks towards 64 bytes.

11.5.5 Use Full Write Transactions to Achieve Higher Data Rate
Write transactions across the bus can result in write to physical memory either using the full line size of
64 bytes or less than the full line size. The latter is referred to as a partial write. Typically, writes to write-
back (WB) memory addresses are full-size and writes to write-combine (WC) or uncacheable (UC) type
memory addresses result in partial writes. Both cached WB store operations and WC store operations
utilize a set of six WC buffers (64 bytes wide) to manage the traffic of write transactions. When
competing traffic closes a WC buffer before all writes to the buffer are finished, this results in a series of
8-byte partial bus transactions rather than a single 64-byte write transaction.
User/Source Coding Rule 23. (M impact, M generality) Use full write transactions to achieve
higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into full-sized writes using a software
write-combining technique to separate WC store operations from competing with WB store traffic. To
implement software write-combining, uncacheable writes to memory with the WC attribute are written to

11-19

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

a small, temporary buffer (WB type) that fits in the first level data cache. When the temporary buffer is
full, the application copies the content of the temporary buffer to the final WC destination.

When partial-writes are transacted on the bus, the effective data rate to system memory is reduced to
only 1/8 of the system bus bandwidth.

11.6 MEMORY OPTIMIZATION
Efficient operation of caches is a critical aspect of memory optimization. Efficient operation of caches
needs to address the following:
• Cache blocking.
• Shared memory optimization.
• Eliminating 64-KByte aliased data accesses.
• Preventing excessive evictions in first-level cache.

11.6.1 Cache Blocking Technique
Loop blocking is useful for reducing cache misses and improving memory access performance. The selec-
tion of a suitable block size is critical when applying the loop blocking technique. Loop blocking is appli-
cable to single-threaded applications as well as to multithreaded applications running on processors with
or without HT Technology. The technique transforms the memory access pattern into blocks that effi-
ciently fit in the target cache size.

When targeting Intel processors supporting HT Technology, the loop blocking technique for a unified
cache can select a block size that is no more than one half of the target cache size, if there are two logical
processors sharing that cache. The upper limit of the block size for loop blocking should be determined
by dividing the target cache size by the number of logical processors available in a physical processor
package. Typically, some cache lines are needed to access data that are not part of the source or desti-
nation buffers used in cache blocking, so the block size can be chosen between one quarter to one half of
the target cache (see Chapter 3, “General Optimization Guidelines”).

Software can use the deterministic cache parameter leaf of CPUID to discover which subset of logical
processors are sharing a given cache (see Chapter 9, “Optimizing Cache Usage”). Therefore, guideline
above can be extended to allow all the logical processors serviced by a given cache to use the cache
simultaneously, by placing an upper limit of the block size as the total size of the cache divided by the
number of logical processors serviced by that cache. This technique can also be applied to single-
threaded applications that will be used as part of a multitasking workload.
User/Source Coding Rule 24. (H impact, H generality) Use cache blocking to improve locality of
data access. Target one quarter to one half of the cache size when targeting Intel processors
supporting HT Technology or target a block size that allow all the logical processors serviced by a cache
to share that cache simultaneously.

11.6.2 Shared-Memory Optimization
Maintaining cache coherency between discrete processors frequently involves moving data across a bus
that operates at a clock rate substantially slower that the processor frequency.

11.6.2.1 Minimize Sharing of Data between Physical Processors
When two threads are executing on two physical processors and sharing data, reading from or writing to
shared data usually involves several bus transactions (including snooping, request for ownership
changes, and sometimes fetching data across the bus). A thread accessing a large amount of shared
memory is likely to have poor processor-scaling performance.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-20

User/Source Coding Rule 25. (H impact, M generality) Minimize the sharing of data between
threads that execute on different bus agents sharing a common bus. The situation of a platform
consisting of multiple bus domains should also minimize data sharing across bus domains.

One technique to minimize sharing of data is to copy data to local stack variables if it is to be accessed
repeatedly over an extended period. If necessary, results from multiple threads can be combined later by
writing them back to a shared memory location. This approach can also minimize time spent to synchro-
nize access to shared data.

11.6.2.2 Batched Producer-Consumer Model
The key benefit of a threaded producer-consumer design, shown in Figure 11-5, is to minimize bus traffic
while sharing data between the producer and the consumer using a shared second-level cache. On an
Intel Core Duo processor and when the work buffers are small enough to fit within the first-level cache,
re-ordering of producer and consumer tasks are necessary to achieve optimal performance. This is
because fetching data from L2 to L1 is much faster than having a cache line in one core invalidated and
fetched from the bus.

Figure 11-5 illustrates a batched producer-consumer model that can be used to overcome the drawback
of using small work buffers in a standard producer-consumer model. In a batched producer-consumer
model, each scheduling quanta batches two or more producer tasks, each producer working on a desig-
nated buffer. The number of tasks to batch is determined by the criteria that the total working set be
greater than the first-level cache but smaller than the second-level cache.

Example 11-8 shows the batched implementation of the producer and consumer thread functions.

Figure 11-5. Batched Approach of Producer Consumer Model

Example 11-8. Batched Implementation of the Producer Consumer Threads

void producer_thread()
{ int iter_num = workamount - batchsize;

int mode1;
for (mode1=0; mode1 < batchsize; mode1++)
{ produce(buffs[mode1],count); }

while (iter_num--)
{ Signal(&signal1,1);

produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1++;
if (mode1 > batchsize)

mode1 = 0;
}

}

Main
Thread P(2) P(5)P(4)P(3)

C(3)C(2)C(1) C(4)

P(1)

P: producer
C: consumer

P(6)

11-21

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11.6.3 Eliminate 64-KByte Aliased Data Accesses
The 64-KByte aliasing condition is discussed in Chapter 3. Memory accesses that satisfy the 64-KByte
aliasing condition can cause excessive evictions of the first-level data cache. Eliminating 64-KByte
aliased data accesses originating from each thread helps improve frequency scaling in general. Further-
more, it enables the first-level data cache to perform efficiently when HT Technology is fully utilized by
software applications.
User/Source Coding Rule 26. (H impact, H generality) Minimize data access patterns that are
offset by multiples of 64 KBytes in each thread.

The presence of 64-KByte aliased data access can be detected using Pentium 4 processor performance
monitoring events. Appendix B includes an updated list of Pentium 4 processor performance metrics.
These metrics are based on events accessed using the Intel VTune Performance Analyzer.

Performance penalties associated with 64-KByte aliasing are applicable mainly to current processor
implementations of HT Technology or Intel NetBurst microarchitecture. The next section discusses
memory optimization techniques that are applicable to multithreaded applications running on processors
supporting HT Technology.

11.7 FRONT END OPTIMIZATION
For dual-core processors where the second-level unified cache is shared by two processor cores (Intel
Core Duo processor and processors based on Intel Core microarchitecture), multi-threaded software
should consider the increase in code working set due to two threads fetching code from the unified cache
as part of front end and cache optimization. For quad-core processors based on Intel Core microarchitec-
ture, the considerations that applies to Intel Core 2 Duo processors also apply to quad-core processors.

11.7.1 Avoid Excessive Loop Unrolling
Unrolling loops can reduce the number of branches and improve the branch predictability of application
code. Loop unrolling is discussed in detail in Chapter 3. Loop unrolling must be used judiciously. Be sure
to consider the benefit of improved branch predictability and the cost of under-utilization of the loop
stream detector (LSD).

void consumer_thread()
{ int mode2 = 0;

int iter_num = workamount - batchsize;
while (iter_num--)
{ WaitForSignal(&signal1);

consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2++;
if (mode2 > batchsize)

mode2 = 0;

}
for (i=0;i<batchsize;i++)
{ consume(buffs[mode2],count);

mode2++;
if (mode2 > batchsize)

mode2 = 0;
}

}

Example 11-8. Batched Implementation of the Producer Consumer Threads (Contd.)

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-22

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive loop unrolling to ensure
the LSD is operating efficiently.

11.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES
Modern OSes provide either API and/or data constructs (e.g. affinity masks) that allow applications to
manage certain shared resources , e.g. logical processors, Non-Uniform Memory Access (NUMA) memory
sub-systems.

Before multithreaded software considers using affinity APIs, it should consider the recommendations in
Table 11-2.

Table 11-2. Design-Time Resource Management Choices

Runtime Environment Thread Scheduling/Processor
Affinity Consideration Memory Affinity Consideration

A single-threaded application

Support OS scheduler objectives on
system response and throughput by
letting OS scheduler manage
scheduling. OS provides facilities for
end user to optimize runtime specific
environment.

Not relevant; let OS do its job.

A multi-threaded application
requiring:
i) less than all processor
resource in the system,
ii) share system resource with
other concurrent applications,
iii) other concurrent
applications may have higher
priority.

Rely on OS default scheduler policy.
Hard-coded affinity-binding will likely
harm system response and throughput;
and/or in some cases hurting
application performance.

Rely on OS default scheduler policy.
Use API that could provide
transparent NUMA benefit without
managing NUMA explicitly.

A multi-threaded application
requiring
i) foreground and higher
priority,
ii) uses less than all
processor resource in the
system,
iii) share system resource
with other concurrent
applications,
iv) but other concurrent
applications have lower
priority.

If application-customized thread
binding policy is considered, a
cooperative approach with OS
scheduler should be taken instead of
hard-coded thread affinity binding
policy. For example, the use of
SetThreadIdealProcessor() can provide
a floating base to anchor a next-free-
core binding policy for locality-
optimized application binding policy,
and cooperate with default OS policy.

Use API that could provide
transparent NUMA benefit without
managing NUMA explicitly.
Use performance event to diagnose
non-local memory access issue if
default OS policy cause
performance issue.

11-23

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11.8.1 Topology Enumeration of Shared Resources
Whether multithreaded software ride on OS scheduling policy or need to use affinity APIs for customized
resource management, understanding the topology of the shared platform resource is essential. The
processor topology of logical processors (SMT), processor cores, and physical processors in the platform
can enumerated using information provided by CPUID. This is discussed in Chapter 9, “Multiple-Processor
Management” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. A white
paper and reference code is also available from Intel.

11.8.2 Non-Uniform Memory Access
Platforms using two or more Intel Xeon processors based on Nehalem microarchitecture support non-
uniform memory access (NUMA) topology because each physical processor provides its own local
memory controller. NUMA offers system memory bandwidth that can scale with the number of physical
processors. System memory latency will exhibit asymmetric behavior depending on the memory trans-
action occurring locally in the same socket or remotely from another socket. Additionally, OS-specific
construct and/or implementation behavior may present additional complexity at the API level that the
multi-threaded software may need to pay attention to memory allocation/initialization in a NUMA envi-
ronment.

Generally, latency sensitive workload would favor memory traffic to stay local over remote. If multiple
threads shares a buffer, the programmer will need to pay attention to OS-specific behavior of memory
allocation/initialization on a NUMA system.

Bandwidth sensitive workloads will find it convenient to employ a data composition threading model and
aggregates application threads executing in each socket to favor local traffic on a per-socket basis to
achieve overall bandwidth scalable with the number of physical processors.

The OS construct that provides the programming interface to manage local/remote NUMA traffic is
referred to as memory affinity. Because OS manages the mapping between physical address (populated
by system RAM) to linear address (accessed by application software); and paging allows dynamic reas-
signment of a physical page to map to different linear address dynamically, proper use of memory affinity
will require a great deal of OS-specific knowledge.

To simplify application programming, OS may implement certain APIs and physical/linear address
mapping to take advantage of NUMA characteristics transparently in certain situations. One common
technique is for OS to delay commit of physical memory page assignment until the first memory refer-
ence on that physical page is accessed in the linear address space by an application thread. This means
that the allocation of a memory buffer in the linear address space by an application thread does not

A multithreaded application
runs in foreground, requiring
all processor resource in the
system and not sharing
system resource with
concurrent applications;
multithreading.

Application-customized thread binding
policy can be more efficient than default
OS policy. Use performance event to
help optimize locality and cache
transfer opportunities.
A multithreaded application that
employs its own explicit thread affinity-
binding policy should deploy with some
form of opt-in choice granted by the
end-user or administrator. For example,
permission to deploy explicit thread
affinity-binding policy can be activated
after permission is granted after
installation.

Application-customized memory
affinity binding policy can be more
efficient than default OS policy. Use
performance event to diagnose non-
local memory access issues related
to either OS or custom policy

Table 11-2. Design-Time Resource Management Choices (Contd.)

Runtime Environment Thread Scheduling/Processor
Affinity Consideration Memory Affinity Consideration

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-24

necessarily determine which socket will service local memory traffic when the memory allocation API
returns to the program. However, the memory allocation API that supports this level of NUMA transpar-
ency varies across different OSes. For example, the portable C-language API “malloc” provides some
degree of transparency on Linux*, whereas the API “VirtualAlloc” behave similarly on Windows*.
Different OSes may also provide memory allocation APIs that require explicit NUMA information, such
that the mapping between linear address to local/remote memory traffic are fixed at allocation.

Example 11-9 shows an example that multi-threaded application could undertake the least amount of
effort dealing with OS-specific APIs and to take advantage of NUMA hardware capability. This parallel
approach to memory buffer initialization is conducive to having each worker thread keep memory traffic
local on NUMA systems.

Note that the example shown in Example 11-9 implies that the memory buffers will be freed after the
worker threads created by OpenMP have ended. This situation avoids a potential issue of repeated use of
malloc/free across different application threads. Because if the local memory that was initialized by one
thread and subsequently got freed up by another thread, the OS may have difficulty in tracking/re-allo-
cating memory pools in linear address space relative to NUMA topology. In Linux, another API, “numa_lo-
cal_alloc” may be used.

Example 11-9. Parallel Memory Initialization Technique Using OpenMP and NUMA

#ifdef _LINUX // Linux implements malloc to commit physical page at first touch/access

buf1 = (char *) malloc(DIM*(sizeof (double))+1024);

buf2 = (char *) malloc(DIM*(sizeof (double))+1024);

buf3 = (char *) malloc(DIM*(sizeof (double))+1024);

#endif

#ifdef windows

// Windows implements malloc to commit physical page at allocation, so use VirtualAlloc

buf1 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf2 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf3 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

#endif

(continue)

a = (double *) buf1;

b = (double *) buf2;

c = (double *) buf3;

#pragma omp parallel

{ // use OpenMP threads to execute each iteration of the loop

// number of OpenMP threads can be specified by default or via environment variable

#pragma omp for private(num)

// each loop iteration is dispatched to execute in different OpenMP threads using private iterator

for(num=0;num<len;num++)

{// each thread perform first-touches to its own subset of memory address, physical pages

// mapped to the local memory controller of the respective threads

a[num]=10.;

b[num]=10.;

c[num]=10.;

}

}

11-25

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11.9 OPTIMIZATION OF OTHER SHARED RESOURCES
Resource optimization in multithreaded application depends on the cache topology and execution
resources associated within the hierarchy of processor topology. Processor topology and an algorithm for
software to identify the processor topology are discussed in Chapter 9, “Multiple-Processor Management”
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

In platforms with shared buses, the bus system is shared by multiple agents at the SMT level and at the
processor core level of the processor topology. Thus multithreaded application design should start with
an approach to manage the bus bandwidth available to multiple processor agents sharing the same bus
link in an equitable manner. This can be done by improving the data locality of an individual application
thread or allowing two threads to take advantage of a shared second-level cache (where such shared
cache topology is available).

In general, optimizing the building blocks of a multithreaded application can start from an individual
thread. The guidelines discussed in Chapter 3 through Chapter 13 largely apply to multithreaded optimi-
zation.
Tuning Suggestion 2. Optimize single threaded code to maximize execution throughput first.
Tuning Suggestion 3. Employ efficient threading model, leverage available tools (such as Intel
Threading Building Block, Intel Thread Checker, Intel Thread Profiler) to achieve optimal processor
scaling with respect to the number of physical processors or processor cores.

11.9.1 Expanded Opportunity for Intel® HT Optimization
The Intel® Hyper-Threading Technology (Intel® HT) implementation in Nehalem microarchitecture differs
from previous generations of Intel HT implementations. It offers broader opportunity for multithreaded
software to take advantage of Intel HT and achieve higher system throughput over a broader range of
application problems. This section provides a few heuristic recommendations and illustrates some of
these optimization opportunities.

Chapter 2, “Intel® 64 and IA-32 Architectures” covered some of the microarchitectural capability
enhancements in Intel Hyper-Threading Technology. Many of these enhancements center around the
basic needs of multi-threaded software in terms of sharing common hardware resources that may be
used by more than one thread context.

Different software algorithms and workload characteristics may produce different performance charac-
teristics due to their demands on critical microarchitectural resources that may be shared amongst
several logical processors. A brief comparison of the various microarchitectural subsystems that can play
a significant role in software tuning for Intel HT is summarized in Table 11-3.

Table 11-3. Microarchitectural Resources Comparisons of Intel® HT Implementations

Microarchitectural Subsystem Nehalem Microarchitecture NetBurst Microarchitecture

06_1AH 0F_02H, 0F_03H, 0F_04H, 0F_06H

Issue ports, execution units
Three issue ports (0, 1, 5) distributed to
handle ALU, SIMD, and FP
computations.

Unbalanced ports, fast ALU SIMD
and FP sharing the same port (port
1).

Buffering More entries in ROB, RS, fill buffers,
etc., with moderate pipeline depths.

Less balance between buffer entries
and pipeline depths.

Branch Prediction and
Misaligned memory access

More robust speculative execution with
immediate reclamation after
misprediction; efficient handling of
cache splits.

More microarchitectural hazards
resulting in pipeline cleared for both
threads.

Cache hierarchy Larger and more efficient. More microarchitectural hazards to
work around.

MULTICORE AND INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)

11-26

For compute bound workloads, the Intel HT opportunity in Intel NetBurst microarchitecture tends to
favor thread contexts that executes with relatively high CPI (average cycles to retire consecutive instruc-
tions). At a hardware level, this is in part due to the issue port imbalance in the microarchitecture, as port
1 is shared by fast ALU, slow ALU (more heavy-duty integer operations), SIMD, and FP computations. At
a software level, some of the cause for high CPI and may appear as benign catalyst for providing HT
benefit may include: long latency instructions (port 1), some L2 hits, occasional branch mispredictions,
etc. But the length of the pipeline in NetBurst microarchitecture often impose additional internal hard-
ware constraints that limits software’s ability to take advantage of Intel HT.

The microarchitectural enhancements listed in Table 11-3 are expected to provide broader software opti-
mization opportunities for compute-bound workloads. Whereas contention in the same execution unit by
two compute-bound threads might be a concern to choose a functional-decomposition threading model
over data-composition threading. Nehalem microarchitecture will likely be more accommodating to
support the programmer to choose the optimal threading decomposition models.

Memory intensive workloads can exhibit a wide range of performance characteristics, ranging from
completely parallel memory traffic (saturating system memory bandwidth, as in the well-known example
of Stream), memory traffic dominated by memory latency, or various mixtures of compute operations
and memory traffic of either kind.

The Intel HT implementation in Intel NetBurst microarchitecture may provide benefit to some of the
latter two types of workload characteristics. The HT capability in the Nehalem microarchitecture can
broaden the operating envelop of the two latter types of workload characteristics to deliver higher system
throughput, due to its support for non-uniform memory access (NUMA), more efficient link protocol, and
system memory bandwidth that scales with the number of physical processors.

Some cache levels of the cache hierarchy may be shared by multiple logical processors. Using the cache
hierarchy is an important means for software to improve the efficiency of memory traffic and avoid satu-
rating the system memory bandwidth. Multi-threaded applications employing cache-blocking technique
may wish to partition a target cache level to take advantage of Intel Hyper-Threading Technology. Alter-
nately two logical processors sharing the same L1 and L2, or logical processors sharing the L3 may wish
to manage the shared resources according to their relative topological relationship. A white paper on
processor topology enumeration and cache topology enumeration with companion reference code has
been published (see reference in Chapter 1).

Memory and bandwidth NUMA, three channels per socket to
DDR3, up to 32GB/s per socket.

SMP, FSB, or dual FSB, up to 12.8
GB/s per FSB.

Table 11-3. Microarchitectural Resources Comparisons of Intel® HT Implementations

Microarchitectural Subsystem Nehalem Microarchitecture NetBurst Microarchitecture

06_1AH 0F_02H, 0F_03H, 0F_04H, 0F_06H

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

7. Updates to Chapter 15
Change bars and violet text show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Optimizations for Intel® AVX, FMA, and AVX2.

--
Changes to this chapter:
• Typo corrections where necessary.
• Section 15.12 Corrected Cross-Reference.
• Section 15.13, modified reference to Example 15-31 for clarity.

CHAPTER 15
OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Intel® Advanced Vector Extension (Intel® AVX), is a major enhancement to Intel Architecture. It extends
the functionality of previous generations of 128-bit Intel® Streaming SIMD Extensions (Intel® SSE)
vector instructions and increased the vector register width to support 256-bit operations. The Intel AVX
ISA enhancement is focused on float-point instructions. Some 256-bit integer vectors are supported via
floating-point to integer and integer to floating-point conversions.

Sandy Bridge microarchitecture implements the Intel AVX instructions, in most cases, on 256-bit hard-
ware. Thus, each core has 256-bit floating-point Add and Multiply units. The Divide and Square-root
units are not enhanced to 256-bits. Thus, Intel AVX instructions use the 128-bit hardware in two steps to
complete these 256-bit operations.

Prior generations of Intel® SSE instructions generally are two-operand syntax, where one of the oper-
ands serves both as source and as destination. Intel AVX instructions are encoded with a VEX prefix,
which includes a bit field to encode vector lengths and support three-operand syntax. A typical instruc-
tion has two sources and one destination. Four operand instructions such as VBLENDVPS and
VBLENDVPD exist as well. The added operand enables non-destructive source (NDS) and it eliminates
the need for register duplication using MOVAPS operations.

With the exception of MMX™ instructions, almost all legacy 128-bit Intel SSE instructions have Intel AVX
equivalents that support three operand syntax. 256-bit Intel AVX instructions employ three-operand
syntax and some with 4-operand syntax.

The 256-bit vector register YMM extends the 128-bit XMM register to 256 bits. Thus the lower 128-bits
of YMM is aliased to the legacy XMM registers.

While 256-bit Intel AVX instructions writes 256 bits of results to YMM, 128-bit Intel AVX instructions
writes 128-bits of results into the XMM register and zeros the upper bits above bit 128 of the corre-
sponding YMM. 16 vector registers are available in 64-bit mode. Only the lower 8 vector registers are
available in non-64-bit modes.

Software can continue to use any mixture of legacy Intel SSE code, 128-bit Intel AVX code and 256-bit
Intel AVX code. Section covers guidelines to deliver optimal performance across mixed-vector-length
code modules without experiencing transition delays between legacy Intel SSE and Intel AVX code. There
are no transition delays of mixing 128-bit Intel AVX code and 256-bit Intel AVX code.

The optimal memory alignment of an Intel AVX 256-bit vector, stored in memory, is 32 bytes. Some
data-movement 256-bit Intel AVX instructions enforce 32-byte alignment and will signal #GP fault if
memory operand is not properly aligned. The majority of 256-bit Intel AVX instructions do not require
address alignment. These instructions generally combine load and compute operations, so any non-
aligned memory address can be used in these instructions.

For best performance, software should pay attention to align the load and store addresses to 32 bytes
whenever possible.

The major differences between using Intel AVX instructions and legacy Intel SSE instructions are
summarized in Table 15-1.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-2

15.1 INTEL® AVX INTRINSICS CODING
256-bit Intel AVX instructions have new intrinsics. Specifically, 256-bit Intel AVX instruction that are
promoted to 256-bit vector length from existing Intel SSE functionality are generally prototyped with a
“_mm256” prefix instead of the “_mm” prefix and using new data types defined for 256-bit operation.
New functionality in 256-bit AVX instructions have brand new prototype.

The 128-bit Intel AVX instruction that were promoted from legacy SIMD ISA uses the same prototype as
before. Newer functionality common in 256-bit and 128-bit AVX instructions are prototyped with
“_mm256” and “_mm” prefixes respectively.

Thus porting from legacy SIMD code written in intrinsic can be ported to 256-bit Intel AVX code with a
modest effort.

The following guidelines show how to convert a simple intrinsic from Intel SSE code sequence to Intel
AVX:
• Align statically and dynamically allocated buffers to 32-bytes.
• May need to double supplemental buffer size.
• Change __mm_ intrinsic name prefix with __mm256_.
• Change variable data types names from __m128 to __m256.
• Divide by 2 iteration count (or double stride length).

This example below on Cartesian coordinate transformation demonstrates the Intel AVX Instruction
format, 32 byte YMM registers, dynamic and static memory allocation with data alignment of 32bytes,
and the C data type representing 8 floating-point elements in a YMM register.

Table 15-1. Features between 256-bit Intel® AVX, 128-bit Intel® AVX, and Legacy Intel® SSE Extensions

Features 256-bit AVX 128-bit AVX Legacy SSE-AESNI

Functionality Scope
Floating-point operation,
Data Movement.

Matches legacy SIMD ISA
(except MMX).

128-bit FP and integer SIMD
ISA.

Register Operand YMM. XMM. XMM.

Operand Syntax
Up to 4; non-destructive
source.

Up to 4; non-destructive
source.

2 operand syntax;
destructive source.

Memory alignment
Load-Op semantics do not
require alignment.

Load-Op semantics do not
require alignment.

Always enforce 16B
alignment.

Aligned Move Instructions 32 byte alignment. 16 byte alignment. 16 byte alignment.

Non-destructive source
operand

Yes. Yes. No.

Register State Handling Updates bits 255:0.
Updates 127:0; Zeroes bits
above 128.

Updates 127:0; Bits above
128 unmodified.

Intrinsic Support

• New 256-bit data types.
• _mm256 prefix for

promoted functionality.
• New intrinsics for new

functionalities.

• Existing data types.
• Inherit same prototype for

exiting functionalities.
• Use “_mm” prefix for new

VEX-128 functionalities.

Baseline datatypes and
prototype definitions.

128-bit Lanes
Applies to most 256-bit
operations.

One 128-bit lane. One 128-bit lane.

Mixed Code Handling
Use VZEROUPPER to
avoid transition penalty.

No transition penalty.
Transition penalty after
executing 256-bit AVX code.

15-3

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Example 15-1. Cartesian Coordinate Transformation with Intrinsics

//Use SSE intrinsic
#include "wmmintrin.h"

int main()
{ int len = 3200;
 //Dynamic memory allocation with 16byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
16);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
16);
//init data
for(int i=0; i<len; i++) pInVector[i] = 1;

float cos_theta = 0.8660254037;
 float sin_theta = 0.5;
//Static memory allocation of 4 floats with 16byte
alignment
__declspec(align(16)) float cos_sin_theta_vec[4] =
{cos_theta, sin_theta, cos_theta, sin_theta};

__declspec(align(16)) float sin_cos_theta_vec[4] =
{sin_theta, cos_theta, sin_theta, cos_theta};

//__m128 data type represents an xmm
 //register with 4 float elements
 __m128 Xmm_cos_sin =
_mm_load_ps(cos_sin_theta_vec);

 //SSE 128bit packed single load
 __m128 Xmm_sin_cos =
_mm_load_ps(sin_cos_theta_vec);

 __m128 Xmm0, Xmm1, Xmm2, Xmm3;
//processing 8 elements in an unrolled twice loop

for(int i=0; i<len; i+=8)
 {
 Xmm0 = _mm_load_ps(pInVector+i);
 Xmm1 = _mm_moveldup_ps(Xmm0);
 Xmm2 = _mm_movehdup_ps(Xmm0);
 Xmm1 = _mm_mul_ps(Xmm1,Xmm_cos_sin);
 Xmm2 = _mm_mul_ps(Xmm2,Xmm_sin_cos);
 Xmm3 = _mm_addsub_ps(Xmm1, Xmm2);
 _mm_store_ps(pOutVector + i, Xmm3);

// Use Intel AVX intrinsic
#include "immintrin.h"

int main()
{ int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
32);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
32);
//init data
for(int i=0; i<len; i++) pInVector[i] = 1;

float cos_theta = 0.8660254037;
 float sin_theta = 0.5;
//Static memory allocation of 8 floats with 32byte
alignment
__declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta};

__declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta };

 //__m256 data type holds 8 float elements
 __m256 Ymm_cos_sin = _mm256_-
load_ps(cos_sin_theta_vec);

 //AVX 256bit packed single load
 __m256 Ymm_sin_cos = _mm256_-
load_ps(sin_cos_theta_vec);

 __m256 Ymm0, Ymm1, Ymm2, Ymm3;

 //processing 8 elements in an unrolled twice loop

for(int i=0; i<len; i+=16)
 {
 Ymm0 = _mm256_load_ps(pInVector+i);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm1 = _mm256_mul_ps(Ymm1,Ymm_cos_sin);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 = _mm256_addsub_ps(Ymm1, Ymm2);
 _mm256_store_ps(pOutVector + i, Ymm3);

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-4

15.1.1 Intel® AVX Assembly Coding
Similar to the intrinsic porting guidelines, assembly porting guidelines are listed below.
• Align statically and dynamically allocated buffers to 32-bytes.
• Double the supplemental buffer sizes if needed.
• Add a “v” prefix to instruction names.
• Change register names from xmm to ymm.
• Add destination registers to computational Intel AVX instructions.
• Divide the iteration count by two (or double stride length).

 Xmm0 = _mm_load_ps(pInVector+i+4);
 Xmm1 = _mm_moveldup_ps(Xmm0);
 Xmm2 = _mm_movehdup_ps(Xmm0);
 Xmm1 = _mm_mul_ps(Xmm1,Xmm_cos_sin);
 Xmm2 = _mm_mul_ps(Xmm2,Xmm_sin_cos);
 Xmm3 = _mm_addsub_ps(Xmm1, Xmm2);
 _mm_store_ps(pOutVector+i+4, Xmm3);
 }
_mm_free(pInVector);
 _mm_free(pOutVector);
return 0;
}

 Ymm0 = _mm256_load_ps(pInVector+i+8);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm1 = _mm256_mul_ps(Ymm1,Ymm_cos_sin);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 = _mm256_addsub_ps(Ymm1, Ymm2);
 _mm256_store_ps(pOutVector+i+8, Ymm3);
 }
_mm_free(pInVector);
 _mm_free(pOutVector);
return 0;
}

Example 15-2. Cartesian Coordinate Transformation with Assembly

//Use SSE Assembly
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 16byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
16);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
16);

//init data
for(int i=0; i<len; i++)
 pInVector[i] = 1;

 //Static memory allocation of 4 floats
 //with 16byte alignment
 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;
 __declspec(align(16)) float cos_sin_theta_vec[4] =
{cos_theta, sin_theta, cos_theta, sin_theta};

// Use Intel AVX assembly
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
32);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
32);

//init data
for(int i=0; i<len; i++)
 pInVector[i] = 1;

 //Static memory allocation of 8 floats
 //with 32byte alignment
 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;
 __declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta};

Example 15-1. Cartesian Coordinate Transformation with Intrinsics (Contd.)

15-5

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

 __declspec(align(16)) float sin_cos_theta_vec[4] =
{sin_theta, cos_theta, sin_theta, cos_theta};

//processing 8 elements in an unrolled-twice loop
__asm
{
 mov rax, pInVector
 mov rbx, pOutVector
// Load into an xmm register of 16 bytes
 movups xmm3,
 xmmword ptr[cos_sin_theta_vec]
 movups xmm4,
 xmmword ptr[sin_cos_theta_vec]

 mov rdx, len

shl rdx, 2 //size of input array in bytes
 xor rcx, rcx
loop1:
 movsldup xmm0, [rax+rcx]
 movshdup xmm1, [rax+rcx]
//example: mulps has 2 operands
 mulps xmm0, xmm3
 mulps xmm1, xmm4
 addsubps xmm0, xmm1
// 16 byte store from an xmm register
 movaps [rbx+rcx], xmm0

 movsldup xmm0, [rax+rcx+16]
 movshdup xmm1, [rax+rcx+16]
 mulps xmm0, xmm3
 mulps xmm1, xmm4
 addsubps xmm0, xmm1
// offset of 16 bytes from previous store
 movaps [rbx+rcx+16], xmm0

// Processed 32bytes in this loop
//(The code is unrolled twice)
 add rcx, 32
 cmp rcx, rdx
 jl loop1
}
 _mm_free(pInVector);
 _mm_free(pOutVector);
 return 0;
}

 __declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta};

//processing 16 elements in an unrolled-twice loop
__asm
 {
 mov rax, pInVector
 mov rbx, pOutVector
// Load into an ymm register of 32 bytes
 vmovups ymm3,
 ymmword ptr[cos_sin_theta_vec]
 vmovups ymm4,
 ymmword ptr[sin_cos_theta_vec]

 mov rdx, len
shl rdx, 2 //size of input array in bytes

 xor rcx, rcx
loop1:
 vmovsldup ymm0, [rax+rcx]
 vmovshdup ymm1, [rax+rcx]
//example: vmulps has 3 operands
 vmulps ymm0, ymm0, ymm3
 vmulps ymm1, ymm1, ymm4
 vaddsubps ymm0, ymm0, ymm1
// 32 byte store from an ymm register
 vmovaps [rbx+rcx], ymm0

 vmovsldup ymm0, [rax+rcx+32]
 vmovshdup ymm1, [rax+rcx+32]
 vmulps ymm0, ymm0, ymm3
 vmulps ymm1, ymm1, ymm4
 vaddsubps ymm0, ymm0, ymm1
// offset of 32 bytes from previous store
 vmovaps [rbx+rcx+32], ymm0

// Processed 64bytes in this loop
//(The code is unrolled twice)
 add rcx, 64
 cmp rcx, rdx
 jl loop1
 }
 _mm_free(pInVector);
 _mm_free(pOutVector);
 return 0;
}

Example 15-2. Cartesian Coordinate Transformation with Assembly (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-6

15.2 NON-DESTRUCTIVE SOURCE (NDS)
Most Intel AVX instructions have three operands. A typical instruction has two sources and one destina-
tion, with both source operands unmodified by the instruction. This section describes how using the NDS
feature to save register copies, reduce the amount of instructions, reduce the amount of micro-ops, and
improve performance. In this example, the Intel AVX code is more than 2x faster than the Intel SSE code.

The following example uses a vectorized calculation of the polynomial A^3+A^2+A. The polynomial
calculation pseudo code is:
While (i<len)
{
 B[i] := A[i]^3 + A[i]^2 + A[i]
 i++
}

In Example 15-3, the left column shows the vectorized implementation using Intel SSE assembly. In this
code, A is copied by an additional load from memory to a register, and A2 is copied using a register to
register assignment. The code uses 10 micro-ops to process four elements.

The middle column in this example uses 128-bit Intel AVX instructions and takes advantage of NDS. The
additional load and register copies are eliminated. This code uses 8 micro-ops to process four elements
and is about 30% faster than the baseline above.

The right column in this example uses 256-bit AVX instructions. It uses 8 micro-ops to process 8
elements. Combining the NDS feature with the doubling of vector width, this speeds up the baseline by
more than 2x.

Example 15-3. Direct Polynomial Calculation
 SSE Code 128-bit AVX Code 256-bit AVX Code

float* pA = InputBuffer;
float* pB = OutputBuffer;
int len = miBufferWidth-4;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
movups xmm0, [rax+r8*4]
//Copy A
movups xmm1, [rax+r8*4]
//A^2
mulps xmm1, xmm1
//Copy A^2
movupsxmm2, xmm1
//A^3
mulps xmm2, xmm0
//A + A^2
addps xmm0, xmm1
//A + A^2 + A^3
addps xmm0, xmm2
//Store result
movups[rbx+r8*4], xmm0

float* pA = InputBuffer1;
float* pB = OutputBuffer1;
int len = miBufferWidth-4;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
vmovups xmm0, [rax+r8*4]

//A^2
vmulps xmm1, xmm0, xmm0

//A^3
vmulps xmm2, xmm1, xmm0
//A+A^2
vaddps xmm0, xmm0, xmm1
//A+A^2+A^3
vaddps xmm0, xmm0, xmm2
//Store result
vmovups[rbx+r8*4], xmm0

float* pA = InputBuffer1;
float* pB = OutputBuffer1;
int len = miBufferWidth-8;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
vmovups ymm0, [rax+r8*4]

//A^2
vmulps ymm1, ymm0, ymm0

//A^3
vmulps ymm2, ymm1, ymm0
//A+A^2
vaddps ymm0, ymm0, ymm1
//A+A^2+A^3
vaddps ymm0, ymm0, ymm2
//Store result
vmovups [rbx+r8*4], ymm0

15-7

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15.3 MIXING AVX CODE WITH SSE CODE
The Intel AVX architecture allows programmers to port a large code base gradually, resulting in mixed
AVX code and SSE code. If your code includes both Intel AVX and Intel SSE, consider the following:
• Recompilation of SSE code with the Intel compiler and the option “/QxAVX” in Windows or “-xAVX” in

Linux. This transforms all SSE instructions to 128-bit AVX instructions automatically. This refers to
inline assembly and intrinsic code. “GCC -c -mAVX” will generate AVX code, including assembly files.
GCC assembler also supports “-msse2avx” switch to generate AVX code from Intel SSE.

• Intel AVX and Intel SSE code can co-exist and execute in the same run. This can happen if your
application includes third party libraries with Intel SSE code, a new DLL using Intel AVX code is
deployed that calls other modules running Intel SSE code, or you cannot recompile all your
application at once. In these cases, the Intel AVX code must use the VZEROUPPER instruction to
avoid AVX/SSE transition penalty.

Intel AVX instructions always modify the upper bits of YMM registers and Intel SSE instructions do not
modify the upper bits. From a hardware perspective, the upper bits of the YMM register collection can be
considered to be in one of three states:
• Clean: All upper bits of YMM are zero. This is the state when the processor starts from RESET.
• Modified and Unsaved (In Table 15-2, this is abbreviated as M/U): The execution of one Intel AVX

instruction (either 256-bit or 128-bit) modifies the upper bits of the destination YMM. This is also
referred to as dirty upper YMM state. In this state, bits 255:128 and bits 127:0 of a given YMM are
related to the most recent 256-bit or 128-bit AVX instruction that operated on that register.

• Preserved/Non_INIT Upper State (In Table 15-2, this is abbreviated as P/N): In this state, the upper
YMM state is not zero. The upper 128 bits of a YMM and the lower 128 bits may be unrelated to the
last Intel AVX instruction executed in the processor as a result of XRSTOR from a saved image with
dirty upper YMM state.

If software inter-mixes Intel AVX and Intel SSE instructions without using VZEROUPPER properly, it can
experience an Intel AVX/Intel SSE transition penalty. The situations of executing Intel SSE, Intel AVX, or
managing the YMM state using XSAVE/XRSTOR/VZEROUPPER/VZEROALL is illustrated in Figure 15-1.
The penalty associated with transitions into or out of the processor state “Modified and Unsaved” is
implementation specific, depending on the microarchitecture.

Figure 15-1 depicts the situations that a transition penalty will occur for recent generations of microar-
chitectures that support Intel AVX, up to and including the Broadwell microarchitecture. The transition
penalty of A and B occurs with each instruction execution that would cause the transition. It is largely the
cost of copying the entire YMM state to internal storage.

To minimize the occurrence of YMM state transitions related to the “Preserved/Non_INIT Upper State”,
software that uses XSAVE/XRSTOR family of instructions to save/restore the YMM state should write a
“Clean” upper YMM state to the XSAVE region in memory. Restoring a dirty YMM image from memory into
the YMM registers can experience a penalty. This is illustrated in Figure 15-1.

The Skylake microarchitecture implements a different state machine than prior generations to manage
the YMM state transition associated with mixing Intel SSE and Intel AVX instructions. It no longer saves
the entire upper YMM state when executing an Intel SSE instruction when in “Modified and Unsaved”
state, but saves the upper bits of individual register. As a result, mixing Intel SSE and Intel AVX instruc-
tions will experience a penalty associated with partial register dependency of the destination registers
being used and additional blend operation on the upper bits of the destination registers. Figure 15-2
depicts the transition penalty applicable to the Skylake microarchitecture.

sub r8, 4
jge loop1
}

sub r8, 4
jge loop1
}

sub r8, 8
jge loop1
}

Example 15-3. Direct Polynomial Calculation (Contd.)
 SSE Code 128-bit AVX Code 256-bit AVX Code

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-8

Table 15-2 lists the effect of mixing Intel AVX and Intel SSE code, with the bottom row indicating the
types of penalty that might arise depending on the initial YMM state (the row marked ‘Begin’) and the
ending state. Table 15-2 also includes the effect of transition penalty (Type C and D) associated with
restoring a dirty YMM state image stored in memory.

Figure 15-1. Intel® AVX—Intel® SSE Transitions in the Broadwell, and Prior Generation Microarchitectures

Figure 15-2. Intel® AVX- Intel® SSE Transitions in the Skylake Microarchitecture

Clean
UpperState

Preserved

Upper State

Dirty
Upper State

XSAVE’d Dirty
Image in Mem

XSAVE’d Clean
Image in Mem

Execute 256-bit Intel AVX

Execute Vzeroupper/
VzeroallXrstor w/ INIT

Execute Vzeroupper/
Vzeroall/Xrstor w/ INIT

Penalty D

Execute Intel SSE
Penalty A

Execute 256 or

Penalty B
128 Bit Intel AVX

XRSTOR
Penalty C

XSAVE w/o
Vzero*

Execute Intel SSE
Execute 256-bit
or 128-bit Intel AVX

or 128-bit Intel AVX

Execute SSE

XSAVE w/
Vzero*

XRSTOR

Non-INIT

Clean
UpperState

Dirty
Upper State

XSAVE’d Dirty

Image in Mem

XSAVE’d Clean
Image in Mem

Execute 256-bit AVX

Execute Vzeroupper/
VzeroallXrstor w/ INIT

XRSTOR
Penalty C

XSAVE w/o
Vzero*

Execute SSE
Execute 256-bit
or 128-bit AVX

or 128-bit AVX

XSAVE w/
Vzero*

XRSTOR

NON-INIT

Execute SSE
Penalty A

15-9

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The magnitude of each type of transition penalty can vary across different microarchitectures. In Skylake
microarchitecture, some of the transition penalty is reduced. The transition diagram and associated
penalty is depicted in Figure 15-2. Table 15-3 gives approximate order of magnitude of the different
transition penalty types across recent microarchitectures.

To enable fast transitions between 256-bit Intel AVX and Intel SSE code blocks, use the VZEROUPPER
instruction before and after an AVX code block that would need to switch to execute SSE code. The VZER-
OUPPER instruction resets the upper 128 bits of all Intel AVX registers. This instruction has zero latency.
In addition, the processor changes back to a Clean state, after which execution of SSE instructions or
Intel AVX instructions has no transition penalty with prior microarchitectures. In Skylake microarchitec-
ture, the SSE block can executed from a Clean state without the penalty of upper-bits dependency and
blend operation.

128-bit Intel AVX instructions zero the upper 128-bits of the destination registers. Therefore, 128-bit and
256-bit Intel AVX instructions can be mixed with no penalty.
Assembly/Compiler Coding Rule 56. (H impact, H generality) Whenever a 256-bit AVX code
block and 128-bit SSE code block might execute in sequence, use the VZEROUPPER instruction to
facilitate a transition to a “Clean” state for the next block to execute from.

15.3.1 Mixing Intel® AVX and Intel SSE in Function Calls
Intel AVX to Intel SSE transitions can occur unexpectedly when calling functions or returning from func-
tions. For example, if a function that uses 256-bit Intel AVX, calls another function, the callee might be
using SSE code. Similarly, after a 256-bit Intel AVX function returns, the caller might be executing Intel
SSE code.

Table 15-2. State Transitions of Mixing AVX and SSE Code

Execute SSE Execute AVX-128 Execute AVX-256 VZeroupper XRSTOR

Begin Clean M/U P/N Clean M/U P/S Clean M/U P/N P/N Dirty
Image

Clean
Image

End Clean P/N P/N Clean M/U M/U M/U M/U M/U Clean P/N Clean

Penalty No A No No No B No No B D C No

Table 15-3. Approximate Magnitude of Intel® AVX—Intel® SSE Transition Penalties in Different
Microarchitectures

Type Haswell
Microarchitecture

Broadwell
Microarchitecture

Skylake
Microarchitecture

Ice Lake Client
Microarchitecture

A ~XSAVE ~XSAVE Partial Register
Dependency + Blend

~XSAVE

B ~XSAVE ~XSAVE NA ~XSAVE

C ~Fraction of XSAVE ~Fraction of XSAVE ~XSAVE ~Fraction of XSAVE

D ~XSAVE ~XSAVE NA ~XSAVE

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-10

Assembly/Compiler Coding Rule 57. (H impact, H generality) Add VZEROUPPER instruction after
256-bit AVX instructions are executed and before any function call that might execute SSE code. Add
VZEROUPPER at the end of any function that uses 256-bit AVX instructions.

Table 15-2 summarizes a heuristic of the performance impact of using or not using VZEROUPPER to
bridge transitions of inter-function calls that changes between AVX code implementation and SSE code.

15.4 128-BIT LANE OPERATION AND AVX
256-bit operations in Intel AVX are generally performed in two halves of 128-bit lanes. Most of the 256-
bit Intel AVX instructions are defined as in-lane: the destination elements in each lane are calculated
using source elements only from the same lane. There are only a few cross-lane instructions, which are
described below.

Example 15-4. Function Calls and Intel® AVX/Intel® SSE transitions

__attribute__((noinline)) void SSE_function()
{
 __asm addps xmm1, xmm2
 __asm xorps xmm3, xmm4
}

__attribute__((noinline)) void AVX_function_no_zeroupper()
{
 __asm vaddps ymm1, ymm2, ymm3
 __asm vxorps ymm4, ymm5, ymm6
}
__attribute__((noinline)) void AVX_function_with_zeroupper()
{
 __asm vaddps ymm1, ymm2, ymm3
 __asm vxorps ymm4, ymm5, ymm6
 //add vzeroupper when returning from an AVX function
 __asm vzeroupper
}

// Code encounter transition penalty

__asm vaddps ymm1, ymm2, ymm3
..

//penalty
SSE_function();
AVX_function_no_zeroupper();
//penalty
__asm addps xmm1, xmm2

// Code mitigated transition penalty

__asm vaddps ymm1, ymm2, ymm3
//add vzeroupper before
//calling SSE function from AVX code
__asm vzeroupper //no penalty
SSE_function();
AVX_function_with_zeroupper();
//no penalty
__asm addps xmm1, xmm2

Table 15-4. Effect of VZEROUPPER with Inter-Function Calls Between AVX and SSE Code

Inter-Function Call Prior Microarchitectures Skylake Microarchitecture

With VZEROUPPER 1X (baseline) ~1

No VZEROUPPER < 0.1X Fraction of baseline

15-11

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The majority of SSE computational instructions perform computation along vertical slots with each data
elements. The 128-bit lanes does not affect porting 128-bit code into 256-bit AVX code. VADDPS is one
example of this.

Many 128-bit SSE instruction moves data elements horizontally, e.g. SHUFPS uses an imm8 byte to
control the horizontal movement of data elements.

Intel AVX promotes these horizontal 128-bit SIMD instruction in-lane into 256-bit operation by using the
same control field within the low 128-bit land and the high 128-bit lane. For example, the 256-bit
VSHUFPS instruction uses a control byte containing 4 control values to select the source location of each
destination element in a 128-bit lane. This is shown below.

15.4.1 Programming With the Lane Concept
Using the lane concept, algorithms implemented with SSE instruction set can be easily converted to use
256-bit Intel AVX. An SSE algorithm that executes iterations 0 to n can be converted such that the calcu-
lation of iteration i is done in the low lane and the calculation of iteration i+k is done in the high lane. For
consecutive iterations k equals one.

Some vectorized algorithms implemented with SSE instructions cannot use a simple conversion
described above. For example, shuffles that move elements within 16 bytes cannot be naturally
converted to shuffles with 32 byte since 32 byte shuffles can't cross lanes.

You can use the following instructions as building blocks for working with lanes:
• VINSERTF128 - insert packed floating-point values.
• VEXTRACTF128 - extract packed floating-point values.
• VPERM2F128 - permute floating-point values.
• VBROADCAST - load with broadcast.

The sections below describe two techniques: the strided loads and the cross register overlap. These
methods implement the in lane data arrangement described above and are useful in many algorithms
that initially seem to require cross lane calculations.

Y7 .. Y4 X7 .. X4 Y3 ..Y0 X3 .. X0DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X3 .. X0Y7 .. Y4 X7 .. X4 Y3 ..Y0

Imm[1:0]Imm[1:0] Imm[3:2]Imm[3:2] Imm[5:4]Imm[5:4]Imm[7:6] Imm[7:6]Imm8:

Control Values 00b: X0/Y0 (Low lane), X4/Y4 (high lane)
Control Values 01b: X1/Y1 (Low lane), X5/Y5 (high lane)
Control Values 10b: X2/Y2 (Low lane), X6/Y6 (high lane)
Control Values 11b: X3/Y3 (Low lane), X7/Y7 (high lane)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-12

15.4.2 Strided Load Technique
The strided load technique is a programming method that uses Intel AVX instructions and is useful for
algorithms that involve unsupported cross-lane shuffles.

The method describes how to arrange data to avoid cross-lane shuffles. The main idea is to use 128-bit
loads in a way that mimics the corresponding Intel SSE algorithm, and enables the 256 Intel AVX instruc-
tions to execute iterations i of the loop in the low lanes and the iteration and i+k in the high lanes. In the
following example, k equals one.

The values in the low lanes of Ymm1 and Ymm2 in the figure above correspond to iteration i in the SSE
implementation. Similarly, the values in the high lanes of Ymm1 and Ymm2 correspond to iteration i+1.

The following example demonstrates the strided load method in a conversion of an Array of Structures
(AoS) to a Structure of Arrays (SoA). In this example, the input buffer contains complex numbers in an
AoS format. Each complex number is made of a real and an imaginary float values. The output buffer is
arranged as SoA. All the real components of the complex numbers are located at the first half of the
output buffer and all the imaginary components are located at the second half of the buffer. The following
pseudo code and figure illustrate the conversion:

Example 15-5. AoS to SoA Conversion of Complex Numbers in C Code

for (i = 0; i < N; i++)
{
 Real[i] = Complex[i].Real;
 Imaginary[i] = Complex[i].Imaginary;
}

15-13

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

A simple extension of the Intel SSE algorithm from 16-byte to 32-byte operations would require cross-
lane data transition, as shown in the following figure. However, this is not possible with Intel AVX archi-
tecture and a different technique is required.

The challenge of cross-lane shuffle can be overcome with Intel AVX for AoS to SoA conversion. Using
VINSERTF128 to load 16 bytes to the appropriate lane in the YMM registers obviates the need for
cross-lane shuffle. Once the data is organized properly in the YMM registers for step 1, 32-byte VSHUFPS
can be used to move the data in lanes, as shown in step 2.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-14

The following code compares the Intel SSE implementation of AoS to SoA with the 256-bit Intel AVX
implementation and demonstrates the performance gained.

15.4.3 The Register Overlap Technique
The register overlap technique is useful for algorithms that use shuffling. Similar to the strided load tech-
nique, the register overlap technique arranges data to avoid cross-lane shuffles.

This technique is useful for algorithm that process continues data, which is partially shared by sequential
iterations. The following figure illustrates the desired data layout. This is enabled by using overlapping
256-bit loads, or by using the VPERM2F128 instruction.

Example 15-6. Aos to SoA Conversion of Complex Numbers Using Intel® AVX
Intel® SSE Code Intel® AVX Code

xor rbx, rbx xor rbx, rbx

xor rdx, rdx xor rdx, rdx

mov rcx, len mov rcx, len

mov rdi, inPtr mov rdi, inPtr

mov rsi, outPtr1 mov rsi, outPtr1

mov rax, outPtr2 mov rax, outPtr2

loop1: loop1:

movups xmm0, [rdi+rbx] vmovups xmm0, [rdi+rbx]

//i1 r1 i0 r0 //i1 r1 i0 r0

movups xmm1, [rdi+rbx+16] vmovups xmm1, [rdi+rbx+16]

// i3 r3 i2 r2 // i3 r3 i2 r2

movups xmm2, xmm0 vinsertf128 ymm0, ymm0, [rdi+rbx+32] , 1

//i5 r5 i4 r4; i1 r1 i0 r0

shufps xmm0, xmm1, 0xdd vinsertf128 ymm1, ymm1, [rdi+rbx+48] , 1

//i3 i2 i1 i0 //i7 r7 i6 r6; i3 r3 i2 r2

shufps xmm2, xmm1, 0x88 vshufps ymm2, ymm0, ymm1, 0xdd

//r3 r2 r1 r0 //i7 i6 i5 i4; i3 i2 i1 i0

vshufps ymm3, ymm0, ymm1, 0x88

//r7 r6 r5 r4; r3 r2 r1 r0

movups [rax+rdx], xmm0 vmovups [rax+rdx], ymm2

movups [rsi+rdx], xmm2 vmovups [rsi+rdx], ymm3

add rdx, 16 add rdx, 32

add rbx, 32 add rbx, 64

cmp rcx, rbx cmp rcx, rbx

jnz loop1 jnz loop1

15-15

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The Median3 code sample below demonstrates the register overlap technique. The median3 technique
calculates the median of every three consecutive elements in a vector.

Y[i] = Median(X[i], X[i+1], X[i+2])

Where Y is the output vector and X is the input vector. The following figure illustrates the calculation done
by the median algorithm.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-16

Following are three implementations of the Median3 algorithm:
• Alternative 1 is the Intel SSE implementation.
• Alternatives 2 and 3 implement the register overlap technique in two ways.

— Alternative 2 loads the data from the input buffer into the YMM registers using overlapping 256-
bit load operations.

— Alternative 3 loads the data from the input buffer into the YMM registers using a 256-bit load
operation and VPERM2F128.

— Alternatives 2 and 3 gain performance by using wider vectors.

15.5 DATA GATHER AND SCATTER
This section describes techniques for implementing data gather and scatter operations using Intel AVX
instructions.

15.5.1 Data Gather
The gather operation reads elements from an input buffer based on indexes specified in an index buffer.
The gathered elements are written in an output buffer. The following figure illustrates an example for a
gather operation.

Example 15-7. Register Overlap Method for Median of 3 Numbers
1: SSE Code 2: 256-bit AVX w/ Overlapping Loads 3: 256-bit AVX with VPERM2F128

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
movaps xmm0, [rdi]

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

loop_start:
movaps xmm4, [rdi+16]
movaps xmm2, [rdi]
movaps xmm1, [rdi]
movaps xmm3, [rdi]

loop_start:
vshufps ymm2, ymm0,
 [rdi+16], 0x4E
vshufps ymm1, ymm0,
 ymm2, 0x99

loop_start:
add rdi, 32
vmovaps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E

add rdi, 16
add rbx, 4
shufps xmm2, xmm4, 0x4e
shufps xmm1, xmm2, 0x99
minps xmm3, xmm1
maxps xmm0, xmm1
minps xmm0, xmm2
maxps xmm0, xmm3
movaps [rsi], xmm0
movaps xmm0, xmm4
add rsi, 16
cmp rbx, rcx
jl loop_start

add rbx, 8
add rdi, 32

vminps ymm4, ymm0, ymm1
vmaxps ymm0, ymm0, ymm1
vminps ymm3, ymm0, ymm2
vmaxps ymm5, ymm3, ymm4
vmovaps [rsi], ymm5
add rsi, 32
vmovaps ymm0, [rdi]
cmp rbx, rcx
jl loop_start

vshufps ymm2, ymm0, ymm3, 0x99
add rbx, 8
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2
vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vmovaps [rsi], ymm7
add rsi, 32
cmp rbx, rcx
jl loop_start

15-17

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Following are 3 implementations for the gather operation from an array of 4 byte elements. Alternative 1
is a scalar implementation using general purpose registers. Alternative 2 and 3 use Intel AVX instruc-
tions. The figure below shows code snippets from Example 15-8 assuming that it runs the first iteration
on data from the previous figure.

Performance of the Intel AVX examples is similar to the performance of a corresponding Intel SSE imple-
mentation. The table below shows the three gather implementations.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-18

Example 15-8. Data Gather - Intel® AVX versus Scalar Code
1: Scalar Code 2: Intel® AVX w/ VINSERTPS 3: VINSERTPS+VSHUFPS

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
mov rax, [rdx]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 4], eax

mov rax, [rdx + 8]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 8], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 12], eax

loop1:
mov rax, [rdx + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm1, [rdi + 4*rbx]
vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x10
mov rax, [rdx + 8 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vinsertps xmm1, xmm1,
 [rdi + 4*rbx], 0x20

vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x30

loop1:
mov rax, [rdx + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm1, [rdi + 4*rbx]
vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x10
mov rax, [rdx + 8 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm3, [rdi + 4*rbx]
vinsertps xmm3, xmm3,
 [rdi + 4*rax], 0x10

vshufps xmm1, xmm1,
 xmm3, 0x44

mov rax, [rdx + 16]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 16], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 20], eax

mov rax, [rdx + 24]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 24], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 28], eax

add rsi, 32
add rdx, 32
add rcx, 8
cmp rcx, len
jl loop1

mov rax, [rdx + 16 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm2, [rdi + 4*rbx]
vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x10

mov rax, [rdx + 24 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vinsertps xmm2, xmm2,
 [rdi + 4*rbx], 0x20

vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x30

vinsertf128 ymm1, ymm1,
 xmm2, 1

vmovaps [rsi + 4*rcx], ymm1
add rcx, 8
cmp rcx, len
jl loop1

mov rax, [rdx + 16 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm2, [rdi + 4*rbx]
vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x10

mov rax, [rdx + 24 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm4, [rdi + 4*rbx]
vinsertps xmm4, xmm4,
 [rdi + 4*rax], 0x10

vshufps xmm2, xmm2,
 xmm4, 0x44

vinsertf128 ymm1, ymm1,
 xmm2, 1

vmovaps [rsi + 4*rcx], ymm1
add rcx, 8
cmp rcx, len
jl loop1

15-19

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15.5.2 Data Scatter
The scatter operation reads elements from an input buffer sequentially. It then writes them to an output
buffer based on indexes specified in an index buffer. The following figure illustrates an example for a
scatter operation.

The following table includes a scalar implementation and an Intel AVX implementation of a scatter
sequence. The Intel AVX examples consist mainly of 128-bit Intel AVX instructions. Performance of the
Intel AVX examples is similar to the performance of corresponding Intel SSE implementation.

Example 15-9. Scatter Operation Using Intel® AVX
Scalar Code AVX Code
mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
movsxd rax, [rdx]
mov ebx, [rdi]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 4]
mov ebx, [rdi + 4]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 8]

mov ebx, [rdi + 8]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 12]
mov ebx, [rdi + 12]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 16]
mov ebx, [rdi + 16]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 20]
mov ebx, [rdi + 20]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 24]
mov ebx, [rdi + 24]

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
vmovaps ymm0, [rdi + 4*rcx]
movsxd rax, [rdx + 4*rcx]
movsxd rbx, [rdx + 4*rcx + 4]
vmovss [rsi + 4*rax], xmm0
movsxd rax, [rdx + 4*rcx + 8]
vpalignr xmm1, xmm0, xmm0, 4

vmovss [rsi + 4*rbx], xmm1
movsxd rbx, [rdx + 4*rcx + 12]
vpalignr xmm2, xmm0, xmm0, 8
vmovss [rsi + 4*rax], xmm2
movsxd rax, [rdx + 4*rcx + 16]
vpalignr xmm3, xmm0, xmm0, 12
vmovss [rsi + 4*rbx], xmm3
movsxd rbx, [rdx + 4*rcx + 20]
vextractf128 xmm0, ymm0, 1
vmovss [rsi + 4*rax], xmm0
movsxd rax, [rdx + 4*rcx + 24]
vpalignr xmm1, xmm0, xmm0, 4
vmovss [rsi + 4*rbx], xmm1
movsxd rbx, [rdx + 4*rcx + 28]

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-20

15.6 DATA ALIGNMENT FOR INTEL® AVX
This section explains the benefit of aligning data that is used by Intel AVX instructions and proposes some
methods to improve performance when such alignment is not possible. Most examples in this section are
variations of the SAXPY kernel. SAXPY is the Scalar Alpha * X + Y algorithm.

The C code below is a C implementation of SAXPY.

for (int i = 0; i < n; i++)

{ c[i] = alpha * a[i] + b[i]; }

15.6.1 Align Data to 32 Bytes
Aligning data to vector length is recommended. When using 16-byte SIMD instructions, loaded data
should be aligned to 16 bytes. Similarly, for best results when using Intel AVX instructions with 32-byte
registers align the data to 32-bytes.

When using Intel AVX with unaligned 32-byte vectors, every second load is a cache-line split, since the
cache-line is 64 bytes. This doubles the cache line split rate compared to Intel SSE code that uses 16-
byte vectors. Even though split line access penalties have been reduced significantly since Nehalem
microarchitecture, a high cache-line split rate in memory-intensive code may cause performance degra-
dation.

mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 28]
mov ebx, [rdi + 28]
mov [rsi + 4*rax], ebx
add rdi, 32
add rdx, 32
add rcx, 8
cmp rcx, len
jl loop1

vpalignr xmm2, xmm0, xmm0, 8
vmovss [rsi + 4*rax], xmm2
vpalignr xmm3, xmm0, xmm0, 12
vmovss [rsi + 4*rbx], xmm3
add rcx, 8
cmp rcx, len
jl loop1

Example 15-9. Scatter Operation Using Intel® AVX (Contd.)
Scalar Code AVX Code

15-21

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

SAXPY is a memory intensive kernel that emphasizes the importance of data alignment. Optimal perfor-
mance requires both data source address to be 32-byte aligned and destination address also 32-byte
aligned. If only one of the three address is not aligned to 32-byte boundary, the performance may be
halved. If all three addresses are mis-aligned relative to 32 byte, the performance degrades further. In
some cases, unaligned accesses may result in lower performance for Intel AVX code compared to Intel
SSE code. Other Intel AVX kernels typically have more computation which can reduce the effect of the
data alignment penalty.
Assembly/Compiler Coding Rule 58. (H impact, M generality) Align data to 32-byte boundary
when possible. Prefer store alignment over load alignment.

You can use dynamic data alignment using the _mm_malloc intrinsic instruction with the Intel®
Compiler, or _aligned_malloc of the Microsoft* Compiler. For example:

//dynamically allocating 32byte aligned buffer with 2048 float elements.

InputBuffer = (float*) _mm_malloc (2048*sizeof(float), 32);

You can use static data alignment using __declspec(align(32)). For example:

//Statically allocating 32byte aligned buffer with 2048 float elements.

__declspec(align(32)) float InputBuffer[2048];

15.6.2 Consider 16-Byte Memory Access when Memory is Unaligned
For best results use Intel AVX 32-byte loads and align data to 32-bytes. However, there are cases where
you cannot align the data, or data alignment is unknown. This can happen when you are writing a library
function and the input data alignment is unknown. In these cases, using 16-byte memory accesses may
be the best alternative. The following method uses 16-byte loads while still benefiting from the 32-byte
YMM registers.

Example 15-10. SAXPY using Intel® AVX

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups ymm1, [rax + rdi]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi], ymm1
vmovups ymm1, [rax + rdi + 32]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi + 32]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi + 32], ymm1

add rdi, 64
cmp rdi, rdx
jl start_loop

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-22

NOTE
Beginning with Skylake microarchitecture, this optimization is not necessary. The only
case where 16-byte loads may be more efficient is when the data is 16-byte aligned but
not 32-byte aligned. In this case 16-byte loads might be preferable as no cache line split
memory accesses are issued.

Consider replacing unaligned 32-byte memory accesses using a combination of VMOVUPS,
VINSERTF128, and VEXTRACTF128 instructions.

Example 15-12 shows two implementations for SAXPY with unaligned addresses. Alternative 1 uses 32-
byte loads and alternative 2 uses 16-byte loads. These code samples are executed with two source
buffers, src1, src2, at 4 byte offset from 32-byte alignment, and a destination buffer, DST, that is 32-byte
aligned. Using two 16-byte memory operations in lieu of 32-byte memory access performs faster.1

Example 15-11. Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation

Convert 32-byte loads as follows:
vmovups ymm0, mem -> vmovups xmm0, mem

vinsertf128 ymm0, ymm0, mem+16, 1
Convert 32-byte stores as follows:

vmovups mem, ymm0 -> vmovups mem, xmm0
vextractf128 mem+16, ymm0, 1

The following intrinsics are available to handle unaligned 32-byte memory operating using 16-byte memory accesses:
_mm256_loadu2_m128 (float const * addr_hi, float const * addr_lo);
_mm256_loadu2_m128d (double const * addr_hi, double const * addr_lo);
_mm256_loadu2_m128 i(__m128i const * addr_hi, __m128i const * addr_lo);
_mm256_storeu2_m128 (float * addr_hi, float * addr_lo, __m256 a);
_mm256_storeu2_m128d (double * addr_hi, double * addr_lo, __m256d a);
_mm256_storeu2_m128 i(__m128i * addr_hi, __m128i * addr_lo, __m256i a);

1. Beginning with Haswell microarchitecture and onward, it is better to read the entire register: 32-byte register or 64-
byte register (with the availability of Intel® AVX-512).

Example 15-12. SAXPY Implementations for Unaligned Data Addresses
AVX with 32-byte memory operation AVX using two 16-byte memory operations

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups ymm1, [rax + rdi]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi], ymm1

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups xmm2, [rax+rdi]
vinsertf128 ymm2, ymm2, [rax+rdi+16], 1
vmulps ymm1, ymm0, ymm2
vmovups xmm2, [rbx + rdi]
vinsertf128 ymm2, ymm2, [rbx+rdi+16], 1
vaddps ymm1, ymm1, ymm2

15-23

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Assembly/Compiler Coding Rule 59. (M impact, H generality) Align data to 32-byte boundary
when possible. If it is not possible to align both loads and stores, then prefer store alignment over load
alignment.

15.6.3 Prefer Aligned Stores Over Aligned Loads
There are cases where it is possible to align only a subset of the processed data buffers. In these cases,
aligning data buffers used for store operations usually yields better performance than aligning data
buffers used for load operations.

Unaligned stores are likely to cause greater performance degradation than unaligned loads, since there
is a very high penalty on stores to a split cache-line that crosses pages. This penalty is estimated at 150
cycles. Stores that cross a page boundary are executed at retirement. In Example 15-12, unaligned store
address can affect SAXPY performance for 3 unaligned addresses to about one quarter of the aligned
case.

15.7 L1D CACHE LINE REPLACEMENTS

NOTE
Beginning with Haswell microarchitecture, cache line replacement is no longer a concern .

When a load misses the L1D Cache, a cache line with the requested data is brought from a higher
memory hierarchy level. In memory intensive code where the L1D Cache is always active, replacing a
cache line in the L1D Cache may delay other loads. In Sandy Bridge and Ivy Bridge microarchitectures,
the penalty for 32-Byte loads may be higher than the penalty for 16-Byte loads. Therefore, memory
intensive Intel AVX code with 32-Byte loads and with data set larger than the L1D Cache may be slower
than similar code with 16-Byte loads.

When Example 15-12 is run with a data set that resides in the L2 Cache, the 16-byte memory access
implementation is slightly faster than the 32-byte memory operation.

Be aware that the relative merit of 16-byte memory accesses versus 32-byte memory access is imple-
mentation specific across generations of microarchitectures.

In Haswell microarchitecture, the L1D Cache can support two 32-byte fetch each cycle.

vmovups ymm1, [rax+rdi+32]
vmulps ymm1, ymm1, ymm0

vmovups ymm2, [rbx+rdi+32]
vaddps ymm1, ymm1, ymm2
vmovups [rcx+rdi+32], ymm1

add rdi, 64
cmp rdi, rdx
jl start_loop

vmovups [rcx+rdi], ymm1
vmovups xmm2, [rax+rdi+32]
vinsertf128 ymm2, ymm2, [rax+rdi+48], 1
vmulps ymm1, ymm0, ymm2
vmovups xmm2, [rbx+rdi+32]
vinsertf128 ymm2, ymm2, [rbx+rdi+48], 1
vaddps ymm1, ymm1, ymm2
vmovups [rcx+rdi+32], ymm1
add rdi, 64
cmp rdi, rdx
jl start_loop

Example 15-12. SAXPY Implementations for Unaligned Data Addresses (Contd.)
AVX with 32-byte memory operation AVX using two 16-byte memory operations

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-24

15.8 4K ALIASING
4-KByte memory aliasing occurs when the code stores to one memory location and shortly after that it
loads from a different memory location with a 4-KByte offset between them. For example, a load to linear
address 0x400020 follows a store to linear address 0x401020.

The load and store have the same value for bits 5 - 11 of their addresses and the accessed byte offsets
should have partial or complete overlap.

4K aliasing may have a five-cycle penalty on the load latency. This penalty may be significant when 4K
aliasing happens repeatedly and the loads are on the critical path. If the load spans two cache lines it
might be delayed until the conflicting store is committed to the cache. Therefore 4K aliasing that happens
on repeated unaligned Intel AVX loads incurs a higher performance penalty.

To detect 4K aliasing, use the LD_BLOCKS_PARTIAL.ADDRESS_ALIAS event that counts the number of
times Intel AVX loads were blocked due to 4K aliasing.

To resolve 4K aliasing, try the following methods in the following order:
• Align data to 32 Bytes.
• Change offsets between input and output buffers if possible.
• Sandy Bridge and Ivy Bridge microarchitectures may benefit from using 16-Byte memory accesses

on memory which is not 32-Byte aligned.

15.9 CONDITIONAL SIMD PACKED LOADS AND STORES
The VMASKMOV instruction conditionally moves packed data elements to/from memory, depending on
the mask bits associated with each data element. The mask bit for each data element is the most signif-
icant bit of the corresponding element in the mask register.

When performing a mask load, the returned value is 0 for elements which have a corresponding mask
value of 0. The mask store instruction writes to memory only the elements with a corresponding mask
value of 1, while preserving memory values for elements with a corresponding mask value of 0. Faults
can occur only for memory accesses that are required by the mask. Faults do not occur due to refer-
encing any memory location if the corresponding mask bit value for that memory location is zero. For
example, no faults are detected if the mask bits are all zero.

The following figure shows an example for a mask load and a mask store which does not cause a fault. In
this example, the mask register for the load operation is ymm1 and the mask register for the store oper-
ation is ymm2.

When using masked load or store consider the following:
• On processors based on microarchitectures prior to Skylake, the address of a VMASKMOV store is

considered as resolved only after the mask is known. Loads that follow a masked store may be
blocked, depending on the memory disambiguation prediction, until the mask value is known.

• If the mask is not all 1 or all 0, loads that depend on the masked store have to wait until the store
data is written to the cache. If the mask is all 1 the data can be forwarded from the masked store to
the dependent loads. If the mask is all 0 the loads do not depend on the masked store.

15-25

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

• Masked loads including an illegal address range do not result in an exception if the range is under a
zero mask value. However, the processor may take a multi-hundred-cycle “assist” to determine that
no part of the illegal range have a one mask value. This assist may occur even when the mask is
“zero” and it seems obvious to the programmer that the load should not be executed.

When using VMASKMOV, consider the following:
• Use VMASKMOV only in cases where VMOVUPS cannot be used.
• Use VMASKMOV on 32Byte aligned addresses if possible.
• If possible use valid address range for masked loads, even if the illegal part is masked with zeros.
• Determine the mask as early as possible.
• Avoid store-forwarding issues by performing loads prior to a VMASKMOV store if possible.
• Be aware of mask values that would cause the VMASKMOV instruction to require assist (if an assist is

required, the latency of VMASKMOV to load data will increase dramatically):

— Load data using VMASKMOV with a mask value selecting 0 elements from an illegal address will
require an assist.

— Load data using VMASKMOV with a mask value selecting 0 elements from a legal address
expressed in some addressing form (e.g. [base+index], disp[base+index])will require an assist.

With processors based on the Skylake microarchitecture, the performance characteristics of VMASKMOV
instructions have the following notable items:
• Loads that follow a masked store is not longer blocked until the mask value is known.
• Store data using VMASKMOV with a mask value permitting 0 elements to be written to an illegal

address will require an assist.

15.9.1 Conditional Loops
VMASKMOV enables vectorization of loops that contain conditional code. There are two main benefits in
using VMASKMOV over the scalar implementation in these cases:
• VMASKMOV code is vectorized.
• Branch mispredictions are eliminated.

Below is a conditional loop C code:

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-26

Example 15-13. Loop with Conditional Expression

for(int i = 0; i < miBufferWidth; i++)
{ if(A[i]>0)

{ B[i] = (E[i]*C[i]);
}
else
{ B[i] = (E[i]*D[i]);
}

}

Example 15-14. Handling Loop Conditional with VMASKMOV
Scalar AVX using VMASKMOV
float* pA = A;
float* pB = B;
float* pC = C;
float* pD = D;
float* pE = E;
uint64 len = (uint64) (miBuffer-
Width)*sizeof(float);
__asm
{

mov rax, pA
mov rbx, pB
mov rcx, pC
mov rdx, pD
mov rsi, pE
mov r8, len

float* pA = A;
float* pB = B;
float* pC = C;
float* pD = D;
float* pE = E;
uint64 len = (uint64) (miBufferWidth)*sizeof(float);
__asm
{

mov rax, pA
mov rbx, pB
mov rcx, pC
mov rdx, pD
mov rsi, pE
mov r8, len

//xmm8 all zeros
vxorps xmm8, xmm8, xmm8

xor r9, r9
loop1:

vmovss xmm1, [rax+r9]
vcomiss xmm1, xmm8
jbe a_le

a_gt:
vmovss xmm4, [rcx+r9]
jmp mul

a_le:
vmovss xmm4, [rdx+r9]

mul:
vmulss xmm4, xmm4, [rsi+r9]
vmovss [rbx+r9], xmm4
add r9, 4
cmp r9, r8

 jl loop1
}

//ymm8 all zeros
 vxorps ymm8, ymm8, ymm8
 //ymm9 all ones
 vcmpps ymm9, ymm8, ymm8, 0
 xor r9, r9
loop1:
 vmovups ymm1, [rax+r9]
 vcmpps ymm2, ymm8, ymm1, 1
 vmaskmovps ymm4, ymm2, [rcx+r9]
 vxorps ymm2, ymm2, ymm9
 vmaskmovps ymm5, ymm2, [rdx+r9]
 vorps ymm4, ymm4, ymm5
 vmulps ymm4, ymm4, [rsi+r9]
 vmovups [rbx+r9], ymm4
 add r9, 32
 cmp r9, r8
 jl loop1
}

15-27

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The performance of the left side of Example 15-14 is sensitive to branch mis-predictions and can be an
order of magnitude slower than the VMASKMOV example which has no data-dependent branches.

15.10 MIXING INTEGER AND FLOATING-POINT CODE
Integer SIMD functionalities in Intel AVX instructions are limited to 128-bit. There are some algorithm
that uses mixed integer SIMD and floating-point SIMD instructions. Therefore, porting such legacy 128-
bit code into 256-bit AVX code requires special attention.

For example, PALINGR (Packed Align Right) is an integer SIMD instruction that is useful arranging data
elements for integer and floating-point code. But VPALINGR instruction does not have a corresponding
256-bit instruction in AVX.

There are three approaches to consider when porting legacy code consisting of mostly floating-point with
some integer operations into 256-bit AVX code:
• Locate a 256-bit AVX alternative to replace the critical128-bit Integer SIMD instructions if such an

AVX instructions exist. This is more likely to be true with integer SIMD instruction that rearranges
data elements.

• Mix 128-bit AVX and 256-bit AVX instructions.
• Use Intel AVX2 instructions.

The performance gain from these two approaches may vary. Where possible, use method (1), since this
method utilizes the full 256-bit vector width.

In case the code is mostly integer, convert the code from 128-bit SSE to 128 bit AVX instructions and gain
from the Non destructive Source (NDS) feature.

Example 15-15. Three-Tap Filter in C Code

for(int i = 0; i < len -2; i++)
{

pOut[i] = A[i]*coeff[0]+A[i+1]*coeff[1]+A[i+2]*coeff[2];
}

Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
movss xmm2, [r15] // load coeff 0
shufps xmm2, xmm2, 0 // broadcast coeff 0
movss xmm1, [r15+4] // load coeff 1
shufps xmm1, xmm1, 0 // broadcast coeff 1
movss xmm0, [r15+8] // coeff 2
shufps xmm0, xmm0, 0 // broadcast coeff 2
movaps xmm5, [rdi] // xmm5={A[n+3],A[n+2],A[n+1],A[n]}

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-28

 loop_start:
movaps xmm6, [rdi+16] // xmm6={A[n+7],A[n+6],A[n+5],A[n+4]}
movaps xmm7, xmm6
movaps xmm8, xmm6
add rdi, 16 // inPtr+=16
add rbx, 4 // loop counter
palignr xmm7, xmm5, 4 // xmm7={A[n+4],A[n+3],A[n+2],A[n+1]}
palignr xmm8, xmm5, 8 // xmm8={A[n+5],A[n+4],A[n+3],A[n+2]}
mulps xmm5, xmm2 //xmm5={C0*A[n+3],C0*A[n+2],C0*A[n+1], C0*A[n]}

mulps xmm7, xmm1 // xmm7={C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}
mulps xmm8, xmm0 // xmm8={C2*A[n+5],C2*A[n+4] C2*A[n+3],C2*A[n+2]}
addps xmm7 ,xmm5
addps xmm7, xmm8
movaps [rsi], xmm7

 movaps xmm5, xmm6
add rsi, 16 // outPtr+=16
cmp rbx, rcx
jl loop_start

Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
vbroadcastss ymm2, [r15] // load and broadcast coeff 0
vbroadcastss ymm1, [r15+4] // load and broadcast coeff 1
vbroadcastss ymm0, [r15+8] // load and broadcast coeff 2

Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD (Contd.)

15-29

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

loop_start:
vmovaps ymm5, [rdi] // Ymm5={A[n+7],A[n+6],A[n+5],A[n+4];

// A[n+3],A[n+2],A[n+1] , A[n]}
vshufps ymm6, ymm5, [rdi+16], 0x4e // ymm6={A[n+9],A[n+8],A[n+7],A[n+6];

// A[n+5],A[n+4],A[n+3],A[n+2]}
vshufps ymm7, ymm5, ymm6, 0x99 // ymm7={A[n+8],A[n+7],A[n+6],A[n+5];

// A[n+4],A[n+3],A[n+2],A[n+1]}
vmulps ymm3, ymm5, ymm2 // ymm3={C0*A[n+7],C0*A[n+6],C0*A[n+5],C0*A[n+4];

// C0*A[n+3],C0*A[n+2],C0*A[n+1],C0*A[n]}
vmulps ymm9, ymm7, ymm1 // ymm9={C1*A[n+8],C1*A[n+7],C1*A[n+6],C1*A[n+5];

// C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}
vmulps ymm4, ymm6, ymm0 // ymm4={C2*A[n+9],C2*A[n+8],C2*A[n+7],C2*A[n+6];

// C2*A[n+5],C2*A[n+4],C2*A[n+3],C2*A[n+2]}
vaddps ymm8, ymm3, ymm4
vaddps ymm10, ymm8, ymm9
vmovaps [rsi], ymm10
add rdi, 32 // inPtr+=32
add rbx, 8 // loop counter
add rsi, 32 // outPtr+=32
cmp rbx, rcx
jl loop_start

Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
vbroadcastss ymm2, [r15] // load and broadcast coeff 0
vbroadcastss ymm1, [r15+4] // load and broadcast coeff 1
vbroadcastss ymm0, [r15+8] // load and broadcast coeff 2
vmovaps xmm3, [rdi] // xmm3={A[n+3],A[n+2],A[n+1],A[n]}

loop_start:
vmovaps xmm4, [rdi+16] // xmm4={A[n+7],A[n+6],A[n+5],A[n+4]}
vmovaps xmm5, [rdi+32] // xmm5={A[n+11], A[n+10],A[n+9],A[n+8]}
vinsertf128 ymm3, ymm3, xmm4, 1 // ymm3={A[n+7],A[n+6],A[n+5],A[n+4];

 // A[n+3], A[n+2],A[n+1],A[n]}
vpalignr xmm6, xmm4, xmm3, 4 // xmm6={A[n+4],A[n+3],A[n+2],A[n+1]}
vpalignr xmm7, xmm5, xmm4, 4 // xmm7={A[n+8],A[n+7],A[n+6],A[n+5]}
vinsertf128 ymm6, ymm6, xmm7, 1 // ymm6={A[n+8],A[n+7],A[n+6],A[n+5];

 // A[n+4],A[n+3],A[n+2],A[n+1]}
vpalignr xmm8, xmm4, xmm3, 8 // xmm8={A[n+5],A[n+4],A[n+3],A[n+2]}
vpalignr xmm9, xmm5, xmm4, 8 // xmm9={A[n+9],A[n+8],A[n+7],A[n+6]}
vinsertf128 ymm8, ymm8, xmm9, 1 // ymm8={A[n+9],A[n+8],A[n+7],A[n+6];

 // A[n+5],A[n+4],A[n+3],A[n+2]}
vmulps ymm3, ymm3, ymm2 // ymm3={C0*A[n+7],C0*A[n+6],C0*A[n+5], C0*A[n+4];

// C0*A[n+3],C0*A[n+2],C0*A[n+1],C0*A[n]}
vmulps ymm6, ymm6, ymm1 // ymm6={C1*A[n+8],C1*A[n+7],C1*A[n+6],C1*A[n+5];

// C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}

Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-30

Example 15-17 uses 256-bit VSHUFPS to replace the PALIGNR in 128-bit mixed SSE code. This speeds up
almost 70% over the 128-bit mixed SSE code of Example 15-16 and slightly ahead of Example 15-18.

For code that includes integer instructions and is written with 256-bit Intel AVX instructions, replace the
integer instruction with floating-point instructions that have similar functionality and performance. If
there is no similar floating-point instruction, consider using a 128-bit Intel AVX instruction to perform the
required integer operation.

15.11 HANDLING PORT 5 PRESSURE
Port 5 in Sandy Bridge microarchitecture includes shuffle units which frequently become a performance
bottleneck. Ice Lake Client microarchitecture has added a restricted, in-lane shuffle unit to port 1 to help
reduce some of the pressure. Shuffle operations which can be restructured to operate in-lane will benefit
from this unit. Sometimes it is possible to replace shuffle instructions that dispatch only on port 5, with
different instructions and improve performance by reducing port 5 pressure. For more information, see
Table E-11.

15.11.1 Replace Shuffles with Blends
There are a few cases where shuffles such as VSHUFPS or VPERM2F128 can be replaced by blend instruc-
tions. Intel AVX shuffles are executed only on port 5, while blends are also executed on port 0. Therefore,
replacing shuffles with blends could reduce port 5 pressure. The following figure shows how a VSHUFPS
is implemented using VBLENDPS.

vmulps ymm8, ymm8, ymm0 // ymm8={C2*A[n+9],C2*A[n+8],C2*A[n+7],C2*A[n+6];
 // C2*A[n+5],C2*A[n+4],C2*A[n+3],C2*A[n+2]}

vaddps ymm3, ymm3, ymm6
vaddps ymm3, ymm3, ymm8
vmovaps [rsi], ymm3
vmovaps xmm3, xmm5
add rdi, 32 // inPtr+=32
add rbx, 8 // loop counter
add rsi, 32 // outPtr+=32
cmp rbx, rcx
jl loop_start

Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code (Contd.)

15-31

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The following example shows two implementations of an 8x8 Matrix transpose. In both cases, the bottle-
neck is Port 5 pressure. Alternative 1 uses 12 vshufps instructions that are executed only on port 5. Alter-
native 2 replaces eight of the vshufps instructions with the vblendps instruction which can be executed
on Port 0.

Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends
256-bit AVX using VSHUFPS AVX replacing VSHUFPS with VBLENDPS
mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps ymm9, [rcx]
vmovaps ymm10, [rcx+32]
vmovaps ymm11, [rcx+64]
vmovaps ymm12, [rcx+96]
vmovaps ymm13, [rcx+128]
vmovaps ymm14, [rcx+160]
vmovaps ymm15, [rcx+192]
vmovaps ymm2, [rcx+224]
vunpcklps ymm6, ymm9, ymm10
vunpcklps ymm1, ymm11, ymm12
vunpckhps ymm8, ymm9, ymm10
vunpcklps ymm0, ymm13, ymm14
vunpcklps ymm9, ymm15, ymm2
vshufps ymm3, ymm6, ymm1, 0x4E
vshufps ymm10, ymm6, ymm3, 0xE4
vshufps ymm6, ymm0, ymm9, 0x4E
vunpckhps ymm7, ymm11, ymm12
vshufps ymm11, ymm0, ymm6, 0xE4

mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps ymm9, [rcx]
vmovaps ymm10, [rcx+32]
vmovaps ymm11, [rcx+64]
vmovaps ymm12, [rcx+96]
vmovaps ymm13, [rcx+128]
vmovaps ymm14, [rcx+160]
vmovaps ymm15, [rcx+192]
vmovaps ymm2, [rcx+224]
vunpcklps ymm6, ymm9, ymm10
vunpcklps ymm1, ymm11, ymm12
vunpckhps ymm8, ymm9, ymm10
vunpcklps ymm0, ymm13, ymm14
vunpcklps ymm9, ymm15, ymm2
vshufps ymm3, ymm6, ymm1, 0x4E
vblendps ymm10, ymm6, ymm3, 0xCC
vshufps ymm6, ymm0, ymm9, 0x4E
vunpckhps ymm7, ymm11, ymm12
vblendps ymm11, ymm0, ymm6, 0xCC

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-32

In Example 15-19, replacing VSHUFPS with VBLENDPS relieved port 5 pressure and can gain almost 40%
speedup.
Assembly/Compiler Coding Rule 60. (M impact, M generality) Use Blend instructions in lieu of
shuffle instruction in AVX whenever possible.

15.11.2 Design Algorithm with Fewer Shuffles
In some cases you can reduce port 5 pressure by changing the algorithm to use less shuffles. The figure
below shows that the transpose moved all the elements in rows 0-4 to the low lanes, and all the elements
in rows 4-7 to the high lanes. Therefore, using 256-bit loads in the beginning of the algorithm requires
using VPERM2F128 in order to swap elements between the lanes. The processor executes the
VPERM2F128 instruction only on port 5.

Example 15-19 used eight 256-bit loads and eight VPERM2F128 instructions. You can implement the
same 8x8 Matrix Transpose using VINSERTF128 instead of the 256-bit loads and the eight VPERM2F128.
Using VINSERTF128 from memory is executed in the load ports and on port 0 or 5. The original method
required loads that are performed on the load ports and VPERM2F128 that is only performed on port 5.
Therefore redesigning the algorithm to use VINSERTF128 reduces port 5 pressure and improves perfor-
mance.

vshufps ymm12, ymm3, ymm1, 0xE4
vperm2f128 ymm3, ymm10, ymm11, 0x20
vmovaps [rdx], ymm3
vunpckhps ymm5, ymm13, ymm14
vshufps ymm13, ymm6, ymm9, 0xE4
vunpckhps ymm4, ymm15, ymm2
vperm2f128 ymm2, ymm12, ymm13, 0x20
vmovaps 32[rdx], ymm2
vshufps ymm14, ymm8, ymm7, 0x4E
vshufps ymm15, ymm14, ymm7, 0xE4
vshufps ymm7, ymm5, ymm4, 0x4E
vshufps ymm8, ymm8, ymm14, 0xE4
vshufps ymm5, ymm5, ymm7, 0xE4
vperm2f128 ymm6, ymm8, ymm5, 0x20
vmovaps 64[rdx], ymm6
vshufps ymm4, ymm7, ymm4, 0xE4
vperm2f128 ymm7, ymm15, ymm4, 0x20
vmovaps 96[rdx], ymm7
vperm2f128 ymm1, ymm10, ymm11, 0x31
vperm2f128 ymm0, ymm12, ymm13, 0x31
vmovaps 128[rdx], ymm1
vperm2f128 ymm5, ymm8, ymm5, 0x31
vperm2f128 ymm4, ymm15, ymm4, 0x31
vmovaps 160[rdx], ymm0
vmovaps 192[rdx], ymm5
vmovaps 224[rdx], ymm4
dec r10
jnz loop1

vblendps ymm12, ymm3, ymm1, 0xCC
vperm2f128 ymm3, ymm10, ymm11, 0x20
vmovaps [rdx], ymm3
vunpckhps ymm5, ymm13, ymm14
vblendps ymm13, ymm6, ymm9, 0xCC
vunpckhps ymm4, ymm15, ymm2
vperm2f128 ymm2, ymm12, ymm13, 0x20
vmovaps 32[rdx], ymm2
vshufps ymm14, ymm8, ymm7, 0x4E
vblendps ymm15, ymm14, ymm7, 0xCC
vshufps ymm7, ymm5, ymm4, 0x4E
vblendps ymm8, ymm8, ymm14, 0xCC
vblendps ymm5, ymm5, ymm7, 0xCC
vperm2f128 ymm6, ymm8, ymm5, 0x20
vmovaps 64[rdx], ymm6
vblendps ymm4, ymm7, ymm4, 0xCC
vperm2f128 ymm7, ymm15, ymm4, 0x20
vmovaps 96[rdx], ymm7
vperm2f128 ymm1, ymm10, ymm11, 0x31
vperm2f128 ymm0, ymm12, ymm13, 0x31
vmovaps 128[rdx], ymm1
vperm2f128 ymm5, ymm8, ymm5, 0x31
vperm2f128 ymm4, ymm15, ymm4, 0x31
vmovaps 160[rdx], ymm0
vmovaps 192[rdx], ymm5
vmovaps 224[rdx], ymm4
dec r10
jnz loop1

Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends (Contd.)
256-bit AVX using VSHUFPS AVX replacing VSHUFPS with VBLENDPS

15-33

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The following figure describes step 1 of the 8x8 matrix transpose with vinsertf128. Step 2 performs the
same operations on different columns.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-34

Example 15-20. 8x8 Matrix Transpose Using VINSERTPS

mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps xmm0, [rcx]
vinsertf128 ymm0, ymm0, [rcx + 128], 1
vmovaps xmm1, [rcx + 32]
vinsertf128 ymm1, ymm1, [rcx + 160], 1

vunpcklpd ymm8, ymm0, ymm1
vunpckhpd ymm9, ymm0, ymm1
vmovaps xmm2, [rcx+64]
vinsertf128 ymm2, ymm2, [rcx + 192], 1
vmovaps xmm3, [rcx+96]
vinsertf128 ymm3, ymm3, [rcx + 224], 1
vunpcklpd ymm10, ymm2, ymm3
vunpckhpd ymm11, ymm2, ymm3
vshufps ymm4, ymm8, ymm10, 0x88
vmovaps [rdx], ymm4
vshufps ymm5, ymm8, ymm10, 0xDD
vmovaps [rdx+32], ymm5
vshufps ymm6, ymm9, ymm11, 0x88
vmovaps [rdx+64], ymm6
vshufps ymm7, ymm9, ymm11, 0xDD
vmovaps [rdx+96], ymm7
vmovaps xmm0, [rcx+16]
vinsertf128 ymm0, ymm0, [rcx + 144], 1
vmovaps xmm1, [rcx + 48]
vinsertf128 ymm1, ymm1, [rcx + 176], 1

vunpcklpd ymm8, ymm0, ymm1
vunpckhpd ymm9, ymm0, ymm1

vmovaps xmm2, [rcx+80]
vinsertf128 ymm2, ymm2, [rcx + 208], 1
vmovaps xmm3, [rcx+112]
vinsertf128 ymm3, ymm3, [rcx + 240], 1

vunpcklpd ymm10, ymm2, ymm3
vunpckhpd ymm11, ymm2, ymm3
vshufps ymm4, ymm8, ymm10, 0x88
vmovaps [rdx+128], ymm4
vshufps ymm5, ymm8, ymm10, 0xDD
vmovaps [rdx+160], ymm5
vshufps ymm6, ymm9, ymm11, 0x88
vmovaps [rdx+192], ymm6
vshufps ymm7, ymm9, ymm11, 0xDD
vmovaps [rdx+224], ymm7
dec r10
jnz loop1

15-35

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

In Example 15-20, this reduced port 5 pressure further than the combination of VSHUFPS with
VBLENDPS in Example 15-19. It can gain 70% speedup relative to relying on VSHUFPS alone in Example
15-19.

15.11.3 Perform Basic Shuffles on Load Ports
Some shuffles can be executed in the load ports (ports 2, 3) if the source is from memory. The following
example shows how moving some shuffles (vmovsldup/vmovshdup) from Port 5 to the load ports
improves performance significantly.

The following figure describes an Intel AVX implementation of the complex multiply algorithm with
vmovsldup/vmovshdup on the load ports.

Example 15-21 includes two versions of the complex multiply. Both versions are unrolled twice. Alterna-
tive 1 shuffles all the data in registers. Alternative 2 shuffles data while it is loaded from memory.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-36

15.12 DIVIDE AND SQUARE ROOT OPERATIONS
In Intel microarchitectures prior to Skylake, the SSE divide and square root instructions DIVPS and
SQRTPS have a latency of 14 cycles (or the neighborhood) and they are not pipelined. This means that
the throughput of these instructions is one in every 14 cycles. The 256-bit Intel AVX instructions VDIVPS
and VSQRTPS execute with 128-bit data path and have a latency of 28 cycles and they are not pipelined
as well. Therefore, the performance of the Intel SSE divide and square root instructions is similar to the
Intel AVX 256-bit instructions on Sandy Bridge microarchitecture.

With the Skylake microarchitecture, 256-bit and 128-bit version of (V)DIVPS/(V)SQRTPS have the same
latency because the 256-bit version can execute with a 256-bit data path. The latency is improved and is
pipelined to execute with significantly improved throughput. See Appendix D.3, “Latency and
Throughput”.

In microarchitectures that provide DIVPS/SQRTPS with high latency and low throughput, it is possible to
speed up single-precision divide and square root calculations using the (V)RSQRTPS and (V)RCPPS
instructions. For example, with 128-bit RCPPS/RSQRTPS at 5-cycle latency and 1-cycle throughput or
with 256-bit implementation of these instructions at 7-cycle latency and 2-cycle throughput, a single
Newton-Raphson iteration or Taylor approximation can achieve almost the same precision as the

Example 15-21. Port 5 versus Load Port Shuffles
Shuffles data in registers Shuffling loaded data
mov rax, inPtr1
mov rbx, inPtr2
mov rdx, outPtr
mov r8, len
xor rcx, rcx

loop1:
vmovaps ymm0, [rax +8*rcx]
vmovaps ymm4, [rax +8*rcx +32]
vmovaps ymm3, [rbx +8*rcx]
vmovsldup ymm2, ymm3
vmulps ymm2, ymm2, ymm0
vshufps ymm0, ymm0, ymm0, 177
vmovshdup ymm1, ymm3
vmulps ymm1, ymm1, ymm0
vmovaps ymm7, [rbx +8*rcx +32]
vmovsldup ymm6, ymm7
vmulps ymm6, ymm6, ymm4
vaddsubps ymm2, ymm2, ymm1
vmovshdup ymm5, ymm7

mov rax, inPtr1
mov rbx, inPtr2
mov rdx, outPtr
mov r8, len
xor rcx, rcx

loop1:
vmovaps ymm0, [rax +8*rcx]
vmovaps ymm4, [rax +8*rcx +32]

vmovsldup ymm2, [rbx +8*rcx]
vmulps ymm2, ymm2, ymm0
vshufps ymm0, ymm0, ymm0, 177
vmovshdup ymm1, [rbx +8*rcx]
vmulps ymm1, ymm1, ymm0
vmovsldup ymm6, [rbx +8*rcx +32]
vmulps ymm6, ymm6, ymm4
vaddsubps ymm3, ymm2, ymm1
vmovshdup ymm5, [rbx +8*rcx +32]

vmovaps [rdx+8*rcx], ymm2
vshufps ymm4, ymm4, ymm4, 177
vmulps ymm5, ymm5, ymm4
vaddsubps ymm6, ymm6, ymm5
vmovaps [rdx+8*rcx+32], ymm6

add rcx, 8
cmp rcx, r8
jl loop1

vmovaps [rdx +8*rcx], ymm3
vshufps ymm4, ymm4, ymm4, 177
vmulps ymm5, ymm5, ymm4
vaddsubps ymm7, ymm6, ymm5
vmovaps [rdx +8*rcx +32], ymm7

add rcx, 8
cmp rcx, r8
jl loop1

15-37

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

(V)DIVPS and (V)SQRTPS instructions. See Intel® 64 and IA-32 Architectures Software Developer's
Manual for more information on these instructions.

In some cases, when the divide or square root operations are part of a larger algorithm that hides some
of the latency of these operations, the approximation with Newton-Raphson can slow down execution,
because more micro-ops, coming from the additional instructions, fill the pipe.

With the Skylake microarchitecture, choosing between approximate reciprocal instruction alternative
versus DIVPS/SQRTPS for optimal performance of simple algebraic computations depend on a number of
factors. Table 15-5 shows several algebraic formula the throughput comparison of implementations of
different numeric accuracy tolerances. In each row, 24-bit accurate implementations are IEEE-compliant
and using the respective instructions of 128-bit or 256-bit ISA. The columns of 22-bit and 11-bit accurate
implementations are using approximate reciprocal instructions of the respective instruction set.

If targeting processors based on the Skylake microarchitecture, Table 15-5 can be summarized as:
• For 256- bit AVX code, Newton-Raphson approximation can be beneficial on Skylake microarchi-

tecture when the algorithm contains only operations executed on the divide unit. However, when
single precision divide or square root operations are part of a longer computation, the lower latency
of the DIVPS or SQRTPS instructions can lead to better overall performance.

• For SSE or 128-bit AVX implementation, consider use of approximation for divide and square root
instructions only for algorithms that do not require precision higher than 11-bit or algorithms that
contain multiple operations executed on the divide unit.

Table 15-6 summarizes recommended calculation methods of divisions or square root when using single-
precision instructions, based on the desired accuracy level across recent generations of Intel microarchi-
tectures.

Table 15-5. Comparison of Numeric Alternatives of Selected Linear Algebra in Skylake Microarchitecture
Algorithm Instruction Type 24-bit Accurate 22-bit Accurate 11-bit Accurate

Z = X/Y SSE 1X 0.9X 1.3X

256-bit AVX 1X 1.5X 2.6X

Z = X0.5 SSE 1X 0.7X 2X

256-bit AVX 1X 1.4X 3.4X

Z = X-0.5 SSE 1X 1.7X 4.3X

256-bit AVX 1X 3X 7.7X

Z = (X *Y + Y*Y)0.5 SSE 1X 0.75X 0.85X

256-bit AVX 1X 1.1X 1.6X

Z = (X+2Y+3)/(Z-2Y-3) SSE 1X 0.85X 1X

256-bit AVX 1X 0.8X 1X

Table 15-6. Single-Precision Divide and Square Root Alternatives
Operation Accuracy Tolerance Recommendation

Divide 24 bits (IEEE) DIVPS

~ 22 bits Skylake: Consult Table 15-5
Prior uarch: RCPPS + 1 Newton-Raphson Iteration + MULPS

~ 11 bits RCPPS + MULPS

Reciprocal square
root

24 bits (IEEE) SQRTPS + DIVPS

~ 22 bits RSQRTPS + 1 Newton-Raphson Iteration

~ 11 bits RSQRTPS

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-38

15.12.1 Single-Precision Divide
To compute:

Z[i]=A[i]/B[i]

On a large vector of single-precision numbers, Z[i] can be calculated by a divide operation, or by multi-
plying 1/B[i] by A[i].

Denoting B[i] by N, it is possible to calculate 1/N using the (V)RCPPS instruction, achieving approxi-
mately 11-bit precision.

For better accuracy you can use the one Newton-Raphson iteration:

X_(0) ~= 1/N ; Initial estimation, rcp(N)

X_(0) = 1/N*(1-E)

E=1-N*X_0 ; E ~= 2^(-11)

X_1=X_0*(1+E)=1/N*(1-E^2) ; E^2 ~= 2^(-22)

X_1=X_0*(1+1-N*X_0)= 2 *X_0 - N*X_0^2

X_1 is an approximation of 1/N with approximately 22-bit precision.

Square root 24 bits (IEEE) SQRTPS

~ 22 bits Skylake: Consult Table 15-5
Prior uarch: RSQRTPS + 1 Newton-Raphson Iteration + MULPS

~ 11 bits RSQRTPS + RCPPS

Example 15-22. Divide Using DIVPS for 24-bit Accuracy
SSE code using DIVPS Using VDIVPS
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0, [rax+rdx*1]
movups xmm1, [rbx+rdx*1]
divps xmm0, xmm1
movups [rcx+rdx*1], xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
vmovups ymm0, [rax+rdx*1]
vmovups ymm1, [rbx+rdx*1]
vdivps ymm0, ymm0, ymm1
vmovups [rcx+rdx*1], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

Table 15-6. Single-Precision Divide and Square Root Alternatives (Contd.)
Operation Accuracy Tolerance Recommendation

15-39

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15.12.2 Single-Precision Reciprocal Square Root
To compute Z[i]=1/ (A[i]) ^0.5 on a large vector of single-precision numbers, denoting A[i] by N, it is
possible to calculate 1/N using the (V)RSQRTPS instruction.

For better accuracy you can use one Newton-Raphson iteration:

Example 15-23. Divide Using RCPPS 11-bit Approximation
SSE code using RCPPS Using VRCPPS
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0,[rax+rdx*1]
movups xmm1,[rbx+rdx*1]
rcpps xmm1,xmm1
mulps xmm0,xmm1
movups [rcx+rdx*1],xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

loop1:
vmovups ymm0, [rax+rdx]
vmovups ymm1, [rbx+rdx]
vrcpps ymm1, ymm1
vmulps ymm0, ymm0, ymm1
vmovups [rcx+rdx], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

Example 15-24. Divide Using RCPPS and Newton-Raphson Iteration
RCPPS + MULPS ~ 22 bit accuracy VRCPPS + VMULPS ~ 22 bit accuracy
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0, [rax+rdx*1]
movups xmm1, [rbx+rdx*1]
rcpps xmm3, xmm1
movaps xmm2, xmm3
addps xmm3, xmm2
mulps xmm2, xmm2
mulps xmm2, xmm1
subps xmm3, xmm2
mulps xmm0, xmm3
movups [rcx+rdx*1], xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

loop1:
vmovups ymm0, [rax+rdx]
vmovups ymm1, [rbx+rdx]
vrcpps ymm3, ymm1

vaddps ymm2, ymm3, ymm3
vmulps ymm3, ymm3, ymm3
vmulps ymm3, ymm3, ymm1
vsubps ymm2, ymm2, ymm3
vmulps ymm0, ymm0, ymm2
vmovups [rcx+rdx], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-40

X_0 ~=1/N ; Initial estimation RCP(N)

E=1-N*X_0^2

X_0= (1/N)^0.5 * ((1-E)^0.5) = (1/N)^0.5 * (1-E/2) ; E/2~= 2^(-11)

X_1=X_0*(1+E/2) ~= (1/N)^0.5 * (1-E^2/4) ; E^2/4?2^(-22)

X_1=X_0*(1+1/2-1/2*N*X_0^2)= 1/2*X_0*(3-N*X_0^2)

X1 is an approximation of (1/N)^0.5 with approximately 22-bit precision.

Example 15-25. Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracy
Using SQRTPS, DIVPS Using VSQRTPS, VDIVPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
sqrtps xmm0, xmm1
divps xmm0, xmm1
movups [rbx+rdx], xmm0
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vmovups ymm1, [rax+rdx]
vsqrtps ymm0, ymm1
vdivps ymm0, ymm0, ymm1
vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

Example 15-26. Reciprocal Square Root Using RSQRTPS 11-bit Approximation
SSE code using RSQRTPS Using VRSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
rsqrtps xmm0, [rax+rdx]
movups [rbx+rdx], xmm0
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vrsqrtps ymm0, [rax+rdx]
vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

15-41

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15.12.3 Single-Precision Square Root
To compute Z[i]= (A[i])^0.5 on a large vector of single-precision numbers, denoting A[i] by N, the
approximation for N^0.5 is N multiplied by (1/N)^0.5 , where the approximation for (1/N)^0.5 is
described in the previous section.

To get approximately 22-bit precision of N^0.5, use the following calculation:

N^0.5 = X_1*N = 1/2*N*X_0*(3-N*X_0^2)

Example 15-27. Reciprocal Square Root Using RSQRTPS and Newton-Raphson Iteration
RSQRTPS + MULPS ~ 22 bit accuracy VRSQRTPS + VMULPS ~ 22 bit accuracy
__declspec(align(16)) float minus_half[4] = {-0.5, -0.5, -
0.5, -0.5};
__declspec(align(16)) float three[4] = {3.0, 3.0, 3.0,
3.0};
__asm
{

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx
movups xmm3, [three]
movups xmm4, [minus_half]

__declspec(align(32)) float half[8] =
{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
__declspec(align(32)) float three[8] =
{3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};
__asm
{

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx
vmovups ymm3, [three]
vmovups ymm4, [half]

loop1:
movups xmm5, [rax+rdx]
rsqrtps xmm0, xmm5
movaps xmm2, xmm0
mulps xmm0, xmm0
mulps xmm0, xmm5
subps xmm0, xmm3
mulps xmm0, xmm2
mulps xmm0, xmm4
movups [rbx+rdx], xmm0

loop1:
vmovups ymm5, [rax+rdx]
vrsqrtps ymm0, ymm5

vmulps ymm2, ymm0, ymm0
vmulps ymm2, ymm2, ymm5
vsubps ymm2, ymm3, ymm2
vmulps ymm0, ymm0, ymm2
vmulps ymm0, ymm0, ymm4

add rdx, 16
cmp rdx, rcx
jl loop1

}

vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

}

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-42

Example 15-28. Square Root Using SQRTPS for 24-bit Accuracy
Using SQRTPS Using VSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
sqrtps xmm1, xmm1
movups [rbx+rdx], xmm1
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vmovups ymm1, [rax+rdx]
vsqrtps ymm1,ymm1
vmovups [rbx+rdx], ymm1
add rdx, 32
cmp rdx, rcx
jl loop1

Example 15-29. Square Root Using RSQRTPS 11-bit Approximation
SSE code using RSQRTPS Using VRSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
xorps xmm8, xmm8
cmpneqps xmm8, xmm1
rsqrtps xmm1, xmm1
rcpps xmm1, xmm1
andps xmm1, xmm8
movups [rbx+rdx], xmm1
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

vxorps ymm8, ymm8, ymm8
loop1:

vmovups ymm1, [rax+rdx]
vcmpneqps ymm9, ymm8, ymm1
vrsqrtps ymm1, ymm1
vrcpps ymm1, ymm1
vandps ymm1, ymm1, ymm9
vmovups [rbx+rdx], ymm1
add rdx, 32
cmp rdx, rcx
jl loop1

15-43

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15.13 OPTIMIZATION OF ARRAY SUB SUM EXAMPLE
This section shows the transformation of SSE implementation of Array Sub Sum algorithm to Intel AVX
implementation.

The Array Sub Sum algorithm is:

 Y[i] = Sum of k from 0 to i (X[k]) = X[0] + X[1] + .. + X[i]

The following figure describes the SSE implementation.

Example 15-30. Square Root Using RSQRTPS and One Taylor Series Expansion
RSQRTPS + Taylor ~ 22 bit accuracy VRSQRTPS + Taylor ~ 22 bit accuracy
__declspec(align(16)) float minus_half[4] =
{-0.5, -0.5, -0.5, -0.5};

__declspec(align(16)) float three[4] =
{3.0, 3.0, 3.0, 3.0};

__asm
{
 mov rax, pIn
 mov rbx, pOut
 mov rcx, iLen
 xor rdx, rdx
 movups xmm6, [three]
 movups xmm7, [minus_half]
loop1:

__declspec(align(32)) float three[8] =
{3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};

__declspec(align(32)) float minus_half[8] =
{-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5};

__asm
{
 mov rax, pIn
 mov rbx, pOut
 mov rcx, iLen
 xor rdx, rdx
 vmovups ymm6, [three]
 vmovups ymm7, [minus_half]
 vxorps ymm8, ymm8, ymm8

movups xmm3, [rax+rdx]
rsqrtps xmm1, xmm3

 xorps xmm8, xmm8
 cmpneqps xmm8, xmm3
 andps xmm1, xmm8
 movaps xmm4, xmm1
 mulps xmm1, xmm3
 movaps xmm5, xmm1
 mulps xmm1, xmm4

subps xmm1, xmm6
 mulps xmm1, xmm5

loop1:
 vmovups ymm3, [rax+rdx]
 vrsqrtps ymm4, ymm3
 vcmpneqps ymm9, ymm8, ymm3
 vandps ymm4, ymm4, ymm9
 vmulps ymm1, ymm4, ymm3
 vmulps ymm2, ymm1, ymm4

vsubps ymm2, ymm2, ymm6
 vmulps ymm1, ymm1, ymm2

vmulps ymm1, ymm1, ymm7
 vmovups [rbx+rdx], ymm1

mulps xmm1, xmm7
 movups [rbx+rdx], xmm1
 add rdx, 16
 cmp rdx, rcx
 jl loop1
}

add rdx, 32
 cmp rdx, rcx
 jl loop1
}

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-44

The figure below describes the Intel AVX implementation of the Array Sub Sums algorithm. The PSLLDQ
is an integer SIMD instruction which does not have an AVX equivalent. It is replaced by VSHUFPS.

15-45

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Example 15-31 shows SSE implementation of array sub sum and AVX implementation. The AVX code is
about 40% faster, though not on microarchitectures where there are more compute than shuffle ports.

15.14 HALF-PRECISION FLOATING-POINT CONVERSIONS
In applications that use floating-point and require only the dynamic range and precision offered by the
16-bit floating-point format, storing persistent floating-point data encoded in 16-bits has strong advan-
tages in memory footprint and bandwidth conservation. These situations are encountered in some
graphics and imaging workloads.

The encoding format of half-precision floating-point numbers can be found in Chapter 4, “Data Types” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Instructions to convert between packed, half-precision floating-point numbers and packed single-preci-
sion floating-point numbers is described in Chapter 14, “Programming with Intel® AVX, FMA, and Intel®

AVX2” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and in the reference pages of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

To perform computations on half precision floating-point data, packed 16-bit FP data elements must be
converted to single precision format first, and the single-precision results converted back to half preci-
sion format, if necessary. These conversions of 8 data elements using 256-bit instructions are very fast
and handle the special cases of denormal numbers, infinity, zero and NaNs properly.

Example 15-31. Array Sub Sums Algorithm
SSE code AVX code

mov rax, InBuff
mov rbx, OutBuff
mov rdx, len
xor rcx, rcx
xorps xmm0, xmm0

loop1:
movaps xmm2, [rax+4*rcx]
movaps xmm3, xmm2
movaps xmm4, xmm2
movaps ymm5, ymm2
pslldq xmm3, 4
pslldq xmm4, 8
pslldq xmm5, 12
addps xmm2, xmm3
addps xmm4, xmm5
addps ymm2, xmm4
addps xmm2, xmm0
movaps xmm0, ymm2
shufps xmm0, xmm2, 0xFF
movaps [rbx+4*rcx], xmm2
add rcx, 4
cmp rcx, rdx
jl loop1

mov rax, InBuff
mov rbx, OutBuff
mov rdx, len
xor rcx, rcx
vxorps ymm0, ymm0, ymm0
vxorps ymm1, ymm1, ymm1

loop1:
vmovaps ymm2, [rax+4*rcx]
vshufps ymm4, ymm0, ymm2, 0x40
vshufps ymm3, ymm4, ymm2, 0x99
vshufps ymm5, ymm0, ymm4, 0x80
vaddps ymm6, ymm2, ymm3
vaddps ymm7, ymm4, ymm5
vaddps ymm9, ymm6, ymm7
vaddps ymm1, ymm9, ymm1
vshufps ymm8, ymm9, ymm9, 0xff
vperm2f128 ymm10, ymm8, ymm0, 0x2
vaddps ymm12, ymm1, ymm10
vshufps ymm11, ymm12, ymm12, 0xff
vperm2f128 ymm1, ymm11, ymm11, 0x11
vmovaps [rbx+4*rcx], ymm12
add rcx, 8
cmp rcx, rdx
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-46

15.14.1 Packed Single-Precision to Half-Precision Conversion
To convert the data in single precision floating-point format to half precision format, without special hard-
ware support like VCVTPS2PH, a programmer needs to do the following:
• Correct exponent bias to permitted range for each data element.
• Shift and round the significand of each data element.
• Copy the sign bit to bit 15 of each element.
• Take care of numbers outside the half precision range.
• Pack each data element to a register of half size.

Example 15-32 compares two implementations of floating-point conversion from single precision to half
precision. The code on the left uses packed integer shift instructions that is limited to 128-bit SIMD
instruction set. The code on right is unrolled twice and uses the VCVTPS2PH instruction.

Example 15-32. Single-Precision to Half-Precision Conversion
AVX-128 code VCVTPS2PH code

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax
vmovdqu xmm0,SignMask16
vmovdqu xmm1,ExpBiasFixAndRound
vmovdqu xmm4,SignMaskNot32
vmovdqu xmm5,MaxConvertibleFloat
vmovdqu xmm6,MinFloat

loop:
vmovdqu xmm2, [rax]
vmovdqu xmm3, [rax+16]
vpaddd xmm7, xmm2, xmm1
vpaddd xmm9, xmm3, xmm1
vpand xmm7, xmm7, xmm4
vpand xmm9, xmm9, xmm4
add rax, 32

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax

loop:
vmovups ymm0,[rax]
vmovups ymm1,[rax+32]
add rax, 64
vcvtps2ph [rbx],ymm0, roundingCtrl
vcvtps2ph [rbx+16],ymm1,roundingCtrl
add rbx, 32
cmp rax, rcx
jl loop

vminps xmm7, xmm7, xmm5
vminps xmm9, xmm9, xmm5
vpcmpgtd xmm8, xmm7, xmm6
vpcmpgtd xmm10, xmm9, xmm6
vpand xmm7, xmm8, xmm7
vpand xmm9, xmm10, xmm9
vpackssdw xmm2, xmm3, xmm2
vpsrad xmm7, xmm7, 13
vpsrad xmm8, xmm9, 13
vpand xmm2, xmm2, xmm0
vpackssdw xmm3, xmm7, xmm9
vpaddw xmm3, xmm3, xmm2
vmovdqu [rbx], xmm3
add rbx, 16
cmp rax, rcx
jl loop

15-47

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The code using VCVTPS2PH is approximately four times faster than the AVX-128 sequence. Although it is
possible to load 8 data elements at once with 256-bit AVX, most of the per-element conversion opera-
tions require packed integer instructions which do not have 256-bit extensions yet. Using VCVTPS2PH is
not only faster but also provides handling of special cases that do not encode to normal half-precision
floating-point values.

15.14.2 Packed Half-Precision to Single-Precision Conversion
Example 15-33 compares two implementations using AVX-128 code and with VCVTPH2PS.

Conversion from half precision to single precision floating-point format is easier to implement, yet using
VCVTPH2PS instruction performs about 2.5 times faster than the alternative AVX-128 code.

15.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth
Example 15-32 and Example 15-33 demonstrate the performance advantage of using FP16C instructions
when software needs to convert between half-precision and single-precision data. Half-precision FP
format is more compact, consumes less bandwidth than single-precision FP format, but sacrifices
dynamic range, precision, and incurs conversion overhead if arithmetic computation is required. Whether
it is profitable for software to use half-precision data will be highly dependent on locality considerations
of the workload.

Example 15-33. Half-Precision to Single-Precision Conversion
AVX-128 code VCVTPS2PH code

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax
vmovdqu xmm0,SignMask16
vmovdqu xmm1,ExpBiasFix16
vmovdqu xmm2,ExpMaskMarker
loop:
vmovdqu xmm3, [rax]
add rax, 16
vpandn xmm4, xmm0, xmm3
vpand xmm5, xmm3, xmm0
vpsrlw xmm4, xmm4, 3
vpaddw xmm6, xmm4, xmm1
vpcmpgtw xmm7, xmm6, xmm2

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax

loop:
vcvtph2ps ymm0,[rax]
vcvtph2ps ymm1,[rax+16]
add rax, 32
vmovups [rbx], ymm0
vmovups [rbx+32], ymm1
add rbx, 64
cmp rax, rcx
jl loop

vpand xmm6, xmm6, xmm7
vpand xmm8, xmm3, xmm7
vpor xmm6, xmm6, xmm5
vpsllw xmm8, xmm8, 13
vpunpcklwd xmm3, xmm8, xmm6
vpunpckhwd xmm4, xmm8, xmm6
vmovdqu [rbx], xmm3
vmovdqu [rbx+16], xmm4
add rbx, 32
cmp rax, rcx
jl loop

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-48

This section uses an example based on the horizontal median filtering algorithm, “Median3”. The Median3
algorithm calculates the median of every three consecutive elements in a vector:

Y[i] = Median3(X[i], X[i+1], X[i+2])

Where: Y is the output vector, and X is the input vector.

Example 15-34 shows two implementations of the Median3 algorithm; one uses single-precision format
without conversion, the other uses half-precision format and requires conversion. Alternative 1 on the
left works with single precision format using 256-bit load/store operations, each of which loads/stores
eight 32-bit numbers. Alternative 2 uses 128-bit load/store operations to load/store eight 16-bit
numbers in half precision format and VCVTPH2PS/VCVTPS2PH instructions to convert it to/from single
precision floating-point format.

When the locality of the working set resides in memory, using half-precision format with processors
based on Ivy Bridge microarchitecture is about 30% faster than single-precision format, despite the
conversion overhead. When the locality resides in L3, using half-precision format is still ~15% faster.
When the locality resides in L1, using single-precision format is faster because the cache bandwidth of
the L1 data cache is much higher than the rest of the cache/memory hierarchy and the overhead of the
conversion becomes a performance consideration.

15.15 FUSED MULTIPLY-ADD (FMA) INSTRUCTIONS GUIDELINES
FMA instructions perform vectored operations of “a * b + c” on IEEE-754-2008 floating-point values,
where the multiplication operations “a * b” are performed with infinite precision, the final results of the
addition are rounded to produced the desired precision. Details of FMA rounding behavior and special
case handling can be found in section 2.3 of Intel® Architecture Instruction Set Extensions Programming
Reference.

Example 15-34. Performance Comparison of Median3 using Half-Precision vs. Single-Precision
Single-Precision code w/o Conversion Half-Precision code w/ Conversion

xor rbx, rbx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

loop:
add rdi, 32
vmovaps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E
vshufps ymm2, ymm0, ymm3, 0x99
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2

xor rbx, rbx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vcvtph2ps ymm0, [rdi]

loop:
add rdi,16
vcvtph2ps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E
vshufps ymm2, ymm0, ymm3, 0x99
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2

vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vmovaps [rsi], ymm7
add rsi, 32
add rbx, 8
cmp rbx, rcx
jl loop

vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vcvtps2ph [rsi], ymm7, roundingCtrl
add rsi, 16
add rbx, 8
cmp rbx, rcx
jl loop

15-49

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

FMA instruction can speed up and improve the accuracy of many FP calculations. Haswell microarchitec-
ture implements FMA instructions with execution units on port 0 and port 1 and 256-bit data paths. Dot
product, matrix multiplication and polynomial evaluations are expected to benefit from the use of FMA,
256-bit data path and the independent executions on two ports. The peak throughput of FMA from each
processor core are 16 single-precision and 8 double-precision results each cycle.

Algorithms designed to use FMA instruction should take into consideration that non-FMA sequence of
MULPD/PS and ADDPD/PS likely will produce slightly different results compared to using FMA. For numer-
ical computations involving a convergence criteria, the difference in the precision of intermediate results
must be factored into the numeric formalism to avoid surprise in completion time due to rounding issues.
User/Source Coding Rule 28. Factor in precision and rounding characteristics of FMA instructions
when replacing multiply/add operations executing non-FMA instructions. FMA improves performance
when an algorithm is execution-port throughput limited, like DGEMM.

There may be situations where using FMA might not deliver better performance. Consider the vectored
operation of “a * b + c * d” and data are ready at the same time:

In the three-instruction sequence of
VADDPS (VMULPS (a,b) , VMULPS (c,b));

VMULPS can be dispatched in the same cycle and execute in parallel, leaving the latency of VADDPS (3
cycle) exposed. With unrolling the exposure of VADDPS latency may be further amortized.

When using the two-instruction sequence of
VFMADD213PS (c, d, VMULPS (a,b));

The latency of FMA (5 cycle) is exposed for producing each vector result.
User/Source Coding Rule 29. Factor in result-dependency, latency of FP add vs. FMA instructions
when replacing FP add operations with FMA instructions.

15.15.1 Optimizing Throughput with FMA and Floating-Point Add/MUL
In the Skylake microarchitecture, there are two pipes of executions supporting FMA, vector FP Multiply,
and FP ADD instructions. All three categories of instructions have a latency of 4 cycles and can dispatch
to either port 0 or port 1 to execute every cycle.

The arrangement of identical latency and number of pipes allows software to increase the performance of
situations where floating-point calculations are limited by the floating-point add operations that follow FP
multiplies. Consider a situation of vector operation An = C1 + C2 * An-1:

Example 15-35. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vmulps ymm4, ymm0 ,ymm2 // A * C2
vaddps ymm0, ymm1, ymm4
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store A

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vfmadd132ps ymm0, ymm1, ymm2 // C1 + A * C2
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store A

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-50

The overall throughput of the code sequence on the LHS is limited by the combined latency of the FP MUL
and FP ADD instructions of specific microarchitecture. The overall throughput of the code sequence on
the RHS is limited by the throughput of the FMA instruction of the corresponding microarchitecture.

A common situation where the latency of the FP ADD operation dominates performance is the following
C code:

for (int 1 = 0; i < arrLenght; i ++) result += arrToSum[i];

Example 15-35 shows two implementations with and without unrolling.

Cost per iteration: ~ fp add latency + fp add latency Cost per iteration: ~ fma latency

Example 15-36. Unrolling to Hide Dependent FP Add Latency
No Unroll Unroll 8 times

mov eax, arrLength
mov rbx, arrToSum
vmovups ymm0, ymmword ptr [rbx]
sub eax, 8

loop:
add rbx, 32
vaddps ymm0, ymm0, ymmword ptr [rbx]
sub eax, 8
jnz loop

mov eax, arrLength
mov rbx, arrToSum
vmovups ymm0, ymmword ptr [rbx]
vmovups ymm1, ymmword ptr 32[rbx]
vmovups ymm2, ymmword ptr 64[rbx]
vmovups ymm3, ymmword ptr 96[rbx]
vmovups ymm4, ymmword ptr 128[rbx]
vmovups ymm5, ymmword ptr 160[rbx]
vmovups ymm6, ymmword ptr 192[rbx]
vmovups ymm7, ymmword ptr 224[rbx]

vextractf128 xmm1, ymm0, 1
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0xe
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0x1
vaddss xmm0, xmm0, xmm1

sub eax, 64
loop:

add rbx, 256
vaddps ymm0, ymm0, ymmword ptr [rbx]
vaddps ymm1, ymm1, ymmword ptr 32[rbx]
vaddps ymm2, ymm2, ymmword ptr 64[rbx]
vaddps ymm3, ymm3, ymmword ptr 96[rbx]
vaddps ymm4, ymm4, ymmword ptr 128[rbx]
vaddps ymm5, ymm5, ymmword ptr 160[rbx]
vaddps ymm6, ymm6, ymmword ptr 192[rbx]
vaddps ymm7, ymm7, ymmword ptr 224[rbx]
sub eax, 64
jnz loop

vaddps ymm0, ymm0, ymm1
vaddps ymm2, ymm2, ymm3
vaddps ymm4, ymm4, ymm5
vaddps ymm6, ymm6, ymm7
vaddps ymm0, ymm0, ymm2
vaddps ymm4, ymm4, ymm6
vaddps ymm0, ymm0, ymm4

Example 15-35. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

15-51

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Without unrolling (LHS of Example 15-35), the cost of summing every 8 array elements is about propor-
tional to the latency of the FP ADD instruction, assuming the working set fit in L1. To use unrolling effec-
tively, the number of unrolled operations should be at least “latency of the critical operation” * “number
of pipes”. The performance gain of optimized unrolling versus no unrolling, for a given microarchitecture,
can approach “number of pipes” * “Latency of FP ADD”.
User/Source Coding Rule 30. Consider using unrolling technique for loops containing back-to-back
dependent FMA, FP Add or Vector MUL operations, The unrolling factor can be chosen by considering
the latency of the critical instruction of the dependency chain and the number of pipes available to
execute that instruction.

15.15.2 Optimizing Throughput with Vector Shifts
In the Skylake microarchitecture, many common vector shift instructions can dispatch into either port 0
or port 1, compared to only one port in prior generations, see Table 2-12 and Table E-2.

A common situation where the latency of the FP ADD operation dominates performance is the following
C code, where a, b, and c are integer arrays:

for (int 1 = 0; i < len; i ++) c[i] += 4* a[i] + b[i]/2;

Example 15-35 shows two implementations with and without unrolling.

movss result, xmm0 vextractf128 xmm1, ymm0, 1
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0xe
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0x1
vaddss xmm0, xmm0, xmm1
movss result, xmm0

Example 15-37. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vmulps ymm4, ymm0 ,ymm2 // A * C2
vaddps ymm0, ymm1, ymm4
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store An

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vfmadd132ps ymm0, ymm1, ymm2 // C1 + A * C2
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store An

Cost per iteration: ~ fp add latency + fp add latency Cost per iteration: ~ fma latency

Example 15-36. Unrolling to Hide Dependent FP Add Latency (Contd.)
No Unroll Unroll 8 times

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-52

15.16 AVX2 OPTIMIZATION GUIDELINES
AVX2 instructions promotes the great majority of 128-bit SIMD integer instructions to operate on 256-bit
YMM registers. AVX2 also adds a rich mix of broadcast/permute/variable-shift instructions to accelerate
numerical computations. The 256-bit AVX2 instructions are supported by Haswell microarchitecture,
which implements 256-bit data path with low latency and high throughput.

Consider an intra-coding 4x4 block image transformation1 shown in Figure 15-3.

A 128-bit SIMD implementation can perform this transformation by the following technique:
• Convert 8-bit pixels into 16-bit word elements and fetch two 4x4 image block as 4 row vectors.
• The matrix operation 1/128 * (B x R) can be evaluated with row vectors of the image block and

column vectors of the right-hand-side coefficient matrix using a sequence of SIMD instructions of
PMADDWD, packed shift and blend instructions.

• The two 4x4 word-granular, intermediate result can be re-arranged into column vectors.
• The left-hand-side coefficient matrix in row vectors and the column vectors of the intermediate block

can be calculated (using PMADDWD, shift, blend) and written out.

The same technique can be implemented using AVX2 instructions in a straightforward manner. The AVX2
sequence is illustrated in Example 15-38 and Example 15-39.

1. C. Yeo, Y. H. Tan, Z. Li and S. Rahardja, “Mode-Dependent Fast Separable KLT for Block-based Intra
Coding,” JCTVC-B024, Geneva, Switzerland, Jul 2010

Figure 15-3. 4x4 Image Block Transformation

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2

// b0: input row vector from 4 consecutive 4x4 image block of word pixels

// rmc0-3: columnar vector coefficient of the RHS matrix, repeated 4X for 256-bit

// min32km1: saturation constant vector to cap intermediate pixel to less than or equal to 32767

// w0: output row vector of garbled intermediate matrix, elements within each block are garbled

// e.g Low 128-bit of row 0 in descending order: y07, y05, y06, y04, y03, y01, y02, y00

#define __MyM_KIP_PxRMC_ROW_4x4Wx4(b0, w0, rmc0_256,

rmc1_256, rmc2_256, rmc3_256, min32km1)\

R

1
128

29 55 74 84
74 74 0 74–
84 29– 74– 55
55 84– 74 29–

1
128

29 55 74 84
74 74 0 74–
84 29– 74– 55
55 84– 74 29–

1
128

64 64 64 64
84 35 35– 84–
64 64– 64– 64
35 84– 84 35–

X X

L B

15-53

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

{__m256i tt0, tt1, tt2, tt3, tttmp;\

tt0 = _mm256_madd_epi16(b0, (rmc0_256));\

tt1 = _mm256_madd_epi16(b0, rmc1_256);\

tt1 = _mm256_hadd_epi32(tt0, tt1);\

tttmp = _mm256_srai_epi32(tt1, 31);\

tttmp = _mm256_srli_epi32(tttmp, 25);\

tt1 = _mm256_add_epi32(tt1, tttmp);\

tt1 = _mm256_min_epi32(_mm256_srai_epi32(tt1, 7), min32km1);\

tt1 = _mm256_shuffle_epi32(tt1, 0xd8); \

tt2 = _mm256_madd_epi16(b0, rmc2_256);\

tt3 = _mm256_madd_epi16(b0, rmc3_256);\

tt3 = _mm256_hadd_epi32(tt2, tt3);\

tttmp = _mm256_srai_epi32(tt3, 31);\

tttmp = _mm256_srli_epi32(tttmp, 25);\

tt3 = _mm256_add_epi32(tt3, tttmp);\

tt3 = _mm256_min_epi32(_mm256_srai_epi32(tt3, 7), min32km1);\

tt3 = _mm256_shuffle_epi32(tt3, 0xd8);\

w0 = _mm256_blend_epi16(tt1, _mm256_slli_si256(tt3, 2), 0xaa);\

}
// t0-t3: 256-bit input vectors of un-garbled intermediate matrix 1/128 * (B x R)
// lmr_256: 256-bit vector of one row of LHS coefficient, repeated 4X
// min32km1: saturation constant vector to cap final pixel to less than or equal to 32767

// w0; Output row vector of final result in un-garbled order
#define __MyM_KIP_LMRxP_ROW_4x4Wx4(w0, t0, t1, t2, t3, lmr_256, min32km1)\

{__m256i tb0, tb1, tb2, tb3, tbtmp;
tb0 = _mm256_madd_epi16(lmr_256, t0);\
tb1 = _mm256_madd_epi16(lmr_256, t1);\
tb1 = _mm256_hadd_epi32(tb0, tb1);\
tbtmp = _mm256_srai_epi32(tb1, 31);\
tbtmp = _mm256_srli_epi32(tbtmp, 25);\
tb1 = _mm256_add_epi32(tb1, tbtmp);\
tb1 = _mm256_min_epi32(_mm256_srai_epi32(tb1, 7), min32km1);\
tb1 = _mm256_shuffle_epi32(tb1, 0xd8);\
tb2 = _mm256_madd_epi16(lmr_256, t2);\
tb3 = _mm256_madd_epi16(lmr_256, t3);\
tb3 = _mm256_hadd_epi32(tb2, tb3);\
tbtmp = _mm256_srai_epi32(tb3, 31);\
tbtmp = _mm256_srli_epi32(tbtmp, 25);\
tb3 = _mm256_add_epi32(tb3, tbtmp);\
tb3 = _mm256_min_epi32(_mm256_srai_epi32(tb3, 7), min32km1);\
tb3 = _mm256_shuffle_epi32(tb3, 0xd8); \
tb3 = _mm256_slli_si256(tb3, 2);\
tb3 = _mm256_blend_epi16(tb1, tb3, 0xaa);\

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-54

In Example 15-39, matrix multiplication of 1/128 * (B xR) is evaluated first in a 4-wide manner by
fetching from 4 consecutive 4x4 image block of word pixels. The first macro shown in Example 15-38
produces an output vector where each intermediate row result is in an garbled sequence between the two
middle elements of each 4x4 block. In Example 15-39, undoing the garbled elements and transposing
the intermediate row vector into column vectors are implemented using blend primitives instead of
shuffle/unpack primitives.

In Haswell microarchitecture, shuffle/pack/unpack primitives rely on the shuffle execution unit
dispatched to port 5. In some situations of heavy SIMD sequences, port 5 pressure may become a deter-
mining factor in performance.

If 128-bit SIMD code faces port 5 pressure when running on Haswell microarchitecture, porting 128-bit
code to use 256-bit AVX2 can improve performance and alleviate port 5 pressure.

w0 = _mm256_shuffle_epi8(tb3, _mm256_setr_epi32(0x5040100, 0x7060302, 0xd0c0908, 0xf0e0b0a,
0x5040100, 0x7060302, 0xd0c0908, 0xf0e0b0a));\
}

Example 15-39. Separable KLT Intra-block Transformation Using AVX2

short __declspec(align(16))cst_rmc0[8] = {64, 84, 64, 35, 64, 84, 64, 35};

short __declspec(align(16))cst_rmc1[8] = {64, 35, -64, -84, 64, 35, -64, -84};

short __declspec(align(16))cst_rmc2[8] = {64, -35, -64, 84, 64, -35, -64, 84};

short __declspec(align(16))cst_rmc3[8] = {64, -84, 64, -35, 64, -84, 64, -35};

short __declspec(align(16))cst_lmr0[8] = {29, 55, 74, 84, 29, 55, 74, 84};

short __declspec(align(16))cst_lmr1[8] = {74, 74, 0, -74, 74, 74, 0, -74};

short __declspec(align(16))cst_lmr2[8] = {84, -29, -74, 55, 84, -29, -74, 55};

short __declspec(align(16)) cst_lmr3[8] = {55, -84, 74, -29, 55, -84, 74, -29};

void Klt_256_d(short * Input, short * Output, int iWidth, int iHeight)

{int iX, iY;

__m256i rmc0 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *) &cst_rmc0[0]));

__m256i rmc1 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc1[0]));

__m256i rmc2 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc2[0]));

__m256i rmc3 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc3[0]));

__m256i lmr0 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr0[0]));

__m256i lmr1 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr1[0]));

__m256i lmr2 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr2[0]));

__m256i lmr3 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr3[0]));

__m256i min32km1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128(_mm_setr_epi32(0x7fff7fff, 0x7fff7fff,
0x7fff7fff, 0x7fff7fff));

__m256i b0, b1, b2, b3, t0, t1, t2, t3;

__m256i w0, w1, w2, w3;

short* pImage = Input;

short* pOutImage = Output;

int hgt = iHeight, wid= iWidth;

(continue)

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 (Contd.)

15-55

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

// We implement 1/128 * (Mat_L x (1/128 * (Mat_B x Mat_R))) from the inner most parenthesis

for(iY = 0; iY < hgt; iY+=4) {

for(iX = 0; iX < wid; iX+=16) {

//load row 0 of 4 consecutive 4x4 matrix of word pixels

b0 = _mm256_loadu_si256((__m256i *) (pImage + iY*wid+ iX)) ;

// multiply row 0 with columnar vectors of the RHS matrix coefficients

__MyM_KIP_PxRMC_ROW_4x4Wx4(b0, w0, rmc0, rmc1, rmc2, rmc3, min32km1);

 // low 128-bit of garbled row 0, from hi->lo: y07, y05, y06, y04, y03, y01, y02, y00

b1 = _mm256_loadu_si256((__m256i *) (pImage + (iY+1)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b1, w1, rmc0, rmc1, rmc2, rmc3, min32km1);

 // hi->lo y17, y15, y16, y14, y13, y11, y12, y10

b2 = _mm256_loadu_si256((__m256i *) (pImage + (iY+2)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b2, w2, rmc0, rmc1, rmc2, rmc3, min32km1);

b3 = _mm256_loadu_si256((__m256i *) (pImage + (iY+3)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b3, w3, rmc0, rmc1, rmc2, rmc3, min32km1);

// unscramble garbled middle 2 elements of each 4x4 block, then

// transpose into columnar vectors: t0 has 4 consecutive column 0 or 4 4x4 intermediate

t0 = _mm256_blend_epi16(w0, _mm256_slli_epi64(w1, 16), 0x22);

t0 = _mm256_blend_epi16(t0, _mm256_slli_epi64(w2, 32), 0x44);

t0 = _mm256_blend_epi16(t0, _mm256_slli_epi64(w3, 48), 0x88);

t1 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 32), _mm256_srli_epi64(w1, 16), 0x22);

t1 = _mm256_blend_epi16(t1, w2, 0x44);

t1 = _mm256_blend_epi16(t1, _mm256_slli_epi64(w3, 16), 0x88); // column 1

t2 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 16), w1, 0x22);

t2 = _mm256_blend_epi16(t2, _mm256_slli_epi64(w2, 16), 0x44);

t2 = _mm256_blend_epi16(t2, _mm256_slli_epi64(w3, 32), 0x88); // column 2

t3 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 48), _mm256_srli_epi64(w1, 32), 0x22);

t3 = _mm256_blend_epi16(t3, _mm256_srli_epi64(w2, 16), 0x44);

t3 = _mm256_blend_epi16(t3, w3, 0x88);// column 3

// multiply row 0 of the LHS coefficient with 4 columnar vectors of intermediate blocks

// final output row are arranged in normal order

__MyM_KIP_LMRxP_ROW_4x4Wx4(w0, t0, t1, t2, t3, lmr0, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+iY*wid+ iX), w0) ;

__MyM_KIP_LMRxP_ROW_4x4Wx4(w1, t0, t1, t2, t3, lmr1, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+1)*wid+ iX), w1) ;

__MyM_KIP_LMRxP_ROW_4x4Wx4(w2, t0, t1, t2, t3, lmr2, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+2)*wid+ iX), w2) ;

Example 15-39. Separable KLT Intra-block Transformation Using AVX2 (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-56

Although 128-bit SIMD implementation is not shown here, it can be easily derived.

When running 128-bit SIMD code of this KLT intra-coding transformation on Sandy Bridge microarchitec-
ture, the port 5 pressure are less because there are two shuffle units, and the effective throughput for
each 4x4 image block transformation is around 50 cycles. Its speed-up relative to optimized scalar imple-
mentation is about 2.5X.

When the 128-bit SIMD code runs on Haswell microarchitecture, micro-ops issued to port 5 account for
slightly less than 50% of all micro-ops, compared to about one third on prior microarchitecture, resulting
in about 25% performance regression. On the other hand, AVX2 implementation can deliver effective
throughput in less than 35 cycle per 4x4 block.

15.16.1 Multi-Buffering and AVX2
There are many compute-intensive algorithms (e.g. hashing, encryption, etc.) which operate on a
stream of data buffers. Very often, the data stream may be partitioned and treated as multiple indepen-
dent buffer streams to leverage SIMD instruction sets.

Detailed treatment of hashing several buffers in parallel can be found at
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995 and at
http://eprint.iacr.org/2012/476.pdf.

With AVX2 providing a full compliment of 256-bit SIMD instructions with rich functionality at multiple
width granularities for logical and arithmetic operations. Algorithms that had leveraged XMM registers
and prior generations of SSE instruction sets can extend those multi-buffering algorithms to use AVX2 on
YMM and deliver even higher throughput. Optimized 256-bit AVX2 implementation may deliver up to
1.9X throughput when compared to 128-bit versions.

The image block transformation example discussed in Section 15.16 can be construed also as a multi-
buffering implementation of 4x4 blocks. When the performance baseline is switched from a two-shuffle-
port microarchitecture (Sandy Bridge) to single-shuffle-port microarchitecture, the 256-bit wide AVX2
provides a speed up of 1.9X relative to 128-bit SIMD implementation.

Greater details on multi-buffering can be found in the white paper at:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-
multi-buffer-paper.pdf.

15.16.2 Modular Multiplication and AVX2
Modular multiplication of very large integers are often used to implement efficient modular exponentia-
tion operations which are critical in public key cryptography, such as RSA 2048. Library implementation
of modular multiplication is often done with MUL/ADC chain sequences. Typically, a MUL instruction can
produce a 128-bit intermediate integer output, and add-carry chains must be used at 64-bit intermediate
data granularity.

In AVX2, VPMULUDQ/VPADDQ/VPSRLQ/VPSLLQ/VPBROADCASTQ/VPERMQ allow vectorized approach to
implement efficient modular multiplication/exponentiation for key lengths corresponding to RSA1024
and RSA2048. For details of modular exponentiation/multiplication and AVX2 implementation in
OpenSSL, see http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true.

__MyM_KIP_LMRxP_ROW_4x4Wx4(w3, t0, t1, t2, t3, lmr3, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+3)*wid+ iX), w3) ;

}

}

}

Example 15-39. Separable KLT Intra-block Transformation Using AVX2 (Contd.)

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://eprint.iacr.org/2012/476.pdf
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

15-57

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The basic heuristic starts with reformulating the large integer input operands in 512/1024 bit exponenti-
ation in redundant representations. For example, a 1024-bit integer can be represented using base 2^29
and 36 “digits”, where each “digit” is less than 2^29. A digit in such redundant representation can be
placed in a dword slot of a vector register. Such redundant representation of large integer simplifies the
requirement to perform carry-add chains across the hardware granularity of the intermediate results of
unsigned integer multiplications.

Each VPMULUDQ in AVX2 using the digits from a redundant representation can produce 4 separate 64-
bit intermediate result with sufficient headroom (e.g. 5 most significant bits are 0 excluding sign bit).
Then, VPADDQ is sufficient to implement add-carry chain requirement without needing SIMD versions of
equivalent of ADC-like instructions. More details are available in the reference cited in paragraph above,
including the cost factor of conversion to redundant representation and effective speedup accounting for
parallel output bandwidth of VPMULUDQ/VPADDQ chain.

15.16.3 Data Movement Considerations
Haswell microarchitecture can support up to two 256-bit loads and one 256-bit store micro-ops
dispatched each cycle. Most existing binaries with heavy data-movement operation can benefit from this
enhancement and the higher bandwidths of the L1 data cache and L2 without re-compilation, if the
binary is already optimized for the prior generation microarchitecture. For example, 256-bit SAXPY
computation was limited by the number of load/store ports available in the previous microarchitecture
generation; it will benefit immediately on Haswell microarchitecture.

In some situations, there may be some intricate interactions between microarchitectural restrictions on
the instruction set that is worth some discussion. We consider two commonly used library functions
memcpy() and memset() and the optimal choice to implement them on the new microarchitecture.

With memcpy() on Haswell microarchitecture, using REP MOVSB to implement memcpy operation for
large copy length can take advantage the 256-bit store data path and deliver throughput of more than 20
bytes per cycle. For copy length that are smaller than a few hundred bytes, REP MOVSB approach is
slower than using 128-bit SIMD technique described in Section 15.16.3.1.

With memcpy() on Ice Lake microarchitecture, using in-lined REP MOVSB to implement memcpy is as
fast as a 256-bit AVX implementation for copy lengths that are variable and unknown at compile time.
For lengths that are known at compile time, REP MOVSB is almost as good as 256-bit AVX for short
strings up to 128 bytes (9 cycles vs 3-7 cycles), and better for strings of 2K bytes and longer. For these
cases we recommend using inline REP MOVSB. That said, software should still branch away for zero byte
copies.

15.16.3.1 SIMD Heuristics to implement Memcpy()
We start with a discussion of the general heuristic to attempt implementing memcpy() with 128-bit SIMD
instructions, which revolves around three numeric factors (destination address alignment, source
address alignment, bytes to copy) relative to the width of register width of the desired instruction set.
The data movement work of memcpy can be separated into the following phases:
• An initial unaligned copy of 16 bytes, allows looping destination address pointer to become 16-byte

aligned. Thus subsequent store operations can use as many 16-byte aligned stores.
• The remaining bytes-left-to-copy are decomposed into (a) multiples of unrolled 16-byte copy

operations, plus (b) residual count that may include some copy operations of less than 16 bytes. For
example, to unroll eight time to amortize loop iteration overhead, the residual count must handle
individual cases from 1 to 8x16-1 = 127.

• Inside an 8X16 unrolled main loop, each 16 byte copy operation may need to deal with source pointer
address is not aligned to 16-byte boundary and store 16 fresh data to 16B-aligned destination
address. When the iterating source pointer is not 16B-aligned, the most efficient technique is a three
instruction sequence of:

— Fetch an 16-byte chunk from an 16-byte-aligned adjusted pointer address and use a portion of
this chunk with complementary portion from previous 16-byte-aligned fetch.

— Use PALIGNR to stitch a portion of the current chunk with the previous chunk.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-58

— Stored stitched 16-byte fresh data to aligned destination address, and repeat this 3 instruction
sequence.

This 3-instruction technique allows the fetch:store instruction ratio for each 16-byte copy operation
to remain at 1:1.

While the above technique (specifically, the main loop dealing with copying thousands of bytes of data)
can achieve throughput of approximately 10 bytes per cycle on Sandy Bridge and Ivy Bridge microarchi-
tectures with 128-bit data path for store operations, an attempt to extend this technique to use wider
data path will run into the following restrictions:
• To use 256-bit VPALIGNR with its 2X128-bit lane microarchitecture, stitching of two partial chunks of

the current 256-bit 32-byte-aligned fetch requires another 256-bit fetch from an address 16-byte
offset from the current 32-byte-aligned 256-bit fetch.

— The fetch:store ratio for each 32-byte copy operation becomes 2:1.

— The 32-byte-unaligned fetch (although aligned to 16-byte boundary) will experience a cache-line
split penalty, once every 64-bytes of copy operation.

The net of this attempt to use 256-bit ISA to take advantage of the 256-bit store data-path microarchi-
tecture was offset by the 4-instruction sequence and cacheline split penalty.

15.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB
It is interesting to compare the alternate approach of using enhanced REP MOVSB to implement
memcpy(). In Haswell and Ivy Bridge microarchitectures, REP MOVSB is an optimized, hardware
provided, micro-op flow.

On Ivy Bridge microarchitecture, a REP MOVSB implementation of memcpy can achieve throughput at
slightly better than the 128-bit SIMD implementation when copying thousands of bytes. However, if the
size of copy operation is less than a few hundred bytes, the REP MOVSB approach is less efficient than the
explicit residual copy technique described in phase 2 of Section 15.16.3.1. This is because handling 1-
127 residual copy length (via jump table or switch/case, and is done before the main loop) plus one or
two 8x16B iterations incurs less branching overhead than the hardware provided micro-op flows. For the
grueling implementation details of 128-bit SIMD implementation of memcpy(), one can look up from the
archived sources of open source library such as GLibC.

On Haswell microarchitecture, using REP MOVSB to implement memcpy operation for large copy length
can take advantage the 256-bit store data path and deliver throughput of more than 20 bytes per cycle.
For copy length that are smaller than a few hundred bytes, REP MOVSB approach is still slower than
treating the copy length as the residual phase of Section 15.16.3.1.

15.16.3.3 Memset() Implementation Considerations
The interface of Memset() has one address pointer as destination, which simplifies the complexity of
managing address alignment scenarios to use 256-bit aligned store instruction. After an initial unaligned
store, and adjusting the destination pointer to be 32-byte aligned, the residual phase follows the same
consideration as described in Section 15.16.3.1, which may employ a large jump table to handle each
residual value scenario with minimal branching, depending on the amount of unrolled 32B-aligned
stores. The main loop is a simple YMM register to 32-byte-aligned store operation, which can deliver
close to 30 bytes per cycle for lengths more than a thousand byte. The limiting factor here is due to each
256-bit VMOVDQA store consists of a store_address and a store_data micro-op flow. Only port 4 is avail-
able to dispatch the store_data micro-op each cycle.

Using REP STOSB to implement memset() has the code size advantage versus a SIMD implementation,
like REP MOVSB for memcpy(). On Haswell microarchitecture, a memset() routine implemented using
REP STOSB will also benefit the from the 256-bit data path and increased L1 data cache bandwidth to
deliver up to 32 bytes per cycle for large count values.

Comparing the performance of memset() implementations using REP STOSB vs. 256-bit AVX2 requires
one to consider the pattern of invocation of memset(). The invocation pattern can lead to the necessity
of using different performance measurement techniques. There may be side effects affecting the
outcome of each measurement technique.

15-59

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

The most common measurement technique that is often used with a simple routine like memset() is to
execute memset() inside a loop with a large iteration count, and wrap the invocation of RDTSC before
and after the loop.

A slight variation of this measurement technique can apply to measuring memset() invocation patterns
of multiple back-to-back calls to memset() with different count values with no other intervening instruc-
tion streams executed between calls to memset().

In both of the above memset() invocation scenarios, branch prediction can play a significant role in
affecting the measured total cycles for executing the loop. Thus, measuring AVX2-implemented
memset() under a large loop to minimize RDTSC overhead can produce a skewed result with the branch
predictor being trained by the large loop iteration count.

In more realistic software stacks, the invocation patterns of memset() will likely have the characteristics
that:
• There are intervening instruction streams being executed between invocations of memset(), the

state of branch predictor prior to memset() invocation is not pre-trained for the branching sequence
inside a memset() implementation.

• Memset() count values are likely to be uncorrected.

The proper measurement technique to compare memset() performance for more realistic memset()
invocation scenarios will require a per-invocation technique that wraps two RDTSC around each invoca-
tion of memset().

With the per-invocation RDTSC measurement technique, the overhead of RDTSC and be pre-calibrated
and post-validated outside of a measurement loop. The per-invocation technique may also consider
cache warming effect by using a loop to wrap around the per-invocation measurements.

When the relevant skew factors of measurement techniques are taken into effect, the performance of
memset() using REP STOSB, for count values smaller than a few hundred bytes, is generally faster than
the AVX2 version for the common memset() invocation scenarios. Only in the extreme scenarios of
hundreds of unrolled memset() calls, all using count values less than a few hundred bytes and with no
intervening instruction stream between each pair of memset() can the AVX2 version of memset() take
advantage of the training effect of the branch predictor.

15.16.3.4 Hoisting Memcpy/Memset Ahead of Consuming Code
There may be situations where the data furnished by a call to memcpy/memset and subsequent instruc-
tions consuming the data can be re-arranged:

memcpy (pBuf, pSrc, Cnt); // make a copy of some data with knowledge of Cnt
..... // subsequent instruction sequences are not consuming pBuf immediately
result = compute(pBuf); // memcpy result consumed here

When the count is known to be at least a thousand byte or more, using enhanced REP MOVSB/STOSB can
provide another advantage to amortize the cost of the non-consuming code. The heuristic can be under-
stood using a value of Cnt = 4096 and memset() as example:
• A 256-bit SIMD implementation of memset() will need to issue/execute retire 128 instances of 32-

byte store operation with VMOVDQA, before the non-consuming instruction sequences can make
their way to retirement.

• An instance of enhanced REP STOSB with ECX= 4096 is decoded as a long micro-op flow provided by
hardware, but retires as one instruction. There are many store_data operation that must complete
before the result of memset() can be consumed. Because the completion of store data operation is
de-coupled from program-order retirement, a substantial part of the non-consuming code stream
can process through the issue/execute and retirement, essentially cost-free if the non-consuming
sequence does not compete for store buffer resources.

Software that use enhanced REP MOVSB/STOSB must check its availability by verifying
CPUID.(EAX=07H, ECX=0):EBX.[bit 9] reports 1.

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-60

15.16.3.5 256-bit Fetch versus Two 128-bit Fetches
On Sandy Bridge and Ivy Bridge microarchitectures, using two 16-byte aligned loads are preferred due
to the 128-bit data path limitation in the memory pipeline of the microarchitecture.

To take advantage of Haswell microarchitecture’s 256-bit data path microarchitecture, the use of 256-bit
loads must consider the alignment implications. Instruction that fetched 256-bit data from memory
should pay attention to be 32-byte aligned. If a 32-byte unaligned fetch would span across cache line
boundary, it is still preferable to fetch data from two 16-byte aligned address instead.

15.16.3.6 Mixing MULX and AVX2 Instructions
Combining MULX and AVX2 instruction can further improve the performance of some common computa-
tion task, e.g. numeric conversion 64-bit integer to ascii format can benefit from the flexibility of MULX
register allocation, wider YMM register, and variable packed shift primitive VPSRLVD for parallel
moduli/remainder calculations.

Example 15-40 shows a macro sequence of AVX2 instruction to calculate one or two finite range
unsigned short integer(s) into respective decimal digits, featuring VPSRLVD in conjunction with Mont-
gomery reduction technique.

Example 15-40. Macros for Parallel Moduli/Remainder Calculation

static short quoTenThsn_mulplr_d[16] =

{ 0x199a, 0, 0x28f6, 0, 0x20c5, 0, 0x1a37, 0, 0x199a, 0, 0x28f6, 0, 0x20c5, 0, 0x1a37, 0};

static short mten_mulplr_d[16] = { -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1};

// macro to convert input t5 (a __m256i type) containing quotient (dword 4) and remainder

// (dword 0) into single-digit integer (between 0-9) in output y3 (a__m256i);

//both dword element "t5" is assume to be less than 10^4, the rest of dword must be 0;

//the output is 8 single-digit integer, located in the low byte of each dword, MS digit in dword 0

#define __ParMod10to4AVX2dw4_0(y3, t5) \

{ __m256i x0, x2; \

x0 = _mm256_shuffle_epi32(t5, 0); \

x2 = _mm256_mulhi_epu16(x0, _mm256_loadu_si256((__m256i *) quoTenThsn_mulplr_d));\

x2 = _mm256_srlv_epi32(x2, _mm256_setr_epi32(0x0, 0x4, 0x7, 0xa, 0x0, 0x4, 0x7, 0xa)); \

(y3) = _mm256_or_si256(_mm256_slli_si256(x2, 6), _mm256_slli_si256(t5, 2)); \

(y3) = _mm256_or_si256(x2, y3);\

(y3) = _mm256_madd_epi16(y3, _mm256_loadu_si256((__m256i *) mten_mulplr_d)) ;\

}

// parallel conversion of dword integer (< 10^4) to 4 single digit integer in __m128i

#define __ParMod10to4AVX2dw(x3, dw32) \

{ __m128i x0, x2; \

x0 = _mm_broadcastd_epi32(_mm_cvtsi32_si128(dw32)); \

x2 = _mm_mulhi_epu16(x0, _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d));\

x2 = _mm_srlv_epi32(x2, _mm_setr_epi32(0x0, 0x4, 0x7, 0xa)); \

(x3) = _mm_or_si128(_mm_slli_si128(x2, 6), _mm_slli_si128(_mm_cvtsi32_si128(dw32), 2)); \

(x3) = _mm_or_si128(x2, (x3));\

(x3) = _mm_madd_epi16((x3), _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;\

}

15-61

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Example 15-41 shows a helper utility and overall steps to reduce a 64-bit signed integer into a 63-bit
unsigned range with reduced-range integer quotient/remainder pairs using MULX. Note that this
example relies on Example 15-40 and Example 15-42.

Example 15-41. Signed 64-bit Integer Conversion Utility

#define QWCG10to 80xabcc77118461cefdull

static int pr_cg_10to4[8] = { 0x68db8db, 0 , 0, 0, 0x68db8db, 0, 0, 0};

static int pr_1_m10to4[8] = { -10000, 0 , 0, 0 , 1, 0 , 0, 0};

(continue)

char * i64toa_avx2i(__int64 xx, char * p)

{int cnt;

_mm256_zeroupper();

if(xx < 0) cnt = avx2i_q2a_u63b(-xx, p);

else cnt = avx2i_q2a_u63b(xx, p);

p[cnt] = 0;

return p;

}

// Convert unsigned short (< 10^4) to ascii

__inline int ubsAvx2_Lt10k_2s_i2(int x_Lt10k, char *ps)

{int tmp;

__m128i x0, m0, x2, x3, x4;

if(x_Lt10k < 10) { *ps = '0' + x_Lt10k; return 1; }

x0 = _mm_broadcastd_epi32(_mm_cvtsi32_si128(x_Lt10k));

// calculate quotients of divisors 10, 100, 1000, 10000

m0 = _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d);

x2 = _mm_mulhi_epu16(x0, m0);

// u16/10, u16/100, u16/1000, u16/10000

x2 = _mm_srlv_epi32(x2, _mm_setr_epi32(0x0, 0x4, 0x7, 0xa));

// 0, u16, 0, u16/10, 0, u16/100, 0, u16/1000

x3 = _mm_insert_epi16(_mm_slli_si128(x2, 6), (int) x_Lt10k, 1);

x4 = _mm_or_si128(x2, x3);

// produce 4 single digits in low byte of each dword

x4 = _mm_madd_epi16(x4, _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;// add bias for ascii encoding

x2 = _mm_add_epi32(x4, _mm_set1_epi32(0x30303030));

// pack 4 single digit into a dword, start with most significant digit

x3 = _mm_shuffle_epi8(x2, _mm_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080));

if (x_Lt10k > 999) {*(int *) ps = _mm_cvtsi128_si32(x3); return 4;}

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-62

Example 15-42 shows the steps of numeric conversion of a 63-bit dynamic range into ascii format
according to a progressive range reduction technique using a vectorized Montgomery reduction scheme.
Note that this example relies on Example 15-40.

 tmp = _mm_cvtsi128_si32(x3);

 if (x_Lt10k > 99) {

 *((short *) (ps)) = (short) (tmp >>8);

 ps[2] = (char) (tmp >>24);

 return 3;

 }

 *((short *) ps) = (short) (tmp>>16); return 2;

 }

 }

Example 15-42. Unsigned 63-bit Integer Conversion Utility

unsigned avx2i_q2a_u63b (unsigned __int64 xx, char *ps)

{ __m128i v0;

 __m256i m0, x1, x3, x4, x5 ;

 unsigned __int64 xxi, xx2, lo64, hi64;

__int64 w;

 int j, cnt, abv16, tmp, idx, u;

 // conversion of less than 4 digits

if (xx < 10000) {

j = ubsAvx2_Lt10k_2s_i2 ((unsigned) xx, ps); return j;

} else if (xx < 100000000) { // dynamic range of xx is less than 9 digits

 // conversion of 5-8 digits

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)xx)); // broadcast to every dword

 // calculate quotient and remainder, each with reduced range (< 10^4)

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

// quotient in dw4, remainder in dw0

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)xx), 0),
x3);

 __ParMod10to4AVX2dw4_0(x3, m0); // 8 digit in low byte of each dw

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

(continue)

Example 15-41. Signed 64-bit Integer Conversion Utility (Contd.)

15-63

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

// pack 8 single-digit integer into first 8 bytes and set rest to zeros

 x4 = _mm256_permutevar8x32_epi32(x4, _mm256_setr_epi32(0x4, 0x0, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1));

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt = 8 -idx; // actual number non-zero-leading digits to write to output

} else { // conversion of 9-12 digits

 lo64 = _mulx_u64(xx, (unsigned __int64) QWCG10to8, &hi64);

 hi64 >>= 26;

 xxi = _mulx_u64(hi64, (unsigned __int64)100000000, &xx2);

 lo64 = (unsigned __int64)xx - xxi;

 if(hi64 < 10000) { // do digist 12-9 first

 __ParMod10to4AVX2dw(v0, (int)hi64);

 v0 = _mm_add_epi32(v0, _mm_set1_epi32(0x30303030));

 // continue conversion of low 8 digits of a less-than 12-digit value

 x5 = _mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)lo64), 0);

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)lo64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(x5, x3); // quotient in dw4, remainder in dw0

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

 x5 = _mm256_inserti128_si256(_mm256_setzero_si256(), _mm_shuffle_epi8(v0,

_mm_setr_epi32(0x80808080, 0x80808080, 0x0004080c, 0x80808080)), 0);

 x4 = _mm256_permutevar8x32_epi32(_mm256_or_si256(x4, x5), _mm256_setr_epi32(0x2, 0x4, 0x0, 0x1,

0x1, 0x1, 0x1, 0x1));

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt = 12 -idx;

 } else { // handle greater than 12 digit input value

 cnt = 0;

 if (hi64 > 100000000) { // case of input value has more than 16 digits

 xxi = _mulx_u64(hi64, (unsigned __int64) QWCG10to8, &xx2) ;

abv16 = (int)(xx2 >>26);

hi64 -= _mulx_u64((unsigned __int64) abv16, (unsigned __int64) 100000000, &xx2);

__ParMod10to4AVX2dw(v0, abv16);

v0 = _mm_add_epi32(v0, _mm_set1_epi32(0x30303030));

v0 = _mm_shuffle_epi8(v0, _mm_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080));

(continue)

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-64

tmp = _mm_movemask_epi8(_mm_cmpgt_epi8(v0, _mm_set1_epi32(0x30303030)));

_BitScanForward((unsigned long *) &idx, tmp);

cnt = 4 -idx;

 }

// conversion of lower 16 digits

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)hi64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)hi64),
0), x3);

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)lo64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)lo64),
0),), x3);

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x5 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x80808080, 0x80808080, 0x0004080c, 0x80808080,

0x80808080, 0x80808080, 0x0004080c, 0x80808080));

 x4 = _mm256_permutevar8x32_epi32(_mm256_or_si256(x4, x5), _mm256_setr_epi32(0x4, 0x0, 0x6, 0x2,

0x1, 0x1, 0x1, 0x1));

 cnt += 16;

 if (cnt <= 16) {

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt -= idx;

 }

 }

 }

w = _mm_cvtsi128_si64(_mm256_castsi256_si128(x4));

switch(cnt) {

case 5:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);

break;

case 6:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);

break;

case 7:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

 *(unsigned *) (&ps[3]) = (w >>32);

(continue)

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

15-65

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

break;

case 8: *(long long *)ps = w;

break;

case 9:*ps++ = (char) (w >>24); *(long long *) (&ps[0]) = _mm_cvtsi128_si64(
_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 10:*(short *)ps = (short) (w >>16);

*(long long *) (&ps[2]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 11:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

*(long long *) (&ps[3]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 12: *(unsigned *)ps = (unsigned int) w; *(long long *) (&ps[4]) = _mm_cvtsi128_si64(
_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 13:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);

*(long long *) (&ps[4]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 14:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);

*(long long *) (&ps[6]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 15:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

 *(unsigned *) (&ps[3]) = (w >>32);

*(long long *) (&ps[7]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 16: _mm_storeu_si128((__m128i *) ps, _mm256_castsi256_si128(x4));

break;

case 17:u = (int) _mm_cvtsi128_si64(v0); *ps++ = (char) (u >>24);

_mm_storeu_si128((__m128i *) &ps[0], _mm256_castsi256_si128(x4));

break;

case 18:u = (int) _mm_cvtsi128_si64(v0); *(short *)ps = (short) (u >>16);

_mm_storeu_si128((__m128i *) &ps[2], _mm256_castsi256_si128(x4));

break;

case 19:u = (int) _mm_cvtsi128_si64(v0); *ps = (char) (u >>8); *(short *) (&ps[1]) = (short) (u >>16);

_mm_storeu_si128((__m128i *) &ps[3], _mm256_castsi256_si128(x4));

break;

case 20:u = (int) _mm_cvtsi128_si64(v0); *(unsigned *)ps = (short) (u);

_mm_storeu_si128((__m128i *) &ps[4], _mm256_castsi256_si128(x4));

break;

}

 return cnt;

}

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-66

The AVX2 version of numeric conversion across the dynamic range of 3/9/17 output digits are approxi-
mately 23/57/54 cycles per input, compared to standard library implement ion’s range of 85/260/560
cycles per input.

The techniques illustrated above can be extended to numeric conversion of other library, such as binary-
integer-decimal (BID) encoded IEEE-754-2008 Decimal floating-point format. For BID-128 format,
Example 15-42 can be adapted by adding another range-reduction stage using a pre-computed 256-bit
constant to perform Montgomery reduction at modulus 10^16. The technique to construct the 256-bit
constant is covered in Chapter 14, “SSE4.2 and SIMD Programming For Text-
Processing/Lexing/Parsing”of Intel® 64 and IA-32 Architectures Optimization Reference Manual.

15.16.4 Considerations for Gather Instructions
VGATHER family of instructions fetch multiple data elements specified by a vector index register
containing relative offsets from a base address. Processors based on Haswell microarchitecture is the
first implementation of the VGATHER instruction and a single instruction results in multiple micro-ops
being executed. In the Broadwell microarchitecture, the throughput of the VGATHER family of instruc-
tions have improved significantly; see Table D-5.

Depending on data organization and access patterns, it is possible to create equivalent code sequences
without using VGATHER instruction that will execute faster and with fewer micro-ops than a single
VGATHER instruction (e.g. see Section 15.5.1). Example 15-43 shows some of the situations where use
of VGATHER on Haswell microarchitecture is unlikely to provide performance benefit.

In other cases, using the VGATHER instruction can reduce code size and execute faster with techniques
including but not limited to amortizing the latency and throughput of VGATHER, or by hoisting the fetch
operations well in advance of consumer code of the destination register of those fetches. Example
15-44 lists some patterns that can benefit from using VGATHER on Haswell microarchitecture.
General tips for using VGATHER:
• Gathering more elements with a VGATHER instruction helps amortize the latency and throughput of

VGATHER, and is more likely to provide performance benefit over an equivalent non-VGATHER flow.
For example, the latency of 256-bit VGATHER is less than twice the equivalent 128-bit VGATHER and
therefore more likely to show gains than two 128-bit equivalent ones. Also, using index size larger
than data element size results in only half of the register slots utilized but not a proportional latency

Example 15-43. Access Patterns Favoring Non-VGATHER Techniques

Access Patterns Recommended Instruction Selection

Sequential elements Regular SIMD loads (MOVAPS/MOVUPS, MOVDQA/MOVDQU)

Fewer than 4 elements Regular SIMD load + horizontal data-movement to re-arrange slots

Small Strides Load all nearby elements + shuffle/permute to collected strided elements:

VMOVUPD YMM0, [sequential elements]
VPERMQ YMM1, YMM0, 0x08 // the even elements
VPERMQ YMM2, YMM0, 0x0d // the odd elements

Transpositions Regular SIMD loads + shuffle/permute/blend to transpose to columns

Redundant elements Load once + shuffle/blend/logical to build data vectors in register. In this case, result[i] =
x[index[i]] + x[index[i+1]], the technique below may be preferable to using multiple VGATHER:

ymm0 <- VGATHER (x[index[k]]); // fetching 8 elements
ymm1 <- VBLEND(VPERM (ymm0), VBROADCAST (x[indexx[k+8]]);
ymm2 <- VPADD(ymm0, ymm1);

15-67

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

reduction. Therefore the dword index form of VGATHER is preferred over qword index if dwords or
single-precision values are to be fetched.

• It is advantageous to hoist VGATHER well in advance of the consumer code.
• VGATHER merges the (unmasked) gathered elements with the previous value of the destination.

Therefore, in cases where the previous value of the destination doesn’t need to be merged (for
instance, when no elements is masked off), it can be beneficial to break the dependency of the
VGATHER instruction on the previous writer of the destination register (by zeroing out the register
with a VXOR instruction).

Performance of the VGATHER instruction compared to a multi-instruction gather equivalent flow can vary
due to (1) differences in the base algorithm, (2) different data organization, and (3) the effectiveness of
the equivalent flow. In performance critical applications it is advisable to evaluate both options before
choosing one.

The throughput of GATHER instructions continue to improve from Broadwell to Skylake Microarchitec-
ture. This is shown in Figure 15-4.

Example 15-44. Access Patterns Likely to Favor VGATHER Techniques

Access Patterns Instruction Selection

4 or more
elements with
unknown masks

Code with conditional element gathers typically either will not vectorize without a VGATHER
instruction or provide relatively poor performance due to data-dependent mis-predicted branches.

C code with data-dependent branches:

if (condition[i] > 0) { result[i] = x[index[i]] }

AVX2 equivalent sequence:

YMM0 <- VPCMPGT (condition, zeros) // compute vector mask
YMM2 <- VGATHER (x[YMM1], YMM0) // addr=x[YMM1], mask=YMM0

Vectorized index
calculation with 8
elements

Vectorized calculations to generate the index synergizes well with the VGATHER instruction
functionality.

C code snippet:

x[index1[i] + index2[i]]

AVX2 equivalent:

YMM0 <- VPADD (index1, index2) // calc vector index
YMM1 <- VGATHER (x[YMM0], mask) // addr=x[YMM0]

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-68

Example 15-45 gives the asm sequence of software implementation that is equivalent to the VPGATHERD
instruction. This can be used to compare the trade-off of using a hardware gather instruction or software
gather sequence based on inserting an individual element.

Figure 15-4. Throughput Comparison of Gather Instructions

Example 15-45. Software AVX Sequence Equivalent to Full-Mask VPGATHERD

 mov eax, [rdi] // load index0

vmovd xmm0, [rsi+4*rax] // load element0

mov eax, [rdi+4] // load index1

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x1 // load element1

mov eax, [rdi+8] // load index2

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x2 // load element2

mov eax, [rdi+12] // load index3

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x3 // load element3

mov eax, [rdi+16] // load index4

vmovd xmm1, [rsi+4*rax] // load element4

mov eax, [rdi+20] // load index5

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x1 // load element5

mov eax, [rdi+24] // load index6

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x2 // load element6

mov eax, [rdi+28] // load index7

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x3 // load element7

vinserti128 ymm0, ymm0, xmm1, 1 //result in ymm0

15-69

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Figure 15-5 compares per-element throughput using the VPGATHERD instruction versus a software
gather sequence with Skylake microarchitecture as a function of cache locality of data supply. With the
exception of using hardware GATHER on two data elements per instruction, the gather instruction out-
performs the software sequence on Skylake microarchitecture.

If data supply locality is from memory, software sequences are likely to perform better than the hardware
GATHER instruction.

15.16.4.1 Strided Loads
This section compares using the hardware GATHER instruction versus alternative implementations of
handling Array of Structures (AOS) to Structure of Arrays (SOA) transformation. The code separates the
real and imaginary elements in a complex array into two separate arrays.

C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[i].real;

Imaginary_buffer[i] = Complex_buffer[i].imag;

}

Figure 15-5. Comparison of HW GATHER Versus Software Sequence in Skylake Microarchitecture

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-70

With strided access patterns, an AVX software sequence can load and shuffle on multiple elements and is
the more optimal technique.

15.16.4.2 Adjacent Loads
This section compares using the hardware GATHER instruction versus alternative implementations of
handling a variant situation of AOS to SOA transformation. In this case, AOS data are not loaded sequen-
tially but via an index array.

Example 15-46. AOS to SOA Transformation Alternatives
1: Scalar Code 2: AVX w/ VINSRT+VSHUFPS 3: AVX2 w/ VPGATHERD

loop:
lea eax, [r10+r10*1]
movsxd rax, eax
inc r10d
mov r11d, dword ptr [rsi+rax*8]
mov dword ptr [rcx+rax*4], r11d
mov r11d, dword ptr [rsi+rax*8+0x4]
mov dword ptr [rdx+rax*4], r11d
mov r11d, dword ptr [rsi+rax*8+0x8]
mov dword ptr [rcx+rax*4+0x4],
r11d
mov r11d, dword ptr [rsi+rax*8+0xc]
mov dword ptr [rdx+rax*4+0x4],
r11d
cmp r10d, r8d
jl loop

loop:
vmovdqu xmm0, xmmword ptr
[r10+rcx*8]
vmovdqu xmm1, xmmword ptr
[r10+rcx*8+0x10]
vmovdqu xmm4, xmmword ptr
[r10+rcx*8+0x40]
vmovdqu xmm5, xmmword ptr
[r10+rcx*8+0x50]
vinserti128 ymm2, ymm0, xmmword
ptr [r10+rcx*8+0x20], 0x1
vinserti128 ymm3, ymm1, xmmword
ptr [r10+rcx*8+0x30], 0x1
vinserti128 ymm6, ymm4, xmmword
ptr [r10+rcx*8+0x60], 0x1
vinserti128 ymm7, ymm5, xmmword
ptr [r10+rcx*8+0x70], 0x1
add rcx, 0x10
vshufps ymm0, ymm2, ymm3, 0x88
vshufps ymm1, ymm2, ymm3, 0xdd
vshufps ymm4, ymm6, ymm7, 0x88
vshufps ymm5, ymm6, ymm7, 0xdd
vmovups ymmword ptr [r9], ymm0
vmovups ymmword ptr [r8], ymm1
vmovups ymmword ptr [r9+0x20],
ymm4
vmovups ymmword ptr [r8+0x20],
ymm5

loop:
lea r11, [r10+rcx*8]
vpxor ymm5, ymm5, ymm5
add rcx, 0x8
vpxor ymm6, ymm6, ymm6
vmovdqa ymm3, ymm0
vmovdqa ymm4, ymm0
vpgatherdd ymm5, ymmword ptr
[r11+ymm2*4], ymm3
vpgatherdd ymm6, ymmword ptr
[r11+ymm1*4], ymm4
vmovdqu ymmword ptr [r9], ymm5
vmovdqu ymmword ptr [r8], ymm6
add r9, 0x20
add r8, 0x20
cmp rcx, rsi
jl loop

add r9, 0x40
add r8, 0x40
cmp rcx, rsi
jl loop

Table 15-7. Comparison of AOS to SOA with Strided Access Pattern
Microarchitecture Scalar VPGATHERD AVX VINSRTF128/VSHUFFLEPS

Broadwell 1X 1.7X 4.8X

Skylake 1X 2.7X 4.9X

15-71

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[Index_buffer[i]].real;

Imaginary_buffer[i] = Complex_buffer[Index_buffer[i]].imag;

}

Example 15-47. Non-Strided AOS to SOA
AVX2 GATHERPD AVX VINSRTF128 /UNPACK
loop:
vmovdqu ymm1, ymmword ptr [rsi+rdx*4]
vpaddd ymm3, ymm1, ymm1
vpaddd ymm14, ymm13, ymm3
vxorpd ymm5, ymm5, ymm5
vmovdqa ymm2, ymm0
vxorpd ymm6, ymm6, ymm6
vmovdqa ymm4, ymm0
vxorpd ymm10, ymm10, ymm10
vmovdqa ymm7, ymm0
vxorpd ymm11, ymm11, ymm11
vmovdqa ymm9, ymm0
vextracti128 xmm12, ymm14, 0x1
vextracti128 xmm8, ymm3, 0x1
vgatherdpd ymm6, ymmword ptr[r8+xmm8*8],ymm4
vgatherdpd ymm5, ymmword ptr[r8+xmm3*8],ymm2
vmovupd ymmword ptr [rcx+rdx*8], ymm5
vmovupd ymmword ptr [rcx+rdx*8+0x20], ymm6

loop:
movsxd r10, dword ptr [rdx+rsi*4]
shl r10, 0x4
movsxd r11, dword ptr [rdx+rsi*4+0x8]
shl r11, 0x4
vmovupd xmm0, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0x4]
shl r10, 0x4
vinsertf128 ymm2, ymm0, xmmword ptr [r9+r11*1], 0x1
vmovupd xmm1, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0xc]
shl r10, 0x4
vinsertf128 ymm3, ymm1, xmmword ptr [r9+r10*1], 0x1
movsxd r10, dword ptr [rdx+rsi*4+0x10]
shl r10, 0x4
vunpcklpd ymm4, ymm2, ymm3
vunpckhpd ymm5, ymm2, ymm3
vmovupd ymmword ptr [rcx], ymm4

vgatherdpd ymm11, ymmword ptr[r8+xmm12*8],ymm7
vgatherdpd ymm10, ymmword ptr[r8+xmm14*8],ymm9
vmovupd ymmword ptr [rax+rdx*8], ymm10
vmovupd ymmword ptr [rax+rdx*8+0x20], ymm11
add rdx, 0x8
cmp rdx, r11
jb loop

vmovupd xmm6, xmmword ptr [r9+r10*1]
vmovupd ymmword ptr [rax], ymm5
movsxd r10, dword ptr [rdx+rsi*4+0x18]
shl r10, 0x4
vinsertf128 ymm8, ymm6, xmmword ptr [r9+r10*1], 0x1
movsxd r10, dword ptr [rdx+rsi*4+0x14]
shl r10, 0x4
vmovupd xmm7, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0x1c]
add rsi, 0x8
shl r10, 0x4
vinsertf128 ymm9, ymm7, xmmword ptr [r9+r10*1], 0x1
vunpcklpd ymm10, ymm8, ymm9
vunpckhpd ymm11, ymm8, ymm9
vmovupd ymmword ptr [rcx+0x20], ymm10
add rcx, 0x40
vmovupd ymmword ptr [rax+0x20], ymm11
add rax, 0x40
cmp rsi, r8
jl loop

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-72

With non-strided, regular access pattern of AOS to SOA, an AVX software sequence that uses
VINSERTF128 and interleaved packing of multiple elements can be more optimal.

15.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation
In processors based on the Skylake microarchitecture, the functionality of the MMX instruction set is
unchanged from prior generations. But many MMX instructions are constrained to execute to one port
with half the instruction throughput relative to prior microarchitectures. The MMX instructions with
throughput constraints include:
• PADDS[B/W], PADDUS[B/W], PSUBS[B/W], PSUBUS[B/W].
• PCMPGT[B/W/D], PCMPEQ[B/W/D].
• PMAX[UB/SW], PMIN[UB/SW].
• PAVG[B/W], PABS[B/W/D], PSIGN[B/W/D].

To overcome the reduction of MMX instruction throughput, conversion of asm and intrinsic code to use
AVX2 instruction will provide significant performance improvements. Example 15-48 shows the asm
sequence using AVX2 versus MMX equivalent. In Skylake microarchitecture, the MMX code shown in
Example 15-48 will execute at approximately half the speed relative to the Broadwell microarchitecture.
This is due to PMAXSW/PMINSW throughput being reduced by half with the single-port restriction. When
the same task is implemented with the equivalent AVX2 sequence, the performance of the AVX2 code on
Skylake microarchitecture will be ~3.9X of the MMX code executing on the Broadwell microarchitecture.

Table 15-8. Comparison of Indexed AOS to SOA Transformation
Microarchitecture VPGATHERPD AVX VINSRTF128/VUNPCK*

Broadwell 1X 1.4X

Skylake 1.3X 1.7X

15-73

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

Example 15-48. Conversion to Throughput-Reduced MMX sequence to AVX2 Alternative
MMX Code AVX2 Code

mov rax, pIn
mov rbx, pOut
mov r8, len
mov rcx, 8
movq mm0, [rax]
movq mm1, [rax + 8]
movq mm2, mm0
movq mm3, mm1
cmp rcx, r8
jge end

loop:
movq mm4, [rax + 2*rcx]
movq mm5, [rax + 2*rcx + 8]

pmaxsw mm0, mm4
pmaxsw mm1, mm5
pminsw mm2, mm4
pminsw mm3, mm5

add rcx, 8
cmp rcx, r8
jl loop

end:
//Reduction
pmaxsw mm0, mm1
pshufw mm1, mm0, 0xE
pmaxsw mm0, mm1
pshufw mm1, mm0, 1
pmaxsw mm0, mm1

pminsw mm2, mm3
pshufw mm3, mm2, 0xE
pminsw mm2, mm3
pshufw mm3, mm2, 1
pminsw mm2, mm3

movd eax, mm0
mov WORD PTR [rbx], ax
movd eax, mm2
mov WORD PTR [rbx + 2], ax
emms

mov rax, pIn
mov rbx, pOut
mov r8, len
mov rcx, 32
vmovdqu ymm0, ymmword ptr [rax]
vmovdqu ymm1, ymmword ptr [rax + 32]
vmovdqu ymm2, ymm0
vmovdqu ymm3, ymm1
cmp rcx, r8
jge end

loop:
vmovdqu ymm4, ymmword ptr [rax + 2*rcx]
vmovdqu ymm5, ymmword ptr [rax + 2*rcx + 32]
vpmaxsw ymm0, ymm0, ymm4
vpmaxsw ymm1, ymm1, ymm5
vpminsw ymm2, ymm2, ymm4
vpminsw ymm3, ymm3, ymm5
add rcx, 32
cmp rcx, r8
jl loop

end:
//Reduction
vpmaxsw ymm0, ymm0, ymm1
vextracti128 xmm1, ymm0, 1
vpmaxsw xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 0xe
vpmaxsw xmm0, xmm0, xmm1
vpshuflw xmm1, xmm0, 0xe
vpmaxsw xmm0, xmm0, xmm1
vpshuflw xmm1, xmm0, 1
vpmaxsw xmm0, xmm0, xmm1
vmovd eax, xmm0
mov word ptr [rbx], ax
vpminsw ymm2, ymm2, ymm3
vextracti128 xmm1, ymm2, 1
vpminsw xmm2, xmm2, xmm1
vpshufd xmm1, xmm2, 0xe
vpminsw xmm2, xmm2, xmm1
vpshuflw xmm1, xmm2, 0xe
vpminsw xmm2, xmm2, xmm1
vpshuflw xmm1, xmm2, 1
vpminsw xmm2, xmm2, xmm1
vmovd eax, xmm2
mov word ptr [rbx + 2], ax

OPTIMIZATIONS FOR INTEL® AVX, INTEL® AVX2, AND INTEL® FMA

15-74

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

8. Updates to Chapter 18
Change bars and violet text show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Software Optimization for Intel AVX-512 Instructions.

--
Changes to this chapter:
• Example 18-1: Corrected typos: Teta with theta.
• Example 18-2: Corrected typos: Teta with theta.

CHAPTER 18
SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) are the following set of 512-bit instruction set
extensions supported by recent microarchitectures, beginning with Skylake server microarchitecture,
and the Intel® Xeon Phi™ processors based on Knights Landing microarchitecture.
• Intel® AVX-512 Foundation (F)

— 512-bit vector width.

— 32 512-bit long vector registers.

— Data expand and data compress instructions.

— Ternary logic instruction.

— 8 new 64-bit long mask registers.

— Two source cross-lane permute instructions.

— Scatter instructions.

— Embedded broadcast/rounding.

— Transcendental support.
• Intel® AVX-512 Conflict Detection Instructions (CD)
• Intel® AVX-512 Exponential and Reciprocal Instructions (ER)
• Intel® AVX-512 Prefetch Instructions (PF)
• Intel® AVX-512 Byte and Word Instructions (BW)
• Intel® AVX-512 Double Word and Quad Word Instructions (DQ)

— New QWORD and Compute and Convert Instructions.
• Intel® AVX-512 Vector Length Extensions (VL)

The Venn diagram below shows the different extensions supported by the two processor families.

Figure 18-1. Intel® AVX-512 Extensions Supported by Skylake Server Microarchitecture and Knights
Landing Microarchitecture

Processors based on Skylake
Server Microarchitecture

SOM00001

Intel AVX-512 F

Intel AVX-512 CD

Intel® Xeon Phi™ Processor

Intel AVX-512 BW

Intel AVX-512 DQ

Intel AVX-512 VL

Intel AVX-512 ER

Intel AVX-512 PF

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-2

Performance reports in this chapter are based on Data Cache Unit (DCU) resident data measurements on
the Skylake Server System with Intel® Turbo-Boost technology disabled, Intel® SpeedStep® Technology
disabled, core and uncore frequency set to 1.8GHz, unless otherwise specified. This fixed frequency
configuration is used in order to isolate code change impacts from other factors. See Section 2.5.3,
“Skylake Server Power Management”, to understand the power and frequency impacts of using Intel
AVX-512.

18.1 BASIC INTEL® AVX-512 VS. INTEL® AVX2 CODING
In most cases, the main performance driver for Intel AVX-512 will be the 512-bit register width. This
section demonstrates the similarity and differences between basic Intel AVX2 and Intel AVX-512 code
and explains how to convert code from Intel AVX2 to Intel AVX-512 easily. The first sub section demon-
strates the conversion of intrinsic code and the second sub-section of assembly code. The following
sections highlight advanced aspects that require consideration and treatment when doing such conver-
sions.

The examples in the following subsections implement a Cartesian coordinate system rotation. A point in
a Cartesian coordinate system is described by the pair (x,y). The following picture demonstrates a Carte-
sian rotation of (x,y) by angle to (x',y').

18.1.1 Intrinsic Coding
The following comparison of Intel AVX2 and Intel AVX-512 shows how to convert a simple intrinsic Intel
AVX2 code sequence to Intel AVX-512. This example demonstrates the Intel AVX Instruction format, 64
byte ZMM registers, dynamic and static memory allocation with data alignment of 64bytes, and the C
data type representing 16 floating point elements in a ZMM register. Follow these guidelines when doing
this transformation.

Figure 18-2. Cartesian Rotation

Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5... : In Buffer

s*X5
+

c*Y5

s*X5
-

c*Y5

s*X4
+

c*Y4

s*X4
-

c*Y4

s*X3
+

c*Y3

s*X3
-

c*Y3

s*X2
+

c*Y2

s*X2
-

c*Y2

s*X1
+

c*Y1

s*X1
-

c*Y1

s*X0
+

c*Y0

s*X0
-

c*Y0
...

Y’5 X’5 Y’4 X’4 Y’3 X’3 Y’2 X’2 Y’1 X’1 Y’0 X’0

: Out Buffer

SOM00002

*c = cosθ
s = sinθ

x‘ = xcosθ - ysinθ
y‘ = xsinθ + ycosθ

θ

Y’

Y

X’

X

18-3

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• Align statically and dynamically allocated buffers to 64-bytes.
• Use a double supplemental buffer size for constants.
• Change __mm256_ intrinsic name prefix with __mm512_.
• Change variable data types names from __m256 to __m512.
• Divide by 2 iteration count (double stride length).

Example 18-1. Cartesian Coordinate System Rotation with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 8 floats with 32byte align-
ments
 __declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta};

 __declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta};

 //__m256 data type represents a Ymm
 // register with 8 float elements
 __m256 Ymm_cos_sin = _mm256_-
load_ps(cos_sin_theta_vec);

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 16 floats with 64byte align-
ments
 __declspec(align(64)) float cos_sin_theta_vec[16] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta};

 __declspec(align(64)) float sin_cos_theta_vec[16] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta};

 //__m512 data type represents a Zmm
 // register with 16 float elements
 __m512 Zmm_cos_sin = _mm512_-
load_ps(cos_sin_theta_vec);

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-4

18.1.2 Assembly Coding
Similar to the intrinsic porting guidelines, assembly porting guidelines are listed below:
• Align statically and dynamically allocated buffers to 64-bytes.
• Double the supplemental buffer sizes if needed.
• Add a “v” prefix to instruction names.
• Change register names from ymm to zmm.
• Divide the iteration count by two (or double stride length).

 //Intel® AVX2 256bit packed single load
 __m256 Ymm_sin_cos = _mm256_-
load_ps(sin_cos_theta_vec);

 __m256 Ymm0, Ymm1, Ymm2, Ymm3;
 //processing 16 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=16)
 {
 Ymm0 = _mm256_load_ps(pInVector+i);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector + i,Ymm3);

 Ymm0 = _mm256_load_ps(pInVector+i+8);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2, Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector+i+8,Ymm3);
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

 //Intel® AVX-512 512bit packed single load
 __m512 Zmm_sin_cos = _mm512_-
load_ps(sin_cos_theta_vec);
__m512 Zmm0, Zmm1, Zmm2, Zmm3;
 //processing 32 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=32)
 {
 Zmm0 = _mm512_load_ps(pInVector+i);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2,Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
 _mm512_store_ps(pOutVector + i,Zmm3);

 Zmm0 = _mm512_load_ps(pInVector+i+16);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2, Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
_mm512_store_ps(pOutVector+i+16,Zmm3);
 }
 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 18-1. Cartesian Coordinate System Rotation with Intrinsics (Contd.)

18-5

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-2. Cartesian Coordinate System Rotation with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 8 floats with 32byte align-
ments
 __declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta};

 __declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta};

 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a ymm register of 32 bytes
 vmovups ymm3, ymmword ptr[cos_sin_theta_vec]
 vmovups ymm4, ymmword ptr[sin_cos_theta_vec]

 mov edx, len
 shl edx, 2
 xor ecx, ecx
loop1:
 vmovsldup ymm0, [rax+rcx]
 vmovshdup ymm1, [rax+rcx]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // 32 byte store from a ymm register
 vmovaps [r8+rcx], ymm0

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 16 floats with 64byte align-
ments
 __declspec(align(64)) float cos_sin_theta_vec[16] =
{cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta};

 __declspec(align(64)) float sin_cos_theta_vec[16] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta};
 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a zmm register of 64 bytes
 vmovups zmm3, zmmword ptr[cos_sin_theta_vec]
 vmovups zmm4, zmmword ptr[sin_cos_theta_vec]

 mov edx, len
 shl edx, 2
 xor ecx, ecx
loop1:
 vmovsldup zmm0, [rax+rcx]
 vmovshdup zmm1, [rax+rcx]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // 64 byte store from a zmm register
 vmovaps [r8+rcx], zmm0

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-6

18.2 MASKING
Intel AVX-512 instructions which use the Extended VEX coding scheme (EVEX) encode a predicate
operand to conditionally control per-element computational operation and update the result to the desti-
nation operand. The predicate operand is known as the opmask register. The opmask is a set of eight
architectural registers, 64 bits each. From this set of 8 architectural registers, only k1 through k7 can be
addressed as the predicate operand; k0 can be used as a regular source or destination but cannot be
encoded as a predicate operand.

A predicate operand can be used to enable memory fault-suppression for some instructions with a
memory source operand.

As a predicate operand, the opmask registers contain one bit to govern the operation / update of each
data element of a vector register. Masking is supported on Skylake microarchitecture for instructions with
all data sizes: byte (int8), word (int16), single precision floating-point (float32), integer doubleword
(int32), double precision floating-point (float64), integer quadword (int64). Therefore, a vector register
holds either 8, 16, 32 or 64 elements; accordingly, the length of a vector mask register is 64 bits.
Masking on Skylake microarchitecture is also enabled for all vector length values: 128-bit, 256-bit and
512-bit. Each instruction accesses only the number of least significant mask bits needed based on its
data type and vector length. For example, Intel AVX-512 instructions operating on 64-bit data elements
with a 512-bit vector length, only use the 8 (i.e., 512/64) least significant bits of the opmask register.

An opmask register affects an Intel AVX-512 instruction at per-element granularity. So, any numeric or
non-numeric operation of each data element and per-element updates of intermediate results to the
destination operand are predicated on the corresponding bit of the opmask register.

 vmovsldup ymm0, [rax+rcx+32]
 vmovshdup ymm1, [rax+rcx+32]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // offset 32 bytes from previous store
 vmovaps [r8+rcx+32], ymm0

 // Processed 64bytes in this loop
 // (the code is unrolled twice)
 add ecx, 64
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

 vmovsldup zmm0, [rax+rcx+64]
 vmovshdup zmm1, [rax+rcx+64]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // offset 64 bytes from previous store
 vmovaps [r8+rcx+64], zmm0

 // Processed 128bytes in this loop
 // (the code is unrolled twice)
 add ecx, 128
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 18-2. Cartesian Coordinate System Rotation with Assembly (Contd.)

18-7

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

An opmask serving as a predicate operand in Intel AVX-512 has the following properties:
• The instruction's operation is only performed for an element if the corresponding opmask bit is set.

This implies that no exception or violation can be caused by an operation on a masked-off element.
Consequently, no MXCSR exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask
bit is not set. Instead, the destination element value may be preserved (merging-masking) or zeroed
out (zeroing-masking).

• For some instructions with a memory operand, memory faults are suppressed for elements with a
mask bit of 0.

Note that this feature provides a powerful construct to implement control-flow predication, since the
mask provides a merging behavior for Intel AVX-512 vector register destinations. As an alternative the
masking can be used for zeroing instead of merging, so that the masked out elements are updated with
0 instead of preserving the old value. The zeroing behavior removes the implicit dependency on the old
value when it is not needed.

Most instructions with masking enabled accept both forms of masking. Instructions that must have
EVEX.aaa bits different than 0 (gather and scatter) and instructions that write to memory, only accept
merging-masking.

The per-element destination update rule also applies when the destination operand is a memory location.
Vectors are written on a per element basis, based on the opmask register used as a predicate operand.

The value of an opmask register can be:
• Generated as a result of a vector instruction (CMP, FPCLASS, etc.).
• Loaded from memory.
• Loaded from GPR register.
• Modified by mask-to-mask operations.

18.2.1 Masking Example
The masked instructions conditionally operate with packed data elements, depending on the mask bits
associated with each data element. The mask bit for each data element is the corresponding bit in the
mask register.

When performing a mask instruction, the returned value is 0 for elements which have a corresponding
mask value of 0. The corresponding value in the destination register depends on the zeroing flag:
• If the flag is set, the memory location is filled with zeros.
• If the flag is not set, the values in memory location can are preserved.

The following figures show an example for a mask move from one register to another when using
merging masking.

vmovaps zmm1 {k1}, zmm0

The destination register before instruction execution is shown below.

SOM00003

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0313263... bits

ZMM1

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-8

Operation is as follows.

The result of the execution with zeroing masking is (notice the {z} in the instruction):

vmovaps zmm1 {k1}{z}, zmm0

.

Notice that merging masking operations has a dependency on the destination, but zeroing masking is
free of such dependency.

The following example shows how masking could be done with Intel AVX-512 in contrast to Intel AVX2.

C Code:

const int N = miBufferWidth;

const double* restrict a = A;

const double* restrict b = B;

double* restrict c = Cref;

for (int i = 0; i < N; i++){

double res = b[i];

if(a[i] > 1.0){

res = res * a[i];

}

c[i] = res;

}

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM0

0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 K1

SOM00004

b15 a14 b13 b12 b11 b10 b9 b8 a7 a6 a5 a4 b3 b2 a1 a0 ZMM1

… 63 32 31 0 bits

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00005

0 a14 0 0 0 0 0 0 a7 a6 a5 a4 0 0 a1 a0 ZMM1

… 63 32 31 0 bits

18-9

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-3. Masking with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

for (int i = 0; i < N; i+=32){
__m256d aa, bb, mask;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_pd(a+i+j*4);
bb = _mm256_loadu_pd(b+i+j*4);
mask = _mm256_c-

mp_pd(_mm256_set1_pd(1.0), aa, 1);
aa = _mm256_and_pd(aa, mask); // zero the

false values
aa = _mm256_mul_pd(aa, bb);
bb = _mm256_blendv_pd(bb, aa, mask);
_mm256_storeu_pd(c+4*j, bb);

}

c += 32;
}

for (int i = 0; i < N; i+=32){
__m512d aa, bb;
__mmask8 mask;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_pd(a+i+j*8);
bb = _mm512_loadu_pd(b+i+j*8);
mask = _mm512_cmp_p-

d_mask(_mm512_set1_pd(1.0), aa, 1);
bb = _mm512_mask_mul_pd(bb, mask, aa,

bb);
_mm512_storeu_pd(c+8*j, bb);

}

c += 32;
}

Baseline Speedup: 2.9x

Example 18-4. Masking with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9

loop:
vmovupd ymm1, ymmword ptr [rax+rcx*8]
inc r9d
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x20]
vmovupd ymm2, ymmword ptr [r11+rcx*8]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x20]
vmovupd ymm11, ymmword ptr [rax+rcx*8+0x40]
vmovupd ymm12, ymmword ptr [r11+rcx*8+0x40]
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vcmppd ymm14, ymm0, ymm11, 0x1
vandpd ymm16, ymm1, ymm4
vandpd ymm17, ymm6, ymm9

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9
mov rdi, 1
cvtsi2sd xmm8, rdi
vbroadcastsd zmm8, xmm8

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm2, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm4, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm6, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm3, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm5, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm7, zmmword ptr [r11+rcx*8+0xc0]

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-10

vmulpd ymm3, ymm16, ymm2
vmulpd ymm8, ymm17, ymm7
vmovupd ymm1, ymmword ptr [rax+rcx*8+0x60]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x80]
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm2, ymmword ptr [r11+rcx*8+0x60]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x80]
vmovupd ymmword ptr [rsi], ymm5
vmovupd ymmword ptr [rsi+0x20], ymm10
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm18, ymm11, ymm14
vandpd ymm19, ymm1, ymm4
vandpd ymm20, ymm6, ymm9
vmulpd ymm13, ymm18, ymm12
vmulpd ymm3, ymm19, ymm2
vmulpd ymm8, ymm20, ymm7
vmovupd ymm11, ymmword ptr [rax+rcx*8+0xa0]
vmovupd ymm1, ymmword ptr [rax+rcx*8+0xc0]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0xe0]
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm12, ymmword ptr [r11+rcx*8+0xa0]
vmovupd ymm2, ymmword ptr [r11+rcx*8+0xc0]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0xe0]
vmovupd ymmword ptr [rsi+0x40], ymm15
vmovupd ymmword ptr [rsi+0x60], ymm5
vmovupd ymmword ptr [rsi+0x80], ymm10
vcmppd ymm14, ymm0, ymm11, 0x1
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm21, ymm11, ymm14
add rcx, 0x20
vandpd ymm22, ymm1, ymm4
vandpd ymm23, ymm6, ymm9
vmulpd ymm13, ymm21, ymm12
vmulpd ymm3, ymm22, ymm2
vmulpd ymm8, ymm23, ymm7
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymmword ptr [rsi+0xa0], ymm15
vmovupd ymmword ptr [rsi+0xc0], ymm5
vmovupd ymmword ptr [rsi+0xe0], ymm10
add rsi, 0x100
cmp r9d, r8d
jb loop

vcmppd k1, zmm8, zmm0, 0x1
vcmppd k2, zmm8, zmm2, 0x1
vcmppd k3, zmm8, zmm4, 0x1
vcmppd k4, zmm8, zmm6, 0x1
vmulpd zmm1{k1}, zmm0, zmm1
vmulpd zmm3{k2}, zmm2, zmm3
vmulpd zmm5{k3}, zmm4, zmm5
vmulpd zmm7{k4}, zmm6, zmm7
vmovups zmmword ptr [rsi], zmm1
vmovups zmmword ptr [rsi+0x40], zmm3
vmovups zmmword ptr [rsi+0x80], zmm5
vmovups zmmword ptr [rsi+0xc0], zmm7
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline Speedup: 2.9x

Example 18-4. Masking with Assembly (Contd.)

18-11

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.2.2 Masking Cost
Using masking may result in lower performance than the corresponding non-masked code. This may be
caused by one of the following situations:
• An additional blend operation on each load.
• Dependency on the destination when using merge masking. This dependency does not exist when

using zero masking.
• More restrictive masking forwarding rules (see Forwarding and Memory Masking for more infor-

mation).

The following example shows how using merge masking creates a dependency on the destination
register.

With no masking, the processor executes 2 multiplies per cycle on a 2 FMA server.

With merge masking, the processor executes 2 multiplies every 4 cycles as the multiplies in iteration N
depend on the output of the multiplies in iteration N-1.

Zero masking does not have a dependency on the destination register and therefore can execute 2 multi-
plies per cycle on a 2 FMA server.

Recommendation: Masking has a cost, so use it only when necessary. When possible, use zero
masking rather than merge masking.

18.2.3 Masking vs. Blending
This section discusses the advantages and disadvantages of using blending vs. masking for conditional
code.

Consider the following code:

for (i=0; i<SIZE; i++)

{

if (a[i] > 0)

{

b[i] *= 2;

}

else

{

b[i] /= 2;

}

}

Example 18-5. Masking Example

No Masking Merge Masking Zero Masking

mov rbx, iter

loop:

vmulps zmm0, zmm9, zmm8

vmulps zmm1, zmm9, zmm8

dec rbx

jnle loop

mov rbx, iter

loop:

vmulps zmm0{k1}, zmm9, zmm8

vmulps zmm1{k1}, zmm9, zmm8

dec rbx

jnle loop

mov rbx, iter

loop:

vmulps zmm0{k1}{z}, zmm9, zmm8

vmulps zmm1{k1}{z}, zmm9, zmm8

dec rbx

jnle loop

Baseline Slowdown: 4x Slowdown: Equal to baseline.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-12

The example below shows two possible compilation alternatives of the code.
• Alternative 1 uses masked code and straight-forward arithmetic processing of data.
• Alternative 2 splits code to two independent unmasked flows that are processed one after another,

and then a masked move (blending), just before storing to memory.

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3). That means
that instruction (2) has to wait for the result of the blending of instruction (1), before starting execution,
and instruction (3) needs to wait for instruction (2).

In Alternative 2, there is only one such dependency because each branch of conditional code is executed
in parallel on all the data, and a mask is used for blending back to one register only before writing data
back to the memory.

Blending is faster, but it does not mask exceptions, which may occur on the unmasked data.

Alternative 2 executes 11% more instructions; it provides 23% speedup in overall execution. Alternative
2 uses an extra register (zmm3). This extra register usage may cause extra latency in case of register
pressure (freeing register to memory and loading it afterwards).

The following code is another example of masking vs. blending.

for (int i = 0;i<len;i++){

if (a[i] > b[i]){

a[i] += b[i];

}

}

Example 18-6. Masking vs. Blending Example 1

Alternative 1 Alternative 2

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
knotw k2, k1

(1) vpslld zmm2 {k1}, zmm2, 1
(2) vpsrld zmm2 {k2}, zmm2, 1
(3) vmovdqa32 [rcx+rdx*4-0x40], zmm2

sub rdx, 16
jne mainloop

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
vmovdqa32 zmm3, zmm2
vpslld zmm2, zmm2, 1
vpsrld zmm3, zmm3, 1

(1) vmovdqa32 zmm3 {k1}, zmm2
(2) vmovdqa32 [rcx+rdx*4-0x40], zmm3

sub rdx, 16
jne mainloop

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.23x
Instructions: 1.11x

18-13

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3).

In Alternative 2, there are only 2 instructions in the dependency chain: (1) and (2).

18.2.4 Nested Conditions / Mask Aggregation
Intel AVX-512 contains a set of instructions for mask operation, which enable executing all bitwise logical
operators on a mask register, facilitating implementation of nested and/or multiply conditions.

In the following example, logical and (&&) is executed using a kandw instruction.

for(int iX = 0; iX < iBufferWidth; iX++)

{

if ((*pInImage)>0 && ((*pInImage)&3)==3)

{

*pRefImage = (*pInImage)+5;

}

else

{

*pRefImage = (*pInImage);

}

pRefImage++;

pInImage++;

}

Example 18-7. Masking vs. Blending Example 2

Alternative 1 Alternative 2

mov rax,a
mov rbx,b
mov rdx,size2
loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]
(1) vpcmpgtd k1,zmm1,zmm2
(2) vmovdqa32 zmm3{k1}{z},zmm2
(3) vpaddd zmm1,zmm1,zmm3
vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

mov rax,a
mov rbx,b
mov rdx,size2
loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]
(1)vpcmpgtd k1,zmm1,zmm2
(2)vpaddd zmm1{k1},zmm1,zmm2
vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.05x
Instructions: 0.87x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-14

18.2.5 Memory Masking Microarchitecture Improvements
Masking improvements since Broadwell microarchitecture are detailed below.

Example 18-8. Multiple Condition Execution

Scalar Intel® AVX2 Intel® AVX-512

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
mainloop:
mov r8d, dword ptr [rsi+rax*4]
mov r9d, r8d
cmp r8d, 0
jle label1
and r9d, 0x3
cmp r9d, 3
jne label1
add r8d, 5
label1:
mov dword ptr [rdi+rax*4], r8d
add rax, 1
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd ymm1, [five]
vpbroadcastd ymm7, [three]
vpxor ymm3, ymm3, ymm3
mainloop:
vmovdqa ymm0, [rsi+rax*4]
vmovaps ymm6, ymm0
vpcmpgtd ymm5, ymm0, ymm3
vpand ymm6, ymm6, ymm7
vpcmpeqd ymm6, ymm6, ymm7
vpand ymm5, ymm5, ymm6
vpaddd ymm4, ymm0, ymm1
vblendvps ymm4, ymm0, ymm4, ymm5
vmovdqa [rdi+rax*4], ymm4
add rax, 8
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd zmm1, [five]
vpbroadcastd zmm5, [three]
vpxord zmm3, zmm3, zmm3
mainloop:
vmovdqa32 zmm0, [rsi+rax*4]
vpcmpgtd k1, zmm0, zmm3
vpandd zmm6, zmm5, zmm0
vpcmpeqd k2, zmm6, zmm5
kandw k1, k2, k1
vpaddd zmm0 {k1}, zmm0, zmm1
vmovdqa32 [rdi+rax*4], zmm0
add rax, 16
cmp rax, rbx
jne mainloop

Baseline 1x Speedup: 5x Speedup: 11x

Table 18-1. Cache Comparison Between Skylake Server Microarchitecture and Broadwell Microarchitecture

Item Broadwell Microarchitecture Skylake Server Microarchitecture

1 The address of a vmaskmov store is considered as resolved
only after the mask is known. Loads that follow a masked
store may be blocked, depending on the memory
disambiguation predictor, until the mask value is known.

This issue is resolved. The address of a vmaskmov
store can be resolved before the mask is known.

2 If the mask is not all 1 or all 0, loads that depend on the
masked store must wait until the store data is written to
the cache. If the mask is all 1 the data can be forwarded
from the masked store to the dependent loads. If the mask
is all 0 the loads do not depend on the masked store.

If the mask is not all 1 or all 0, loads that depend on
the masked store must wait until the store data is
written to the cache. If the mask is all 1 the data can
be forwarded from the masked store to the
dependent loads. If the mask is all 0 the loads do not
depend on the masked store.

3 When including an illegal memory address range with
masked loads (using the vmaskmov instruction), the
processor might take a multi-cycle "assist" to determine if
any part of the illegal range has a one mask value.
This assist might occur even when the mask was "all-zero"
and it seemed obvious to the programmer that the load
should not be executed.

For Intel AVX-512 masking, if the mask is all-zeros
then memory faults will be ignored and no assist will
be issued.

18-15

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.2.6 Peeling and Remainder Masking
Accessing cache line aligned data gives better performance than accessing non-aligned data. In many
cases, the address is not known in compile time, or known and not-aligned. In these cases a peeling algo-
rithm may be proposed, to process first elements in masked mode, up to first aligned address, and then
process unmasked body and masked remainder. This method increases code size, but improves data
processing overall.

The following code is an example of peeling and remainder masking.

for (size_t i = 0; i < len; i++)

pOutImage[i] = (pInImage[i] * alfa) + add_value;

The table below shows the difference in implementation and execution speed of two versions of the code,
both working on unaligned output data array.

Example 18-9. Peeling and Remainder Masking

No peeling, unmasked body, masked remainder Peeling, unmasked body, masked remainder

mov rbx, pOutImage // Output
mov rax, pImage // Input
mov rcx, len
mov edx, addValue
vpbroadcastd zmm0, edx
mov edx, alfa
vpbroadcastd zmm3, edx
mov rdx, rcx
sar rdx, 4 // 16 elements per iteration, RDX - number of

full iterations
jz remainder // no full iterations
xor r8, r8
vmovups zmm10, [indices]

mainloop:
vmovups zmm1, [rax + r8]
vfmadd213ps zmm1, zmm3, zmm0
vmovups [rbx + r8], zmm1
add r8, 0x40
sub rdx, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower

vmovups zmm1 {k2}{z}, [rax + r8]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx + r8] {k2}, zmm1

end:

mov rax, pImage // Input
mov rbx, pOutImage // Output
mov rcx, len
movss xmm0, addValue
vpbroadcastd zmm0, xmm0
movss xmm1, alfa
vpbroadcastd zmm3, xmm1
xor r8, r8
xor r9, r9
vmovups zmm10, [indices]
vpbroadcastd zmm12, ecx

peeling:
mov rdx, rbx
and rdx, 0x3F
jz endofpeeling //nothing to peel
neg rdx
add rdx, 64 // 64 - X
// now rdx contains the number of bytes to the closest

alignment
mov r9, rdx
sar r9, 2 // now r9 contains number of elements in

peeling

vpbroadcastd zmm12, r9d
vpcmpd k2, zmm10, zmm12, 1 //compare lower to

produce mask for peeling

vmovups zmm1 {k2}{z}, [rax]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx] {k2}, zmm1 //unaligned store

endofpeeling:
sub rcx, r9
mov r8, rcx
sar r8, 4 //number of full iterations
jz remainder //no full iterations

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-16

18.3 FORWARDING AND UNMASKED OPERATIONS
When using an unmasked store instruction, and load instruction after it, data forwarding depends on load
type, size and address offset from store address, and does not depend on the store address itself (i.e.,
the store address does not have to be aligned to or fit into cache line, forwarding will occur for non-
aligned and even line-split stores).

The figure below describes all possible cases when data forwarding will occur.

mainloop:
vmovups zmm1, [rax + rdx]
vfmadd213ps zmm1, zmm3, zmm0
vmovaps [rbx + rdx], zmm1 // aligned store is safe here

!!
add rdx, 0x40
sub r8, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower
vmovups zmm1 {k2}{z}, [rax + rdx]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovaps [rbx + rdx] {k2}, zmm1 //aligned

end:

Baseline 1x Speedup: 1.04x

Figure 18-3. Data Forwarding Cases

Example 18-9. Peeling and Remainder Masking (Contd.)

SOM00006

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Y

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y N N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

General Purpose Registers (GPR)

32..63

N

N

N

N

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 Y N

X87, MMX, XMM, YMM, ZMM

Load
size

Offset from store address (in bytes)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 N

X87, MMX, XMM, YMM, ZMM

18-17

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

There are two important points to be considered when using data forwarding.

1. Data forwarding to GPR is possible only from the lower 256 bits of store instruction. Note this when
loading GPR with data that has recently been written.

2. Do not use masks, as forwarding is supported only for certain masks.

18.4 FORWARDING AND MEMORY MASKING
When using masked store and load, consider the following:
• When the mask is not all-ones or all-zeroes, the load operation, following the masked store operation

from the same address is blocked, until the data is written to the cache.
• Unlike GPR forwarding rules, vector loads whether or not they are masked, do not forward unless

load and store addresses are exactly the same.

— st_mask = 10101010, ld_mask = 01010101, can forward: no, should block: yes

— st_mask = 00001111, ld_mask = 00000011, can forward: no, should block: yes
• When the mask is all-ones, blocking does not occur, because the data may be forwarded to the load

operation.

— st_mask = 11111111, ld_mask = don’t care, can forward: yes, should block: no
• When mask is all-zeroes, blocking does not occur, though neither does forwarding.

— st_mask = 00000000, ld_mask = don’t care, can forward: no, should block: no

In summary, a masked store should be used carefully, for example, if the remainder size is known at
compile time to be 1, and there is a load operation from the same cache line after it (or there is an
overlap in addresses + vector lengths), it may be better to use scalar remainder processing, rather than
a masked remainder block.

18.5 DATA COMPRESS
The data compress operation reads elements from an input buffer on indices specified by mask register
1's bits. The elements which have been read, are then written to the destination buffer. If the number of
elements is less than the destination register size, the rest of the space is filled with zeroes.

The following figure describes the data compress operation.

if (k[i] == 1)

{

dest[a] = src[i];

a++;

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-18

18.5.1 Data Compress Example
The following snippet shows collection of all positive elements from one array to another array.

for (int i=0; i<SIZE; i++)

{

if (a[i] > 0)

b[j++] = a[i];

}

Figure 18-4. Data Compress Operation

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00007

... 0 0 0 0 0 0 0 0 a11 a10 a9 a6 a5 a1 Destination

… 63 32 31 0 bits

18-19

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Following are four implementations for the compress operation from an array of dword elements.
• Alternative 1 uses scalar data access and checks each element separately. If it is greater than 0 it is

written to the destination array.
• Alternative 2 is Intel AVX code that uses a shuffle instruction together with the pre-allocated and pre-

initialized table with shuffle keys. The compare instruction provides the entry point number to the
shuffle-key table. Then the key is loaded and the original array is shuffled according to the keys. Four
elements are processed in each iteration.

• Alternative 3 uses the same algorithm as in Alternative 2, but uses Intel AVX2 256-bit registers, and
a permutation on the dword instruction instead of using byte shuffle. Eight elements are processed in
each iteration.

• Alternative 4 is an Intel AVX-512 algorithm, which uses the vpcompress instruction together with the
mask register as a compress key. 16 elements are processed in each iteration.

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives

Alternative 1: Scalar

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr [rsi+r8*4]
test r11d, r11d
jle m1
mov dword ptr [rdi+r10*4], r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

Baseline 1x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-20

Alternative 2: Intel® AVX

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor xmm0, xmm0, xmm0

mainloop:
vmovdqa xmm1, [rsi+r8*4]
vpcmpgtd xmm2, xmm1, xmm0
mov r10, 4
vmovmskps r13, xmm2
shl r13, 4
vmovdqu xmm3, [r14+r13]
vpshufb xmm2, xmm1, xmm3
popcnt r13, r13
sub r10, r13
vmovdqu xmm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], xmm3, xmm2
add r11, r13
add r8, 4
cmp r8, r9
jne mainloop

shuffle_LUT:
.int 0x80808080, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x80808080, 0x80808080, 0x80808080
.int 0x07060504, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x80808080, 0x80808080
.int 0x0b0A0908, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x80808080
.int 0x0F0E0D0C, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x07060504, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0F0E0D0C, 0x80808080
.int 0x0b0A0908, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x0F0E0D0C

write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 2.87x

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

18-21

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Alternative 3: Intel® AVX2

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor ymm0, ymm0, ymm0

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpcmpgtd ymm2, ymm1, ymm0
mov r10, 8
vmovmskps r13, ymm2
shl r13, 5
vmovdqu ymm3, [r14+r13]
vpermd ymm2, ymm3, ymm1
popcnt r13, r13
sub r10, r13
vmovdqu ymm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], ymm3, ymm2
add r11, r13
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to reproduce in the document. It consists of 256 rows of 8 32 bit integers.
//The first 8 and the last 8 rows are shown below.

shuffle_LUT:
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0
// Skipping 240 lines
.int 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0, 0x0
.int 0x0, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-22

18.6 DATA EXPAND
Data expand operations read elements from the source array (register) and put them in the destination
register in the places indicated by enabled bits in the mask register. If the number of enabled bits is less
than destination register size, the extra values are ignored.

if (k[i] == 1)

{

dest[i] = src[a];

a++;

}

write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 5.27x

Alternative 4: Intel® AVX-512

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vpcompressd zmm2 {k1}, zmm1
vmovdqu32 [rdi+r10*4], zmm2
kmovd r11d, k1
popcnt r12, r11
add r8, 16
add r10, r12
cmp r8, r9
jne mainloop

Speedup: 11.9x

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

18-23

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.6.1 Data Expand Example
The following snippet shows an example of using the expand operation. For every positive number in an
array, the code sets its consecutive number among positives.

for (int i=0; i<SIZE; i++)

{

if (a[i] > 0)

dest[i] = a[count++];

else

dest[i] = 0;

}

Here are three implementations for the expand operation from an array of 16 dword elements.
• Alternative 1 uses scalar data access and checks each element separately. If it is greater than 0 then

the corresponding element in the destination array is rewritten with the value from source value at
index count, and the counter is incremented.

• Alternative 2 shows Intel AVX2 code that uses a shuffle instruction together with the pre-allocated
and pre-initialized table with shuffle keys. The compare instruction provides the entry point number
to the shuffle-key table. Then the key is loaded and the original array is shuffled according to the
keys. Four elements are processed in each iteration.

• Alternative 3 shows Intel AVX-512 code, which uses the vpexpandd instruction together with the
mask register as an expand key. 16 elements are processed in each iteration.

Figure 18-5. Data Expand Operation

… 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bits

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

SOM00008

... 0 0 a5 a4 a3 0 0 a2 a1 0 0 0 a0 0 Destination

… 63 32 31 0 bits

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-24

Example 18-11. Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives

Alternative 1: Scalar Alternative 2: Intel® AVX2 Code Alternative 3: Intel® AVX-512 Code

mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr

[rsi+r8*4]
test r11d, r11d
jle m1
mov r11d, dword ptr

[rsi+r10*4]
mov dword ptr [rdi+r8*4],

r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10
vpxor ymm0, ymm0, ymm0
mov r14, shuf2

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpxor ymm4, ymm4, ymm4
vpcmpgtd ymm2, ymm1, ymm0
vmovdqu ymm1, [rsi+r10*4]
vmovmskps r13, ymm2
shl r13, 5
vmovdqa ymm3, [r14+r13]
vpermd ymm4, ymm3, ymm1
popcnt r13, r13
add r10, r13
vmaskmovps [rdi+r8*4], ymm2,

ymm4
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to
// reproduce in the document. It consists
// of 256 rows of 8 32-bit integers. The
// first 8 and the last 8 rows are shown
// below. The table needs to be 32-byte
// aligned.

shuf2:
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 1, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 1, 0, 0, 0, 0, 0
.int 0, 0, 1, 0, 0, 0, 0, 0
.int 0, 1, 2, 0, 0, 0, 0, 0

// Skipping 240 lines
.int 0, 0, 0, 0, 1, 2, 3, 4
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 1, 0, 2, 3, 4, 5, 6
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 1, 2, 3, 4, 5, 6, 7

vpxord zmm0, zmm0, zmm0
mainloop:

vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vmovdqu32 zmm1,

[rsi+r10*4]
vpexpandd zmm2 {k1}{z},

zmm1
vmovdqu32 [rdi+r8*4], zmm2
add r8, 16
kmovd r11d, k1
popcnt r12, r11
add r10, r12
cmp r8, r9
jne mainloop

Baseline 1x Speedup: 4.23x Speedup: 8.58x

18-25

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.7 TERNARY LOGIC
A ternary logic vpternlog operation executes any bitwise logical function between three operands in one
instruction. The instruction requires three operands and an immediate value, which is the truth table of
this logical expression. The first operand is used as destination, and, therefore, destroyed after the
execution.

18.7.1 Ternary Logic Example 1
The following example shows a bitwise logic function of three variables. The function in this example is
defined by the following truth table.

Using Karnaugh maps on this truth table, we can define the function as:

f(X,Y,Z) =

or, in shorter notation, using fewer binary operations:

f(X,Y,Z) =

The C code for the function above is as follows:

for (int i=0; i<SIZE; i++)

{

 Dst[i] = ((~Src2[i]) & (Src1[i] ^ Src3[i])) | (Src1[i] & Src2[i] & Src3[i]);

}

The value of the function for each combination of X, Y and Z gives an immediate value that is used in the
instruction.

Here are three implementations for this logical function applied to all values in X, Y and Z arrays.
• Alternative 1 is an Intel AVX2 256-bit vector computation, using bitwise logical functions available in

Intel AVX2.
• Alternative 2 is a 512-bit vector computation, using bitwise logical functions available in Intel AVX-

512, without using the vpternlog instruction.
• Alternative 3 is an Intel AVX-512 512-bit vector computation, using the vpternlog instruction.

All alternatives in the table are unrolled by factor 2.

Figure 18-6. Ternary Logic Example 1 Truth Table

SOM00009

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 1 0 0 1 0 0 1 0 0x92

Immediate value
that is used.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-26

Example 18-12. Comparing Ternary Logic to Other Alternatives

Alternative 1: Intel® AVX2

mov rax, src1
mov rbx, src2
mov rcx, src3
mov r11, dst
mov r8, len
xor r10, r10

mainloop:
vmovdqu ymm1, ymmword ptr [rax+r10*4]
vmovdqu ymm3, ymmword ptr [rdx+r10*4]
vmovdqu ymm2, ymmword ptr [rcx+r10*4]
vmovdqu ymm10, ymmword ptr [rcx+r10*4+0x20]
vpand ymm0, ymm1, ymm3
vpxor ymm4, ymm1, ymm2
vpand ymm5, ymm0, ymm2
vpandn ymm6, ymm3, ymm4
vpor ymm7, ymm5, ymm6
vmovdqu ymmword ptr [r11+r10*4], ymm7
vmovdqu ymm9, ymmword ptr [rax+r10*4+0x20]
vmovdqu ymm11, ymmword ptr [rdx+r10*4+0x20]
vpxor ymm12, ymm9, ymm10
vpand ymm8, ymm9, ymm11
vpandn ymm14, ymm11, ymm12
vpand ymm13, ymm8, ymm10
vpor ymm15, ymm13, ymm14
vmovdqu ymmword ptr [r11+r10*4+0x20], ymm15

add r10, 0x10
cmp r10, r8
jb mainloop

Baseline 1x

18-27

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.7.2 Ternary Logic Example 2
The next example is a sign change operation, frequently used in Fortran. Consider the following code,
running on two arrays of floating point numbers.

for (int i=0; i<SIZE; i++)

{

 b[i] = a[i] > 0 ? b[i] : -b[i];

}

Alternative 2: Intel® AVX-512 Logic Instructions Alternative 3: Intel® AVX-512 using vpternlog
Instruction

mov rdi, src1
mov rsi, src2
mov rdx, src3
mov r11, dst
mov r8, len

xor r10, r10

mainloop:
vmovups zmm2, zmmword ptr [rdi+r10*4]
vmovups zmm4, zmmword ptr [rdi+r10*4+0x40]
vmovups zmm6, zmmword ptr [rsi+r10*4]
vmovups zmm8, zmmword ptr [rsi+r10*4+0x40]
vmovups zmm3, zmmword ptr [rdx+r10*4]
vmovups zmm5, zmmword ptr [rdx+r10*4+0x40]
vpandd zmm0, zmm2, zmm6
vpandd zmm1, zmm4, zmm8
vpxord zmm7, zmm2, zmm3
vpxord zmm9, zmm4, zmm5
vpandd zmm10, zmm0, zmm3
vpandd zmm12, zmm1, zmm5
vpandnd zmm11, zmm6, zmm7
vpandnd zmm13, zmm8, zmm9
vpord zmm14, zmm10, zmm11
vpord zmm15, zmm12, zmm13
vmovups zmmword ptr [r11+r10*4], zmm14
vmovups zmmword ptr [r11+r10*4+0x40], zmm15
add r10, 0x20
cmp r10, r9
jb mainloop

mov r9, src1
mov r8, src2
mov r10, src3
mov r11, dst
mov rsi, len

xor rax rax

mainloop:
vmovaps zmm1, [r8+rax*4]
vmovaps zmm0, [r9+rax*4]
vpternlogd zmm0,zmm1,[r10], 0x92
vmovaps [r11], zmm0
vmovaps zmm1, [r8+rax*4+0x40]
vmovaps zmm0, [r9+rax*4+0x40]
vpternlogd zmm0,zmm1, [r10+0x40], 0x92
vmovaps [r11+0x40], zmm0
add rax, 32
add r10, 0x80
add r11, 0x80
cmp rax, rsi
jne mainloop

Speedup: 1.94x Speedup: 2.36x
(1.22x vs Intel® AVX-512 with logic instructions)

Example 18-12. Comparing Ternary Logic to Other Alternatives (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-28

This code is equivalent to:

for (int i=0; i<SIZE; i++)

{

 b[i] = (a[i] & 0x80000000) ^ b[i];

}

Or, in other words:

This logic expression gives the following truth table.

Therefore one vpternlog instruction can be used instead of using two logic instructions (vpand and
vpxor):

vpternlog x,y,z,0x78

18.8 NEW SHUFFLE INSTRUCTIONS
Intel AVX-512 added 3 new shuffle operations.
• vpermw: a new single source any-to-any word permute.
• permt2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding src register).
• permi2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding control register).

The following figure shows how vpermi2ps is used. Notice that in the following example zmm0 is the
shuffle control but also the output register (the control register is overridden).

vpermi2ps zmm0, zmm1, zmm2

Figure 18-7. Ternary Logic Example 2 Truth Table

SOM00010

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 0 1 1 1 1 0 0 0 0x78

Immediate value
that is used in the
vpternlog instruction.

18-29

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Note that the index register values must have the same resolution as the instruction and source registers
(word when working on words, dword when working on dwords, etc.).

18.8.1 Two Source Permute Example
In this example we will show the use of the two source permute instructions in a matrix transpose oper-
ation. The matrix we want to transpose is square 8x8 matrix of word elements.

Figure 18-8. VPERMI2PS Instruction Operation

 →

SOM00011

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 index

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 ZMM2

… 63 32 31 0 bits

b15

... ... b15 b13 a7 a1 a3 ZMM0

… 63 32 31 0 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 index

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM1

… 63 32 31 0 bits

a15

... ... 31 29 7 1 3 ZMM0

… 63 32 31 0 bits

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-30

The corresponding C code is as follows (assuming each matrix occupies a continuous block of 8*8*2 =
128 bytes):

for(int iY = 0; iY < 8; iY++)

{

for(int iX = 0; iX < 8; iX++)

{

trasposedMatrix[iY*8+iX] = originalMatrix[iX*8+iY];

}

}

Here are three implementations for this matrix transpose.
• Alternative 1 is scalar code, which accesses each element of the source matrix and puts it to the

corresponding place in the destination matrix. This code does 64 (8x8) iterations per 1 matrix.
• Alternative 2 is Intel AVX2 code, which uses Intel AVX2 permutation and shuffle (unpack) instruc-

tions. Only 1 iteration per 8x8 matrix is required.
• Alternative 3 Intel AVX-512 code which uses the Two Source Permutation instructions. Note that this

code first loads permutation masks, and then matrix data. The mask used to perform the
permutation is stored in the following array:

short permMaskBuffer [8*8] = { 0, 8, 16, 24, 32, 40, 48, 56,

 1, 9, 17, 25, 33, 41, 49, 57,

2, 10, 18, 26, 34, 42, 50, 58,

3, 11, 19, 27, 35, 43, 51, 59,

 4, 12, 20, 28, 36, 44, 52, 60,

 5, 13, 21, 29, 37, 45, 53, 61,

 6, 14, 22, 30, 38, 46, 54, 62,

 7, 15, 23, 31, 39, 47, 55, 63 };

Each alternative transposes 50 matrixes, 8x8 2-byte elements each.

18-31

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-13. Matrix Transpose Alternatives

Alternative 1: Scalar code Alternative 2: Intel® AVX2 Code Alternative 3: Intel® AVX-512 Code

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
xor rax, rax

outerloop:
xor rbx, rbx

innerloop:
mov rcx, rax
shl rcx, 3
add rcx, rbx
mov r8w, word ptr [rsi+rcx*2]
mov rcx, rbx
shl rcx, 3
add rcx, rax
mov word ptr [rdi+rcx*2], r8w
add rbx, 1
cmp rbx, 8
jne innerloop
add rax, 1
cmp rax, 8
jne outerloop
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa xmm0, [rsi]
vmovdqa xmm1, [rsi+0x10]
vmovdqa xmm2, [rsi+0x20]
vmovdqa xmm3, [rsi+0x30]

vinserti128 ymm0, ymm0,
[rsi+0x40], 0x1

vinserti128 ymm1, ymm1,
[rsi+0x50], 0x1

vinserti128 ymm2, ymm2,
[rsi+0x60], 0x1

vinserti128 ymm3, ymm3,
[rsi+0x70], 0x1

vpunpcklwd ymm4, ymm0, ymm1
vpunpckhwd ymm5, ymm0, ymm1
vpunpcklwd ymm6, ymm2, ymm3
vpunpckhwd ymm7, ymm2, ymm3

vpunpckldq ymm0, ymm4, ymm6
vpunpckhdq ymm1, ymm4, ymm6
vpunpckldq ymm2, ymm5, ymm7
vpunpckhdq ymm3, ymm5, ymm7

vpermq ymm0, ymm0, 0xD8
vpermq ymm1, ymm1, 0xD8
vpermq ymm2, ymm2, 0xD8
vpermq ymm3, ymm3, 0xD8

vmovdqa [rdi], ymm0
vmovdqa [rdi+0x20], ymm1
vmovdqa [rdi+0x40], ymm2
vmovdqa [rdi+0x60], ymm3
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rax, permMaskBuffer
vmovdqa32 zmm10, [rax]
vmovdqa32 zmm11, [rax+0x40]

 mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa32 zmm2, [rsi]
vmovdqa32 zmm3, [rsi+0x40]
vmovdqa32 zmm0, zmm10
vmovdqa32 zmm1, zmm11
vpermi2w zmm0, zmm2, zmm3
vpermi2w zmm1, zmm2, zmm3
vmovdqa32 [rdi], zmm0
vmovdqa32 [rdi+0x40], zmm1

add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

Baseline 1x Speedup: 13.7x Speedup: 37.3x
(2.7x vs Intel® AVX2 code)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-32

18.9 BROADCAST

18.9.1 Embedded Broadcast
Intel AVX-512 introduces embedded broadcast operations, in which a broadcast operation is implied
within the syntax of a non-broadcast instruction. A source from memory can be broadcast, that is,
repeated, across all the elements of the effective source operand, up to 16 times for a 32-bit data
element, and up to 8 times for a 64-bit data element, without using an additional source register. This is
useful when we want to reuse the same scalar operand for all the operations in a vector instruction.

Embedded broadcast is only enabled on instructions with an element size of 32 or 64 bits; however, new
FP16 instructions allow embedded broadcast. Please see Section 19.4.7, “FP16 Conversions to and from
Other Data Types” for more information. In the case of older technologies, byte and word element broad-
casts do not support embedded broadcast. Use a broadcast instruction, rather than embedded broad-
cast, to broadcast a byte or word.

Using embedded broadcast can reduce the number of registers used in the code, which may be helpful
when register pressure exists.

In addition, when using embedded broadcast the load micro-op is in the same instruction as the opera-
tion micro-op, and therefore can benefit from micro fusion.

For example, replace the following code:

vbroadcastss zmm3, [rax]

vmulps zmm1, zmm2, zmm3

with:

vmulps zmm1, zmm2, [rax] {1to16}

The {1to16} primitive does the following:

1. Loads one float32 (single precision) element from memory.

2. Replicates it 16 times to form a vector of 16 32-bit floating point elements.

Intel AVX-512 instructions with store semantics and pure load instructions do not support broadcast
primitives.

18.9.2 Broadcast Executed on Load Ports
In Skylake Server microarchitecture, a broadcast instruction with a memory operand of 32 bits or above
is executed on the load ports; it is not executed on port 5 as other shuffles are. Alternative 2 in the
following example shows how executing the broadcast on the load ports reduces the workload on port 5
and increases performance. Alternative 3 shows how embedded broadcast benefits from both executing
the broadcast on the load ports and micro fusion.

Example 18-14. Broadcast Executed on Load Ports Alternatives

Alternative 1: 32-bit Load and
Register Broadcast

Alternative 2: Broadcast with a 32-
bit Memory Operand

Alternative 3: 32-bit Embedded
Broadcast

loop:
vmovd xmm0, [rax]
vpbroadcastd zmm0, xmm0
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastd zmm0, [rax]
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpaddd zmm2, zmm1, [rax]{1to16}
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

18-33

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example shows that on Skylake Server microarchitecture, 16-bit broadcast is executed on
port 5 and therefore does not gain from the memory operand broadcast.

Notice that embedded broadcast is not supported for 16-bit memory operands.

18.10 EMBEDDED ROUNDING
By default, the Rounding Mode is set by bits 13:14 of the MXCSR register.

Intel AVX-512 introduces a new instruction attribute called Static (per instruction) Rounding Mode (RM)
or Rounding Mode override. This attribute allows a specific arithmetic rounding mode to be applied,
ignoring the value of the RM bits in the MXCSR. In combination with the rounding-mode, Intel AVX-512
also has an SAE (“suppress-all-exceptions”) attribute, to disable reporting any floating-point exception
flag in the MXCSR. SAE is always implied when rounding-mode is enabled.

Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the
EVEX.b bit to 1 in a register-register vector instruction. In this case, vector length is assumed to be the
maximal possible vector length (512-bit in case of Intel AVX-512). The table below summarizes the
possible static rounding-mode assignments in Intel AVX-512. Note that some instructions already allow
the rounding mode to be statically specified via immediate bits. In such case, the immediate bits take
precedence over the embedded rounding mode in the same way as they take precedence over the bits in
MXCSR.RM

18.10.1 Static Rounding Mode
Static rounding mode functions and descriptions are listed below.

Baseline 1x Speedup: 1.57x Speedup: 1.9x

Example 18-15. 16-bit Broadcast Executed on Port 5

Alternative 1: 16-bit Load and Register Broadcast Alternative 2: Broadcast with a 16-bit Memory Operand

loop:
vmovd xmm0, [rax]
vpbroadcastw zmm0, xmm0
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastw zmm0, [rax]
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x2
sub rdx, 0x1
jnz loop

Baseline 1x Speedup: equal to baseline

Example 18-14. Broadcast Executed on Load Ports Alternatives (Contd.)

Alternative 1: 32-bit Load and
Register Broadcast

Alternative 2: Broadcast with a 32-
bit Memory Operand

Alternative 3: 32-bit Embedded
Broadcast

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-34

The following code snippet shows a usage example.

This piece of code would perform the single-precision floating point addition of vectors zmm2 and zmm4
with round-towards-plus-infinity, leaving the result in vector zmm7 using k6 as a conditional writemask.
Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.

The following are examples of instructions instances where the static rounding-mode is not allowed.

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2 {rd}, 0x00

; instructions with memory operands

vmulps zmm7 {k6}, zmm2, [rax] {rd}

; instructions with vector length different than maximal vector length (512-bit)

vaddps ymm7 {k6}, ymm2, ymm4 {rd}

; non-floating point instructions

vpaddd zmm7 {k6}, zmm2, zmm4 {rd}

Table 18-2. Static Rounding Mode Functions

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -infinity) + SAE

{ru-sae} Round up (toward +infinity) + SAE

{rz-sae} Round toward zero (Truncate) + SAE

Example 18-16. Embedded vs Non-embedded Rounding

Using Embedded Rounding Without Embedded Rounding

vaddps zmm7 {k6}, zmm2, zmm4, {ru-sae}

;rax & rcx point to temporary dword values in memory used
to load and save (for restoring) MXCSR value

vstmxcsr [rax] ;load mxcsr value to memory
mov ebx, [rax] ;move to register
and ebx, 0xFFFF9FFF ;zero RM bits
or ebx, 0x5F80 ;put {ru} to RM bits and suppress all
exceptions
mov [rcx], ebx ;move new value to the memory
vldmxcsr [rcx] ;save to MXCSR

vaddps zmm7 {k6}, zmm2, zmm4 ;operation itself

vldmxcsr [rax] ;restore previous MXCSR value

18-35

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.11 SCATTER INSTRUCTION
This instruction performs a non-continuous store of data (scatter). Given a base address, a set of signed
offsets and a data item, the instruction writes each element in the data register to the memory location
computed from the base address and corresponding offset. The instruction stores up to 16 elements (8
elements for qword indices) in a doubleword vector or 8 elements in a quadword vector, to the memory
locations pointed to by the base address and index vector. Elements are stored only if their corresponding
mask bit is one. The figure below describes the following operation.

vscatterdpd [rax + zmm0]{k1} , zmm1

In this example, rax contains the base address, zmm0 contains a set of offsets, and zmm1 contains data to
be written.

18.11.1 Data Scatter Example
Given an array of unique indexes, ranging from 0 to N, we want to sort the array of N values, according
to the corresponding index, while converting the values from long long integers (64 bits) to floating point
numbers (32 bits).

for (int i=0; i < N; i++)

{

dst[ind [i]] = (float)src[i];

}

Here are three implementations of the code above.

Figure 18-9. VSCATTERDPD Instruction Operation

SOM00012

Base
Address

(BA)

GPR

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 Data

… 63 32 31 0 bits

a15

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Offset

… 63 32 31 0 bits

b15

a0
Mem at
[BA+b0]

a1
Mem at
[BA+b1]

ax
Mem at
[BA+bx]

...

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-36

• Alternative 1 is pure scalar code.
• Alternative 2 is a software sequence for scatter.
• Alternative 3 is a hardware scatter.

NOTE
A hardware Scatter operation issues as many store operations, as the number of
elements in the vector. Do not use a scatter operation to store sequential elements, which
can be stored with one vmov instruction.

.

Example 18-17. Scatter

Scalar

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length
xor r9, r9

mainloop:
mov r9d, [rbx+rdx-0x4]
vcvtsi2ss xmm0, xmm0, qword ptr [rax+rdx*2-0x8]
vmovss [rcx+r9*4], xmm0
sub rdx, 4
jnz mainloop

Baseline 1x

Software Sequence Hardware Scatter

18-37

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

shufMaskP:
 .quad·0x0000000200000001
 .quad·0x0000000400000003
 .quad·0x0000000600000005
 .quad·0x0000000800000007

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length
mov r9, shufMaskP
vmovaps ymm2, [r9]

mainloop:
vmovaps zmm1, [rax + rdx*2 - 0x80] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x40] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x3c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x38] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x34] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x30] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x2c] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length

mainloop:
vmovdqa32 zmm0, [rbx+rdx-0x40]
vmovdqa32 zmm1, [rax+rdx*2-0x80]
vcvtuqq2ps ymm1, zmm1

 vmovdqa32 zmm2, [rax+rdx*2-0x40]
vcvtuqq2ps ymm2, zmm2

 vshuff32x4 zmm1, zmm1, zmm2, 0x44
kxnorw k1,k1,k1
vscatterdps [rcx+4*zmm0] {k1}, zmm1
sub rdx, 0x40
jnz mainloop

Example 18-17. Scatter

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-38

18.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE)
The Suppress-all-exceptions (SAE) feature was added to Intel AVX-512 floating-point instructions. This
feature is helpful when spurious flag settings are undesirable. Although current implementations of
vector math functions usually allow spurious flag settings, they can cause problems for applications that
run with exceptions enabled. Standard-compliant code does not allow spurious flag settings.

In addition to standard-mandated uses (IEEE, OpenCL), static rounding modes have applications in math
libraries that operate under the default rounding mode (which can be dynamically set).

18.13 QWORD INSTRUCTION SUPPORT
Intel AVX-512 extends QWORD support to many instructions introduced in Intel AVX and Intel AVX2.
QWORD support was added to the instructions as detailed in the following sections.

movsxd r9, [rbx + rdx - 0x28] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x24] //load 1st index
vmovss [rcx + 4*r9], xmm0
vmovaps zmm1, [rax + rdx*2 - 0x40] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x20] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x1c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x18] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x14] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x10] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0xc] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x8] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x4] //load 1st index
vmovss [rcx + 4*r9], xmm0
sub rdx, 0x40
jnz mainloop

Speedup: 1.48x Speedup: 1.53x

Example 18-17. Scatter

18-39

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.13.1 QUADWORD Support in Arithmetic Instructions
Intel AVX-512 adds new quadword extension to vpmaxsq, vpmaxuq, vpminsq, vpminuq, and vpmullq.

The following example will store to array c the max value between the sum and the multiply of two 64bit
numbers.

const int N = miBufferWidth;

const __int64* restrict a = A;

const __int64* restrict b = B;

__int64* restrict c = Cref;

for (int i = 0; i < N; i++){

 __int64 sum = a[i] + b[i];

 __int64 mul = a[i] * b[i];

 c[i] = mul > sum ? mul : sum;

}

The code below shows how the new support reduces instruction count from 118 in Intel AVX2 to 30 in
Intel AVX-512 and results in a 3.1x speedup.

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512

Intel® AVX2 Intrinsics Intel® AVX-512 Intrinsics

for (int i = 0; i < N; i+= 32){
__m256i aa, bb, aah, bbh, mul, sum;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_si256((const
__m256i*)(a+i+4*j));

bb = _mm256_loadu_si256((const
__m256i*)(b+i+4*j));

sum = _mm256_add_epi64(aa, bb);
mul = _mm256_mul_epu32(aa, bb);
aah = _mm256_srli_epi64(aa, 32);
bbh = _mm256_srli_epi64(bb, 32);
aah = _mm256_mul_epu32(aah, bb);
bbh = _mm256_mul_epu32(bbh, aa);
aah = _mm256_add_epi32(aah, bbh);
aah = _mm256_slli_epi64(aah, 32);
mul = _mm256_add_epi64(mul, aah);
aah = _mm256_cmpgt_epi64(mul, sum);
aa = _mm256_castpd_si256 (

_mm256_blendv_pd(_mm256_castsi256_pd (sum),
_mm256_castsi256_pd(mul), _mm256_castsi256_pd(
aah)));

_mm256_storeu_si256((__m256i*)(c+4*j),
aa);

}
c += 32;

}

for (int i = 0; i < N; i+= 32){
__m512i aa, bb, mul, sum;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_si512((const
__m512i*)(a+i+8*j));

bb = _mm512_loadu_si512((const
__m512i*)(b+i+8*j));

sum = _mm512_add_epi64(aa, bb);
mul = _mm512_mullo_epi64(aa, bb);
aa = _mm512_max_epi64(sum, mul);
_mm512_storeu_si512((__m512i*)(c+8*j), aa);

}

c += 32;
}

Baseline 1x Speedup: 3.1x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-40

Intel® AVX2 Assembly Intel® AVX-512 Assembly

loop:
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0x20]
inc r9d
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0x20]
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8]
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8]
vmovdqu ymm13, ymmword ptr [rax+rcx*8+0x40]
vmovdqu ymm11, ymmword ptr [r11+rcx*8+0x40]
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm27, ymm26, 0x20
vpsrlq ymm16, ymm19, 0x20
vpsrlq ymm18, ymm17, 0x20
vpaddq ymm6, ymm28, ymm26
vpsrlq ymm10, ymm13, 0x20
vpsrlq ymm12, ymm11, 0x20
vpaddq ymm0, ymm19, ymm17
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpaddd ymm31, ymm29, ymm30
vmovdqu32 ymm29, ymmword ptr [r11+rcx*8+0x80]
vpsllq ymm5, ymm31, 0x20
vmovdqu32 ymm31, ymmword ptr [rax+rcx*8+0x80]
vpsrlq ymm30, ymm29, 0x20
vpmuludq ymm20, ymm16, ymm17
vpmuludq ymm21, ymm18, ymm19
vpmuludq ymm4, ymm28, ymm26
vpaddd ymm22, ymm20, ymm21
vpaddq ymm7, ymm4, ymm5
vpsrlq ymm28, ymm31, 0x20
vmovdqu32 ymm20, ymmword ptr [r11+rcx*8+0x60]
vpsllq ymm24, ymm22, 0x20
vmovdqu32 ymm22, ymmword ptr [rax+rcx*8+0x60]
vpsrlq ymm21, ymm20, 0x20
vpaddq ymm4, ymm22, ymm20
vpcmpgtq ymm8, ymm7, ymm6
vblendvpd ymm9, ymm6, ymm7, ymm8
vmovups ymmword ptr [rsi+0x20], ymm9
vpmuludq ymm14, ymm10, ymm11
vpmuludq ymm15, ymm12, ymm13
vpmuludq ymm8, ymm28, ymm29
vpmuludq ymm9, ymm30, ymm31
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm16, ymm14, ymm15
vpsrlq ymm19, ymm22, 0x20
vpaddd ymm10, ymm8, ymm9
vpaddq ymm1, ymm23, ymm24

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm5, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm10, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm15, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm6, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm11, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm16, zmmword ptr [r11+rcx*8+0xc0]
vpaddq zmm2, zmm0, zmm1
vpmullq zmm3, zmm0, zmm1
vpaddq zmm7, zmm5, zmm6
vpmullq zmm8, zmm5, zmm6
vpaddq zmm12, zmm10, zmm11
vpmullq zmm13, zmm10, zmm11
vpaddq zmm17, zmm15, zmm16
vpmullq zmm18, zmm15, zmm16
vpmaxsq zmm4, zmm2, zmm3
vpmaxsq zmm9, zmm7, zmm8
vpmaxsq zmm14, zmm12, zmm13
vpmaxsq zmm19, zmm17, zmm18
vmovups zmmword ptr [rsi], zmm4
vmovups zmmword ptr [rsi+0x40], zmm9
vmovups zmmword ptr [rsi+0x80], zmm14
vmovups zmmword ptr [rsi+0xc0], zmm19
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

18-41

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Intel® AVX2 Assembly Intel® AVX-512 Assembly

vpsllq ymm18, ymm16, 0x20
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0xc0]
vpsllq ymm12, ymm10, 0x20
vpmuludq ymm23, ymm19, ymm20
vpmuludq ymm24, ymm21, ymm22
vpaddd ymm25, ymm23, ymm24
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8+0xa0]
vpsllq ymm27, ymm25, 0x20
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm16, ymm19, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm3, ymm0, ymm1, ymm2
vpaddq ymm0, ymm13, ymm11
vmovups ymmword ptr [rsi], ymm3
vpmuludq ymm17, ymm13, ymm11
vpmuludq ymm11, ymm31, ymm29
vpaddq ymm1, ymm17, ymm18
vpaddq ymm13, ymm31, ymm29
vpaddq ymm14, ymm11, ymm12
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8+0xa0]
vmovdqu ymm12, ymmword ptr [r11+rcx*8+0xe0]
vpsrlq ymm18, ymm17, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vpmuludq ymm26, ymm22, ymm20
vpcmpgtq ymm15, ymm14, ymm13
vblendvpd ymm3, ymm0, ymm1, ymm2
vblendvpd ymm0, ymm13, ymm14, ymm15
vmovdqu ymm14, ymmword ptr [rax+rcx*8+0xe0]
vmovups ymmword ptr [rsi+0x40], ymm3
vmovups ymmword ptr [rsi+0x80], ymm0
vpaddq ymm5, ymm26, ymm27
vpsrlq ymm11, ymm14, 0x20
vpsrlq ymm13, ymm12, 0x20
vpaddq ymm1, ymm19, ymm17
vpaddq ymm0, ymm14, ymm12
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0xc0]
vpmuludq ymm20, ymm16, ymm17
add rcx, 0x20
vpmuludq ymm21, ymm18, ymm19
vpaddd ymm22, ymm20, ymm21
vpsrlq ymm27, ymm26, 0x20
vpsllq ymm24, ymm22, 0x20
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpmuludq ymm15, ymm11, ymm12
vpmuludq ymm16, ymm13, ymm14
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm31, ymm29, ymm30
vpaddd ymm17, ymm15, ymm16

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-42

18.13.2 QUADWORD Support in Convert Instructions
The following tables demonstrate the new quadword extension in convert instructions.

vpaddq ymm2, ymm23, ymm24
vpsllq ymm19, ymm17, 0x20
vpcmpgtq ymm6, ymm5, ymm4
vblendvpd ymm7, ymm4, ymm5, ymm6
vpsllq ymm6, ymm31, 0x20
vmovups ymmword ptr [rsi+0x60], ymm7
vpaddq ymm7, ymm28, ymm26
vpcmpgtq ymm3, ymm2, ymm1
vpmuludq ymm5, ymm28, ymm26
vpmuludq ymm18, ymm14, ymm12
vblendvpd ymm4, ymm1, ymm2, ymm3
vpaddq ymm8, ymm5, ymm6
vpaddq ymm1, ymm18, ymm19
vmovups ymmword ptr [rsi+0xa0], ymm4
vpcmpgtq ymm9, ymm8, ymm7
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm10, ymm7, ymm8, ymm9
vblendvpd ymm3, ymm0, ymm1, ymm2
vmovups ymmword ptr [rsi+0xc0], ymm10
vmovups ymmword ptr [rsi+0xe0], ymm3
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline 1x Speedup: 3.1x

Table 18-3. Vector Quadword Extensions

From / To Vector SP Vector DP Vector int64 Vector uint64

Vector SP - vcvtps2qq vcvtps2uqq

Vector DP - vcvtpd2qq vcvtpd2qq

Vector int64 vcvtqq2ps vcvtqq2pd -

Vector uint64 vcvtqq2ps vcvtuqq2pd -

Table 18-4. Scalar Quadword Extensions

From / To Scalar SP Scalar DP Scalar int64 Scalar uint64

Scalar SP - vcvtss2si vcvtss2usi

Scalar DP - vcvtsd2si vcvtsd2usi

Scalar int64 vcvtsi2sd vcvtsi2sd -

Scalar uint64 vcvtusi2sd vcvtusi2sd -

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

18-43

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.13.3 QUADWORD Support for Convert with Truncation Instructions
The following tables demonstrate the new quadword extension in convert with truncate instructions.

18.14 VECTOR LENGTH ORTHOGONALITY
All Intel AVX-512 instructions, in processors that support Vector Length Extensions (VL), can operate at
three vector lengths: 128-bit, 256-bit and 512-bit. All of these vector lengths are supported by all Intel
AVX-512 instructions, except instructions with Embedded Rounding.

In the instruction encoding, the same two bits are used for encoding vector length and embedded
rounding control, therefore when embedded rounding is used, the vector length is automatically
assumed to be 512 bits (maximum vector length in Intel AVX-512).

See also Section 18.10, “Embedded Rounding”.

18.15 INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL SUPPORT
This section lists and describes the new instructions introduced by Intel AVX-512 for transcendental
support.

18.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/x, x/y, sqrt(x)
Syntax:

VRCP14PD/PS dest, src

VRSQRT14PD/PS dest, src

18.15.1.1 Application Examples
There are software sequences for Reciprocal, Division, Square Root, and Inverse Square Root instruc-
tions.

Software sequences for 1/x, x/y, sqrt(x) are beneficial for throughput (not so much for latency, unless
the accuracy is quite low). They are typically implemented via Newton-Raphson approximations, or poly-
nomial approximations.

One advantage of VRCP14 and VRSQRT14 is the improved accuracy, compared with the legacy RCPPS,
RSQRTPS. This helps shorten the computation, in particular for double precision (which requires two
instead of three Newton-Raphson iterations for a 50-52 bit approximation).

Another advantage of these instructions is that they have double-precision versions (while the legacy
RCP/RSQRT instructions did not). This further boosts double-precision performance. On Skylake Server

Table 18-5. Vector Quadword Extensions

From / To Vector int64 Vector uint64

Vector SP vcvttps2qq vcvttps2uqq

Vector DP vcvttpd2qq vcvttpd2qq

Table 18-6. Scalar Quadword Extensions

From / To Scalar int64 Scalar uint64

Scalar SP vcvttss2si vcvttss2usi

Scalar DP vcvttsd2si vcvttsd2usi

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-44

microarchitecture, double precision reciprocal and square root software sequences have significantly
better throughput than the VDIV and VSQRT instructions in 512-bit vector mode Double Precision Tran-
scendental Argument Reductions (e.g., log, cbrt).

In functions such as log() or the cube root (cbrt), a rounded VRCP14PD result can be used in place of an
expensive reciprocal table lookup. The same technique could be used before via RCPPS, but was less effi-
cient for double-precision.

See Section 18.15.3, “VRNDSCALE - Vector Round Scale” for a log() argument reduction example.

18.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponent
Syntax:

VGETMANTPD/PS dest_mant, src, imm

VGETEXPPD/PS dest_exp, src

18.15.2.1 Application Examples
Logarithm Function

log2(x) = VGETEXP(x) + log2(VGETMANT(x,8))

log(x) = VGETEXP(x)*log(2.0) + log(VGETMANT(x,8))

As seen above, the computation is reduced to computing log(VGETMANT(x,8)), where VGETMANT(x,8) is
guaranteed to be in [1,2) for all valid function inputs, and NaN for invalid inputs (x<0).

A variety of algorithms can be applied to compute the logarithm of the mantissa. The selection of a
particular algorithm may depend on the desired accuracy, on optimization goals (latency or throughput
optimized), or on specifics of the microarchitecture. Some algorithms may use other normalization
options for the mantissa: [0.5, 1) or [0.75, 1.5); however, the basic identity underlying the computation
is shown above.

See Section 18.15.5, “VSCALEF - Vector Scale” for details on Xalpha (constant alpha) and division.

18.15.3 VRNDSCALE - Vector Round Scale
Syntax:

VRNDSCALEPD/PS dest, src, imm

18.15.3.1 Application Examples
Lookup tables are frequently used in transcendental function implementations. The table index is most
often based on a few leading bits of the input. VRNDSCALE can be used as part of the argument reduction
process, to form the floating-point input value corresponding to the table index. The following example
implements the argument reduction for log(x), where 1 x < 2:

y = RCP14(x); // y is in (0.5, 1]

y0=RNDSCALE(y, k*16); // y0 has k mantissa bits (leading 1

 // included)

R = x?y0 - 1; // |R|<2-14+2-k.

Therefore log(x) = -log(y0) + log(1+R).

log(1+R)can be computed via a polynomial, and log(y0) can be retrieved from a lookup table of 2k-1+1
elements, or 2k-1 elements, at the expense of an additional check.

18-45

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.15.4 VREDUCE - Vector Reduce
Syntax:

VREDUCEPD/PS dest, src, imm

18.15.4.1 Application Examples
The most significant benefit of VREDUCE is latency reduction in common transcendental operations such
as exp2 and pow (which includes an exp2 operation). Uses in other transcendental functions such as
atan() are also possible.

See Section 18.15.5, “VSCALEF - Vector Scale”.

18.15.5 VSCALEF - Vector Scale
Syntax:

VSCALEFPD/PS dest, src1, src2

18.15.5.1 Application Examples
exp2 (2x)

exp2(x) = VSCALEF(2VREDUCE(x, RD_mode), x)

R(x) = VREDUCE(x, RD_mode) = x - floor(x) is in [0, 1). 2R(x) is computed by other means, such as
polynomial approximation, or table lookup with polynomial approximation. VSCALEF correctly handles
overflow and underflow. It is also defined to handle exp() special cases correctly (such as when the input
is an Infinity), so there is no need for special paths in a vector implementation. In the absence of
VSCALEF, inputs that are very large in magnitude require a separate path.

Since explicit exponent manipulation is no longer needed, VSCALEF also helps improve throughput.

Exp(x)

Exp(x) = VSCALEF(2R(x), x*(1/log(2.0)),

where,

R(x) = x - log(2.0)*floor(x*(1/log(2.0));

R(x) is accurately computed by using a sufficiently long log(2.0) approximation (longer than the native
floating-point format).

As with exp2(), the advantages of using VSCALEF are better throughput and elimination of secondary
branches.

xalpha (constant alpha)

For example, alpha=1/3 (the cube root function, cbrt).

The basic reduction for this computation is:

xalpha = VSCALEF((VGETMANT(x, imm))alpha?2VREDUCE (VGETEXP(x)*alpha, RD_mode),
VGETEXP(x)*alpha)

selecting the immediate (imm) is based on the value of the alpha constant.

Division:

a/b = VSCALEF(VGETMANT(a,0)/VGETMANT(b,0), VGETEXP(a)-VGETEXP(b))

This reduction allows for a branch-free implementation of divide, that covers overflow, underflow, and
special inputs (zeroes, Infinities, or denormals).

|VGETMANT(x,0)| is in [1,2) for all non-NaN inputs.

VGETMANT(a,0)/VGETMANT(b,0) can be computed to the desired accuracy.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-46

The suppress-all-exceptions (SAE) feature available in Intel AVX-512 can help ensure spurious flag
settings do not occur. Flags can be set correctly as part of the computation (except for divide-by-zero,
which requires an additional step).

For high accuracy or IEEE compliance, the hardware instruction typically provides better performance,
especially in terms of latency.

18.15.6 VFPCLASS - Vector Floating Point Class
Syntax:

VFPCLASSPD/PS dest_mask, src, imm

18.15.6.1 Application Examples
The VFPCLASS instruction is used to detect special cases so they can be directed to a special path, or
alternatively, handled with masked operations in the main path. See two examples below.

Reciprocal Sequence, Square Root Sequence:

The reduced argument for the 1/x computation is e=1-x*RCP14(x). This expression evaluates to NaN
when x is ±0 or ±Inf, as RCP14 returns the correct result for these special cases. VFPCLASS enables you
to set mask=1 for x=±0 or ±Inf, and mask=0 for all other x. This mask can then be used to select
between the RCP14 output (result for special cases), or the result of a reciprocal refinement computation
starting with RCP14 (for typical inputs).

In a similar manner, a square root computation based on RSQRT14 can use the VFPCLASS instruction to
create a mask for =±0 or x=+Inf.

Pow(x,y) function:

The main path of pow(x,y)=2y*log2(x) does not operate on x?0, x=Inf/NaN, or y=Inf/NaN. One
VFPCLASS op can be used to set special_x_mask=1 for x?0 or x=Inf/NaN. A second VFPCLASS op would
be used to set special_y_mask=1 for y=Inf/NaN. A branch to a secondary path is taken if either mask is
set.

18.15.7 VPERM, VPERMI2, VPERMT2 - Small Table Lookup Implementation

18.15.7.1 Application Examples
Math library functions are frequently implemented using table lookups. In vector mode, large table
lookups would use vector gather. Small table lookups can be implemented via the VPERM* instructions,
which are significantly faster.

Examples of common transcendental functions that achieved very significant speedup using VPERM* for
table lookups: exp(), log(), pow() - both single and double precision.

18.16 CONFLICT DETECTION
The Intel AVX-512 Conflict Detection instructions are instructions that, together with Intel AVX-512
Foundation instructions, enable efficient vectorization of loops with possible vector dependencies (i.e.,
conflicts) through memory. VPCONFLICT performs horizontal comparisons of elements within a single
vector register. VPCONFLICT compares each element of a vector register with all previous elements in
that register, and outputs the results of all of the comparisons. These horizontal comparisons can be used
for other purposes.

Other conflict detection instructions allow for efficient manipulation of the comparison results. The
VPLZCNT instruction lets us generate controls for in-register permute operations used to combine vector
elements with matching values.

18-47

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.16.1 Vectorization with Conflict Detection
The Intel AVX-512CD instructions allow efficient vectorization of loops with reads and writes through an
array of pointers (e.g., *ptr[i] += val[i]) or an indirectly addressed array (e.g., A[B[i]] += val[i]).

Consider the following histogram computation:

for(int i = 0; i < num_inputs; i++)

{

histogram[input[i] & (num_bins - 1)]++;

}

If input[0] = input[1] = 3, we will get an incorrect answer if we use SIMD instructions to read histo-
gram[input[0]] and histogram[input[1]] into a register (with a gather), increment them, and then write
them back (with a scatter). After this sequence, the value in histogram[3] will be 1, when it should be 2.

The problem occurs because we have duplicate indices; this creates a dependence between the write to
the histogram in iteration 0 and the read from the histogram in iteration 1 - the read should get the value
of the previous write.

To detect this scenario, look for duplicate indices (or pointer values), using the VPCONFLICT instruction.
This instruction compares each element of a vector register with all previous elements in that register.

Example:

vpconflictd zmm0, zmm1

The figure below is an example that shows the execution of a VPCONFLICTD instruction. The input,
ZMM1, contains 16 integers, shown in the light grey boxes. ZMM1 is at the top of the figure, and also
visually transposed along the left-hand side of the figure. The white boxes show the equality comparisons
that the hardware performs between different elements of ZMM1, and the outcome of each comparison
(0 = not equal, 1 = equal). Each comparison output is a single bit in the output of the instruction.
Comparisons that are not performed (i.e., the dark grey boxes) produce a single '0' bit in the output.
Finally, the output register, ZMM0, is shown at the bottom of the figure. Each element is shown as a
decimal representation of the bits above it.

Use VPCONFLICT in different ways to help vectorize loops.

The simplest option is to check for any duplicate indices in a given SIMD register. If there are none, SIMD
instructions can be used to compute all elements simultaneously. If conflicts are present, execute a
scalar loop for that group of elements.

Branching to a scalar version of the loop on any duplicate indices can work well if duplicates are
extremely rare. However, if the chance of getting even one duplicate in a given iteration of the vectorized
loop is large enough, then it is better to use SIMD as much as possible, to exploit as much parallelism as
possible.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-48

For loops performing updates to memory locations, such as in the histogram example, minimize store-
load forwarding by merging the updates to each distinct index while the data is in registers, and only
perform a single write to each memory location. Further, the merge can be performed in a parallel
fashion.

Figure 18-10. VPCONFLICTD Instruction Execution

00

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

5

3

3

1

8

2

50

1

0

7

6

4

9

3

10

3

533182501076493103

0020000800000608198

… 63 32 31 0 bitsZMM1

ZMM1

ZMM0

… 63 32 31 0 bits

…

63

32
31

0
bits

18-49

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The figure above shows the merging process for the example set of indices. While the figure shows only
the indices, it actually merges the values. Most of the indices are unique, and thus require no merging.
Step 1 combines three pairs of indices: two pairs of '3's and one pair of '1's. Step 2 combines the inter-
mediate results for the '3's from step 1, so that there is now a single value for each distinct index. Notice
that in only two steps, the four elements with an index value of 3 are merged, because we performed a
tree reduction; we merged pairs of results or intermediate results at each step.

The merging (combining or reduction) process shown above is done with a set of permute operations.
The initial permute control is generated with a VPLZCNT+VPSUB sequence. VPLZCNT provides the
number of leading zeros for each vector element (i.e., contiguous zeros in the most significant bit posi-
tions). Subtracting the results of VPLZCNT from the number of bits in each vector element, minus one,
provides the bit position of the most significant '1' bit in the result of the VPCONFLICT instruction, or
results in a '-1' for an element if it has no conflicts. In the example above this sequence results in the
following permute control.

The permute loop for merging matching indices and generating the next set of permute indices repeats
until all values in the permute control become equal to ‘-1’.

The assembly code below shows both the scalar version of a histogram loop, and the vectorized version
with a tree reduction. Speedups are modest because the loop contains little computation; the SIMD
benefit comes almost entirely from vectorizing just the logical AND operation and the increment. SIMD
speedups can be much higher for loops containing more vectorizable computation.

Figure 18-11. VPCONFLICTD Merging Process

Figure 18-12. VPCONFLICTD Permute Control

SOM00014

… 63 32 31 0 bitsZMM1

533182501076493103

Step 1

Step 2

SOM00015

13 -1 -2 -1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-50

Notice that the end result of the conflict loop (i.e., the resulting vector after all merging is done, ZMM2 in
the above sequence) holds the complete set of partial sums. That is, for each element, the result contains
the value of that element merged with all earlier elements with the same index value. Using the earlier
example values, ZMM2 contains the result shown in Figure 18-13.

Example 18-19. Scatter Implementation Alternatives
Scalar Code (Unrolled Two Times) Intel® AVX-512 Code

mov r9d, bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rax, rax

histogram_loop:
lea ecx, [rax + rax]
inc eax
movsxd rcx, ecx
mov esi, [r10+rcx*4]
and esi, r9d
mov r8d, [r10+rcx*4+4]
movsxd rsi, esi
and r8d, r9d
movsxd r8, r8d
inc dword ptr [r15+rsi*4]
inc dword ptr [r15+r8*4]
cmp eax, ebx
jb histogram_loop

vmovaps zmm4, all_1 // {1, 1, …, 1}
vmovaps zmm5, all_negative_1
vmovaps zmm6, all_31
vmovaps zmm7, all_bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rcx, rcx

histogram_loop:
vpandd zmm3, zmm7, [r10+rcx*4]
vpconflictd zmm0, zmm3
kxnorw k1, k1, k1
vmovaps zmm2, zmm4
vpxord zmm1, zmm1, zmm1
vpgatherdd zmm1{k1}, [r15+zmm3*4]
vptestmd k1, zmm0, zmm0
kortestw k1, k1
je update

vplzcntd zmm0, zmm0
vpsubd zmm0, zmm6, zmm0

conflict_loop:
vpermd zmm8{k1}{z}, zmm0, zmm2
vpermd zmm0{k1}, zmm0, zmm0
vpaddd zmm2{k1}, zmm2, zmm8
vpcmpned k1, zmm5, zmm0
kortestw k1, k1
jne conflict_loop

update:
vpaddd zmm0, zmm2, zmm1
kxnorw k1, k1, k1
add rcx, 16
vpscatterdd [r15+zmm3*4]{k1}, zmm0
cmp ecx, ebx
jb histogram_loop

Scalar, Baseline, 1x Speedup: 1.11x (random inputs); 1.34x (input values
identical)

18-51

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

While the above sequence does not take advantage of this, other use cases might.

18.16.2 Sparse Dot Product with VPCONFLICT
A sparse vector may be stored as a pair of arrays: one containing non-zero values, and one containing
the original locations of those values in the vector. Note that the indices are sorted in increasing order.

To perform a dot product of two sparse vectors efficiently, we need to find elements with matching
indices; those are the only ones on which we should perform the multiply and accumulation. The scalar
method for doing this is to start at the beginning of the two index arrays, compare those indices, and if
there is a match, do the multiply and accumulate, then advance the indices of both vectors. If there is no
match, we advance the index of the lagging vector.

Figure 18-13. VPCONFLICTD ZMM2 Result

Figure 18-14. Sparse Vector Example

SOM00016

4 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1

SOM00017

A_index87 41 32 15 10 4 3 0

A_value1.0 5.0 -2.0 8.0 0.1 3.5 3.1 5.0

… 127 64 63 0 bits

… 63 32 31 0 bits

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-52

A_offset = 0; B_offset = 0; sum = 0;

while ((A_offset < A_length) && (B_offset < B_length))

{

if (A_index[A_offset] == B_index[B_offset]) // match

{

sum += A_value[A_offset] * B_value[B_offset];

A_offset++;

B_offset++;

}

else if (A_index[A_offset] < B_index[B_offset])

{

A_offset++;

}

else

{

B_offset++;

}

}

The Intel AVX-512CD instructions provide an efficient way to vectorize this loop. Instead of comparing
one index from each vector at a time, we can compare eight of them. First we combine eight indices from
each vector into a single vector register. Then, the VPCONFLICT instruction compares the indices. We use
the output to create a mask of elements in vector A that have a match, and also to create permute
controls to move the corresponding values of B to the same location, so that we can use a vector FMA
instruction.

Example 18-20 shows the assembly code for both the scalar and vector versions of a single comparison
and FMA. For brevity, the offset updates and looping are omitted.

18-53

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.17 INTEL® AVX-512 VECTOR BYTE MANIPULATION INSTRUCTIONS
(VBMI)

Intel® AVX-512 VBMI instructions are a set of 512-bit instructions that are designed to speed up bit
manipulation operations. The following sections describe the new instructions and show simple usage
examples. See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for complete instruction defini-
tions. Processors that provide VBMI1 and VBMI2 are enumerated by the CPUID feature flags
CPUID:(EAX=07H, ECX=0):ECX[bit 01] = 1 and CPUID:(EAX=07H, ECX=0):ECX[bit 06] = 1, respec-
tively.

Example 18-20. Scalar vs. Vector Update Using AVX-512CD

Scalar Code Intel® AVX-512 Code

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value

mov r10d, [rdx+rcx*4]
mov r11d, [r12+r13*4]
cmp r10d, r11d
jne skip_fma

 // do the fma on a match
movsd xmm5, [rbx+r13*8]
mulsd xmm5, [rax+rcx*8]
addsd xmm4, xmm5

skip_fma:

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value
mov r14, all_31s // array of {31, 31, …}
vmovaps zmm2, [r14]
mov r15, upconvert_control // array of {0, 7, 0, 6, 0, 5,

0, 4, 0, 3, 0, 2, 0, 1, 0, 0}
vmovaps zmm1, [r15]
vpternlogd zmm0, zmm0, zmm0, 255
movl esi, 21845
kmovw k1, esi // odd bits set

// read 8 indices for A
vmovdqu ymm5, [rdx+rcx*4]
// read 8 indices for B, and put
// them in the high part of zmm6
vinserti64x4 zmm6, zmm5, [r12+r13*4], 1
vpconflictd zmm7, zmm6
// extract A vs. B comparisons
vextracti64x4 ymm8, zmm7, 1
// convert comparison results to
// permute control
vplzcntd zmm9, zmm8
vptestmd k2, zmm8, zmm0
vpsubd zmm10, zmm2, zmm9
// upconvert permute controls from
// 32b to 64b, since data is 64b
vpermd zmm11{k1}, zmm1, zmm10
// Move A values to corresponding
// B values, and do FMA
vpermpd zmm12{k2}{z}, zmm11, [rax+rcx*8]
vfmadd231pd zmm4, zmm12, [rbx+r13*8]

Baseline, 1x Speedup, 4.4x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-54

18.17.1 Permute Packet Bytes Elements Across Lanes (VPERMB)
The VPERMB instruction is a single source, any-to-any byte permute instruction. The following figure
shows a VPERMB instruction operation example.

VPERMB Operation:

// vpermb zmm Dst {k1}, zmm Src1, zmm Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, *Src2;

for(int i=0;i<64;i++){
if(k1[i]){

Dst[i]= Src2[Src1[i]];
}else{

Dst[i]= zero_masking? 0 : Dst[i];
}

}

The following example shows a 64-byte lookup table implementation.

Scalar code:
void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int numOfElements){

 for(int i = 0; i < numOfElements; i++) {
 out_bytes[i] = dictionary_bytes[in_bytes[i] & 63];

 }
}

Figure 18-15. VPERMB Instruction Operation

SOM00018

A0 A1 A2 A3 A4 ... A63zmm2 src2:

0 4 1 3 63 ... 4zmm1 src1:

A0 A4 A1 A3 A63 ... A4zmm0 dst:

VPERMB zmm0, zmm1, zmm2

18-55

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.17.2 Two-Source Byte Permute Across Lanes (VPERMI2B, VPERMT2B)
The VPERMI2B and VPERMT2B instructions are two-source byte, permute instructions. The destination is
also an operation source; in VPERMI2B the destination is the operation index, and in VPERMT2B the
destination is one of the data sources.

The following figure shows a VPERMI2B instruction operation example.

Example 18-21. Improvement with VPERMB Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPERMB Implementation

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vpmovzxbw zmm3, [rsi]
vpmovzxbw zmm4, [rsi+32]

loop:
vpmovzxbw zmm1, [r11+r8*1]
vpmovzxbw zmm2, [r11+r8*1+32]
vpermi2w zmm1, zmm3, zmm4
vpermi2w zmm2, zmm3, zmm4
vpmovwb [rax+r8*1], zmm1
vpmovwb [rax+r8*1+32], zmm2
add r8, 64
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]

loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermb zmm1, zmm1, zmm2
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 6.5x

Figure 18-16. VPERMI2B Instruction Operation

VPERMI2B zmm0, zmm1, zmm2

B0 B1 B2 B3 B4 ... B63zmm2 src2:

SOM00019

0 2 65 4 68 ... 63zmm0 (index and source):

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-56

VPERMI2B Operation:

/// vpermi2b Dst{k1}, Src1, Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, *Src2;
for(int i=0;i<64;i++){

if(k1[i]){
Dst[i]= Dst [i]>63 ? Src1[Dst [i] & 63] : Src2[Dst [i] & 63] ;

}else{
Dst[i]= zero_masking? 0 : Dst[i];

}
}

The following figure shows a VPERMT2B instruction operation example.

VPERMT2B Operation:

// vpermt2b Dst{k1}, Src1, Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, * Src2;
data2= copy(Dst);
for(int i=0;i<64;i++){

if(k1[i]){
Dst[i]= Src2[i]>63 ? Src1[Src2 [i] & 63] : Dst[Src2[i] & 63] ;

}else{
Dst[i]= zero_masking? 0 : Dst[i];

}
}

Figure 18-17. VPERMT2B Instruction Operation

VPERMT2B zmm0, zmm1, zmm2

B0 B1 B2 B3 B4 ... B63
zmm0

data source:

SOM00020

0 2 65 4 68 ... 63zmm2 src2:

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

18-57

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example shows a 128-byte lookup table implementation.

C Code:
void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int numOfElements){

for(int i = 0; i < numOfElements; i++) {
out_bytes[i] = dictionary_bytes[in_bytes[i] & 127];

}
}

Example 18-22. Improvement with VPERMI2B Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPERMI2B Implementation

//get data sent to function
mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
//Reorganize dictionary
vpmovzxbw zmm10, [rsi]
vpmovzxbw zmm15, [rsi+64]
vpsllw zmm15, zmm15, 8
vpord zmm10, zmm15, zmm10
vpmovzxbw zmm11, [rsi+32]
vpmovzxbw zmm15, [rsi+96]
vpsllw zmm15, zmm15, 8
vpord zmm11, zmm15, zmm11
//initialize constants
mov r10, 0x00400040
vpbroadcastw zmm12, r10d
mov r10, 0
vpbroadcastd zmm13, r10d
mov r10, 0x00ff00ff
vpbroadcastd zmm14, r10d
//start iterations
loop:
vpmovzxbw zmm1, [r11+r8*1]
vpandd zmm2, zmm1, zmm12
vpcmpw k1, zmm2, zmm13, 4
vpermi2w zmm1, zmm10, zmm11
vpsrlw zmm1{k1}, zmm1, 8
vpandd zmm1, zmm1, zmm14
vpmovwb [rax+r8*1], zmm1
add r8, 32
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]
vmovdqu32 zmm3, [rsi+64]
loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermi2b zmm1, zmm2, zmm3
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 5.3x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-58

18.17.3 Select Packed Unaligned Bytes from Quadword Sources (VPMULTISHIFTQB)
The VPMULTISHIFTQB instruction selects eight unaligned bytes from each input qword element of the
second source operand and writes eight assembled bytes for each qword element in the destination
operand.

The following figure shows a VPMULTISHIFTQB instruction operation example.

VPMULTISHIFTQB Operation:

// vpmultishiftqb Dst{k1},Src1,Src2
bool zero_masking=false;
unsigned char *Dst, * Src1;
unsigned __int64 *Src2;
bit * k1;
for(int i=0;i<8;i++){

for(int j=0;j<8;j++){
if(k1[i*8 +j]){

Dst[i*8 +j]= (src2[i]>> Src1[i*8 +j]) &0xFF ;
}else{

Dst[i*8 +j]= zero_masking? 0 : Dst[i*8 +j];
}

}
}

Figure 18-18. VPMULTISHIFTQB Instruction Operation

SOM00022

zmm2 src2:

zmm1 src1:

0 1 2 3 4 5 6 7 8 9 10 11 ... 63 ...

A1‐8

12 13 14 15

A8‐15

0 1 2 3 4 5 6 7 8 9 10 11 ... 6312 13 14 15

1 8 ...

Index: 0 Index: 1

7 2 ...

B7‐14A8‐15 B2‐9

Index: 8 Index: 9

A1‐8 A8‐15 ... B2‐9 B7‐14 ...zmm0 dst:

qword1 qword2 ...

0 1 2 3 4 5 6 7 8 9 10 11 ... 63

H0‐7

12 13 14 15

H9‐16

qword8

...

... 0 9... ...

H0‐7 H9‐16

VPMULTISHIFTQB zmm0, zmm1, zmm2

18-59

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example converts a 5-bit unsigned integer array to a 1-byte unsigned integer array.
C code:
void decompress (unsigned char* compressedData, unsigned char* decompressedData, int numOfElements){

for(int i = 0; i < numOfElements; i += 8){
unsigned __int64 * data = (unsigned __int64 *)compressedData;
decompressedData[i+0] = * data & 0x1f;
decompressedData[i+1] = (*data >> 5) & 0x1f;
decompressedData[i+2] = (*data >> 10) & 0x1f;
decompressedData[i+3] = (*data >> 15) & 0x1f;
decompressedData[i+4] = (*data >> 20) & 0x1f;
decompressedData[i+5] = (*data >> 25) & 0x1f;
decompressedData[i+6] = (*data >> 30) & 0x1f;
decompressedData[i+7] = (*data >> 35) & 0x1f;
compressedData += 5;

}
}

Example 18-23. Improvement with VPMULTISHIFTQB Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPMULTISHIFTQB Implementation

mov rdx, compressedData
mov r9, decompressedData
mov eax, numOfElements
shr eax,3
xor rsi, rsi
loop:
mov rcx, qword ptr [rdx]
mov r10, rcx
and r10, 0x1f
mov r11, rcx
mov byte ptr [r9+rsi*8], r10b
mov r10, rcx
shr r10, 0xa
add rdx, 0x5
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x2], r10b
mov r10, rcx
shr r10, 0xf
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x3], r10b
mov r10, rcx
shr r10, 0x14
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x4], r10b
mov r10, rcx
shr r10, 0x19
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x5], r10b
mov r10, rcx
shr r11, 0x5
shr r10, 0x1e

//constants :
__declspec (align(64)) const unsigned __int8
permute_ctrl[64] = {

0, 1, 2, 3, 4, 0, 0, 0
5, 6, 7, 8, 9, 0, 0, 0
10, 11, 12, 13, 14, 0, 0, 0
15, 16, 17, 18, 19, 0, 0, 0
20, 21, 22, 23, 24, 0, 0, 0
25, 26, 27, 28, 29, 0, 0, 0
30, 31, 32, 33, 34, 0, 0, 0
35, 36, 37, 38, 39, 0, 0, 0

};
__declspec (align(64)) const unsigned __int8
multishift_ctrl[64] = {

0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35

};
//asm:
mov rsi, compressedData
mov rdi, decompressedData
mov r8d, numOfElements
lea r8, [rdi+r8]
mov r9, 0x1F1F1F1F
vpbroadcastd zmm12, r9d
vmovdqu32 zmm10, permute_ctrl
vmovdqu32 zmm11, multishift_ctrl

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-60

18.18 FMA LATENCY
When executing in 512-bit register port scheme, Port 0 FMA has a latency of 4 cycles, and Port 5 FMA has
a latency of 6 cycles. Bypass can have a -2 (fast bypass) to +1 cycle delay. Therefore, instructions that
execute on the Skylake microarchitecture FMA have a latency of 4-7 cycles.

The instructions are divided into the following two groups.
• Group A Instructions: vadd*; vfmadd*; vfnmsub*; vfnmadd*; vfnmsub*; vmax*; vmin*; vmul*;

vscalef*; vsub*; vcvt*; vgetexp*; vfixupimm*; vrange*; vgetmant*; vreduce*; vcmp*, vcomi*,
vdpp*, vhadd*, vhsub*, vrndscale*, vround*

• Group B Instructions: vpmaddubsw; vpmaddwd; vpmuldq; vpmulhrsw; vpmulhuw; vpmulhw;
vpmullw; vpmuludq

The FMA unit supports fast bypass when all instruction sources come from the FMA unit. In this case
Group A has a latency of 4 cycles for both ports 0 and 5, and Group B has a latency of 5 cycles for both
ports 0 and 5.

The figure below explains fast bypass when all sources come from the FMA unit.

and r11, 0x1f
shr rcx, 0x23
and r10, 0x1f
and rcx, 0x1f
mov byte ptr [r9+rsi*8+0x1], r11b
mov byte ptr [r9+rsi*8+0x6], r10b
mov byte ptr [r9+rsi*8+0x7], cl
inc rsi
cmp rsi, rax
jb loop

loop:
vmovdqu32 zmm1, [rsi]
vpermb zmm2, zmm10, zmm1
vpmultishiftqb zmm2, zmm11, zmm2
vpandq zmm2, zmm12, zmm2
vmovdqu32 [rdi], zmm2
add rdi, 64
add rsi, 40
cmp rdi, r8
jl loop

Base Measurement: 1x Speedup: 26x

Example 18-23. Improvement with VPMULTISHIFTQB Implementation (Contd.)

18-61

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The grey boxes represent compute cycles. The white boxes represent data transfer for the port5 FMA
unit.

If fast bypass is not used, that is, when not all sources come from the FMA unit, group A instructions have
a latency of 4 cycles on Port0 and 6 cycles on port5, while group B instructions have an additional cycle
and hence have a latency of 5 cycles on Port0 and 7 cycles on port5.

The following table summarizes the FMA unit latency for the various options.

Figure 18-19. Fast Bypass When All Sources Come from FMA Unit

Table 18-7. FMA Unit Latency

Instruction Group
Fast Bypass (FMA Data Reuse) No Fast Bypass (No FMA Data Reuse)

Port 0 Port 5 Port 0 Port 5

Group A 4 4 4 6

Group B 5 5 5 7

SOM00021

1 2 3 4

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4

FMA port0

FMA port5

FMA port5

FMA port5

FMA port5

FMA port0

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-62

18.19 MIXING INTEL® AVX OR INTEL® AVX-512 EXTENSIONS WITH INTEL®
STREAMING SIMD EXTENSIONS (INTEL® SSE) CODE

There are two main instruction groups that affect the processor states:
• Group A: Instruction types that either set bits 128-511 of vector registers 0-15 to zero, or do not

modify them at all.

— Intel SSE instructions.

— 128-bit Intel AVX instructions, 128-bit Intel AVX-512 instructions.

— 256-bit (ymm16-ymm31) Intel AVX-512 instructions.

— 512-bit (zmm16-zmm31) Intel AVX-512 instructions.

— AVX-512 instructions that write to mask registers k0-k7.

— GPR instructions.
• Group B: Instructions types that modify bits 128-511 of vector registers 0-15.

— 256-bit (ymm0-ymm15) Intel AVX instructions, Intel AVX-512 instructions.

— 512-bit (zmm0-zmm15) Intel AVX-512 instructions.

The following figure illustrates Skylake Server microarchitecture's model for mixing Intel AVX instruc-
tions or Intel AVX-512 instructions with Intel SSE instructions.

The implementation is similar to Skylake client microarchitecture, where every Intel SSE instruction
executed in Dirty Upper State (2) needs to preserve bits 128-511 of the destination register, and there-
fore the operation has an additional dependency on the destination register and a blend operation with
bits 128-511.

Recommendations:
• When mixing group B instructions with Intel SSE instructions, or suspecting that such a mixture

might occur, use the VZEROUPPER instruction whenever a transition is expected.
• Add VZEROUPPER after group B instructions were executed and before any function call that might

lead to an Intel SSE instruction execution.
• Add VZEROUPPER at the end of any function that uses group B instructions.
• Add VZEROUPPER before thread creation if not already in a clean state so that the thread does not

inherit a Dirty Upper State.

Figure 18-20. Mixing Intel AVX Instructions or Intel AVX-512 Instructions with Intel SSE Instructions

18-63

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.20 MIXING ZMM VECTOR CODE WITH XMM/YMM
Skylake microarchitecture has two port schemes, one for using 256-bit or less registers, and another for
using 512-bit registers.

When using registers up to or including 256 bits, FMA operations dispatch to ports 0 and 1 and SIMD
operations dispatch to ports 0, 1 and 5. When using 512-bit register operations, both FMA and SIMD
operations dispatch to ports 0 and 5.

The maximum register width in the reservation station (RS) determines the 256 or 512 port scheme.

Notice that when using AVX-512 encoded instructions with YMM registers, the instructions are considered
to be 256-bit wide.

The result of the 512-bit port scheme is that XMM or YMM code dispatches to 2 ports (0 and 5) instead of
3 ports (0, 1, and 5) and may have lower throughput and longer latency compared to the 256-bit port
scheme.

In the 256-bit code only example, the FMAs are dispatched to ports 0 and 1, and permd is dispatched to
port 5 as the broadcast instruction is 256 bits wide. In the 256-bit and 512-bit mixed code example, the
broadcast is 512 bits wide; therefore, the processor uses the 512-bit port scheme where the FMAs
dispatch to ports 0 and 5 and permd to port 5, thus increasing the pressure on port 5.

18.21 SERVERS WITH A SINGLE FMA UNIT
Some processors based on Skylake microarchitecture have two Intel AVX-512 FMA units, on ports 0 and
5, while other processors based on Skylake microarchitecture have a single Intel AVX-512 FMA unit,
which is located on port 0.

Example 18-24. 256-bit Code vs. 256-bit Code Mixed with 512-bit Code

256-bit Code Only 256-bit Code Mixed with 512-bit Code

Loop:
vpbroadcastd ymm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Loop:
vpbroadcastd zmm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Baseline 1x Slowdown: 1.3x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-64

Code that is optimized to run on a processor with two FMA units might not be optimal when run on a
processor with one FMA unit.

The following example code shows how to detect whether a system has one or two Intel AVX-512 FMA
units. It includes the following:
• An Intel AVX-512 warmup.
• A function that executes only FMA instructions.
• A function that executes both FMA and shuffle instructions.
• Code that, based on the results of these two tests, identifies whether the processor has one or two

FMA units.

Notice that each test is executed three times to improve test accuracy.

In order to reduce the program overhead, it is highly recommended not to execute this test in every func-
tion call, but as part of installation, or once at startup.

The differentiation between the two processors is based on the ratio between the two throughput tests.
Processors with two FMA units are able to run the FMA-only test twice as fast as the FMA and shuffle test.
However, a processor with one FMA unit will run both tests at the same speed.

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture
#include <string.h>
#include <stdlib.h>
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>

static uint64_t rdtsc(void) {
 unsigned int ax, dx;

 __asm__ __volatile__ ("rdtsc" : "=a"(ax), "=d"(dx));

 return ((((uint64_t)dx) << 32) | ax);
}

uint64_t fma_shuffle_tpt(uint64_t loop_cnt){
uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};
__declspec(align(64)) int shuf_vec[16] = {0, 1, 2, 3,4, 5, 6, 7,8, 9, 10, 11,12, 13, 14, 15};
 __asm

 {
vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]

18-65

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]
vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
vmovups zmm12, [shuf_vec]
vmovups zmm13, [shuf_vec]
vmovups zmm14, [shuf_vec]
vmovups zmm15, [shuf_vec]
vmovups zmm16, [shuf_vec]
vmovups zmm17, [shuf_vec]
vmovups zmm18, [shuf_vec]
vmovups zmm19, [shuf_vec]
vmovups zmm20, [shuf_vec]
vmovups zmm21, [shuf_vec]
vmovups zmm22, [shuf_vec]
vmovups zmm23, [shuf_vec]
vmovups zmm30, [shuf_vec]
mov rdx, loops

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3
vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
vpermd zmm12, zmm30, zmm30
vpermd zmm13, zmm30, zmm30
vpermd zmm14, zmm30, zmm30
vpermd zmm15, zmm30, zmm30
vpermd zmm16, zmm30, zmm30
vpermd zmm17, zmm30, zmm30
vpermd zmm18, zmm30, zmm30
vpermd zmm19, zmm30, zmm30
vpermd zmm20, zmm30, zmm30
vpermd zmm21, zmm30, zmm30
vpermd zmm22, zmm30, zmm30
vpermd zmm23, zmm30, zmm30
dec rdx
jg loop1

 }
}

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-66

uint64_t fma_only_tpt(int loop_cnt){
uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};

 __asm
 {

vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]
vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]
vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
mov rdx, loops

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3
vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
dec rdx
jg loop1

 }
}

int main()
{

int i;
uint64_t fma_shuf_tpt_test[3];
uint64_t fma_shuf_tpt_test_min;
uint64_t fma_only_tpt_test[3];
uint64_t fma_only_tpt_test_min;
uint64_t start = 0;
uint64_t number_of_fma_units_per_core = 2;

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

18-67

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

/***/
/* Step 1: Warmup */
/***/
fma_only_tpt(100000);

/***/
/* Step 2: Execute FMA and Shuffle TPT Test */
/***/

for(i = 0; i < 3; i++){
start = rdtsc();
fma_shuffle_tpt(1000);
fma_shuf_tpt_test[i] = rdtsc() - start;

}

/***/
/* Step 3: Execute FMA only TPT Test */
/***/
for(i = 0; i < 3; i++){

start = rdtsc();
fma_only_tpt(1000);
fma_only_tpt_test[i] = rdtsc() - start;

}

/***/
/* Step 4: Decide if 1 FMA server or 2 FMA server */
/***/
fma_shuf_tpt_test_min = fma_shuf_tpt_test[0];
fma_only_tpt_test_min = fma_only_tpt_test[0];
for(i = 1; i < 3; i++){

if ((int)fma_shuf_tpt_test[i] < (int)fma_shuf_tpt_test_min) fma_shuf_tpt_test_min = fma_shuf_tpt_test[i];
if ((int)fma_only_tpt_test[i] < (int)fma_only_tpt_test_min) fma_only_tpt_test_min = fma_only_tpt_test[i];

}

if(((double)fma_shuf_tpt_test_min/(double)fma_only_tpt_test_min) < 1.5){
number_of_fma_units_per_core = 1;

}

printf("%d FMA server\n", number_of_fma_units_per_core);
return 0;

}

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-68

18.22 GATHER/SCATTER TO SHUFFLE (G2S/STS)

18.22.1 Gather to Shuffle in Strided Loads
In cases where there is data locality between gathered elements in memory, performance can be
improved by replacing the gather instruction with a software sequence.

This section discusses the very common strided load pattern. Strided loads are sets of loads where the
offset in memory between two consecutive loads is constant.

The following examples show three different code variations performing an Array of Structures (AOS) to
Structure of Arrays (SOA) transformation. The code separates the real and imaginary elements in a
complex array into two separate arrays.

Consider the following C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[i].real;

Imaginary_buffer[i] = Complex_buffer[i].imag;

}

Example 18-26. Gather to Shuffle in Strided Loads Example

Alternative 1: Intel® AVX-512 vpgatherdd Alternative 2: G2S Using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
vpcmpeqb k2, xmm0, xmm0
movsxd rdx, edx
movsxd rdi, esi
inc esi
shl rdi, 0x7
vpxord zmm2, zmm2, zmm2
lea rax, [r8+rdx*8]
add edx, 0x20
vpgatherdd zmm2{k1}, [rax+zmm1*4]
vpxord zmm3, zmm3, zmm3
vpxord zmm4, zmm4, zmm4
vpxord zmm5, zmm5, zmm5
vpgatherdd zmm3{k2}, [rax+zmm0*4]
vpcmpeqb k3, xmm0, xmm0
vpcmpeqb k4, xmm0, xmm0
vmovups [r9+rdi*1], zmm2
vmovups [rcx+rdi*1], zmm3
vpgatherdd zmm4{k3}, [rax+zmm1*4+0x80]
vpgatherdd zmm5{k4}, [rax+zmm0*4+0x80]
vmovups [r9+rdi*1+0x40], zmm4
vmovups [rcx+rdi*1+0x40], zmm5
cmp esi, r14d
jb loop

vmovups zmm4, [rdx+r9*8]
vmovups zmm0, [rdx+r9*8+0x40]
vmovups zmm5, [rdx+r9*8+0x80]
vmovups zmm1, [rdx+r9*8+0xc0]
vmovaps zmm2, zmm7
vmovaps zmm3, zmm7
vpermi2d zmm2, zmm4, zmm0
vpermt2d zmm4, zmm6, zmm0
vpermi2d zmm3, zmm5, zmm1
vpermt2d zmm5, zmm6, zmm1
vmovdqu32 [rcx+r9*4], zmm2
vmovdqu32 [rcx+r9*4+0x40], zmm3
vmovdqu32 [r8+r9*4], zmm4
vmovdqu32 [r8+r9*4+0x40], zmm5
add r9, 0x20
cmp r9, r10
jb loop

Baseline 1x Speedup: 4.8x

18-69

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were loaded into zmm registers and used as gather and permute indices:

Zmm0 (Alternative 1), zmm6 (Alternative 2)

__declspec (align(64)) const __int32 gather_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,
25, 27, 29, 31};

Zmm1 (Alternative 1), zmm7 (Alternative 2)

__declspec (align(64)) const __int32 gather_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30};

Recommendation: For best performance, replace strided loads where the stride is short, with a
sequence of loads and permutes.

18.22.2 Scatter to Shuffle in Strided Stores
The following is an Scatter to Shuffle example that replaces scatter with permute and store instructions

Consider the following C code:

for(int i=0;i<len;i++){

Complex_buffer[i].real = Real_buffer[i];

Complex_buffer[i].imag = Imaginary_buffer[i];

}

The following constants were used as scatter indices:

Zmm1:

__declspec (align(64)) const __int32 scatter_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30};

Zmm0:

__declspec (align(64)) const __int32 scatter_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
23, 25, 27, 29, 31};

Example 18-27. Gather to Shuffle in Strided Stores Example

Alternative 1: Intel® AVX-512 vscatterdps Alternative 2: S2S using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
lea r11, [r8+rcx*4]
vpcmpeqb k2, xmm0, xmm0
vmovups zmm2, [rax+rsi*4]
vmovups zmm3, [r9+rsi*4]
vscatterdps [r11+zmm1*4]{k1}, zmm2
vscatterdps [r11+zmm0*4]{k2}, zmm3
add rsi, 0x10
add rcx, 0x20
cmp rsi, r10
jl loop

loop:
vmovups zmm4, [rax+r8*4]
vmovups zmm2, [r10+r8*4]
vmovaps zmm3, zmm1
add r8, 0x10
vpermi2d zmm3, zmm4, zmm2
vpermt2d zmm4, zmm0, zmm2
vmovups [r9+rsi*4], zmm3
vmovups [r9+rsi*4+0x40], zmm4
add rsi, 0x20
cmp r8, r11
jl loop

Baseline 1x Speedup: 4.4x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-70

The following constants were used as permute indices:

Zmm1:

__declspec (align(64)) const __int32 first_half[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7,
23};

Zmm0:

__declspec (align(64)) const __int32 second_half[16] = {8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14,
30, 15, 31};

18.22.3 Gather to Shuffle in Adjacent Loads
In cases where the gathered elements are grouped into adjacent sequences, the gather instruction can
be replaced by a software sequence to improve performance.

The following example shows how to load vectors when elements are adjacent.

Notice that in this case the order of the elements in the arrays is set according to an index buffer and
therefore the software optimization discussed in Section 18.22.1, “Gather to Shuffle in Strided Loads” is
not applicable in this case.

Consider the following C code:

typedef struct{

 double var[4];

} ElemStruct;

const int* indices = Indices;

const ElemStruct *in = (const ElemStruct*) InputBuffer;

double* restrict out = OutputBuffer;

for (int i = 0; i < width; i++){

for (int j = 0; j < 4; j++){

out[i*4+j] = in[indices[i]].var[j];

}

}

18-71

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were used in the vgatherdpd implementation:

ymm0:

__declspec (align(64)) const __int32 index_inc[8] = {0, 8, 16, 24, 0, 8, 16, 24};

ymm1:

__declspec (align(64)) const __int32 index_scale[8] = {32, 32, 32, 32, 32, 32, 32, 32};

K1 register value is 0xF0.

18.23 DATA ALIGNMENT
This section explains the benefit of aligning data when using the Intel AVX-512 instructions and proposes
some methods to improve performance when such alignment is not possible. Most examples in this
section are variations of the SAXPY kernel. SAXPY is the Scalar Alpha * X + Y algorithm.

The C code below is a C implementation of SAXPY.

for (int i = 0; i < n; i++)

{

c[i] = alpha * a[i] + b[i];

}

18.23.1 Align Data to 64 Bytes
Aligning data to vector length is recommended. For best results, when using Intel AVX-512 instructions,
align data to 64-bytes.

When doing a 64-byte Intel AVX-512 unaligned load/store, every load/store is a cache-line split, since
the cache-line is 64 bytes. This is double the cache line split rate of Intel AVX2 code that uses 32-byte
registers. A high cache-line split rate in memory-intensive code can cause poor performance.

Example 18-28. Gather to Shuffle in Adjacent Loads Example

Alternative 1: vgatherdpd Implementation Alternative 2: Load and Masked broadcast

loop:
vpbroadcastd ymm3, [r9+rsi*4]
mov r15d, esi
vpbroadcastd xmm2, [r9+rsi*4+0x4]
add rsi, 0x2
vpbroadcastd ymm3{k1}, xmm2
vpmulld ymm4, ymm3, ymm1
vpaddd ymm5, ymm4, ymm0
vpcmpeqb k2, xmm0, xmm0
shl r15d, 0x2
movsxd r15, r15d
vpxord zmm6, zmm6, zmm6
vgatherdpd zmm6{k2}, [r10+ymm5*1]
vmovups [r11+r15*8], zmm6
cmp rsi, rdi
jl loop

loop:
movsxd r11, [r10+rcx*4]
shl r11, 0x5
vmovupd ymm0, [r9+r11*1]
movsxd r11, [r10+rcx*4+0x4]
shl r11, 0x5
vbroadcastf64x4 zmm0{k1}, [r9+r11*1]
mov r11d, ecx
shl r11d, 0x2
add rcx, 0x2
movsxd r11, r11d
vmovups [r8+r11*8], zmm0
cmp rcx, rsi
jl loop

Baseline 1x Speedup: 2.2x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-72

The following table shows how the performance of the memory intensive SAXPY code is affected by
misaligning input and output buffers. The data in the table is based on the following code.

The following table summarizes the data alignment effects on SAXPY performance with speedup values
for the various options.

Example 18-29. Data Alignment
__asm {

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss zmm0, alpha

mainloop:
vmovups zmm1, [rax]
vfmadd213ps zmm1, zmm0, [rbx]
vmovups [rcx], zmm1

vmovups zmm1, [rax+0x40]
vfmadd213ps zmm1, zmm0, [rbx+0x40]
vmovups [rcx+0x40], zmm1

vmovups zmm1, [rax+0x80]
vfmadd213ps zmm1, zmm0, [rbx+0x80]
vmovups [rcx+0x80], zmm1

vmovups zmm1, [rax+0xC0]
vfmadd213ps zmm1, zmm0, [rbx+0xC0]
vmovups [rcx+0xC0], zmm1

add rax, 256
add rbx, 256
add rcx, 256
add rdi, 64
cmp rdi, rdx
jl mainloop

}

Table 18-8. Data Alignment Effects on SAXPY Performance vs. Speedup Value

Data Alignment Effects on SAXPY Performance Speedup

Alternative 1: Both sources and the destination are 64-byte aligned. Baseline, 1.0

Alternative 2: Both sources are 64-byte aligned, destination has a 4 byte offset from the alignment. 0.66x

Alternative 3: Both sources and the destinations have 4 bytes offset from the alignment. 0.59x

Alternative 4: One source has a 4 byte offset from the alignment, the other source and the destination
are 64-byte aligned.

0.77x

18-73

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.24 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT
Consider the following structure:

float3_SOA {

 __declspec(align(64)) float x[16];

 __declspec(align(64)) float y[16];

 };

The memory allocated for the structure is aligned to 64 bytes if you use this structure as follows:

float3_SOA f;

However, if you use dynamic memory allocation as follows, the declspec directive is ignored and the 64-
byte memory alignment is not guaranteed:

float3_SOA* stPtr = new float3_SOA();

In this case, you should use dynamic aligned memory allocation and/or redefine operator new.

Recommendation: Align data to 64 bytes, when possible, using the following guidelines.
• Use dynamic data alignment using the _mm_malloc intrinsic instruction with the Intel® Compiler, or

_aligned_malloc of the Microsoft* Compiler. For example:
//dynamically allocating 64byte aligned buffer with 2048 float elements.

InputBuffer = (float*) _mm_malloc (2048*sizeof(float), 64);

• Use static data alignment using __declspec(align(64)). For example:
//Statically allocating 64byte aligned buffer with 2048 float elements.

__declspec(align(64)) float InputBuffer[2048];

18.25 DIVISION AND SQUARE ROOT OPERATIONS
It is possible to speed up single-precision divide and square root calculations using the
VRSQRT14PS/VRSQRT14PD and VRCP14PS/VRCP14PD instructions. These instructions yield an approxi-
mation (with 14 bits accuracy) of the Reciprocal Square Roots / Reciprocal Divide of their input.

The Intel AVX-512 implementation of these instructions is pipelined and has:
• For 256-bit vectors: latency of 4 cycles with a throughput of one instruction every cycle.
• For 512-bit vectors: latency of 6 cycles with a throughput of one instruction every 2 cycles.

Skylake microarchitecture introduces the packed-double (PD) variants of reciprocal square-root and
reciprocal divide: VRSQRT14PD and VRCP14PD (respectively).

The VRSQRT14PS/VRSQRT14PD and VRCP14PS/VRCP14PD instructions can be used with a single
Newton-Raphson iteration or other polynomial approximation to achieve almost the same precision as
the VDIVPS and VSQRTPS instructions (see the Intel® 64 and IA-32 Architectures Software Developer's
Manuals for more information on these instructions), and may yield a much higher throughput.

If the full precision (IEEE) must be maintained, a low latency and high throughput can be achieved due
to the significant performance improvement of the Skylake microarchitecture to DIVPS and SQRTPS,
comparing to their performance on previous microarchitectures. This is illustrated in Figure 18-11.

NOTE
In some cases, when the divide or square root operations are part of a larger algorithm
that hides some of the latency of these operations, the approximation with Newton-
Raphson can slow down execution, because more micro-ops, coming from the additional
instructions, fill the pipe.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-74

The following sections show the operations with recommended calculation methods depending on the
desired accuracy level.

NOTE
There are two definitions for approximation error of a value and it's approximation
approx:
Absolute error = | - approx|
Relative error = | - approx| / ||

In this chapter, the “number of bits” error is relative, and not the error of absolute values.
The value to which we compare our approximation should be as accurate as possible,
better double accuracy.

18.25.1 Divide and Square Root Approximation Methods

Table 18-9. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Single Precision)

Operation Accuracy Recommended Method

Divide

24 bits (IEEE) DIVPS

23 bits RCP14PS + MULPS + 1 Newton-Raphson iteration

14 bits RCP14PS + MULPS

Reciprocal Square Root

22 bits SQRTPS + DIVPS

23 bits RSQRT14PS + 1 Newton-Raphson iteration

14 bits RSQRT14PS

Square Root

24 bits (IEEE) SQRTPS

23 bits RSQRT14PS + MULPS + 1 Newton-Raphson iteration

14 bits RSQRT14PS + MULPS

Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Double Precision)

Operation Accuracy Recommended Method

Divide

53 bits (IEEE) DIVPD

52 bits RCP14PD + MULPD + 2 Newton-Raphson iterations

26 bits RCP14PD + MULPD + 1 Newton-Raphson iterations

14 bits RCP14PD + MULPD

18-75

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.25.2 Divide and Square Root Performance
Performance of vector divide and square root operations on Broadwell and Skylake microarchitectures is
shown below.

18.25.3 Approximation Latencies
This section shows the latency and throughput for the approximation methods, and DIV and SQRT
instructions. The tables below show that in most cases the throughput gain of the approximation
methods is (at least) double that of their IEEE counterparts, in simple loops that compute division or
square root.

The throughput benefits of approximation sequences are diminished when the loop iterations contain a
lot of other computation (besides divide or square root).

As a rule of thumb, approximations of near-IEEE accuracy are recommended when the loop iteration
contains no more than 8-10 additional single precision operations, or no more than 12-15 additional
double precision operations. The tables below show that these accurate approximations are beneficial for

Reciprocal Square Root

53 bits (IEEE) SQRTPD + DIVPD

52 bits RSQRT14PD+2 N-R + error correction or SQRTPD + DIVPD

50 bits RSQRT14PD + Polynomial approximation

26 bits RSQRT14PD+1 N-R

14 bits RSQRT14PD

Square Root

51 bits (IEEE) SQRTPD

52 bits RSQRT14PD + MULPD + Polynomial approximation

26 bits RSQRT14PD + MULPD + 1 N-R

14 bits RSQRT14PD + MULPD

Table 18-11. 256-bit Intel AVX2 Divide and Square Root Instruction Performance

Broadwell Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 21 23 35

Throughput 10 14 16 28

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 11 12 14 18

Throughput 5 6 8 12

Table 18-12. 512-bit Intel AVX-512 Divide and Square Root Instruction Performance

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 19 23 31

Throughput 10 12 16 24

Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Double Precision)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-76

throughput optimizations only. The less accurate approximations can help with latency, as well as
throughput.

It should also be mentioned that Newton-Raphson approximations do not handle the following special
cases correctly: denormal inputs, zeroes, or Infinities. Some sequences also lose accuracy for near-
denormal inputs, due to underflow in intermediate steps. While zero and Infinity inputs are relatively
easy to fix with a few additional operations (as done in some of the sequences below), denormal divisors
cannot be addressed without significant performance impact. The approximation sequences work best
for “middle-of-the-range” inputs that are not close to overflow or underflow thresholds.

The table below shows the latency and throughput of single precision Intel AVX-512 divide and square
root instructions, compared to the approximation methods on Skylake microarchitecture.

Table 18-13. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Single Precision

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Divide (a/b)

DIVPS 24 bits
(IEEE)

5 11 10 17

RCP14PS + MULPS + 1
Newton-Raphson Iteration

23 bits 2 16 3 20

RCP14PS + MULPS 14 bits 1 8 2 10-12

Square root

SQRTPS 24 bits
(IEEE)

6 12 12 19

RSQRT14PS + MULPS + 1
Newton-Raphson Iteration

23 bits 3 16 5 20

RSQRT14PS + MULPS 14 bits 2 9 3 12

Reciprocal
square root

SQRTPS + DIVPS 22 bits 11 23 22 36

RSQRT14PS + 1 Newton-
Raphson Iteration

23 bits 3.67 20 4.89 25

RSQRT14PS 14 bits 1 4 2 6

18-77

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Table 18-14. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Double Precision

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Divide (a/b)

DIVPD 53 bits
(IEEE)

8 14 16 23

RCP14PD + MULPD + 2
Newton-Raphson Iterations

22 bits 3.2 27 4.7 28.4

RCP14PD + MULPD + 1
Newton-Raphson Iteration

26 bits 2 16 3 20

RCP14PD + MULPD 14 bits 1 8 2 10-12

Square root

SQRTPD 53 bits
(IEEE)

12 18 24 31

RSQRT14PD + MULPD +
Polynomial Approximation

22 bits 4.82 24.541 6.4 28.481

RSQRT14PD + MULPD +
1 N-R

26 bits 3.76 17 5 20

RSQRT14PD + MULPD 14 bits 2 9 3 12

Reciprocal
square root

SQRTPD + DIVPD 51 bits 20 32 40 53

RSQRT14PD + 2-NR + error
correction

52 bits 5 29.38 6.53 34

RSQRT14PD+2 N-R 50 bits 3.79 25.73 5.51 30

RSQRT14PD+1 N-R 26 bits 2.7 18 4.5 21.67

RSQRT14PD 14 bits 1 4 2 6

NOTES:
1. These numbers are not rounded because their code sequence contains several FMA (Fused-multiply-add) instructions,

which have a varying latency of 4/6. Therefore the latency for these sequences is not necessarily fixed.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-78

18.25.4 Code Snippets

Example 18-30. Vectorized 32-bit Float Division

Single Precision, Divide, 24 Bits (IEEE)

float a = 10;
float b = 5;

__asm {
vbroadcastss zmm0, a // fill zmm0 with 16 elements of a
vbroadcastss zmm1, b // fill zmm1 with 16 elements of b
vdivps zmm2, zmm0, zmm1 // zmm2 = 16 elements of a/b

}

Single Precision, Divide, 23 Bits Single Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm3, zmm0, zmm2
vmovaps zmm4, zmm0
vfnmadd231ps zmm4, zmm3, zmm1
vfmadd231ps zmm3, zmm4, zmm2

}

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm2, zmm0, zmm2

}

18-79

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-31. Reciprocal Square Root

Single Precision, Reciprocal Square Root, 22 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float one = 1.0;

__asm {
vbroadcastss zmm1, one // zmm1 = vector of 16 1’s
vsqrtps zmm2, zmm0
vdivps zmm2, zmm1, zmm2

}

Single Precision, Reciprocal Square Root, 23 Bits Single Precision, Reciprocal Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float half = 0.5;

__asm {
vbroadcastss zmm1, half // zmm1 = vector of 16 0.5’s
vrsqrt14ps zmm2, zmm0
vmulps zmm3, zmm0, zmm2
vmulps zmm4, zmm1, zmm2
vfnmadd231ps zmm1, zmm3, zmm4
vfmsub231ps zmm3, zmm0, zmm2
vfnmadd231ps zmm1, zmm4, zmm3
vfmadd231ps zmm2, zmm2, zmm1

}

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14ps zmm2, zmm0

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-80

Example 18-32. Square Root

Single Precision, Square Root, 24 Bits (IEEE)

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtps zmm2, zmm0

}

Single Precision, Square Root, 23 Bits Single Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

float half = 0.5;

__asm {
vbroadcastss zmm3, half
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
vmulps zmm2, zmm0, zmm1, {rn-sae}
vmulps zmm1, zmm1, zmm3
knotw k3, k2
vfnmadd231ps zmm0{k3}, zmm2, zmm2
vfmadd213ps zmm0{k3}, zmm1, zmm2

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

__asm {
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
knotw k3, k2
vmulps zmm0{k3}, zmm0, zmm1

}

18-81

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-33. Dividing Packed Doubles

Double Precision, Divide, 53 Bits (IEEE) Double Precision, Divide, 52 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vdivpd zmm2, zmm0, zmm1

}

/* Input:
zmm15 = vector of a’s
zmm0 = vector of b’s

Output:
zmm0 = vector of a/b

*/

double One = 1.0;

__asm {
vrcp14pd zmm1, zmm0
vmovapd zmm4, zmm0
vbroadcastsd zmm2, one
vfnmadd213pd zmm0, zmm1, zmm2, {rn-sae}
vfpclasspd k2, zmm1, 0x1e
vfmadd213pd zmm0, zmm1, zmm1, {rn-sae}}
knotw k3, k2
vfnmadd213pd zmm4, zmm0, zmm2, {rn-sae}
vblendmpd zmm0 {k2}, zmm0, zmm1
vfmadd213pd zmm0 {k3}, zmm4, zmm0, {rn-sae}
vmulpd zmm0, zmm0, zmm15

}

Double Precision, Divide, 26 Bits Double Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

*/

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm3, zmm0, zmm2
vmovapd zmm4, zmm0
vfnmadd231pd zmm4, zmm3, zmm1
vfmadd231pd zmm3, zmm4, zmm2

}

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm2, zmm0, zmm2

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-82

Example 18-34. Reciprocal Square Root of Doubles

Double Precision, Reciprocal Square Root, 51 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
__asm {

vsqrtpd zmm0, zmm0
vdivpd zmm0, zmm1, zmm0

}

Double Precision, Reciprocal Square Root, 52 Bits Double Precision, Reciprocal Square Root, 50 Bits

/* Input:
zmm4 = vector of a’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vbroadcastsd zmm4, big_num
vmovapd zmm0, one
vmovapd zmm5, dc1
vmovapd zmm6, dc2
vmovapd zmm7, dc3

vrsqrt14pd zmm3, zmm4
vfpclasspd k1, zmm4, 0x5e
vmulpd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd231pd zmm0, zmm3, zmm1
vfmsub231pd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd213pd zmm1, zmm3, zmm0
vmovups zmm0, zmm7
vmulpd zmm2, zmm3, zmm1
vfmadd213pd zmm0, zmm1, zmm6
vfmadd213pd zmm0, zmm1, zmm5
vfmadd213pd zmm0, zmm2, zmm3
vorpd zmm0{k1}, zmm3, zmm3

}

/* Input:
zmm3 = vector of a’s

Output:
zmm4 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vmovapd zmm5, one
vmovapd zmm6, dc1
vmovapd zmm8, dc3
vmovapd zmm7, dc2

vrsqrt14pd zmm2, zmm3
vfpclasspd k1, zmm3, 0x5e
vmulpd zmm0, zmm2, zmm3, {rn-sae}
vfnmadd231pd zmm0, zmm2, zmm5
vmulpd zmm1, zmm2, zmm0
vmovapd zmm4, zmm8
vfmadd213pd zmm4, zmm0, zmm7
vfmadd213pd zmm4, zmm0, zmm6
vfmadd213pd zmm4, zmm1, zmm2
vorpd zmm4{k1}, zmm2, zmm2

}

18-83

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Double Precision, Reciprocal Square Root, 26 Bits Double Precision, Reciprocal Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm1 = vector of 1/sqrt (a)

*/

double half = 0.5;

__asm {
vrsqrt14pd zmm1, zmm0
vmulpd zmm0, zmm0, zmm1
vbroadcastsd zmm3, half
vmulpd zmm2, zmm1, zmm3
vfnmadd213pd zmm2, zmm0, zmm3
vfmadd213pd zmm1, zmm2, zmm1

}

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14pd zmm2, zmm0

}

Example 18-35. Square Root of Packed Doubles

Double Precision, Square Root, 53 Bits (IEEE) Double Precision, Square Root, 52 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtpd zmm2, zmm0

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

double half = 0.5;

__asm {
vbroadcastsd zmm4, half
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
vmulpd zmm2, zmm0, zmm1, {rn-sae}
vmulpd zmm1, zmm1, zmm4
knotw k3, k2
vmovapd zmm3, zmm4
vfnmadd231pd zmm3, zmm1, zmm2, {rn-sae}
vfmadd213pd zmm2, zmm3, zmm2, {rn-sae}
vfmadd213pd zmm1, zmm3, zmm1, {rn-sae}
vfnmadd231pd zmm0 {k3}, zmm2, zmm2, {rn-sae}
vfmadd213pd zmm0 {k3}, zmm1, zmm2

}

Example 18-34. Reciprocal Square Root of Doubles (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-84

18.26 CLDEMOTE
Using the CLDEMOTE instruction, a processor puts a cache line into the last shared level of the cache
hierarchy so that other CPU cores 'find' the same cache line in the last shared level and expensive cross-
core snoop is avoided. The most significant advantage of CLDEMOTE is that multiple consumers can
access the shared cache line amortizing each snoop request portion.

18.26.1 Producer-Consumer Communication in Software
In a multiprocessor environment, data sharing between the producers and consumers is an undisputed
event. A cache hierarchy solves the major problem of accessing the line from the main memory resulting
in faster data transfers. Typical cache hierarchy contains:
• Private L1 data and L1 instruction cache.
• A shared L2 cache for sibling hardware thread.
• A common L3 cache for all the CPU cores.

When a producer consumes data from the I/O or produces it, it is brought into the producer's L1 cache.
Consumers read the data by initiating read requests, translating it into cross-core snoops, request, and
response events. Consumers report L3 cache miss events and producer cores responding to the
consumer core's snoop request. Multiplexing these cross-cores requests and responses when dealing
with multiple consumers is detrimental.

Double Precision, Square Root, 26 Bits Double Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x

// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))

ALIGNTO(64) __int64 OneHalf[] =
{DUP8_DECL(0X3FE0000000000000)};

__asm {
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1
vmulpd zmm1, zmm1, ZMMWORD PTR [OneHalf]
vfnmadd213pd zmm1, zmm0, ZMMWORD PTR [OneHalf]
vfmadd213pd zmm0 {k3}, zmm1, zmm0

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

__asm {
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1

}

Example 18-35. Square Root of Packed Doubles (Contd.)

18-85

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.27 TIPS ON COMPILER USAGE
This section explains some of the important compiler options that can be used with the Intel compiler to
derive the best performance on a Skylake server. For complete information on the compiler options and
tuning tips, see the main product documentation at: https://software.intel.com/en-us/intel-software-
technical-documentation. For example, the Intel® C++ Compiler 17.0 Developer Guide and Reference
can be found here: https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-
guide.

Many options have names that are the same on Linux* and Windows*, except that the Windows* form
starts with an initial Q. Within text, such option names are shown as [Q]option-name.

The default optimization level is O2 (unless -g is specified, in which case the default is O0). Level O2
enables many compiler optimizations including vectorization. Optimization level O3 is recommended for
loop-intensive and HPC applications, as it enables more aggressive loop and memory-access optimiza-
tions, such as loop fusion and loop blocking to allow more efficient use of the caches.

For best performance on Skylake server microarchitecture, applications should be compiled with the
processor-specific option [Q]xCORE-AVX512. Note that an executable compiled with these options will
not run on non-Intel processors or on Intel processors that support only lower instruction sets.

For users who want to generate a common binary that can be executed on Skylake server microarchitec-
ture and the Intel® Xeon Phi™ processors based on Knights Landing microarchitecture, use the option
[Q]xCOMMON-AVX512. Note that this option has a performance cost on both Skylake server microarchi-
tecture and Intel® Xeon Phi™ processors compared with executables generated with the target-specific
options [Q]xCORE-AVX512 on Skylake server, and [Q]xMIC-AVX512 on Intel® Xeon Phi™ processors.

In addition, users can tune the zmm code generation done by the compiler for Skylake server microar-
chitecture using the additional option -qopt-zmm-usage=low|high (/Qopt-zmm-usage:low|high on
Windows). The argument value of low provides a smooth transition experience from AVX2 ISA to AVX512
ISA on a Skylake server microarchitecture target, such as for enterprise applications. Tuning for ZMM
instruction use via explicit vector syntax such as #pragma omp simd simdlen() is recommended. The
argument value of high is recommended for applications, such as HPC codes, that are bounded by vector
computation to achieve more compute per instruction through use of the wider vector operations. The
default value is low for Skylake server microarchitecture-family compilation targets, such as [Q]xCORE-
AVX512 and high for CORE/MIC AVX512 combined compilation targets such as [Q]xCOMMON-AVX512.

It is also possible to generate a fat binary that supports multiple instruction sets by using the [Q]axtarget
option. For example, if the application is compiled with [Q]axCORE-AVX512,CORE-AVX2 the compiler
might generate specialized code for the Skylake server microarchitecture and AVX2 targets, while also
generating a default code path that will run on any Intel or compatible, non-Intel processor that supports
at least Intel® Streaming SIMD Extensions 2 (Intel® SSE2). At runtime, the application automatically
detects whether it is running on an Intel processor. If so, it selects the most appropriate code path for
Intel processors; if not, the default code path is selected. It is also important to note that irrespective of
the options used, the compiler might insert calls into specialized library routines, such as optimized
versions of memset/memcpy, that will dispatch to the appropriate codepath at runtime based on
processor detection.

The option -qopt-report[n] (/Qopt-report[:n] on Windows) generates a report on the optimizations
performed by the compiler, by default it is written to a file with a .optrpt file extension. n specifies the
level of detail, from 0 (no report) to 5 (maximum detail). The option -qopt-report-phase (/Qopt-report-
phase on Windows) controls report generation from various compiler phases, but it is recommended to
use the default setting where the report is generated for all compiler phases. The report is a useful tool
to gain insight into the performance optimizations performed, or not performed, by the compiler, and
also to understand the interactions between multiple optimizations such as inlining, OpenMP* paralleliza-
tion, loop optimizations (such as loop distribution or loop unrolling) and vectorization. The report is based
on static compiler analysis. Hence the reports are most useful when correlated with dynamic perfor-
mance analysis tools, such as Intel® VTune™ Amplifier or Vectorization Advisor (part of Intel® Advisor
XE), that do hotspot analysis and provide other dynamic information. Once this information is available,
the optimization information can be studied for hotspots (functions/loopnests) in compiler reports. It is
important to note that the compiler can generate multiple versions of loop-nests, so it is useful to
correlate the analysis with the version actually executed at runtime. The phase ordering of the compiler
loop optimizations is intended to enable optimal vectorization. Often, understanding the loop optimiza-

https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-86

tion parameters helps to further tune performance. In many cases, finer control of these loop optimiza-
tions is available via pragmas, directives, and options.

If the application contains OpenMP pragmas or directives, it can be compiled with -qopenmp (/Qopenmp
on Windows) to enable full OpenMP based multi-threading and vectorization. Alternatively, the SIMD
vectorization features of OpenMP alone can be enabled by using the option -qopenmp-simd (/Qopenmp-
simd on Windows).

For doing studies where compiler-based vectorization has to be turned off completely, use the options

-no-vec -no-simd -qno-openmp-simd (/Qvec- /Qsimd- /Qopenmp-simd- on Windows).

Data alignment plays an important role in improving the efficiency of vectorization. This usually involves
two distinct steps from the user or application:
• Align the data.

When compiling a Fortran program, it is possible to use the option -align array64byte
(/align:array64byte on Windows) to align the start of most arrays at a memory address that is
divisible by 64. For C/C++ programs, data allocation can be done using routines such as
_mm_malloc(…, 64) to align the return-value pointer at 64 bytes. For more information on data
alignment, see https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization.

• Convey the alignment information to the compiler using appropriate clauses, pragmas, and
directives.

Compiler-based software data prefetching can be enabled with the options -O3 -xcore-avx512 -qopt-
prefetch[=n] (-O3 /QxCORE-AVX512 /Qopt-prefetch[=n] on Windows), for n=0 (no prefetching) to 5
(maximal prefetching). Using a value of n=5 enables aggressive compiler prefetching, disregarding any
hardware prefetching, for strided loads/stores and indexed loads/stores which appear inside loops. Using
a value of n=2 reduces the amount of compiler prefetching and restricts it only to direct memory
accesses where the compiler heuristics determine that the hardware prefetcher may not be able to
handle well. It is recommended to try values of n=2 to 5 to determine the best prefetching strategy for a
particular application. It is also possible to use the -qopt-prefetch-distance=n1[,n2] (/Qopt-prefetch-
distance=n1[,n2] on Windows) option to fine-tune application performance.
• Useful values to try for n1: 0,4,8,16,32,64.
• Useful values to try for n2: 0,1,2,4,8.

Loop-nests that have a relatively low trip-count value at runtime in hotspots can sometimes lead to sub-
optimal AVX-512 performance unless the trip-count is conveyed to the compiler. In many such cases, the
compiler will be able to generate better code and deliver better performance if values of loop trip-counts,
loop-strides, and array extents (such as for Fortran multi-dimensional arrays) are all known to the
compiler. If that is not possible, it may be useful to add appropriate loop_count pragmas to such loops.

Interprocedural optimization (IPO) is enabled using the option -ipo (/Qipo on Windows). This option can
be enabled on all the source-files of the application or it can be applied selectively to the source files
containing the application hot-spots. IPO permits inlining and other inter-procedural optimizations to
happen across these multiple source files. In some cases, this option can significantly increase compile
time and code size. Using the option -inline-factor=n (/Qinline-factor:n on Windows) controls the
amount of inlining done by the compiler. The default value of n is 100, indicating 100%, or a scale factor
of 1. For example, if a value of 200 is specified, all inlining options that define upper limits are multiplied
by a factor of 2, thus enabling more inlining than the default.

Profile-guided optimizations (PGO) are enabled using the options -prof-gen and -prof-use (/Qprof-gen
and /Qprof-use on Windows). Typically, using PGO increases the effectiveness of using IPO.

The option -fp-model name (/fp:name on Windows) controls tradeoffs between performance, accuracy
and reproducibility of floating-point results at a high level. The default value for name is fast=1.
Changing it to fast=2 enables more aggressive optimizations at a slight cost in accuracy or reproduc-
ibility. Using the value precise for name disallows optimizations that might produce slight variations in
floating-point results. When name is double, extended or source, intermediate results are computed in
the corresponding precision. In most situations where enhanced floating-point consistency and repro-
ducibility are needed -fp-model precise -fp-model source (/fp:precise /fp:source on Windows) are
recommended.

18-87

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The option -fimf-precision=name (/Qimf-precision=name on Windows) is used to set the accuracy for
math library functions. The default is OFF, which means that the compiler uses its own default heuristics.
Possible values of name are high, medium, and low. Reduced precision might lead to increased perfor-
mance and vice versa, particularly for vectorized code. The options -[no-]prec-div and -[no-]prec-sqrt
improve[reduce] precision of floating-point divides and square root computations. This may slightly
degrade [improve] performance. For more details on floating-point options, see https://soft-
ware.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler.

The option -[no-]ansi-alias (/Qansi-alias[-] on Windows) enables [disables] ANSI and ISO C Standard
aliasing rules. By default, this option is enabled on Linux, but disabled on Windows. On Windows, espe-
cially for C++ programs, adding /Qansi-alias to the compilation options enable the compiler to perform
additional optimizations, particularly taking advantage of the type-based disambiguation rules of the
ANSI Standard, which says for example, that pointer and float variables do not overlap.

If the optimization report specifies that compiler optimizations may have been disabled to reduce
compile-time, use the option -qoverride-limits to override such disabling in the compiler and ensure opti-
mization is applied. This can sometimes be important for applications, especially ones with functions that
have big bodies. Note that using this additional option may increase compile time and compiler memory
usage significantly in some cases.

The list below shows a sampling of loop-level controls available for fine-tuning optimizations - including
a way to turn off a particular transformation reported by the compiler.
• #pragma simd reduction(+:sum)

The loop is transformed as is, no other loop-optimizations will change the simd-loop.
• #pragma loop_count min(220) avg (300) max (380)

Fortran syntax: !dir$ loop count(16)
• #pragma vector aligned nontemporal
• #pragma novector // to suppress vectorization
• #pragma unroll(4)
• #pragma unroll(0) // to suppress loop unrolling
• #pragma unroll_and_jam(2) // before an outer loop
• #pragma nofusion
• #pragma distribute_point

If placed as the first statement right after the for-loop, distribution will be suppressed for that loop.
Fortran syntax: !dir$ distribute point

• #pragma prefetch *:<hint>:<distance>
Apply uniform prefetch distance for all arrays in a loop.

• #pragma prefetch <var>:<hint>:<distance>
Fine-grained control for each array

• #pragma noprefetch [<var>]
Turns off prefetching [for a particular array]

• #pragma forceinline (recursive)

https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-88

If placed before a call, this is a hint to the compiler to recursively inline the entire call-chain.

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 1313

9. Updates to Chapter 20
Change bars and violet text show changes to Chapter 20 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Intel® Advanced Matrix Extensions (Intel® AMX).

--
Changes to this chapter:
• Branding corrected throughout chapter.
• Links and cross-references corrected throughout chapter.
• Updated typos throughout chapter.
• Heading Title Case Corrected throughout chapter.
• Consolidated links throughout chapter.
• Added and changed figure, table and example descriptions:

— Table 20-6
— Figure 20-10
— Figure 20-11
— Example 20-17
— Example 20-18
— Example 20-19
— Example 20-21
— Example 20-23
— Example 20-24
— Example 20-28
— Example 20-29

• Section 20.1

— Updated last paragraph with new links and phrasing.
— Updated location of CPUID instruction references.

• Section 20.5.5.3:

— Example 20-8: added space between int and m in line 2.
— Example 20-10:

• Split between two pages
• Changed

•17 _amx_interleaved_gemm_ass:
•18 amx_interleaved_gemm_ass:
•to
•17
•18 __asm {

• Section 20.11

— Added text for clarity.
• Section 20.16.2

— Added section about optimizing the performance of Intel® Hyper-Threading technology (Intel® HT).

CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

This chapter aims to help low-level DL programmers optimally code to the metal on Intel® Xeon® Proces-
sors based on Sapphire Rapids SP microarchitecture. It extends the public documentation on Optimizing
DL code with DL Boost instructions in Section 20.8.

It explains how to detect processor support in Intel® Advanced Matrix Extensions (Intel® AMX) Architec-
ture (Section 20.1). It provides an overview of Intel AMX architecture (Section 20.2) and presents Intel
AMX instruction throughput and latency (Section 20.3). It also discusses software optimization opportu-
nities for Intel AMX (Section 20.5 through Section 20.17), TileConfig/TileRelease and compiler ABI
(Section 20.18), Intel AMX state management and system software aspects (Section 20.19), and the use
of Intel AMX for higher precision GEMMs (Section 20.20).

Table 20-1. Intel® AMX-Related Links

Description URL

Intel® AMX architecture definitions in the Intel®
64 and IA-32 Architecture Software
Developer’s Manual

https://www.intel.com/sdm

Buildable and executable templates of code
examples for this chapter.

https://github.com/intel/optimization-manual

Open VINO™ Optimization Guide
https://docs.openvino.ai/latest/openvino_docs_optimiza-
tion_guide_dldt_optimization_guide.html

oneDNN GitHub https://github.com/oneapi-src/oneDNN

oneDNN documentation https://oneapi-src.github.io/oneDNN/

Intel® Optimization TensorFlow Installation
Guide

https://www.intel.com/content/www/us/en/developer/arti-
cles/guide/optimization-for-tensorflow-installation-guide.html

PyTorch Landing Page https://pytorch.org/

PyTorch GitHub https://github.com/pytorch/pytorch

Intel® Neural Compressor (INC) GitHub https://github.com/intel/neural-compressor

Tips for measuring the performance of matrix
multiplication using Intel® MKL

https://www.intel.com/content/www/us/en/developer/articles/tech-
nical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-
function.html

Intel® AMX ABI https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/home

GitHub Repository https://github.com/intel/optimization-manual

Using dynamically enabled XSTATE features in
Linux user space applications

https://www.kernel.org/doc/html/latest/x86/xstate.html

https://www.intel.com/sdm
https://www.intel.com/sdm
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://github.com/intel/optimization-manual
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://oneapi-src.github.io/oneDNN/
https://oneapi-src.github.io/oneDNN/
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://pytorch.org/
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/intel/neural-compressor
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/home
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://github.com/intel/optimization-manual
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://www.kernel.org/doc/html/latest/x86/xstate.html

20-2

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.1 DETECTING INTEL® AMX SUPPORT
Use the CPUID instruction described in Chapter 3.3 of the Intel® 64 and IA-32 Architecture Software
Developer’s Manual to find out whether the processor you are executing on supports Intel AMX at the
hardware level.

Specifically, when issuing the CPUID instruction with EAX register set to 7 and ECX register set to 0, the
instruction returns in the EDX register an indication on Intel AMX support of bits 22, 24, 25. They are all
set to 0 if Intel AMX is not supported and all set to 1 if it is supported by the processor.

Next step is check whether the OS has enabled Intel AMX state. For that you first need to issue the CPUID
instruction again to check whether the OS supports the XGETBV instruction, then use it to check whether
the OS has enabled the Intel AMX state save/restore.

When issuing the CPUID instruction with EAX register set to 1, the instruction returns an indication of
XGETBV support in bit 26 of the ECX register. If bit 26 is set, when issuing the XGETBV instruction with
ECX register set to 0, the instruction returns an indication on OS support in saving and restoring Intel
AMX state in bits 17 and 18 of the EAX register. Both bits should be set in order to use the Intel AMX
instructions. For additional CPUID information about Intel AMX, see Chapter 3.3 of the Intel® 64 and IA-
32 Architecture Software Developer’s Manual

Operating systems may require calling an OS API to allocate Intel AMX state. Visit LinuxAPI and Windows
APIs for more detailed information. Please see Section 20.19 for more information about Intel AMX state
management.

20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW
General Intel AMX microarchitecture overview is available in Chapter 18 of Volume 1 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

20.2.1 INTEL® AMX FREQUENCIES
Discussion on the connection between max frequency, frequency license, and Instruction Set Architec-
ture covering Intel AVX technologies up to Intel® AVX-512 Instruction Set, is available in Section 2.5.3.
Intel AMX adds yet another license level whose max frequency is usually lower than that of the Intel AVX-
512 license.
When the Intel AMX unit utilization is lower than 15%, the processor may exceed the nominal max
frequency associated with Intel AMX license.

Using dynamically enabled XSTATE features in
Windows user space applications

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getenabledxstatefeatures

https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-
winbase-enableprocessoptionalxstatefeatures

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getthreadenabledxstatefeaturesv

https://docs.microsoft.com/en-us/windows/win32/api/process-
threadsapi/nf-processthreadsapi-updateprocthreadattribute

Table 20-1. Intel® AMX-Related Links

Description URL

https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://www.intel.com/sdm
https://www.intel.com/sdm
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getthreadenabledxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.intel.com/sdm

20-3

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY
Several Intel AMX instructions are available. Two instructions (TileLoad*) load data from the memory
hierarchy into the tile registers and one instruction (TileStore) stores the contents of a tile register into
the DCU (Data Cache Unit–first level cache). Other instructions (TDP*) execute the matrix multiplication,
operating on two input tile registers and writing the result into a third tile register. Additionally, there are
some less-frequently used instructions. The following table provides the instruction throughput and
latency counted in cycles.

NOTE
Due to the high latency of the LDTILECFG instruction we recommend issuing a single pair
of LDTILECFG and TILERELEASE operations per Intel AMX-based DL layer implemen-
tation.

20.4 DATA STRUCTURE ALIGNMENT
GEMM and Convolution input/output data structures must be 64-byte aligned for optimal performance
but should not be aligned to 128-byte, 256-byte, etc. For more details, see Tip 6 in Tips for Measuring the
Performance of Matrix Multiplication Using Intel® MKL.

Table 20-2. Intel® AMX Instruction Throughput and Latency

Instruction Throughput Latency

LDTILECFG 204

STTILECFG 19

TILETRELEASE 13

TDP/* 16 52

TILELOADD 8 45

TILELOADDT1 33 48

TILESTORED 16

TILEZERO 0 16

https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html

20-4

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5 GEMMS / CONVOLUTIONS

20.5.1 NOTATION
The following notation is used for the matrices (A, B, C) and the dimensions (M, K, N) in matrix multipli-
cation (GEMM).

Figure 20-1. Matrix Notation

20.5.2 TILES IN THE INTEL® AMX ARCHITECTURE
The Intel AMX instruction set operates on tiles: large two-dimensional registers with configurable dimen-
sions. The configuration is dependent on the type of tile.

• A-tiles can have between 1-16 rows and 1-MAX_TILE_K columns.
• B-tiles can have between 1-MAX_TILE_K rows and 1–16 columns.
• C-tiles can have between 1-16 rows and 1–16 columns.

MAX_TILE_K=64/sizeof(type_t), and type_t is the type of the data being operated on. Therefore,
MAX_TILE_K=64 for (u)int8 data, and MAX_TILE_K=32 for bfloat16 data. The dimensions here are
mathematical/logical. For mapping to tile register configuration parameters, see the Intel® Architecture
Instruction Set Extensions Programming Reference referenced in Section 20.2.

The type of data residing in the tiles also varies depending on the type of tile.

A tiles and B tiles contain data of type_t, which can be (u)int8 or bfloat16.

• C tiles contain data of type res_type_t:
• int32 if type_t=(u)int8
• float if type_t=bfloat16

Thus, a maximum-sized tile multiplication operation for (u)int8 data type looks this way:

20-5

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-2. Intel® AMX Multiplication with Max-sized int8 Tiles

TileLoad and TileStore Instructions

The tiles are loaded from memory with the TileLoad instruction and stored to memory with a TileStore
instruction. The TileLoad/TileStore instructions receive the following parameters:

• The destination/source tile of the TileLoad/TileStore.
• The source/destination location in memory for the TileLoad/TileStore.
• The stride (bytes) in memory between subsequent rows of the tile.

20-6

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Lines 6—10 in Example 20-1 illustrate how a tile is loaded from memory.

For the sake of readability, a tile template class abstraction is introduced. The number of rows in the tile
and the number of column bytes per row parametrizes the abstraction.

20.5.3 B MATRIX LAYOUT
Like the Intel® DL Boost use case, the B matrix must undergo a re-layout before it can be used within the
corresponding Intel AMX multiply instruction. The re-layout procedure is as follows:

Example 20-2. B Matrix Re-Layout Procedure

Example 20-1. Pseudo-Code for the Tilezero, TileLoad, and TileStore Instructions

template<size_t rows, size_t bytes_cols> class tile {
public:
 friend void tilezero(tile& t) {
 memset(t.v, 0, sizeof(v));
 }
 friend void tileload(tile& t, void* src, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 t.v[row][bcol] = static_cast<int8_t*>(src)[row*bytes_stride + bcol];
 }
friend void tilestore(tile& t, void* dst, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 static_cast<int8_t*>(dst)[row*bytes_stride + bcol] = t.v[row][bcol];
 }
template <class TC, class TA, class TB>
friend void tdp(TC &tC, TA &tA, TB &tB);
private:
 int8_t v[rows][bytes_cols];
};

// clang-format on

template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB)
}

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N]; // Original B matrix
type_t B_mem[K/KPACK][N][KPACK]; // Re-laid B matrix

for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[k/KPACK][n][k%KPACK] = B_mem_orig[k][n];

20-7

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The following figures illustrate the data re-layout process for a 64x16 int8 B matrix and a 32x16 bfloat16
B matrix (corresponding to the maximum-sized B-tile):

Figure 20-3. Re-layout of 64x16 int8 B Matrix

Figure 20-4. Re-layout of 32x16 bfloat16 B Matrix

20-8

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.4 STRAIGHTFORWARD GEMM IMPLEMENTATION
This is GEMM reference code. Its performance is sub-optimal. Please refer to Section 20.5.5.3 for optimal
GEMM code. Begin implementation by defining the following:

Example 20-3. Common Defines

Data type_t is the type being operated upon, i.e., signed/unsigned int8 or bfloat16. For the description of
KPACK, see Section 20.5.5. The tile template class and the three functions that operate on it are the
same as the ones introduced in Example 20-3. tilezero (t) resets the contents of tile t to 0, tileload(t, src,
stride) and loads tile t with the contents of data at src with a stride of stride between consecutive rows.
tilestore(t, dst, stride) stores the contents of tile t to dst with a stride of stride between consecutive rows.
Additionally, tdp(tC,tA,tB) performs a matrix multiplication equivalent of tC=tC+tA×tB. In reality, tiles
are defined by known compile-time integers, and the actual code operating on tiles looks slightly
different. Please visit the GitHub Repository for proper usage.

1 #define M ... // Number of rows in the A or C matrices
2 #define K ... // Number of columns in the A or rows in the B matrices
3 #define N ... // Number of columns in the B or C matrices
4 #define M_ACC ... // Number of C accumulators spanning the M dimension
5 #define N_ACC ... // Number of C accumulators spanning the N dimension
6 #define TILE_M ... // Number of rows in an A or C tile
7 #define TILE_K ... // Number of columns in an A tile or rows in a B tile
8 #define TILE_N ... // Number of columns in a B or C tile
9
10 typedef ... type_t; // The type of data being operated on
11 typedef ... res_type_t; // The data type of the result
12
13 #define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword
14
15 type_t A_mem[M][K]; // A matrix
16 type_t B_mem[K/KPACK][N][KPACK]; // B matrix
17 res_type_t C_mem[M][N]; // C matrix
18
19 template<size_t rows, size_t bytes_cols> class tile;
20 template<class T> void tilezero (T& t);
21 template<class T> void tileload (T& t, void* src, size_t stride);
22 template<class T> void tilestore(T& t, void* dst, size_t stride);
23 template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB) {
24 int32_t v;
25 for (size_t m = 0; m < TILE_M; m++) {
26 for (size_t k = 0; k < TILE_K / KPACK; k++) {
27 for (size_t n = 0; n < TILE_N; n++) {
28 memcpy(&v, &tC.v[m][n * 4], sizeof(v));
29 v += tA.v[m][k * 4] * tB.v[k][n * 4];
30 v += tA.v[m][k * 4 + 1] * tB.v[k][n * 4 + 1];
31 v += tA.v[m][k * 4 + 2] * tB.v[k][n * 4 + 2];
32 v += tA.v[m][k * 4 + 3] * tB.v[k][n * 4 + 3];
33 memcpy(&tC.v[m][n * 4], &v, sizeof(v));
34 }
35 }
36 }
37 }

https://github.com/intel/optimization-manual

20-9

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The following is a simple implementation of GEMM of the matrices stored in A_mem and B_mem.

Example 20-4. Reference GEMM Implementation

This implementation is the reference point in the following discussions.

20.5.5 OPTIMIZATIONS

20.5.5.1 Minimizing Tile Loads
Redundant tile loads may severely impact performance due to the large size of the data loaded into the
tiles, unnecessary cache evictions, etc. To minimize tile loads, it is essential to utilize the data as
completely as possible once it has been loaded into the tile.

for (int n = 0; n < N; n += N_ACC*TILE_N) {
 for (int m = 0; m < M; m += M_ACC*TILE_M) {
 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
 tilezero(tC[m_acc][n_acc]);

 for (int k = 0; k < K; k += TILE_K) {
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
 }
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
 }
 }
 }
}

20-10

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Location of the K Loop: Outside of the M_ACC and N_ACC Loops

The three loops in lines 8–18 of Example 20-4 could also have been written this way:

Example 20-5. K-Dimension Loop as Innermost Loop–A, a Highly Inefficient Approach

While both approaches yield correct results, there are K/TILE_K×N_ACC B tile loads in the reference
implementation. Additionally, K/TILE_K×N_ACC×M_ACC B tile loads in the implementation presented in
this section. The number of A tile loads is identical.

This approach is also characterized by excessive pressure on the memory along with an increased
number of tile loads.

Suppose the B_mem data resides in main memory. In the reference implementation, a new chunk of
TILE_K×TILE_N B data is read every M_ACC iteration of the inner loop. The inner loop then reuses the
read data. In the current implementation, when n_acc == m_acc == 0, a new chunk of TILE_K×TILE_N
B data is read every iteration of the inner loop. Then the same data is read (presumably from caches) on
subsequent iterations of n_acc, m_acc. This burst access pattern of reads from main memory results in
increased data latency and decreased performance.

Hence, keeping the K-dimension loop outside the M_ACC and N_ACC loops is recommended.

Pre-Loading Innermost Loop Tiles

Consider the following replacement code for the code in lines 8–18 of Example 20-4:

Example 20-6. Innermost Loop Tile Pre-Loading

The A-tile has been extended to an array of A-tiles (line 2) and pre-read the A tiles for the current K-loop
iteration (lines 3–4). A pre-read A-tile is used in the tile multiplication (line 9). There were

for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 for (int k = 0; k < K; k += TILE_K) {
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
}

1 for (int k = 0; k < K; k += TILE_K) {
2 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
3 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
4 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
5 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
6 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
7 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
9 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
10 }
11 }
12 }

20-11

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

K/TILE_K×N_ACC×M_ACC A-tile reads in the reference implementation, while there are only
K/TILE_K×M_ACC A-tile reads in the current implementation.

Hence, preallocation and pre-reading the tiles of the innermost loop (tA[M_ACC] in this case) is recom-
mended. The maximum number of tiles used at any given time in this scenario is
N_ACC×M_ACC+M_ACC+1 as opposed to N_ACC×M_ACC+2 in the reference implementation. Since this
optimization requires preallocation of an additional M_ACC-1 tiles, and since tiles are a scarce resource,
if N_ACC<M_ACC, it might prove beneficial to switch the order of the N_ACC and M_ACC loops. This way,
it is possible to allocate N_ACC-1<M_ACC-1 additional tiles:

Example 20-7. Switched Order of M_ACC and N_ACC Loops

2D Accumulator Array vs. 1D Accumulator Array

Consider Example 20-6 with the following scenarios:

• N_ACC=2,M_ACC=2

• N_ACC=4,M_ACC=1

As stated before, the number of A tile loads in lines 3–11 is M_ACC, and the number of B tile loads is
N_ACC. Thus, the total number of tile loads (M_ACC+N_ACC) is 4 in the first scenario vs. 5 in the second
one (an increase of 25%), even though both scenarios perform the same amount of work.

Hence, using 2D accumulator arrays is recommended. Selecting dimensions close to square is particu-
larly recommended (since x=y minimizes f(x,y)=x+y under the constraint x×y=const).

20.5.5.2 Software Pipelining of Tile Loads and Stores
It is a best practice to interleave instructions using different resources so they may be executed in
parallel, preventing a bottleneck involving a specific resource. Therefore, preventing sequential TileLoads
and TileStores (see lines 19–23 of Example 20-4 and lines 3–4 of Example 20-6) is recommended.
Instead, interleave them with the tdp instructions (see Example 20-8).

20.5.5.3 Optimized GEMM Implementation
Below is the original code from Example 20-4, augmented with the insights from Example 20-6, with tile
loads and stores interleaved with tdps:

for (int k = 0; k < K; k += TILE_K) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB[N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 tileload(tB[n_acc], B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tdp(tC[m_acc][n_acc], tA, tB[n_acc]);
 }
 }
}

20-12

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-8. Optimized GEMM Implementation

While placing the tile loads and stores under conditions inside the main loop (lines 13, 16, 20), conditions
can be eliminated by sufficiently unrolling the loops.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (int m = 0; m < M; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
13 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
14 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
15 if (n_acc == 0)
16 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
17 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
18 if (k == K - TILE_K) {
19 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
20 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
21 }
22 }
23 }
24 }
25 }
26}

20-13

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The rest of this section presents a specific example of GEMM, implemented in low-level Intel AMX instruc-
tions. This is to show a full performance potential from using Intel AMX extensions.

Example 20-9. Dimension of Matrices, Data Types, and Tile Sizes

The following code is a specific example of the algorithm outlined in Example 20-8.

Example 20-10. Optimized GEMM Assembly Language Implementation

#define M 32
#define K 128
#define N 32
#define M_ACC 2
#define N_ACC 2
#define TILE_M 16
#define TILE_K 64
#define TILE_N 64

typedef int8_t type_t
typedef int32_t res_type_t

/*1 of 2*/
1 typedef struct {
2 uint8_t palette_id;
3 uint8_t startRow;
4 uint8_t reserved[14];
5 uint16_t cols[16];
6 uint8_t rows[16];
7 } __attribute__ ((__packed__)) tileconfig_t;
8
9 static const tileconfig_t tc = {
10 1, // palette_id
11 0, // startRow
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // reserved - must be
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // calls for 7 tiles used
14 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // rows for 7 tiles used
15 };
16
17
18 _asm {
19 ldtilecfg tc # Load tile config
20 mov r8, A_mem # Initialize register for A
21 mov r9, B_mem # Initialize register for B
22 mov r10, C_mem # Initialize register for C
23
24 mov r11, 128 # Initialize register for strides
25 tileloadd tmm6, [r9 + r11*1] # Load B for n_acc = 0, k_acc = 0
26 tileloadd tmm4, [r8 + r11*1] # Load A for m_acc = 0, k_acc = 0
27 tilezero tmm0 # Zero accumulator tile
28 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
29 tileloadd tmm5, [r8 + r11*1 + 2048] # Load A for m_acc = 1, k_acc = 0
30 tilezero tmm1 # Zero accumulator tile

20-14

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Lines 1-12 in Example 20-10 define the tile configuration for this example, and contain information about
tile sizes. Tile configuration should be loaded prior to any execution of Intel AMX instructions (line 16).
Tile sizes are defined by the configuration at the load time and can’t be changed dynamically (unless
TileRelease is called). The ‘palette_id’ field in the configuration specifies the number of logical tiles avail-
able for use; palette_id == 1 means 8 logical tiles are available, named tmm0 through tmm7. This
particular example uses 7 logical tiles (tmm4, tmm5 for A, tmm6 for B, tmm0-tmm3 for C).

According to the dimensions specified, K-loop consists of 2 iterations (cf. code listing 8.1, line 11)
according to the dimensions specified in the example. Lines 23-34 implement the first iteration and lines
35-46 the second iteration. Note the interleaving of tdp and TileStore instructions to hide the high cost of
TileStore operation.

Variable Input Dimensions

The code in Example 20-8 and 20-10 process an entire matrix of inputs of size MxK. Sometimes, only
part of the input is significant, so it is beneficial to adapt the computation to the actual input size. Often,
topologies that use self-attention it is enough to process only the first m rows of the input that are signif-
icant, where m < M. For example, taking the GEMM dimensions described above with the choice of a 1D
accumulator array of N_ACC=2,M_ACC=1, when accepting data as input with at most sixteen significant
rows, we can degenerate the m loop (line 2 in Example 20-8) so as to effectively reduce the computation
by half.

It is worth noting that in variable M dimension use cases there is an advantage to 1D accumulators. Up
to N_ACC=6, M_ACC=1 dimensions are possible if N is 96 or larger, one tile for A, one tile for B and six
tiles for the accumulator.

20.5.5.4 Direct Convolution with Intel® AMX
Direct convolution is performed directly on the input data; no data replication is required. However, there
are some layout considerations.

/*2 of 2*/
31 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
32 tileloadd tmm6, [r9 + r11*1 + 64] # Load B for n_acc = 1, k_acc = 0
33 tilezero tmm2 # Zero accumulator tile
34 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
35 tilezero tmm3 # Zero accumulator tile
36 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
37 tileloadd tmm6, [r9 + r11*1 + 2048] # Load B for n_acc = 0, k_acc = 1
38 tileloadd tmm4, [r8 + r11*1 + 64] # Load A for m_acc = 0, k_acc = 1
39 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
40 tilestored [r10 + r11*1], tmm0 # Store C for m_acc = 0, n_acc = 0
41 tileloadd tmm5, [r8 + r11*1 + 2112] # Load A for m_acc = 1, k_acc = 1
42 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
43 tilestored [r10 + r11*1 + 2048], tmm1 # Store C for m_acc = 1, n_acc = 0
44 tileloadd tmm6, [r9 + r11*1 + 2112] # Load B for n_acc = 1, k_acc = 1
45 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
46 tilestored [r10 + r11*1 + 64], tmm2 # Store C for m_acc = 0, n_acc = 1
47 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
48 tilestored [r10 + r11*1 + 2112], tmm3 # Store C for m_acc = 1, n_acc = 1
49 }

20-15

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Activations Layout

Similar to the Intel DL Boost use case, the activations are laid out in a layout obtained from the original
layout by the following procedure:

Example 20-11. Activations Layout Procedure

This procedure on the left side of the diagram below shows the conversion of a 3-dimensional tensor into
a 2-dimensional matrix:

Figure 20-5. Activations layout

The procedure shown on the right is identical for the outputs, e.g., the activations of the next layer in the
topology).

#define K C // K-dimension of the A matrix = channels
#define M H*W // M-dimension of the A matrix = spatial
type_t A_mem_orig[C][H][W]; // Original activations tensor
type_t A_mem[H][W][K]; // Re-laid A matrix7

for (int c = 0; c < C; ++c)
for (int h = 0; h < H; ++h)

for (int w = 0; w < W; ++w)
A_mem[h][w][c] = A_mem_orig[c][h][w];

20-16

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Weights Layout

Similar to the Intel DL Boost use case, the weights are re-laid by the following procedure:

Example 20-12. Weights Re-Layout Procedure

The procedure transforms the original 4-dimensional tensor into a series of 2-dimensional matrices (a
single matrix is highlighted in orange in Example 20-12) as illustrated in the following diagram for
KH=KW=3, resulting in a series of 9 B-matrices:

Figure 20-6. Weights Re-Layout

#define KH ... // Vertical dimension of the weights
#define KW ... // Horizontal dimension of the weights
#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N][KH][KW]; // Original weights
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // Re-laid B matrices

for (int kh = 0; kh < KH; ++kh)
 for (int kw = 0; kw < KW; ++kw)
 for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[kh][kw][k/KPACK][n][k%KPACK] = B_mem_orig[k][n][kh][kw];

20-17

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence
Figure 20-7 illustrates the equivalence between convolution and summation of a series of matrix-like
multiplications between subsets of the 2-dimensional A-matrix representing the 3-dimensional activa-
tions tensor. The 2-dimensional B-matrices correspond to the various spatial elements of the weights
filter.

Figure 20-7. Convolution-Matrix Multiplication and Summation Equivalence

The A-matrix subset participating in the matrix-like multiplication depends on the spatial weight element
in question (i.e., the kh,kw coordinates, or the index in the range 0–8 in the previous example). For each
weight element, the A-matrix’s participating rows will interact with the weight element when the filter is
slid over the activations. For example, when sliding the filter over the activations in the previous
example, weight element 0 will only interact with activation elements 0, 1, 2, 5, 6, 7, 10, 11, and 12. For
example, it will not interact with activation element four because when the filter is applied in such a
manner (i.e., weight element 0 interacts with activation element 4), weight elements 2, 5, and 8 leave
the activation frame entirely. The A-matrix subsets for several weight elements are illustrated in the
following figure.

20-18

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-8. Matrix-Like Multiplications Part of a Convolution

20-19

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.5.6 Optimized Convolution Implementation
Replace the common defines in Example 20-3 with the following:

Example 20-13. Common Defines for Convolution

#define H ... // The height of the activation frame
#define W ... // The width of the activation frame
#define MA (H*W) // The M dimension (rows) of the A matrix
#define K ... // Number of activation channels
#define N ... // Number of output channels
#define KH ... // The height of the weights kernel
#define KW ... // The width of the weights kernel
#define SH ... // The vertical stride of the convolution
#define SW ... // The horizontal stride of the convolution
#define M_ACC ... // Number of C accumulators spanning the M dimension
#define N_ACC ... // Number of C accumulators spanning the N dimension
#define TILE_M ... // Number of rows in an A or C tile
#define TILE_K ... // Number of columns in an A tile or rows in a B tile
#define TILE_N ... // Number of columns in a B or C tile

#define HC ((H-KH)/SH+1) // The height of the output frame
#define WC ((W-KW)/SW+1) // The width of the output frame
#define MC (HC*WC) // The M dimension (rows) of the C matrix

typedef ... type_t; // The type of the data being operated on
typedef... res_type_t; // The data type of the result

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t A_mem[H][W][K]; // A matrix (equivalent to A_mem[H*W][K])
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // B matrices
res_type_t C_mem[MC][N]; // C matrix

template<size_t rows, size_t cols> class tile;

template<class T> void tilezero (T& t);
template<class T> void tileload (T& t, void* src, size_t stride);
template<class T> void tilestore(T& t, void* dst, size_t stride);
template<class TC, class TA, class TB> void tdp(TC& tC, TA& tA, TB& tB);

int mc_to_ha(int mc) {return mc / HC * SH;} // C matrix M -> A tensor h coord
int mc_to_wa(int mc) {return mc % HC * SW;} // C matrix M -> A tensor w coord

20-20

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Replace the implementation in Example 20-8 with the following:

Example 20-14. Optimized Direct Convolution Implementation

The divergences highlighted in yellow in Example 20-8 include:

• The loop over M-dimension (line 2) references the M-dimension of the C-matrix (since the M-
dimensions of A and C no longer have to be the same). To get the corresponding A-matrix m index
from a C-matrix m index, one must employ the conversion functions mc_to_ha() and mc_to_wa()
(line 20).

• There are additional loops over the weights kernel dimensions KH and KW (lines 12–13), which define
the B-matrix to be used (line 16), enter into the condition for accumulator tile storing (line 24) and
computation of A-matrix coordinates (line 20).

• The stride of the A tile load must account for the convolutional horizontal stride (line 21).

Note that care should be taken to define TILE_M*M_ACC in such a way that it cleanly divides WC (the
width of the output frame), i.e., WC%(TILE_M*M_ACC)==0. Otherwise, some tiles will end up loading
data that should not be multiplied by the corresponding weight element (see Figure 20-8). Possible miti-
gations of this issue:

• An M_ACC loop with a dynamic upper limit depending on the current position in A.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (int m = 0; m < MC; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int kh = 0; kh < KH; ++kh) {
13 for (int kw = 0; kw < KW; ++kw) {
14 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
15 int nc = n + n_acc*TILE_N;
16 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
17 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
18 int mc = m + m_acc*TILE_M;
19 if (n_acc == 0) {
20 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
21 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
22 }
23 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
24 if (k + kh + kw == K - TILE_K + KH + KW - 2)
25 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
26 }
27 }
28 }
29 }
30 }
31 }
32 }

20-21

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• Use different sized A tiles (and correspondingly C tiles) depending on the current position in A (if
there are enough free tiles, performing TileConfig during the convolution is highly discouraged).

• Define TILE_M without consideration for WC and remove/disregard the “junk” data from the results at
the post-processing stage (code not shown). Care should be taken in this case concerning the
advancement of the m index (line 2) since the current assumption is that every row of every tile is
valid (corresponds to a row in the C matrix). If “junk” data is loaded, this is no longer the case: a C-
tile will have less than TILE_M rows of C.

Location of the KH, KW Loops

As shown in Example 20-5, it is ill-advised to put the loop over the K-dimension inside an inner M_ACC or
N_ACC loop. The same considerations hold in the case of the kh,kw loops. While there is no functional
obstacle precluding the positioning of the kh,kw loops further up (before lines 12-13), it is recommended
to keep them under the K loop and above the M_ACC, N_ACC loops because, during the traversal of
kh,kw with the same k value, the TileLoad of A-data (line 21) will have much overlap with A-data loaded
for previous values of kh,kw (with the same k value). This data will likely reside in the lowest-level cache.
Moving the kh,kw loops upward will reduce that likelihood.

20.6 CACHE BLOCKING

Data movement costs vary greatly depending on where the data lies in the cache hierarchy. When the
matrices involved in a GEMM or convolution are larger than the available cache, computations must
proceed in such a manner as to optimize data reuse from the cache. Here a simple cache-blocking
scheme is implemented to simultaneously process partial blocks of the A, B, and C matrices.

20.6.1 OPTIMIZED CONVOLUTION IMPLEMENTATION WITH CACHE BLOCKING
In the following example, the focus is on implementing cache blocking for the optimized convolution
implementation described in the Optimized Convolution Implementation <XREF> section. However, note
that similar changes can also be made to the optimized GEMM implementation. Alternatively, the GEMM
implementation can be derived as a special case of convolution with KH=KW=1 and SH=SW=1.

In addition to the common defines in Example 20-13, add the following:

Example 20-15. Additional Defines for Convolution with Cache Blocking

#define MC_CACHE ... // Extent of cache block along the M dimension of the C matrix
#define K_CACHE ... // Extent of cache block along the K dimension
#define N_CACHE ... // Extent of cache block along the N dimension
typedef ... acc_type_t; // The accumulation data type (either int32 or float)
acc_type_t aC_mem[M_ACC][N_ACC][TILE_M][TILE_N]; // Accumulator buffers of C

20-22

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Replace the implementation in Example 20-14 with the following:

Example 20-16. Optimized Convolution Implementation with Cache Blocking

1 for (int nb = 0; nb < N; nb += N_CACHE) {
2 for (int mb = 0; mb < MC; mb += MC_CACHE) {
3 for (int kb = 0; kb < K; kb += K_CACHE) {
4 for (int n = nb; n < nb + N_CACHE; n += N_ACC*TILE_N) {
5 for (int m = mb; m < mb + MC_CACHE; m += M_ACC*TILE_M) {
6 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
7 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
8 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
9
10 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
11 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
12 if (kb == 0)
13 tilezero(tC[m_acc][n_acc]);
14 else {
15 int m_aC = (m - mb) / TILE_M + m_acc;
16 int n_aC = (n - nb) / TILE_N + n_acc;
17 tileload(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
18 TILE_N*sizeof(acc_type_t));
19 }
20
21 for (int k = kb; k < kb + K_CACHE; k += TILE_K) {
22 for (int kh = 0; kh < KH; ++kh) {
23 for (int kw = 0; kw < KW; ++kw) {
24 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
25 int nc = n + n_acc*TILE_N;
26 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
27 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
28 int mc = m + m_acc*TILE_M;
29 if (n_acc == 0) {
30 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
31 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
32 }
33 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
34 if (k + kh + kw == K - TILE_K + KH + KW - 2)
35 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc],
36 N*sizeof(res_type_t));
37 else if (k + kh + kw == kb + K_CACHE - TILE_K + KH + KW - 2) {
38 int m_aC = (m - mb) / TILE_M + m_acc;
39 int n_aC = (n - nb) / TILE_N + n_acc;
40 tilestore(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
41 TILE_N*sizeof(acc_type_t));
42 }
43 }
44 }
45 }
46 }
47 }
48 }
49 }
50 }
51 }
52 }

20-23

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The loops over the N, MC, and K dimensions are replaced by loops over cache blocks of N, MC, and K.

Additional loops over the entire N, MC, and K-dimensions are added at the outermost level. These loops
have a step size equal to the cache blocks of N, MC, and K.

In the case of cache blocking along the K-dimension, additional calls to TileLoad and TileStore are
required to load and store intermediate accumulation results. Note that this adds additional memory
traffic, especially for int8 output data types (as Accumulation data type is either int32_t or float). For this
reason, it is generally not advisable to block along the K dimension.

For simplicity, assume the following relationships:

• N is an integer multiple of N_CACHE: an integer multiple of N_ACC*TILE_N.
• MC is an integer multiple of MC_CACHE: an integer multiple of M_ACC*TILE_M. As before, the

condition WC%(TILE_M*M_ACC)==0 still holds.
• K is an integer multiple of K_CACHE: an integer multiple of TILE_K.

Define the following set of operations as the compute kernel of the optimized convolution implementa-
tion. First, initialize the accumulation tiles to zero (line 13) for an M_ACC*TILE_M x N_ACC*TILE_N
chunk of the C-matrix. Next, for each of the KH*KW B-matrices, the matrix multiplication of the corre-
sponding M_ACC*TILE_M x K chunk of the A-matrix by a K x N_ACC*TILE_N chunk of the B-matrix is
performed, each time accumulating to the same set of accumulation tiles (lines 18–30). Finally, the
results are stored in the C-matrix (line 32).

Continue with the computation of a full cache block of C-matrix, ignoring any blocking along the K-
dimension. First, the kernel is performed for the first chunks of the A, B, and C cache blocks. Next, the
chunks of A and C advance along the M dimension, and the kernel is repeated with the same chunk set of
the B-matrices. The above step is repeated until the last chunks of A and C in the current cache block
have been accessed. Next, the chunks of B and C are advanced along the N-dimension by N_ACC*TILE_N
and the chunk of A returns to the beginning of its cache block.

Observe the following from the above description of the computation of a full cache block of the C-
matrix:

• For each kernel iteration, it is better if the current chunk of matrix A (roughly
KH*M_ACC*TILE_M*K*sizeof(type_t)) fits into the DCU. This allows for maximal data reuse between
the partially overlapping regions of A that need to be accessed by the different B matrices.

• Advancing from one chunk of matrix A to the next, it is better if the current chunk set of the B
matrices (in total, KH*KW*K*N_ACC*TILE_N*sizeof(type_t)) fits into the DCU.

• Advancing from one chunk set of the B matrices to the next, it is better if the current cache block of
matrix A fits into the MLC.

• Advancing from one cache block of matrix A to the next, it is better if the current cache block of the
B matrices (in total, KH*KW*K*N_CACHE*sizeof(type_t)) fits into the MLC.

From these observations, a general cache blocking strategy is choosing MC_CACHE and N_CACHE to be as
large as possible while keeping the A, B, and C cache blocks in the MLC.

Intel® AMX-Specific Considerations

A specific feature of Intel AMX-accelerated kernels to keep in mind when applying the previous cache-
blocking recommendations is any post-processing of results from the Intel AMX unit (e.g., adding bias,
dequantizing, converting between data types) must occur by way of vector registers. Thus, a buffer is
needed to store results from the accumulation tiles and load them into vector registers for post-
processing. Note that if acc_type_t is the same as res_type_t, the C matrix itself can be used to store
intermediate results. However, the buffer is small (at most 4KB for the accumulation strategies described
in vSection) and easily fits into the DCU. While it should still be considered when determining the optimal
cache block partitioning, it is unlikely to influence kernel performance strongly.

20-24

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.7 MINI-BATCHING IN LARGE BATCH INFERENCE
Layers have different sizes and shapes, which require different cache and memory-blocking strategies.
There are layers with a small spatial dimension (M) and relatively larger shared dimension (K) and SIMD
dimension (N). In such layers, the weights are significantly larger than the inputs. Therefore, most of the
load operations are weights matrix loads whose cost is high when the weights reside in memory or the
last level cache.

Running a large batch allows employing an optimization that amortizes the cost of loading the weight
matrix. The idea is to use the same weights for multiple inputs, e.g., execute the same layer with multiple
images. This optimization is highly applicable in CNNs where the inputs of the first layers are large while
the weights are relatively small but end with small input images and large weight matrices. Optimal
execution of the topology starts in the instance or image affinity, where a single input goes through one
layer after another before the next input is retrieved. At some point, the topology execution switches to
layer affinity, where the same layer processes several inputs (mini-batch) before moving forward to the
next layer.

For example, in ResNet-50, the conv-1 to conv-4 layers have relatively large IFMs and smaller weight
matrices. However, many weight matrices are larger than MLC size (mid-level cache) in the conv-5
layers. The switchover point from image affinity to layer affinity on a 4th Generation Intel® Xeon®
Processor microarchitecture is the first layer of conv-5.

The diagram below illustrates six layers with four instances per thread (mini-batch of four). Boxes with
identical colors identify the same layers in each column. Arrows flowing downward through each column’s
layers represent the data flow of a particular instance. Translucent red arrows identify the execution
order of layers with corresponding instances. The first four layers of the diagram have instance (aka
image) affinity, and the last two have layer affinity.

Figure 20-9. Batching Execution Using Six Layers with Four Instances Per Thread

On Resnet-50, this optimization can yield a 17% performance gain.

20-25

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.8 NON-TEMPORAL TILE LOADS
When a regular tile load is issued, the data for the tile are placed in L2, L1, and then in the tile register
(DRAM/L3->L2->L1->tile register), as with any other register load. This has the well-known benefit of
reduced data read latency due to data proximity when recently accessed data are reaccessed after a
short time. However, indiscriminate application of this approach might sometimes prove detrimental.

Consider the code in Example 20-4, referring to the unoptimized, unblocked implementation for
simplicity. The five loops in the code listing alongside the total input (A) matrix data and weights (B)
matrix data accessed at each loop level is shown in the following table. The original row in the code listing
is provided for convenience:

20.8.1 PRIORITY INVERSION SCENARIOS WITH TEMPORAL LOADS
For the following discussion, assume:

• The data type is int8 (i.e., each element in the table above takes 1 byte).
• TILE_M=16, TILE_K=64, TILE_N=16 (i.e., all tiles are of size 1kB).
• L1 cache size is 32kB.
• M_AC=N_ACC=2.

Scenario One:

Consider the following scenario, including M=256, K=1024, and N=256.

Table 20-4 illustrates accessed data sizes:

At the k loop level, the combined sizes of A and B accessed data will overflow the L1 cache by a factor of
two. Proceeding to the m-level since m is progressing, new A-data are constantly read (a total of 256kB-
32kB=224kB new A data), while the same 32kB of B data are being accessed repeatedly. Thus, a priority
inversion occurs: new A-data placed in the L1 cache repeatedly are accessed only once. They evict the
32kB of B data that are accessed eight times. Placement of A data in the L1 cache is not beneficial: the

Table 20-3. Five Loops in Example 20-4

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N] M×K K×N

2 m [0:M:M_ACC×TILE_M] M×K
K×N_ACC×TILE_N

8 k [0:K:TILE_K] MC_CACHE×K

9 n acc [0:N_ACC:1]
M_ACC×TILE_M×TILE_K TILE_K×N_ACC×TILE_N

12 m ac [0:M_ACC:1]

Table 20-4. Accessed Data Sizes: Scenario One

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]
256kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K] 32kB

9 n acc [0:N_ACC:1]
32kB 2kB

12 m ac [0:M_ACC:1]

20-26

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

next time the same data are accessed will be in the n loop after 256kB (x8 L1 cache size) of A data has
been read. Additionally, it is detrimental because it causes repeated eviction of 32kB of B data that could
have been read from the L1 cache eight times.

Scenario Two:

Consider the following scenario, including M=32, K=1024, and N=256. Here, the M-dimension is covered
in the m_acc loop, and the loop over m is redundant. The priority inversion is: as n advances, new B-data
(accessed only once) repeatedly evict 32kB of A-data that could have been read (8 times) from the L1
cache had it not been pushed out by B-data.

Here, the M-dimension is covered in the m_acc loop, and the loop over m is redundant. The priority
inversion is: as n advances, new B-data (accessed only once) repeatedly evict 32kB of A-data that
could have been read (8 times) from the L1 cache had it not been pushed out by B-data.

These two basic scenarios can be readily extended to the blocked code in Example 20-16.

NOTE
Due to the nature of convolution, the loops over kh, kw reuse most of the A-data.

The innermost loops m_acc, n_acc, kh,kw will access at most M_ACC kB of A data and KH×KW×N_ACC
kB of B-data, which, in some cases (e.g., KH=KW=3, N_ACC=4) might already overflow the L1 cache
size. Thus, several opportunities for priority inversions exist in this more complex loop structure,
depending on the parameters in the table above:

Table 20-5. Accessed Data Sizes: Scenario Two

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]

32kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K]

9 n acc [0:N_ACC:1]
2kB 2kB

12 m ac [0:M_ACC:1]

Table 20-6. Accessed Data Sizes Extended to Blocked Code

Row Var Variable Range A Data Size B Data Size

1 nb [0:N:N_CACHE] M×K

2 mb [0:MC:MC_CACHE] M×K

3 kb [0:K:K_CACHE] MC_CACHE×K

4 n [nb:nb+N_CACHE:N_ACC×TILE_N]

MC_CACHE×K_CACHE
K_CACHE×KH×KW×N_ACC×TILE_
N

5 m [mb:mb+MC_CACHE:M_ACC×TILE_M]

18 k [kb:kb+K_CACHE:TILE_K]

19 kh [0:KH:1] /*/*
TILE_K×KH×KW×N_ACC×TILE_N

20 kw [0:KW:1]

M_ACC×TILE_M×TILE_K21 n acc [0:N_ACC:1]
TILE_K×N_ACC×TILE_N

24 m ac [0:M_ACC:1]

20-27

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• B-data evicting reusable A-data at the kh,kw loops level.
• A-data evicting reusable B-data at the m loop level.
• B-data evicting reusable A-data at the n loop level.
• A-data evicting reusable B-data at the mb loop level.
• B-data evicting reusable A-data at the nb loop level.

Solution to Priority Inversions: Non-Temporal Loads

Intel AMX architecture introduces a way to load tile registers bypassing the L1 cache via non-temporal
tile loads (TILELOADDT1). This allows the user to deal with priority inversions such as those described
above by loading the large, non-reusable data chunk with non-temporal loads. Thus, the larger chunk is
prevented from evicting the smaller, frequently used data chunk. In Table 20-4, the A-tiles are loaded
with non-temporal loads while loading B-tiles with temporal loads. This ensures the B-tile loads at the m
loop level will all come from the L1 cache. In Table 20-5, the B-tiles are loaded with non-temporal loads
while loading A-tiles with temporal loads, thus ensuring that the A-tile loads at the n loop level will all
come from the SL1 cache.

20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA
REUSE

A convolution with a small-sized input frame can make the Intel AMX computation inefficient.

Consider the following example: a 7x7 input frame, with padding of 1 (size including padding is 9x9),
convolved with a 3x3 filter to produce a 7x7 output frame.

Figure 20-10 shows the pieces participating in the convolution (in yellow) interacting with the khaki=0,0
weight element.

Figure 20-10. A Convolution Example

Thus, the yellow parts of the input frame are the only ones that should be loaded into A-tiles when
processing weight element kh,kw=0,0. The white parts of the input frame should be ignored. This
requires the number of tile rows to be set at seven, utilizing less than half of the A-tile, reducing B
(weights) data reuse by a factor of two. Each A-tile is now half the size, and seven tiles are required to
cover the spatial dimension. Because there are not seven tiles, B-tiles must be loaded twice as many
times, potentially leading to significant performance degradation, depending on the size of the weights.
This is usually inversely proportional to the spatial size of the input frame).

Figure 20-11 shows three A-tiles with sixteen rows and one tile with seven rows to cover the entire
spatial dimension of the convolution.

20-28

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-11. A Convolution Example with Large Tiles.

Each tile is highlighted differently. The green, blue, and orange tiles now load those two “extra” pieces
previously ignored. Those pieces will waste compute resources and take up two rows in the accumulator
tiles. The user may choose to ignore those rows in subsequent computations (e.g., int8-quantization,
RELU, etc.), complicating the implementation. The potential benefit of increased B-data reuse could be
dramatic, however.

20.10 HANDLING INCONVENIENTLY-SIZED ACTIVATIONS
Occasionally, the spatial dimensions of an activation might be ill-suited for efficient tiling with tiles.
Consider a GEMM with activations’ M=100. This poses a challenge: while the M dimension can be neatly
tiled by ten tiles, each with ten rows, this approach is inefficient since a larger M dimension of 112
requires only seven tiles with sixteen rows. This means that the data reuse for M=100 is 30% worse than
for M=112.

The following solutions will be useful:

1. Define two types of A- and C-tiles – tiles with 16 rows and one tile with four. Use tiles of the first type
for M=0..9 and the second type tile for M=96..99.

2. Allocate extra space in A and C buffers, as if M=112, and use tiles with 16 rows exclusively. The extra
space need not be zeroed out or otherwise prepared in any way. In this case, the last (seventh) tile
will load four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111). At the output,
tile C will have four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111) which the
user can then ignore.

The first solution does not require tampering with the A and C buffers and computes 100 tile rows,
producing a clean result. Still, it requires additional A- and C-tiles. unused throughout the computation
except at the very end. Since only eight tiles are available, this requirement can be costly and might
reduce the data reuse (e.g., to use a 2D accumulator array, you would need three x2 C-tiles, two A-tiles,
and two B-tiles, equaling ten tiles). The second solution avoids this requirement by complicating buffer
handling and paying with additional loads, compute, and storing (it loads, computes, and stores 112 tile
rows).

20-29

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11 POST-CONVOLUTION OPTIMIZATIONS
Most Intel AMX-friendly applications are from the Deep Learning domain, where the data flows through
multiple layers. It is often necessary to process the convolution output before passing it as an input to the
next layer (processing operations depend on a specific application). This stage is called post-convolu-
tion.

20.11.1 POST-CONVOLUTION FUSION
As with Intel AVX-512 code, a critical optimization is the “fusion” of post-convolutional operations to the
convolutional data they operate upon. Fusion reduces the memory hierarchy thrashing. Additionally,
fusing the quantization step gains x2 (for bfloat16 data type) or x4 (for int8 data type) compute band-
width, and reduces memory bandwidth by x2 or x4, respectively.

Consider the code in Example 20-8. Lines 7-24 contain the entire GEMM operation for any M, N coordi-
nate in the output. Thus, the optimal location to post-process the data computed in lines 7-24 is right
before line 24 while it is still in the low-level cache.

In Example 20-17, blue code illustrates a fully unrolled example from line 7 through 24, for int8 GEMM
with K=192, N_ACC=M_ACC=2, TILE_M=2, TILE_K=64, TILE_N=16. The convolution code is fused with
post-convolution code (blue) that quantizes the output and ReLU. To keep the post-convolution code in
the example short, an unrealistically low value of TILE_M=2 was chosen.

In that example, an additional buffer, temporary_C, contains the convolutional results of M_ACCxN_ACC
tiles. The results are stored at the end of the convolutional part and loaded during the post-convolutional
part. A temporary buffer is required because the size of the post-processed data is four times smaller.
Hence, the convolutional output cannot be written directly to the output buffer.

The GPRs r8, r9, r10, r11, and r14 point to the current location in the A, B, C, temporary_C, and q_bias
(which holds the quantization factors and biases) buffers, respectively.

The macros A_OFFSET(m,k), B_OFFSET(k,n), C_OFFSET(m,n), C_TMP_OFFSET(m,n), Q_OFFSET(n),
and BIAS_OFFSET(n) receive as arguments m,k,n tile indices and return the offset of the data from
r8,r9,r10, r11, and r14, respectively.

20-30

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-17. Convolution Code Fused with Post-Convolution Code

/*1 of 2*/
1 #define TILE_N_B (N)
2 #define A_OFFSET(m,k) ((m)*K*TILE_M + (k)*TILE_K)
3 #define B_OFFSET(k,n) ((k)*N*TILE_N*4 + (n)*TILE_N*4)
4 #define C_OFFSET(m,n) ((m)*N*TILE_M + (n)*TILE_N)
5 #define C_TMP_OFFSET(m,n) ((m)*N*TILE_M*4 + (n)*TILE_N*4)
6 #define Q_OFFSET(n) ((n)*TILE_N*4)
7 #define BIAS_OFFSET(n) ((n)*TILE_N*4 + N*4)
8
9 static const tileconfig_t tc = {
10 1, // Palette ID
11 0, // Start row
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Reserved – must be 0
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Cols for 7 tiles used
14 2, 2, 2, 2, 2, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // Rows for tiles used: 2 for A, C,
15 // 16 for B
16 };
17
18 ldtilecfg tc // Load tile config
19 mov r12, 192 // A stride
20 mov r13, 128 // B, C_TMP stride
21 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
22 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
23 tilezero tmm0 // Zero acc [m,n] = [0,0]
24 tdpbusd tmm0, tmm4, tmm5
25 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
26 tilezero tmm2 // Zero acc [m,n] = [0,1]
27 tdpbusd tmm2, tmm4, tmm6
28 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
29 tilezero tmm1 // Zero acc [m,n] = [1,0]
30 tdpbusd tmm1, tmm4, tmm5
31 tilezero tmm3 // Zero acc [m,n] = [1,1]
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 tdpbusd tmm0, tmm4, tmm5
36 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
37 tdpbusd tmm2, tmm4, tmm6
38 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
39 tdpbusd tmm1, tmm4, tmm5
40 tdpbusd tmm3, tmm4, tmm6
41 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
42 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
43 tdpbusd tmm0, tmm4, tmm5
44 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
45 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]

20-31

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 2*/
46 tdpbusd tmm2, tmm4, tmm6
47 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
48 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
49 tdpbusd tmm1, tmm4, tmm5
50 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
51 tdpbusd tmm3, tmm4, tmm6
52 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
53
54 vcvtdq2ps zmm0 , [r11 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
55 vmovups zmm1 , [r14 + Q_OFFSET(0)] // q-factors for N=0
56 vmovups zmm2 , [r14 + BIAS_OFFSET(0)] // biases for N=0
57 vfmadd213ps zmm0 , zmm1 , zmm2 // zmm0 = zmm0 * q + b
58 vcvtps2dq zmm0 , zmm0 // float -> int32
59 vpxord zmm3 , zmm3 , zmm3 // Prepare zero ZMM
60 vpmaxsd zmm0 , zmm0 , zmm3 // RELU (int32)
61 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
62 vcvtdq2ps zmm4 , [r11 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
63 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
64 vcvtps2dq zmm4 , zmm4 // float -> int32
65 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
66 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
67 vcvtdq2ps zmm5 , [r11 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
68 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
69 vcvtps2dq zmm5 , zmm5 // float -> int32
70 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
71 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
72 vcvtdq2ps zmm6 , [r11 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
74 vcvtps2dq zmm6 , zmm6 // float -> int32
75 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
76 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
77 vcvtdq2ps zmm7 , [r11 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
78 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
79 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
80 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
81 vcvtps2dq zmm7 , zmm7 // float -> int32
82 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
83 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
84 vcvtdq2ps zmm10, [r11 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
85 vfmadd213ps zmm10, zmm8 , zmm9 // zmm10 = zmm10 * q + b
86 vcvtps2dq zmm10, zmm10 // float -> int32
87 vpmaxsd zmm10, zmm10, zmm3 // RELU (int32)
88 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
89 vcvtdq2ps zmm11, [r11 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float
90 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
91 vcvtps2dq zmm11, zmm11 // float -> int32
92 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
93 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
94 vcvtdq2ps zmm12, [r11 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
95 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
96 vcvtps2dq zmm12, zmm12 // float -> int32
97 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
98 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8

20-32

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11.2 INTEL® AMX AND INTEL® AVX-512 INTERLEAVING (SW PIPELINING)
A modern CPU has multiple functional units that can execute different instructions simultaneously. For
example, a load instruction and an arithmetic instruction can execute in parallel. A commonly used
approach for maximizing the utilization of various resources in parallel is the out-of-order execution,
where the CPU might alter the order of the instructions to achieve higher resource utilization.

Intel AMX compute instructions are prime candidates for optimization because they utilize resources very
lightly (1/2 of the available ALU ports, 1/TILE_M of the time).

The blue post-convolutional code of one iteration could, theoretically, execute in parallel to the Bold code
in lines 3 through 25 (before the first TileStore) of the next iteration, where iteration is the execution of
the code in Example 20-17. Unfortunately, this cannot be done automatically and efficiently by the CPU:
since the convolution (Bold) and post-convolution (blue) parts of the code tend to be sizable, the CPU
can only overlap small portions of them efficiently before it runs out of resources in the out-of-order
machine. Thus, a manual (SW) solution is required.

As previously written, the blue code before the first TileStore can be run in parallel with the green code
of the next iteration. This would overwrite temporary_C memory, which the post-convolution code reads
from. To remove this dependency and maximize parallel execution, use double-buffering on tempo-
rary_C. Temporary_C would thus contain two buffers, interchanged every iteration.

In Example 20-28, the content deviates from the previous example by interleaving the current iteration’s
convolutional code with the previous iteration’s post-convolutional code. Temporary_C is double-buff-
ered, with r11 pointing to the buffer of the current iteration and r12 pointing to the previous iteration’s
buffer. They are exchanged at the end of the iteration.

Example 20-18. An Example of a Short GEMM Fused and Pipelined with Quantization and ReLU

/*1 of 3*/
1 ldtilecfg tc // Load tile config
2 mov r15, 192 // A stride
3 mov r13, 128 // B, C_TMP stride
4 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
5 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
6 tilezero tmm0 // Zero acc [m,n] = [0,0]
7 vcvtdq2ps zmm0, [r12 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
8 vmovups zmm1, [r14 + Q_OFFSET(0)] // q-factors for N=0
9 vmovups zmm2, [r14 + BIAS_OFFSET(0)] // biases for N=0
10 vfmadd213ps zmm0, zmm1, zmm2 // zmm0 = zmm0 * q + b
11 vcvtps2dq zmm0, zmm0 // float -> int32
12 vpxord zmm3, zmm3, zmm3 // Prepare zero ZMM
13 vpmaxsd zmm0, zmm0, zmm3 // RELU (int32)
14 tdpbusd tmm0, tmm4, tmm5
15 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
16 tilezero tmm2 // Zero acc [m,n] = [0,1]
17 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
18 vcvtdq2ps zmm4 , [r12 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
19 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
20 tdpbusd tmm2, tmm4, tmm6
21 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
22 tilezero tmm1 // Zero acc [m,n] = [1,0]
23 vcvtps2dq zmm4 , zmm4 // float -> int32
24 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
25 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
26 tdpbusd tmm1, tmm4, tmm5
27 tilezero tmm3 // Zero acc [m,n] = [1,1]

20-33

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 3*/
28 vcvtdq2ps zmm5 , [r12 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
29 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
30 vcvtps2dq zmm5 , zmm5 // float -> int32
31 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
36 vcvtdq2ps zmm6 , [r12 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
37 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
38 tdpbusd tmm0, tmm4, tmm5
39 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
40 vcvtps2dq zmm6 , zmm6 // float -> int32
41 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
42 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
43 tdpbusd tmm2 , tmm4, tmm6
44 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
45 vcvtdq2ps zmm7 , [r12 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
46 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
47 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
48 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
49 vcvtps2dq zmm7 , zmm7 // float -> int32
50 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
51 tdpbusd tmm1 , tmm4, tmm5
52 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
53 vcvtdq2ps zmm10 , [r12 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
54 vfmadd213ps zmm10 , zmm8 , zmm9 // zmm10 = zmm10 * q + b
55 tdpbusd tmm3 , tmm4, tmm6
56 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
57 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
58 vcvtps2dq zmm10 , zmm10 // float -> int32
59 vpmaxsd zmm10 , zmm10, zmm3 // RELU (int32)
60 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
61 tdpbusd tmm0, tmm4, tmm5
62 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
63 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]
64 vcvtdq2ps zmm11, [r12 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float
65 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
66 vcvtps2dq zmm11, zmm11 // float -> int32
67 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
68 tdpbusd tmm2, tmm4, tmm6
69 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
70 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
71 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
72 vcvtdq2ps zmm12, [r12 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
74 tdpbusd tmm1, tmm4, tmm5
75 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
76 vcvtps2dq zmm12, zmm12 // float -> int32
77 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
78 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8
79 tdpbusd tmm3, tmm4, tmm6

20-34

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

With the exception of a larger TILE_M (N_ACC=M_ACC=2, TILE_M=16, TILE_K=64, TILE_N=16) on a
[256x192] x [192x256] GEMM, application of this algorithm with the parameters laid out in section
Section 20.8.1 yielded an 18.5% improvement in running time vs. the non-interleaved code described in
Section 20.11.1.

20.11.3 AVOIDING THE H/W OVERHEAD OF FREQUENT OPEN/CLOSE OPERATIONS IN
PORT FIVE

When the processor executes Intel AMX compute instructions (TDP*), it usually closes port five (one of
the two Intel AVX-512 FMA ports) to conserve power. When the processor senses no more Intel AMX
compute instructions in the pipeline, it opens port five. This open/close operation stalls the pipeline for
a few cycles. Up to 20% performance degradation may be observed when the Intel AVX-512 instruction
block contains 100 to 300 Intel AVX-512 instructions.
We recommend adding one or two TileZero instructions in the middle of the green block, roughly one
hundred Intel AVX-512 instructions apart. Such an addition ensures that port five remains closed during
blocks of up to three hundred Intel AVX-512 instructions. For longer blocks, it is preferable not to insert
TileZero since longer blocks execute faster on two open FMA ports. The processor does not open port
five for blocks shorter than one hundred Intel AVX-512 instructions, so no special handling is necessary.

NOTE

The TileZero instruction is considered an Intel AMX compute instruction for that matter.

Figure 20-12. Using TileZero to Solve Performance Degradation

20.11.4 POST-CONVOLUTION MULTIPLE OFM ACCUMULATION AND EFFICIENT DOWN-
CONVERSION

An important question arises concerning fused post-convolution optimization. What is the optimal block
of accumulators processed in a single post-convolution iteration? As a post-processing unit, it is conve-
nient to consider the M_ACC * N_ACC block of tiles accumulated in loops starting at lines 7-8 and 10-11
in Example 20-14 and Example 20-16, respectively. For simplicity, consider only multiples of these accu-
mulation blocks. There is a trade-off between using smaller and larger post-convolution blocks:

Using small post-convolution blocks may have a negative impact by interrupting the convolution flow too
often. Conversely, using big post-convolution blocks may also negatively impact by evicting part of the
accumulated tiles out of DCU.

/*3 of 3*/
80 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
81
82 xchg r11, r12 // Swap buffers for current/next iter

20-35

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The optimal size, therefore, depends very much on the DL network topology and convolution-blocking
parameters. Performance studies show that the number of iterations of M_ACC * N_ACC blocks before
proceeding to post-convolution iteration may vary from 1 to 7.

As AMX instructions generate a higher precision output (32-bit integers or 32-bit floats) from lower preci-
sion inputs (8-bit integers or 16-bit bfloats, respectively), there is a need to convert 32-bit outputs to 8-
or 16-bit inputs to be fed to the next DL network layer.

Suppose a single high-precision cache line (512-bit) is processed for conversion at a time. In that case,
there will be two or four rounds of processing until a single low-precision cache line is generated for 8- or
16-bit inputs. Potential problems include:

• the number of loads and stores of the same cache line increases 4X or 2X, respectively.
• the next round of processing of the same cache line may occur after this cache line is evicted from

DCU.

One of the optimizations mitigating these performance issues is to collect enough high-precision outputs
to convert the full low-precision cache line in a single round.

The following drawing shows the conversion flow of 32-bit integers to 8-bit integers. Each colored block
at the top represents a single full TILE output. The horizontal dimension is OFMs the vertical dimension
is spatial).

Figure 20-13. A Conversion Flow of 32-bit Integers to 8-bit Integers

To generate full 512-bit cache lines of 8-bit inputs (bottom), a multiple of 64 OFMs should be collected
before conversion. Accordingly, to generate full cache lines with 16-bit inputs, a multiple of 32 OFMs
should be collected. This often produces better performance results, though it may be viewed as a
restriction to convolution blocking parameters (in particular, N_ACC).

Example 20-19 shows the conversion code for two blocks of sixteen cache lines of 32-bit floats converted
to a single block of sixteen cache lines of 16-bit bfloats. TMUL outputs are assumed to be placed into a
scratchpad spad, and the conversion result is placed in the next_inputs buffer.

20-36

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-19. Two Blocks of 16 Cache Lines of 32-bit Floats Converted to One Block of 16 Cache Lines of 16-bit
BFloat

Example 20-20. Using Unsigned Saturation

20.12 INPUT AND OUTPUT BUFFERS REUSE (DOUBLE BUFFERING)
Due to the significant computational speedup achieved by the Intel AMX instructions, the performance
bottleneck of Intel AMX-enabled applications is usually memory access. The most straightforward way to
improve memory utilization is to reduce an application’s memory footprint. An application with a smaller
memory footprint will keep more of its essential data in the caches while reducing the number of costly
cache evictions. This usually improves performance.

In Deep Learning (DL), a simple, efficient way to reduce the memory footprint is to reuse the input and
output buffers of various layers in the topology.

The following simple topology illustrates where the previous layer feeds the next layer (left):

float* spad;
bfloat_16* next_inputs;
inline unsigned inputs_spatial_dim(void) {
 return /* number of pixels in map */
}
for (int i = 0; i < 16; i++)
{
__m512 f32_0 = _mm512_load_ps(spad);
 __m512 f32_1 = _mm512_load_ps(spad + 16*16);

__m512 bf16 = _mm512_castsi512_ps(_mm512_cvtne2ps_pbh(f32_1, f32_0));
_mm512_store_ps(next_inputs, bf16);

 spad += 16; /* Next TILE row */
 next_inputs += 32 * inputs_spatial_dim();
}

const int32_t db_sel[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
inline __m512i Pack_DwordsToBytes(__m512i dwords[4])
{
 const __m512i sel_reg = _mm512_load_si512(db_sel);
 const __m512i words_0 = _mm512_packs_epi32(dwords[0], dwords[1]);
 const __m512i words_1 = _mm512_packs_epi32(dwords[2], dwords[3]);
 __m512i bytes = _mm512_packus_epi16(words_0, words_1);
 bytes = _mm512_permutexvar_epi32(sel_reg, bytes);

 return bytes;
}

20-37

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-14. Trivial Deep Learning Topology with Naive Buffer Allocation

A straightforward buffer allocation scheme is illustrated on the in Figure 20-14, in which the output of
layer N is placed into a dedicated memory buffer which is then consumed as input by layer N+1. In this
scheme, such topology with L-layers would require L+1 memory buffers, of which only the last is valuable
(containing the final results). The rest of the L memory buffers are single-use and disposable, signifi-
cantly increasing the application’s memory footprint.

The allocation scheme in Figure 20-15 offers an improved scheme whereby the entire topology only
requires two reusable memory buffers.

Figure 20-15. Minimal Memory Footprint Buffer Allocation Scheme for Trivial Deep Learning Topology

A more complex topology would require more reusable buffers, but this number is significantly smaller
than the naïve approach. ResNet-50, for example, requires only three reusable buffers (instead of 55).
Inception-ResNet-V2 requires only five reusable buffers (instead of over 250). This optimization resulted
in a 25% improved performance on the int8 end-to-end large batch throughput run of Resnet50 v1.5.

20-38

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.13 SOFTWARE PREFETCHES
The CPU employs sophisticated HW prefetchers that predict future access and provide relevant data. This
works best when most memory accesses are sequential. For more details on processor hardware
prefetchers, see Section 20.13.1.2.

20.13.1 SOFTWARE PREFETCH FOR CONVOLUTION AND GEMM LAYERS
Since the Conv/GEMM kernel is centered around loops over the M, K, and N dimensions of the involved
matrices, the access will often be sequential. However, memory blocking, also recommended in this
guide, causes the CPU to re-use the same block in the A or B matrices (or both) multiple times during the
kernel execution. This means that sometimes the HW prefetcher cannot predict the subsequent access
correctly. This opens the opportunity for an SW prefetch algorithm tightly integrated into the Conv/GEMM
kernel and can bring in cache lines from future blocks based on the blocking strategy.

While the SW prefetch instruction enables selecting the target cache hierarchy level for the prefetch, this
document assumes that the prefetch will go to the MLC. The DCU is too small to prevent the prefetched
lines from being evicted before they can be used, and prefetching to LLC may not yield significant
improvement.

20.13.1.1 The Prefetch Strategy
The prefetch strategy is highly dependent on the Conv/GEMM kernel method of operation. Assuming the
“loops and blocking” design discussed earlier, the kernel operation can probably be split into multiple
phases where each phase manages a different part of the matrices (corner, middle, etc.). The developer
is encouraged to reduce the program’s size by reusing sections for repeatable matrix patterns to avoid
overflowing the instruction cache. This can be done by having each section work on relative addresses.
The SW prefetch instruction can be integrated into these sections and work on relative addresses. This
means that while one section of the code loads addresses for its use, it also prefetches memory for a
future section. The future section can be determined by looking at the future indices of any of the M/K/N
loop levels.

20.13.1.2 Prefetch Distance
One of the most important decisions when using SW prefetching is the distance between the current and
prefetched addresses. Supposing some blocking strategy is employed, it is more complex than adding an
offset to the current address. The prefetched address must be set based on the target block of the
matrix. If the target block is too close, the prefetched memory might still be in transit when the memory
is required, and the CPU will stall, waiting for it to arrive. The data might be evicted if prefetched memory
is too distant before it is used. The developer must tune the distance based on the layer/blocking param-
eters.

As an example heuristic:

• One or two loads for each TMUL operation.
• Where one matrix is already in a register.
• When two registers must be loaded.
• The recommended range between the prefetch time and the consumption time is between 100 and

500 TMUL operations.
• 100 TMUL operations should take about 1600 cycles.
• The maximum number of bytes loaded between prefetch and consumption is 1MB (500 TMUL ops /*

2 loads per ops /* 1K per tile).
• The optimum is probably closer to 100 TMUL ops. At any rate, the developer must check the current

CPU architecture and make sure that the MLC will not overflow.

20-39

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.13.1.3 To Prefetch A or Prefetch B?
Whether to prefetch A, B, or both depends on the order of layer execution.

In general, the following approaches are available:

• Image affinity.
• Execute the next layer of the same image.
• Complete a single image end-to-end before continuing to the next image in the same mini-batch.

Layer affinity:

• Execute the same layer of the following image.
• Complete a layer for all images in the mini-batch before continuing to the next layer.

The activations (the result of the previous layer) in the CPU caches are seen when image affinity is used.
The weights in the caches are found when layer affinity is used. Generally, image affinity is recommended
when sizeof(A)>sizeof(B) and layer affinity otherwise. To maximize performance, the developer should
tune the switch point between the two methods. The choice between these two methods is also affected
by the target matrix for prefetching. If the developer is confident that one of the matrices will already be
present in the cache when the Conv/GEMM kernel begins execution, the potential benefit of SW
prefetching decreases dramatically.

The size of the A-matrix, B-matrix, and cache.

The developer should sum up the memory requirements of the Conv/GEMM kernel for the current layer
and compare it to the size of the cache (MLC). Combined with the previous step, it can indicate whether
SW prefetching can yield any performance benefit. When large matrices are involved, there is a greater
chance for improvement when prefetching the A- and the B-matrices.

20.13.1.4 To Prefetch or Not to Prefetch C?
It is not the C-matrix we might want to prefetch but rather the final output matrix of the layer, after its
post-convolution or post-GEMM phase, including quantization to a lower precision data type. Generally,
prefetch those cache lines ahead of time since, with double buffering, these might have been read by
previous layers, possibly executed in other cores.

Use the PREFETCHW instruction to read those cache lines into the DCU just in time for the store opera-
tions to find them in the DCU ready to be written, avoiding Read For Ownership latency that otherwise
delays store completion. The exact timing of issuing the PREFETCHW instruction depends on multiple
factors and requires careful tuning to get it right.

20.13.2 SOFTWARE PREFETCH FOR EMBEDDING LAYER
When the memory access pattern is semi-random, it is often impossible for the HW prefetcher to predict
since it is based on application logic. In this case, the application may benefit from “proactive”
prefetching using the SW prefetch instructions of addresses the application knows it will access soon.

An excellent example is Deep Learning, wherein the recommendation systems often use the embedding
layer. The core loop of the embedding algorithm loads indices from an index buffer, and for each index, it
loads the corresponding row from the embedding table for further processing. While the index buffer may
contain duplicate indices that benefit from CPU caching, the pattern is often considered random or semi-
random. This can make the HW prefetcher less efficient. Since the entire content of the index buffer is
already known, rows soon to be encountered can be prefetched to the DCU.

20-40

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-21. Prefetching Rows to the DCU

20.14 STORE TO LOAD FORWARDING
Before it gets written to the DCU (first-level cache), store instructions copy data from general purpose,
vector, or tile registers into store buffers. All load instructions, other than TileLoad, can load the data they
are looking for from the store buffers and memory hierarchy.

The TileLoad instruction can’t load data from store buffers. It can only detect that the data is there and
must wait until it is written to the memory hierarchy. Once written, TileLoad can read it from the memory
hierarchy. This incurs a significant slowdown.

TileStore forwarding to non-TileLoad instructions via store buffers is supported under one restriction:
they must both be of cache line size (64 bytes).

Forwarding is generally not advised because this mechanism has outliers. To avoid store-to-load
forwarding, ensure enough distance between those two operations in the order of 10s of cycles in time.

20.15 MATRIX TRANSPOSE
This section describes the best-known SW implementations for several matrix transformations of BF16
data.

In this context, flat format means:

• Normal (i.e., non-VNNI).
• Unblocked rows (rows of matrices occupy a consecutive region in memory).

The first condition is essential. The second could be relaxed by changing the code in Example 20-22
accordingly. VNNI format implies only the second condition (non-blocking of rows). It is important to
note that the MxN matrix in flat format will be represented by a (M/2)x(N/*2) matrix in VNNI format.

1 void prefetched_embedding(uint32_t *a, float *e, float *c, size_t num_indices,
2 float scale, float bias, size_t lookahead)
3 {
4 __m512 s = _mm512_set1_ps(scale);
5 __m512 b = _mm512_set1_ps(bias);
6
7 for (size_t i = 0; i < num_indices; i++) {
8 _mm_prefetch(
9 (char const *)&e[a[i + lookahead] * FLOATS_PER_CACHE_LINE],
10 _MM_HINT_T0);
11 __m512 ereg =
12 _mm512_load_ps(&e[((size_t)a[i]) * FLOATS_PER_CACHE_LINE]);
13 __m512 creg = _mm512_fmadd_ps(ereg, s, b);
14 _mm512_store_ps(&c[i * FLOATS_PER_CACHE_LINE], creg);
15 }
16 }

20-41

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.1 FLAT-TO-FLAT TRANSPOSE OF BF16 DATA
The primitive block transposed in this algorithm is 32x8 (i.e., 32 rows, eight BF16 numbers each), which
is transformed into an 8x32 block (i.e., eight rows of 32 BF16 numbers each).

The implementation uses sixteen ZMM registers and three mask registers.

Input parameters: MxN, sizes of the rectangular block to be transposed. Assuming M is a multiple of 32,
and N is a multiple of eight, we may also assume in Example 20-22:

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains starting address of the input matrix.
• r9 contains starting address of the output buffer.

Example 20-22. BF16 Matrix Transpose (32x8 to 8x32)

/*1 of 2 */
1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 32
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*8]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*16]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*24]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*9]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*17]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*25]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*10]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*18]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*26]
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*11]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+I_STRIDE*19]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+I_STRIDE*27]
25 vbroadcasti32x4 zmm4, xmmword ptr [r8+I_STRIDE*4]
26 vbroadcasti32x4 zmm4{k1}, xmmword ptr [r8+I_STRIDE*12]
27 vbroadcasti32x4 zmm4{k2}, xmmword ptr [r8+I_STRIDE*20]
28 vbroadcasti32x4 zmm4{k3}, xmmword ptr [r8+I_STRIDE*28]
29 vbroadcasti32x4 zmm5, xmmword ptr [r8+I_STRIDE*5]
30 vbroadcasti32x4 zmm5{k1}, xmmword ptr [r8+I_STRIDE*13]
31 vbroadcasti32x4 zmm5{k2}, xmmword ptr [r8+I_STRIDE*21]
32 vbroadcasti32x4 zmm5{k3}, xmmword ptr [r8+I_STRIDE*29]
33 vbroadcasti32x4 zmm6, xmmword ptr [r8+I_STRIDE*6]

20-42

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 2 */
34 vbroadcasti32x4 zmm6{k1}, xmmword ptr [r8+I_STRIDE*14]
35 vbroadcasti32x4 zmm6{k2}, xmmword ptr [r8+I_STRIDE*22]
36 vbroadcasti32x4 zmm6{k3}, xmmword ptr [r8+I_STRIDE*30]
37 vbroadcasti32x4 zmm7, xmmword ptr [r8+I_STRIDE*7]
38 vbroadcasti32x4 zmm7{k1}, xmmword ptr [r8+I_STRIDE*15]
39 vbroadcasti32x4 zmm7{k2}, xmmword ptr [r8+I_STRIDE*23]
40 vbroadcasti32x4 zmm7{k3}, xmmword ptr [r8+I_STRIDE*31]
41 vpunpcklwd zmm8, zmm0, zmm1
42 vpunpckhwd zmm9, zmm0, zmm1
43 vpunpcklwd zmm10, zmm2, zmm3
44 vpunpckhwd zmm11, zmm2, zmm3
45 vpunpcklwd zmm12, zmm4, zmm5
46 vpunpckhwd zmm13, zmm4, zmm5
47 vpunpcklwd zmm14, zmm6, zmm7
48 vpunpckhwd zmm15, zmm6, zmm7
49 vpunpckldq zmm0, zmm8, zmm10
50 vpunpckhdq zmm1, zmm8, zmm10
51 vpunpckldq zmm2, zmm9, zmm11
52 vpunpckhdq zmm3, zmm9, zmm11
53 vpunpckldq zmm4, zmm12, zmm14
54 vpunpckhdq zmm5, zmm12, zmm14
55 vpunpckldq zmm6, zmm13, zmm15
56 vpunpckhdq zmm7, zmm13, zmm15
57 vpunpcklqdq zmm8, zmm0, zmm4
58 vpunpckhqdq zmm9, zmm0, zmm4
59 vpunpcklqdq zmm10, zmm1, zmm5
60 vpunpckhqdq zmm11, zmm1, zmm5
61 vpunpcklqdq zmm12, zmm2, zmm6
62 vpunpckhqdq zmm13, zmm2, zmm6
63 vpunpcklqdq zmm14, zmm3, zmm7
64 vpunpckhqdq zmm15, zmm3, zmm7
65 vmovdqu16 zmmword ptr [r9], zmm8
66 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm9
67 vmovdqu16 zmmword ptr [r9+O_STRIDE*2], zmm10
68 vmovdqu16 zmmword ptr [r9+O_STRIDE*3], zmm11
69 vmovdqu16 zmmword ptr [r9+O_STRIDE*4], zmm12
70 vmovdqu16 zmmword ptr [r9+O_STRIDE*5], zmm13
71 vmovdqu16 zmmword ptr [r9+O_STRIDE*6], zmm14
72 vmovdqu16 zmmword ptr [r9+O_STRIDE*7], zmm15

73 add r9, 0x40
74 add r8, I_STRIDE*32
75 dec rdx
76 jnz L.M

77 add r9, (O_STRIDE*8 — (M/32) * 0X40)
78 sub r8, (I_STRIDE*M-0x10)
79 dec rax
80 jnz L.N

20-43

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation discussion:

• Lines 1-6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9-72 implement the transpose of a primitive block 32x8. It uses 16 ZMM registers (zmm0-

zmm15).
• Lines 9-40 implement loading 32 quarter-cache lines into 8 ZMM registers, according to the following

picture (numbers are in bytes):

Figure 20-16. Loading 32 Quarter-Cache Lines into 8 ZMM Registers

• Lines 41-64 are transpose flow proper. It creates a transposed block 8x32 in registers zmm8-zmm15.
• Lines 65-72 store transposed block 8x32 to the output buffer.

20-44

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.2 VNNI-TO-VNNI TRANSPOSE
The primitive block transposed in this algorithm is 8x8 (i.e., eight rows, eight BF16 numbers each), which
is transformed into a2x32 block (i.e., two rows of 32 BF16 numbers each).

The implementation uses five ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed (in VNNI format); it is assumed that M, N are
multiples of eight.

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains starting address to the input matrix.
• r9 contains starting address to the output buffer.
• zmm31 is preloading with four copies of the following constant: unsigned int shuflle_cntrl[4] =

{0x05040100, 0x07060302, 0x0d0c0908, 0x0f0e0b0a};

Example 20-23. BF16 VNNI-to-VNNI Transpose (8x8 to 2x32)

1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 8
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*2]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*4]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*6]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*3]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*5]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*7]

17 vpshufb zmm2, zmm0, zmm31
18 vpshufb zmm3, zmm1, zmm31
19 vpunpcklqdq zmm0, zmm2, zmm3
20 vpunpckhqdq zmm1, zmm2, zmm3

21 vmovdqu16 zmmword ptr [r9], zmm0
22 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm1

23 add r9, 0x40
24 add r8, I_STRIDE*8
25 dec rdx
26 jnz L.M

27 add r9, (O_STRIDE*2 - (M/8) * 0x40)
28 sub r8, (I_STRIDE*M-0x10)
29 dec rax
30 jnz L.N

20-45

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

BF16 VNNI-to-VNNI Transpose Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–22 implement the transpose of a primitive block 32x8. It uses five ZMM registers (zmm0-

zmm3, zmm31).
• Lines 9–16 implement loading eight quarter-cache lines into two ZMM registers, according to

Figure 20-17 (numbers are in bytes):

Figure 20-17. Loading Eight Quarter-Cache Lines into Two ZMM Registers

• Lines 17–20 implement simultaneous transpose of four 2x2 blocks of QWORDs (i.e., 2x8 blocks of
BF16). It creates a transposed block 2x32 in registers zmm2-zmm3.

• Lines 21–22 store transposed block 2x32 to the output buffer.

20-46

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.3 FLAT-TO-VNNI TRANSPOSE
The algorithm below is based on: Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat trans-
pose of DWORDs. This is illustrated below (the header numbers are bytes):

Figure 20-18. Flat-to-VNNI Transpose of WORDs Equivalence to Flat-to-Flat Transpose of DWORDs

The primitive block transposed in this algorithm is 16x8 (i.e., 16 rows, 8 BF16 numbers each), which is
transformed into a 4x32 block (i.e., four rows of 32 BF16 numbers each).

The implementation uses eight ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 16, N multiple
of eight.

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains the starting address for the input matrix.
• r9 contains the starting address for the output buffer.

20-47

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-24. BF16 Flat-to-VNNI Transpose (16x8 to 4x32)

 1 mov r10, 0xf0
 2 kmovd k1, r10d
 3 mov r10, 0xf00
 4 kmovd k2, r10d
 5 mov r10, 0xf000
 6 kmovd k3, r10d
 7 mov rax, N / 8
L.N:
 8 mov rdx, M / 16
L.M:
 9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*4]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*8]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*12]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*5]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*9]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*13]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*6]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*10]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*14]
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*7]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+ I_STRIDE*11]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+ I_STRIDE*15]

25 vpunpckldq zmm4, zmm0, zmm1
26 vpunpckhdq zmm5, zmm0, zmm1
27 vpunpckldq zmm6, zmm2, zmm3
28 vpunpckhdq zmm7, zmm2, zmm3
29 vpunpcklqdq zmm0, zmm4, zmm6
30 vpunpckhqdq zmm1, zmm4, zmm6
31 vpunpcklqdq zmm2, zmm5, zmm7
32 vpunpckhqdq zmm3, zmm5, zmm7

33 vmovups zmmword ptr [r9], zmm0
34 vmovups zmmword ptr [r9+O_STRIDE], zmm1
35 vmovups zmmword ptr [r9+O_STRIDE*2], zmm2
36 vmovups zmmword ptr [r9+O_STRIDE*3], zmm3

37 add r9, 0x40
38 add r8, I_STRIDE*16
39 dec rdx
40 jnz L.M

41 add r9, (O_STRIDE*4 - (M/16)*0x40)
42 sub r8, (I_STRIDE*M-0x10)
43 dec rax
44 jnz L.N

20-48

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–36 implement the transpose of a primitive block 16x8. It uses eight ZMM registers (zmm0–

zmm7).
• Lines 9–24 implement loading 16 quarter-cache lines into four ZMM registers zmm0-zmm3,

according to Figure 20-19 (numbers are in bytes):

Figure 20-19. BF16 Flat-to-VNNI Transpose

• Lines 25–32 are the transpose flow proper. It creates a transposed block 4x32 in registers zmm0–
zmm3.

• Lines 33–36 store transposed block 4x32 to the output buffer.

20.15.4 FLAT-TO-VNNI RE-LAYOUT
The primitive block which is being re-layout in this algorithm is 2x32 (i.e., 2 rows, 32 BF16 numbers
each), which is transformed into a 1x64 block (i.e., 1 rows of 64 BF16 numbers each).

The implementation uses 5 ZMM registers and no mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 2, N multiple
of 32.

• I_STRIDE is the row size of input matrix in bytes.
• O_STRIDE is the row size of output buffer in bytes.
• r8 contains starting address to input matrix.
• r9 contains starting address to output buffer.
• zmm30, zmm31 are preloaded with following constants, respectively:

20-49

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• const short perm_cntl_1[32] = {0x00, 0x20, 0x01, 0x21, 0x02, 0x22, 0x03, 0x23, 0x04, 0x24,
0x05, 0x25, 0x06, 0x26, 0x07, 0x27, 0x08, 0x28, 0x09, 0x29, 0x0a, 0x2a, 0x0b, 0x2b, 0x0c, 0x2c,
0x0d, 0x2d, 0x0e, 0x2e, 0x0f, 0x2f};

• const short perm_cntl_2[32] = {0x30, 0x10, 0x31, 0x11, 0x32, 0x12, 0x33, 0x13, 0x34, 0x14,
0x35, 0x15, 0x36, 0x16, 0x37, 0x17, 0x38, 0x18, 0x39, 0x19, 0x3a, 0x1a, 0x3b, 0x1b, 0x3c, 0x1c,
0x3d, 0x1d, 0x3e, 0x1e, 0x3f, 0x1f};

Example 20-25. BF16 Flat-to-VNNI Re-Layout

BF16 Flat-to-VNNI Re-Layout Implementation Discussion

• Lines 1, 2 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 3, 4 implement loading two full cache lines into two ZMM registers zmm0-zmm1, from

consecutive rows of the input matrix.
• Lines 5 through 7 implement the re-layout of a primitive block 2x32. It uses five ZMM registers

(zmm0–zmm2, zmm30-zmm31).
• Lines 8, 9 implement storing two full cache lines in two ZMM registers zmm1-zmm2, into consecutive

columns of the output matrix.

1 mov rdx, M / 2
L.M:
 2 mov rax, N / 32
L.N:
 3 vmovups zmm0, zmmword ptr [r8]
 4 vmovups zmm1, zmmword ptr [r8+I_STRIDE]

 5 vmovups zmm2, zmm0
 6 vpermt2w zmm2, zmm30, zmm1
 7 vpermt2w zmm1, zmm31, zmm0

 8 vmovups zmmword ptr [r9], zmm2
 9 vmovups zmmword ptr [r9+0x40], zmm1

10 add r9, 0x80
11 add r8, 0x40
12 dec rax
13 jnz L.N

14 add r9, (O_STRIDE - (N/32)*0x80)
15 add r8, (I_STRIDE*2 – (N/32)*0x40)
16 dec rdx
17 jnz L.M

20-50

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16 MULTI-THREADING CONSIDERATIONS

20.16.1 THREAD AFFINITY
As with Intel AVX-512 code, it is advised to fully define thread affinity and object affinity to process a
single object in the same physical core, thus keeping the activations in core caches (unless larger than
the size of the caches). This advice becomes imperative with Intel AMX code since those applications are
more sensitive to memory-related issues.

20.16.2 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)
Running more than one Intel AMX thread on the same physical core may result in overall performance
loss due to the two threads competing for the same hardware resources. Scheduling a non-Intel AMX
thread next to an Intel AMX thread on the same core may decrease the thread performance more than
one expects due to normal competition for resources.

For optimum performance, please choose one of the following options in priority order:

1. Schedule one Intel AMX thread per physical core on one of its logical processors, while leaving the
other logical processors idle.

2. Affintize a software thread that executes an endless TPAUSE CO.2 loop next to the Intel AMX thread.

a. This prevents other threads from being scheduled on that logical processor.

1) All hardware resources within the physical core are therefore allocated to the Intel AMX
thread.

2) This endless loop thread must terminate when the Intel AMX thread is about to terminate.

3. Code pause loops of thread pool threads that are waiting for the next task to be assigned to them
with UMWAIT or TPAUSE C0.2 rather than with PAUSE, TPAUSE C0.1, or a non-pausing spin.

20.16.3 WORK PARTITIONING BETWEEN CORES
Deep Learning (DL) applications must often adhere to latency requirements that cannot be fulfilled within
a single core. In these cases, a single object’s processing must be partitioned between multiple cores.

Additionally, often the output of one layer is the input of the next layer. Due to the nature of the compu-
tations in DL applications, partitioning over different dimensions (N, M, K) will have different implications
for the data locality in the core’s caches. Minimize importing data from a different core’s caches if possible
as this can hamper performance.

20-51

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.3.1 Partitioning Over M
Partitioning a DL layer over the M dimension has the advantage of nearly complete data locality. The
layer’s output is also partitioned by M between the cores and is, therefore, already in the cache of the
corresponding core at the beginning of the next layer. Figure 20-20 shows this schematically.

Figure 20-20. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the M-Dimension

Here the data read and written by each of the three cores is bound by a black rectangle.
It should be noted that in the case of convolutions, limited overlap in the M-dimension of the activations
occurs between neighboring cores. Due to the convolutions, a finite-sized filter is slid over the activa-
tions. Thus, the M-dimension overlaps (KH-1)/*W (refer to Example 20-13) between the two neighboring
cores.

• Advantages: When multiple layers in a chain are partitioned by the M-dimension between the same
number of cores, each core has its data in its local cache.

• Disadvantages: All the cores read the B-matrix (or weights in convolutions) entirely, which might
pose a bandwidth problem if the B-matrix is large.

20.16.3.2 Partitioning Over N
Partitioning a DL layer over the N-dimension reduces the read bandwidth in GEMMs with large B-matrices
or large weights in convolutions. Each core reads a portion of the B-matrix in this scenario:

Figure 20-21. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the N-Dimension

Unfortunately, the output of the layer is also partitioned by the N-dimension between the cores, which is
incompatible with M and N partitioning of the subsequent layer. For visualization, compare the right side

20-52

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

of Figure 20-21 to the left side of Figures 20-20 and 20-21. In this scenario, a core in the subsequent
layer is guaranteed to have most of its data from outside its local caches. This is not the case in K-dimen-
sion partitioning (see Section 20.16.3.3), but it also comes at a price.

• Advantages: It may reduce read bandwidth significantly in case of large B / large weights.
• Disadvantages: If the next layer is partitioned by M or by N, most of the activations in the next layer

will not reside in the local caches of the corresponding cores.

20.16.3.3 Partitioning Over K
Partitioning a DL layer over the K-dimension reduces the read bandwidth in GEMMs with large K-dimen-
sions by reducing the amount of data being read from the A- and B-matrices (activations and weights in
convolutions). Each core reads a portion of the matrices in this scenario, as illustrated in Figure 20-22.

Figure 20-22. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the K-Dimension

Additionally, if a layer is partitioned by the N-dimension and the subsequent layer is partitioned by the K-
dimension, the activation data will reside in the local caches of the cores in layer partitioned by the K-
dimension. For visualization, compare the right side of Figure 20-21 with the left side of Figure 20-22.
Unfortunately, this comes at a price: each core prepares partial results of the entire C-matrix. To obtain
final results, either a mutex (or several mutexes) is required to guard the write operations into the C-
matrix, or a reduction operation is needed at the end of the layer. The mutex solution is not advised
because threads will be blocked for a significant time. A reduction runs the risk of being costly since it
entails the following:

• A synchronization barrier is required before the reduction.
• Reading a potentially large amount of data during the reduction:

— There are T copies of the C-matrix, where T is the number of threads (the example has three).

— The size of the matrices before the reduction is x2 (in case of a bfloat16 datatype) or x4 (in case
of int8 datatype) times larger than the output C-matrix.

— During the reduction, most of the cores’ data will come outside their local cache hierarchy.

20-53

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.3.4 Memory Bandwidth Implications of Work Partitioning Over Multiple Dimensions
OpenMP offers a convenient interface for nested loop parallelization. For example, one could partition the
N, M, and K dimensions can be partitioned automatically between threads using Example 20-26.

Example 20-26. GEMM Parallelized with omp Parallel for Collapse

The collapse clause specifies how many loops within a nested loop should be collapsed into a single iter-
ation space and divided between the threads. The order of the iterations in the collapsed iteration space
is the same as though they were executed sequentially.

If there is no specified schedule, OpenMP automatically uses schedule(static,1), resulting in the sequen-
tial assignment of loop iterations to threads.

If we assume N=4*N_ACC*TILE_N and M=4*M_ACC*TILE_M wherein the K-dimension is deliberately excluded
from consideration due to its problematic nature, there would be 4*4=16 iterations in the two nested
loops. Now assume the division of iterations between three threads. As shown in Table 20-7, the code in
Example 20-26 would result in a partition of the iterations between threads.

Where every cell of the form n’,m’ contains the n’=n/N_ACC*TILE_N and m’=m/M_ACC*TILE_M indices
from the loops in Example 20-19.

It is clear from Table 20-7 that each of the three threads executes at least one iteration with n’=0,1,2,3
and at least one iteration with m’=0,1,2,3. This means that every thread reads all of A and all of B.

By rearranging the work between threads in the following partitioning, the size of the B read is reduced
by each thread by 50%, which might be significant in workloads where B is large. Similarly, the size of A
can be reduced by 50% by swapping m’ and n’ indices for workloads with a large A.

#pragma omp parallel for collapse(2)

for (int n = 0; n < N; n += N_ACC*TILE_N) {
for (int m = 0; m < M; m += M_ACC*TILE_M) {

 ...
 }
}

Table 20-7. A Simple Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.3 1.2 2.1 3.0 3.3 100% 100% 38%

Thread 1: 0.1 1.0 1.3 2.2 3.1 100% 100% 100%

Thread 2: 0.2 1.1 2.0 2.3 3.2 100% 100% 100%

Table 20-8. An Optimized Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.1 0.2 0.3 3.0 3.1 100% 50% 38%

Thread 1: 1.0 1.1 1.2 1.3 3.2 3.3 100% 50% 38%

Thread 2: 2.0 2.1 2.2 2.3 100% 25% 25%

20-54

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.4 RECOMMENDATION SYSTEM EXAMPLE

Many recommendation systems are built from a few GEMM layers that follow each other, an Embedding
layer, and a layer connecting them. They are generally split into four distinct tasks:
1. Bottom GEMMs (MLPs).

2. Embedding.

3. Bottom MLP + Embedding Concat, GEMM, and Reshape.

4. Top GEMMs (MLPs).

The first two are independent so that they can execute in parallel. Their output feeds into the third task,
whose output, in turn, feeds into the fourth task.

A few notes:

• Recommendation systems usually use a large batch to rank a reasonably large set of options.
• The GEMM layers are usually compute- or cache-bandwidth limited, whereas the Embedding layer is

memory-bandwidth limited.
• Recommendation systems are real-time and therefore limited to a specific latency.

When the latency requirement is a few milliseconds, the recommendation system topology has to be
multi-threaded across several cores. The previous section discussed GEMM partitioning across multiple
cores. This section deals with work partition between the four different tasks.

Figure 20-23 proposes a way to split the three tasks across machine cores. The block sizes in the chart
are for illustration purposes only and do not represent any specific recommendation system.

Those three tasks can then be split into two tasks due to Bottom MLPs and Embedding independence.
Those two tasks feed the other tasks: Bottom MLP + Embedding Concat, GEMM, Reshape, and Top MLPs.
The latter tasks are merged into a single task. Choosing the number of cores for each task is a trial-and-
error exercise. It may involve a phase for analyzing time required to execute each task across different
cores.

Because of a dependency between the Bottom MLPs, Embedding tasks, and the third task, a barrier
exists between them, implying a potential wait-time immediately following the faster layers.

20-55

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-23. A Recommendation System Multi-Threading Model

20.17 SPARSITY OPTIMIZATIONS FOR INTEL® AMX
This section describes how Intel AMX can be further optimized for operations on sparse matrices. An
example use case can be the inference of sparse neural networks, where the sparse weights are known
to initially reside in DRAM due to the “online” usage model or large model capacity. In those cases, the
primary performance bottleneck would be bringing the weights from DRAM. A helpful optimization tech-
nique for this case is to get the weights from DRAM in a compressed format, decompress them into the
local caches using Intel AVX-512, and perform Intel AMX computations on the decompressed data.

The compressed matrix format can consist of the following components:

• compressed[]: an array of non-zero matrix entries.
• mask[]: a bit-per-element array for the full matrix. 0 signifies the corresponding element is 0. 1

signifies a non-zero value that exists in the compressed[] array mentioned above.

The compressed format can be computed off-line. The sparsity bitmask mask[] can be generated using
the Intel AVX-512 VPTESTMB instruction on the sparse data. The compressed[] array can be generated
using the Intel AVX-512 VPCOMPRESS instruction on the sparse data using the sparsity bitmask.

20-56

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The code in Example 20-27 uses Intel AVX-512 to generate num rows of decompressed data, assuming
8-bit elements and 64 elements per tile row.

Example 20-27. Byte Decompression Code with Intel® AVX-512 Intrinsics

The matrix multiplication code will load the decompressed matrix to tiles from decompressed[], an
array containing the decompressed matrix data.

The decompression code makes use of the Intel AVX-512 date expand operation is shown in
Figure 20-24.

Figure 20-24. Data Expand Operation

// uint8_t* compressed_ptr is a pointer to compressed data array
// __mmask64* compression_masks_ptr is a pointer to bitmask array
// uint8_t* decompressed_ptr is a pointer to decompressed data array

for (int i=0; i < num ; i++) {
 __m512i compressed = _mm512_loadu_epi32(compressed_ptr);
 __mmask64 mask = _load_mask64(compression_masks_ptr);
 __m512i decompressed_vec = _mm512_maskz_expand_epi8(mask, compressed);
 _mm512_store_epi32(decompressed_ptr, decompressed_vec);
 decompressed_ptr += 64; // 64 bytes per decompressed row
 compressed_ptr += _mm_countbits_64(mask); // advance compressed pointer by number of non-zero elements
 compression_masks_ptr ++; //64 bitmask bits per decompressed row
}

20-57

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Decompression code for 16-byte elements can be designed in the same way.

For the best performance, apply the following optimizations:

• Interleaving: Fine-grained interleaving of decompression code and matrix multiplication to overlap
Intel AVX-512 decompression with Intel AMX computation.

• Decompress Early: Prepare the decompressed buffer before immediate Intel AMX use to avoid
store forwarding issues.

• Buffer Reuse: Decompressing the full sparse matrix could overflow the CPU caches. For best cache
reuse, it is recommended to have a decompressed buffer that can hold two decompressed panels of
the sparse matrix. While matrix is multiplying with one panel, decompress the next panel for the
subsequent iteration. In the subsequent iteration, decompress the next panel into the first half of the
decompressed buffer that is no longer used, and so on.

• Decompress Once: Coordinate the matrix multiplication blocking and loop structure with the
decompression scheme to minimize the number of times the same portion of the sparse matrix is
decompressed. For example, if the B-matrix is sparse, traversing the entire vertical M-dimension will
compress every vertical panel of the B-matrix only once.

20.18 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI
For a function to use tile registers, it needs to configure them. For the LDTILECFG instruction definition,
see Section 20.2. LDTILECFG creates an Intel AMX state which is kept valid until the TILERELEASE
instruction is issued. TILERELEASE resets the Intel AMX state back to INIT. When the Intel AMX state is
valid, and the OS issues the MWAIT instruction trying to move the physical processor, it executes on to
Core C6 State. The 4th Generation Intel® Xeon® Scalable processor based on the Sapphire Rapids
microarchitecture will not enter Core C6 even if the sibling logical processor is idle. This is because it
lacks the dedicated backing store to keep the Intel AMX state until waking up. The Core C-State is
demoted to C1 instead.

This is not an issue in Linux and Windows, where only the idle process issues the MWAIT instruction. The
Idle Process in both operating systems does not use the Intel AMX ISA, so its Intel AMX tile state is
always invalid (INIT). If still valid, the Intel AMX tile state will have previously been saved in an OS-
defined area in memory while context-switching between a thread that uses Intel AMX and the Idle
Process thread.

20.18.1 ABI
The tile data registers (tmm0 – tmm7) are volatile. Their contents are passed back and forth between
functions through memory. No tile register is saved and restored by the callee. Tile configuration is also
volatile. The compiler saves and restores tile configuration and tile register contents if the register(s)
need to live across the function call. The compiler eliminates the save instruction because its content
remains the same on the stack. The compiler reuses the configured content saved on the stack before the
call. All functions need to configure the tile registers themselves; however, tile registers may not be
configured across functions.

Please download the System V Application Binary Interface: Intel386 Architecture Processor Supple-
ment, Version1.0.

https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf

20-58

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.2 INTRINSICS

Example 20-28. Identification of Tile Shape Using Parameter m, n, k

The parameter m, n, k identifies the shape of the tile.

typedef int _tile1024i __attribute__((__vector_size__(1024), __aligned__(64)));
_tile1024i _tile_loadd_internal(unsigned short m, unsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_loaddt1_internal(unsigned short m, uunsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_dpbssd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbsud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbusd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbuud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbf16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
void_tile_stored_internal(unsigned short m, unsigned short n, void*base, __SIZE_TYPE__ stride, _tile1024i tile);

20-59

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.3 USER INTERFACE

Example 20-29. Intel® AMX Intrinsics Header File

/* 1 of 2 */
typedef struct __tile1024i_str {
 const unsigned short row;
const unsigned short col;
 _tile1024i tile;
} __tile1024i;

/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_loadd(__tile1024i *dst, const void *base, __SIZE_TYPE__ stride);
/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst". This intrinsic provides a hint to the implementation
/// that the data will likely not be reused in the near future and the data
/// caching can be optimized accordingly.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_stream_loadd(__tile1024i* dst, const void* base, __SIZE_TYPE__ stride);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///

20-60

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/* 2 of 3 */
/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbssd(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbsud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbuud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Zero the tile specified by "dst".
///
/// \headerfile <immintrin.h>
///

20-61

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/* 2of 2 */
/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.
///
/// \param dst
/// The destination tile to be zero. Max size is 1024 Bytes.
void __tile_zero(__tile1024i* dst);
/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.
////// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbf16ps(__tile1024i* dst, __tile1024i src0, __tile1024i src1);
/// Store the tile specified by "src" to memory specified by "base" address and
/// "stride".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be stored in memory.
void __tile_stored(void *base, __SIZE_TYPE__ stride, __tile1024i src);

20-62

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.4 INTEL® AMX INTRINSICS EXAMPLE
In Example 20-30, function foo is called in line 18, and the tile variable ‘a’ written in line 17 needs to live
up to line 21 across the function call. The compiler needs to save the tile data register allocated to ‘a’
before calling foo, then restore the tile configure register and tile data registers after calling foo. Lines 39,
42, and 46 in Example 20-31 are the save/restore code. Since the configure register doesn’t change, the
configure register in the stack does not require saving.

Example 20-30. Intel® AMX Intrinsics Usage

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables.

Notice the ldtilecfg instruction at the beginning of the function (line 34 in Example 20-31), which sets the
Intel AMX registers configuration within the CPU and the TileRelease instruction towards the end of the
function. This placement ensures that the Intel AMX state is initialized, thus avoiding the expensive Intel
AMX state save/restore in case of a software thread context-switch outside of the Intel AMX function.

 1 #include <immintrin.h>
 2
 3 char buf[1024];
 4 #define STRIDE 32
 5
 6 int count = 0;
 7 __attribute__((noinline))
 8 void foo() {
 9 count++;
 10 }
 11
 12 void test_api(int cond, unsigned short row, unsigned short col) {
 13 __tile1024i a = {row, col};
 14 __tile1024i b = {row, col};
 15 __tile1024i c = {row, col};
 16
 17 __tile_loadd(&a, buf, STRIDE);
 18 foo();
 19 __tile_loadd(&b, buf, STRIDE);
 20 __tile_loadd(&c, buf, STRIDE);
 21 __tile_dpbssd(&c, a, b);
 22 __tile_stored(buf, STRIDE, c);
 23 }

20-63

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-31. Compiler-Generated Assembly-Level Code from Example 20-30

20.18.5 COMPILATION OPTION
The save/restore is sometimes unnecessary, e.g., when foo does not clobber any tile register. To avoid
unnecessary save/restore, compile with “-mllvm -enable-ipra”, which does an IPO analysis to get the
information on what physical registers are clobbered during the function call. Example 20-32 shows no
tile register save/restore across calling foo.

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables -mllvm -
enable-ipra

 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 pushq %rbp
 19 pushq %r15
 20 pushq %r14
 21 pushq %rbx
 22 subq $1096, %rsp # imm = 0x448
 23 movl %edx, %ebx
 24 movl %esi, %ebp
 25 vpxord %zmm0, %zmm0, %zmm0
 26 vmovdqu64 %zmm0, (%rsp)
 27 movb $1, (%rsp)
 28 movw %bx, 20(%rsp)
 29 movb %bpl, 50(%rsp)
 30 movw %bx, 18(%rsp)
 31 movb %bpl, 49(%rsp)
 32 movw %bx, 16(%rsp)
 33 movb %bpl, 48(%rsp)
 34 ldtilecfg (%rsp)
 35 movl $buf, %r14d
 36 movl $32, %r15d
 37 tileloadd (%r14,%r15), %tmm0
 38 movabsq $64, %rax
 39 tilestored %tmm0, 64(%rsp,%rax) # 1024-byte Folded Spill
 40 vzeroupper
 41 callq foo
 42 ldtilecfg (%rsp)
 43 tileloadd (%r14,%r15), %tmm0
 44 tileloadd (%r14,%r15), %tmm1
 45 movabsq $64, %rax
 46 tileloadd 64(%rsp,%rax), %tmm2 # 1024-byte Folded Reload
 47 tdpbssd %tmm0, %tmm2, %tmm1
 48 tilestored %tmm1, (%r14,%r15)
 49 addq $1096, %rsp # imm = 0x448
 50 popq %rbx
 51 popq %r14
 52 popq %r15
 53 popq %rbp
 54 tilerelease
 55 retq

20-64

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-32. Compiler-Generated Assembly-Level Code Where Tile Register Save/Restore is Optimized Away

20.19 INTEL® AMX STATE MANAGEMENT
Intel AMX is XSAVE supported, meaning that it defines processor registers that can be saved and
restored using instructions of the XSAVE feature set. Intel AMX is also XSAVE enabled, meaning that
system software must enable it before it can be used.

The XSAVE feature set operates on state components, each a discrete set of processor registers (or parts
of registers). Intel AMX is associated with two state components, XTILECFG and XTILEDATA. The XSAVE
feature set organizes state components using state-component bitmaps. A state-component bitmap
comprises 64 bits; each bit in such a bitmap corresponds to a single state component. Intel AMX defines
bits 18:17 for its state components (collectively, these are called AMX state):

• State component 17 is used for the 64-byte TILECFG register (XTILECFG state).
• State component 18 is used for the 8192 bytes of tile data (XTILEDATA state).

These are both user-state components, meaning the entire XSAVE feature set can manage them. In
addition, it implies that setting bits 18:17 of extended control register XCR0 by system software enables
Intel AMX. If those bits are zero, an Intel AMX instruction execution results in an invalid-opcode excep-
tion (#UD).

About the XSAVE feature set’s INIT optimization, the Intel AMX state is in its initial configuration if the
TILECFG register is zero and all tile data are zero.

Enumeration and feature-enabling documentation can be found in Section 20.2.

 15 .type test_api,@function
 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 subq $72, %rsp
 19 vpxord %zmm0, %zmm0, %zmm0
 20 vmovdqu64 %zmm0, 8(%rsp)
 21 movb $1, 8(%rsp)
 22 movw %dx, 28(%rsp)
 23 movb %sil, 58(%rsp)
 24 movw %dx, 26(%rsp)
 25 movb %sil, 57(%rsp)
 26 movw %dx, 24(%rsp)
 27 movb %sil, 56(%rsp)
 28 ldtilecfg 8(%rsp)
 29 movl $buf, %eax
 30 movl $32, %ecx
 31 tileloadd (%rax,%rcx), %tmm0
 32 callq foo
 33 tileloadd (%rax,%rcx), %tmm1
 34 tileloadd (%rax,%rcx), %tmm2
 35 tdpbssd %tmm1, %tmm0, %tmm2
 36 tilestored %tmm2, (%rax,%rcx)
 37 addq $72, %rsp
 38 tilerelease
 39 vzeroupper
 40 retq
 41 .Lfunc_end1:
 42 .size test_api, .Lfunc_end1-test_api

20-65

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

An execution of XRSTOR or XRSTORS initializes the TILECFG register (resulting in TILES_CONFIGURED =
0) in response to an attempt to load it with an illegal value. Moreover, an execution of XRSTOR or
XRSTORS that is not directed to load XTILEDATA leaves it unmodified, even if the execution is loading
XTILECFG.

It is highly recommended that developers execute TILERELEASE to initialize the tiles at the end of the
Intel AMX instructions code region. More on this is in Section 20.18.

If the system software does not initialize the Intel AMX state first (by executing TILERELEASE, for
example), it may disable Intel AMX by clearing XCR0[18:17], by clearing CR4.OSXSAVE, or by setting
IA32_XFD[18].

20.19.1 EXTENDED FEATURE DISABLE (XFD)
The XTILEDATA state component size is 8 KBytes, and an operating system may, by default, prefer not to
allocate memory for the XTILEDATA state for every user thread. An operating system that enables Intel
AMX might select a fault when user threads use the feature. That way, it can allocate a large enough state
save area only for the user threads using the feature. An operating system may offer an API for the user
threads to declare their intention to use Intel AMX and allow the OS to preallocate the state and avoid an
exception when Intel AMX is used for the first time.

See Linux API and Windows API for more details.

Extended feature disable (XFD) is added to the XSAVE feature set to support such usage. See the Intel®
AMX Architecture Definition for XFD documentation.

20.19.2 ALTERNATE SIGNAL HANDLER STACK IN LINUX OPERATING SYSTEM
When programs use an alternate signal handler stack, the stack size should be adjusted to accommodate
the additional Intel AMX state. See Using XSTATE Features in User-Space Applications for more details.

20.20 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS
Intel AMX/TMUL has instructions that enable matrix-matrix operations such as multiplication on small
precision elements. This section considers how to use the low-precision Intel AMX instructions to approx-
imate the answers to matrix-matrix multiplication of higher-precision terms. Even if low-precision inputs
are Bfloat16 or Integer8, one can still combine the transforms to approximate matrix-matrix multiplica-
tion in higher precisions.

Pay attention to the exponent range and mantissa bits when approximating higher precisions. There are
IEEE-754 double precision numbers (FP64) that aren’t representable as single precision (FP32) or lower
precisions. These are typically range-based issues in the exponent bits. FP64 has more exponent bits
than FP32. However, scaling factors can overcome most range-based problems. If A is a matrix of FP64
values, then A (as a sum of Bfloat16 matrices) cannot generally be represented. Scaling factors can,
however, be used to get around most issues. The A-matrix as s1*A1 + s2*A2 + … + sn*An can be written
where each matrix A_i is lower precision, and each si is a constant scaling factor.

For Bfloat16 decomposition of FP32, consider the following:

• Let A be a matrix of FP32 values.
• Let A1 = bfloat16(A), a matrix containing RNE-rounded Bfloat16 conversions of A.
• Let A2 = bfloat16(A – fp32(A1)).
• Let A3 = bfloat16(A – fp32(A1) – fp32(A2)).
• Now A is approximately A1 + A2 + A3.

https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html

20-66

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Once one has written two matrices as a sum of lower precision matrices, one can run AMX/TMUL on the
product to approximate the higher precision. But to do this effectively, one needs to have higher precision
accumulation. There are tricks in the literature for doing higher precision all in a lower precision, such as
works on so-called double-double arithmetic. Still, these tend to vary too much from standard matrix-
matrix multiplication to be helpful with TMUL. In the case of Bfloat16, having 32-bit accumulation in the
product allows one to use Bfloat16 to approximate FP32 accuracy.

Therefore, if A = s1*A1 + s2*A2 + s3*A3, and B = t1*B1 + t2*B2 + t3*B3, then A*B can be computed
using AMX/TMUL on the projects Ai*Bj for 1<=i,j<=3, assuming scaling is done carefully to avoid denor-
mals. Assuming FP32 accumulation, the FP32 approximation of A*B can be made by writing out these
lower precision multiplies. Scaling factors can be chosen to avoid denormals at times, but they can also
be picked in a way that simplifies further steps in the algorithm. In some cases, scaling factors can be
chosen to be a power of two, for instance, without significantly reducing the accuracy of the resulting
matrix-matrix multiply.

The number of matrices for A or B are picked depending on the mantissa range to cover. If trying to
emulate FP32 which has 24 bits of mantissa (including the implicit mantissa bit), it is possible with three
Bfloat16 matrices (because each of the triples has 8 bits of mantissa, including the implicit bit.). Here the
range is less important because Bfloat16 and FP32 have the same exponent range. Use three Bfloat16
matrices to approximate FP32 precision by BF16x3. Range issues may still come up for BF16x3 cases
where A has values close to the maximum or minimum exponent for FP32, but that too can be circum-
vented by scaling constants. Scaling factors of 2^24 or 2^(-24) suffice to push it far enough away from
the boundary to make the computation feasible again. This is dependent upon the closest end of the
spectrum.

A few terms from an expansion can also be dropped. For instance, in the BF16x3 case, where there are
three As and three Bs, nine products may result. That is:

A*B = (A1+A2+A3)*(B1+B2+B3) = (A1*B1) + (A1*B2 + A2*B1) + (A1*B3 + A2*B2 + A3*B1) +
(A2*B3 + A3*B2) +(A3*B3).

The parentheses in the last equation are intentionally derived so that all entries in the same “bin” are put
together, and there are nine entries of the form Ai*Bj. This example has five bins, each with its own set
of parentheses. In the Bfloat16 case, |Ai| <= |A_i-1}| / 256. This shows the last two bins (with
A2*B3,A3*B2,A3*B3) are too small to contribute significantly to the answer, which is why if there are Y
terms on each side of A*B, only (Y+1)*Y/2 multiplies are required, not Y*Y multiplies. In this case, drop-
ping the last three (also the difference between Y*Y – (Y+1)*Y/2 when Y=3.) from the nine multiplies.
The last three multiplies in the last two bins have terms less than 2^(-24) as big as the first term. So,
A*B can be approximated (ignoring the scaling terms for now) as the sum of the first three most signifi-
cant bins: A1*B1 + (A1*B2+A2*B1)+(A1*B3+A2*B2*A3*B1). In this case, adding from the least signif-
icant bin to the most significant bin (A1*B1) is recommended.

Whenever A and B are each expanded out to Y-terms, computing only Y*(Y+1)/2 products works under
the condition that each term has the same number of mantissa bits. If some terms have a different
number of bits, then this guideline no longer applies. But for BF16x3, each term covers eight mantissa
bits and Y=3, so six products are needed.

Regarding accuracy, the worst-case relative error for BF16x3 may be worse than FP32. However, BF16x3
tends to cover a larger mantissa range due to implicit bits, which can be more accurate in many cases.
Nevertheless, accuracy is not offered by matrix-matrix multiplication. Even FP64 or FP128 can be bad for
component-wise relative errors. Take A = [1, -1] and B = [1; 1]. A*B is zero. Let eps be a small pertur-
bation to A and/or B. The solution may now be arbitrarily bad in terms of relative error. In general,
assume that the same mantissa range and exponent range is covered as a given higher-precision floating
point format, and the accumulation is at least as good as the higher-precision format. With such an
assumption, the answer will be approximately the same as the higher-precision floating point format. It
may or may not be identical. Performing the same operation in the higher precision format but changing
the order of the computations could yield slightly different results. In terms of matrix-matrix multiplica-
tion, it could yield vast differences in relative error.

20-67

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Things get slightly more complicated if low precision is used to approximate matrix-matrix at FP64 accu-
racy or FP128 precision. Here the scalars aren’t just for avoiding denormals but are necessary to do the
initial matrix conversion. Nevertheless, converting to an integer is recommended in this case because the
FP32-rounded errors in each of the seven or fewer bins may introduce too many errors. An integer is
easier to get right because there are no floating-point errors in each bin.

Conversion to Integer functions in the same way as all of the previous Bfloat16 examples. The quantiza-
tion literature explains how to map floating point numbers into integers. The only difference is that these
integers are further broken down into 8-bit pieces for the use of AMX. Constant factors are still needed,
but in this case they are primarily defined in the conversion itself.

One difficulty with quantization to integers is the notion of a shared exponent. All the numbers quantized
together with shared exponents must share the same range. The assumption is that all of A shares a joint
exponent range. Since this will also be true for B, each row of A and column of B can be quantized sepa-
rately.

Assuming that there is Integer32 accumulation with the Integer8 multiplies, a matrix may be broken
down into far more bits than required. This may significantly reduce the inaccuracy impact of picking a
shared exponent. Because Integer32 arithmetic will be precise, modulo overflow/underflow concerns,
then one can break up A or B into a huge number of 8-bit integer matrices, then do all the matrix-matrix
work with AMX, and then convert back all the results to even get accuracies up to quad-precision.

Considering an extreme case of trying to get over 100-bits of accuracy in a matrix-matrix multiply. All A-
values can be quantified into 128-bit integers. The same holds true with B. Once broken down into 8-bit
quantities, this will have a significant expansion like: A = s1*A1 + s2*A2 + … + s14*A14 for when
attempting 112-bits of mantissa. The same can be done with B = t1*B1 + t2*B2 + … + t14*B14. A*B is
potentially 14*14=196 products, but only 105 products are needed because the last few products may
have scaling factors less than 2^(-112) times the most important terms. Each product term should be
added separately and computing into C from the least significant bits forward.

C15 = (s1*t14)*A1*B14 + (s2*t13)*A2*B13 + … + (s14*t1)*A14*B1

C14 = (s1*t13)*A1*B13 + (s2*t12)*A2*B12 + … + (s13*t1)*A13*B1

C13 = (s1*t12)*A1*B12 + (s2*t11)*A2*B11 + … + (s12*t1)*A12*B1

…

C02 = (s1*t1)*A1*B1

Sometimes choosing scalers is possible such that all the products in a given row can be computed with
the same scratch array. The converted sum of C02 gives the final product through C15, where terms like
C15 should be computed first.

Writing matrix-matrix multiplies in terms of an expansion like (A1+A2+A3)*(B1+B2+B3) is referred to
as “cascading GEMM.” Performance will vary depending on the TMUL/AMX specification, and may vary
from generation to generation. Note that some computations may become bandwidth-bound. Since
there is no quad floating-point precision in hardware for Intel Architecture, the above algorithm may be
competitive performance-wise with other approaches like doing software double-double optimizations or
software-based quad precision.

	Revision History
	Preface
	1. Updates to Chapter 1
	Chapter 1 Introduction

	2. Updates to Chapter 2
	Chapter 2 Intel® 64 and IA-32 Processor Architectures

	3. Updates to Chapter 3
	Chapter 3 General Optimization Guidelines

	4. Updates to Chapter 7
	Chapter 7 Optimizing for SIMD Floating-Point Applications

	7. Updates to Chapter 10
	Chapter 10 Sub-NUMA Clustering

	6. Updates to Chapter 11
	Chapter 11 Multicore and Intel® Hyper-Threading Technology (Intel® HT)

	7. Updates to Chapter 15
	Chapter 15 Optimizations for Intel® AVX, Intel® AVX2, and Intel® FMA

	8. Updates to Chapter 18
	Chapter 18 Software Optimization for Intel® AVX-512 Instructions

	9. Updates to Chapter 20
	Chapter 20 Intel® Advanced Matrix Extensions (Intel® AMX)

